Field Theory Examples

Jason Sass

July 2, 2023

Fields

Example 1. smallest field $(\mathbb{Z}_2, +, \cdot)$ $(\frac{\mathbb{Z}}{2\mathbb{Z}}, +, \cdot)$ is a field.

Proof. The structure $\left(\frac{\mathbb{Z}}{2\mathbb{Z}}, +, \cdot\right)$ is a commutative ring with unity $1 \neq 0$. Since $1 \cdot 1 = 1$, then $1^{-1} = 1$, so 1 has a multiplicative inverse. Hence, every nonzero element of $\frac{\mathbb{Z}}{2\mathbb{Z}}$ has a multiplicative inverse. Therefore, $\frac{\mathbb{Z}}{2\mathbb{Z}}$ is a field.

Example 2. field of rational numbers $(\mathbb{Q}, +, \cdot)$

 $\begin{array}{l} (\mathbb{Q},+,\cdot) \text{ is a field.} \\ \text{Additive identity is } 0 = \frac{0}{1}. \\ \text{Additive inverse of } \frac{a}{b} \text{ is } -\frac{a}{b}. \\ \text{Multiplicative identity is } 1 = \frac{1}{1}. \\ \text{Multiplicative inverse of } \frac{a}{b} \in \mathbb{Q}^* \text{ is } \frac{b}{a} \in \mathbb{Q}^*. \end{array}$

Proof. Addition and multiplication are binary operations defined on the set of all rational numbers \mathbb{Q} .

Addition over \mathbb{Q} is associative and commutative.

Proof. We prove $0 \in \mathbb{Q}$ is a right additive identity. Since 0 and 1 are integers and $1 \neq 0$, then $0 = \frac{0}{1} \in \mathbb{Q}$. Observe that $\frac{a}{b} + 0 = \frac{a}{b}$ for all $\frac{a}{b} \in \mathbb{Q}$. Since $0 \in \mathbb{Q}$ and $\frac{a}{b} + 0 = \frac{a}{b}$ for all $\frac{a}{b} \in \mathbb{Q}$, then $0 \in \mathbb{Q}$ is a right additive identity.

Proof. We prove for every $\frac{a}{b} \in \mathbb{Q}$ there is a right additive inverse $\frac{-a}{b} \in \mathbb{Q}$. Let $\frac{a}{b} \in \mathbb{Q}$. Then $a, b \in \mathbb{Z}$ and $b \neq 0$. Since $a \in \mathbb{Z}$, then $-a \in \mathbb{Z}$. Since -a and b are integers and $b \neq 0$, then $\frac{-a}{b} \in \mathbb{Q}$. Observe that $\frac{a}{b} + \frac{-a}{b} = 0$. Since $\frac{-a}{b} \in \mathbb{Q}$ and $\frac{a}{b} + \frac{-a}{b} = 0$, then $\frac{-a}{b}$ is a right additive inverse of $\frac{a}{b}$. Therefore, for every $\frac{a}{b} \in \mathbb{Q}$ there is a right additive inverse $\frac{-a}{b} \in \mathbb{Q}$.

Proof. Multiplication over \mathbb{Q} is associative and commutative.

Proof. We prove $1 \in \mathbb{Q}$ is a right multiplicative identity.

Since 1 is an integer and $1 \neq 0$, then $\frac{1}{1} \in \mathbb{Q}$.

Since $\frac{1}{1} \in \mathbb{Q}$ and $\frac{a}{b} \cdot 1 = \frac{a}{b}$ for all $\frac{a}{b} \in \mathbb{Q}$, then $1 \in \mathbb{Q}$ is a right multiplicative identity.

