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Exercise 1. Let I be a field.
Let a,be F.
If b # 0 and ab = b, then a = 1.

Proof. Suppose b # 0 and ab = b.
Since b # 0, then % eF.

Therefore,
a = a-1
1
- a-(b-=
ar(b-3)
1
— p) - =
(ab)
1
N
b
= 1
Exercise 2. Let F be a field.
Let a,b € F.
Ifa#0andab=1, thenbz%.
Proof. Suppose a # 0 and ab = 1.
Since a # 0, then 1 € F.
Therefore,
b = 1-b
1
= (Z.a)-b
(- -a)
= (ab)
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Exercise 3. Let S = {a+bv2:a,bc Z}.
Then (S, +, *) is a commutative ring with unity 1 # 0.

Proof. Observe that S is a subset of the additive group of real numbers (R, +).
Since 0 = 0 + 0v/2, then 0 is an element of S, so S is not empty.
Let z,y € S.
Then there exist integers a, b, ¢, d such that z = a + by/2 and y = ¢ + dv/2.
Thus,

(a+bV2) — (c+dV2)
(a—c)+ (b—d)V2.

r—=y

Hence, z —y € S.
Therefore, S is an additive subgroup of R, so S is closed under addition.
Since R is abelian and S C R and S is closed under addition, then addition
is commutative in S.
Hence, S is abelian, so (S, +) is an abelian group.
Let z,y € S.
Then there exist integers a, b, ¢, d such that = a + bv/2 and y = ¢ + dv/2.
Thus,

(a+bV2)(c+ dV2)
ac + adv'2 4 bev/2 + 2bd
(ac + 2bd) + (ad + be) V2.

rY

Hence, zy € S, so S is closed under multiplication.

Since S is a subset of R, then xy € R.

Since R is a ring, then multiplication is a binary operation on R, so multi-
plication is well defined in R.

Hence, zy is unique.

Since S is closed under multiplication and zy is unique, then multiplication
is a binary operation on S.

Since (R, +, *) is a commutative ring, then multiplication is associative and
commutative in R.

Since S C R and S is closed under multiplication, then multiplication is
associative and commutative in S.

Observe that 1 =14 0v/2,s0 1 € S and 1 # 0.

Since 1 is the unity of R, then for every r e R, rx1=1%r =r.

Let x € S.

Since z € S and S C R, then z € R.

Hence, x*1 = 1*x = x. Therefore, 1 is a multiplicative identity of S. Thus,
a multiplicative identity exists in S.

Since R is a ring, then the distributive laws hold in R. Thus, for every
z,y,z2 € Ryx(y+ 2) = a2y + 2z and (z + y)z = xz + yz. Let a,b,c € S. Since
S C R, then a,b,c € R. Hence, a(b+ ¢) = ab + ac and (a + b)c = ac + be.
Therefore, the distributive laws hold in S.

Thus, (S, 4+, *) is a commutative ring with unity 1 # 0. O



Exercise 4. Let S = {a+bv2:a,b € Z}. Then (S, +, *) is not a field.

Proof. Observe that (S, +, %) is a commutative ring with unity 1 # 0. Thus, S
is a field iff every nonzero element of S is a unit. Hence, S is not a field iff there
exists a nonzero element of S that is not a unit.

Let z = /2. Thenx:O—&—l*\/ﬁ, sox € S and z # 0. The element x is
a unit iff there exists y € S such that xy = 1. Hence, = is not a unit iff there
does not exist y € S such that zy = 1.

Suppose there exists y € S such that xy = 1. Then there exist integers a, b
such that y = a + /2. Thus,

1 = ay
V2(a +bv2)
= aV2+ 2b.
Hence, 1+ 0v2=1=2b+aVv2,s0 1 =2band 0 = a. Thus, b = %7 so b ¢ Z.
But, we have b € Z and b € Z, a contradiction. Therefore, does not exist y € S

such that zy = 1. Thus, = is not a unit. Hence, there exists a nonzero element
of S that is not a unit. Therefore, S is not a field. O

Exercise 5. The algebraic structure (Z x Z, 4+, *) is a commutative ring with
unity (1,1) and is not a field.

Solution. The direct product of n copies of a commutative ring is a commu-
tative ring. Hence, the direct product of 2 copies of a commutative ring is a
commutative ring. Observe that (Z, +, %) is a commutative ring and (Z X Z, +, *)
is the direct product of 2 copies of (Z,+, ). Therefore, (Z2,+, %) is a commu-
tative ring. Observe that the unity of Z? is (1,1) and the zero of Z? is (0,0)
and (1,1) # (0,0).

