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Binary Operations

Theorem 1. Properties of binary operations

Let % be a binary operation on a set S. Then

1. Closure: S is closed under .

2. Well defined: (Va,b,c,d € S)(a=cANb=d—axb=cxd). Law of
Substitution.

3. Left multiply (Va,b,c € S)(a=b— cxa=cxD).

4. Right multiply (Va,b,c € S)(a=b—axc=0bxc).

Proof. We prove 1.
Let a,b€ S.
Then (a,b) € S x S.
Since * is a binary operation on .S, then % : S x § — S is a function.
Therefore, x x y € S for every (z,y) € S x S.
In particular, ax b € S. O

Proof. We prove 2.

Let a,b,c,d € S such that a = c and b = d.

Since a,b € S, then (a,b) € S x S.

Since ¢,d € S, then (¢,d) € S x S.

By definition of equality of ordered pairs, (a,b) = (¢,d) iff a = ¢ and b = d.

Therefore, (a,b) = (¢, d).

Since * is a binary operation on .S, then % : S x § — S is a function.

Since every function is well defined, then for every (w, x), (y,z) € S x .S such
that (w,x) = (y, z), we have w*x = y * 2.

Since, (a,b) = (¢,d), then we conclude a x b = ¢ * d. O

Proof. We prove 3.
Let a,b,c € S such that a = 0.
Since equality is reflexive, then x = z for every x € S.
Since ¢ € S, then this implies ¢ = c.
Thus, by statement 2, ¢ = c and a = b imply c*xa = c*b.
Since ¢ = ¢ and a = b, then we conclude c*xa = c*b. O



Proof. We prove 4.
Let a,b,c € S such that a = b.
Since equality is reflexive, then z = x for every x € S.
Since ¢ € S, then this implies ¢ = c.
Thus, by statement 2, a = b and ¢ = ¢ imply a *xc = b * c.
Since a = b and ¢ = ¢, then we conclude a x ¢ = b *c. O

Proposition 2. If a binary structure has an identity element, then the identity
element is unique.

Proof. Let (S, ) be a binary structure with an identity element e € S.

Since e € S is an identity element, then e xa = a xe = a for every a € S.

Suppose €’ is an identity element of S.

Then e’ € Sand e’ xa=axe = a for every a € S.

Since ¢/ € S and e*xa = a*e = a for every a € S, then in particular,
exe =¢€.

Since e € S and €' xa = a*x € = a for every a € S, then in particular,
exe =e.

Hence, e =exe' =¢',s0 e =¢'.

Therefore, the identity element in S is unique. O

Proposition 3. Let (S, *) be an associative binary structure with identity.
Then
1. The inverse of every invertible element of S is unique.
2. Leta € S.
If a is invertible, then (a=!)™! = a. inverse of an inverse
3. Let a,b € S.
If a and b are invertible, then (axb)~' = bl xa~!. inverse of a product

Proof. We prove 1.
Let e be the identity element of the set S.
Let a be an arbitrary invertible element of S.
Then a € S.
Since a is invertible, then there exists b € S such that ab = ba = e.
Therefore, at least one inverse of a exists in S.

Suppose b’ is an inverse of a.
Then b € S and b'a = e.
Observe that

b = Vbe

b (ab)
= (Va)b
eb

= b

Hence, b’ = b, so at most one inverse of a exists.



Since at least one inverse of a exists and at most one inverse of a exists, then
exactly one inverse of a exists, so the inverse of a is unique.

Since a is arbitrary, then the inverse of every invertible element of S is
unique. O

Proof. We prove 2.

Let a € S.

Suppose «a is invertible.

Then there exists a unique a=! € S such that axa ! =a ' xa=e.

Since a x a™! :a_l*a:e, thena 'xa=axa" ' =e.

Hence, a is an inverse of a~!, by definition of inverse element.

Thus, a~! is invertible.

From statement 1, we know that the inverse of each invertible element of
an associative binary structure with identity is unique, so the inverse of ¢~ ! is
unique.

Therefore, the inverse of a~! must be a, so (a=1)~! = a. O

Proof. We prove 3.

Let a,b e S.

Suppose a and b are invertible.

Then there exist unique a=! € S and b~! € S such that axa ! =a " 'xa=c¢
and bxbt=b"lxb=e.

Since (S, %) is a binary structure, then S is closed under .

Since a € S and b € S, then axb € S.

Sincea™' € Sand b=' € S, then b~ ! xa~ ! € S.

Observe that

(axb)* (b 1xa™l) = ax(bxb Hxal
1

axexa

a*xa !

= e
and

(b tsxa N x(axb) = b lx(atxa)xb
b lxexb
= b lxp

= €.

Hence, b~ x ¢! is an inverse of a * b, by definition of inverse element.

Thus, a * b is invertible.

From statement 1, we know that the inverse of each invertible element of
an associative binary structure with identity is unique, so the inverse of a % b is
unique.

Therefore, b~! xa~! must be the inverse of a*b, so (axb)~1 =b~1!

xa~t. O



Proposition 4. Let (S, %) be an associative binary structure with a left identity
such that each element has a left inverse.
Then the left cancellation law holds.

Proof. Let e be a left identity of S.
Let a,b,c € S such that ca = cb.
Since e is a left identity and @ € S and b € S, then a = ea and b = eb.
Since each element of S has a left inverse and ¢ € S, then then there exists
¢’ € S such that dc =e.
Observe that

= (dc)a
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= eb
= b

Therefore, ca = ¢b implies a = b, so the left cancellation law holds. O

Proposition 5. Let (S, *) be an associative binary structure with a right identity
such that each element has a right inverse.
Then the right cancellation law holds.

Proof. Let e be a right identity of S.
Let a,b,c € S such that ac = be.
Since e is a right identity and a € S and b € 5, then a = ae and b = be.
Since each element of S has a right inverse and ¢ € S, then then there exists
¢’ € S such that ¢’ = e.
Observe that

= a(cd)
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= be
= b

Therefore, ac = be implies a = b, so the right cancellation law holds. O

Proposition 6. If a binary structure has a zero element, then the zero element
18 unique.



Proof. Let (S, %) be a binary structure with a zero element.
Let z be a zero element of S.
Then z € S and zx =z =z for all x € S.
Suppose 2’ is a zero element of S.
Then 2/ € S and 2’z =22’ =2 forall z € S.
Since z € S and 2’z = x2’ = 2/ for all z € S, then we conclude 2z’ = 2’.
Since 2’ € S and zzx = xz = z for all x € S, then we conclude zz' = 2.
Therefore, z = zz' = 2/, s0 z = 2/.
Therefore, at most one zero element exists in S.
Since at least one zero element exists in S and at most one zero element
exists in S, then exactly one zero element exists in S.
Therefore, the zero element in S is unique. O

Groups

Theorem 7. Uniqueness of group identity
The identity element of a group is unique.

Proof. Let (G, %) be a group.

Then there exists an identity element for * in G.

Let e be an identity element of G.

Since (G, *) is a group, then G is a set with a binary operation * defined on
G, so (G, *) is a binary structure.

Thus, (G, «) is a binary structure with identity e.

If a binary structure has an identity element, then the identity element is
unique, by proposition 2

Therefore, we conclude the identity element is unique, so e is unique. O

Theorem 8. Uniqueness of group inverses
The inverse of each element in a group is unique.

Proof. Let (G, *) be a group.

Let a be an arbitrary element of G.

Since each element of G has an inverse in G, then in particular, a has an
inverse in G, so a is invertible.

Let b be an inverse of a in G.

Since (G, ) is a group, then (G, ) is an associative binary structure with
identity.

The inverse of every invertible element of an associative binary structure
with identity is unique, by proposition 3.

Hence, the inverse of every invertible element of (G, -) is unique.

Since a is an invertible element of GG, then we conclude the inverse of a is
unique, so b is unique. O

Proposition 9. The identity element in a group is its own inverse.



Proof. Let (G, *) be a group with identity e € G.
Since G is a group and e € G, then e has an inverse in G.
Let e~! € G be the inverse of e.
Then by definition of inverse, ee™! = e.
Since e =ee ! =e !, then e = e~ L.
Therefore, e is the inverse of e. O

Theorem 10. Group inverse properties
Let (G, *) be a group. Then
1) (a™Y)~t =a for all a € G. inverse of an inverse
2) (axb)"t =b"txa?t for all a,b € G. inverse of a product

Proof. We prove 1.

Let a € G.

Each element in a group has an inverse, by definition of group.

Hence, a has an inverse a~! € G, so a is invertible.

Since (G, *) is a group, then (G, ) is an associative binary structure with
identity.

Since (G, ) is an associative binary structure with identity and a is invert-
ible, then by proposition 3, we conclude (a=!)~! = a. O

Proof. We prove 2.

Let a,b € G.

Since (G, *) is a group, then (G, ) is an associative binary structure with
identity.

By definition of a group, every element of G is invertible, so a is invertible
and b is invertible.

Since (G, %) is an associative binary structure with identity and « is invertible
and b is invertible, then by proposition 3, we conclude (a*b)~! =b~1xa~t. O

Proposition 11. inverse of a finite product
Let g1, 92, ..., gn be elements of a group (G, *).
Then (g1g2---gn) ™t = g5 g 195 L9yt for alln € Z+.

Proof. To prove (g1g2...gn)~ ' = g;lggil...gglgfl for all n € Z*, let S, :
(9192--9n) " = g7 g 1105 o1

We must prove

1. S, is true for all n € Z™.

We prove S, is true for all n € Z* by induction on n.

Basis:

Since (g1)~! = g; !, then S is true.

Induction:

Let k € ZT such that S}, is true.

Then (g192...9x) "L = glzlggfl...gglgfl.



Observe that

(9192--9kgk+1) " = [(9192--9k)gr+1) "
= Gt * (9192--.91) "
= gt *(9n gt e x gy oY)

_ -1 -1 -1 -1 -1
= Gpa1 %9k *Gp_1*--%0gg *gp .

Therefore, (g192---grgri1) * = 91;+11 *Gr % gn %0y tg1 Y, 80 Sk is true.

Hence, Sy implies Sy for all k € Z+.

Since S; is true and Sj implies Sy for all £ € Z*, then by induction, S,
is true for all n € Z7T. O

Theorem 12. Group Cancellation Laws
Let (G, %) be a group.
For all a,b,c € G
1. ifcxa=cx*b then a =b. (left cancellation law)
2. ifaxc="bxc then a =0>. (right cancellation law)

Proof. We prove the left cancellation law holds in a group.

Since (G, %) is a group, then * is a binary operation on G and * is associative,
so (G, ) is an associative binary structure.

Since (G, %) is a group, then an identity element exists in G.

Let e € G be the identity of G.

Then exa=axe=aforalla € G,s0exa=a forall a €.

Hence, e is a left identity with respect to *, so (G, x) has a left identity.

Let a € G be arbitrary.

By definition of a group, a has an inverse in G, so there exists b € G such
that axb=bxa =e.

Hence, there exists b € G such that bxa = e, so b is a left inverse of a.
Thus, a has a left inverse.
Since a is arbitrary, then each element of G has a left inverse.

Since (G, *) is an associative binary structure and (G, x) has a left identity
and each element of G has a left inverse, then by proposition 4, we conclude the
left cancellation law holds in (G, *). O

Proof. We prove the right cancellation law holds in a group.

Since (G, %) is a group, then * is a binary operation on G and * is associative,
so (G, ) is an associative binary structure.

Since (G, ) is a group, then an identity element exists in G.

Let e € G be the identity of G.

Then exa=axe=aforalla € G,soaxe=a forall a € G.

Hence, e is a right identity with respect to *, so (G, %) has a right identity.



Let a € G be arbitrary.
By definition of a group, @ has an inverse in G, so there exists b € G such
that axb=0bxa =ce.
Hence, there exists b € G such that a * b = e, so b is a right inverse of a.
Thus, a has a right inverse.
Since a is arbitrary, then each element of G has a right inverse.

