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Fields

Proposition 1. alternate definition of a field
A field is a commutative ring with multiplicative identity 1 6= 0 such that

every nonzero element has a multiplicative inverse.

Proof. Let (F,+, ·) be a field.
Then addition and multiplication are binary operations defined on F and

addition is associative and commutative and there is a right additive identity and
each element of F has a right additive inverse and multiplication is associative
and multiplication is left distributive over addition.

To prove F is a ring, we need only prove there is a multiplicative identity in
F and multiplication is right distributive over addition.

We prove there is a multiplicative identity in F .
Since F is a field, then there is a right multiplicative identity.
Let 1 be a right multiplicative identity in F .
Then 1 ∈ F and a1 = a for all a ∈ F .
Let a ∈ F .
Then a1 = a.
Since F is a field, then multiplication is commutative, so a1 = 1a.
Thus, a = a1 = 1a.
Therefore, 1 is a multiplicative identity in F , so there is a multiplicative

identity in F .

We prove multiplication is right distributive over addition.
Let a, b, c ∈ F .
Then

(b + c)a = a(b + c)

= ab + ac

= ba + ca.

Hence, multiplication is right distributive over addition.
Therefore, (F,+, ·) is a ring.
Since multiplication is commutative, then (F,+, ·) is a commutative ring.



We prove 1 6= 0.
Since (F,+, ·) is a ring, then (F,+) is an abelian group.
Therefore, 0 is the additive identity of F .
Since F is a field, then 1 6= 0.

We prove every nonzero element has a multiplicative inverse.
Since F is a field, then each nonzero element of F has a right multiplicative

inverse in F .
Let a be a nonzero element of F .
Then a has a right multiplicative inverse in F .
Therefore, there exists b ∈ F such that ab = 1.
Since multiplication is commutative in F , then ab = ba.
Thus, 1 = ab = ba, so b is a multiplicative inverse of a.
Hence, every nonzero element of F has a multiplicative inverse in F .

Therefore, (F,+, ·) is a commutative ring with multiplicative identity 1 6= 0
such that every nonzero element of F has a multiplicative inverse.

Let (F,+, ·) be a commutative ring with multiplicative identity 1 6= 0 such
that every nonzero element has a multiplicative inverse.

We prove (F,+, ·) is a field.
Since (F,+, ·) is a commutative ring, then + is a binary operation on F and

addition is associative and commutative and there is a right additive identity
0 ∈ F and each element has a right additive inverse in F and · is a binary
operation on F and multiplication is associative and commutative and there
is a multiplicative identity 1 ∈ F and multiplication is left distributive over
addition.

Since 1 is a multiplicative identity, then 1a = a1 = a for all a ∈ F .
Hence, a1 = a for all a ∈ F , so 1 is a right multiplicative identity.
By hypothesis, 1 6= 0.

Let a be a nonzero element of F .
Then a has a multiplicative inverse.
Hence, there exists b ∈ F such that ab = ba = 1.
Thus, there exists b ∈ F such that ab = 1, so a has a right multiplicative

inverse in F .
Therefore, every nonzero element of F has a right multiplicative inverse in

F .

Therefore, F is a field.

Theorem 2. left and right multiplicative cancellation laws hold in a
field

Let (F,+, ·) be a field.
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If ac = bc and c 6= 0, then a = b. (right multiplicative cancellation law )
If ca = cb and c 6= 0, then a = b. (left multiplicative cancellation law )

Proof. Let a, b, c ∈ F .
We prove if ac = bc and c 6= 0, then a = b.
Suppose ac = bc and c 6= 0.
Since c 6= 0, then the multiplicative inverse c−1 exists in F .
Observe that

a = a · 1
= a(c · c−1)

= (ac) · c−1

= (bc) · c−1

= b(c · c−1)

= b · 1
= b.

Therefore, a = b, as desired.

We prove if ca = cb and c 6= 0, then a = b.
Suppose ca = cb and c 6= 0.
Since ac = ca = cb = bc, then ac = bc.
Therefore, ac = bc and c 6= 0, so by the previously proved result, we have

a = b, as desired.

