Field Theory Exercises

Jason Sass

July 30, 2021

Exercise 1. Let F be a field. Let $a, b \in F$. If $b \neq 0$ and ab = b, then a = 1.

Proof. Suppose $b \neq 0$ and ab = b. Since $b \neq 0$, then $\frac{1}{b} \in F$. Therefore,

$$a = a \cdot 1$$

= $a \cdot (b \cdot \frac{1}{b})$
= $(ab) \cdot \frac{1}{b}$
= $b \cdot \frac{1}{b}$
= $1.$

Exercise 2. Let F be a field. Let $a, b \in F$. If $a \neq 0$ and ab = 1, then $b = \frac{1}{a}$. $\begin{array}{l} \textit{Proof. Suppose } a \neq 0 \text{ and } ab = 1.\\ \text{Since } a \neq 0, \text{ then } \frac{1}{a} \in F.\\ \text{Therefore,} \end{array}$

$$b = 1 \cdot b$$

= $(\frac{1}{a} \cdot a) \cdot b$
= $\frac{1}{a} \cdot (ab)$
= $\frac{1}{a} \cdot 1$
= $\frac{1}{a}$.

Exercise 3. Let $S = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$

Then (S, +, *) is a commutative ring with unity $1 \neq 0$.

Proof. Observe that S is a subset of the additive group of real numbers $(\mathbb{R}, +)$. Since $0 = 0 + 0\sqrt{2}$, then 0 is an element of S, so S is not empty.

Let $x, y \in S$.

Then there exist integers a, b, c, d such that $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$. Thus,

$$\begin{aligned} x - y &= (a + b\sqrt{2}) - (c + d\sqrt{2}) \\ &= (a - c) + (b - d)\sqrt{2}. \end{aligned}$$

Hence, $x - y \in S$.

Therefore, S is an additive subgroup of \mathbb{R} , so S is closed under addition. Since \mathbb{R} is abelian and $S \subset \mathbb{R}$ and S is closed under addition, then addition is commutative in S.

Hence, S is abelian, so (S, +) is an abelian group.

Let $x, y \in S$.

Then there exist integers a, b, c, d such that $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$. Thus,

$$xy = (a + b\sqrt{2})(c + d\sqrt{2})$$

= $ac + ad\sqrt{2} + bc\sqrt{2} + 2bd$
= $(ac + 2bd) + (ad + bc)\sqrt{2}$.

Hence, $xy \in S$, so S is closed under multiplication.

Since S is a subset of \mathbb{R} , then $xy \in \mathbb{R}$.

Since \mathbb{R} is a ring, then multiplication is a binary operation on \mathbb{R} , so multiplication is well defined in \mathbb{R} .

Hence, xy is unique.

Since S is closed under multiplication and xy is unique, then multiplication is a binary operation on S.

Since $(\mathbb{R}, +, *)$ is a commutative ring, then multiplication is associative and commutative in \mathbb{R} .

Since $S \subset \mathbb{R}$ and S is closed under multiplication, then multiplication is associative and commutative in S.

Observe that $1 = 1 + 0\sqrt{2}$, so $1 \in S$ and $1 \neq 0$.

Since 1 is the unity of \mathbb{R} , then for every $r \in \mathbb{R}$, r * 1 = 1 * r = r. Let $x \in S$.

Since $x \in S$ and $S \subset \mathbb{R}$, then $x \in \mathbb{R}$.

Hence, x * 1 = 1 * x = x. Therefore, 1 is a multiplicative identity of S. Thus, a multiplicative identity exists in S.

Since \mathbb{R} is a ring, then the distributive laws hold in \mathbb{R} . Thus, for every $x, y, z \in \mathbb{R}, x(y+z) = xy + xz$ and (x+y)z = xz + yz. Let $a, b, c \in S$. Since $S \subset \mathbb{R}$, then $a, b, c \in \mathbb{R}$. Hence, a(b+c) = ab + ac and (a+b)c = ac + bc. Therefore, the distributive laws hold in S.

Thus, (S, +, *) is a commutative ring with unity $1 \neq 0$.

Exercise 4. Let $S = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Then (S, +, *) is not a field.

Proof. Observe that (S, +, *) is a commutative ring with unity $1 \neq 0$. Thus, S is a field iff every nonzero element of S is a unit. Hence, S is not a field iff there exists a nonzero element of S that is not a unit.

Let $x = \sqrt{2}$. Then $x = 0 + 1 * \sqrt{2}$, so $x \in S$ and $x \neq 0$. The element x is a unit iff there exists $y \in S$ such that xy = 1. Hence, x is not a unit iff there does not exist $y \in S$ such that xy = 1.

