Field Theory Notes

Jason Sass

July 6, 2023

Fields

A field is an algebraic structure upon which the arithmetic operations (addition, subtraction, multiplication, division) are defined.

Definition 1. Field
A field $(F,+, \cdot)$ is a set F with two binary operations + and \cdot defined on F such that the following axioms hold:

A1. Addition is associative.
$(a+b)+c=a+(b+c)$ for all $a, b, c \in F$.
A2. Addition is commutative.
$a+b=b+a$ for all $a, b \in F$.
A3. There is a right additive identity.
$(\exists 0 \in F)(\forall a \in F)(a+0=a)$.
A4. Each element has a right additive inverse.
$(\forall a \in F)(\exists b \in F)(a+b=0)$.
M1. Multiplication is associative.
$(a b) c=a(b c)$ for all $a, b, c \in F$.
M2. Multiplication is commutative.
$a b=b a$ for all $a, b \in F$.
M3. There is a right multiplicative identity.
$(\exists 1 \in F)(\forall a \in F)(a 1=a)$.
M4. Each nonzero element has a right multiplicative inverse.
$\left(\forall a \in F^{*}\right)(\exists b \in F)(a b=1)$.
D1. Multiplication is left distributive over addition.
$a(b+c)=a b+a c$ for all $a, b, c \in F$.
F1. Multiplicative identity is distinct from additive identity.
$1 \neq 0$.
Since $1 \neq 0$ in F, then any field must contain at least two elements.

Example 2. smallest field $\left(\mathbb{Z}_{2},+, \cdot\right)$

$\left(\frac{\mathbb{Z}}{2 \mathbb{Z}},+, \cdot\right)$ is a field.

Proposition 3. alternate definition of a field

A field is a commutative ring with multiplicative identity $1 \neq 0$ such that every nonzero element has a multiplicative inverse.

Let $(F,+, \cdot)$ be a field.
Since + is a binary operation on F, then F is closed under addition.
Since - is a binary operation on F, then F is closed under multiplication.
Since F is a ring, then $(F,+)$ is an abelian group and 0 is the additive identity of F and the additive inverse of $a \in F$ is denoted by $-a$.

Since F is a ring, then 1 is the multiplicative identity of F.
Let F^{*} be the set of all nonzero elements of F.
Then $F^{*}=\{a \in F: a \neq 0\}$.
Therefore, F satisfies the following axioms:
A1. $a+b \in F$ for all $a, b \in F$.
A2. $(a+b)+c=a+(b+c)$ for all $a, b, c \in F$.
A3. $a+b=b+a$ for all $a, b \in F$.
A4. $(\exists 0 \in F)(\forall a \in F)(0+a=a+0=a)$.
A5. $(\forall a \in F)(\exists b \in F)(a+b=b+a=0)$.
M1. $a b \in F$ for all $a, b \in F$.
M2. $(a b) c=a(b c)$ for all $a, b, c \in F$.
M3. $a b=b a$ for all $a, b \in F$.
M4. $(\exists 1 \in F)(\forall a \in F)(1 \cdot a=a \cdot 1=a)$.
M5. $\left(\forall a \in F^{*}\right)(\exists b \in F)(a b=b a=1)$.
D1. $a(b+c)=a b+a c$ for all $a, b, c \in F$.
D2. $(b+c) a=b a+c a$ for all $a, b, c \in F$.
F1. $1 \neq 0$.
Since F is a commutative ring with identity $1 \neq 0$ such that every nonzero element has a multiplicative inverse, then F is a commutative division ring.

Therefore, a field is a commutative division ring.
Since F is a division ring, then $\left(F^{*}, \cdot\right)$ is the group of units of F.
Since multiplication is commutative, then $\left(F^{*}, \cdot\right)$ is an abelian group.
Example 4. field of rational numbers $(\mathbb{Q},+, \cdot)$
$(\mathbb{Q},+, \cdot)$ is a field.
Additive identity is $0=\frac{0}{1}$.
Additive inverse of $\frac{a}{b}$ is $-\frac{a}{b}$.
Multiplicative identity is $1=\frac{1}{1}$.
Multiplicative inverse of $\frac{a}{b} \in \mathbb{Q}^{*}$ is $\frac{b}{a} \in \mathbb{Q}^{*}$.
Example 5. field of real numbers ($\mathbb{R},+, \cdot)$
$(\mathbb{R},+, \cdot)$ is a field.
Additive identity is 0 .
Additive inverse of a is $-a$.
Multiplicative identity is 1 .
Multiplicative inverse of $a \in \mathbb{R}^{*}$ is $\frac{1}{a} \in \mathbb{R}^{*}$.
Example 6. field of complex numbers $(\mathbb{C},+, \cdot)$
$(\mathbb{C},+, \cdot)$ is a field.
Additive identity is $0=0+0 i$.
Let $a, b \in \mathbb{R}$.
Additive inverse of $z=a+b i$ is $-z=-a-b i$.