Since (G, ) is an associative binary structure and (G, %) has a right identity
and each element of G has a right inverse, then by proposition 5, we conclude
the right cancellation law holds in (G, *). O

Corollary 13. Unique solutions to linear equations
Let (G, %) be a group.
Let a,b € G.
1. The linear equation a * x = b has a unique solution in G.
2. The linear equation x x a = b has a unique solution in G.

Proof. We prove a solution to the linear equation a * x = b is unique.
Let a,b € G.
Since G is a group, then the inverse of a exists in G, so a~! € G.
Existence:
Let 2 = a=! % b.
Since G is closed under %, then ¢~ xb € G, so z € G.
Observe that a* (a™ ! xb) = (a*xa ') xb=exb=h.
Hence, a=!' % b € G is a solution to the equation a * z = b.
Therefore, at least one solution exists.
Uniqueness:
Suppose 1,29 € G are solutions to the equation a * x = b.
Thena*xxzy =band a*xxzy =b,s0b=a*xx1 = ax*xs.
By the left cancellation law for groups we obtain 1 = x5.
Therefore, at most one solution exists.

Since at least one solution exists and at most one solution exists, then exactly
one solution exists.
Therefore, a solution to the equation a * z = b is unique. O

Proof. We prove a solution to the linear equation x * a = b is unique.
Let a,b € G.
Since G is a group, then the inverse of a exists in G, so a~! € G.
Existence:
Let x =bsxa™?t.
Since G is closed under %, then bxa~! € G, so z € G.
Observe that (bxa™Y)xa=bx(a"1*a) =bxe=h.
Hence, b+ a~! € G is a solution to the equation x * a = b.
Therefore, at least one solution exists.
Uniqueness:



Suppose 1,29 € G are solutions to the equation x x a = b.
Then 1 xa=0band 9 xa =05b,80 b=1x1 *a = xa *a.

By the right cancellation law for groups we obtain z1 = x».
Therefore, at most one solution exists.

Since at least one solution exists and at most one solution exists, then exactly
one solution exists.
Therefore, a solution to the equation = * a = b is unique. O

Proposition 14. A group has exactly one idempotent element, the identity
element.

Proof. Let (G, %) be a group with identity e € G.

Existence:

Then e x e = e, by definition of identity element.

Hence, e is an idempotent element, by definition of idempotent element.

Thus, there is at least one idempotent element in G.

Uniqueness:

Suppose z is an idempotent element of G.

Then zxx =z =x*e.

By the left cancellation law for groups we obtain x = e.

Therefore, there is at most one idempotent element in G.

Since there is at least one idempotent element in G and there is at most
one idempotent element in G, then there is exactly one idempotent element in
G. O

Proposition 15. left sided definition of a group

A group (G, ) is a set G with a binary operation x defined on G such that
the following axioms hold:

G1. x is associative.

(axb)xc=ax*(bxc) for all a,b,c € G.

G2. There is a left identity element for x.

(Ze € G)(Va € G)(exa=a).

G3. FEach element has a left inverse for .

MaeG)( e G)(bxa=ce).

Proof. Let G be a set with a binary operation * defined on G such that x* is
associative and there is a left identity element for * and each element has a left
inverse.

Since G is a set and * is a binary operation on G and * is associative, then G
is an associative binary structure, so G is an associative binary structure with
a left identity and each element has a left inverse.



Let e be a left identity of G.
Let a € G.
Since e is a left identity, then e € G and ex = z for all x € G.
In particular, ea = a and ee = e.
Since a € G and each element of G has a left inverse, then there exists o’ € G
such that a’a = e.
Observe that

da = e
= ee
= (da)e

= d'(ae).

Thus, a’a = d/(ae).
Since G is an associative binary structure with a left identity and each ele-
ment has a left inverse, then by proposition 4, the left cancellation law holds.
Therefore, a = ae.
Hence, ea = a = ae.
Since a is arbitrary, then ea = ae = a for all @ € G, so e is an identity for *.

Since e is an identity for *, then ex = ze = x for all z € G.
Since a’ € G, then we conclude ea’ = a’e = d’.
Observe that

|
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Thus, d’e = a'(ad’).

By the left cancellation law, we have e = aad’.

Hence, a’a = e = ad’.

Since a’ € G and aa’ = a’a = e, then @’ is an inverse of a, so a has an inverse
for *.

Since a is arbitrary, then every element of G has an inverse for .

Since * is a binary operation on G and * is associative and e is an identity
element for x and every element of G has an inverse for *, then by definition of
group, (G, %) is a group. O

Proposition 16. right sided definition of a group

A group (G, %) is a set G with a binary operation * defined on G such that
the following axioms hold:

G1. * is associative.

(axb)xc=ax(bxc) for all a,b,c € G.
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G2. There is a Tight identity element for .
(Ze € G)(Va € G)(a*e=a).
G3. Each element has a right inverse for .
(Va e G)(F e G)axb=ce).

Proof. Let G be a set with a binary operation * defined on G such that x* is
associative and there is a right identity element for * and each element has a
right inverse.

Since G is a set and * is a binary operation on G and * is associative, then
G is an associative binary structure, GG is an associative binary structure with
a right identity and each element has a right inverse.

Let e be a right identity of G.
Let a € G.
Since e is a right identity, then e € G and xze = « for all z € G.
In particular, ae = a and ee = e.
Since a € G and each element of G has a right inverse, then there exists
a’ € G such that aa’ = e.
Observe that

aa = €
= e€e

e(aa’)

(ea)a’.

Thus, aa’ = (ea)a’.

Since G is an associative binary structure with a right identity and each
element has a right inverse, then by proposition 5, the right cancellation law
holds.

Therefore, a = ea.

Hence, ae = a = ea.

Since a is arbitrary, then ea = ae = a for all @ € G, so e is an identity for *.

Since e is an identity for *, then ex = ze = z for all x € G.
Since a’ € G, then we conclude ea’ = a’e = d’.
Observe that

/

/
ae

= d'(ad)

= (da)d.
Thus, ea’ = (a’a)d’.

By the right cancellation law, we have e = a’a.
Hence, aa’ = e = da.
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Since a’ € G and aa’ = a’a = e, then d’ is an inverse of a, so a has an inverse
for x.
Since a is arbitrary, then every element of G has an inverse for .

Since * is a binary operation on G and * is associative and e is an identity
element for * and every element has an inverse for *, then by definition of group,
(G, *) is a group. O

multiplicative group notation

Lemma 17. Let (G,-) be a multiplicative group.
Leta € G.
Then a™ -a =a-a"™ for alln € Z7.

Proof. To prove a"-a=a-a" foralln € Z*,let S, : a"-a = a-a™

We must prove

1. S, is true for all n € Zt.

We prove S, is true for all n € Z™ by induction on n.
Basis:

Observe that

at-a = (a''-a)-a
= (@ -a)-a
= (a®-a)-(e-a)
= (a-a)-(a®-a)
= (e-a)-(a''-a)

Therefore, a' -a = a - a', so S; is true.

Induction:

Let k € ZT such that S, is true.

Then a*-a=a-a* and k> 0,s0 k+1> 0.
Observe that

g = (d¥a)-a
= (a-d")-a
= a-(d"-a)
= a-atl
Hence, a**! - a = a-a**!, so Spy1 is true.

Thus, Sy, implies Sy 1 for all k € Z™T.
Since S; is true and Sy implies Sy for all £ € Z™, then by induction, S,
is true for all n € Z+. O
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Theorem 18. Laws of Exponents for a multiplicative group
Let (G,+) be a multiplicative group.
1. Ifa€ G, thena™ = (a=1)" = (a™)~! for alln € Z*.

If a € G, then a™ € G for alln € Z.

If a € G, then a™ - a™ = a™ "™ for all m,n € Z.

If a € G, then (™)™ = a™" for all m,n € Z.

Ifa,b e G and G is abelian, then (ab)™ = a™ - b"™ for all n € Z.

Proof. We prove 1.
If a € G, then a™" = (a7 )" = (a™)~! for all n € Z+.
Let a € G be arbitrary.
To prove ™" = (a=1)" = (a")~! for all n € ZT, let n € Z7.
Then n € Z and n > 0, s0 a™" = (a~1)".

Since n € Z*, then (a=!)" is a product of a=! with itself n times.
Hence, (a )" = (a71) - (a71)-...- (a7 1}).
The expression (a7!) - (a71) - ... - (a7!) is the same as the inverse of the
product of a with itself n times, by proposition 11 .
Thus, (a™) - (a™1)-...-(a™Y) =(a-a..-a)"' = (a")" L.
Hence, (a™1)" = (a™Y) - (a™) - ..o (a7} = (a-a...-a)”t = (a™)7L, s0
(@)™ = (")

Therefore, a=" = (a=!)" and (¢71)" = (a")7}, s0 a™ = (a=H)" = (a™) L.

Proof. We prove 2.
If a € G, then a™ € G for all n € Z.
Let e € G be the identity of G.
Let a € G be arbitrary.
To prove a™ € Gforalln € Z,let S, :a” € Gand let T,, : =™ € G.
‘We must prove
1. a% € G.
2. S, is true for all n € Z*.
3. T, is true for all n € Z+. O

Proof. We first prove a° € G.
Since a® = e and e € G, then a° € G. O

Proof. We prove S, is true for all n € Z™ by induction on n.

Basis:

Sincea € Ganda' =a'"'-a=a’-a=e-a=a, then a' € G, so 9 is true.

Induction:

Let k € ZT such that S, is true.

Since k € Z*, then k > 0,50 k+1 > 0.

Since Sy, is true, then o* € G.

Since a**t! = a¥ . and ¥ € G and a € G, then by closure of G under -, the
product a¥*! is an element of G, so a*t! € G.
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Therefore, Siy1 is true.

Thus, Sy, implies Sy11 for all k € Z™T.

Since S; is true and Sy implies Syy1 for all k € ZT, then by induction, S,
is true for all n € Z+. O

Proof. We prove T, is true for all n € Z™ by induction on n.
Basis:
Since a € G and every element in G is invertible by definition of a group,
then its inverse ¢! is in G, so ¢~ ! € G.
Therefore, T; is true.
Induction:
Let k € ZT such that T}, is true.
Since k € Z*, thenk >0and k+1€Z%,sok+1> 0.
Since k > 0, then a=* = (a=1)*.
Since T}, is true, then a=* € G.
Observe that

a—(k+1) — (a—l)(k+1)
= (a)*- (a7
(@*)- ().
Since a™* € G and a~! € G, then by closure of G under -, we have a~
G, so a~ D) € G.
Therefore, Tj41 is true.
Thus, T} implies Ty for all k € Z*.

Since T} is true and T}, implies Tyy1 for all k € Z™, then by induction, T,
is true for all n € Z+. O

kig=1e

Proof. We prove 3.

If a € G, then a™ - a™ = ™™™ for all m,n € Z.

Let a € G be arbitrary.

Let m € Z.

To prove a™ - a® = a™™ for all n € Z, let S, : a™ - a™ = ™™ and let
T, :a™m™-a” ™ =am ™.

‘We must prove

1. a™-a® = gm0,

2. S, is true for all n € Z*.

3. T, is true for all n € Z+. O
Proof. We prove a™ - a® = ™10,

Since ™0 =a™ =a™ - e =a™ - a°, then ™ - a® = ™10 O

Proof. We prove T is true.
Basis:
Either m —1>0orm—-1=0o0orm—1<0.
We consider these cases separately.
Case 1: Suppose m — 1 > 0.
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Then m > 1, so m > 0.

Since a™ - a~
m —1 — am—

a’” - a

1 _ (am—l . CL) . (1_1 am—l . (a . a—l) _ am—l e = am—l’ then
1

Therefore, T} is true.
Case 2: Suppose m —1 = 0.
Then m = 1.