Suppose there exists $y \in S$ such that xy = 1. Then there exist integers a, b such that $y = a + b\sqrt{2}$. Thus,

$$1 = xy$$

= $\sqrt{2}(a + b\sqrt{2})$
= $a\sqrt{2} + 2b.$

Hence, $1 + 0\sqrt{2} = 1 = 2b + a\sqrt{2}$, so 1 = 2b and 0 = a. Thus, $b = \frac{1}{2}$, so $b \notin \mathbb{Z}$. But, we have $b \in \mathbb{Z}$ and $b \notin \mathbb{Z}$, a contradiction. Therefore, does not exist $y \in S$ such that xy = 1. Thus, x is not a unit. Hence, there exists a nonzero element of S that is not a unit. Therefore, S is not a field.

Exercise 5. The algebraic structure $(\mathbb{Z} \times \mathbb{Z}, +, *)$ is a commutative ring with unity (1, 1) and is not a field.

Solution. The direct product of *n* copies of a commutative ring is a commutative ring. Hence, the direct product of 2 copies of a commutative ring is a commutative ring. Observe that $(\mathbb{Z}, +, *)$ is a commutative ring and $(\mathbb{Z} \times \mathbb{Z}, +, *)$ is the direct product of 2 copies of $(\mathbb{Z}, +, *)$. Therefore, $(\mathbb{Z}^2, +, *)$ is a commutative ring. Observe that the unity of \mathbb{Z}^2 is (1, 1) and the zero of \mathbb{Z}^2 is (0, 0) and $(1, 1) \neq (0, 0)$.

The ring \mathbb{Z}^2 is a field iff \mathbb{Z}^2 is a commutative ring and the unity is distinct from the zero element and every nonzero element of \mathbb{Z}^2 is a unit. Since \mathbb{Z}^2 is a commutative ring with unity $(1,1) \neq (0,0)$, then \mathbb{Z}^2 is a field iff every nonzero element of \mathbb{Z}^2 is a unit. Hence, \mathbb{Z}^2 is not a field iff there exists a nonzero element of \mathbb{Z}^2 that is not a unit.

Let $x = (1,2) \in \mathbb{Z}^2$. Then $(1,2) \neq (0,0)$, so (1,2) is a nonzero element of \mathbb{Z}^2 .

Suppose (1, 2) is a unit of \mathbb{Z}^2 . Then there exists an element $y \in \mathbb{Z}^2$ such that xy = (1, 1). Since $y \in \mathbb{Z}^2$, then there exist integers a, b such that y = (a, b).

Observe that

$$(1,1) = xy$$

= $(1,2)(a,b)$
= $(a,2b).$

Thus, 1 = a and 1 = 2b, so $b = \frac{1}{2}$. Hence, $b \notin \mathbb{Z}$. Thus, we have $b \in \mathbb{Z}$ and $b \notin \mathbb{Z}$, a contradiction. Therefore, (1, 2) is not a unit of \mathbb{Z}^2 .

Hence, there exists a nonzero element of \mathbb{Z}^2 that is not a unit of \mathbb{Z}^2 . Therefore, $(\mathbb{Z}^2, +, *)$ is not a field. **Exercise 6.** What are all of the units in the ring $\mathbb{Z} \times \mathbb{Z}$?

Solution. We know that the ring $\mathbb{Z} \times \mathbb{Z}$ is not a field, so not every nonzero element is a unit. Hence, there are some nonzero elements of $\mathbb{Z} \times \mathbb{Z}$ which do not have multiplicative inverses in $\mathbb{Z} \times \mathbb{Z}$.

Let S be the set of all units of $\mathbb{Z} \times \mathbb{Z}$. Then $S = \{a \in \mathbb{Z} \times \mathbb{Z} : (\exists a^{-1} \in \mathbb{Z}^2) (aa^{-1} = (1,1)\}$. Let $x \in S$. Then $x \in \mathbb{Z}^2$ and there exists $x^{-1} \in \mathbb{Z}^2$ such that $xx^{-1} = (1,1)$. Thus, there exist integers a, b, c, d such that x = (a, b) and $x^{-1} = (c, d)$. Hence,

$$\begin{array}{rcl} (1,1) &=& xx^{-1} \\ &=& (a,b)(c,d) \\ &=& (ac,bd). \end{array}$$

Thus, 1 = ac and 1 = bd. Since a, b, c, d are integers, then this implies either a = c = 1 or a = c = -1 and either b = d = 1 or b = d = -1. Hence, a = c and b = d, so $x = x^{-1}$ and 4 possibilities exist. Thus, x is either (1, 1) or (1, -1) or (-1, 1) or (-1, -1). Therefore, $S = \{(1, 1), (1, -1), (-1, 1), (-1, -1)\}$.

