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Exercise 1. Let F be a field.
Let a, b ∈ F .
If b 6= 0 and ab = b, then a = 1.

Proof. Suppose b 6= 0 and ab = b.
Since b 6= 0, then 1

b ∈ F .
Therefore,

a = a · 1

= a · (b · 1

b
)

= (ab) · 1

b

= b · 1

b
= 1.

Exercise 2. Let F be a field.
Let a, b ∈ F .
If a 6= 0 and ab = 1, then b = 1

a .

Proof. Suppose a 6= 0 and ab = 1.
Since a 6= 0, then 1

a ∈ F .
Therefore,

b = 1 · b

= (
1

a
· a) · b

=
1

a
· (ab)

=
1

a
· 1

=
1

a
.



Exercise 3. Let S = {a+ b
√

2 : a, b ∈ Z}.
Then (S,+, ∗) is a commutative ring with unity 1 6= 0.

Proof. Observe that S is a subset of the additive group of real numbers (R,+).
Since 0 = 0 + 0

√
2, then 0 is an element of S, so S is not empty.

Let x, y ∈ S.
Then there exist integers a, b, c, d such that x = a+ b

√
2 and y = c+ d

√
2.

Thus,

x− y = (a+ b
√

2)− (c+ d
√

2)

= (a− c) + (b− d)
√

2.

Hence, x− y ∈ S.
Therefore, S is an additive subgroup of R, so S is closed under addition.
Since R is abelian and S ⊂ R and S is closed under addition, then addition

is commutative in S.
Hence, S is abelian, so (S,+) is an abelian group.
Let x, y ∈ S.
Then there exist integers a, b, c, d such that x = a+ b

√
2 and y = c+ d

√
2.

Thus,

xy = (a+ b
√

2)(c+ d
√

2)

= ac+ ad
√

2 + bc
√

2 + 2bd

= (ac+ 2bd) + (ad+ bc)
√

2.

Hence, xy ∈ S, so S is closed under multiplication.
Since S is a subset of R, then xy ∈ R.
Since R is a ring, then multiplication is a binary operation on R, so multi-

plication is well defined in R.
Hence, xy is unique.
Since S is closed under multiplication and xy is unique, then multiplication

is a binary operation on S.
Since (R,+, ∗) is a commutative ring, then multiplication is associative and

commutative in R.
Since S ⊂ R and S is closed under multiplication, then multiplication is

associative and commutative in S.
Observe that 1 = 1 + 0

√
2, so 1 ∈ S and 1 6= 0.

Since 1 is the unity of R, then for every r ∈ R, r ∗ 1 = 1 ∗ r = r.
Let x ∈ S.
Since x ∈ S and S ⊂ R, then x ∈ R.
Hence, x∗1 = 1∗x = x. Therefore, 1 is a multiplicative identity of S. Thus,

a multiplicative identity exists in S.
Since R is a ring, then the distributive laws hold in R. Thus, for every

x, y, z ∈ R, x(y + z) = xy + xz and (x + y)z = xz + yz. Let a, b, c ∈ S. Since
S ⊂ R, then a, b, c ∈ R. Hence, a(b + c) = ab + ac and (a + b)c = ac + bc.
Therefore, the distributive laws hold in S.

Thus, (S,+, ∗) is a commutative ring with unity 1 6= 0.
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Exercise 4. Let S = {a+ b
√

2 : a, b ∈ Z}. Then (S,+, ∗) is not a field.

Proof. Observe that (S,+, ∗) is a commutative ring with unity 1 6= 0. Thus, S
is a field iff every nonzero element of S is a unit. Hence, S is not a field iff there
exists a nonzero element of S that is not a unit.

Let x =
√

2. Then x = 0 + 1 ∗
√

2, so x ∈ S and x 6= 0. The element x is
a unit iff there exists y ∈ S such that xy = 1. Hence, x is not a unit iff there
does not exist y ∈ S such that xy = 1.

Suppose there exists y ∈ S such that xy = 1. Then there exist integers a, b
such that y = a+ b

√
2. Thus,

1 = xy

=
√

2(a+ b
√

2)

= a
√

2 + 2b.

Hence, 1 + 0
√

2 = 1 = 2b + a
√

2, so 1 = 2b and 0 = a. Thus, b = 1
2 , so b 6∈ Z.