Since a™ - a

—1 1 -1 -1

=al-al=a-al=e=a"=am"" thena™ o~ =am L.

Therefore, T7 is true.
Case 3: Suppose m — 1 < 0.
Then m < 1.

We must prove a™ - a
The statement a™ - a~
statement a™ - a
statement ¢~ % - a

-1
1

= a™~! for all integers m < 1.

= a™~! for all integers m < —1 is equivalent to the
= a™~! for all integers m < —2 which is equivalent to the
= a7 %! for all integers k > 2.

—1
-1

So, to prove the statement a™ - a~! = a™! for all integers m < —1, we
prove the equivalent statement a=* - a~! = ¢~ %! for all integers k > 2.

Let k€ Z and k > 2.

Since k > 2 and 2 > 0, then k£ > 0.

Since £ > 0 and 1 > 0, we add to obtain £+ 1 > 0.

Observe that

a—k _a—l _ (ak)—l 0,_1
= (a-af)™!
= (@ -a)
_ (ak+1)71
a—(k+D)
a—k-1
Hence, a™%-a=t =a %1, s0 a™-a~! = a™! for all integers m < —1.
Therefore, T; is true.
In all cases, T} is true.
Therefore, a™ -a~' = ™! for all m € Z. O

Proof. Induction:
Let k € Z* such that T}, is true.
Since k € ZT, then k > 0,50 k+ 1 > 0.

k m—k

Since T}, is true, then a™ -a™" = a

Either m—k—-1>0o0orm—k—1=0orm—k—1<0.
We consider these cases separately.

Case 1: Suppose m —k —1> 0.

Then m —k >1,som—k > 0.
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Observe that
am . af(k+1)

I
—~ 8 9 8
3
./\. ’
S
-
S
A
N~—

a
= (@™ *1t.a)a

Il
2 2 2 9
9]

Thus, a™ - o~ k1) = gm—(k+1)
Therefore, Ty41 is true.

Case 2: Suppose m —k—1=0.
Then m — k = 1.

Observe that

m

g . gD

= Zm (a*-a7h)
(

Il
2 2 9
S

I
2 8 2 o

Thus, a™ - =kt = gm—(k+1),
Therefore, Tj41 is true.
Case 3: Suppose m —k —1 < 0.
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Observe that

m

a™ - af(k+1) _ m (afl)kjtl

I
~ & 2
3
AP
QI
o
QI
L
N~—

a
= a
a

Thus, a™ - = k1) = gm—(k+1),
Therefore, Ty 1 is true.

In all cases, Ty is true.
Hence, T}, implies Ty for all k € ZT.
Since T} is true and T}, implies Ty for all k € ZT, then by induction, T},
is true for all n € Z+. O

Proof. We prove S, is true for all n € Z™ by induction on n.
Basis:
Either m+1>0o0orm+1=0o0orm+1<0.
We consider these cases separately.
Case 1: Suppose m + 1 > 0.
Since a™ -a' =a™-a=am"1"1 . g =a™*!, then a™ -a! =a
Therefore, S; is true.
Case 2: Suppose m+1=0.
Then m = —1.
Since a™ -al =a!l-a'=a"' -a=e=a =a™"!, then a™ - a' = o™t
Therefore, Sy is true.
Case 3: Suppose m + 1 < 0.
Then m < —1.
We must prove a™ - a'

m—+1

= a™*! for all integers m < —1.

The statement a™ - a' = a™ 1! for all integers m < —1 is equivalent to the
statement a™ - a' = a™*! for all integers m < —2 which is equivalent to the
statement o= - a' = =¥+ for all integers k > 2.

So, to prove the statement a™ -a' = a™*! for all integers m < —1, we prove
the equivalent statement a=* - a' = a=**! for all integers k > 2.

Let k€ Z and k > 2.

Since k > 2 and 2 > 0, then k£ > 0.

Since k > 2,then k—1>1,s0 k—1>0.
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Observe that

a a = a - a
_ afl)k .a
—1\k—1

= a . e
_ a—l)k—l
_ kD)
R
Hence, a=% - a' = a7 %1, s0 a™ - a' = a™*! for all integers m < —1.
Therefore, S; is true.
In all cases, S is true.
Proof. Induction:
Let k € ZT such that S, is true.
Since k € Z*, then k > 0.
Since Sy, is true, then a™ - a* = ™k,

Either m+k+1>0orm+k+1=0orm+k+1<0.
We consider these cases separately.

Case 1: Suppose m+k+ 1> 0.

Observe that

a™ . ak:+1

Thus, a™ - abt! = gm+(E+1)

Therefore, Sj41 is true.
Case 2: Suppose m +k+1=0.
Then m + k = —1.

18



Observe that

a™-aftt = 4™ (a® - a)
= (@™ -a*)-a
= amtF.g
= a71 -a
= e
= ao
_ am+k+1
= gmT+1)
Thus, a™ - abt1 = gm+(E+1),
Therefore, Sj41 is true.
Case 3: Suppose m+k+ 1 < 0.
Then m + k < —1.
1 m+1

Since 57 is true, then a™ -a* =a for all integers m < —1.

Hence, a™ 1% . g1 = g(m+k)+1,

Observe that
a™ . ak+1

= (a oak)~a

Thus, a™ caktl = gmt (k1)
Therefore, Sj41 is true.

In all cases, Sk41 is true.
Hence, S) implies Sy for all k € Z*.
Since S; is true and Sy implies Sy 41 for all k € ZT, then by induction, S,
is true for all n € Z7. O

Proof. We prove 4.

If a € G, then (™)™ = a™" for all m,n € Z.

Let a € G.

Let m € Z.

To prove (™)™ = a™" for all n € Z, let S, : (a™)™ = ™" and let T, :
(am)fn — am(fn)'

We must prove

1. (a™)? = a™.

2. S, is true for all n € ZT.

3. T, is true for all n € Z+. O

19



Proof. We prove (a™)? = a™0.
Since a € G and m € Z, then a™ € G, so (a™)? =e = a® = a™?.
Therefore, (a™)? = a™. O

Proof. We prove S, is true for all n € Z* by induction on n.
Basis:
Since (a™)! = a™ = a™?, then (a™)! = a™!, so S is true.
Induction:
Let k € ZT such that S}, is true.
Then (a™)* = a™F.
Observe that

(a7rL)k+1 _ (am)k .a™
— amk ca™
—_ akarm
— am(k—i—l).

Thus, (a™)F*! = a™*+1) 50 Sy, is true.

Therefore, Sy, implies Sy for all k € Z™T.

Since S; is true and Sy implies Sy 1 for all k € ZT, then by induction, S,
is true for all n € Z™. O

Proof. We prove T), is true for all n € Z* by induction on n.

Basis:

Since m € Z, then either m > 0 or m =0 or m < 0.

We consider these cases separately.

Case 1: Suppose m > 0.

Then (a™) ' =a"™ =a™Y, 50 (a™) ' = a1V,

Therefore, T; is true.

Case 2: Suppose m = 0.

Then (a™)~! = (a®) ' =e ! =e =a’ = a® D = g™V 50 (a™)"! =
am=1,

Therefore, T} is true.

Case 3: Suppose m < 0.

Then —m > 0, so a= ("™ = (a=™)7 1.

Observe that

(@t = e
= [l

am(—l).

Thus, (a™)~! = a™(=1 50 T} is true.
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In all cases, T} is true.

Therefore, (a™)~! = a™=Y for all m € Z.

Induction:

Let k € Z* such that T}, is true.

Then (a™) % = o™k,

Observe that

Thus, (a™)~ ¢+ = g=mk+1),

is true for all n € Z+.

Proof. We prove 5.

-

= (@™ -am

= @) @

= (@) (@)D

= @)@

— (@)t qmR)

—  gm(=1D) | gm(=F)

= a™.qg ™
q—(1+k)
P!

so T4 is true.
Therefore, T}, implies T4 for all k € Z*.
Since T} is true and T} implies Tyy1 for all k € Z™, then by induction, T,

O

If a,b € G and G is abelian, then (ab)™ = a™b" for all n € Z.
Suppose a,b € G and G is abelian.
To prove (ab)™® = a™b™ for all n € Z, let S, : (ab)™ = a™b" and let T, :

(ab)™™ =a "b7".
We must prove
1. (ab)? = a"p°.

2. S, is true for all n € ZT.

3. T, is true for all n € Z+. O
Proof. We prove (ab)? = a"8°.

Since a € G and b € G, then by closure of G under -, we have ab € G.

Therefore, (ab)? = e = ee = a®b?, so (ab)? = a’b°, as desired. O

Proof. We prove S, is true for all n € Z™ by induction on n.

Basis:

Since (ab)! = ab = a'b!, then (ab)! = a'bl, so S is true.

Induction:

Let k € Z* such that S, is true.
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Since k € Z*, then k € Z and k > 0.
Since Sj is true, then (ab)* = a*b*.
Observe that

(ab)*** = (ab)*(ab)
)

I
—
IS
ol
(=
ko
—~
Q
=
~

a*a)(b*b)

_ ak+1bk+l

Therefore, (ab)*+! = ak+1pF+1 50 Sy is true.

Hence, Sy implies Sk for all k € Z+.

Since S; is true and Sj implies Sy for all £ € Z™*, then by induction, S,
is true for all n € Z+. O

Proof. We prove T), is true for all n € Z* by induction on n.
Basis:
Since (ab)™! =b"ta=t =a"'b7!, then (ab) "' =a~1b7!, so T} is true.
Induction:
Let k € Z* such that T}, is true.
Since k € Z*, then k € Z and k > 0.

Since T}, is true, then (ab)™% = a=Fb=F.
Observe that
(ab)—(k+1) — (ab)—k—l

= (ab)""(ab)™
= (a " %) (ab)7?
-
= a *(b " )a!
= (a"a )(b ")
e G

g~ (k+1) p—(k+1)

Hence, (ab)~F+1) = q=R+Dp=(k+1) "5 Ty is true.

Therefore, T}, implies T4 for all k € Z*.

Since T} is true and T}, implies Tyy1 for all k € Z™, then by induction, T,
is true for all n € ZT O

Proposition 19. Let (G, -) be a multiplicative group with multiplicative identity
ec@.
(Vn € Z)(e" =e).
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Proof. To prove (Vn € Z)(e" =e), let Sy, : e =e and let T, : e™™ = e.
‘We must prove
1. e =e.
2. S, is true for all n € Z+.
3. T, is true for all n € Z+. O

Proof. We prove e° = e.

Since G is a multiplicative group and a® = e for all @ € G and e € G, then
0
e’ =e. O

Proof. We prove S, is true for all n € ZT by induction on n.

Basis:

Since G is a multiplicative group and e € G, then e! =e'"!. e =¢e0.e =
e-e =e, s0 S is true.

Induction:

Let k € ZT such that S, is true.

Since k € Z*, then £k > 0,s0 k+1 > 0.

Since Sy, is true, then e* = e.

Since e**t! =¥ . e =e-e = e, then Sjy1 is true.

Therefore, Sy, implies Sy for all k € Z™T.

Since 57 is true and Sy, implies Siy1 for all k € Z*, then by induction S, is
true for all n € Z7. m

Proof. We prove T), is true for all n € Z* by induction on n.

Basis:

Since the identity element of a group is its own inverse, then e~
is true.

Induction:

Let k € ZT such that T}, is true.

Then e % = e.

Since e~ (F+1) = ¢~ =ee ! = ce = e, then T}, is true..

Therefore, T} implies T4 for all k € Z*.

Since 17 is true and T}, implies Ty 1 for all k € Z*, then by induction T, is
true for all n € Z+. O

L=¢ s0T)

k=1 _ o—kg—1 1

additive group notation

Lemma 20. Let (G,+) be an additive group.
Leta € G.
Then na +a = a +na for alln € Z+.