Multiplicative identity is $1=1+0 i$.
Let $z \in \mathbb{C}^{*}$.
Multiplicative inverse of $z=|z| \operatorname{cis} \theta$ is $z^{-1}=\frac{1}{z}=\frac{1}{|z|} \operatorname{cis}(-\theta)$
Example 7. \mathbb{Z}_{p} is a field when p is prime
Let $p \in \mathbb{Z}^{+}$.
If p is prime, then $\left(\mathbb{Z}_{p},+, \cdot\right)$ is a field.

Example 8. Gaussian integers

Let $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$.
Then $(\mathbb{Z}[i],+)$ is an abelian group under complex addition.
$(\mathbb{Z}[i],+, \cdot)$ is a subring of $(\mathbb{C},+, \cdot)$ known as the Gaussian integers.
Example 9. $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a field under addition and multiplication of \mathbb{R}.

Theorem 10. left and right multiplicative cancellation laws hold in a

 fieldLet $(F,+, \cdot)$ be a field.
If $a c=b c$ and $c \neq 0$, then $a=b .($ right multiplicative cancellation law)
If $c a=c b$ and $c \neq 0$, then $a=b$. (left multiplicative cancellation law)
Proposition 11. multiplication and division are inverse operations
Let F be a field.
Then $(\forall a, b \in F, a \neq 0)(\exists!x \in F)(a x=b)$.
Therefore, $a x=b$ means $x=\frac{b}{a}$.
Theorem 12. Every field is an integral domain.
Let $(F,+, \cdot)$ be a field.
Then $a b=0$ iff $a=0$ or $b=0$ for all $a, b \in F$.
Equivalently, $a b \neq 0$ iff $a \neq 0$ and $b \neq 0$ for all $a, b \in F$.

Therefore, the product of any two nonzero elements of a field is nonzero.
Since F is an integral domain and every integral domain satisfies the multiplicative cancellation laws, then F satisfies the multiplicative cancellation laws, as stated previously.

Example 13. Since \mathbb{Q}, \mathbb{R}, and \mathbb{C} are fields, then \mathbb{Q}, \mathbb{R}, and \mathbb{C} are integral domains.

Example 14. Not every integral domain is a field.
The ring of integers \mathbb{Z} is an integral domain, but \mathbb{Z} is not a field.
Proposition 15. Let $(F,+, \cdot)$ be a field.
If $a \neq 0$ and $b \neq 0$, then $(a b)^{-1}=a^{-1} b^{-1}$.

Corollary 16. Let $(F,+, \cdot)$ be a field.
Let $a, b, c \in F$ such that $b \neq 0$ and $c \neq 0$.
Then $\frac{a c}{b c}=\frac{a}{b}$.
Theorem 17. arithmetic operations on quotients
Let $(F,+, \cdot)$ be a field.
Let $a, b, c, d \in F$ such that $b \neq 0$ and $d \neq 0$. Then

1. $\frac{a}{b}=\frac{c}{d}$ iff $a d=b c$. (equality of quotients)
2. $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$. (multiply quotients)
3. if $c \neq 0$, then $\frac{a}{b} / \frac{c}{d}=\frac{a d}{b c}$. (divide quotients)
4. $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$. (add quotients)
5. $\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}$. (subtract quotients)

Theorem 18. For every prime p, \mathbb{Z}_{p} is a field of characteristic p.
In fact, \mathbb{Z}_{p} is a field iff p is prime.

Polynomial Rings

Let $\mathbb{R}[x]$ be the set of all polynomials in a single variable x having real coefficients.

Define polynomial addition and multiplication on $\mathbb{R}[x]$.
Then $(\mathbb{R}[x],+, \cdot)$ is not a field, but it is a ring.
It is not a field because not every polynomial has a multiplicative inverse.

