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Fields

A field is an algebraic structure upon which the arithmetic operations (addition,
subtraction, multiplication, division) are defined.

Definition 1. Field
A field (F,+, ·) is a set F with two binary operations + and · defined on F

such that the following axioms hold:
A1. Addition is associative.
(a+ b) + c = a+ (b+ c) for all a, b, c ∈ F .
A2. Addition is commutative.
a+ b = b+ a for all a, b ∈ F .
A3. There is a right additive identity.
(∃0 ∈ F )(∀a ∈ F )(a+ 0 = a).
A4. Each element has a right additive inverse.
(∀a ∈ F )(∃b ∈ F )(a+ b = 0).
M1. Multiplication is associative.
(ab)c = a(bc) for all a, b, c ∈ F .
M2. Multiplication is commutative.
ab = ba for all a, b ∈ F .
M3. There is a right multiplicative identity.
(∃1 ∈ F )(∀a ∈ F )(a1 = a).
M4. Each nonzero element has a right multiplicative inverse.
(∀a ∈ F ∗)(∃b ∈ F )(ab = 1).
D1. Multiplication is left distributive over addition.
a(b+ c) = ab+ ac for all a, b, c ∈ F .
F1. Multiplicative identity is distinct from additive identity.
1 6= 0.

Since 1 6= 0 in F , then any field must contain at least two elements.

Example 2. smallest field (Z2,+, ·)
( Z
2Z ,+, ·) is a field.

Proposition 3. alternate definition of a field
A field is a commutative ring with multiplicative identity 1 6= 0 such that

every nonzero element has a multiplicative inverse.



Let (F,+, ·) be a field.
Since + is a binary operation on F , then F is closed under addition.
Since · is a binary operation on F , then F is closed under multiplication.
Since F is a ring, then (F,+) is an abelian group and 0 is the additive

identity of F and the additive inverse of a ∈ F is denoted by −a.
Since F is a ring, then 1 is the multiplicative identity of F .
Let F ∗ be the set of all nonzero elements of F .
Then F ∗ = {a ∈ F : a 6= 0}.
Therefore, F satisfies the following axioms:
A1. a+ b ∈ F for all a, b ∈ F .
A2. (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F .
A3. a+ b = b+ a for all a, b ∈ F .
A4. (∃0 ∈ F )(∀a ∈ F )(0 + a = a+ 0 = a).
A5. (∀a ∈ F )(∃b ∈ F )(a+ b = b+ a = 0).
M1. ab ∈ F for all a, b ∈ F .
M2. (ab)c = a(bc) for all a, b, c ∈ F .
M3. ab = ba for all a, b ∈ F .
M4. (∃1 ∈ F )(∀a ∈ F )(1 · a = a · 1 = a).
M5. (∀a ∈ F ∗)(∃b ∈ F )(ab = ba = 1).
D1. a(b+ c) = ab+ ac for all a, b, c ∈ F .
D2. (b+ c)a = ba+ ca for all a, b, c ∈ F .
F1. 1 6= 0.
Since F is a commutative ring with identity 1 6= 0 such that every nonzero

element has a multiplicative inverse, then F is a commutative division ring.
Therefore, a field is a commutative division ring.
Since F is a division ring, then (F ∗, ·) is the group of units of F .
Since multiplication is commutative, then (F ∗, ·) is an abelian group.

Example 4. field of rational numbers (Q,+, ·)
(Q,+, ·) is a field.
Additive identity is 0 = 0

1 .
Additive inverse of a

b is −a
b .

Multiplicative identity is 1 = 1
1 .

Multiplicative inverse of a
b ∈ Q∗ is b

a ∈ Q∗.

Example 5. field of real numbers (R,+, ·)
(R,+, ·) is a field.
Additive identity is 0.
Additive inverse of a is −a.
Multiplicative identity is 1.
Multiplicative inverse of a ∈ R∗ is 1

a ∈ R∗.

Example 6. field of complex numbers (C,+, ·)
(C,+, ·) is a field.
Additive identity is 0 = 0 + 0i.
Let a, b ∈ R.
Additive inverse of z = a+ bi is −z = −a− bi.

2



Multiplicative identity is 1 = 1 + 0i.
Let z ∈ C∗.
Multiplicative inverse of z = |z|cis θ is z−1 = 1

z = 1
|z|cis (−θ)

Example 7. Zp is a field when p is prime
Let p ∈ Z+.
If p is prime, then (Zp,+, ·) is a field.

Example 8. Gaussian integers
Let Z[i] = {a+ bi : a, b ∈ Z}.
Then (Z[i],+) is an abelian group under complex addition.
(Z[i],+, ·) is a subring of (C,+, ·) known as the Gaussian integers.