Proof. To prove na +a = a +na for all n € Z*, let S,, : na + a = a + na.
We must prove
1. S, is true for all n € Zt.
We prove S, is true for all n € Z* by induction on n.
Basis:
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Observe that

lat+a = [1-1)a+al+a
Oa+a)+a

[
(
= (0a+a)+ (0+a)
(
(

0a + a) + (0a + a)
0+a)+[(1—-1)a+ad]
= a+la.

Therefore, la + a = a + la, so Sy is true.
Induction:
Let k € Z* such that S, is true.
Then ka+a=a+kaand k > 0,s0 k+ 1> 0.
Observe that

(k+1)a+a = (ka+a)+a
= (a+ka)+a
= a+ (ka+a)
= a+ (k+1a.

Hence, (k+1)a+a=a+ (k+ 1)a, so Sgy1 is true.

Thus, Sy, implies Sk for all k € ZT.

Since S; is true and Sj implies Sy for all £ € Z™*, then by induction, S,
is true for all n € Z+. O

Theorem 21. Laws of Fxponents for an additive group
Let (G,+) be an additive group.
1. If a € G, then (—n)a = n(—a) = —(na) for alln € Z*.
2. If a € G, then na € G for alln € Z.
3. If a € G, then ma + na = (m+ n)a.
4. If a € G, then n(ma) = (mn)a for all m,n € Z.
5. Ifa,b € G and G is abelian, then n(a + b) = na + nb for alln € Z.

Proof. We prove 1.
If a € G, then (—n)a = n(—a) = —(na) for all n € Z*.
Let a € G be arbitrary.
To prove (—n)a = n(—a) = —(na) for all n € Z*, let n € Z+.
Then n € Z and n > 0, so (—n)a = n(—a).

Since n € ZT, then n(—a) is a sum of —a with itself n times.
Hence, n(—a) = (—a) + (—a) + ... + (—a).
The expression (—a)+ (—a)+ ...+ (—a) is the same as the inverse of the sum
of a with itself n times, by proposition 11 .
Thus, (—a) + (—a) + ...+ (—a) = —=(a+a+ ... + a) = —(na).
Hence, n(—a) = (—a) + (—a) + ... + (—a) = =(a+ a+ ... + a) = —(na), so
n(—a) = —(na).
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Therefore, (—n)a = n(—a) and n(—a) = —(na), so (—n)a = n(—a) = —(na).
O

Proof. We prove 2.
If a € G, then na € G for all n € Z.
Let 0 € G be the identity of G.
Let a € G be arbitrary.
To prove na € G for alln € Z, let S, : na € G and let T), : (—n)a € G.
We must prove
1. 0a € G.
2. S, is true for all n € Z+.
3. T, is true for all n € Z*. O

Proof. We first prove Oa € G.
Since 0a = 0 and 0 € G, then 0a € G. O

Proof. We prove S, is true for all n € Z™ by induction on n.

Basis:

Sincea € Gand la=(1—-1)a+a=0a+a=0+a=a, then la € G, s0 S
is true.

Induction:

Let k € Z* such that S, is true.

Since k € Z*, then k > 0,50 k+1 > 0.

Since S is true, then ka € G.

Since (k+ 1)a = ka+a and ka € G and a € G, then by closure of G under
+, the sum (k + 1)a is an element of G, so (k + 1)a € G.

Therefore, Sk is true.

Thus, Sy, implies Sy1 for all k € Z7T.

Since S; is true and Sy implies Sy for all £ € Z™, then by induction, S,
is true for all n € Z7T. O]

Proof. We prove T, is true for all n € ZT by induction on n.

Basis:

Since a € G and every element in G is invertible by definition of a group,
then its inverse —a is in G, so —a € G.

Since (—1)a = —a and —a € G, then T} is true.

Induction:

Let k € Z* such that T}, is true.

Since k € ZT, thenk >0and k+1€Z%,s0k+1> 0.

Since Ty, is true, then (—k)a € G.

Observe that

—(k+1Da = (k+1)(—a)
k(—a) + (—a)
= (=k)a+ (—a).
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Since (—k)a € G and —a € G, then by closure of G under +, we have
(—k)a+ (—a) € G, s0 —(k+ 1)a € G.

Therefore, Ty41 is true.

Thus, T} implies Ty41 for all k € Z+.

Since T} is true and T} implies Tyy1 for all k € Z™, then by induction, T,
is true for all n € Z+. O

Proof. We prove 3.

If a € G, then ma + na = (m + n)a for all m,n € Z.

Let a € G be arbitrary.

Let m € Z.

To prove ma + na = (m + n)a for all n € Z, let S, : ma +na = (m +n)a
and let T, : ma + (—n)a = (m — n)a.

We must prove

1. ma + 0a = (m + 0)a.

2. S, is true for all n € Z7T.

3. T, is true for all n € Z*. O

Proof. We prove ma + 0a = (m + 0)a.
Since (m + 0)a = ma = ma + 0 = ma + Oa, then ma + 0a = (m + 0)a. O

Proof. We prove T is true.

Basis:

Either m—1>0orm—-1=0orm—1<0.

We consider these cases separately.

Case 1: Suppose m — 1 > 0.

Then m > 1, so m > 0.

Since ma+(—1)a = ma+(—a) = [(m—1)a+a]+(—a) = (m—1)a+[a+(—a)] =
(m—1)a+ 0= (m —1)a, then ma + (-1)a = (m — 1)a.

Therefore, T; is true.

Case 2: Suppose m — 1 =0.

Then m = 1.

Since ma+(—1)a = la+(—1)a = a+(—1)a = a+(—a) = 0 = 0a = (m—1)a,
then ma + (—=1)a = (m — 1)a.

Therefore, T7 is true.

Case 3: Suppose m — 1 < 0.

Then m < 1.

We must prove ma + (—1)a = (m — 1)a for all integers m < 1.

The statement ma + (—1)a = (m — 1)a for all integers m < —1 is equivalent
to the statement ma 4+ (—1)a = (m — 1)a for all integers m < —2 which is
equivalent to the statement (—k)a + (—1)a = (—k — 1)a for all integers k > 2.

So, to prove the statement ma + (—1)a = (m — 1)a for all integers m < —1,
we prove the equivalent statement (—k)a + (—1)a = (—k — 1)a for all integers
k> 2.

Let k€ Z and k > 2.

Since k > 2 and 2 > 0, then k£ > 0, so —k < 0.

Since k£ > 0 and 1 > 0, then we add to obtain k+ 1 > 0.
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Observe that

Hence, (—k)a+(—1)a = (—k—1)a, so ma+(—1)a = (m—1)a for all integers

m < —1.
Therefore, Ty is true.

In all cases, T} is true.
Therefore, ma + (—1)a = (m — 1)a for all m € Z.

Proof. Induction:
Let k € Z* such that T}, is true.
Since k € ZT, then k > 0,50 k+1 > 0.
Since T is true, then ma + (—k)a = (m — k)a.
Eitherm —k—-1>0orm—-k—1=0orm—-k—1<0.
We consider these cases separately.
Case 1: Suppose m — k — 1> 0.
Thenm —k >1,som—k > 0.
Observe that

ma+[—(k+1D]a = ma+[(k+1)(—a)]
= ma+ [k(-a)+ (—a)]
= ma+[(=k)a+ (—a)]
= [ma+ (=k)a] + (—a)
= (m—kla+(—a)
= [(m—k—-1a+a]l+ (—a)
= (m—k—1a+la+(—a)
= (m—k—-1)a+0
= (m—k—-1a
= [m—(k+1)a.

Thus, ma + [—(k+ 1)]a = [m — (k + 1)]a.
Therefore, Ty41 is true.

Case 2: Suppose m — k—1=0.

Then m — k = 1.
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Observe that

ma+[—(k+1)]a = ma+ (k+1)(—a)
= ma+ [k(—a)+ (—a)]
= ma+[(=k)a+ (—a)]
= [ma+ (=k)a] + (—a)
= (m—kla+(—a)
= la+(—a)
— at(-a)
= 0
= 0Oa
= (m—k—-1a
= [m—(k+1)a.

Thus, ma + [—(k+ 1)]a = [m — (k + 1)]a.
Therefore, Ty41 is true.

Case 3: Suppose m —k —1 < 0.
Observe that

ma+[—(k+1)]a = ma+ (k+1)(—a)
= ma+ [k(—a)+ (—a)]
= ma+[(—=k)a+ (—a)]
= [ma+ (—k)a] + (—a)
= (m—k)a+(-a)
= (m—k)a+(-1)a
= (m—k—-1a

[m—(k+1)]a

Thus, ma + [—(k + 1)]a = [m — (k + 1)]a.
Therefore, Ty 1 is true.

In all cases, Ty is true.
Hence, T}, implies Ty 1 for all k € Z™T.
Since T} is true and T}, implies Ty for all k € ZT, then by induction, T,
is true for all n € Z+. O

Proof. We prove S, is true for all n € Z* by induction on n.
Basis:
Either m+1>0o0orm+1=0o0orm+1<0.
We consider these cases separately.
Case 1: Suppose m + 1 > 0.
Since ma+1a = ma+a = (m+1—1)a+a = (m+1)a, then ma+1a = (m+1)a.
Therefore, Sy is true.
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Case 2: Suppose m+1=0.

Then m = —1.

Since ma + la = (—1)a+la=(-1)a+a=—-a+a=0=0a = (m+ 1)a,
then ma + la = (m + 1)a.

Therefore, S7 is true.

Case 3: Suppose m + 1 < 0.

Then m < —1.

We must prove ma + la = (m + 1)a for all integers m < —1.

The statement ma + la = (m + 1)a for all integers m < —1 is equivalent to
the statement ma + la = (m + 1)a for all integers m < —2 which is equivalent
to the statement (—k)a + la = (—k + 1)a for all integers k > 2.

So, to prove the statement ma + la = (m + 1)a for all integers m < —1, we
prove the equivalent statement (—k)a + la = (—k + 1)a for all integers k > 2.

Let k € Z and k > 2.

Since £ > 2 and 2 > 0, then £ > 0.

Since k> 2, then k—1>1,s0k—1>0.

Observe that

(=k)a+1la = (-k)a+a
= k(—-a)+a
= [(k=D(=a)+(=a)] +a
= (k=1)(=a) +[(-a) +q
= (k—=1)(-a)+0
= (k=1)(-0a)
= —(k—1a
= (=k+1a

Hence, (—k)a + la = (—k + 1)a, so ma + la = (m + 1)a for all integers
m < —1.
Therefore, S7 is true.

In all cases, S is true. O

Proof. Induction:
Let k € ZT such that S}, is true.
Since k£ € Z*, then k > 0.
Since Sy, is true, then ma + ka = (m + k)a.
Either m+k+1>0o0orm+k+1=0orm+k+1<O0.
We consider these cases separately.
Case 1: Suppose m+k+ 1> 0.
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Observe that

ma+ (k+1)a = ma+ (ka+a)
(ma+ ka) +a
(m+k)a+a
(
(

m+k+1—1a+a
m+k+1)a
= [m+ (k+1)a.

Thus, ma + (k + 1)a = [m + (k + 1)]a.
Therefore, Sj41 is true.

Case 2: Suppose m +k+1=0.
Then m + k = —1.

Observe that

ma+ (k+1)a = ma+ (ka+a)
= (ma+ka)+a
= (m+klat+a
= (-la+a
= —a-+a
=0
= 0Oa
= (m+k+1a
= [+ G+ D

Thus, ma + (k + 1)a = [m + (k + 1)]a.

Therefore, Sj41 is true.

Case 3: Suppose m+ k+1<0.

Then m+ k < —1.

Since Sy is true, then ma + la = (m + 1)a for all integers m < —1.
Hence, (m + k)a+ la = [(m + k) + 1]a.

Observe that

ma+ (k+1)a = ma+ (ka+a)
(ma + ka) + a
= (m+kla+a
(m+k)a+ la
= [(m+k)+1]a
[m+ (k + 1)]a.