But, we have b ∈ Z and b 6∈ Z, a contradiction. Therefore, does not exist y ∈ S
such that xy = 1. Thus, x is not a unit. Hence, there exists a nonzero element
of S that is not a unit. Therefore, S is not a field.

Exercise 5. The algebraic structure (Z × Z,+, ∗) is a commutative ring with
unity (1, 1) and is not a field.

Solution. The direct product of n copies of a commutative ring is a commu-
tative ring. Hence, the direct product of 2 copies of a commutative ring is a
commutative ring. Observe that (Z,+, ∗) is a commutative ring and (Z×Z,+, ∗)
is the direct product of 2 copies of (Z,+, ∗). Therefore, (Z2,+, ∗) is a commu-
tative ring. Observe that the unity of Z2 is (1, 1) and the zero of Z2 is (0, 0)
and (1, 1) 6= (0, 0).

The ring Z2 is a field iff Z2 is a commutative ring and the unity is distinct
from the zero element and every nonzero element of Z2 is a unit. Since Z2 is a
commutative ring with unity (1, 1) 6= (0, 0), then Z2 is a field iff every nonzero
element of Z2 is a unit. Hence, Z2 is not a field iff there exists a nonzero element
of Z2 that is not a unit.

Let x = (1, 2) ∈ Z2. Then (1, 2) 6= (0, 0), so (1, 2) is a nonzero element of
Z2.

Suppose (1, 2) is a unit of Z2. Then there exists an element y ∈ Z2 such that
xy = (1, 1). Since y ∈ Z2, then there exist integers a, b such that y = (a, b).

Observe that

(1, 1) = xy

= (1, 2)(a, b)

= (a, 2b).

Thus, 1 = a and 1 = 2b, so b = 1
2 . Hence, b 6∈ Z. Thus, we have b ∈ Z and

b 6∈ Z, a contradiction. Therefore, (1, 2) is not a unit of Z2.
Hence, there exists a nonzero element of Z2 that is not a unit of Z2. There-

fore, (Z2,+, ∗) is not a field.
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Exercise 6. What are all of the units in the ring Z× Z?

Solution. We know that the ring Z × Z is not a field, so not every nonzero
element is a unit. Hence, there are some nonzero elements of Z × Z which do
not have multiplicative inverses in Z× Z.

Let S be the set of all units of Z × Z. Then S = {a ∈ Z × Z : (∃a−1 ∈
Z2)(aa−1 = (1, 1)}. Let x ∈ S. Then x ∈ Z2 and there exists x−1 ∈ Z2 such
that xx−1 = (1, 1). Thus, there exist integers a, b, c, d such that x = (a, b) and
x−1 = (c, d). Hence,

(1, 1) = xx−1

= (a, b)(c, d)

= (ac, bd).

Thus, 1 = ac and 1 = bd. Since a, b, c, d are integers, then this implies either
a = c = 1 or a = c = −1 and either b = d = 1 or b = d = −1. Hence, a = c and
b = d, so x = x−1 and 4 possibilities exist. Thus, x is either (1, 1) or (1,−1) or
(−1, 1) or (−1,−1). Therefore, S = {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

Exercise 7. Let F be a field.
Let x ∈ F such that x = x−1.
Then x = 1.
Is this true or false?

Proof. This is false.
Here is a counterexample. There are other counter examples as well.
Let F be the field (Z3,+, ·).
Then 2 = 2−1 since 2 · 2 = 1, but 2 6= 1.
Another counterexample is the field (R,+, ·).
Clearly, −1 = (−1)−1 since (−1)(−1) = 1, but −1 6= 1.

Exercise 8. Let F be a field.
Let x ∈ F such that x = −x.
Then x = 0.
Is this true or false?

Proof. This is false.
Here is a counterexample.
Let F be the field (Z2,+, ·).
Then 1 = −1 since 1 + 1 = 0, but 1 6= 0.

Exercise 9. Let n be a positive integer.
Give an example of a field F and nonzero element x ∈ F such that nx = 0.