The ring Z? is a field iff Z? is a commutative ring and the unity is distinct
from the zero element and every nonzero element of Z? is a unit. Since Z? is a
commutative ring with unity (1,1) # (0,0), then Z? is a field iff every nonzero
element of Z? is a unit. Hence, Z? is not a field iff there exists a nonzero element
of Z? that is not a unit.

Let = (1,2) € Z%. Then (1,2) # (0,0), so (1,2) is a nonzero element of
72.

Suppose (1,2) is a unit of Z2. Then there exists an element y € Z? such that
xy = (1,1). Since y € Z2, then there exist integers a, b such that y = (a, b).

Observe that

(L1 = ay
= (1,2)(a,b)
= (a,2b).
Thus, 1 = a and 1 = 2b, so b = % Hence, b ¢ Z. Thus, we have b € Z and
b & Z, a contradiction. Therefore, (1,2) is not a unit of Z2.

Hence, there exists a nonzero element of Z? that is not a unit of Z2. There-
fore, (Z2?,+, ) is not a field. O



Exercise 6. What are all of the units in the ring Z x Z?

Solution. We know that the ring Z x Z is not a field, so not every nonzero
element is a unit. Hence, there are some nonzero elements of Z x Z which do
not have multiplicative inverses in Z X Z.

Let S be the set of all units of Z x Z. Then S = {a € Z xZ : (Ja~! €
Z*)(aa"t = (1,1)}. Let x € S. Then x € Z? and there exists 2! € Z? such
that zo~! = (1,1). Thus, there exist integers a, b, c,d such that x = (a,b) and
271 = (c,d). Hence,

(1,1) = zaz!
= (a,0)(c,d)
= (ac,bd).
Thus, 1 = ac and 1 = bd. Since a,b,c,d are integers, then this implies either
a=c=1lora=c=—1and eitherb=d=1or b=d = —1. Hence, a = c and
b=d, so x =2~ ! and 4 possibilities exist. Thus, x is either (1,1) or (1,—1) or
(=1,1) or (—1,—1). Therefore, S = {(1,1),(1,-1),(-1,1),(—1,-1)}. O

Exercise 7. Let I be a field.
Let x € F such that z = 2~ 1.
Then z = 1.

Is this true or false?

Proof. This is false.
Here is a counterexample. There are other counter examples as well.
Let F be the field (Zs,+, ).
Then 2 = 27! since 2-2 =1, but 2 # 1.
Another counterexample is the field (R, +, ).
Clearly, —1 = (—1)7! since (=1)(=1) = 1, but —1 # 1. O

Exercise 8. Let I be a field.
Let x € F such that x = —x.
Then x = 0.

Is this true or false?

Proof. This is false.
Here is a counterexample.
Let F be the field (Zo, +, ).
Then 1 = —1 since 14+ 1 =20, but 1 # 0. O

Exercise 9. Let n be a positive integer.
Give an example of a field F' and nonzero element x € F' such that nx = 0.

Solution. Let F = (Z7,+,-).
Since 7 is prime, then F' is a field.
Let n =7 and x = 5.
Then



7«5 = 6x5+5

5%¥5+5)+5

4%5+5)+5)+5
(3%54+5)+5)+5)+5
((2%5+5)+5)+5)+5)+5
((1*x5+5)+5)+5)+5)+5)+5
((54+5)+5)+5)+5)+5)+5
(3+5)+5)+5)+5)+5
(
6

1+5)+5)+5)+5
+5)+5)+5
= (4+5)+5
= 245
0.
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Exercise 10. Let (F,+,-) be a field.

Let a,b,c,x € F and a # 0.

Then ax + b = c iff v = (¢ — b)a™ .

Therefore, a linear equation in one variable with coefficients in a field F’ has
a unique solution in F'

Proof. We prove if ax + b = ¢, then z = (¢ — b)a™!.
Suppose ax + b = c.
Then ax = ¢ —b.
Since a # 0, we divide by a to get x = C;b =(c—b)a" L.
Conversely, we prove if x = (¢ — b)a™!, then ax + b = c.
Suppose = = (¢ — b)a~!.
Then

ar+b = a((c—ba"')+b
ala ™ (c—1Db)) +b
(aa™ 1) (c—Db)+b

= 1(c—b)+b
= c—b+0d
= c

O

Exercise 11. Give an example linear equation in Zg that has no solution and
one that has more than one solution.
Give an example of elements a,b of Zg such that a? = b2, but a # b and

a # —b.