Exercise 7. Let F be a field.

Let $x \in F$ such that $x = x^{-1}$. Then x = 1. Is this true or false?

Proof. This is false.

Here is a counterexample. There are other counter examples as well. Let F be the field $(\mathbb{Z}_3, +, \cdot)$. Then $2 = 2^{-1}$ since $2 \cdot 2 = 1$, but $2 \neq 1$. Another counterexample is the field $(\mathbb{R}, +, \cdot)$. Clearly, $-1 = (-1)^{-1}$ since (-1)(-1) = 1, but $-1 \neq 1$.

Exercise 8. Let F be a field.

Let $x \in F$ such that x = -x. Then x = 0. Is this true or false?

Proof. This is false.

Here is a counterexample. Let F be the field $(\mathbb{Z}_2, +, \cdot)$. Then 1 = -1 since 1 + 1 = 0, but $1 \neq 0$.

Exercise 9. Let n be a positive integer.

Give an example of a field F and nonzero element $x \in F$ such that nx = 0.

Solution. Let $F = (\mathbb{Z}_7, +, \cdot)$. Since 7 is prime, then F is a field. Let n = 7 and x = 5. Then

$$7*5 = 6*5+5$$

= $(5*5+5)+5$
= $((4*5+5)+5)+5$
= $(((3*5+5)+5)+5)$
= $((((2*5+5)+5)+5)+5)$
= $(((((1*5+5)+5)+5)+5)+5)$
= $((((((5+5)+5)+5)+5)+5)+5)$
= $(((((3+5)+5)+5)+5)+5)$
= $((((1+5)+5)+5)+5)$
= $(((6+5)+5)+5)$
= $((4+5)+5)$
= $2+5$
= $0.$

Exercise 10. Let $(F, +, \cdot)$ be a field. Let $a, b, c, x \in F$ and $a \neq 0$.

Then ax + b = c iff $x = (c - b)a^{-1}$.

Therefore, a linear equation in one variable with coefficients in a field F has a unique solution in F.

Proof. We prove if ax + b = c, then $x = (c - b)a^{-1}$. Suppose ax + b = c. Then ax = c - b. Since $a \neq 0$, we divide by a to get $x = \frac{c-b}{a} = (c - b)a^{-1}$. Conversely, we prove if $x = (c - b)a^{-1}$, then ax + b = c. Suppose $x = (c - b)a^{-1}$. Then

$$ax + b = a((c - b)a^{-1}) + b$$

= $a(a^{-1}(c - b)) + b$
= $(aa^{-1})(c - b) + b$
= $1(c - b) + b$
= $c - b + b$
= c .

Exercise 11. Give an example linear equation in \mathbb{Z}_8 that has no solution and one that has more than one solution.

Give an example of elements a, b of \mathbb{Z}_8 such that $a^2 = b^2$, but $a \neq b$ and $a \neq -b$.

Solution. \mathbb{Z}_8 is a commutative ring that has zero divisors.

For example, 4 is a zero divisor because 0 = 4 * 2 and $2 \neq 0$.

Hence, \mathbb{Z}_8 is not an integral domain, so \mathbb{Z}_8 cannot be a field.

A linear equation ax + b = c for $a, b, c \in \mathbb{Z}_8$ has at least one solution $x = (c-b)a^{-1}$ if a^{-1} exists.

Therefore, if ax + b = c for $a, b, c \in \mathbb{Z}_8$ has no solution, then a^{-1} does not exist.

So, to provide an example of a linear equation in \mathbb{Z}_8 that has no solution, we want *a* to not have a multiplicative inverse.

Since $4 * 0 + 5 = 5 \neq 6$ and $4 * 1 + 5 = 1 \neq 6$ and $4 * 2 + 5 = 5 \neq 6$ and $4 * 3 + 5 = 1 \neq 6$ and $4 * 4 + 5 = 5 \neq 6$ and $4 * 5 + 5 = 1 \neq 6$ and $4 * 6 + 5 = 5 \neq 6$ and $4 * 7 + 5 = 1 \neq 6$, then the linear equation 4x + 5 = 6 in \mathbb{Z}_8 has no solution.

Here is an example of a linear equation in \mathbb{Z}_8 that has more than one solution: 4x + 3 = 7.

The solution set is $\{1, 3, 5, 7\}$ since 4*1+3 = 7 = 4*3+3 = 4*5+3 = 4*7+3. Let a = 1 and b = 3. Then $1^2 = 1 = 3^2$ and $1 \neq 3$ and $1 \neq -3$ since -3 = 5.

