Field Theory Notes

Jason Sass

July 6, 2023

Fields

A field is an algebraic structure upon which the arithmetic operations (addition, subtraction, multiplication, division) are defined.

Definition 1. Field

A field $(F, +, \cdot)$ is a set F with two binary operations + and \cdot defined on F such that the following axioms hold:

A1. Addition is associative. (a+b) + c = a + (b+c) for all $a, b, c \in F$. A2. Addition is commutative. a + b = b + a for all $a, b \in F$. A3. There is a right additive identity. $(\exists 0 \in F) (\forall a \in F) (a + 0 = a).$ A4. Each element has a right additive inverse. $(\forall a \in F) (\exists b \in F) (a + b = 0).$ M1. Multiplication is associative. (ab)c = a(bc) for all $a, b, c \in F$. M2. Multiplication is commutative. ab = ba for all $a, b \in F$. M3. There is a right multiplicative identity. $(\exists 1 \in F) (\forall a \in F) (a1 = a).$ M4. Each nonzero element has a right multiplicative inverse. $(\forall a \in F^*)(\exists b \in F)(ab = 1).$ D1. Multiplication is left distributive over addition. a(b+c) = ab + ac for all $a, b, c \in F$. F1. Multiplicative identity is distinct from additive identity. $1 \neq 0.$

Since $1 \neq 0$ in F, then any field must contain at least two elements.

Example 2. smallest field $(\mathbb{Z}_2, +, \cdot)$

 $\left(\frac{\mathbb{Z}}{2\mathbb{Z}},+,\cdot\right)$ is a field.

Proposition 3. alternate definition of a field

A field is a commutative ring with multiplicative identity $1 \neq 0$ such that every nonzero element has a multiplicative inverse.

Let $(F, +, \cdot)$ be a field.

Since + is a binary operation on F, then F is closed under addition. Since \cdot is a binary operation on F, then F is closed under multiplication. Since F is a ring, then (F, +) is an abelian group and 0 is the additive identity of F and the additive inverse of $a \in F$ is denoted by -a. Since F is a ring, then 1 is the multiplicative identity of F. Let F^* be the set of all nonzero elements of F. Then $F^* = \{a \in F : a \neq 0\}.$ Therefore, F satisfies the following axioms: A1. $a + b \in F$ for all $a, b \in F$. A2. (a + b) + c = a + (b + c) for all $a, b, c \in F$. A3. a + b = b + a for all $a, b \in F$. A4. $(\exists 0 \in F)(\forall a \in F)(0 + a = a + 0 = a).$ A5. $(\forall a \in F)(\exists b \in F)(a + b = b + a = 0).$ M1. $ab \in F$ for all $a, b \in F$. M2. (ab)c = a(bc) for all $a, b, c \in F$. M3. ab = ba for all $a, b \in F$. M4. $(\exists 1 \in F)(\forall a \in F)(1 \cdot a = a \cdot 1 = a).$ M5. $(\forall a \in F^*)(\exists b \in F)(ab = ba = 1).$ D1. a(b+c) = ab + ac for all $a, b, c \in F$. D2. (b+c)a = ba + ca for all $a, b, c \in F$. F1. $1 \neq 0$.

Since F is a commutative ring with identity $1 \neq 0$ such that every nonzero element has a multiplicative inverse, then F is a commutative division ring.

Therefore, a field is a commutative division ring.

Since F is a division ring, then (F^*, \cdot) is the group of units of F. Since multiplication is commutative, then (F^*, \cdot) is an abelian group.

Example 4. field of rational numbers $(\mathbb{Q}, +, \cdot)$

 $(\mathbb{Q}, +, \cdot)$ is a field. Additive identity is $0 = \frac{0}{1}$. Additive inverse of $\frac{a}{b}$ is $-\frac{a}{b}$. Multiplicative identity is $1 = \frac{1}{1}$. Multiplicative inverse of $\frac{a}{b} \in \mathbb{Q}^*$ is $\frac{b}{a} \in \mathbb{Q}^*$.

