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Fields

Proposition 1. alternate definition of a field
A field is a commutative ring with multiplicative identity 1 # 0 such that
every nonzero element has a multiplicative inverse.

Proof. Let (F,+,-) be a field.

Then addition and multiplication are binary operations defined on F' and
addition is associative and commutative and there is a right additive identity and
each element of F' has a right additive inverse and multiplication is associative
and multiplication is left distributive over addition.

To prove F' is a ring, we need only prove there is a multiplicative identity in
F and multiplication is right distributive over addition.

We prove there is a multiplicative identity in F'.

Since F is a field, then there is a right multiplicative identity.

Let 1 be a right multiplicative identity in F.

Then 1 € F and al =a for all a € F.

Let a € F.

Then al = a.

Since F' is a field, then multiplication is commutative, so al = la.

Thus, a = al = 1a.

Therefore, 1 is a multiplicative identity in F, so there is a multiplicative
identity in F'.

We prove multiplication is right distributive over addition.
Let a,b,c € F.
Then
(b+c)a = alb+e)
= ab+ac
= ba+ ca.
Hence, multiplication is right distributive over addition.

Therefore, (F,+,-) is a ring.
Since multiplication is commutative, then (F,+,-) is a commutative ring.



We prove 1 # 0.
Since (F,+,-) is a ring, then (F,+) is an abelian group.
Therefore, 0 is the additive identity of F.
Since F' is a field, then 1 # 0.

We prove every nonzero element has a multiplicative inverse.

Since F' is a field, then each nonzero element of F' has a right multiplicative
inverse in F'.

Let a be a nonzero element of F'.

Then a has a right multiplicative inverse in F'.

Therefore, there exists b € F' such that ab = 1.

Since multiplication is commutative in F, then ab = ba.

Thus, 1 = ab = ba, so b is a multiplicative inverse of a.

Hence, every nonzero element of F' has a multiplicative inverse in F'.

Therefore, (F,+,-) is a commutative ring with multiplicative identity 1 # 0
such that every nonzero element of F' has a multiplicative inverse.
Let (F,+,-) be a commutative ring with multiplicative identity 1 # 0 such
that every nonzero element has a multiplicative inverse.

We prove (F,+,-) is a field.

Since (F,+,-) is a commutative ring, then + is a binary operation on F and
addition is associative and commutative and there is a right additive identity
0 € F and each element has a right additive inverse in F' and - is a binary
operation on F and multiplication is associative and commutative and there
is a multiplicative identity 1 € F and multiplication is left distributive over
addition.

Since 1 is a multiplicative identity, then la = al = a for all a € F.
Hence, al = a for all @ € F, so 1 is a right multiplicative identity.
By hypothesis, 1 # 0.

Let a be a nonzero element of F'.
Then a has a multiplicative inverse.
Hence, there exists b € F' such that ab = ba = 1.
Thus, there exists b € F' such that ab = 1, so a has a right multiplicative
inverse in F'.

Therefore, every nonzero element of F' has a right multiplicative inverse in
F.

Therefore, F is a field. O

Theorem 2. left and right multiplicative cancellation laws hold in a
field
Let (F,+,-) be a field.



If ac =bc and ¢ # 0, then a = b. (right multiplicative cancellation law )
If ca =cb and ¢ #0, then a = b. (left multiplicative cancellation law )

Proof. Let a,b,c € F.
We prove if ac = be and ¢ # 0, then a = b.
Suppose ac = bc and ¢ # 0.
Since ¢ # 0, then the multiplicative inverse ¢~! exists in F.
Observe that

a = a-1

= afc-e)

e}

= (ac)-c”
(be) - ¢!
bc-ch)

= b-1
b.

Therefore, a = b, as desired.

We prove if ca = ¢b and ¢ # 0, then a = b.
Suppose ca = ¢b and ¢ # 0.
Since ac = ca = ¢b = be, then ac = be.
Therefore, ac = be and ¢ # 0, so by the previously proved result, we have
a = b, as desired. O

Proposition 3. multiplication and division are inverse operations
Let F be a field.
Then (Ya,b € F,a # 0)(3'z € F)(ax =1).