Solution. Zg is a commutative ring that has zero divisors.

For example, 4 is a zero divisor because 0 = 4 % 2 and 2 # 0.

Hence, Zg is not an integral domain, so Zg cannot be a field.

A linear equation ax + b = ¢ for a,b,c € Zg has at least one solution x =
(c—b)a~tif a1 exists.

Therefore, if ax + b = ¢ for a,b,c € Zg has no solution, then a~! does not
exist.

So, to provide an example of a linear equation in Zg that has no solution,
we want a to not have a multiplicative inverse.

Since 4*x0+5=5#6and4x1+5=1#6and4%x2+5=>5# 6 and
4%x3+5=1#6and4*x4+5=5#6and 4+x5+5=1#6and 4*6+5=5+#6
and 4% 745 =1 # 6, then the linear equation 4z + 5 = 6 in Zg has no solution.

Here is an example of a linear equation in Zg that has more than one solution:
dr+3="1.

The solution set is {1,3,5,7} since 4x14+3 =7 = 4%3+3 = 4x5+3 = 4x7+3.

Let a = 1and b =3. Then 12 = 1 = 32 and 1 # 3 and 1 # —3 since
-3 =5. O

Exercise 12. Let F be a field. If a € F, then there exists x € F such that
2

x® = a. Is this true or false?
Solution. This is false. Here is a counterexample. Let F' be the field (Q, +,-)
with a = 2 € Q. Then there does not exist € Q such that z? = 2. O

Exercise 13. Let S = {a,b}. Define addition on S by a+a =a and a +b =
b=b+a and b+ b = b. Define multiplication on S by aa = ab = ba = a and
bb = b. Then (S, +, ) is a field.

Solution. To prove S is a field, we must prove S is a commutative division
ring. Thus, we must prove (S, +, %) is a ring with 1 # 0 and * is commutative
and every nonzero element of S has a multiplicative inverse. Hence, we must
prove

1. (S,+) is an abelian group.

la. addition is a binary operation on S.

lal. S is closed under addition.

la2. x + y is unique for all z,y € S.

1b. 4+ is associative.

lc. + is commutative.

1d. there exists an additive identity in S.

le. each element of S has an additive inverse.

2. multiplication is a binary operation on S.

2al. S is closed under multiplication.

2a2. xy is unique for all z,y € S.

2. x is associative.

3. there exists a multiplicative identity 1

4. multiplication distributes over addition:

4a. left distributive : a(b+ ¢) = ab+ ac



4b. right distributive: (a + b)c = ac + be.

5.140.

6. * is commutative.

7. every nonzero element of S has a multiplicative inverse.

We can write out the addition and multiplication tables for S. Since |S| = 2,
then |S x S| = |S||S| = 2 %2 = 22 = 4. Thus, there are 4 ordered pairs mapped
by addition and mapped by multiplication.

O

Proof. The sum of any pair of elements of S is a unique element of S. Hence,
addition is a binary operation on S.

Since a + b =0 = b+ a, then addition is commutative.

We prove addition is associative.

There are 23 = 8 cases to consider.

Case 1: Observe that (a+a)+a=a+a=a+ (a+a).

Case 2: Observe that (e +a)+b=a+b=a+ (a+Db).

Case 3: Observe that (a+b)+a=b+a=b=a+b=a+ (b+a).

Case 4: Observe that (a+b)+b=b+b=a=a+a=a+ (b+Db).

Case 5: Observe that (b+a)+a=b+a=b+ (a+a).

Case 6: Observe that (b+a)+b=b+b=0b+ (a+1b).

Case 7: Observe that (b+b)+a=a+a=a=b+b=b+ (b+a).

Case 8: Observe that (b+b)+b=a+b=b=b+a=b+ (b+b).

Thus, addition is associative.

Since a +a =a and a + b= b = b+ a, then a is an additive identity. Thus,
a is a zero element of S.

Since a + a = a, then a is an additive inverse of a. Since b+ b = a, then b is
an additive inverse of b. Hence, each element of S has an additive inverse.

Therefore, (S, +) is an abelian group.