Thus, ma + (k+ 1)a = [m + (k + 1)]a.
Therefore, Sj41 is true.
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In all cases, Sk41 is true.
Hence, Sy implies Sy for all k € Z+.
Since S; is true and Sy implies Syy1 for all k € ZT, then by induction, S,
is true for all n € Z+. O

Proof. We prove 4.

If a € G, then n(ma) = (mn)a for all m,n € Z.

Let a € G.

Let m € Z.

To prove n(ma) = (mn)a for all n € Z, let S, : n(ma) = (mn)a and let
T, : (—n)(ma) = [m(—n)]a.

We must prove

1. 0(ma) = (m0)a.

2. 5, is true for all n € Z+.

3. T, is true for all n € Z+. O

Proof. We prove 0(ma) = (m0)a.
Since a € G and m € Z, then ma € G, so 0(ma) = 0 = 0a = (m0)a.

Therefore, 0(ma) = (m0)a. O
Proof. We prove S, is true for all n € Z* by induction on n.

Basis:

Since 1(ma) = ma = (ml)a, then 1(ma) = (ml)a, so Sy is true.

Induction:

Let k € Z* such that S, is true.
Then k(ma) = (mk)a.
Observe that

(k+1)(ma) = k(ma)+ (ma)
= (mk)a+ (ma)
= (mk+m)a
= mk+ 1

Thus, (k+ 1)(ma) = m(k + 1)a, so Sk41 is true.

Therefore, Sy implies Si1 for all k € Z+.

Since S; is true and Sj implies Sy for all £ € Z™*, then by induction, S,
is true for all n € Z+. O

Proof. We prove T), is true for all n € Z* by induction on n.
Basis:
Since m € Z, then either m > 0 or m = 0 or m < 0.
We consider these cases separately.
Case 1: Suppose m > 0.
Then (—1)(ma) = —(ma) = [(~m))a = [m(~1)]a, so (~1)(ma) = [m(~1)]a.
Therefore, T} is true.
Case 2: Suppose m = 0.
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Then (—1)(ma) = (—=1)(0a) = (-=1)0 = 0 = 0a = [0(—1)]a = [m(-1)]a, so

(=1)(ma) = [m(=1)]a.

Therefore, T} is true.

Case 3: Suppose m < 0.

Then —m > 0, so [—(—m)]a = —[(—m)a].
Observe that

(=1)(ma) =

= (-m)a
= [m(-1)]a.

Thus, (—1)(ma) = [m(—1)]a, so Ty is true.

In all cases, T} is true.
Therefore, (—1)(ma) = [m(—1)]a for all m € Z.
Induction:
Let k € ZT such that T}, is true.
Then (—k)(ma) = [m(—k)]a.
Observe that

[=(k+D](ma) =

Thus, [—(k + 1)](ma) = [m(—(k + 1))]a, so Tk11 is true.
Therefore, T} implies Ty 1 for all k € Z7.

Since T} is true and T}, implies Ty41 for all k € Z™, then by induction, T,

is true for all n € Z+.

Proof. We prove 5.

If a,b € G and G is abelian, then n(a + b) = na + nb for all n € Z.
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Suppose a,b € G and G is abelian.

To prove n(a +b) = na + nb for all n € Z, let S, : n(a +b) = na + nb and
let T,, : (—n)(a +b) = (—n)a + (—n)bd.

We must prove

1. 0(a + b) = Oa + 0b.

2. 5, is true for all n € Z+.

3. T, is true for all n € Z+. O

Proof. We prove 0(a +b) = 0a + 0b.
Since a € G and b € G, then by closure of G under +, we have a + b € G.
Therefore, 0(a+b) = 0 = 04+0 = 0a+00b, so 0(a+b) = 0a+00b, as desired. O

Proof. We prove S, is true for all n € Z* by induction on n.
Basis:
Since 1(a +b) = a + b = la + 1b, then 1(a + b) = la + 1b, so S; is true.
Induction:
Let k € Z* such that S, is true.
Since k € Z*, then k € Z and k > 0.
Since Sy, is true, then k(a + b) = ka + kb.
Observe that

(k+1)(a+bd) = k(a+b)+(a+D)
= (ka+kb)+ (a+0)
= ka+ (kb+a)+b
= ka+(a+kb)+b
= (ka+a)+ (kb+0)
= (k+1la+(k+1)b

Therefore, (k+ 1)(a +b) = (k+ 1)a + (k+ 1)b, so Sky1 is true.

Hence, S) implies Sy, for all k € Z*.

Since S; is true and Sy implies Sy 41 for all k € ZT, then by induction, S,
is true for all n € Z7. O

Proof. We prove T, is true for all n € ZT by induction on n.

Basis:

Since (—1)(a+b) = —(a+b) = (=b) +(—a) = (—a) + (=b) = (—1)a+ (—=1)b,
then (=1)(a +b) = (—1)a+ (—1)b, so T3 is true.

Induction:

Let k € Z* such that T}, is true.

Since k € Z*, then k € Z and k > 0.

Since Ty, is true, then (—k)(a +b) = (—k)a + (—k)b.
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Observe that

[—(k+D](a+b) =

Hence, [—(k+ 1)](a+b) = [-(k + D]a + [—(k + 1)]b, so Tk is true.

a+ (—k)b] + [—(a+ )]
—k)a+ (=k)b] + [(=b) + (—a)]
—k)a+ [(—k)b+ (=b)] + (—a)
(=k)a+ (—=a)] + [(—=k)b+ (=b)]

Therefore, T}, implies Ty 1 for all k € Z7.
Since T} is true and T}, implies Tyy1 for all k € Z™, then by induction, T,

is true for all n € Z*t

O

Proposition 22. Let (G, +) be an additive group with additive identity 0 € G.

(Vn € Z)(n0 = 0).

Proof. To prove (Vn € Z)(n0 =0), let S, : n0 =0 and let T,, : (—n)0 = 0.

‘We must prove

1. 00 = 0.

2. S, is true for all n € Z7T.
3. T, is true for all n € Z*.

Proof. We prove 00 = 0.

O

Since G is an additive group and Oa = 0 for all @ € G and 0 € G, then

00 =0.

Proof. We prove S, is true for all n € Z* by induction on n.

Basis:

O

Since G is an additive group and 0 € G, then 1-0 = (1—-1)-0+0 =
(0-0)+0=0+0=0, s0 5] is true.

Induction:

Let k € ZT such that S, is true.
Since k € Z*, then k > 0,s0 k+1 > 0.

Since S is true, then k0 = 0.

Since (k+1)0 =k0+4 0= 0+ 0 =0, then Si41 is true.
Therefore, S, implies Sy for all k € Z™T.
Since 57 is true and Sy implies Siy1 for all k € Z*, then by induction S, is

true for all n € ZT.

Proof. We prove T, is true for all n € ZT by induction on n.

Basis:
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Since the identity element of a group is its own inverse, then —0 = 0, so
(-1)0=-0=0.

Therefore, T} is true.

Induction:

Let k € Z* such that T}, is true.

Then (—k)0 = 0.

Since [-(k+1)]0 = (-k—1)0 = (-=k)0+ (-1)0 =0+ (-1)0 =040 = 0,
then Tj4q is true..

Therefore, T}, implies T4 for all k € ZT.

Since T3 is true and T}, implies Ty 1 for all k € Z*, then by induction T}, is
true for all n € Z+. O

Subgroups

Theorem 23. Two-Step Subgroup Test
Let H be a nonempty subset of a group (G, *).
Then H < G iff
1. Closed under x: (Va,b € H)(axb € H).
2. Closed under inverses: (Ya € H)(a™! € H).

Proof. Suppose axb € H for all a,b€ H and a~' € H for all a € H.
We must prove H < G.

Let e € G be the identity of G.
We prove e € H.
Since H is not empty, then there exists a € H.
Since ¢! € H for all a € H, then a™' € H.
Since axb € H for all a,b € H and a € H and ™! € H, then a*xa™! € H,
soe€ H.

We prove x* is a binary operation on H.
Let a,b € H.
By assumption, ax b € H for all a,b € H, so we conclude a *b € H.
Since a € H and H C G, then a € G.
Since b € H and H C G, then b € G.
Since G is a group, then * is a binary operation on G, so a x b is unique.
Therefore, a xb € H and a * b is unique, so * is a binary operation on H.

We prove the binary operation x over H is associative.
Since * over (G is associative and H C G, then * over H is associative.
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We prove e € H is an identity for .

Let a € H.

Since H C G, then a € G.

Since e € G is identity for x, then a x e = e*xa = a for all a € G, so
axe=exa=a.

Hence, axe=exa=a for all a € H.

Since e € H and axe = exa = a for all @ € H, then e € H is an identity
for *.

We prove for every element a € H, there exists an inverse a=! € H.
Let a € H.
By assumption a~! € H for all a € H.
In particular, a=! € H.
Since (G, ) is a group, then axa™ ! =a~
Since a € H and H C G, then a € G, so we conclude a *x a™
Thus, for every a € H there exists a=! € H such that axa~
Therefore, for every a € H, there exists an inverse a~! € H.

1 1

xg=-cforallaecd.
1

1

—alxa=ec.

=a lxa=e.

Since * is a binary operation on H and * over H is associative and e € H is
an identity for * and for every element a € H, there exists an inverse a~' € H,
then (H,*) is a group.

Since H C G and (H, %) is a group, then H is a subgroup of G,so H < G. 0O

Proof. Conversely, suppose H < G.
Then H C G and (H, %) is a group under the binary operation of (G, ).
We must prove a xb € H for all a,b € H and a=! € H for alla € H.

We prove a xb € H for all a,b € H.
Since (H,*) is a group under the binary operation of G, then * is a binary
operation on H, so H is closed under x of G.
Therefore, a xb € H for all a,b € H.

We prove a~ ! € H for all a € H.
Let a € H.
Since (H, *) is a group, then the inverse of a exists in H.
Let a~! be the inverse of a.
Then a ' € H,soa ! € H for all a € H. O

Theorem 24. One-Step Subgroup Test
Let H be a nonempty subset of a group (G, *).
Then H < G iff
1. (Va,b€ H)(axb"t € H).

Proof. Suppose a xb~! € H for all a,b € H.
We must prove H < G.
Let e € G be the identity of G.
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We prove a~! € H for all a € H.
Let a € H.
By assumption, a *b~! € H for all a,b € H.
Since @ € H and a € H, then we conclude axa™' € H, so e € H.
Since e € H and a € H, then we conclude e xa~' € H,soa™' € H.
Therefore, a=! € H for all a € H.

We prove a xb € H for all a,b € H.
Let a,b € H.
Since a=! € H foralla € H and b€ H, then b~! € H.
By assumption, a * b~! € H for all a,b € H.
Since a € H and b~! € H, then we conclude a x (b~1)"! € H,so axb € H.
Therefore, a xb € H for all a,b € H.

Since H is a nonempty subset of G and axb € H foralla,b € Handa ' € H
for all @ € H, then by the two-step subgroup test, H is a subgroup of G, so
H<G. O

Proof. Conversely, suppose H < G.

We must prove a xb~! € H for all a,b € H.

Let a,b € H.

Since H < G, then H is a group, so for every a € H, there exists an inverse
a”lecH.

Since b € H, then this implies there exists b~ € H.

Since H < G, then H is closed under the binary operation of G, so axb € H
for all a,b € H.

Since a € H and b~! € H, then this implies a x b~ € H.

Therefore, a b~ € H for all a,b € H. O

Theorem 25. Subgroup relation is transitive.
Let (G, %) be a group.
If H< K and K < G, then H < G.

Proof. Suppose H < K and K < G.
We must prove H < G.

We prove H C G.
Since H < K, then H C K.
Since K < G, then K C G.
Since H C K and K C G, then H C G.
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We prove a xb € H for all a,b € H.

Since K < @G, then K is closed under the binary operation of G, so the
binary operation of K is the same as the binary operation of G.

Since H < K, then H is closed under the binary operation of K.