Proof. Let a,b € F with a # 0.

We prove a solution to the equation ax = b is unique.

Existence:

Since a # 0, then the multiplicative inverse a~! exists in F'. Since F is closed
under multiplication, then ba=! € F.

Let x = %
Then
b
ar = a(a)
= a(ba™)
= a(a'b)
= (aa" )b
= 10
b.



Hence, ax = b. Therefore, at least one solution exists.

Uniqueness:

Suppose z1,xy € F are solutions to ax = b.

Then ax; = b and axe = b. Thus ax; = axs. Since ax; = axq and a # 0,
then 1 = x5, by the left multiplicative cancellation law for fields. Therefore,
at most one solution exists.

Since at least one solution exists and at most one solution exists, then exactly
one solution exists.

Therefore, a solution to ax = b is unique. O

Theorem 4. FEvery field is an integral domain.

Proof. Let (F,+,-) be a field. To prove F is an integral domain, we must prove
F is a commutative ring with nonzero unity and F has no zero divisors. By
definition of field, F' is a commutative ring with nonzero unity.

To prove F has no zero divisors, we prove if ab = 0, then either ¢ = 0 or
b=0for all a,b € F. Let a,b e F.

To prove ab = 0 implies a = 0 or b = 0, we assume ab = 0 and a # 0. We
must prove b = 0.

Since a # 0, then a=! € F exists.

Observe that

Therefore, b = 0, as desired. O

Proposition 5. Let (F,+,-) be a field. If a # 0 and b # 0, then (ab)~! =
a 1b~t.
Proof. Suppose a # 0 and b # 0.

Since F'is a field, then every nonzero element of F' has a multiplicative inverse
in F. Therefore, a=! € F and b~! € F. Since F is closed under multiplication,
then a='b~! € F. Since F is a field, then F is an integral domain, so the

product of nonzero elements of F' is nonzero. Therefore, ab # 0, so (ab)~! € F.
Observe that

(ab)(a™*b™Y) = a(ba )bt
= a(a )bt
(aa™")(07")



and

Hence, (ab)(a=1b~!) =1 = (a=1b71)(ab). Therefore, (ab)~*
Proof.

(@' ") (ab) = a”'(b7a)b
= a 1( ”
= (a ta)(b7'D)
= 1-1
= 1.

Suppose a # 0 and b # 0.

a—1p—1.

O

Since F is a division ring, then (F*,-) is the group of units of F. Since
then a € F*. Hence, a is a unit, so a~! exists. Since b # 0, then b € F™*.
Hence, b is a unit, so b~! exists. Since (F*,-) is a group, then (F*,-) is closed
.. Since a € F* and b € F*, then ab € F*. Hence, ab is a unit, so (ab) "
Thus, (ab)~! = b~1a~!. Since - is commutative, then b~ta=! = a=1b~1.

a# 0,

under

exists.

Therefore, (ab)~! = a=b1.

O

Corollary 6. Let (F,+,) be a field. Let a,b,c € F such that b # 0 and ¢ # 0.

Then % =42,
(&

Proof.

b

Since b # 0 and ¢ # 0, then (bc)~! = b~1c~. Therefore,

ac

e (
(

(1|
S

Il
—
Q
i
—_

= (alf1 .

[

e

S
L

Theorem 7. arithmetic operations on quotients
Let (F,+,-) be a field.
Let a,b,c,d € F such that b# 0 and d # 0. Then

1.

¢ = S iff ad = be. (equality of quotients)
. 5 = 29, (multiply quotients)

if c#0, then §/5 = g. (divide quotients)
a4 <= ad;glbc (add quotients)

g <= adbjibc. (subtract quotients)



Proof. We prove 1.
We prove if ¢ = <, then ad = be.
Suppose ¢ = <.
Then
ad = a-1-d
= a(b~'b)d
= (ab™")(bd)
a
= —(bd
- (bd)
c
= —(bd
“ (ba)

= (cd™1)(bd)
= (cd™)(db)
= c(dtd)b
= c¢-1-b
= c¢b
be.
Conversely, we prove if ad = bc, then § =

Suppose ad = be.
Then

c
a

= ab!