Exercise 12. Let F be a field. If $a \in F$, then there exists $x \in F$ such that $x^2 = a$. Is this true or false?

Solution. This is false. Here is a counterexample. Let F be the field $(\mathbb{Q}, +, \cdot)$ with $a = 2 \in \mathbb{Q}$. Then there does not exist $x \in \mathbb{Q}$ such that $x^2 = 2$.

Exercise 13. Let $S = \{a, b\}$. Define addition on S by a + a = a and a + b = b = b + a and b + b = b. Define multiplication on S by aa = ab = ba = a and bb = b. Then (S, +, *) is a field.

Solution. To prove S is a field, we must prove S is a commutative division ring. Thus, we must prove (S, +, *) is a ring with $1 \neq 0$ and * is commutative and every nonzero element of S has a multiplicative inverse. Hence, we must prove

1. (S, +) is an abelian group.

1a. addition is a binary operation on S.

1a1. S is closed under addition.

1a2. x + y is unique for all $x, y \in S$.

1b. + is associative.

1c. + is commutative.

1d. there exists an additive identity in S.

1e. each element of S has an additive inverse.

2. multiplication is a binary operation on S.

2a1. S is closed under multiplication.

2a2. xy is unique for all $x, y \in S$.

2. * is associative.

3. there exists a multiplicative identity 1

4. multiplication distributes over addition:

4a. left distributive : a(b+c) = ab + ac

4b. right distributive: (a + b)c = ac + bc.

5. $1 \neq 0$.

6. * is commutative.

7. every nonzero element of S has a multiplicative inverse.

We can write out the addition and multiplication tables for S. Since |S| = 2, then $|S \times S| = |S||S| = 2 * 2 = 2^2 = 4$. Thus, there are 4 ordered pairs mapped by addition and mapped by multiplication.

Proof. The sum of any pair of elements of S is a unique element of S. Hence, addition is a binary operation on S.

Since a + b = b = b + a, then addition is commutative.

We prove addition is associative.

There are $2^3 = 8$ cases to consider.

Case 1: Observe that (a + a) + a = a + a = a + (a + a).

Case 2: Observe that (a + a) + b = a + b = a + (a + b).

Case 3: Observe that (a + b) + a = b + a = b = a + b = a + (b + a).

Case 4: Observe that (a + b) + b = b + b = a = a + a = a + (b + b).

Case 5: Observe that (b + a) + a = b + a = b + (a + a).

Case 6: Observe that (b + a) + b = b + b = b + (a + b).

Case 7: Observe that (b + b) + a = a + a = a = b + b = b + (b + a).

Case 8: Observe that (b + b) + b = a + b = b = b + a = b + (b + b).

Thus, addition is associative.

Since a + a = a and a + b = b = b + a, then a is an additive identity. Thus, a is a zero element of S.

Since a + a = a, then a is an additive inverse of a. Since b + b = a, then b is an additive inverse of b. Hence, each element of S has an additive inverse.

Therefore, (S, +) is an abelian group.

The product of any pair of elements of S is a unique element of S. Hence, multiplication is a binary operation on S.

Since ab = a = ba, then multiplication is commutative.

We prove multiplication is associative.

There are $2^3 = 8$ cases to consider.

Case 1: Observe that (aa)a = aa = a(aa).

Case 2: Observe that (aa)b = ab = a = aa = a(ab).

Case 3: Observe that (ab)a = aa = a(ba).

Case 4: Observe that (ab)b = ab = a(bb).

Case 5: Observe that (ba)a = aa = a = ba = b(aa).

Case 6: Observe that (ba)b = ab = a = ba = b(ab).

Case 7: Observe that (bb)a = ba = b(ba).

Case 8: Observe that (bb)b = bb = b(bb).

Thus, multiplication is associative.

Since ba = a = ab and bb = b, then b is a multiplicative identity. Since $a \neq b$, then the multiplicative identity is distinct from the additive identity. The only nonzero element in S is b. Since bb = b, then the multiplicative inverse of b is b. Hence, every nonzero element of S has a multiplicative inverse.

We prove the left distributive law holds in S.

There are $2^3 = 8$ cases to consider.

Case 1: Observe that a(a + a) = aa = a = a + a = aa + aa.

Case 2: Observe that a(a + b) = ab = a = a + a = aa + ab.

Case 3: Observe that a(b+a) = ab = a = a + a = ab + aa.

Case 4: Observe that a(b+b) = aa = a = a + a = ab + ab.

Case 5: Observe that b(a + a) = ba = a = a + a = ba + ba.

Case 6: Observe that b(a + b) = bb = b = a + b = ba + bb.