Definition 19. polynomial

Let R be a ring.
Let $X \underset{\sim}{X}$ be a variable (formal symbol that is not an element of R).
Let $\tilde{N}=\{0,1,2, \ldots\}=\{n \in \mathbb{Z}: n \geq 0\}$.
Let $n \in \tilde{N}$.
Let $a_{0}, a_{1}, \ldots, a_{n} \in R$.
A polynomial f in variable X over R is a map $f: \tilde{N} \mapsto R$ defined by

$$
f_{k}= \begin{cases}a_{k} & \text { if } k \leq n \\ 0 & \text { if } k>n\end{cases}
$$

such that $f=\sum p_{k} X^{k}$ for all $k \in \tilde{N}$.

Let p be a polynomial in variable X over a ring R.
Then there exists $n \in \mathbb{Z}, n \geq 0$ such that $a_{0}, a_{1}, \ldots, a_{n} \in R$ and for all $k>n, p_{k}=0$ and $p_{k}=a_{k}$ iff $k \leq n$ and $p=\sum p_{k} X^{k}$.

Therefore,

$$
\begin{aligned}
p & =\sum p_{k} X^{k} \\
& =p_{0}+p_{1} X+p_{2} X^{2}+\ldots+p_{n} X^{n}+0+0+\ldots \\
& =a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{n} X^{n}+0+0+\ldots \\
& =a_{0}+a_{1} X+a_{2} X^{2}+\ldots+a_{n} X^{n} \\
& =a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{1} X+a_{0} \\
& =\sum_{k=0}^{n} a_{k} X^{k} .
\end{aligned}
$$

Each $a_{k} X^{k}$ is called a monomial.
a_{k} is the coefficient of X.
The degree of a monomial $a_{k} X^{k}$ is the exponent k of the variable X.
Each monomial is a term of the polynomial.
Therefore, a polynomial is a finite sum of monomials.
$\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a sequence of coefficients of the polynomial p.
$0 X^{n}=0$ for each $n \in \tilde{N}$.
$(\forall m, n \in \tilde{N})\left(X^{m} X^{n}=X^{m+n}\right)$.
$X^{0}=1$
$X^{1}=X$
A polynomial is a linear combination of powers of X with coefficients in R.

Definition 20. constant polynomial

Let p be a polynomial in variable X over a ring R such that $n=0$.
Then $a_{0} \in R$ and $p=\sum_{k=0}^{0} a_{k} X^{0}=a_{0} X^{0}=a_{0}$.
Thus p is called a constant polynomial and a_{0} is called a constant.
Hence, $\left(a_{0}, 0, \ldots, 0\right)$ is the sequence of coefficients of p.
Let $a \neq 0 \in R$.
Since $a=a X^{0}$, then the degree of a is 0 .
Therefore, the degree of a nonzero constant polynomial is zero.

Definition 21. zero polynomial

Let $\tilde{N}=\{0,1,2, \ldots\}=\{n \in \mathbb{Z}: n \geq 0\}$.
Let p be a polynomial in variable X over a ring R such that $p_{n}=0$ for all $n \in \tilde{N}$.

Then p is the zero polynomial.
Thus, $(0,0, \ldots, 0)$ is the sequence of coefficients of p.
The zero polynomial corresponds to the zero of the ring R.
Therefore, $p=0$.

The degree of the zero polynomial is defined to be $-\infty$.

The zero polynomial is a constant polynomial.

Definition 22. degree of a polynomial

Let $\tilde{N}=\{0,1,2, \ldots\}=\{n \in \mathbb{Z}: n \geq 0\}$.
Let p be a nonzero polynomial in variable X over a ring R.
Then there exists $n \in N$ such that $a_{0}, a_{1}, \ldots, a_{n} \in R$ and $p_{k}=0$ for all $k>n$ and $p_{k}=a_{k}$ iff $k \leq n$ and $p=\sum_{k=0}^{n} a_{k} X^{k}$ and $p \neq 0$.

The degree of p is $\max \left(k \in \tilde{N}: p_{k} \neq 0\right)$.

Therefore, the degree of a nonzero polynomial is the largest degree of the nonzero terms of the polynomial.