Sl S|

= bla
= (bla)(dd™)
= b Yad)d™?
= bl (be)d!
= (07'b)(cd™t)
cd™!
c
7
We prove 2.
Since F is a field and b # 0 and d # 0, then (bd)~! = b=1d~!. Therefore,

= (ab™")(ed™)
= a(ble)d!
= a(ch H)a!
= (a)(0™'d7")

= (ac)(ba)™!
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We prove 3.

Suppose ¢ # 0. Since every nonzero element of F' has a multiplicative inverse
and d # 0, then d~! € F. Since d~'d = 1 = dd~!, then d is a multiplicative
inverse of d~!, so d~! is a unit. Since every umit is nonzero, then d=! # 0.

Therefore,

We prove 4.

(ab™)

(cd )

(ab™)(ed 1)~
(ab~1) (e (@) )
(ab~)(cd)
a(b~tch)d

(ad) (b )
(ad)(be) ™"

ad

be

Since F' is an integral domain, then the product of nonzero elements of F' is
nonzero. Since b # 0 and d # 0, then bd # 0. Therefore,

‘We prove 5.
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bd ' bd
ad + be
bd

Since F' is an integral domain, then the product of nonzero elements of F' is
nonzero. Since b # 0 and d # 0, then bd # 0.



Therefore,

a ¢ a c
v a v tTat
a .1 €1
= g(dd )—E(bb )
_a d c b
T b d db
_ad cb
T bd  db
_ad  be
T bd  bd
_ad—bc
B bd

Theorem 8. For every prime p, Zy, is a field of characteristic p.
In fact, Z, is a field iff p is prime.

Proof. Let p be a positive integer.
We prove Z, is a field iff p is prime.

We first prove if Z,, is a field, then p is prime.

Suppose Zj, is a field.

To prove p is prime, we must prove 1 and p are the only positive divisors of
p.

Since 1|p and p|p, then this implies we must prove there is no integer n such
that 1 < n < p and n|p.

Suppose for the sake of contradiction that there is an integer n such that
1 < n < pand n|p.

Since 1 < n < p, then 1 < n.

Since n € Z and n > 1, then n is a positive integer.

Since n is a positive integer and p is a positive integer and n|p, then ged(n, p) =
n.

Since n € Z and 1 < n < p, then [n] € Z, and [n] # [0], so [n] is a non-zero
element of Z,.

Since Z, is a field, then every nonzero element of Z, has a multiplicative
inverse.

Hence, [n] has a multiplicative inverse in Z,,.

Any element [a] € Z, has a multiplicative inverse in Z, iff ged(a,p) = 1.

Since [n] has a multiplicative inverse in Z,, then this implies ged(n,p) = 1.

Thus, n = ged(n,p) =1, s0 n = 1.

But, this contradicts the fact that n > 1.

Hence, there is no integer n such that 1 < n < p and n|p.

Therefore, p is prime. O



Proof. Conversely, we prove if p is prime, then Z, is a field.

Suppose p is prime.

To prove Z,, is a field, we must prove Z,, is a commutative ring with [1] # [0]
such that every nonzero element has a multiplicative inverse.

Since Z,, is a commutative ring, then we need only prove [1] # [0] and every
nonzero element has a multiplicative inverse.

Let [1] be the unity of Z, and [0] be the zero of Z,.

We first prove [1] # [0].

Since p is prime and p is a positive integer, then p > 2.

Hence, |Z,| = p > 2, so Z,, contains at least two elements.

Since the zero ring has exactly one element, then Z, is not the zero ring.

Since the zero ring is the only ring such that the unity element equals the
zero element and Z, is not the zero ring, then the unity element of Z, does not
equal the zero element of 7Z,.

Therefore, [1] # [0].

We next prove every nonzero element has a multiplicative inverse.