Case 7: Observe that b(b+a) = bb = b = b + a = bb + ba.

Case 8: Observe that b(b+b) = ba = a = b + b = bb + bb.

Thus, the left distributive law holds in S.

Let $x, y, z \in S$. Then (x + y)z = z(x + y) = zx + zy = xz + yz. Thus, the right distributive law holds in S. Hence, multiplication is distributive over addition in S.

Therefore, (S, +, *) is a field.

Proof. Define $\phi : \mathbb{Z}_2 \to S$ by $\phi(0) = a$ and $\phi(1) = b$.

Clearly, ϕ is a function and ϕ is injective and surjective. Hence, ϕ is bijective. We prove ϕ is a ring homomorphism. Observe that $\phi(0+0) = \phi(0) = a = a + a = \phi(0) + \phi(0)$ and $\phi(0+1) = \phi(1) = b = a + b = \phi(0) + \phi(1)$ and $\phi(1+0) = \phi(1) = b = b + a = \phi(1) + \phi(0)$ and $\phi(1+1) = \phi(0) = a = b + b = \phi(1) + \phi(1)$. Thus, ϕ preserves addition.

Observe that $\phi(0*0) = \phi(0) = a = aa = \phi(0)\phi(0)$ and $\phi(0*1) = \phi(0) = a = ab = \phi(0)\phi(1)$ and $\phi(1*0) = \phi(0) = a = ba = \phi(1)\phi(0)$ and $\phi(1*1) = \phi(1) = b = bb = \phi(1)\phi(1)$. Thus, ϕ preserves multiplication.

Since $\phi(1) = b$ and 1 is unity of \mathbb{Z}_2 and b is unity of S, then ϕ preserves the unity element of the rings.

Therefore, ϕ is a ring homomorphism. Since ϕ is bijective, then ϕ is a bijective ring homomorphism, so ϕ is a ring isomorphism. Hence, $(\mathbb{Z}_2, +, *) \cong (S, +, *)$. Since 2 is prime, then \mathbb{Z}_2 is a field. Hence, S is a field. \Box

Exercise 14. Let $(R, +, \cdot)$ be a ring.

If (R^*, \cdot) is an abelian group, then $(R, +, \cdot)$ is a field.

Proof. Suppose (R^*, \cdot) is an abelian group.

To prove $(R, +, \cdot)$ is a field, we prove multiplication is commutative and multiplicative identity $1 \neq 0$ and every nonzero element has a multiplicative inverse in R.

Since R is a ring, then there is a zero of R.

Let 0 be the zero of R.

Since $(R^*, *)$ is a multiplicative group, then there is a multiplicative identity in R^* .

Let 1 be the multiplicative identity of R^* .

Then $1 \in \mathbb{R}^*$, so $1 \in \mathbb{R}$ and $1 \neq 0$.

Thus, $1 \neq 0$.

Since $(R^*, *)$ is a group, then each element of R^* has a multiplicative inverse in R^* .

Let $a \in R^*$. Then $a \in R$ and $a \neq 0$ and there exists $b \in R^*$ such that ab = ba = 1. Since $b \in R^*$ and $R^* \subset R$, then $b \in R$. Hence, the multiplicative inverse of a is in R. Thus, each nonzero element of R has a multiplicative inverse in R.

We prove multiplication is commutative. Let $a, b \in R$. Either a = 0 or $a \neq 0$ and either b = 0 or $b \neq 0$.

Thus, there are 4 cases to consider.

Case 1: Suppose a = 0 and b = 0.

Then ab = 0 * 0 = 0 = 0 * 0 = ba.

Case 2: Suppose a = 0 and $b \neq 0$.

Then ab = 0b = 0 = b0 = ba.

Case 3: Suppose $a \neq 0$ and b = 0.

Then ab = a * 0 = 0 = 0 * a = ba.

Case 4: Suppose $a \neq 0$ and $b \neq 0$.

Then $a \in \mathbb{R}^*$ and $b \in \mathbb{R}^*$. Since $(\mathbb{R}^*, *)$ is an abelian group, then multiplication is commutative in \mathbb{R}^* . Thus, ab = ba.

Hence, in all cases, ab = ba, so multiplication is commutative in R.

Exercise 15. Let (F, F^+) be an ordered field. Let $x \in F$ and $x \neq 0$. Then $x^{2n} \in F^+$ for all $n \in \mathbb{N}$.

Proof. Define predicate $p(n): x^{2n} \in F^+$ over \mathbb{N} .

We prove p(n) for all $n \in \mathbb{N}$ by induction on n.

Basis: Since $x \in F$ and $x \neq 0$, then $x^2 = x^{2*1} \in F^+$. Therefore, p(1) is true.