Since the binary operation of K is the same as the binary operation of G
and * is the binary operation on G, then x is the binary operation on K.

Since H is closed under the binary operation of K and x is the binary
operation on K, then H is closed under x.

Therefore, a xb € H for all a,b € H.

We prove e € H.
Let e € G be the identity of G.
Since K < G and e € G, then K is closed under identity by the first subgroup
test, so e € K.
Since H < K and e € K, then H is closed under identity by the first
subgroup test, so e € H.

We prove a~! € H for all a € H.
Let a € H.
Since H < K, then H is a subgroup of K, so H is a group.
Hence, every element of H has an inverse in H.
Since a € H, then this implies a=' € H.
Therefore, a=! € H for all a € H.

Since H C G and axb € H for all a,b € H and e € H and a~! € H for all
a € H, then by the first subgroup test, H is a subgroup of G, so H < G. O

Theorem 26. The intersection of subgroups is a subgroup.
The intersection of a family of subgroups is a subgroup.

Proof. Let (G, *) be a group with identity e € G.
Let {H; : i € I} be a collection of subgroups of G for some index set I.
Then each H; is a subgroup of G, so H; < G for all i € I.
Let H = N;erH; be the intersection of all these subgroups.
Then H = {x : z € H; for all i € I'}, by definition of intersection of a family
of sets.
We must prove H is a subgroup of G.

We prove H C G.
Let x € H.
Then x € H; for all 7 € 1.
Letie .
Then z € H; and H; < G.
Since H; < G, then H; C G.
Since x € H; and H; C G, then x € G.
Therefore, x € H implies x € G, so H C G.
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We prove H # (.
Let i e 1.
Then H; < G.
Since H; < G, then H; is closed under identity by the first subgroup test.
Since e € G, then this implies e € H;.
Since i is arbitrary, then e € H; for all i € I.
Therefore, e € H, so H # ().

We prove a* b~ € H for all a,b € H.
Let a,b € H.
Then a € H; for all i € I and b € H; for all ¢ € I.
Leti eI
Then a € H; and b € H; and H; < G.
Since H; < G, then H; is a subgroup of GG, so H; is a group.
Since Hj; is a group and b € H;, then b~ € H;.
Since H; is a subgroup of G, then H; is closed under * of G.
Since a € H; and b~ € H;, then we conclude a x b~ € H;.
Since i is arbitrary, then a x b~ € H; for all 5 € I.
Therefore, axb~1 € H,so axb~! € H for all a,b € H.

Since H C G and H # () and axb~' € H for all a,b € H, then by the second
subgroup test, H < G. O

Cyclic groups

Order of a group element

Theorem 27. Let (G,x*) be a group.
Leta e G.
If a®* = a® and s # t for some s,t € Z, then a has finite order.

Proof. Suppose there exist integers s and ¢ such that a® = a' and s # t.
Since s # t, then either s <t or s > t.
Without loss of generality, assume s < t.
Then 0 < t — s.
Let e € G be the identity of G.
Observe that
e = d°

§—S

a

= a**xa°
at xa”*

t—s

a

Since s and t are integers, then ¢ — s is an integer.
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Since t — s is an integer and £ — s > 0, then t — s € ZT.
Since t — s € Z1 and a'~* = e, then a has finite order.

Theorem 28. Let (G,*) be a group with identity e € G.
If a € G has finite order n, then a* = e iff n|k for all k € Z.

Proof. Suppose a € G has finite order n.
Then n is the least positive integer such that a™ = e.

We must prove a* = e iff n|k for all k € Z.
Let k € Z.

We prove if n|k, then a* = e.

Suppose n|k.
Then k& = nm for some integer m.
Thus,
ak _ nm
= em
= e

Therefore, a* = e.

Proof. Conversely, we prove if a* = e, then n|k.
Suppose a* = e.
We divide k by n
By the division algorithm, k = nq + r for integers ¢, with 0 < r < n.

Thus,

anq+r

anq * aT
= (@)7xa’

= elxa"

= exa’

r

Hence, a”" = e.
Since r > 0, then either » > 0 or r = 0.
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Suppose r > 0.

Since r € Z and r > 0, then r € ZT.

Since n is the least positive integer such that a™ = e, then n < z for every
x € Z% such that a® = e.

Since r € Z* and a” = e, then we conclude n < r, so r > n.

But, this contradicts r < n.

Hence, r cannot be greater than zero, so we must conclude r» = 0.

Therefore, k = ng + r = ng + 0 = ng, so n|k, as desired. O

Corollary 29. Let (G, *) be a group with identity e € G.
If a € G has finite order n, then a® = a® iff s =t (mod n) for all s,t € 7.

Proof. Suppose a € G has finite order n.
Then n is the least positive integer such that a™ = e.
Let s and t be arbitrary integers.
We must prove a® = a® iff s =t (mod n).
We prove if s =t (mod n) then a® = a'.
Suppose s =t (mod n).
Then n|s — ¢, so there exists an integer k such that s — ¢ = nk.
Observe that

[

o

*
-

I
)
*
IS

Therefore, a® = a. O

Proof. Conversely, we prove if a® = a' then s =¢ (mod n).
Suppose a® = a'.

Then
a*"t = a®xa”t
= atxat
— gttt
e.

Thus, a*~! =e.

Since a has finite order n and s —t € Z, then a*~! = e iff n|(s — t).

Hence, n|(s — t).

Therefore, s =t (mod n). O
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Theorem 30. Let (G,x*) be a group with identity e € G.

If a € G has finite order n, then the order of a® is for all s € Z.

gcd s,n)

Proof. Suppose a € G has finite order n.
Then n is the least positive integer such that a™ = e.
Let s € Z.
Observe that

(as)n — sn

(1|

Il
)

Hence, there exists a positive integer n such that (a®)™ = e.
Therefore, a® has finite order. O

Proof. Let d = ged(s,n).
Then d is a positive integer and d|s and d|n.
Hence, 5 is an integer and % is a positive integer.
We prove the order of a® is 7.
Since a® has finite order, let ¢ be the order of a°.
Then ¢ is the least positive integer such that (a*)! = e, so e = a
Since a has finite order n, then a** = e if and only if n|st.
Hence, n|st, so there exists an integer b such that st = nb.
Since d > 0, we divide by d to obtain 5t = %b.
Since 5 and t are integers, then the product 5 is an integer.
Since & and b are integers, then & divides t.

3l

Since d = ged(s,n), then ged(§, %) = 1, so gcd(d, 3) =1
Since 4 divides 5t and ged(%, ) = 1, then 5 divides .
Observe that

Q.\"J

(a*)% o

aln

")

- G

o

- €.

Since a® has finite order ¢, then (a®)™ = e iff t/m for all integers m.

Since % is an integer, then we conclude (a®)4 = e iff ¢ divides %

Hence, ¢ divides 7.

Since t € Z* and % € Z* and ¢ divides % and % divides ¢, then ¢t = %, by
the anti-symmetric property of the divides relation on 7. O
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Corollary 31. Let (G, x) be a group.
Let a € G have order n.
Let s € Z.
If s and n are relatively prime, then a® has order n.

Proof. Suppose s and n are relatively prime.
Then ged(s,n) = 1.
Observe that

Therefore, a® has order n.

Corollary 32. Let (G, *) be a group.
Let a € G have order n.
Let s € Z.
If s divides n, then a® has order .

Proof. Suppose s divides n.
Then there exists ¢ € Z such that n = st.
Thus, t = %.
Since a has order n, then n is a positive integer, so n # 0.

Suppose s = 0.
Then n = st =0t = 0.
Thus, n = 0 and n # 0, a contradiction.
Therefore, s # 0.

Observe that
| ged(s,m)
st
ged(s, st)
st
sged(1,t)

cd(1,t)

[0}

\
w |3 T =l

Therefore, a® has order *.
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Proposition 33. The order of a is the same as the order of a™'.
Let (G, %) be a group.
Leta € G.
Then |a| = |a™1].

Proof. Let e € G be the identity of G.

Suppose ¢ has finite order.

Let n be the order of a.

Then n is the least positive integer such that a™ = e and a* = e iff n|k for
all k € Z.

Observe that (a71)" = (a") "t =e ! =e.

Since n € Z* and (a=1)" = e, then a~! has finite order.

Let m be the order of a=!.

Then m is the least positive integer such that (a=!)™ = e and (a7 ') = e
iff m|k for all k € Z.

Since n € Z, then (a=1)" = e iff m|n.

Since (a=!)™ = e, then we conclude m|n.

Observe that e = (a=1)™ =a™™.

Since a* = e iff n|k for all k € Z and —m € Z, then =™ = e iff n|(—m).

Since a~™ = e, then we conclude n|(—m), so n|m.

Since m|n and n|m, then m = n.

Therefore, |a| =n =m = |a™!|, so |a| = |[a™!|, as desired. O

Proposition 34. The order of ab is the same as the order of ba.
Let (G, %) be a group.
Let a,b € G.
Then |ab| = |bal.

Proof. Let e € G be the identity of G.

Suppose ab has finite order.

Let n be the order of ab.

Then n is the least positive integer such that (ab)” = e and (ab)* = e iff n|k
for all integers k.

Right multiply by a to obtain (ab)™a = ea = a.

Thus, (ab)(abd)...(ab)a = a, so a(ba)(ba)...(ba) = a.

Hence, a(ba)™ = a = ae, so by left cancellation we obtain (ba)™ = e.

Since n € Z* and (ba)™ = e, then ba has finite order.

Let m be the order of ba.

Then m is the least positive integer such that (ba)™ = e and (ba)"™ = e iff
m|n.

Since (ba)™ = e, then we conclude m|n.

Since (ba)™ = e, left multiply by a to obtain a(ba)™ = ae = a.

Thus, a(ba)(ba)...(ba) = a, so (ab)(ab)...(ab)a = a.

Hence, (ab)™a = a = ea, so by right cancellation we obtain (ab)™ = e.

Since m € Z and (ab)™ = e iff n|m, then we conclude n|m.
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Since m|n and n|m, then m = n.
Therefore, |ab| = n =m = |bal, so |ab| = |bal. O

Proposition 35. Every element of a finite group has finite order.
Let (G, %) be a finite group with identity e € G.
Then (Ya € G)(3k € ZT)(a* = e).

Proof. Since G is finite, let n be the number of elements in G.
Then |G| = n.
Since G is a group, then G # (), so n is a positive integer.
Let a € G.
Either all distinct positive integer powers of a are distinct or not.
We consider these cases separately.
Case 1: Suppose all distinct positive integer powers of a are distinct.
Let S = {a,a?,d?,...,a"}.
Then S = {a*: 1<k <n,keZ}.
By the laws of exponents, a™ € G for alln € Z, so S C G.
Since G is finite and |S| =n = |G| and S C G, then S = G.
Since e € G, then this implies e € S.
Hence, there exists an integer k such that 1 < k <n and e = a*.
Therefore, there exists a positive integer k such that a* = e.
Case 2: Suppose not all distinct positive integer powers of a are distinct.
Then there exist distinct positive integer powers of a that are the same.
Hence, there exist distinct positive integers s and t such that a® = a.
Thus, s # t and a® = a'.
Since s # t, then either s < t or s > t.
Without loss of generality, assume s < ¢.
Then t > s,sot—s>0.
Hence, t — s is a positive integer.
Observe that

a = a *xa

a®*xa”?

I
S

S

Therefore, there exists a positive integer t+ — s such that a’=% = e. O

Theorem 36. Finite Subgroup Test
Let H be a nonempty finite subset of a group (G, ).
Then H < G iff H is closed under x of G.

Proof. We prove if H < (G, then H is closed under * of G.
Suppose H < G.
Then H is a subgroup of G, so H is a group under the binary operation of

G.
Hence, * is a binary operation on H, so H is closed under * of G. O
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Proof. Conversely, we prove if H is closed under % of G, then H < G.