Proof. We prove for every nonzero $\frac{a}{b} \in \mathbb{Q}$ there is a right multiplicative inverse $\frac{b}{a} \in \mathbb{Q}.$

Let $\frac{a}{b} \in \mathbb{Q}$ and $\frac{a}{b} \neq 0$. Since $\frac{a}{b} \in \mathbb{Q}$, then $a, b \in \mathbb{Z}$ and $b \neq 0$. Since $\frac{a}{b} \neq 0$ and $b \neq 0$, then $a \neq 0$, so $\frac{b}{a} \neq 0$. Since $a, b \in \mathbb{Z}$ and $a \neq 0$ and $b \neq 0$, then $ab \neq 0$. Since $b, a \in \mathbb{Z}$ and $a \neq 0$, then $\frac{b}{a} \in \mathbb{Q}$. Observe that

$$\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ba} = \frac{ab}{ab} = 1.$$

Thus, $\frac{a}{b} \cdot \frac{b}{a} = 1$, so $\frac{b}{a} \in \mathbb{Q}$ is a right multiplicative inverse. Therefore, for every nonzero $\frac{a}{b} \in \mathbb{Q}$ there is a right multiplicative inverse $\frac{b}{a} \in \mathbb{Q}.$

Proof. We prove multiplication is left distributive over addition.

Since $\frac{m}{n}(\frac{p}{q} + \frac{r}{s}) = \frac{m}{n} \cdot \frac{p}{q} + \frac{m}{n} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$, then multiplication is left distributive over addition.

Proof. We prove multiplicative identity $1 \in \mathbb{Q}$ is distinct from additive identity $0 \in \mathbb{Q}$.

Since 0 and 1 are integers, then $1 \neq 0$.

Since $1 = \frac{1}{1} \in \mathbb{Q}$ and $0 = \frac{0}{1} \in \mathbb{Q}$, then $\frac{1}{1} \neq \frac{0}{1}$, so multiplicative identity is distinct from additive identity.

Proof. Since addition and multiplication are binary operations on \mathbb{Q} and addition over \mathbb{Q} is associative and commutative and $0 \in \mathbb{Q}$ is a right additive identity and for every $\frac{a}{b} \in \mathbb{Q}$ there is a right additive inverse $\frac{-a}{b} \in \mathbb{Q}$ and multiplication over \mathbb{Q} is associative and commutative and $1 \in \mathbb{Q}$ is a right multiplicative identity and for every nonzero $\frac{a}{b} \in \mathbb{Q}$ there is a right multiplicative inverse $\frac{b}{a} \in \mathbb{Q}$ and multiplication is left distributive over addition and multiplicative identity $1 \in \mathbb{Q}$ is distinct from additive identity $0 \in \mathbb{Q}$, then $(\mathbb{Q}, +, \cdot)$ is a field.

Example 3. field of real numbers $(\mathbb{R}, +, \cdot)$

 $(\mathbb{R}, +, \cdot)$ is a field. Additive identity is 0. Additive inverse of a is -a. Multiplicative identity is 1. Multiplicative inverse of $a \in \mathbb{R}^*$ is $\frac{1}{a} \in \mathbb{R}^*$.

Proof. TODO

Example 4. field of complex numbers $(\mathbb{C}, +, \cdot)$ $(\mathbb{C}, +, \cdot)$ is a field. Additive identity is 0 = 0 + 0i. Let $a, b \in \mathbb{R}$. Additive inverse of z = a + bi is -z = -a - bi. Multiplicative identity is 1 = 1 + 0i. Let $z \in \mathbb{C}^*$. Multiplicative inverse of $z = |z| \operatorname{cis} \theta$ is $z^{-1} = \frac{1}{z} = \frac{1}{|z|} \operatorname{cis} (-\theta)$

Proof. TODO

Example 5. \mathbb{Z}_p is a field when p is prime Let $p \in \mathbb{Z}^+$.

If p is prime, then $(\mathbb{Z}_p, +, \cdot)$ is a field.

Proof. TODO

Example 6. Gaussian integers

Let $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$ Then $(\mathbb{Z}[i], +)$ is an abelian group under complex addition. $(\mathbb{Z}[i], +, \cdot)$ is a subring of $(\mathbb{C}, +, \cdot)$ known as the **Gaussian integers**.

Proof. TODO

Example 7. $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}\$ is a field under addition and multiplication of \mathbb{R} .

Proof. TODO