Book Abstract Algebra theory and applications, Annual Edition 2022, Exercises

Jason Sass

May 28, 2025

Judson Chapter 1

Exercise 1. Let $x \in \mathbb{Z}$. Show that the statement '2x = 6 exactly when x = 4' is false.

Proof. Let x = 4. Then $2x = 2(4) = 8 \neq 6$, so $2x \neq 6$.

Conversely, suppose 2x = 6. We divide by 2 to obtain x = 3, so $x \neq 4$. Therefore, the statement '2x = 6 exactly when x = 4' is false.

Proposition 2. quadratic formula to find zeros of quadratic polynomial Let $a, b, c, x \in \mathbb{R}$.

If $ax^2 + bx + c = 0$ and $a \neq 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Proof. Suppose $ax^2 + bx + c = 0$ and $a \neq 0$.

Since $a \neq 0$, then divide each side of the equation $ax^2 + bx + c = 0$ by a.

Observe that

$$\begin{aligned} ax^{2} + bx + c &= 0\\ x^{2} + \frac{b}{a}x + \frac{c}{a} &= 0\\ x^{2} + \frac{b}{a}x &= -\frac{c}{a}\\ x^{2} + \frac{b}{a}x + (\frac{b}{2a})^{2} &= -\frac{c}{a} + (\frac{b}{2a})^{2}\\ (x + \frac{b}{2a})^{2} &= -\frac{c}{a} + \frac{b^{2}}{4a^{2}}\\ (x + \frac{b}{2a})^{2} &= \frac{b^{2} - 4ac}{4a^{2}}\\ x + \frac{b}{2a} &= \frac{\pm\sqrt{b^{2} - 4ac}}{2a}\\ x &= \frac{-b \pm\sqrt{b^{2} - 4ac}}{2a}. \end{aligned}$$

Therefore, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Exercise 3. Let $A = \{4, 7, 9\}$. Let $B = \{2, 4, 5, 8, 9\}$. Show that A is not a subset of B.

Proof. Since $7 \in A$, but $7 \notin B$, then A is not a subset of B, so $A \nsubseteq B$. \Box

Exercise 4. Let $A = \{1, 3, 5\}$. Let $B = \{1, 2, 3, 9\}$. Compute $A \cup B$ and $A \cap B$.

Solution. Observe that $A \cup B = \{1, 2, 3, 5, 9\}$ and $A \cap B = \{1, 3\}$.

Exercise 5. Let A be the set of all even integers. Let B be the set of all odd integers. Show that A and B are disjoint sets.

Proof. Suppose $A \cap B \neq \emptyset$. Then there exists an element in $A \cap B$. Let n be an element of $A \cap B$. Then $n \in A \cap B$, so $n \in A$ and $n \in B$. Since $n \in A$, then n is an even integer, so n = 2a for some integer a. Since $n \in B$, then n is an odd integer, so n = 2b + 1 for some integer b. Hence, 2a = n = 2b + 1, so 2a = 2b + 1. Thus, 1 = 2a - 2b = 2(a - b). Since $a - b \in \mathbb{Z}$ and 1 = 2(a - b), then 1 is even, so 1 = 2c for some integer c. Consequently, $c = \frac{1}{2}$. But, $\frac{1}{2} \notin \mathbb{Z}$, so this contradicts the fact that $c \in \mathbb{Z}$. Therefore, $A \cap B = \emptyset$, so A and B are disjoint sets. \Box **Exercise 6.** Let \mathbb{R} be the universal set. Let $A = \{x \in \mathbb{R} : 0 < x \le 3\}$. Let $B = \{x \in \mathbb{R} : 2 \le x < 4\}$. Compute $A \cap B$ and $A \cup B$ and A - B and \overline{A} . **Solution.** Observe that $A \cap B = \{x \in \mathbb{R} : 2 \le x \le 3\} = [2, 3]$. Observe that $A \cup B = \{x \in \mathbb{R} : 0 < x < 4\} = (0, 4)$. Observe that $A - B = \{x \in \mathbb{R} : 0 < x < x\} = (0, 2)$. Observe that $\overline{A} = \{x \in \mathbb{R} : x \notin A\} = \{x \in \mathbb{R} : x \le 0 \text{ or } x > 3\} = (-\infty, 0] \cup (3, \infty)$.

Exercise 7. Let A and B be sets. Then $(A - B) \cap (B - A) = \emptyset$.