Solution. Let F = (Z7,+, ·).
Since 7 is prime, then F is a field.
Let n = 7 and x = 5.
Then
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7 ∗ 5 = 6 ∗ 5 + 5

= (5 ∗ 5 + 5) + 5

= ((4 ∗ 5 + 5) + 5) + 5

= (((3 ∗ 5 + 5) + 5) + 5) + 5

= ((((2 ∗ 5 + 5) + 5) + 5) + 5) + 5

= (((((1 ∗ 5 + 5) + 5) + 5) + 5) + 5) + 5

= (((((5 + 5) + 5) + 5) + 5) + 5) + 5

= ((((3 + 5) + 5) + 5) + 5) + 5

= (((1 + 5) + 5) + 5) + 5

= ((6 + 5) + 5) + 5

= (4 + 5) + 5

= 2 + 5

= 0.

Exercise 10. Let (F,+, ·) be a field.
Let a, b, c, x ∈ F and a 6= 0.
Then ax+ b = c iff x = (c− b)a−1.
Therefore, a linear equation in one variable with coefficients in a field F has

a unique solution in F .

Proof. We prove if ax+ b = c, then x = (c− b)a−1.
Suppose ax+ b = c.
Then ax = c− b.
Since a 6= 0, we divide by a to get x = c−b

a = (c− b)a−1.
Conversely, we prove if x = (c− b)a−1, then ax+ b = c.
Suppose x = (c− b)a−1.
Then

ax+ b = a((c− b)a−1) + b

= a(a−1(c− b)) + b

= (aa−1)(c− b) + b

= 1(c− b) + b

= c− b+ b

= c.

Exercise 11. Give an example linear equation in Z8 that has no solution and
one that has more than one solution.

Give an example of elements a, b of Z8 such that a2 = b2, but a 6= b and
a 6= −b.
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Solution. Z8 is a commutative ring that has zero divisors.
For example, 4 is a zero divisor because 0 = 4 ∗ 2 and 2 6= 0.
Hence, Z8 is not an integral domain, so Z8 cannot be a field.
A linear equation ax + b = c for a, b, c ∈ Z8 has at least one solution x =

(c− b)a−1 if a−1 exists.
Therefore, if ax + b = c for a, b, c ∈ Z8 has no solution, then a−1 does not

exist.
So, to provide an example of a linear equation in Z8 that has no solution,

we want a to not have a multiplicative inverse.
Since 4 ∗ 0 + 5 = 5 6= 6 and 4 ∗ 1 + 5 = 1 6= 6 and 4 ∗ 2 + 5 = 5 6= 6 and

4∗3+5 = 1 6= 6 and 4∗4+5 = 5 6= 6 and 4∗5+5 = 1 6= 6 and 4∗6+5 = 5 6= 6
and 4 ∗ 7 + 5 = 1 6= 6, then the linear equation 4x+ 5 = 6 in Z8 has no solution.

Here is an example of a linear equation in Z8 that has more than one solution:
4x+ 3 = 7.

The solution set is {1, 3, 5, 7} since 4∗1+3 = 7 = 4∗3+3 = 4∗5+3 = 4∗7+3.
Let a = 1 and b = 3. Then 12 = 1 = 32 and 1 6= 3 and 1 6= −3 since

−3 = 5.

Exercise 12. Let F be a field. If a ∈ F , then there exists x ∈ F such that
x2 = a. Is this true or false?

Solution. This is false. Here is a counterexample. Let F be the field (Q,+, ·)
with a = 2 ∈ Q. Then there does not exist x ∈ Q such that x2 = 2.

Exercise 13. Let S = {a, b}. Define addition on S by a + a = a and a + b =
b = b + a and b + b = b. Define multiplication on S by aa = ab = ba = a and
bb = b. Then (S,+, ∗) is a field.

Solution. To prove S is a field, we must prove S is a commutative division
ring. Thus, we must prove (S,+, ∗) is a ring with 1 6= 0 and ∗ is commutative
and every nonzero element of S has a multiplicative inverse. Hence, we must
prove

1. (S,+) is an abelian group.
1a. addition is a binary operation on S.
1a1. S is closed under addition.
1a2. x+ y is unique for all x, y ∈ S.
1b. + is associative.
1c. + is commutative.
1d. there exists an additive identity in S.
1e. each element of S has an additive inverse.
2. multiplication is a binary operation on S.
2a1. S is closed under multiplication.
2a2. xy is unique for all x, y ∈ S.
2. ∗ is associative.
3. there exists a multiplicative identity 1
4. multiplication distributes over addition:
4a. left distributive : a(b+ c) = ab+ ac
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4b. right distributive: (a+ b)c = ac+ bc.
5. 1 6= 0.
6. ∗ is commutative.
7. every nonzero element of S has a multiplicative inverse.
We can write out the addition and multiplication tables for S. Since |S| = 2,

then |S × S| = |S||S| = 2 ∗ 2 = 22 = 4. Thus, there are 4 ordered pairs mapped
by addition and mapped by multiplication.