Since $a X=a X^{1}$, then the degree of $a X$ is one.
Degrees of polynomials:
zero $-\infty$
nonzero constant 0
linear 1
quadratic 2
cubic 3
quartic 4
quintic 5
sextic 6
septic 7
octic 8
nonic 9
decic 10
hectic 100

Definition 23. equal polynomials

Let p, q be polynomials in variable X over a ring R.
Let $\tilde{N}=\{0,1,2, \ldots\}=\{n \in \mathbb{Z}: n \geq 0\}$.
Then there exist $m, n \in \tilde{N}$ such that $a_{0}, a_{1}, \ldots, a_{m} \in R$ and $p_{k}=0$ for all $k>m$ and $p_{k}=a_{k}$ iff $k \leq m$ and $p=\sum_{k=0}^{m} a_{k} X^{k}$ and $b_{0}, b_{1}, \ldots, b_{n} \in R$ and $q_{k}=0$ for all $k>n$ and $q_{k}=b_{k}$ iff $k \leq n$ and $q=\sum_{k=0}^{n} b_{k} X^{k}$.

Thus,
$p=a_{0}+a_{1}+\ldots+a_{m} X^{m}$
and
$q=b_{0}+b_{1}+\ldots+b_{n} X^{n}$.
Therefore, $p=q$ iff $(\forall k \in \tilde{N})\left(p_{k}=q_{k}\right)$.
Two polynomials are equal iff corresponding coefficients for each power of X are equal.

Definition 24. Addition of polynomials

Let $\tilde{N}=\{0,1,2, \ldots\}$.
Let p and q be polynomials in variable X over a ring R.

Then there exist $m, n \in \tilde{N}$ such that $a_{0}, a_{1}, \ldots, a_{m} \in R$ and $p_{k}=0$ for all $k>m$ and $p_{k}=a_{k}$ iff $k \leq m$ and $p=\sum_{k=0}^{m} a_{k} X^{k}$ and $b_{0}, b_{1}, \ldots, b_{n} \in R$ and $q_{k}=0$ for all $k>n$ and $q_{k}=b_{k}$ iff $k \leq n$ and $q=\sum_{k=0}^{n} b_{k} X^{k}$.

The sum of polynomials is defined by the rule $p+q=\sum c_{k} x^{k}$ where $c_{k}=$ $p_{k}+q_{k}$ for all $k \in \tilde{N}$.

Thus,

$$
\begin{aligned}
p+q & =\sum a_{k} x^{k}+\sum_{k=0}^{n} b_{k} x^{k} \\
& =\sum_{n}\left(p_{k}+q_{k}\right) x^{k} \\
& =\sum_{k=0}^{n}\left(a_{k}+b_{k}\right) x^{k} .
\end{aligned}
$$

Therefore, the sum of two polynomials is the sum of coefficients of corresponding terms.

Let $m=\operatorname{deg} p$ and $n=\operatorname{deg} q$.
Then $\operatorname{deg}(p+q)=\max (m, n)$.
The sum of polynomials, denoted $(p+q)(x)$ is the same as : $(p+q)(x)=$ $p(x)+q(x)$, but this is not the definition of polynomial addition.

Definition 25. Multiplication of polynomials

Let $\tilde{N}=\{0,1,2, \ldots\}$.
Let p and q be polynomials in variable X over a ring R.
Then there exist $m, n \in \tilde{N}$ such that $a_{0}, a_{1}, \ldots, a_{m} \in R$ and $p_{k}=0$ for all $k>m$ and $p=\sum_{k=0}^{m} a_{k} X^{k}$ and $b_{0}, b_{1}, \ldots, b_{n} \in R$ and $q_{k}=0$ for all $k>n$ and $q=\sum_{k=0}^{n} b_{k} X^{k}$.

The product of polynomials is defined by the rule $p q=\sum_{k=0}^{m+n} c_{k} x^{k}$ where $c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$ for all $k \in \tilde{N}$.

Let $m=\operatorname{deg} p$ and $n=\operatorname{deg} q$.
Then $\operatorname{deg}(p q)=m+n$.
The product of polynomials, denoted $(p q)(x)$ is the same as : $(p q)(x)=$ $p(x) q(x)$, but this is not the definition of polynomial multiplication.

Definition 26. polynomial ring $R[x]$
Let R be a ring.
Let $R[x]$ be the set of all polynomials in variable x over R.
Then $R[x]=\left\{\sum_{k=0}^{n} a_{k} x^{k}:(\exists n \in \mathbb{Z})(n \geq 0)(\forall k=0,1, \ldots, n)\left(a_{k} \in R\right)\right\}$.
Theorem 27. Then $(R[x],+, *)$ is a ring with unity.
The zero of $R[x]$ is the zero polynomial 0 .
The additive inverse of $\sum_{k=0}^{n} a_{k} x^{k}$ is $\sum_{k=0}^{n}\left(-a_{k}\right) x^{k}$.