Proof. Observe that

$$(A - B) \cap (B - A) = (A \cap B) \cap (B \cap A)$$
$$= A \cap (\overline{B} \cap B) \cap \overline{A}$$
$$= A \cap \overline{A} \cap (\overline{B} \cap B)$$
$$= (A \cap \overline{A}) \cap (\overline{B} \cap B)$$
$$= (A \cap \overline{A}) \cap (B \cap \overline{B})$$
$$= \emptyset \cap \emptyset$$
$$= \emptyset.$$

Therefore, $(A - B) \cap (B - A) = \emptyset$.

Exercise 8. Let $A = \{x, y\}$. Let $B = \{1, 2, 3\}$. Let $C = \emptyset$. Compute $A \times B$ and $A \times C$.

Solution. Observe that $A \times B = \{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)\}$ and $A \times C = \emptyset$.

Exercise 9. Let $f : \mathbb{Z} \to \mathbb{Q}$ be defined by $f(n) = \frac{n}{1}$. Then f is injective, but not surjective.

Proof. Observe that
$$f : \mathbb{Z} \to \mathbb{Q}$$
 is a map.
Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ such that $f(a) = f(b)$.
Then $\frac{a}{1} = f(a) = f(b) = \frac{b}{1}$, so $\frac{a}{1} = \frac{b}{1}$.
Therefore, $a = b$, so f is injective.

Proof. We prove f is not surjective.

Let $a \in \mathbb{Z}$. Then $f(a) = \frac{a}{1} = a$. Since $a \in \mathbb{Z}$ and $\frac{1}{2} \notin \mathbb{Z}$, then $a \neq \frac{1}{2}$, so $f(a) \neq \frac{1}{2}$. Hence, $f(a) \neq \frac{1}{2}$ for every $a \in \mathbb{Z}$. Since $\frac{1}{2} \in \mathbb{Q}$ and $f(a) \neq \frac{1}{2}$ for every $a \in \mathbb{Z}$, then $\frac{1}{2} \in \mathbb{Q}$ and there is no $a \in \mathbb{Z}$ such that $f(a) = \frac{1}{2}$, so f is not surjective.

Exercise 10. Let $g : \mathbb{Q} \to \mathbb{Z}$ be defined by $g(\frac{p}{q}) = p$, where gcd(p,q) = 1 and $q \in \mathbb{Z}^+$.

Then f is surjective, but not injective.

Proof. Observe that $g: \mathbb{Q} \to \mathbb{Z}$ is a map, since g is well-defined. Since $\frac{1}{2} \in \mathbb{Q}$ and $\frac{1}{3} \in \mathbb{Q}$ and $\frac{1}{2} \neq \frac{1}{3}$, but $g(\frac{1}{2}) = 1 = g(\frac{1}{3})$, then g is not injective.

Proof. Let $b \in \mathbb{Z}$.

Since $b \in \mathbb{Z}$ and $1 \in \mathbb{Z}$ and $1 \neq 0$, then $\frac{b}{1} \in \mathbb{Q}$.

Since $b \in \mathbb{Z}$, then gcd(b, 1) = 1.

Since $b \in \mathbb{Z}$, then g(a(b, 1) = 1 and $1 \in \mathbb{Z}^+$, then $g(\frac{b}{1}) = b$, so there is $\frac{b}{1} \in \mathbb{Q}$ such that $g(\frac{b}{1}) = b$.

Therefore, for every $b \in \mathbb{Z}$, there is $\frac{b}{1} \in \mathbb{Q}$ such that $g(\frac{b}{1}) = b$, so g is surjective.

Judson 1.3 Reading Questions

Exercise 11. What do relations and mappings have in common?

Solution. Both relations and maps are sets of ordered pairs.

A relation from set A to set B is a subset of the Cartesian product $A \times B$. Similarly, a map(function) from set A to set B is a subset of the Cartesian product $A \times B$.

Exercise 12. What makes relations and mappings different?

Solution. A relation is any set of ordered pairs, but a map is a special type of relation.

In a map $f : A \to B$, if f(a) = b and f(a) = b', then b = b'. However, there is no such requirement for a relation.