Since [1] # [0], then Z,, contains at least one nonzero element.

Let [a] be an arbitrary nonzero element of Z,.

Then [a] € Z,, and [a] # [0].

Thus, a € Z and 1 < a < p.

Since 0 < 1 <a < p, then 0 < a and a < p.

Since a € Z and a > 0, then a is a positive integer.

Since a and p are positive integers, then if p|a, then p < a.

Hence, if p > a, then p fa.

Since p is prime, then either pla or ged(p,a) = 1.

Since p fa, then we conclude ged(p, a) = 1, so ged(a,p) = 1.

Since [a] has a multiplicative inverse iff ged(a,p) = 1, then this implies [a]
has a multiplicative inverse. O

Polynomial Rings

Theorem 9. Let R[x] be the set of all polynomials in variable x over a ring R.
Then (R[z],+, ) is a ring with unity .

Proof. Let N = {0,1,2,...}.

Observe that R[z] = {>7_,axz" : (In € N)(Vk = 0,1,...,n)(a), € R)}.

We prove (R[z],+) is an abelian group.

We prove R[z] is closed under addition of polynomials.

Let p,q € R[z].

Then there exist m,n € N such that ag,ay,...,am € R and p, = 0 for all
k>mand py = ag if K <m and p = ZZ’ZO arx® and by, by, ...,b, € R and
qr =0 for all k > n and g, = by, iff k <n and ¢ = >, _, bpa*.

Either m = n or m # n.



Suppose m = n. Then ag, aq, ...,a, € Rand py = 0 for all K > n and p = ax
if k<mandp=>Y_,arz.

Let k € N. Either k < n or k > n. If K <n,then pp +qr. =ar + b, € R. If
k > n, then py + g =0+ 0 =0 € R. Hence,

pta = Y apa®+) bt
= ) (px+ar)2”
= ) (ao+bo)+ (a1 + b))z + ... 4 (ap + bp)az" + 0+ 0 + ...
= Y (a0 +bo)+ (a1 + b))z + ... + (an + by)a"

= (Cbk + bk>l‘k.
k=0

Therefore, p + ¢ € R[z].

Suppose m # n. Then either m < n or m > n. Without loss of generality,
assume m < n. Then we may add n — m zero terms of the form 0z* to p so
that p and ¢ have the same number of terms. Thus,

p = ao+aix+ax® + ...+ amax™
= ag+a1x+asx?+ ...+ apmr™ + 0™ + 022 4+ 4+ 02"

and g = bg + bz + bax® + ... + b2,
Observe that

p+q = Zak$k+2bk$k

= Z(pk"‘Qk)xk
(ap +bo) + (a1 +b1)x + oo + (A + )™ 4+ (0 + by 1) 2™ + o4+ (0 +by)2™ +0 4+ ...
(ap +bo) + (a1 + b))z + oo + (A + )™ 4+ (0 + by 1) 2™ + 4+ (0 + b)) 2™
( )+

ap +bo) + (a1 + b))z + ... + (ap + by)z"

I
NN

= (ak + bk)ack

=
[=)

Consequently, p + ¢ € R|x].

Thus, R[z] is closed under addition of polynomials.

We prove polynomial addition is well defined. Let (p,q) and (r,s) be ar-
bitrary elements of R[z] x R[z] such that (p,q) = (r,s). Then p = r and
q = s. Thus, there exist m,n € Z,m,n > 0 such that p = ZZ;O apz® and
q=p_obrz® and r = 31" ezt and s = Y} _ dpa® and ay, ¢x € R for each
k=0,1,...,m and b,d; € R for each £k =0,1,...,n.

10



Thus, ap = ¢, for each £k = 0,1,...,m and b, = dj, for each k =0,1,...,n. If
m # n, we may assume without loss of generality m < n. Thus, we may add
n — m zero terms to p so that p and ¢ contain the same number of terms.
Observe that

m n
p+q = Zakxk—FZbkxk
k=0 k=0

n n

= E aka:k—i—g bkxk
k=0 k=0
n

k=0

= Z(Ck —+ dk):rk

k=0
n n

= E ckmk—kg dyz®
k=0 k=0
m n

= E ckack—i—g dkxk
k=0 k=0

= r+s.