Example 5. field of real numbers $(\mathbb{R}, +, \cdot)$

 $(\mathbb{R}, +, \cdot)$ is a field. Additive identity is 0. Additive inverse of *a* is -a. Multiplicative identity is 1. Multiplicative inverse of $a \in \mathbb{R}^*$ is $\frac{1}{a} \in \mathbb{R}^*$.

Example 6. field of complex numbers $(\mathbb{C}, +, \cdot)$

 $(\mathbb{C}, +, \cdot)$ is a field. Additive identity is 0 = 0 + 0i. Let $a, b \in \mathbb{R}$. Additive inverse of z = a + bi is -z = -a - bi. Multiplicative identity is 1 = 1 + 0i. Let $z \in \mathbb{C}^*$. Multiplicative inverse of $z = |z| \operatorname{cis} \theta$ is $z^{-1} = \frac{1}{z} = \frac{1}{|z|} \operatorname{cis} (-\theta)$

Example 7. \mathbb{Z}_p is a field when p is prime Let $p \in \mathbb{Z}^+$.

If p is prime, then $(\mathbb{Z}_p, +, \cdot)$ is a field.

Example 8. Gaussian integers

Let $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$ Then $(\mathbb{Z}[i], +)$ is an abelian group under complex addition. $(\mathbb{Z}[i], +, \cdot)$ is a subring of $(\mathbb{C}, +, \cdot)$ known as the **Gaussian integers**.

Example 9. $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a field under addition and multiplication of \mathbb{R} .

Theorem 10. left and right multiplicative cancellation laws hold in a field

Let $(F, +, \cdot)$ be a field. If ac = bc and $c \neq 0$, then a = b. (right multiplicative cancellation law) If ca = cb and $c \neq 0$, then a = b. (left multiplicative cancellation law)

Proposition 11. multiplication and division are inverse operations Let F be a field. Then $(\forall a, b \in F, a \neq 0)(\exists ! x \in F)(ax = b)$.

Therefore, ax = b means $x = \frac{b}{a}$.

Theorem 12. Every field is an integral domain.

Let $(F, +, \cdot)$ be a field. Then ab = 0 iff a = 0 or b = 0 for all $a, b \in F$. Equivalently, $ab \neq 0$ iff $a \neq 0$ and $b \neq 0$ for all $a, b \in F$.

Therefore, the product of any two nonzero elements of a field is nonzero.

Since F is an integral domain and every integral domain satisfies the multiplicative cancellation laws, then F satisfies the multiplicative cancellation laws, as stated previously.

Example 13. Since \mathbb{Q}, \mathbb{R} , and \mathbb{C} are fields, then \mathbb{Q}, \mathbb{R} , and \mathbb{C} are integral domains.

Example 14. Not every integral domain is a field.

The ring of integers \mathbb{Z} is an integral domain, but \mathbb{Z} is not a field.

Proposition 15. Let $(F, +, \cdot)$ be a field. If $a \neq 0$ and $b \neq 0$, then $(ab)^{-1} = a^{-1}b^{-1}$. Corollary 16. Let $(F, +, \cdot)$ be a field.

Let $a, b, c \in F$ such that $b \neq 0$ and $c \neq 0$. Then $\frac{ac}{bc} = \frac{a}{b}$.

Theorem 17. arithmetic operations on quotients

Let $(F, +, \cdot)$ be a field. Let $a, b, c, d \in F$ such that $b \neq 0$ and $d \neq 0$. Then 1. $\frac{a}{b} = \frac{c}{d}$ iff ad = bc. (equality of quotients) 2. $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$. (multiply quotients) 3. if $c \neq 0$, then $\frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}$. (divide quotients) 4. $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$. (add quotients) 5. $\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$. (subtract quotients)

Theorem 18. For every prime p, \mathbb{Z}_p is a field of characteristic p. In fact, \mathbb{Z}_p is a field iff p is prime.

Polynomial Rings

Let $\mathbb{R}[x]$ be the set of all polynomials in a single variable x having real coefficients.