The product of any pair of elements of S is a unique element of S. Hence,
multiplication is a binary operation on S.

Since ab = a = ba, then multiplication is commutative.

We prove multiplication is associative.

There are 23 = 8 cases to consider.

Case 1: Observe that (aa)a = aa = a(aa).

Case 2: Observe that (aa)b = ab = a = aa = a(ab).

Case 3: Observe that (ab)a = aa = a(ba).

Case 4: Observe that (ab)b = ab = a(bd).
(
(
(

Py

Case 5: Observe that (ba)a = aa = a = ba = b(aa).
Case 6: Observe that (ba)b = ab = a = ba = b(ab).

Case 7: Observe that (bb)a = ba = b(ba).

Case 8: Observe that (bb)b = bb = b(bb).

Thus, multiplication is associative.

Since ba = a = ab and bb = b, then b is a multiplicative identity. Since a # b,
then the multiplicative identity is distinct from the additive identity. The only
nonzero element in S is b. Since bb = b, then the multiplicative inverse of b is b.
Hence, every nonzero element of S has a multiplicative inverse.



We prove the left distributive law holds in S.

There are 23 = 8 cases to consider.

Case 1: Observe that a(a+a) =aa =a =a+ a = aa + aa.

Case 2: Observe that a(a +b) = ab=a =a+ a = aa + ab.

Case 3: Observe that a(b+a) =ab=a=a+ a = ab+ aa.

Case 4: Observe that a(b+b) =aa=a=a+ a = ab+ ab.

Case 5: Observe that b(a +a) = ba =a =a+ a = ba + ba.

Case 6: Observe that b(a +b) =bb=b=a+ b= ba + bb.

Case 7: Observe that b(b+a) =bb=0b= b+ a = bb + ba.

Case 8: Observe that b(b+b) = ba =a = b+ b= bb+ bb.

Thus, the left distributive law holds in S.

Let z,y,z € S. Then (x + y)z = z(x +y) = zx + 2y = 2z + yz. Thus,
the right distributive law holds in S. Hence, multiplication is distributive over
addition in S.

Therefore, (S, +, %) is a field. O

Proof. Define ¢ : Zos — S by ¢(0) = a and ¢(1) = b.

Clearly, ¢ is a function and ¢ is injective and surjective. Hence, ¢ is bijective.

We prove ¢ is a ring homomorphism. Observe that ¢(0 + 0) = ¢(0) = a =
a+a=¢(0)+¢(0) and p(0+1) = ¢p(1) =b=a+b = ¢(0)+¢(1) and ¢(1+0) =
o()=b=b+a=¢(1)+¢0) and p(1+1) =p(0) =a=b+b=¢(1) + ¢(1).
Thus, ¢ preserves addition.

Observe that ¢(0%0) = ¢(0) = a = aa = ¢(0)¢p(0) and ¢(0x1) = ¢p(0) = a =
ab = 6(0)p(1) and ¢(1+0) = 6(0) = a = ba = G(1)6(0) and G(1+ 1) = ¢(1) =
b=0bb= ¢(1)¢(1). Thus, ¢ preserves multiplication.

Since ¢(1) = b and 1 is unity of Zy and b is unity of S, then ¢ preserves the
unity element of the rings.

Therefore, ¢ is a ring homomorphism. Since ¢ is bijective, then ¢ is a
bijective ring homomorphism, so ¢ is a ring isomorphism. Hence, (Zq, +, *) &
(S, 4+, *). Since 2 is prime, then Z is a field. Hence, S is a field. O

Exercise 14. Let (R, +,-) be a ring.
If (R*,) is an abelian group, then (R, +,) is a field.

Proof. Suppose (R*,-) is an abelian group.

To prove (R,+,-) is a field, we prove multiplication is commutative and
multiplicative identity 1 # 0 and every nonzero element has a multiplicative
inverse in R.

Since R is a ring, then there is a zero of R.

Let 0 be the zero of R.

Since (R*, ) is a multiplicative group, then there is a multiplicative identity
in R*.

Let 1 be the multiplicative identity of R*.

Then 1 € R*,;so1 € Rand 1 # 0.

Thus, 1 # 0.

Since (R*,*) is a group, then each element of R* has a multiplicative inverse
in R*.



Let a € R*. Then a € R and a # 0 and there exists b € R* such that
ab=ba = 1. Since b € R* and R* C R, then b € R. Hence, the multiplicative
inverse of a is in R. Thus, each nonzero element of R has a multiplicative inverse
in R.

