Field Theory Examples

Jason Sass

July 2, 2023

Fields

Example 1. smallest field $\left(\mathbb{Z}_{2},+, \cdot\right)$ $\left(\frac{\mathbb{Z}}{2 \mathbb{Z}},+, \cdot\right)$ is a field.
Proof. The structure $\left(\frac{\mathbb{Z}}{2 \mathbb{Z}},+, \cdot\right)$ is a commutative ring with unity $1 \neq 0$.
Since $1 \cdot 1=1$, then $1^{-1}=1$, so 1 has a multiplicative inverse.
Hence, every nonzero element of $\frac{\mathbb{Z}}{2 \mathbb{Z}}$ has a multiplicative inverse.
Therefore, $\frac{\mathbb{Z}}{2 \mathbb{Z}}$ is a field.
Example 2. field of rational numbers $(\mathbb{Q},+, \cdot)$
$(\mathbb{Q},+, \cdot)$ is a field.
Additive identity is $0=\frac{0}{1}$.
Additive inverse of $\frac{a}{b}$ is $-\frac{a}{b}$.
Multiplicative identity is $1=\frac{1}{1}$.
Multiplicative inverse of $\frac{a}{b} \in \mathbb{Q}^{*}$ is $\frac{b}{a} \in \mathbb{Q}^{*}$.
Proof. Addition and multiplication are binary operations defined on the set of all rational numbers \mathbb{Q}.

Addition over \mathbb{Q} is associative and commutative.

Proof. We prove $0 \in \mathbb{Q}$ is a right additive identity.
Since 0 and 1 are integers and $1 \neq 0$, then $0=\frac{0}{1} \in \mathbb{Q}$.
Observe that $\frac{a}{b}+0=\frac{a}{b}$ for all $\frac{a}{b} \in \mathbb{Q}$.
Since $0 \in \mathbb{Q}$ and $\frac{a}{b}+0=\frac{a}{b}$ for all $\frac{a}{b} \in \mathbb{Q}$, then $0 \in \mathbb{Q}$ is a right additive identity.

Proof. We prove for every $\frac{a}{b} \in \mathbb{Q}$ there is a right additive inverse $\frac{-a}{b} \in \mathbb{Q}$.
Let $\frac{a}{b} \in \mathbb{Q}$.
Then $a, b \in \mathbb{Z}$ and $b \neq 0$.
Since $a \in \mathbb{Z}$, then $-a \in \mathbb{Z}$.
Since $-a$ and b are integers and $b \neq 0$, then $\frac{-a}{b} \in \mathbb{Q}$.
Observe that $\frac{a}{b}+\frac{-a}{b}=0$.
Since $\frac{-a}{b} \in \mathbb{Q}$ and $\frac{a}{b}+\frac{-a}{b}=0$, then $\frac{-a}{b}$ is a right additive inverse of $\frac{a}{b}$.
Therefore, for every $\frac{a}{b} \in \mathbb{Q}$ there is a right additive inverse $\frac{-a}{b} \in \mathbb{Q}$.

Proof. Multiplication over \mathbb{Q} is associative and commutative.
Proof. We prove $1 \in \mathbb{Q}$ is a right multiplicative identity.
Since 1 is an integer and $1 \neq 0$, then $\frac{1}{1} \in \mathbb{Q}$.
Since $\frac{1}{1} \in \mathbb{Q}$ and $\frac{a}{b} \cdot 1=\frac{a}{b}$ for all $\frac{a}{b} \in \mathbb{Q}$, then $1 \in \mathbb{Q}$ is a right multiplicative identity.

Proof. We prove for every nonzero $\frac{a}{b} \in \mathbb{Q}$ there is a right multiplicative inverse $\frac{b}{a} \in \mathbb{Q}$.