Proof. The sum of any pair of elements of S is a unique element of S. Hence,
addition is a binary operation on S.

Since a+ b = b = b+ a, then addition is commutative.
We prove addition is associative.
There are 23 = 8 cases to consider.
Case 1: Observe that (a+ a) + a = a+ a = a+ (a+ a).
Case 2: Observe that (a+ a) + b = a+ b = a+ (a+ b).
Case 3: Observe that (a+ b) + a = b+ a = b = a+ b = a+ (b+ a).
Case 4: Observe that (a+ b) + b = b+ b = a = a+ a = a+ (b+ b).
Case 5: Observe that (b+ a) + a = b+ a = b+ (a+ a).
Case 6: Observe that (b+ a) + b = b+ b = b+ (a+ b).
Case 7: Observe that (b+ b) + a = a+ a = a = b+ b = b+ (b+ a).
Case 8: Observe that (b+ b) + b = a+ b = b = b+ a = b+ (b+ b).
Thus, addition is associative.
Since a+ a = a and a+ b = b = b+ a, then a is an additive identity. Thus,

a is a zero element of S.
Since a+ a = a, then a is an additive inverse of a. Since b+ b = a, then b is

an additive inverse of b. Hence, each element of S has an additive inverse.
Therefore, (S,+) is an abelian group.
The product of any pair of elements of S is a unique element of S. Hence,

multiplication is a binary operation on S.
Since ab = a = ba, then multiplication is commutative.
We prove multiplication is associative.
There are 23 = 8 cases to consider.
Case 1: Observe that (aa)a = aa = a(aa).
Case 2: Observe that (aa)b = ab = a = aa = a(ab).
Case 3: Observe that (ab)a = aa = a(ba).
Case 4: Observe that (ab)b = ab = a(bb).
Case 5: Observe that (ba)a = aa = a = ba = b(aa).
Case 6: Observe that (ba)b = ab = a = ba = b(ab).
Case 7: Observe that (bb)a = ba = b(ba).
Case 8: Observe that (bb)b = bb = b(bb).
Thus, multiplication is associative.
Since ba = a = ab and bb = b, then b is a multiplicative identity. Since a 6= b,

then the multiplicative identity is distinct from the additive identity. The only
nonzero element in S is b. Since bb = b, then the multiplicative inverse of b is b.
Hence, every nonzero element of S has a multiplicative inverse.
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We prove the left distributive law holds in S.
There are 23 = 8 cases to consider.
Case 1: Observe that a(a+ a) = aa = a = a+ a = aa+ aa.
Case 2: Observe that a(a+ b) = ab = a = a+ a = aa+ ab.
Case 3: Observe that a(b+ a) = ab = a = a+ a = ab+ aa.
Case 4: Observe that a(b+ b) = aa = a = a+ a = ab+ ab.
Case 5: Observe that b(a+ a) = ba = a = a+ a = ba+ ba.
Case 6: Observe that b(a+ b) = bb = b = a+ b = ba+ bb.
Case 7: Observe that b(b+ a) = bb = b = b+ a = bb+ ba.
Case 8: Observe that b(b+ b) = ba = a = b+ b = bb+ bb.
Thus, the left distributive law holds in S.
Let x, y, z ∈ S. Then (x + y)z = z(x + y) = zx + zy = xz + yz. Thus,

the right distributive law holds in S. Hence, multiplication is distributive over
addition in S.

Therefore, (S,+, ∗) is a field.

Proof. Define φ : Z2 → S by φ(0) = a and φ(1) = b.
Clearly, φ is a function and φ is injective and surjective. Hence, φ is bijective.
We prove φ is a ring homomorphism. Observe that φ(0 + 0) = φ(0) = a =

a+a = φ(0)+φ(0) and φ(0+1) = φ(1) = b = a+b = φ(0)+φ(1) and φ(1+0) =
φ(1) = b = b+ a = φ(1) + φ(0) and φ(1 + 1) = φ(0) = a = b+ b = φ(1) + φ(1).
Thus, φ preserves addition.