Therefore, addition of polynomials is well defined. Hence, addition of polyno-
mials is a binary operation on R][z].

We prove addition of polynomials is associative. Let p,q,r € R[z]. Then
there exists n € Z,n > 0 such that p = > ;_ axz” and ¢ = Y, _,bpa” and
r= ZZ:O crx® and ay, by, ¢, € R for each k =0,1,...,n.

11



Thus,

(p+q) +r

n n n
(Z apz® + Z bkxk) + Z cpx®
k=0 k=0 k=0
n

n
= Z(ak + by )z® + Z cpz®
k=0 k=0
n

= ) llak +bi) + cxlat
k=0

= Z[ak + (b + ck)]xk

k=0

n n
= Z akxk + Z(bk + ck)xk
k=0 k=0

n n n
= Z apz® + (Z bpz® + Z crx®)
k=0 k=0 k=0
= p+(g+r).

Therefore, addition of polynomials is associative.
We prove addition of polynomials is commutative. Observe that

n n
p+q = Zakaﬁk—FZbkxk
k=0 k=0
n

= Z(ak =+ bk)ﬂ;‘k

k=0
n
= Z(bk + ak)xk
k=0
n n
k=0 k=0
= q+r.

Therefore, addition of polynomials is commutative.

We prove the zero polynomial is additive identity. Let p € R[z|. Then there
exists n € Z,n > 0 such that p = Zzzo axz® and ap € R for each k = 0,1, ..., n.
Since 0 = 0z* for each k = 0,1,...,n, then 0 = >orco 0z*. Thus, 0 € R[x].
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Observe that

n n
p+0 = Zakxk —|—ZO$’“
k=0 k=0
n

= Z(ak +0)zF
k=0

= > (ap)a?
k=0

= Z(O + ay)z"

k=0
n n
= Z 02" + Z akxk
k=0 k=0
= 0+p.

Hence, the zero polynomial is an additive identity in R[x].

We prove each element of R[x] has an additive inverse. Let p € R[z]. Then
there exists n € Z,n > 0 such that p = Y}_ja,z" and ax € R for each
k=0,1,...,n. Since R is aring, then (R, +) is an abelian group, so each element
of R has an additive inverse in R. Thus, —ay € R for each £k =0,1,...,n.

Let ¢ = > p_o(—ax)z®. Then ¢ € R[z] and

n n
rtqg = Zakl‘k+2(—ak)$k
k=0 k=0
= Z[ak—i-(—ak)]xk
k=0
- Yo
k=0

= Z[fak + ak]xk

k=0
n n
= Z(—ak)a:k + Z apx®
k=0 k=0
= q+p.

Hence, Y _,(—ay)z" is an additive inverse of >, _, axz®. Thus, each element
in R[x] has an additive inverse in R[z].

Therefore, (R[z],+) is an abelian group.

We prove R|[z] is closed under multiplication of polynomials.

Let p,q € R[z]. Then there exist m,n € Z,m,n > 0 such that p =
S arz® and ay, € R for each k = 0,1,...,m and ¢ = Y, _, bypz" and by € R
for each k =0,1,...,n.
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Observe that pg = Y p_oara® Sp_ bpa® = Y70 (er)a®, where ¢ =
i aibr—i-

To prove pq € R[z], we must prove:

1. m+né€Z.

2. m+n>0.

3. for each £k =0,1,...,m +n,c; € R.

Since 7Z is closed under addition, then m + n € Z. Since m > 0 and n > 0,
then m +n > 0.

We prove ¢ € R for each £k =0,1,....,m + n.

Let K ={0,1,....m+n}. Then K ={k€Z:0<k<m+n}.

Let ap, =0 foreach k =m+1,m+2,...,m +n. Since 0 € R, then a, € R
foreach k=m+1,m+2,...,m+n. Since ax € R for each £k =0,1,...,m and
ar € R foreach k=m+1,m+2,...,m + n, then ax € R for each k € K.