We prove multiplication is commutative. Let a,b € R. Eithera =0or a # 0
and either b =10 or b # 0.

Thus, there are 4 cases to consider.

Case 1: Suppose a =0 and b = 0.

Then ab=0%0=0=0x%0 = ba.

Case 2: Suppose a = 0 and b # 0.

Then ab = 0b =0 = b0 = ba.

Case 3: Suppose a # 0 and b= 0.

Then ab=a*x0=0=0%a = ba.

Case 4: Suppose a # 0 and b # 0.

Then a € R* and b € R*. Since (R*,*) is an abelian group, then multipli-
cation is commutative in R*. Thus, ab = ba.

Hence, in all cases, ab = ba, so multiplication is commutative in R. O

Exercise 15. Let (F,F) be an ordered field. Let 2 € F and z # 0. Then
x?" € FT for all m € N.

Proof. Define predicate p(n) : 2?" € F+ over N.

We prove p(n) for all n € N by induction on n.

Basis: Since x € F and x # 0, then 22 = 22*! € F*. Therefore, p(1) is
true.

Induction: Let n € N such that p(n) is true. Then 22" € F*. To prove
p(n + 1) is true, we must prove z2("*1) ¢ F+,

Observe that z2("t1) = g2n+2 — 42052,

Since 2" € Ft and 22 € Ft, then by closure of F* under multiplication
of F, x*"g? € I,

Thus, 22"+ ¢ F+,

Therefore, p(n) implies p(n + 1) for all n € N.

Hence, by induction, p(n) is true for all n € N.

Therefore, 22" € F+ for all n € N. O

Exercise 16. Let (F, F*) be an ordered field. Let z,y,a € F. Then
1. ifx <y, thenz+a < y+a.
2. if x <y and a > 0, then azx < ay.
3. if x <y and a <0, then ax > ay.

Proof. We prove 1.
Suppose < y. Then either z < y or z = y.
We consider these cases separately.
Case 1: Suppose = = y.
Then x4+ a =y + a.
Case 2: Suppose = < y.
Then y —z € FT.



To prove  + a < y + a, we must prove (y +a) — (z +a) € FT.

Observe that y —x =y—z4+a—a=y+a—x—a=(y+a)— (x+a).

Therefore, (y +a) — (z+a) € FT.

We prove 2.

Suppose z < y and a > 0.

Then both x < yor x =y and a > 0 or a = 0. Thus, either z <y and a > 0
orx<yanda=0orz=yanda>0or x=yanda=0.

We consider these cases separately.

Case 1: Suppose z < y and a = 0.

Then ax = 0z =0 = 0y = ay.

Case 2: Suppose z =y and a = 0.

Then ax = ax = ay.

Case 3: Suppose x =y and a > 0.

Then ax = ax = ay.

Case 4: Suppose z < y and a > 0.

Theny—z € F™ anda € FT.

To prove ax < ay, we prove ay — ax € FT.

By closure of F* under multiplication of F, we have a(y — z) € F.

Therefore, ay — ax € FT.

We prove 3.

Suppose z < y and a < 0.

Then both x < yor x =y and a < 0 or a = 0. Thus, either z < y and a <0
orx<yanda=0orz=yand a<0orx=yanda=0.

We consider these cases separately.

Case 1: Suppose z < y and a = 0.

Then ax = 0z =0 = 0y = ay.

Case 2: Suppose x =y and a = 0.

Then ax = ax = ay.

Case 3: Suppose x =y and a < 0.

Then ax = ax = ay.

Case 4: Suppose z < y and a < 0.

Then y —z € F* and —a € FT.

To prove ax > ay, we prove ax — ay € FT.

By closure of F* under multiplication of F', we have —a(y — ) € F™. Since
—aly — ) = —ay — a(—x) = —ay + ax = ax — ay, then ax — ay € FT, as
desired. O

Exercise 17. Let (F,+,-, <) be an ordered field.
Let z,y,a,b € F.
Then
Jifa<zand b<y,thena+b<x+y.
Lifa<zand b<y,thena+b<z+y.
Lif0<a<zand 0 <b <y, then ab < xy.
Lif0<a<zand 0 <b <y, then ab < xy.
Lif0<a<zand 0 <b <y, then ab < xy.

T W N =
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Proof. We prove 1.