Observe that φ(0∗0) = φ(0) = a = aa = φ(0)φ(0) and φ(0∗1) = φ(0) = a =
ab = φ(0)φ(1) and φ(1 ∗ 0) = φ(0) = a = ba = φ(1)φ(0) and φ(1 ∗ 1) = φ(1) =
b = bb = φ(1)φ(1). Thus, φ preserves multiplication.

Since φ(1) = b and 1 is unity of Z2 and b is unity of S, then φ preserves the
unity element of the rings.

Therefore, φ is a ring homomorphism. Since φ is bijective, then φ is a
bijective ring homomorphism, so φ is a ring isomorphism. Hence, (Z2,+, ∗) ∼=
(S,+, ∗). Since 2 is prime, then Z2 is a field. Hence, S is a field.

Exercise 14. Let (R,+, ·) be a ring.
If (R∗, ·) is an abelian group, then (R,+, ·) is a field.

Proof. Suppose (R∗, ·) is an abelian group.
To prove (R,+, ·) is a field, we prove multiplication is commutative and

multiplicative identity 1 6= 0 and every nonzero element has a multiplicative
inverse in R.

Since R is a ring, then there is a zero of R.
Let 0 be the zero of R.
Since (R∗, ∗) is a multiplicative group, then there is a multiplicative identity

in R∗.
Let 1 be the multiplicative identity of R∗.
Then 1 ∈ R∗, so 1 ∈ R and 1 6= 0.
Thus, 1 6= 0.
Since (R∗, ∗) is a group, then each element of R∗ has a multiplicative inverse

in R∗.
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Let a ∈ R∗. Then a ∈ R and a 6= 0 and there exists b ∈ R∗ such that
ab = ba = 1. Since b ∈ R∗ and R∗ ⊂ R, then b ∈ R. Hence, the multiplicative
inverse of a is in R. Thus, each nonzero element of R has a multiplicative inverse
in R.

We prove multiplication is commutative. Let a, b ∈ R. Either a = 0 or a 6= 0
and either b = 0 or b 6= 0.

Thus, there are 4 cases to consider.
Case 1: Suppose a = 0 and b = 0.
Then ab = 0 ∗ 0 = 0 = 0 ∗ 0 = ba.
Case 2: Suppose a = 0 and b 6= 0.
Then ab = 0b = 0 = b0 = ba.
Case 3: Suppose a 6= 0 and b = 0.
Then ab = a ∗ 0 = 0 = 0 ∗ a = ba.
Case 4: Suppose a 6= 0 and b 6= 0.
Then a ∈ R∗ and b ∈ R∗. Since (R∗, ∗) is an abelian group, then multipli-

cation is commutative in R∗. Thus, ab = ba.
Hence, in all cases, ab = ba, so multiplication is commutative in R.

Exercise 15. Let (F, F+) be an ordered field. Let x ∈ F and x 6= 0. Then
x2n ∈ F+ for all n ∈ N.

Proof. Define predicate p(n) : x2n ∈ F+ over N.
We prove p(n) for all n ∈ N by induction on n.
Basis: Since x ∈ F and x 6= 0, then x2 = x2∗1 ∈ F+. Therefore, p(1) is

true.
Induction: Let n ∈ N such that p(n) is true. Then x2n ∈ F+. To prove

p(n+ 1) is true, we must prove x2(n+1) ∈ F+.
Observe that x2(n+1) = x2n+2 = x2nx2.
Since x2n ∈ F+ and x2 ∈ F+, then by closure of F+ under multiplication

of F , x2nx2 ∈ F+.
Thus, x2(n+1) ∈ F+.
Therefore, p(n) implies p(n+ 1) for all n ∈ N.
Hence, by induction, p(n) is true for all n ∈ N.
Therefore, x2n ∈ F+ for all n ∈ N.

Exercise 16. Let (F, F+) be an ordered field. Let x, y, a ∈ F . Then
1. if x ≤ y, then x+ a ≤ y + a.
2. if x ≤ y and a ≥ 0, then ax ≤ ay.
3. if x ≤ y and a ≤ 0, then ax ≥ ay.