Proposition 3. multiplication and division are inverse operations
Let F be a field.
Then (∀a, b ∈ F, a 6= 0)(∃!x ∈ F )(ax = b).

Proof. Let a, b ∈ F with a 6= 0.
We prove a solution to the equation ax = b is unique.
Existence:
Since a 6= 0, then the multiplicative inverse a−1 exists in F . Since F is closed

under multiplication, then ba−1 ∈ F .
Let x = b

a .
Then

ax = a(
b

a
)

= a(ba−1)

= a(a−1b)

= (aa−1)b

= 1 · b
= b.
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Hence, ax = b. Therefore, at least one solution exists.
Uniqueness:
Suppose x1, x2 ∈ F are solutions to ax = b.
Then ax1 = b and ax2 = b. Thus ax1 = ax2. Since ax1 = ax2 and a 6= 0,

then x1 = x2, by the left multiplicative cancellation law for fields. Therefore,
at most one solution exists.

Since at least one solution exists and at most one solution exists, then exactly
one solution exists.

Therefore, a solution to ax = b is unique.

Theorem 4. Every field is an integral domain.

Proof. Let (F,+, ·) be a field. To prove F is an integral domain, we must prove
F is a commutative ring with nonzero unity and F has no zero divisors. By
definition of field, F is a commutative ring with nonzero unity.

To prove F has no zero divisors, we prove if ab = 0, then either a = 0 or
b = 0 for all a, b ∈ F . Let a, b ∈ F .

To prove ab = 0 implies a = 0 or b = 0, we assume ab = 0 and a 6= 0. We
must prove b = 0.

Since a 6= 0, then a−1 ∈ F exists.
Observe that

b = 1 · b
= (a−1 · a)b

= a−1(ab)

= a−1 · 0
= 0.

Therefore, b = 0, as desired.

Proposition 5. Let (F,+, ·) be a field. If a 6= 0 and b 6= 0, then (ab)−1 =
a−1b−1.

Proof. Suppose a 6= 0 and b 6= 0.
Since F is a field, then every nonzero element of F has a multiplicative inverse

in F . Therefore, a−1 ∈ F and b−1 ∈ F . Since F is closed under multiplication,
then a−1b−1 ∈ F . Since F is a field, then F is an integral domain, so the
product of nonzero elements of F is nonzero. Therefore, ab 6= 0, so (ab)−1 ∈ F .

Observe that

(ab)(a−1b−1) = a(ba−1)b−1

= a(a−1b)b−1

= (aa−1)(bb−1)

= 1 · 1
= 1.
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and

(a−1b−1)(ab) = a−1(b−1a)b

= a−1(ab−1)b

= (a−1a)(b−1b)

= 1 · 1
= 1.

Hence, (ab)(a−1b−1) = 1 = (a−1b−1)(ab). Therefore, (ab)−1 = a−1b−1.

Proof. Suppose a 6= 0 and b 6= 0.
Since F is a division ring, then (F ∗, ·) is the group of units of F . Since

a 6= 0, then a ∈ F ∗. Hence, a is a unit, so a−1 exists. Since b 6= 0, then b ∈ F ∗.
Hence, b is a unit, so b−1 exists. Since (F ∗, ·) is a group, then (F ∗, ·) is closed
under ·. Since a ∈ F ∗ and b ∈ F ∗, then ab ∈ F ∗. Hence, ab is a unit, so (ab)−1

exists. Thus, (ab)−1 = b−1a−1. Since · is commutative, then b−1a−1 = a−1b−1.
Therefore, (ab)−1 = a−1b−1.

Corollary 6. Let (F,+, ·) be a field. Let a, b, c ∈ F such that b 6= 0 and c 6= 0.
Then ac

bc = a
b .