Judson 1.4 Exercises End of Chapter 1

Exercise 13. Let $A = \{x : x \in \mathbb{N} \text{ and } x \text{ is even}\}.$

Let $B = \{x : x \in \mathbb{N} \text{ and } x \text{ is prime}\}.$ Let $C = \{x : x \in \mathbb{N} \text{ and } x \text{ is a multiple of 5 }\}.$ Describe the below sets. a. $A \cap B$ b. $B \cap C$ c. $A \cup B$ d. $A \cap (B \cup C)$

Solution. For part a.

Observe that $A \cap B = \{x : x \in A \text{ and } x \in B\}.$

Therefore, $A \cap B = \{2\}$, the set of all natural numbers that are even primes.

Solution. For part b.

Observe that $B \cap C = \{x : x \in B \text{ and } x \in C\}.$

Therefore, $B \cap C = \{5\}$, the set of all natural numbers that are prime and multiples of 5.

Solution. For part c.

Observe that $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

Therefore, $A \cup B = \{2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, ...\}$, the set of all natural numbers that are even or prime.

Solution. For part d.

Observe that $A \cap B = \{2\}$, the set of all natural numbers that are even primes.

Observe that $A \cap C = \{10, 20, 30, 40, 50, ...\}$, the set of all natural numbers that are multiples of 10.

Observe that

$$\begin{array}{rcl} A \cap (B \cup C) &=& (A \cap B) \cup (A \cap C) \\ &=& \{2\} \cup \{10, 20, 30, 40, 50, \ldots\} \\ &=& \{2, 10, 20, 30, 40, 50, \ldots\}. \end{array}$$

Therefore, $A \cap (B \cup C) = \{2, 10, 20, 30, 40, 50, \ldots\}$, the set of all natural numbers that are either 2 or multiples of 10.

Exercise 14. Let $A = \{a, b, c\}$.

Let $B = \{1, 2, 3, \}$. Let $C = \{x\}$. Let $D = \emptyset$. Compute the following sets. a. $A \times B$. b. $B \times A$. c. $A \times B \times C$. d. $A \times D$. Solution. For part a. Observe that $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)\}.$ \square **Solution.** For part b. Observe that $B \times A = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)\}.$ Solution. For part c. $\text{Observe that } A \times B \times C = \{(a, 1, x), (a, 2, x), (a, 3, x), (b, 1, x), (b, 2, x), (b, 3, x), (c, 1, x), (c, 2, x), (c, 3, x)\}.$ Solution. For part d. Observe that $A \times D = \emptyset$. **Exercise 15.** Find an example of two nonempty sets A and B for which $A \times B =$ $B \times A$. **Solution.** Let $A = \{1, 2\}$ and $B = \{1, 2\}$. Since $1 \in A$, then $A \neq \emptyset$.

Since $2 \in B$, then $B \neq \emptyset$. Observe that $A \times B = \{(1, 1), (1, 2), (2, 1), (2, 2)\} = B \times A$.

Exercise 16. Let A and B be sets. Then $(A \cap B) - B = \emptyset$.

Proof. Observe that

$$(A \cap B) - B = (A \cap B) \cap \overline{B}$$
$$= A \cap (B \cap \overline{B})$$
$$= A \cap \emptyset$$
$$= \emptyset$$

Exercise 17. Let A and B be sets. Then $(A \cup B) - B = A - B$.

Proof. Observe that

$$(A \cup B) - B = (A \cup B) \cap \overline{B}$$
$$= (A \cap \overline{B}) \cup (B \cap \overline{B})$$
$$= (A \cap \overline{B}) \cup \emptyset$$
$$= A \cap \overline{B}$$
$$= A - B$$

Proposition 18. Let A, B, C be sets. Then $A \cap (B - C) = (A \cap B) - (A \cap C)$. *Proof.* Observe that

$$(A \cap B) - (A \cap C) = (A \cap B) \cap \overline{A \cap C}$$

$$= (A \cap B) \cap (\overline{A} \cup \overline{C})$$

$$= (A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C})$$

$$= (A \cap \overline{A} \cap B) \cup (A \cap B \cap \overline{C})$$

$$= (\emptyset \cap B) \cup (A \cap B \cap \overline{C})$$

$$= \emptyset \cup (A \cap B \cap \overline{C})$$

$$= A \cap B \cap \overline{C}$$

$$= A \cap (B \cap \overline{C})$$

$$= A \cap (B - C)$$

Exercise 19. Let $f : \mathbb{Q} \to \mathbb{Q}$ be defined by $f(\frac{p}{q}) = \frac{p+1}{p-2}$. Determine if f is a map.

Solution. TODO: Start here.