Proof. We prove 1.
Suppose x ≤ y. Then either x < y or x = y.
We consider these cases separately.
Case 1: Suppose x = y.
Then x+ a = y + a.
Case 2: Suppose x < y.
Then y − x ∈ F+.
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To prove x+ a < y + a, we must prove (y + a)− (x+ a) ∈ F+.
Observe that y − x = y − x+ a− a = y + a− x− a = (y + a)− (x+ a).
Therefore, (y + a)− (x+ a) ∈ F+.
We prove 2.
Suppose x ≤ y and a ≥ 0.
Then both x < y or x = y and a > 0 or a = 0. Thus, either x < y and a > 0

or x < y and a = 0 or x = y and a > 0 or x = y and a = 0.
We consider these cases separately.
Case 1: Suppose x < y and a = 0.
Then ax = 0x = 0 = 0y = ay.
Case 2: Suppose x = y and a = 0.
Then ax = ax = ay.
Case 3: Suppose x = y and a > 0.
Then ax = ax = ay.
Case 4: Suppose x < y and a > 0.
Then y − x ∈ F+ and a ∈ F+.
To prove ax < ay, we prove ay − ax ∈ F+.
By closure of F+ under multiplication of F , we have a(y − x) ∈ F+.
Therefore, ay − ax ∈ F+.
We prove 3.
Suppose x ≤ y and a ≤ 0.
Then both x < y or x = y and a < 0 or a = 0. Thus, either x < y and a < 0

or x < y and a = 0 or x = y and a < 0 or x = y and a = 0.
We consider these cases separately.
Case 1: Suppose x < y and a = 0.
Then ax = 0x = 0 = 0y = ay.
Case 2: Suppose x = y and a = 0.
Then ax = ax = ay.
Case 3: Suppose x = y and a < 0.
Then ax = ax = ay.
Case 4: Suppose x < y and a < 0.
Then y − x ∈ F+ and −a ∈ F+.
To prove ax > ay, we prove ax− ay ∈ F+.
By closure of F+ under multiplication of F , we have −a(y−x) ∈ F+. Since

−a(y − x) = −ay − a(−x) = −ay + ax = ax − ay, then ax − ay ∈ F+, as
desired.

Exercise 17. Let (F,+, ·,≤) be an ordered field.
Let x, y, a, b ∈ F .
Then
1. if a ≤ x and b < y, then a+ b < x+ y.
2. if a ≤ x and b ≤ y, then a+ b ≤ x+ y.
3. if 0 ≤ a < x and 0 ≤ b < y, then ab < xy.
4. if 0 ≤ a ≤ x and 0 ≤ b < y, then ab ≤ xy.
5. if 0 ≤ a ≤ x and 0 ≤ b ≤ y, then ab ≤ xy.
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Proof. We prove 1.
Suppose a ≤ x and b < y.
Since b < y, then y − b ∈ F+.
Since a ≤ x, then either a < x or a = x.
We consider these cases separately.
To prove a+ b < x+ y, we must prove (x+ y)− (a+ b) ∈ F+.
Case 1: Suppose a < x.
Then x− a ∈ F+.
Since x− a ∈ F+ and y − b ∈ F+, then by closure of F+ under addition of

F , we have (x− a) + (y − b) ∈ F+.
Observe that

(x− a) + (y − b) = x− a+ y − b
= x+ y − a− b
= (x+ y)− (a+ b).

Therefore, (x+ y)− (a+ b) ∈ F+.
Case 2: Suppose a = x.
Then x− a = 0.
Observe that

y − b = (y − b) + 0

= (y − b) + (x− a)

= y − b+ x− a
= y + x− b− a
= x+ y − a− b
= (x+ y)− (a+ b).

Therefore, (x+ y)− (a+ b) = y − b ∈ F+.

Proof. We prove 2.
Suppose a ≤ x and b ≤ y.
Then a ≤ x and either b < y or b = y. Hence, a ≤ x and b < y or a ≤ x and

b = y.
We consider these cases separately.
To prove a+ b ≤ x+ y, we must prove either a+ b < x+ y or a+ b = x+ y.