Proof. Since b 6= 0 and c 6= 0, then (bc)−1 = b−1c−1. Therefore,

ac

bc
= (ac)(bc)−1

= (ac)(b−1c−1)

= a(cb−1)c−1

= a(b−1c)c−1

= (ab−1)(cc−1)

= (ab−1) · 1
= ab−1

=
a

b
.

Theorem 7. arithmetic operations on quotients
Let (F,+, ·) be a field.
Let a, b, c, d ∈ F such that b 6= 0 and d 6= 0. Then
1. a

b = c
d iff ad = bc. (equality of quotients)

2. a
b ·

c
d = ac

bd . (multiply quotients)

3. if c 6= 0, then a
b /

c
d = ad

bc . (divide quotients)

4. a
b + c

d = ad+bc
bd . (add quotients)

5. a
b −

c
d = ad−bc

bd . (subtract quotients)
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Proof. We prove 1.
We prove if a

b = c
d , then ad = bc.

Suppose a
b = c

d .
Then

ad = a · 1 · d
= a(b−1b)d

= (ab−1)(bd)

=
a

b
(bd)

=
c

d
(bd)

= (cd−1)(bd)

= (cd−1)(db)

= c(d−1d)b

= c · 1 · b
= cb

= bc.

Conversely, we prove if ad = bc, then a
b = c

d .
Suppose ad = bc.
Then

a

b
= ab−1

= b−1a

= (b−1a)(dd−1)

= b−1(ad)d−1

= b−1(bc)d−1

= (b−1b)(cd−1)

= cd−1

=
c

d
.

We prove 2.
Since F is a field and b 6= 0 and d 6= 0, then (bd)−1 = b−1d−1. Therefore,

a

b
· c
d

= (ab−1)(cd−1)

= a(b−1c)d−1

= a(cb−1)d−1

= (ac)(b−1d−1)

= (ac)(bd)−1

=
ac

bd
.
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We prove 3.
Suppose c 6= 0. Since every nonzero element of F has a multiplicative inverse

and d 6= 0, then d−1 ∈ F . Since d−1d = 1 = dd−1, then d is a multiplicative
inverse of d−1, so d−1 is a unit. Since every unit is nonzero, then d−1 6= 0.
Therefore,

a

b
/
c

d
=

(ab−1)

(cd−1)

= (ab−1)(cd−1)−1

= (ab−1)(c−1(d−1)−1)

= (ab−1)(c−1d)

= a(b−1c−1)d

= (ad)(b−1c−1)

= (ad)(bc)−1

=
ad

bc
.

We prove 4.
Since F is an integral domain, then the product of nonzero elements of F is

nonzero. Since b 6= 0 and d 6= 0, then bd 6= 0. Therefore,

a

b
+

c

d
=

a

b
· 1 +

c

d
· 1

=
a

b
(dd−1) +

c

d
(bb−1)

=
a

b
· d
d

+
c

d
· b
b

=
ad

bd
+

cb

db

=
ad

bd
+

bc

bd

=
ad + bc

bd
.

We prove 5.
Since F is an integral domain, then the product of nonzero elements of F is

nonzero. Since b 6= 0 and d 6= 0, then bd 6= 0.
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Therefore,

a

b
− c

d
=

a

b
· 1− c

d
· 1

=
a

b
(dd−1)− c

d
(bb−1)

=
a

b
· d
d
− c

d
· b
b

=
ad

bd
− cb

db

=
ad

bd
− bc

bd

=
ad− bc

bd
.

Theorem 8. For every prime p, Zp is a field of characteristic p.
In fact, Zp is a field iff p is prime.

Proof. Let p be a positive integer.
We prove Zp is a field iff p is prime.