Example 9. Q(
√

2) = {a + b
√

2 : a, b ∈ Q} is a field under addition and
multiplication of R.

Theorem 10. left and right multiplicative cancellation laws hold in a
field

Let (F,+, ·) be a field.
If ac = bc and c 6= 0, then a = b. (right multiplicative cancellation law )
If ca = cb and c 6= 0, then a = b. (left multiplicative cancellation law )

Proposition 11. multiplication and division are inverse operations
Let F be a field.
Then (∀a, b ∈ F, a 6= 0)(∃!x ∈ F )(ax = b).

Therefore, ax = b means x = b
a .

Theorem 12. Every field is an integral domain.

Let (F,+, ·) be a field.
Then ab = 0 iff a = 0 or b = 0 for all a, b ∈ F .
Equivalently, ab 6= 0 iff a 6= 0 and b 6= 0 for all a, b ∈ F .

Therefore, the product of any two nonzero elements of a field is nonzero.

Since F is an integral domain and every integral domain satisfies the multi-
plicative cancellation laws, then F satisfies the multiplicative cancellation laws,
as stated previously.

Example 13. Since Q,R, and C are fields, then Q,R, and C are integral do-
mains.

Example 14. Not every integral domain is a field.
The ring of integers Z is an integral domain, but Z is not a field.

Proposition 15. Let (F,+, ·) be a field.
If a 6= 0 and b 6= 0, then (ab)−1 = a−1b−1.
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Corollary 16. Let (F,+, ·) be a field.
Let a, b, c ∈ F such that b 6= 0 and c 6= 0.
Then ac

bc = a
b .

Theorem 17. arithmetic operations on quotients
Let (F,+, ·) be a field.
Let a, b, c, d ∈ F such that b 6= 0 and d 6= 0. Then
1. a

b = c
d iff ad = bc. (equality of quotients)

2. a
b ·

c
d = ac

bd . (multiply quotients)

3. if c 6= 0, then a
b /

c
d = ad

bc . (divide quotients)

4. a
b + c

d = ad+bc
bd . (add quotients)

5. a
b −

c
d = ad−bc

bd . (subtract quotients)

Theorem 18. For every prime p, Zp is a field of characteristic p.
In fact, Zp is a field iff p is prime.

Polynomial Rings

Let R[x] be the set of all polynomials in a single variable x having real coeffi-
cients.

Define polynomial addition and multiplication on R[x].
Then (R[x],+, ·) is not a field, but it is a ring.
It is not a field because not every polynomial has a multiplicative inverse.

Definition 19. polynomial
Let R be a ring.
Let X be a variable (formal symbol that is not an element of R).
Let Ñ = {0, 1, 2, ...} = {n ∈ Z : n ≥ 0}.
Let n ∈ Ñ .
Let a0, a1, ..., an ∈ R.
A polynomial f in variable X over R is a map f : Ñ 7→ R defined by

fk =

{
ak if k ≤ n
0 if k > n

such that f =
∑
pkX

k for all k ∈ Ñ .

Let p be a polynomial in variable X over a ring R.
Then there exists n ∈ Z, n ≥ 0 such that a0, a1, ..., an ∈ R and for all

k > n, pk = 0 and pk = ak iff k ≤ n and p =
∑
pkX

k.
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Therefore,

p =
∑

pkX
k

= p0 + p1X + p2X
2 + ...+ pnX

n + 0 + 0 + ...

= a0 + a1X + a2X
2 + ...+ anX

n + 0 + 0 + ...

= a0 + a1X + a2X
2 + ...+ anX

n

= anX
n + an−1X

n−1 + ...+ a1X + a0

=

n∑
k=0

akX
k.

Each akX
k is called a monomial.

ak is the coefficient of X.
The degree of a monomial akX

k is the exponent k of the variable X.
Each monomial is a term of the polynomial.
Therefore, a polynomial is a finite sum of monomials.
(a0, a1, ..., an) is a sequence of coefficients of the polynomial p.
0Xn = 0 for each n ∈ Ñ .
(∀m,n ∈ Ñ)(XmXn = Xm+n).
X0 = 1
X1 = X
A polynomial is a linear combination of powers of X with coefficients in R.

Definition 20. constant polynomial
Let p be a polynomial in variable X over a ring R such that n = 0.
Then a0 ∈ R and p =

∑0
k=0 akX

0 = a0X
0 = a0.

Thus p is called a constant polynomial and a0 is called a constant.
Hence, (a0, 0, ..., 0) is the sequence of coefficients of p.

Let a 6= 0 ∈ R.
Since a = aX0, then the degree of a is 0.
Therefore, the degree of a nonzero constant polynomial is zero.