Hence, we must prove either (x+ y)− (a+ b) ∈ F+ or a+ b = x+ y.
Case 1: Suppose a ≤ x and b < y.
Then a+ b < x+ y.
Case 2: Suppose a ≤ x and b = y.
Then either a < x or a = x and b = y. Hence, either a < x and b = y or

a = x and b = y.
Case 2a: Suppose a < x and b = y.
Then x− a ∈ F+ and y − b = 0.
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Observe that

x− a = (x− a) + 0

= (x− a) + (y − b)
= x− a+ y − b
= x+ y − a− b
= (x+ y)− (a+ b).

Therefore, (x+ y)− (a+ b) ∈ F+.
Case 2b: Suppose a = x and b = y.
Then

a+ b = x+ b

= x+ y.

We prove 3.
Suppose 0 ≤ a < x and 0 ≤ b < y. Then 0 ≤ a and a < x and 0 ≤ b and

b < y. Since 0 ≤ a and 0 ≤ b, then either 0 < a or 0 = a and either 0 < b or
0 = b. Thus, either 0 < a and 0 < b or 0 < a and 0 = b or 0 = a and 0 < b or
0 = a and 0 = b.

We consider these cases separately.
Case 1: Suppose 0 = a and 0 = b.
Since 0 = a and a < x, then 0 < x. Since 0 = b and b < y, then 0 < y.

Hence, x > 0 and y > 0, so xy > 0. Therefore, ab = 0 · 0 = 0 < xy, so ab < xy.
Case 2: Suppose 0 = a and 0 < b.
Since 0 = a and a < x, then 0 < x. Since 0 < b and b < y, then 0 < y.

Hence, x > 0 and y > 0, so xy > 0. Therefore, ab = 0 · b = 0 < xy, so ab < xy.
Case 3: Suppose 0 < a and 0 = b.
Since 0 < a and a < x, then 0 < x. Since 0 = b and b < y, then 0 < y.

Hence, x > 0 and y > 0, so xy > 0. Therefore, ab = a · 0 = 0 < xy, so ab < xy.
Case 4: Suppose 0 < a and 0 < b.
Since a < x and b > 0, then ab < xb, so ab < bx. Since 0 < a and a < x,

then 0 < x. Since b < y and x > 0, then bx < yx, so bx < xy. Thus, ab < bx
and bx < xy, so ab < xy.

We prove 4.
Suppose 0 ≤ a ≤ x and 0 ≤ b < y. Then 0 ≤ a and a ≤ x and 0 ≤ b and

b < y. Since a ≤ x, then either a < x or a = x.
We consider these cases separately.
Case 1: Suppose a < x.
If 0 ≤ a < x and 0 ≤ b < y, then ab < xy.
Since 0 ≤ a and a < x, then 0 ≤ a < x.
Since 0 ≤ b and b < y, then 0 ≤ b < y.
Therefore, we conclude ab < xy.
Case 2: Suppose a = x.
Since 0 ≤ a, then either 0 < a or 0 = a.
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Case 2a: Suppose 0 = a.
Then ab = 0b = 0 = 0y = ay = xy.
Case 2b: Suppose 0 < a.
Then a ∈ F+. Since b < y, then y − b ∈ F+. Thus, a(y − b) ∈ F+. Since

a(y − b) = ay − ab = xy − ab, then xy − ab ∈ F+. Therefore, ab < xy.
We prove 5.
Suppose 0 ≤ a ≤ x and 0 ≤ b ≤ y. Then 0 ≤ a and a ≤ x and 0 ≤ b and

b ≤ y. Since b ≤ y, then either b < y or b = y.
We consider these cases separately.
Case 1: Suppose b < y.
If 0 ≤ a ≤ x and 0 ≤ b < y, then ab ≤ xy.
Since 0 ≤ a and a ≤ x, then 0 ≤ a ≤ x.
Since 0 ≤ b and b < y, then 0 ≤ b < y.
Therefore, we conclude ab ≤ xy.
Case 2: Suppose b = y.
Since a ≤ x, then either a < x or a = x.
Case 2a: Suppose a = x.
Then ab = xb = xy.
Case 2b: Suppose a < x.
Since 0 ≤ b, then either 0 < b or 0 = b.
If 0 = b, then ab = a0 = 0 = x0 = xb = xy.
If 0 < b, then b ∈ F+. Since a < x, then x− a ∈ F+. Hence, (x− a)b ∈ F+.
Since (x− a)b = xb− ab = xy − ab, then xy − ab ∈ F+.
Therefore, ab < xy.