We first prove if Zp is a field, then p is prime.
Suppose Zp is a field.
To prove p is prime, we must prove 1 and p are the only positive divisors of

p.
Since 1|p and p|p, then this implies we must prove there is no integer n such

that 1 < n < p and n|p.
Suppose for the sake of contradiction that there is an integer n such that

1 < n < p and n|p.
Since 1 < n < p, then 1 < n.
Since n ∈ Z and n > 1, then n is a positive integer.
Since n is a positive integer and p is a positive integer and n|p, then gcd(n, p) =

n.
Since n ∈ Z and 1 < n < p, then [n] ∈ Zp and [n] 6= [0], so [n] is a non-zero

element of Zp.
Since Zp is a field, then every nonzero element of Zp has a multiplicative

inverse.
Hence, [n] has a multiplicative inverse in Zp.
Any element [a] ∈ Zp has a multiplicative inverse in Zp iff gcd(a, p) = 1.
Since [n] has a multiplicative inverse in Zp, then this implies gcd(n, p) = 1.
Thus, n = gcd(n, p) = 1, so n = 1.
But, this contradicts the fact that n > 1.
Hence, there is no integer n such that 1 < n < p and n|p.
Therefore, p is prime.
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Proof. Conversely, we prove if p is prime, then Zp is a field.
Suppose p is prime.
To prove Zp is a field, we must prove Zp is a commutative ring with [1] 6= [0]

such that every nonzero element has a multiplicative inverse.
Since Zp is a commutative ring, then we need only prove [1] 6= [0] and every

nonzero element has a multiplicative inverse.

Let [1] be the unity of Zp and [0] be the zero of Zp.
We first prove [1] 6= [0].
Since p is prime and p is a positive integer, then p ≥ 2.
Hence, |Zp| = p ≥ 2, so Zp contains at least two elements.
Since the zero ring has exactly one element, then Zp is not the zero ring.
Since the zero ring is the only ring such that the unity element equals the

zero element and Zp is not the zero ring, then the unity element of Zp does not
equal the zero element of Zp.

Therefore, [1] 6= [0].

We next prove every nonzero element has a multiplicative inverse.
Since [1] 6= [0], then Zp contains at least one nonzero element.
Let [a] be an arbitrary nonzero element of Zp.
Then [a] ∈ Zp and [a] 6= [0].
Thus, a ∈ Z and 1 ≤ a < p.
Since 0 < 1 ≤ a < p, then 0 < a and a < p.
Since a ∈ Z and a > 0, then a is a positive integer.
Since a and p are positive integers, then if p|a, then p ≤ a.
Hence, if p > a, then p 6 |a.
Since p is prime, then either p|a or gcd(p, a) = 1.
Since p 6 |a, then we conclude gcd(p, a) = 1, so gcd(a, p) = 1.
Since [a] has a multiplicative inverse iff gcd(a, p) = 1, then this implies [a]

has a multiplicative inverse.

Polynomial Rings

Theorem 9. Let R[x] be the set of all polynomials in variable x over a ring R.
Then (R[x],+, ∗) is a ring with unity .

Proof. Let Ñ = {0, 1, 2, ...}.
Observe that R[x] = {

∑n
k=0 akx

k : (∃n ∈ Ñ)(∀k = 0, 1, ..., n)(ak ∈ R)}.
We prove (R[x],+) is an abelian group.
We prove R[x] is closed under addition of polynomials.
Let p, q ∈ R[x].
Then there exist m,n ∈ Ñ such that a0, a1, ..., am ∈ R and pk = 0 for all

k > m and pk = ak iff k ≤ m and p =
∑m

k=0 akx
k and b0, b1, ..., bn ∈ R and

qk = 0 for all k > n and qk = bk iff k ≤ n and q =
∑n

k=0 bkx
k.

Either m = n or m 6= n.
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Suppose m = n. Then a0, a1, ..., an ∈ R and pk = 0 for all k > n and pk = ak
if k ≤ n and p =

∑n
k=0 akx

k.

Let k ∈ Ñ . Either k ≤ n or k > n. If k ≤ n, then pk + qk = ak + bk ∈ R. If
k > n, then pk + qk = 0 + 0 = 0 ∈ R. Hence,

p + q =
∑

akx
k +

∑
bkx

k

=
∑

(pk + qk)xk

=
∑

(a0 + b0) + (a1 + b1)x + ... + (an + bn)xn + 0 + 0 + ...