Definition 21. zero polynomial
Let Ñ = {0, 1, 2, ...} = {n ∈ Z : n ≥ 0}.
Let p be a polynomial in variable X over a ring R such that pn = 0 for all

n ∈ Ñ .
Then p is the zero polynomial.
Thus, (0, 0, ..., 0) is the sequence of coefficients of p.
The zero polynomial corresponds to the zero of the ring R.
Therefore, p = 0.

The degree of the zero polynomial is defined to be −∞.
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The zero polynomial is a constant polynomial.

Definition 22. degree of a polynomial
Let Ñ = {0, 1, 2, ...} = {n ∈ Z : n ≥ 0}.
Let p be a nonzero polynomial in variable X over a ring R.
Then there exists n ∈ Ñ such that a0, a1, ..., an ∈ R and pk = 0 for all k > n

and pk = ak iff k ≤ n and p =
∑n

k=0 akX
k and p 6= 0.

The degree of p is max (k ∈ Ñ : pk 6= 0).

Therefore, the degree of a nonzero polynomial is the largest degree of the
nonzero terms of the polynomial.

Since aX = aX1, then the degree of aX is one.
Degrees of polynomials:
zero −∞
nonzero constant 0
linear 1
quadratic 2
cubic 3
quartic 4
quintic 5
sextic 6
septic 7
octic 8
nonic 9
decic 10
hectic 100

Definition 23. equal polynomials
Let p, q be polynomials in variable X over a ring R.
Let Ñ = {0, 1, 2, ...} = {n ∈ Z : n ≥ 0}.
Then there exist m,n ∈ Ñ such that a0, a1, ..., am ∈ R and pk = 0 for all

k > m and pk = ak iff k ≤ m and p =
∑m

k=0 akX
k and b0, b1, ..., bn ∈ R and

qk = 0 for all k > n and qk = bk iff k ≤ n and q =
∑n

k=0 bkX
k.

Thus,
p = a0 + a1 + ...+ amX

m

and
q = b0 + b1 + ...+ bnX

n.
Therefore, p = q iff (∀k ∈ Ñ)(pk = qk).
Two polynomials are equal iff corresponding coefficients for each power of

X are equal.

Definition 24. Addition of polynomials
Let Ñ = {0, 1, 2, ...}.
Let p and q be polynomials in variable X over a ring R.
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Then there exist m,n ∈ Ñ such that a0, a1, ..., am ∈ R and pk = 0 for all
k > m and pk = ak iff k ≤ m and p =

∑m
k=0 akX

k and b0, b1, ..., bn ∈ R and
qk = 0 for all k > n and qk = bk iff k ≤ n and q =

∑n
k=0 bkX

k.
The sum of polynomials is defined by the rule p + q =

∑
ckx

k where ck =
pk + qk for all k ∈ Ñ .

Thus,

p+ q =
∑

akx
k +

n∑
k=0

bkx
k

=
∑

(pk + qk)xk

=

n∑
k=0

(ak + bk)xk.

Therefore, the sum of two polynomials is the sum of coefficients of corre-
sponding terms.

Let m = deg p and n = deg q.
Then deg(p+ q) = max(m,n).
The sum of polynomials, denoted (p + q)(x) is the same as : (p + q)(x) =

p(x) + q(x), but this is not the definition of polynomial addition.

Definition 25. Multiplication of polynomials
Let Ñ = {0, 1, 2, ...}.
Let p and q be polynomials in variable X over a ring R.
Then there exist m,n ∈ Ñ such that a0, a1, ..., am ∈ R and pk = 0 for all

k > m and p =
∑m

k=0 akX
k and b0, b1, ..., bn ∈ R and qk = 0 for all k > n and

q =
∑n

k=0 bkX
k.

The product of polynomials is defined by the rule pq =
∑m+n

k=0 ckx
k where

ck =
∑k

i=0 aibk−i for all k ∈ Ñ .

Let m = deg p and n = deg q.
Then deg(pq) = m+ n.
The product of polynomials, denoted (pq)(x) is the same as : (pq)(x) =

p(x)q(x), but this is not the definition of polynomial multiplication.

Definition 26. polynomial ring R[x]
Let R be a ring.
Let R[x] be the set of all polynomials in variable x over R.
Then R[x] = {

∑n
k=0 akx

k : (∃n ∈ Z)(n ≥ 0)(∀k = 0, 1, ..., n)(ak ∈ R)}.

Theorem 27. Then (R[x],+, ∗) is a ring with unity .

The zero of R[x] is the zero polynomial 0.
The additive inverse of

∑n
k=0 akx

k is
∑n

k=0(−ak)xk.
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