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Fields

A field is an algebraic structure upon which the arithmetic operations (addition,
subtraction, multiplication, division) are defined.

Definition 1. Field

A field (F,+,") is a set F' with two binary operations + and - defined on F
such that the following axioms hold:

A1l. Addition is associative.

(a+b)+c=a+ (b+c) for all a,b,c € F.

A2. Addition is commutative.

a+b=0b+aforall a,b e F.

A3. There is a right additive identity.

(30 € F)(Va € F)(a+0 = a).

A4. Each element has a right additive inverse.

(Vae F)(@be F)la+b=0).

M1. Multiplication is associative.

(ab)e = a(be) for all a,b,c € F.

M2. Multiplication is commutative.

ab = ba for all a,b € F.

M3. There is a right multiplicative identity.

(31 € F)(Va € F)(al = a).

M4. Each nonzero element has a right multiplicative inverse.

(Va € F*)(3b € F)(ab=1).

D1. Multiplication is left distributive over addition.

a(b+c¢) = ab+ ac for all a,b,c € F.

F1. Multiplicative identity is distinct from additive identity.

1#£0.

Since 1 # 0 in F', then any field must contain at least two elements.
Example 2. smallest field (Zo,+, )

(&,+,) is a field.

Proposition 3. alternate definition of a field
A field is a commutative ring with multiplicative identity 1 # 0 such that
every nonzero element has a multiplicative inverse.



Let (F,+,-) be a field.

Since + is a binary operation on F, then F is closed under addition.

Since - is a binary operation on F', then F' is closed under multiplication.

Since F' is a ring, then (F,+) is an abelian group and 0 is the additive
identity of F' and the additive inverse of a € F' is denoted by —a.

Since F' is a ring, then 1 is the multiplicative identity of F.

Let F* be the set of all nonzero elements of F'.

Then F* = {a € F : a # 0}.

Therefore, F' satisfies the following axioms:

Al. a+be Fforalla,be F.

A2 (a+b)+c=a+ (b+c) forall a,b,c e F.

A3. a+b=b+aforall a,be F.

A4 (30 F)(Vac F)(0+a=a+0=a).

A5. Vae F)(3be F)(a+b=b+a=0).

M1. ab € F for all a,b € F.

M2. (ab)c = a(be) for all a,b,c € F.

M3. ab = ba for all a,b € F.

M4. (31e€e F)Vae F)(1-a=a-1=a).

M5. (Va € F*)(Fb € F)(ab=ba =1).

D1. a(b+c¢) = ab+ ac for all a,b,c € F.

D2. (b+ c¢)a=ba+ ca for all a,b,c € F.

F1.1#0.

Since F' is a commutative ring with identity 1 # 0 such that every nonzero
element has a multiplicative inverse, then F'is a commutative division ring.

Therefore, a field is a commutative division ring.

Since F is a division ring, then (F*,-) is the group of units of F'.

Since multiplication is commutative, then (F*,-) is an abelian group.

Example 4. field of rational numbers (Q, +, )
(Q,+,-) is a field.
Additive identity is 0 = 9.
Additive inverse of 7 is —%.
Multiplicative identity is 1 = %

Multiplicative inverse of ¢ € Q* is 3 € Q.

Example 5. field of real numbers (R, +,)
(R, +,-) is a field.
Additive identity is 0.
Additive inverse of a is —a.
Multiplicative identity is 1.
Multiplicative inverse of a € R* is % € R*.

Example 6. field of complex numbers (C,+, )
(C,+,-) is a field.
Additive identity is 0 = 0 4+ 0.
Let a,b € R.
Additive inverse of z = a + bi is —z = —a — bi.



Multiplicative identity is 1 = 1 + 0s.
Let z € C*.
1_1

Multiplicative inverse of z = |z|cis § is 27" = - = ﬁcis (—0)

Example 7. Z, is a field when p is prime
Let pe Z™.
If p is prime, then (Z,,+,-) is a field.

Example 8. Gaussian integers
Let Z[i] = {a +bi : a,b € Z}.
Then (Z[i],+) is an abelian group under complex addition.
(Z[i],+, ) is a subring of (C, +, ) known as the Gaussian integers.