Suppose a < z and b < y.

Since b < y, then y — b € F'T.

Since a < z, then either a < x or a = .

We consider these cases separately.

To prove a + b < z + y, we must prove (z +y) — (a +b) € FT.

Case 1: Suppose a < .

Then z —a € FT.

Since x —a € F* and y — b € F'T, then by closure of '™ under addition of
F, we have (z —a) + (y —b) € FT.

Observe that

(z—a)+(y—-b) = z—aty-—b
= z+y—a-—>
= (z+y) —(a+Db).

Therefore, (x +y) — (a+b) € FT.
Case 2: Suppose a = z.
Then x —a = 0.
Observe that

y—b = (y—>b)+0
= -b+E-a
= y—bt+zr—a
= y+r—-b—a
= z4+y—a—2>b
= (z+y)—(a+0).

Therefore, (z+y) — (a+b) =y—be FT. O

Proof. We prove 2.

Suppose a < z and b < y.

Then a < z and either b < y or b =y. Hence, a <z and b < y or a < = and
b=uy.

We consider these cases separately.

To prove a + b < =+ y, we must prove eithera+b<zx+yora+b=z+y.
Hence, we must prove either (z +y) — (a+b) € Ftora+b=z+y.

Case 1: Suppose a < x and b < y.

Thena+b <z +y.

Case 2: Suppose a <z and b = y.

Then either a < x or a = x and b = y. Hence, either a < x and b = y or
a=xand b=y.

Case 2a: Suppose a < x and b =y.

Thenz —a € F™andy—b=0.

11



Observe that

x—a = (r—a)+0
= (z-a)+(y—0)
= z—a+y—>
= z4+y—a—2>b
= (z+y)—(a+b).

Therefore, (z +y) — (a+b) € FT.
Case 2b: Suppose a =z and b =y.
Then

a+b = x+0
= x+uy.

We prove 3.

Suppose 0 < a<xand 0 < b<y. Then 0 < g and a < x and 0 < b and
b < y. Since 0 < a and 0 < b, then either 0 < a or 0 = @ and either 0 < b or
0 =1b. Thus, either 0 <aand 0 <bor0O<aand 0=bor0=aand 0 <b or
0=aand 0="4.

We consider these cases separately.

Case 1: Suppose 0 = a and 0 = b.

Since 0 = a and a < z, then 0 < x. Since 0 = b and b < y, then 0 < y.
Hence, > 0 and y > 0, so zy > 0. Therefore, ab=0-0=0 < xy, so ab < zy.

Case 2: Suppose 0 =a and 0 < b.

Since 0 = a and a < x, then 0 < z. Since 0 < b and b < y, then 0 < y.
Hence, z > 0 and y > 0, so zy > 0. Therefore, ab=0-b =0 < zy, so ab < xy.

Case 3: Suppose 0 < a and 0 = b.

Since 0 < a and a < x, then 0 < x. Since 0 = b and b < y, then 0 < y.
Hence, > 0 and y > 0, so zy > 0. Therefore, ab=a-0=0 < zy, so ab < xy.

Case 4: Suppose 0 < a and 0 < b.

Since a < x and b > 0, then ab < xb, so ab < bzx. Since 0 < a and a < =,
then 0 < z. Since b < y and > 0, then bz < yz, so bx < zy. Thus, ab < bx
and bx < zy, so ab < xy.

We prove 4.

Suppose 0 < a <xand 0 < b <y. Then 0 < a and a <z and 0 < b and
b < y. Since a < z, then either a < x or a = .

We consider these cases separately.

Case 1: Suppose a < x.

Ifo0<a<xand 0<b<y,then ab < zy.

Since 0 < a and a < x, then 0 < a < x.

Since 0 < b and b < y, then 0 < b < y.

Therefore, we conclude ab < zxy.

Case 2: Suppose a = x.

Since 0 < a, then either 0 < a or 0 = a.
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Case 2a: Suppose 0 = a.

Then ab = 0b =0 =0y = ay = xy.

Case 2b: Suppose 0 < a.

Then a € FT. Since b < y, then y — b € FT. Thus, a(y — b) € F*. Since
a(y — b) = ay — ab = zy — ab, then xy — ab € F*. Therefore, ab < zy.

We prove 5.

Suppose 0 < a<zxand 0 < b <y. Then 0 < aand a <z and 0 < b and
b <y. Since b <y, then either b < y or b = y.