Define polynomial addition and multiplication on $\mathbb{R}[x]$.

Then $(\mathbb{R}[x], +, \cdot)$ is not a field, but it is a ring.

It is not a field because not every polynomial has a multiplicative inverse.

Definition 19. polynomial

Let R be a ring. Let X be a variable (formal symbol that is not an element of R). Let $\tilde{N} = \{0, 1, 2, ...\} = \{n \in \mathbb{Z} : n \ge 0\}$. Let $n \in \tilde{N}$. Let $a_0, a_1, ..., a_n \in R$. A **polynomial** f in variable X over R is a map $f : \tilde{N} \mapsto R$ defined by

$$f_k = \begin{cases} a_k & \text{if } k \le n \\ 0 & \text{if } k > n \end{cases}$$

such that $f = \sum p_k X^k$ for all $k \in \tilde{N}$.

Let p be a polynomial in variable X over a ring R.

Then there exists $n \in \mathbb{Z}, n \geq 0$ such that $a_0, a_1, ..., a_n \in R$ and for all $k > n, p_k = 0$ and $p_k = a_k$ iff $k \leq n$ and $p = \sum p_k X^k$.

Therefore,

$$p = \sum_{k=0}^{n} p_k X^k$$

= $p_0 + p_1 X + p_2 X^2 + \dots + p_n X^n + 0 + 0 + \dots$
= $a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n + 0 + 0 + \dots$
= $a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$
= $a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$
= $\sum_{k=0}^{n} a_k X^k$.

Each $a_k X^k$ is called a **monomial**.

 a_k is the **coefficient of** X. The **degree of a monomial** $a_k X^k$ is the exponent k of the variable X. Each monomial is a **term** of the polynomial. Therefore, a polynomial is a finite sum of monomials. $(a_0, a_1, ..., a_n)$ is a sequence of coefficients of the polynomial p. $0X^n = 0$ for each $n \in \tilde{N}$. $(\forall m, n \in \tilde{N})(X^m X^n = X^{m+n})$. $X^0 = 1$ $X^1 = X$ A polynomial is a linear combination of powers of X with coefficients in R.

Definition 20. constant polynomial

Let p be a polynomial in variable X over a ring R such that n = 0. Then $a_0 \in R$ and $p = \sum_{k=0}^{0} a_k X^0 = a_0 X^0 = a_0$. Thus p is called a **constant polynomial** and a_0 is called a **constant**. Hence, $(a_0, 0, ..., 0)$ is the sequence of coefficients of p.

Let $a \neq 0 \in R$. Since $a = aX^0$, then the degree of a is 0. Therefore, the degree of a nonzero constant polynomial is zero.

Definition 21. zero polynomial

Let $\tilde{N} = \{0, 1, 2, ...\} = \{n \in \mathbb{Z} : n \ge 0\}.$ Let p be a polynomial in variable X over a ring R such that $p_n = 0$ for all $n \in \tilde{N}$.

Then p is the **zero polynomial**.

Thus, (0, 0, ..., 0) is the sequence of coefficients of p. The zero polynomial corresponds to the zero of the ring R. Therefore, p = 0.

The degree of the zero polynomial is defined to be $-\infty$.

The zero polynomial is a constant polynomial.

Definition 22. degree of a polynomial

Let $N = \{0, 1, 2, ...\} = \{n \in \mathbb{Z} : n \ge 0\}.$

Let p be a nonzero polynomial in variable X over a ring R.

Then there exists $n \in \tilde{N}$ such that $a_0, a_1, ..., a_n \in R$ and $p_k = 0$ for all k > nand $p_k = a_k$ iff $k \le n$ and $p = \sum_{k=0}^n a_k X^k$ and $p \ne 0$.

The degree of p is max $(k \in \tilde{N} : p_k \neq 0)$.

Therefore, the degree of a nonzero polynomial is the largest degree of the nonzero terms of the polynomial.