=
∑

(a0 + b0) + (a1 + b1)x + ... + (an + bn)xn

=
n∑

k=0

(ak + bk)xk.

Therefore, p + q ∈ R[x].
Suppose m 6= n. Then either m < n or m > n. Without loss of generality,

assume m < n. Then we may add n −m zero terms of the form 0xk to p so
that p and q have the same number of terms. Thus,

p = a0 + a1x + a2x
2 + ... + amxm

= a0 + a1x + a2x
2 + ... + amxm + 0xm+1 + 0xm+2 + ... + 0xn

and q = b0 + b1x + b2x
2 + ... + bnx

n.
Observe that

p + q =
∑

akx
k +

∑
bkx

k

=
∑

(pk + qk)xk

=
∑

(a0 + b0) + (a1 + b1)x + ... + (am + bm)xm + (0 + bm+1)xm+1 + ... + (0 + bn)xn + 0 + ...

=
∑

(a0 + b0) + (a1 + b1)x + ... + (am + bm)xm + (0 + bm+1)xm+1 + ... + (0 + bn)xn

=
∑

(a0 + b0) + (a1 + b1)x + ... + (an + bn)xn

=

n∑
k=0

(ak + bk)xk.

Consequently, p + q ∈ R[x].
Thus, R[x] is closed under addition of polynomials.
We prove polynomial addition is well defined. Let (p, q) and (r, s) be ar-

bitrary elements of R[x] × R[x] such that (p, q) = (r, s). Then p = r and
q = s. Thus, there exist m,n ∈ Z,m, n ≥ 0 such that p =

∑m
k=0 akx

k and
q =

∑n
k=0 bkx

k and r =
∑m

k=0 ckx
k and s =

∑n
k=0 dkx

k and ak, ck ∈ R for each
k = 0, 1, ...,m and bk, dk ∈ R for each k = 0, 1, ..., n.
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Thus, ak = ck for each k = 0, 1, ...,m and bk = dk for each k = 0, 1, ..., n. If
m 6= n, we may assume without loss of generality m < n. Thus, we may add
n−m zero terms to p so that p and q contain the same number of terms.

Observe that

p + q =

m∑
k=0

akx
k +

n∑
k=0

bkx
k

=

n∑
k=0

akx
k +

n∑
k=0

bkx
k

=

n∑
k=0

(ak + bk)xk

=

n∑
k=0

(ck + dk)xk

=

n∑
k=0

ckx
k +

n∑
k=0

dkx
k

=

m∑
k=0

ckx
k +

n∑
k=0

dkx
k

= r + s.

Therefore, addition of polynomials is well defined. Hence, addition of polyno-
mials is a binary operation on R[x].

We prove addition of polynomials is associative. Let p, q, r ∈ R[x]. Then
there exists n ∈ Z, n ≥ 0 such that p =

∑n
k=0 akx

k and q =
∑n

k=0 bkx
k and

r =
∑n

k=0 ckx
k and ak, bk, ck ∈ R for each k = 0, 1, ..., n.
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Thus,

(p + q) + r = (

n∑
k=0

akx
k +

n∑
k=0

bkx
k) +

n∑
k=0

ckx
k

=

n∑
k=0

(ak + bk)xk +

n∑
k=0

ckx
k

=

n∑
k=0

[(ak + bk) + ck]xk

=

n∑
k=0

[ak + (bk + ck)]xk

=

n∑
k=0

akx
k +

n∑
k=0

(bk + ck)xk

=

n∑
k=0

akx
k + (

n∑
k=0

bkx
k +

n∑
k=0

ckx
k)

= p + (q + r).

Therefore, addition of polynomials is associative.
We prove addition of polynomials is commutative. Observe that

p + q =

n∑
k=0

akx
k +

n∑
k=0

bkx
k

=

n∑
k=0

(ak + bk)xk

=

n∑
k=0

(bk + ak)xk

=
n∑

k=0

bkx
k +

n∑
k=0

akx
k

= q + r.