Let $\frac{a}{b} \in \mathbb{Q}$ and $\frac{a}{b} \neq 0$.
Since $\frac{a}{b} \in \mathbb{Q}$, then $a, b \in \mathbb{Z}$ and $b \neq 0$.
Since $\frac{a}{b} \neq 0$ and $b \neq 0$, then $a \neq 0$, so $\frac{b}{a} \neq 0$.
Since $a, b \in \mathbb{Z}$ and $a \neq 0$ and $b \neq 0$, then $a b \neq 0$.
Since $b, a \in \mathbb{Z}$ and $a \neq 0$, then $\frac{b}{a} \in \mathbb{Q}$.
Observe that

$$
\begin{aligned}
\frac{a}{b} \cdot \frac{b}{a} & =\frac{a b}{b a} \\
& =\frac{a b}{a b} \\
& =1
\end{aligned}
$$

Thus, $\frac{a}{b} \cdot \frac{b}{a}=1$, so $\frac{b}{a} \in \mathbb{Q}$ is a right multiplicative inverse.
Therefore, for every nonzero $\frac{a}{b} \in \mathbb{Q}$ there is a right multiplicative inverse $\frac{b}{a} \in \mathbb{Q}$.

Proof. We prove multiplication is left distributive over addition.
Since $\frac{m}{n}\left(\frac{p}{q}+\frac{r}{s}\right)=\frac{m}{n} \cdot \frac{p}{q}+\frac{m}{n} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$, then multiplication is left distributive over addition.

Proof. We prove multiplicative identity $1 \in \mathbb{Q}$ is distinct from additive identity $0 \in \mathbb{Q}$.

Since 0 and 1 are integers, then $1 \neq 0$.
Since $1=\frac{1}{1} \in \mathbb{Q}$ and $0=\frac{0}{1} \in \mathbb{Q}$, then $\frac{1}{1} \neq \frac{0}{1}$, so multiplicative identity is distinct from additive identity.

Proof. Since addition and multiplication are binary operations on \mathbb{Q} and addition over \mathbb{Q} is associative and commutative and $0 \in \mathbb{Q}$ is a right additive identity and for every $\frac{a}{b} \in \mathbb{Q}$ there is a right additive inverse $\frac{-a}{b} \in \mathbb{Q}$ and multiplication over \mathbb{Q} is associative and commutative and $1 \in \mathbb{Q}$ is a right multiplicative identity and for every nonzero $\frac{a}{b} \in \mathbb{Q}$ there is a right multiplicative inverse $\frac{b}{a} \in \mathbb{Q}$ and multiplication is left distributive over addition and multiplicative identity $1 \in \mathbb{Q}$ is distinct from additive identity $0 \in \mathbb{Q}$, then $(\mathbb{Q},+, \cdot)$ is a field.

Example 3. field of real numbers $(\mathbb{R},+, \cdot)$
$(\mathbb{R},+, \cdot)$ is a field.
Additive identity is 0 .
Additive inverse of a is $-a$.

Multiplicative identity is 1 .
Multiplicative inverse of $a \in \mathbb{R}^{*}$ is $\frac{1}{a} \in \mathbb{R}^{*}$.
Proof. TODO
Example 4. field of complex numbers $(\mathbb{C},+, \cdot)$
$(\mathbb{C},+, \cdot)$ is a field.
Additive identity is $0=0+0 i$.
Let $a, b \in \mathbb{R}$.
Additive inverse of $z=a+b i$ is $-z=-a-b i$.
Multiplicative identity is $1=1+0 i$.
Let $z \in \mathbb{C}^{*}$.
Multiplicative inverse of $z=|z| \operatorname{cis} \theta$ is $z^{-1}=\frac{1}{z}=\frac{1}{|z|} \operatorname{cis}(-\theta)$
Proof. TODO

Example 5. \mathbb{Z}_{p} is a field when p is prime

Let $p \in \mathbb{Z}^{+}$.
If p is prime, then $\left(\mathbb{Z}_{p},+, \cdot\right)$ is a field.
Proof. TODO

Example 6. Gaussian integers

Let $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$.
Then $(\mathbb{Z}[i],+)$ is an abelian group under complex addition.
$(\mathbb{Z}[i],+, \cdot)$ is a subring of $(\mathbb{C},+, \cdot)$ known as the Gaussian integers.
Proof. TODO
Example 7. $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a field under addition and multiplication of \mathbb{R}.

Proof. TODO