Suppose H is closed under * of G.
Then axb € H for all a,b € H.
Since H is a nonempty set, then there exists an element a € H.

We first prove a* € H for all k € Z* by induction on k.
Define predicate p(k) : a* € H over Z*.

Basis:

Since a € H and a' = a, then a! € H, so p(1) is true.
Induction:

Let k € Z* such that p(k) is true.

Then a* € H.

Since a xb € H for all a,b € H and a* € H and a € H, then a* xa € H, so
a"tl e H.

Hence, p(k + 1) is true.

Thus, p(k) implies p(k + 1) for all k € Z™.

Since p(1) is true and p(k) implies p(k+1) for all k € Z*, then by induction,
p(k) is true for all k € Z+.

Therefore, a* € H for all k € Z7.

Since H is finite, then H contains a finite number of elements.

Let n be the number of elements in H.

Then n € Z.

Since H is not empty, then n > 1.

Since a* € H for all k € Z* and H contains exactly n elements, then H
consists of n distinct powers of a, so H = {a,a? a>,...,a"} = {a’ : 1 <i < n}.

Since a* € H for all k € ZT and n+ 1 € Zt, then a®t! € H, so a"*! = aF
for some integer k with 1 < k < n.

Sincel<k<nandn<n+1l,thenl<k<n<n+1l,sol<k<n+]1.

Thus, k <n+1,s0 k#n-+1.

Since a € H and H C G, then a € G.

Since G is a group and a € G and a* = a"*! and k and n + 1 are integers
and k # n + 1, then a has finite order.

Let m be the order of a.

Then m is the least positive integer such that o™ = e.

Since a* € H for all k € Z* and m € ZT, then a™ € H, so e € H.

Since a™ € H, then 1 <m < n.

Suppose m < n.
Then n —m > 0.
Since a* € H for all k € Z+ and n —m € Z*, then a" ™ € H.
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Observe that

_ am+n—m
a”.
Since a”™™ = a™ and o™ € H and a" € H, then we must conclude

n—m=n.
Hence, n — n =m, so m = 0.
But, this contradicts that m is positive, so m cannot be less than n.
Since m < n and m is not less than n, then m must equal n, so m = n.

Therefore, the order of a is n, so a”™ = e.

Since n € Z™, then either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then e = a' = a.
Thus, a € H implies a € {e}.
Hence, H C {e}.
Since e € H, then {e} C H.
Thus, H C {e} and {e} C H, so H = {e}.
Since the trivial group is a subgroup of every group, then H < G.
Case 2: Suppose n > 1.
Observe that

a % an—l _ a1+7z—1

= an

= e

= an

— an—l—i—l

= a" 'xa.
Since a * a” ! = e = a" ! xa, then a® ! is the inverse of a.
Therefore, a=! = a» 1.

Sincen € Zandn > 1,thenn>2son—12>1.

Sincel<n—landn—-1<n,thenl <n-—1<n.

Sincen—1€Zand1<n—1<mn,thena® '€ H,soa ! € H.

Since a is arbitrary, then = ! € H for all a € H.

Since H is a nonempty subset of G and a x b € H for all a,b € H and
a~! € H for all a € H, then by the two-step subgroup test, H is a subgroup of
G,s0 H < G.
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Therefore, in all cases, H < G, as desired. O

Cyclic subgroups

Theorem 37. The cyclic subgroup of a group G generated by g € G is
the smallest subgroup of G that contains g.

Let (G, %) be a group.

Let g € G.

Then (g) = {g"™ : n € Z} is a subgroup of G.

Moreover, {(g) is the smallest subgroup of G that contains g.

Proof. Let H = {g" : n € Z}.
Let e € G be the identity element of G.
We must prove H < G.

Since ¢ = e and 0 € Z, then e € H, so H # (.

We prove H C G.
Let h € H.
Then h = g* for some k € Z.
By the law of exponents for a group G, if a € G, then a™ € G for all n € Z.
Since G is a group and g € G and k € Z, then we conclude ¢* € G, so h € G.
Therefore, h € H implies h € G, so H C G.

Since H C G and H # (), then H is a nonempty subset of G.

We prove H is closed under the binary operation of G.
Let ¢°, ¢’ € H.
Then i,j5 € Z.
Since ¢* *x ¢/ = ¢'tJ and i + j € Z, then ¢'*7 € H, s0 g* x g/ € H.
Therefore, ¢g° * ¢ € H for all ¢*, ¢ € H.

We prove H is closed under inverses.
Let g™ € H.
Then m € Z.
Since ¢"* € H and H C G, then ¢ € G.
Since G is a group and ¢ € G, then the inverse of g™ exists.
Let (g™)~! € G be the inverse of g™.
Then (gm)fl — gfm and gm*gfm — gmfm — gO —e = gfm+m — gfm*gm
Since —m € Z, then g™ € H, so (¢™)~' € H.
Therefore, (¢™)~! € H for all g™ € H.
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Since H is a nonempty subset of G and ¢* * ¢/ € H for all ¢°,¢ € H and
(g™)~! € H for all g™ € H, then by the two-step subgroup test, H is a subgroup
of G, so H < G. O

Proof. To prove H is the smallest subgroup of G containing g, let K < G and
ge K.
We must prove H < K.

We prove H C K.
Let h € H.
Then h = g* for some k € Z.
By the law of exponents for a group K, if a € K, then a™ € K for all n € Z.
Since K < G, then K is a subgroup of G, so K is a group.
Since g € K and k € Z, then we conclude ¢* € K, so h € K.
Therefore, h € H implies h € K,so H C K.

Since H C K and H # (), then H is a nonempty subset of K.

We prove H is closed under the binary operation on K.

Since K < G, then K is closed under the binary operation on G, so the
binary operation on K is the binary operation on G.

Since H < G, then H is closed under the binary operation on G, so the
binary operation on H is the binary operation on G.

Since the binary operation on H is the binary operation on G and the binary
operation on G is the binary operation on K, then the binary operation on H
is the binary operation on K.

Therefore, H is closed under the binary operation on K.

We prove a~! € H for all a € H.
Since H < G, then H is a group under the binary operation of G, so for
every a € H, there exists a=! € H such that axa ! =a ' *xa=e.
Therefore, a=! € H for all a € H.

Since H is a nonempty subset of K and H is closed under the binary operation
on K and a=! € H for all a € H, then by the two-step subgroup test, H is a
subgroup of K, so H < K. O

Theorem 38. FEvery cyclic group is abelian.

Proof. Let (G, *) be a cyclic group.
Then G = {¢™ : n € Z} for some generator g € G.
Let a,b € G.
Since a € G, then a = ¢g* for some k € Z.
Since b € G, then b = g™ for some m € Z.
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Observe that

a*xb = gk x g™
_ ngrm
_ gm-i-k

m k

= g *g
= bx*a.

Since a * b = b * a, then x is commutative, so G is abelian. O
Theorem 39. Fvery subgroup of a cyclic group is cyclic.

Proof. Let (G, ) be a cyclic group.
Let (H,*) be an arbitrary subgroup of (G, ).
We must prove H is cyclic.

Let e € GG be the identity of G.

Since H is a subgroup of G, then either H is the trivial group or H is not
the trivial group.

We consider these cases separately.

Case 1: Suppose H is the trivial group.

Then H = {e}.

Since €™ = e for all n € Z, then the cyclic group generated by e is (e) =
{e":neZ}={e} =H.

Therefore, H is cyclic.

Case 2: Suppose H is not the trivial group.

Then H contains at least one element that is not the identity element of G.

Hence, there exists a € H such that a # e.

Since G is cyclic, then there exists g € G such that G = {g* : k € Z}.

Since H < G, then H C G.

Since @ € H and H C G, then a € G, so there exists k € Z such that a = g*.

Since ¢° = e # a = g¥, then k # 0, so either k < 0 or k > 0.
Without loss of generality, assume k& > 0.
Then there exists k € Z* such that a = g*.
Since a € H and a = ¢*, then ¢* € H.

Let S={ne€Z":9" € H}.

Then S C Z*

Since k € Z* and ¢g* € H, then k € S, so S # 0.

Since S C Z* and S # (), then S contains a least element by the well ordering
property of Z*.

Let m be the least element of S.

Thenme Sandm<nforallnes.

Since m € S, then m € Z* and g™ € H.
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Let b € H be arbitrary.
Since b € H and H C G, then b € G, so there exists s € Z such that b = g°.
Since b € H and b = ¢°, then g° € H.
We divide s by m.
By the division algorithm, there exist unique integers g¢,r such that s =
mqg+rand 0 <r<m.
Observe that

b = ¢°
gmq+1‘
gmq " gr

= (¢")7%xg".

Hence, ¢g° = (¢™)? % g".

We left multiply by [(9™)?] ! to obtain g" = [(¢g™)9] ! % ¢* = (¢™) "9 * g°.

By the laws of exponents for a multiplicative group, if G is a group and
a € G, then a"™ € G for all n € Z.

Since H is a group and ¢"™ € H and —q € Z, then we conclude (¢™)~9 € H.

Since H is a group, then H is closed under its binary operation .

Since (¢"™)~? € H and ¢° € H, then we conclude ¢" € H.

Since 0 < r < m, then 0 < r and r < m.
Since 0 < r, then either » > 0 or » = 0.

Suppose r > 0.
Since 7 is an integer and r > 0, then r € ZT.
Since r € Z* and ¢" € H, thenr € S, som < r.
Thus, we have » < m and r > m, a violation of trichotomy law for integers.
Therefore,  cannot be greater than zero.
Since either » > 0 or r = 0, we must conclude r = 0, so s = mqg+r =

mq + 0 = mq.
Thus,
b g°
= mq
= (9")°

Let H = {(¢g™)" : n € Z}.
Since b = (¢™)? and q € Z, then b € H'.
Therefore, b € H implies b€ H', so H C H'.

We prove H' C H.

Let v € H'.
Then h' = (¢™)" for some n € Z.
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By the laws of exponents for a multiplicative group, if G is a group and
a € G, then a"™ € G for all n € Z.

Since H is a group and ¢"™ € H and n € Z, then we conclude (¢™)" € H,
soh' € H.

Therefore, h' € H' implies h' € H, so H' C H.

Since H C H' and H' C H, then H = H'.
Therefore, H = H' = {(¢™)™ : n € Z} is the cyclic subgroup generated by
the element ¢"* € H, so H is cyclic. O

Corollary 40. The only subgroups of (Z,+) are (nZ,+) for all n € Z.

Proof. To prove the only subgroups of Z are nZ for all n € Z, we prove the set
of all subgroups of Z is the set of all nZ.

Let S be the set of all subgroups of Z.

Then S ={H : H < Z}.

Let T = {nZ : n € Z}.

We must prove S =T.

We prove S C T.
Let H € S.
Then H < Z, so H is a subgroup of Z.
Thus, H C Z.
Every subgroup of a cyclic group is cyclic.
Since H is a subgroup of Z and Z is cyclic, then H is cyclic.
Therefore, there exists h € H such that H = {nh:n € Z} = hZ.
Since h € H and H C Z, then h € Z.
Since H = hZ and h € Z, then H € T'.
Therefore, H € S implies H € T, s0 S C T.

We prove T' C S.
Let GeT.
Then G = nZ for some n € Z.
Since nZ is a subgroup of Z, then G < Z, so G € S.
Therefore, G € T implies G € S, s0 T C S.

Since SCT and T'C S, then S =T. O

Theorem 41. Characterization of cyclic subgroup

Let (G, %) be a group.

Leta € @G.

The order of a is the order of the cyclic subgroup of G generated by a.

1. If a has finite order n, then {(a) is finite and (a) = {e,a',a?,...,a""1}.

2. If a has infinite order, then (a) is infinite and (a) = {...,a”2,a" %, e,a’,a?, ...
and each power of a is distinct.
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Proof. Every element of a group G generates a cyclic subgroup of G.
Since G is a group and a € G, then a generates a cyclic subgroup of G.
Let H be the cyclic subgroup of G generated by a.