Therefore, addition of polynomials is commutative.
We prove the zero polynomial is additive identity. Let p ∈ R[x]. Then there

exists n ∈ Z, n ≥ 0 such that p =
∑n

k=0 akx
k and ak ∈ R for each k = 0, 1, ..., n.

Since 0 = 0xk for each k = 0, 1, ..., n, then 0 =
∑n

k=0 0xk. Thus, 0 ∈ R[x].
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Observe that

p + 0 =

n∑
k=0

akx
k +

n∑
k=0

0xk

=

n∑
k=0

(ak + 0)xk

=

n∑
k=0

(ak)xk

=

n∑
k=0

(0 + ak)xk

=

n∑
k=0

0xk +

n∑
k=0

akx
k

= 0 + p.

Hence, the zero polynomial is an additive identity in R[x].
We prove each element of R[x] has an additive inverse. Let p ∈ R[x]. Then

there exists n ∈ Z, n ≥ 0 such that p =
∑n

k=0 akx
k and ak ∈ R for each

k = 0, 1, ..., n. Since R is a ring, then (R,+) is an abelian group, so each element
of R has an additive inverse in R. Thus, −ak ∈ R for each k = 0, 1, ..., n.

Let q =
∑n

k=0(−ak)xk. Then q ∈ R[x] and

p + q =

n∑
k=0

akx
k +

n∑
k=0

(−ak)xk

=

n∑
k=0

[ak + (−ak)]xk

=

n∑
k=0

0xk

=

n∑
k=0

[−ak + ak]xk

=

n∑
k=0

(−ak)xk +

n∑
k=0

akx
k

= q + p.

Hence,
∑n

k=0(−ak)xk is an additive inverse of
∑n

k=0 akx
k. Thus, each element

in R[x] has an additive inverse in R[x].
Therefore, (R[x],+) is an abelian group.
We prove R[x] is closed under multiplication of polynomials.
Let p, q ∈ R[x]. Then there exist m,n ∈ Z,m, n ≥ 0 such that p =∑m

k=0 akx
k and ak ∈ R for each k = 0, 1, ...,m and q =

∑n
k=0 bkx

k and bk ∈ R
for each k = 0, 1, ..., n.
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Observe that pq =
∑n

k=0 akx
k
∑n

k=0 bkx
k =

∑m+n
k=0 (ck)xk, where ck =∑k

i=0 aibk−i.
To prove pq ∈ R[x], we must prove:
1. m + n ∈ Z.
2. m + n ≥ 0.
3. for each k = 0, 1, ...,m + n, ck ∈ R.
Since Z is closed under addition, then m + n ∈ Z. Since m ≥ 0 and n ≥ 0,

then m + n ≥ 0.
We prove ck ∈ R for each k = 0, 1, ...,m + n.
Let K = {0, 1, ...,m + n}. Then K = {k ∈ Z : 0 ≤ k ≤ m + n}.
Let ak = 0 for each k = m + 1,m + 2, ...,m + n. Since 0 ∈ R, then ak ∈ R

for each k = m + 1,m + 2, ...,m + n. Since ak ∈ R for each k = 0, 1, ...,m and
ak ∈ R for each k = m + 1,m + 2, ...,m + n, then ak ∈ R for each k ∈ K.

Let bk = 0 for each k = n + 1, n + 2, ..., n + m. Since 0 ∈ R, then bk ∈ R for
each k = n+ 1, n+ 2, ..., n+m. Since bk ∈ R for each k = 0, 1, ..., n and bk ∈ R
for each k = n + 1, n + 2, ..., n + m, then bk ∈ R for each k ∈ K.

Hence, ak ∈ R and bk ∈ R for each k ∈ K.
Let k ∈ K. Then k ∈ Z and 0 ≤ k ≤ m + n.
To prove ck ∈ R, we must prove

∑k
i=0 aibk−i ∈ R.