We consider these cases separately.

Case 1: Suppose b < y.

If0<a<zand 0<b<y, then ab < zy.

Since 0 < a and a <z, then 0 < a < x.

Since 0 < b and b < y, then 0 < b < y.

Therefore, we conclude ab < zy.

Case 2: Suppose b =y.

Since a < z, then either a < z or a = x.

Case 2a: Suppose a = z.

Then ab = zb = zy.

Case 2b: Suppose a < x.

Since 0 < b, then either 0 < b or 0 = b.

If 0 =0, then ab=a0 =0 = 20 = zb = zy.

If 0 < b, then b € FT*. Since a < x, then z —a € FT. Hence, (x —a)b € FT.

Since (z — a)b = zb — ab = zy — ab, then zy —ab € FT.

Therefore, ab < xy. O

Exercise 18. Let F be a field.
Let a,b e F.
If a2 + 1> =0, then a = b = 0.
Is this true or false?

Solution. This is false.
Here is a counterexample.
Let F be the field (Zs,+,-) with a =1 and b = 2.
Then 12 +22=1%14+2%2=1+4=0, but 1 # 0 and 2 # 0. O

Exercise 19. Let F be an ordered field.
Let a,be F.
If a2 + b2 =0, then @ = 0 and b = 0.

Proof. We prove by contrapositive.
Suppose either a # 0 or b # 0.
If a # 0, then a® > 0.
Since b2 > 0, then a® + b2 > 0, so a® + b% # 0.
If b # 0, then b2 > 0.
Since a? > 0, then a? + b2 > 0, so a® + b? # 0.
Therefore, in either case, a? + b? # 0, as desired. O
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Exercise 20. Let F be an ordered field.
Let a,b € F such that ¢ > 0 and b > 0.
Then a < b iff a® < b2.

Proof. We must prove a < b iff a® < b2.

We prove if a < b, then a? < b.

Suppose a < b.

Then b — a is positive. Since a® < b? iff b2 — a? is positive iff (b — a)(b+ a)
is positive, to prove a? < b2, we prove (b — a)(b+ a) is positive.

The product (b — a)(b + a) is positive iff b — a and b + a are either both
positive or both negative. Therefore, we must prove b — a and b 4 a are either
both positive or both negative. Since b — a is positive, then we need only prove
b+ a is positive.

Since b > 0 and a > 0, then b+ a > 0. Hence, either b+a >0 or b+ a = 0.

Suppose b+ a = 0. Then a = —b.

Since b > 0, then either b > 0 or b = 0.

If b=0, then a <b =0, so a < 0. But, a > 0. Therefore, b # 0.

If b > 0, then —b < 0, so a < 0. But, again, a > 0. Therefore, b is not
positive.

Hence, b + a # 0. Therefore, b+ a > 0, so b + a is positive, as desired.

Conversely, we prove if a? < b2, then a < b.

Suppose a? < b2.

To prove a < b, we must prove b — a is positive.

Since a? < b2, then b? — a? is positive, so (b — a)(b + a) is positive.

Hence, b — a and b + a are either both positive or both negative.

Since a > 0 and b > 0, then b+ a > 0, so b+ a is not negative.

Thus, we conclude b — a and b + a must be both positive.

Therefore, b — a is positive, as desired. O

Exercise 21. If R is a field, then the only ideals of R are the zero ring and R
itself.

Proof. Let R be a field.

Let I be an ideal in R.

Then either I is the zero ring or I is not the zero ring.

Suppose I is not the zero ring.

Since I is an ideal, then (I, +) is an abelian subgroup of (R, +).

Since I is not the zero group, then I must contain a nonzero element.

Let a be some nonzero element of 1.

Then a € I and a # 0.

Since R is a field, then every nonzero element of R is a unit of R.

Hence, in particular, a is a unit of R.

Therefore, there exists a~! € R such that aa~! = e, where e is the unity
of R. Since I is an ideal, then for every x € I, IR C I. Thus, aR C I, where
aR = {ar : r € R}. Since a~! € R, then aa~! € aR. Hence, e € aR. Thus,
e € aR and aR C I, so e € I. Therefore, eR C I, where eR = {er : r € R} =
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{r:r € R} = R. Hence, R C I. Since I is an ideal, then I C R. Thus, I C R
and RC I,so I =R.
Therefore, either I is the zero ring or [ is the field R itself. O
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