Induction: Let $n \in \mathbb{N}$ such that p(n) is true. Then $x^{2n} \in F^+$. To prove p(n+1) is true, we must prove $x^{2(n+1)} \in F^+$.

Observe that $x^{2(n+1)} = x^{2n+2} = x^{2n}x^2$.

Since $x^{2n} \in F^+$ and $x^2 \in F^+$, then by closure of F^+ under multiplication of F, $x^{2n}x^2 \in F^+$.

Thus, $x^{2(n+1)} \in F^+$.

Therefore, p(n) implies p(n+1) for all $n \in \mathbb{N}$. Hence, by induction, p(n) is true for all $n \in \mathbb{N}$. Therefore, $x^{2n} \in F^+$ for all $n \in \mathbb{N}$.

Exercise 16. Let (F, F^+) be an ordered field. Let $x, y, a \in F$. Then 1. if $x \leq y$, then $x + a \leq y + a$.

2. if $x \leq y$ and $a \geq 0$, then $ax \leq ay$.

3. if $x \leq y$ and $a \leq 0$, then $ax \geq ay$.

Proof. We prove 1.

Suppose $x \le y$. Then either x < y or x = y. We consider these cases separately. **Case 1:** Suppose x = y. Then x + a = y + a. **Case 2:** Suppose x < y. Then $y - x \in F^+$.

To prove x + a < y + a, we must prove $(y + a) - (x + a) \in F^+$. Observe that y - x = y - x + a - a = y + a - x - a = (y + a) - (x + a). Therefore, $(y+a) - (x+a) \in F^+$. We prove 2. Suppose $x \leq y$ and $a \geq 0$. Then both x < y or x = y and a > 0 or a = 0. Thus, either x < y and a > 0or x < y and a = 0 or x = y and a > 0 or x = y and a = 0. We consider these cases separately. Case 1: Suppose x < y and a = 0. Then ax = 0x = 0 = 0y = ay. Case 2: Suppose x = y and a = 0. Then ax = ax = ay. Case 3: Suppose x = y and a > 0. Then ax = ax = ay. Case 4: Suppose x < y and a > 0. Then $y - x \in F^+$ and $a \in F^+$. To prove ax < ay, we prove $ay - ax \in F^+$. By closure of F^+ under multiplication of F, we have $a(y-x) \in F^+$. Therefore, $ay - ax \in F^+$. We prove 3. Suppose $x \leq y$ and $a \leq 0$. Then both x < y or x = y and a < 0 or a = 0. Thus, either x < y and a < 0or x < y and a = 0 or x = y and a < 0 or x = y and a = 0. We consider these cases separately. Case 1: Suppose x < y and a = 0. Then ax = 0x = 0 = 0y = ay. Case 2: Suppose x = y and a = 0. Then ax = ax = ay. Case 3: Suppose x = y and a < 0. Then ax = ax = ay. Case 4: Suppose x < y and a < 0. Then $y - x \in F^+$ and $-a \in F^+$. To prove ax > ay, we prove $ax - ay \in F^+$. By closure of F^+ under multiplication of F, we have $-a(y-x) \in F^+$. Since -a(y-x) = -ay - a(-x) = -ay + ax = ax - ay, then $ax - ay \in F^+$, as desired. \square

Exercise 17. Let $(F, +, \cdot, \leq)$ be an ordered field.

Let $x, y, a, b \in F$. Then 1. if $a \le x$ and b < y, then a + b < x + y. 2. if $a \le x$ and $b \le y$, then $a + b \le x + y$. 3. if $0 \le a < x$ and $0 \le b < y$, then ab < xy. 4. if $0 \le a \le x$ and $0 \le b < y$, then $ab \le xy$. 5. if $0 \le a \le x$ and $0 \le b \le y$, then $ab \le xy$. Proof. We prove 1. Suppose $a \le x$ and b < y. Since b < y, then $y - b \in F^+$. Since $a \le x$, then either a < x or a = x. We consider these cases separately. To prove a + b < x + y, we must prove $(x + y) - (a + b) \in F^+$. **Case 1:** Suppose a < x. Then $x - a \in F^+$. Since $x - a \in F^+$ and $y - b \in F^+$, then by closure of F^+ under addition of F, we have $(x - a) + (y - b) \in F^+$.

Observe that

$$(x-a) + (y-b) = x-a+y-b$$

= $x+y-a-b$
= $(x+y) - (a+b).$

Therefore, $(x + y) - (a + b) \in F^+$. **Case 2:** Suppose a = x. Then x - a = 0. Observe that

$$y-b = (y-b) + 0$$

= $(y-b) + (x-a)$
= $y-b+x-a$
= $y+x-b-a$
= $x+y-a-b$
= $(x+y) - (a+b).$

Therefore, $(x + y) - (a + b) = y - b \in F^+$.