Example 9. Q(v2) = {a +bV2 : a,b € Q} is a field under addition and
multiplication of R.

Theorem 10. left and right multiplicative cancellation laws hold in a
field

Let (F,+,-) be a field.

If ac =bc and ¢ # 0, then a = b. (right multiplicative cancellation law )

If ca = ¢b and ¢ # 0, then a = b. (left multiplicative cancellation law )

Proposition 11. multiplication and division are inverse operations
Let F be a field.
Then (Ya,b € F,a # 0)(3z € F)(ax =1).

b

a’

Therefore, ax = b means x =
Theorem 12. FEwvery field is an integral domain.

Let (F,+,-) be a field.
Then ab=0iff a=0or b =0 for all a,b € F.
Equivalently, ab # 0 iff @ # 0 and b # 0 for all a,b € F.

Therefore, the product of any two nonzero elements of a field is nonzero.

Since F' is an integral domain and every integral domain satisfies the multi-
plicative cancellation laws, then F satisfies the multiplicative cancellation laws,
as stated previously.

Example 13. Since Q,R, and C are fields, then Q,R, and C are integral do-
mains.

Example 14. Not every integral domain is a field.
The ring of integers Z is an integral domain, but Z is not a field.

Proposition 15. Let (F,+,-) be a field.
Ifa#0 and b # 0, then (ab)~t =a~1b~ 1.



Corollary 16. Let (F,+,-) be a field.
Let a,b,c € F such that b # 0 and ¢ # 0.

ac __ a
Then 35 = ¢.

Theorem 17. arithmetic operations on quotients
Let (F,+,-) be a field.
Let a,b,c,d € F such that b # 0 and d # 0. Then

1. ¢ = 5 iff ad = be. (equality of quotients)
2. %5 =% (multiply quotients)

3. if c#0, then /5 = 9. (divide quotients)
4. &+ & = adtbe  (4dd quotients)

L “db_dbc. (subtract quotients)

Theorem 18. For every prime p, Z, is a field of characteristic p.
In fact, Z, is a field iff p is prime.

Polynomial Rings

Let R[z] be the set of all polynomials in a single variable x having real coeffi-
cients.

Define polynomial addition and multiplication on R[z].

Then (R[z], +, ) is not a field, but it is a ring.

It is not a field because not every polynomial has a multiplicative inverse.

Definition 19. polynomial
Let R be a ring.
Let X be a variable (formal symbol that is not an element of R).
Let N ={0,1,2,..} ={n€Z:n >0}
Let n € N.
Let ag,a1,...,an, € R.
A polynomial f in variable X over R is a map f : N — R defined by

f = ap, ifk<n
7 lo ifk>n

such that f = > p,XF* for all k € N.

Let p be a polynomial in variable X over a ring R.
Then there exists n € Z,n > 0 such that ag,aq,...,a, € R and for all
k>n,p, =0and p, = a;, iff k <nand p = pp X*.



Therefore,

p = Zkak
= pot+mX +pXi 4+ AP X" H04+0+ ...
= at+uX+aX’+. .. +a, X" +04+0+...
= aot+ a1 X +aX?+ .. +a, X"
= ap X"+ an 1 X" '+ . +a1 X +ao

n
= Z aka.
k=0

Each a; X" is called a monomial.
ay, is the coefficient of X.
The degree of a monomial a; X* is the exponent k of the variable X.
Each monomial is a term of the polynomial.
Therefore, a polynomial is a finite sum of monomials.
(ag, a1, ...,a,) is a sequence of coefficients of the polynomial p.
0X™ =0 for each n € N.

(Ym,n € N)(XmX™ = Xm+n),

A polynomial is a linear combination of powers of X with coefficients in R.

Definition 20. constant polynomial
Let p be a polynomial in variable X over a ring R such that n = 0.
Then ag € R and p = 22:0 ap X% = ap X = ay.
Thus p is called a constant polynomial and aq is called a constant.
Hence, (ag, 0, ...,0) is the sequence of coefficients of p.