Let by =0 foreach k =n+1,n+2,....,n+m. Since 0 € R, then b; € R for
each k=n+1,n+2,...,n+m. Since by, € R for each k =0,1,....,nand by € R
foreach k=n+1,n+2,...,n+m, then b, € R for each k € K.

Hence, ar, € R and b, € R for each k € K.

Let ke K. Thenke€Z and 0 <k <m+n.

To prove ¢, € R, we must prove Zf:o a;bx—; € R.

We prove a; € R and by_; € R for each i =0,1,..., k.

We first prove a; € R.

Let I, ={0,1,....,k}. Then Iz ={i € Z: 0 < i < k}.

Let ¢ € Iy,. Theni € Z and 0 < i < k. Thus, 0 < i and 7 < k. Since
0<k<m-+n,then 0 <kand k <m-+mn. Since i < k and k < m + n, then
it <m+mn. Since 0 <iandi < m+mn, then 0 < i< m+n. Hence, i € K.
Thus, i € I}, implies i € K, so Iy C K. Since i € K, then a; € R.

We prove bi_; € R.

Since Z is closed under subtraction, then k — i € Z.

Since ¢ < k, then 0 < k — 4. Since 0 < 4, then 0 > —i. Hence, kK > k — i, so
k—i<k. Thus,0 < k—iand k—i <k, s00<k—i<k. Therefore, k—1i € I}.
Since I, C K, then k — i € K. Hence, by_; € R.

Since R is a ring, then R is closed under multiplication. Thus, a;bx_; € R.

Since k is arbitrary, then a;b;_; € R for each k € K. Thus, a;bx_; € R for
each k=0,1,....m+n.

Since R is closed under addition, then Zf:o a;bi_; € R. Therefore, ¢, € R.

Hence, pq € R[z].

Thus, R[z] is closed under multiplication of polynomials.

We prove polynomial multiplication is well defined. Let (p,q) and (r,s) be
arbitrary elements of R[x] x R[z] such that (p,q) = (r,s). Then p = r and
q = s. Hence, there exist m,n € Z,m,n > 0 such that p = Z;”:O arz® and
q =Y p_obez® and r = >\ cpa® and s = > _ dra® and ag,cr € R for
each k =0,1,...,m and bg,d; € R for each k = 0,1,...,n and ay = ¢, for each
k=0,1,...,m and by = d, for each £ = 0,1, ..., n.

Observe that pg = 31" ex ¥, where ey, = Ek

+
i @ibr—i and rs = Y0 frak,
k
where fr = i, cidp—i.
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To prove pg = rs, we must prove e, = fj for each kK =0,1,....,m + n.

Let ap = ¢, =0 for each k =m+1,m+2,...,m+n. Since ay = ¢ for each
k=0,1,...,m, then this implies ax = ¢y, for each £k =0,1,....,m 4+ n.

Let by = dx, = 0 for each kK =n+1,n+ 2,...,n 4+ m. Since by = dj, for each
k=0,1,...,n, then this implies by = dj for each k =0,1,...,n + m.

Thus, ar = ¢ and by = dj, for each £k =0,1,...,m + n.

Let K ={0,1,...,m+n}. Then ay, = ¢; and by = dj, for all k € K.

Let k € K.

Let I, = {0,1,...,k}. Then I C K. Hence, for all i € I},i € K. Thus, for
all ¢ € Iy, a; = ¢; and b; = d;. Consequently, for all + = 0,1,...,k, a; = ¢; and
b; = d;.

Observe that

k
e = E aibr—;
i=o0

= agbg +arbp_1 + ... + ap_1b1 + arbg
= cobg + c1bg—1 + ... + c—1b1 + crbg

= cody +ci1dp—1+ ... + cp—1d1 + crdp
k
= Zcidk—i
i=0
= Jfr
Therefore pg = rs, so multiplication of polynomials is well defined. Hence,

multiplication of polynomials is a binary operation on R[x].
O
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