Since $aX = aX^1$, then the degree of aX is one. Degrees of polynomials: zero $-\infty$ nonzero constant 0 linear 1 quadratic 2 cubic 3 quartic 4 quintic 5 sextic 6 septic 7 octic 8 nonic 9 decic 10 hectic 100

Definition 23. equal polynomials

Let p, q be polynomials in variable X over a ring R.

Let $N = \{0, 1, 2, ...\} = \{n \in \mathbb{Z} : n \ge 0\}.$

Then there exist $m, n \in \tilde{N}$ such that $a_0, a_1, ..., a_m \in R$ and $p_k = 0$ for all k > m and $p_k = a_k$ iff $k \le m$ and $p = \sum_{k=0}^m a_k X^k$ and $b_0, b_1, ..., b_n \in R$ and $q_k = 0$ for all k > n and $q_k = b_k$ iff $k \le n$ and $q = \sum_{k=0}^n b_k X^k$.

Thus, $p = a_0 + a_1 + \dots + a_m X^m$ and $q = b_0 + b_1 + \dots + b_n X^n.$

Therefore, p = q iff $(\forall k \in \tilde{N})(p_k = q_k)$.

Two polynomials are equal iff corresponding coefficients for each power of X are equal.

Definition 24. Addition of polynomials

Let $N = \{0, 1, 2, ...\}.$ Let p and q be polynomials in variable X over a ring R. Then there exist $m, n \in \tilde{N}$ such that $a_0, a_1, ..., a_m \in R$ and $p_k = 0$ for all k > m and $p_k = a_k$ iff $k \le m$ and $p = \sum_{k=0}^m a_k X^k$ and $b_0, b_1, ..., b_n \in R$ and $q_k = 0$ for all k > n and $q_k = b_k$ iff $k \le n$ and $q = \sum_{k=0}^n b_k X^k$. The sum of polynomials is defined by the rule $p + q = \sum c_k x^k$ where $c_k = \sum_{k=0}^n b_k x^k$.

 $p_k + q_k$ for all $k \in N$.

Thus,

$$p+q = \sum_{k=0}^{n} a_k x^k + \sum_{k=0}^{n} b_k x^k$$
$$= \sum_{k=0}^{n} (a_k + b_k) x^k.$$

Therefore, the sum of two polynomials is the sum of coefficients of corresponding terms.

Let $m = \deg p$ and $n = \deg q$.

Then $\deg(p+q) = \max(m, n)$.

The sum of polynomials, denoted (p+q)(x) is the same as : (p+q)(x) =p(x) + q(x), but this is not the definition of polynomial addition.

Definition 25. Multiplication of polynomials

Let $\tilde{N} = \{0, 1, 2, ...\}.$

Let p and q be polynomials in variable X over a ring R.

Then there exist $m, n \in \tilde{N}$ such that $a_0, a_1, ..., a_m \in R$ and $p_k = 0$ for all $k > m \text{ and } p = \sum_{k=0}^{m} a_k X^k$ and $b_0, b_1, \dots, b_n \in R$ and $q_k = 0$ for all k > n and $q = \sum_{k=0}^{n} b_k X^k$.

The product of polynomials is defined by the rule $pq = \sum_{k=0}^{m+n} c_k x^k$ where $c_k = \sum_{i=0}^k a_i b_{k-i}$ for all $k \in \tilde{N}$.

Let $m = \deg p$ and $n = \deg q$.

Then $\deg(pq) = m + n$.

The product of polynomials, denoted (pq)(x) is the same as : (pq)(x) =p(x)q(x), but this is not the definition of polynomial multiplication.

Definition 26. polynomial ring R[x]

Let R be a ring.

Let R[x] be the set of all polynomials in variable x over R. Then $R[x] = \{\sum_{k=0}^{n} a_k x^k : (\exists n \in \mathbb{Z}) (n \ge 0) (\forall k = 0, 1, ..., n) (a_k \in R) \}.$

Theorem 27. Then (R[x], +, *) is a ring with unity.

The zero of R[x] is the zero polynomial 0. The additive inverse of $\sum_{k=0}^{n} a_k x^k$ is $\sum_{k=0}^{n} (-a_k) x^k$.