Let a #0 € R.
Since a = aX?, then the degree of a is 0.
Therefore, the degree of a nonzero constant polynomial is zero.

Definition 21. zero polynomial

Let N ={0,1,2,..} ={n€Z:n>0}

Let p be a polynomial in variable X over a ring R such that p, = 0 for all
neN.

Then p is the zero polynomial.

Thus, (0,0, ...,0) is the sequence of coefficients of p.

The zero polynomial corresponds to the zero of the ring R.

Therefore, p = 0.

The degree of the zero polynomial is defined to be —oo.



The zero polynomial is a constant polynomial.

Definition 22. degree of a polynomial

Let N =1{0,1,2,..} ={n€Z:n>0}.

Let p be a nonzero polynomial in variable X over a ring R.

Then there exists n € N such that ag, a1, ...,a, € R and p;, = 0 for all k > n
and py = ay iff k <nand p=>,_,arX"” and p # 0.

The degree of p is max (k € N :pp # 0).

Therefore, the degree of a nonzero polynomial is the largest degree of the
nonzero terms of the polynomial.

Since aX = aX!, then the degree of aX is one.
Degrees of polynomials:
Zero —oo

nonzero constant 0
linear 1

quadratic 2

cubic 3

quartic 4

quintic 5

sextic 6

septic 7

octic 8

nonic 9

decic 10

hectic 100

Definition 23. equal polynomials

Let p, g be polynomials in variable X over a ring R.

Let N =1{0,1,2,..} ={n€Z:n>0}.

Then there exist m,n € N such that ag,ai,...,am € R and py = 0 for all
k> m and py = ax iff k <m and p = Y] a, X" and by, b1, ...,b, € R and
qr =0forall k >n and gy = by iff k <nandqg=>,_, b X"

Thus,

p=ag+ai+..+a, X"

and

q=bg+b+..+b,X".

Therefore, p = q iff (Vk € N)(pr = q).

Two polynomials are equal iff corresponding coefficients for each power of
X are equal.

Definition 24. Addition of polynomials
Let N ={0,1,2,..}.
Let p and g be polynomials in variable X over a ring R.



Then there exist m,n € N such that ag,ai, ..., am € R and pr = 0 for all
k> m and p, = ag iff k <m and p = Y ]" ap X" and bg, b1, ...,b, € R and
qr =0 for all k >n and g, = by iff k <nand g =3, _,bpX".

The sum of polynomials is defined by the rule p + ¢ = > czx* where ¢ =
P+ qi for all k € N.

Thus,

ptq

Z apx® + i bra®
k=0
Z(pk + )z

n

Z(ak + b)z".

k=0

Therefore, the sum of two polynomials is the sum of coefficients of corre-
sponding terms.

Let m = degp and n = degq.

Then deg(p 4+ ¢) = max(m,n).

The sum of polynomials, denoted (p + ¢)(z) is the same as : (p + ¢)(z) =
p(x) + q(x), but this is not the definition of polynomial addition.

Definition 25. Multiplication of polynomials

Let N ={0,1,2,...}.

Let p and g be polynomials in variable X over a ring R.

Then there exist m,n € N such that ag, a1, ...,am € R and pr = 0 for all
k>mand p = ZZ;O arX* and by, b1, ....b, € R and g = 0 for all k > n and
q= ZZ:O kak-

The product of polynomials is defined by the rule pg = Z}?:O” cxz® where
cp = Zf:o a;byp_; for all k € N.

Let m = degp and n = degq.

Then deg(pq) = m + n.

The product of polynomials, denoted (pq)(z) is the same as : (pg)(z) =
p(x)g(z), but this is not the definition of polynomial multiplication.

Definition 26. polynomial ring R[z]
Let R be a ring.
Let R[z] be the set of all polynomials in variable x over R.
Then R[z] = {>°)_saxz® : (3n € Z)(n > 0)(Vk = 0,1,...,n)(ar, € R)}.

Theorem 27. Then (R[z],+,*) is a ring with unity .

The zero of R[] is the zero polynomial 0.
The additive inverse of Y, _, arpz® is 3} (—ax)z".