Proof. We prove 2. Suppose $a \leq x$ and $b \leq y$.

Then $a \leq x$ and either b < y or b = y. Hence, $a \leq x$ and b < y or $a \leq x$ and b = y.

We consider these cases separately.

To prove $a + b \le x + y$, we must prove either a + b < x + y or a + b = x + y. Hence, we must prove either $(x + y) - (a + b) \in F^+$ or a + b = x + y. **Case 1:** Suppose $a \le x$ and b < y. Then a + b < x + y. **Case 2:** Suppose $a \le x$ and b = y. Then either a < x or a = x and b = y. Hence, either a < x and b = y or a = x and b = y. **Case 2a:** Suppose a < x and b = y.

Then $x - a \in F^+$ and y - b = 0.

Observe that

$$\begin{aligned} x - a &= (x - a) + 0 \\ &= (x - a) + (y - b) \\ &= x - a + y - b \\ &= x + y - a - b \\ &= (x + y) - (a + b). \end{aligned}$$

Therefore, $(x + y) - (a + b) \in F^+$.

Case 2b: Suppose a = x and b = y. Then

$$\begin{array}{rcl} a+b &=& x+b \\ &=& x+y. \end{array}$$

We prove 3.

Suppose $0 \le a < x$ and $0 \le b < y$. Then $0 \le a$ and a < x and $0 \le b$ and b < y. Since $0 \le a$ and $0 \le b$, then either 0 < a or 0 = a and either 0 < b or 0 = b. Thus, either 0 < a and 0 < b or 0 < a and 0 = b or 0 = a and 0 < b or 0 = a and 0 = b.We consider these cases separately. Case 1: Suppose 0 = a and 0 = b. Since 0 = a and a < x, then 0 < x. Since 0 = b and b < y, then 0 < y. Hence, x > 0 and y > 0, so xy > 0. Therefore, $ab = 0 \cdot 0 = 0 < xy$, so ab < xy. Case 2: Suppose 0 = a and 0 < b. Since 0 = a and a < x, then 0 < x. Since 0 < b and b < y, then 0 < y. Hence, x > 0 and y > 0, so xy > 0. Therefore, $ab = 0 \cdot b = 0 < xy$, so ab < xy. Case 3: Suppose 0 < a and 0 = b. Since 0 < a and a < x, then 0 < x. Since 0 = b and b < y, then 0 < y. Hence, x > 0 and y > 0, so xy > 0. Therefore, $ab = a \cdot 0 = 0 < xy$, so ab < xy. Case 4: Suppose 0 < a and 0 < b. Since a < x and b > 0, then ab < xb, so ab < bx. Since 0 < a and a < x, then 0 < x. Since b < y and x > 0, then bx < yx, so bx < xy. Thus, ab < bxand bx < xy, so ab < xy. We prove 4. Suppose $0 \le a \le x$ and $0 \le b < y$. Then $0 \le a$ and $a \le x$ and $0 \le b$ and b < y. Since $a \leq x$, then either a < x or a = x. We consider these cases separately. Case 1: Suppose a < x. If $0 \le a < x$ and $0 \le b < y$, then ab < xy. Since $0 \le a$ and a < x, then $0 \le a < x$. Since $0 \le b$ and b < y, then $0 \le b < y$. Therefore, we conclude ab < xy. Case 2: Suppose a = x. Since $0 \le a$, then either 0 < a or 0 = a.