Exercise 18. Let F be a field.
Let a, b ∈ F .
If a2 + b2 = 0, then a = b = 0.
Is this true or false?

Solution. This is false.
Here is a counterexample.
Let F be the field (Z5,+, ·) with a = 1 and b = 2.
Then 12 + 22 = 1 ∗ 1 + 2 ∗ 2 = 1 + 4 = 0, but 1 6= 0 and 2 6= 0.

Exercise 19. Let F be an ordered field.
Let a, b ∈ F .
If a2 + b2 = 0, then a = 0 and b = 0.

Proof. We prove by contrapositive.
Suppose either a 6= 0 or b 6= 0.
If a 6= 0, then a2 > 0.
Since b2 ≥ 0, then a2 + b2 > 0, so a2 + b2 6= 0.
If b 6= 0, then b2 > 0.
Since a2 ≥ 0, then a2 + b2 > 0, so a2 + b2 6= 0.
Therefore, in either case, a2 + b2 6= 0, as desired.
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Exercise 20. Let F be an ordered field.
Let a, b ∈ F such that a ≥ 0 and b ≥ 0.
Then a < b iff a2 < b2.

Proof. We must prove a < b iff a2 < b2.
We prove if a < b, then a2 < b2.
Suppose a < b.
Then b− a is positive. Since a2 < b2 iff b2 − a2 is positive iff (b− a)(b+ a)

is positive, to prove a2 < b2, we prove (b− a)(b+ a) is positive.
The product (b − a)(b + a) is positive iff b − a and b + a are either both

positive or both negative. Therefore, we must prove b− a and b + a are either
both positive or both negative. Since b− a is positive, then we need only prove
b+ a is positive.

Since b ≥ 0 and a ≥ 0, then b+ a ≥ 0. Hence, either b+ a > 0 or b+ a = 0.
Suppose b+ a = 0. Then a = −b.
Since b ≥ 0, then either b > 0 or b = 0.
If b = 0, then a < b = 0, so a < 0. But, a ≥ 0. Therefore, b 6= 0.
If b > 0, then −b < 0, so a < 0. But, again, a ≥ 0. Therefore, b is not

positive.
Hence, b+ a 6= 0. Therefore, b+ a > 0, so b+ a is positive, as desired.
Conversely, we prove if a2 < b2, then a < b.
Suppose a2 < b2.
To prove a < b, we must prove b− a is positive.
Since a2 < b2, then b2 − a2 is positive, so (b− a)(b+ a) is positive.
Hence, b− a and b+ a are either both positive or both negative.
Since a ≥ 0 and b ≥ 0, then b+ a ≥ 0, so b+ a is not negative.
Thus, we conclude b− a and b+ a must be both positive.
Therefore, b− a is positive, as desired.

Exercise 21. If R is a field, then the only ideals of R are the zero ring and R
itself.

Proof. Let R be a field.
Let I be an ideal in R.
Then either I is the zero ring or I is not the zero ring.
Suppose I is not the zero ring.
Since I is an ideal, then (I,+) is an abelian subgroup of (R,+).
Since I is not the zero group, then I must contain a nonzero element.
Let a be some nonzero element of I.
Then a ∈ I and a 6= 0.
Since R is a field, then every nonzero element of R is a unit of R.
Hence, in particular, a is a unit of R.
Therefore, there exists a−1 ∈ R such that aa−1 = e, where e is the unity

of R. Since I is an ideal, then for every x ∈ I, IR ⊂ I. Thus, aR ⊂ I, where
aR = {ar : r ∈ R}. Since a−1 ∈ R, then aa−1 ∈ aR. Hence, e ∈ aR. Thus,
e ∈ aR and aR ⊂ I, so e ∈ I. Therefore, eR ⊂ I, where eR = {er : r ∈ R} =
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{r : r ∈ R} = R. Hence, R ⊂ I. Since I is an ideal, then I ⊂ R. Thus, I ⊂ R
and R ⊂ I, so I = R.

Therefore, either I is the zero ring or I is the field R itself.
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