We prove ai ∈ R and bk−i ∈ R for each i = 0, 1, ..., k.
We first prove ai ∈ R.
Let Ik = {0, 1, ..., k}. Then Ik = {i ∈ Z : 0 ≤ i ≤ k}.
Let i ∈ Ik. Then i ∈ Z and 0 ≤ i ≤ k. Thus, 0 ≤ i and i ≤ k. Since

0 ≤ k ≤ m + n, then 0 ≤ k and k ≤ m + n. Since i ≤ k and k ≤ m + n, then
i ≤ m + n. Since 0 ≤ i and i ≤ m + n, then 0 ≤ i ≤ m + n. Hence, i ∈ K.
Thus, i ∈ Ik implies i ∈ K, so Ik ⊂ K. Since i ∈ K, then ai ∈ R.

We prove bk−i ∈ R.
Since Z is closed under subtraction, then k − i ∈ Z.
Since i ≤ k, then 0 ≤ k − i. Since 0 ≤ i, then 0 ≥ −i. Hence, k ≥ k − i, so

k− i ≤ k. Thus, 0 ≤ k− i and k− i ≤ k, so 0 ≤ k− i ≤ k. Therefore, k− i ∈ Ik.
Since Ik ⊂ K, then k − i ∈ K. Hence, bk−i ∈ R.

Since R is a ring, then R is closed under multiplication. Thus, aibk−i ∈ R.
Since k is arbitrary, then aibk−i ∈ R for each k ∈ K. Thus, aibk−i ∈ R for

each k = 0, 1, ...,m + n.
Since R is closed under addition, then

∑k
i=0 aibk−i ∈ R. Therefore, ck ∈ R.

Hence, pq ∈ R[x].
Thus, R[x] is closed under multiplication of polynomials.
We prove polynomial multiplication is well defined. Let (p, q) and (r, s) be

arbitrary elements of R[x] × R[x] such that (p, q) = (r, s). Then p = r and
q = s. Hence, there exist m,n ∈ Z,m, n ≥ 0 such that p =

∑m
k=0 akx

k and
q =

∑n
k=0 bkx

k and r =
∑m

k=0 ckx
k and s =

∑n
k=0 dkx

k and ak, ck ∈ R for
each k = 0, 1, ...,m and bk, dk ∈ R for each k = 0, 1, ..., n and ak = ck for each
k = 0, 1, ...,m and bk = dk for each k = 0, 1, ..., n.

Observe that pq =
∑m+n

k=0 ekx
k, where ek =

∑k
i=o aibk−i and rs =

∑m+n
k=0 fkx

k,

where fk =
∑k

i=o cidk−i.
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To prove pq = rs, we must prove ek = fk for each k = 0, 1, ...,m + n.
Let ak = ck = 0 for each k = m+ 1,m+ 2, ...,m+ n. Since ak = ck for each

k = 0, 1, ...,m, then this implies ak = ck for each k = 0, 1, ...,m + n.
Let bk = dk = 0 for each k = n + 1, n + 2, ..., n + m. Since bk = dk for each

k = 0, 1, ..., n, then this implies bk = dk for each k = 0, 1, ..., n + m.
Thus, ak = ck and bk = dk for each k = 0, 1, ...,m + n.
Let K = {0, 1, ...,m + n}. Then ak = ck and bk = dk for all k ∈ K.
Let k ∈ K.
Let Ik = {0, 1, ..., k}. Then Ik ⊂ K. Hence, for all i ∈ Ik, i ∈ K. Thus, for

all i ∈ Ik, ai = ci and bi = di. Consequently, for all i = 0, 1, ..., k, ai = ci and
bi = di.

Observe that

ek =

k∑
i=o

aibk−i

= a0bk + a1bk−1 + ... + ak−1b1 + akb0

= c0bk + c1bk−1 + ... + ck−1b1 + ckb0

= c0dk + c1dk−1 + ... + ck−1d1 + ckd0

=

k∑
i=0

cidk−i

= fk.

Therefore pq = rs, so multiplication of polynomials is well defined. Hence,
multiplication of polynomials is a binary operation on R[x].
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