Case 2a: Suppose 0 = a. Then ab = 0b = 0 = 0y = ay = xy. Case 2b: Suppose 0 < a. Then $a \in F^+$. Since b < y, then $y - b \in F^+$. Thus, $a(y - b) \in F^+$. Since a(y-b) = ay - ab = xy - ab, then $xy - ab \in F^+$. Therefore, ab < xy. We prove 5. Suppose $0 \le a \le x$ and $0 \le b \le y$. Then $0 \le a$ and $a \le x$ and $0 \le b$ and $b \leq y$. Since $b \leq y$, then either b < y or b = y. We consider these cases separately. Case 1: Suppose b < y. If $0 \le a \le x$ and $0 \le b < y$, then $ab \le xy$. Since $0 \le a$ and $a \le x$, then $0 \le a \le x$. Since $0 \le b$ and b < y, then $0 \le b < y$. Therefore, we conclude ab < xy. Case 2: Suppose b = y. Since a < x, then either a < x or a = x. Case 2a: Suppose a = x. Then ab = xb = xy. Case 2b: Suppose a < x. Since $0 \le b$, then either 0 < b or 0 = b. If 0 = b, then ab = a0 = 0 = x0 = xb = xy. If 0 < b, then $b \in F^+$. Since a < x, then $x - a \in F^+$. Hence, $(x - a)b \in F^+$. Since (x - a)b = xb - ab = xy - ab, then $xy - ab \in F^+$. Therefore, ab < xy. **Exercise 18.** Let F be a field. Let $a, b \in F$. If $a^2 + b^2 = 0$, then a = b = 0. Is this true or false? Solution. This is false. Here is a counterexample. Let F be the field $(\mathbb{Z}_5, +, \cdot)$ with a = 1 and b = 2. Then $1^2 + 2^2 = 1 * 1 + 2 * 2 = 1 + 4 = 0$, but $1 \neq 0$ and $2 \neq 0$. **Exercise 19.** Let F be an ordered field. Let $a, b \in F$. If $a^2 + b^2 = 0$, then a = 0 and b = 0. *Proof.* We prove by contrapositive. Suppose either $a \neq 0$ or $b \neq 0$. If $a \neq 0$, then $a^2 > 0$. Since $b^2 > 0$, then $a^2 + b^2 > 0$, so $a^2 + b^2 \neq 0$. If $b \neq 0$, then $b^2 > 0$. Since $a^2 \ge 0$, then $a^2 + b^2 > 0$, so $a^2 + b^2 \ne 0$. Therefore, in either case, $a^2 + b^2 \neq 0$, as desired. **Exercise 20.** Let F be an ordered field. Let $a, b \in F$ such that $a \ge 0$ and $b \ge 0$. Then a < b iff $a^2 < b^2$.

Proof. We must prove a < b iff $a^2 < b^2$. We prove if a < b, then $a^2 < b^2$.

Suppose a < b.

Then b - a is positive. Since $a^2 < b^2$ iff $b^2 - a^2$ is positive iff (b - a)(b + a) is positive, to prove $a^2 < b^2$, we prove (b - a)(b + a) is positive.

The product (b - a)(b + a) is positive iff b - a and b + a are either both positive or both negative. Therefore, we must prove b - a and b + a are either both positive or both negative. Since b - a is positive, then we need only prove b + a is positive.

Since $b \ge 0$ and $a \ge 0$, then $b + a \ge 0$. Hence, either b + a > 0 or b + a = 0. Suppose b + a = 0. Then a = -b.

Since $b \ge 0$, then either b > 0 or b = 0.

If b = 0, then a < b = 0, so a < 0. But, $a \ge 0$. Therefore, $b \ne 0$.

If b > 0, then -b < 0, so a < 0. But, again, $a \ge 0$. Therefore, b is not positive.

Hence, $b + a \neq 0$. Therefore, b + a > 0, so b + a is positive, as desired. Conversely, we prove if $a^2 < b^2$, then a < b. Suppose $a^2 < b^2$. To prove a < b, we must prove b - a is positive. Since $a^2 < b^2$, then $b^2 - a^2$ is positive, so (b - a)(b + a) is positive. Hence, b - a and b + a are either both positive or both negative. Since $a \ge 0$ and $b \ge 0$, then $b + a \ge 0$, so b + a is not negative. Thus, we conclude b - a and b + a must be both positive. Therefore, b - a is positive, as desired.

Exercise 21. If R is a field, then the only ideals of R are the zero ring and R itself.

Proof. Let R be a field.

Let I be an ideal in R. Then either I is the zero ring or I is not the zero ring. Suppose I is not the zero ring. Since I is an ideal, then (I, +) is an abelian subgroup of (R, +). Since I is not the zero group, then I must contain a nonzero element. Let a be some nonzero element of I. Then $a \in I$ and $a \neq 0$. Since R is a field, then every nonzero element of R is a unit of R. Hence, in particular, a is a unit of R. Therefore, there exists $a^{-1} \in R$ such that $aa^{-1} = e$, where e is the unity of R. Since I is an ideal, then for every $x \in I, IR \subset I$. Thus, $aR \subset I$, where $aR = \{ar : r \in R\}$. Since $a^{-1} \in R$, then $aa^{-1} \in aR$. Hence, $e \in aR$. Thus, $e \in aR$ and $aR \subset I$, so $e \in I$. Therefore, $eR \subset I$, where $eR = \{er : r \in R\}$ $\{r: r \in R\} = R$. Hence, $R \subset I$. Since I is an ideal, then $I \subset R$. Thus, $I \subset R$ and $R \subset I$, so I = R.

Therefore, either I is the zero ring or I is the field R itself.