Then H = {a* : k € Z}.
Either there exists k € Z1 such that a* = e or there does not exist k € Z*

such that a* = e.

We consider these cases separately.

Case 1: Suppose there exists k € ZT such that o = e.
Then a has finite order.

Let n be the order of a.

Then n is the least positive integer such that a™ = e.

Let H ={a’a',a?,...,a" 'y ={a*: k€ ZNO <k <n}.
Then |H'| =n and H' C H.

We must prove H = H' and |H| = n.

Let a* € H.
Then k is an integer.
We divide k£ by n.
By the division algorithm, there exist unique integers ¢, r such that k£ = nqg+r
and 0 <r < n.
Observe that

ko _ anq—H"

= a"xa"
(@) xa”

= elxa"

= exa’
= dad.
Hence, there exists an integer r such that 0 < r < n and a* = a”, so a* € H'.
Thus, a* € H implies a* € H', so H C H'.
Since H C H' and H' C H, then H = H'.
Therefore, |H| = |H'| = n, so |H| =n.
Case 2: Suppose there does not exist k € Z1 such that a* = e.
Then a has infinite order, so a does not have finite order.
If a®* = a' and s # t for some s,t € Z, then a has finite order.
Hence, if a does not have finite order, then there does not exist s,t € Z with
s #tand a® = a'.
Since a does not have finite order, then we conclude there does not exist
s,t € Z with s # t and a® = a’.
Hence, a® # a' for every distinct s,t € Z, so every integer power of a is
distinct.
Therefore, the cyclic subgroup generated by a is (a) = {a* : k € Z} =

{.,a72,a71,a% a',a? a?, ..., }, so (a) is infinite. O
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Proposition 42. Generators of a finite cyclic group

Letn € Z™".

Let G be a cyclic group of order n.

If g € G is a generator of G, then the generators of G are elements g~ such
that ged(k,n) = 1.

Proof. Suppose g € G is a generator of G.
Then G = {¢* : k € Z}.
Let S be the set of all generators of G.
Then S ={se€ G:G = (s)}.
Let T = {g* : ged(k,n) = 1,k € Z}.
We must prove S =T.

We prove S C T.

Since g € G and G = {¢g* : k € Z} = (g), then g € S, s0 S # .

The order of g is the order of the cyclic subgroup generated by g.

Therefore, |g| = |{(g)| = |{g* : k € Z}| = |G| = n, so g has finite order n.

Let s € S.

Then s € G and G = (s).

Since s € G, then there exists k € Z such that s = g*.

The order of s is the order of the cyclic subgroup generated by s.

Hence, |s| = |(s)| = |G| = n.

Since ¢ has finite order n, then |s| = |gF| = FRIEDE

Thus, n = |s| = (i SO nged(k,n) = n.

Consequently, ged(k,n) = 1.

Since there exists k € Z such that s = g* and gcd(k,n) = 1, then s € T, so
ScT.

We prove T' C S.
LetteT.
Then there exists m € Z such that ¢ = ¢" and ged(m,n) = 1.
By the law of exponents, g" € G for all n € Z.
Since m € Z, then ¢™ € G, so t € G.
Every element of a group G generates a cyclic subgroup of G.
Since t € G, then ¢ generates a cyclic subgroup of G, so (t) is a subgroup of

Hence, (t) is a subset of G.

Since |G| = n, then G is a finite group.

Every element of a finite group has finite order.
Thus, every element of G has finite order.
Since t € G, then t has finite order.

Thus, [t| = [g™| = ;qfhmy = § =n=Gl.

The order of ¢ is the order of the cyclic subgroup generated by t.
Hence, [t| = |(t)]-

Thus, |G| = |t] = [(t)].
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Since (t) is a subset of G and G is finite and |G| = |(¢t)|, then G = (¢).
Since t € G and G = (t), thent € S, so T C S.

Since S C T and T C S, then S =T, as desired. O

Corollary 43. The generators of (Zn,+) are congruence classes [k] such that
keZt and 1 <k <n and ged(k,n) = 1.

Proof. Let n € Z*.

Observe that (Z,,+) is a cyclic group of order n.

Since [1] € Z,, is a generator of Z,, then by the previous proposition 42, the
generators of Z,, are elements k[1] such that ged(k,n) =1 for k € Z.

Since k € Z, then k[1] = [k].

Since Z,, = {[1],[2],...,[n — 1], [n]} = {[k] : 1 <k < n}, then k € ZT.

Therefore, the generators of Z,, are congruence classes [k] € Z, such that
keZt and 1 <k <mnand ged(k,n) = 1. O

Theorem 44. Let (G, *) be a group.
Let ay,as,...,a, € G.
Then (a1, ag, ...,ay) is a subgroup of G.
Moreover, {(ay, ag, ..., a,) is the smallest subgroup of G that contains {ay,as, ..., an}.

Solution. We must prove
1. {a1,as,...,a,) is a subgroup of (G, *).
2. To prove (aj,as,...,a,) is the smallest subgroup of G that contains
{a1,az,...,a,}, we must prove for every subgroup K of G such that
{a1,a9,...,a,} C K, {(a1,a9,...,a,) C K. O

Proof. Let H = (a1, a9, ...,a,). Let No ={0,1,2,3,...}.

Then H = {b7" - b5> ---b}} : k € No,b; € {a1,...,an}, €; € Z}.

Let 2 € H. Then there exists k € Ny and for each i € {1,...,k} there exists
b; € {a1,...,an} and integer €; such that = b7'05? - - - b*. Let i be an arbitrary
integer in {1,2,...,k}. Since b; € {aq,...,a,} and {ay,...,a,} C G, then b; € G.
Every integer power of b; is an element of the group that contains b;. Thus,
b;" € G. Since i is arbitrary, then bj* € G for each i. By closure of G we have
bi'b5? -+ - by € G, s0 v € G. Hence, x € H implies v € G, s0 H C G.

Let e be the identity element of G. If k = 0, then b{" - b5* - - - b} is a product
of zero factors. By definition, this implies b' - b5? - - - by* = e. Thus, e € H, so
H # 0.

Let x,y € H. Then there exists k € Ny and for each ¢ in {1,...,k} there
exist b; € {a1,...,a,} and integer ¢; such that z = b7'b5* ... b;" and there exists
m € Ny and for each j in {1,...,m} there exist ¢; € {a1,...,a,} and integer J;

such that y = 2 ¢3? ... ¢dm. Observe that

-1 _ €17.€ €1 51 .0 Sm\—1
xy = (b7 ... bk ) (] ey? ... e
_ €17€2 €k — O~ Om—1 —01
= (b7 ... 68 ) (e e, e )
_ €1 762 €k . —0m —Om—1 —01
= b0 .. bk e, el

99



Hence, xy~! is a product of k 4+ m factors and k +m € Ny and each factor has

a base in {ai,...,a,} and an integer exponent. Therefore, zy~! € H.

Hence, H is a subgroup of G.

To prove H is the smallest subgroup of G containing {a1,as, ..., a,}, let K
be an arbitrary subgroup of G such that {ai,as,...,a,} C K.

We must prove H C K.

Let # € H. Then there exists k € Ny and for each ¢ in {1,2,...,k} there
exist b; € {a1,as,...,a,} and integer €; such that x = b7'b5* - - - bi*.

Let ¢ be an arbitrary element of {1,2,...,k}. Since b; € {a1,as,...,a,} and
{a1,az,...,a,} C K, then b; € K. Every integer power of b; is an element of
the group that contains b;. Thus, b;" € K. Since ¢ is arbitrary, then b’ € K for
every ¢ in {1,2,...,k}. Since K is a subgroup of G, then K is closed under the
binary operation of G. Hence, b1'b5* ---bf € K, s0 x € K.

Thus, z € H implies © € K, so H C K, as desired. O

Theorem 45. Let (G, *) be a group.

Let S C G.

The smallest subgroup that contains S is the intersection of all subgroups
that contain S.

Proof. Let H; be a subgroup of G such that S C H;. Let I be some index set.
Then T = {H; : i € I} is the collection of all subgroups of G that contain S.
Since G < G and S C G, then G € T. Hence, T is not empty.

Let H be the intersection of all the subgroups in 7. Then H = NierH; =
{z:xz € H; foralliecI}.

The intersection of a collection of subgroups is a subgroup. Hence, H < G.

We prove S C H. Let x € S. To prove z € H, we must prove x € H; for
alli € I. Let i € I. Then H; is an arbitrary subgroup of G that contains S.
Thus, S C H;. Since x € S and S C H;, then x € H;. Since ¢ is arbitrary, then
x € H; for all i € I. Thus, x € H. Hence, x € S implies x € H,s0 S C H.

To prove H is the smallest subgroup of G that contains S, we must prove
H < K for every subgroup K that contains S.

Let 4 € I. Then H; is an arbitrary subgroup of G that contains S.

We prove H < H;.

We prove H C H;. Let x € H. Then x € H; for all i« € I. In particular,
x € H;. Hence, x € H implies x € H;, so H C H;.

We prove H is closed under the binary operation of H;. Since H; < G, then
H; is closed under the binary operation of G. Thus, the binary operation of H;
is the same as in G. Since H < G, then H is closed under the binary operation
of G. Hence, H is closed under the binary operation of H;.

Let e be the identity of G. Since H; < G, then e € H;. Since H < G, then
e € H. Thus, the identity of H; is contained in H.

Let a € H. We prove the inverse of a is in H. Since H < G, then H C G.
Thus, a € G. Since G is a group, then the inverse of a exists in G. Let b be the
inverse of ¢ in G. Then b € GG and ab = e. Since H < G, then b € H.
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Since a € H and H C H;, then a € H;. Since H; is a group, then the inverse
of a exists in H;. Let b’ be the inverse of a in H;. Then ' € H; and ab’ = e.

Thus, ab = e = ab’, so ab = ab’. Since b’ € H; and H; C G, then V/ € G.
Hence, a,b,b’ € G, so by the left cancellation law, we have b = b'. Since ' = b
and b € H, then & € H. Thus, the inverse of a in H; is in H.

Therefore, H < H;. O

Permutation Groups

Theorem 46. (Sx,o) is a group under function composition
Let X be a nonempty set.
Let Sx be the set of all permutations of X.
Define o to be function composition on Sx.
Then (Sx, o) is a group, called the symmetric group on X.

Proof. We prove o is a binary operation on Sx.

Let 0: X - X and 7: X — X be elements of Sx.

Then ¢ : X — X and 7: X — X are permutations of X.

Hence, o and 7 are bijective functions, so ¢ and 7 are bijections.

Let 0 o7 : X — X be the function defined by (o o 7)(z) = o(7(z)) for all
rzeX.

Since the composition of functions is a function and o is a function and 7 is
a function, then o o 7 is a function and ¢ o 7 is unique.

Since the composition of bijections is a bijection and ¢ is a bijection and 7
is a bijection, then ¢ o 7 is a bijection, so ¢ o 7 is a permutation.

Therefore, o o 7 is an element of Sx, so o is a binary operation on Sy.

We prove o is associative.
Since function composition is associative, then (0 o 7)o p = oo (7o pu) for
all o, 7,0 € Sx.
Therefore, o is associative.

We prove the identity map is an identity for o.
Let id : X — X be the identity map defined by id(z) = z for all z € X.
Since the identity map is a bijection of X, then the identity map is a per-
mutation of X, so id € Sx.

Let 0 € Sx.
Let x € X.
Observe that

(idoo)(z) = id(o(x))
o(x)
o(id(z))

= (ooid)(x).
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Thus, (idoo)(z) = o(z) = (0 oid)(x) for all x € X, s0 idoo =0 =0 o id.
Since id € Sx and idoo = 0 = o oid, then the identity map id is an identity
for o.

We prove every permutation in Sy has an inverse in Sy.
Let 0 € Sx.
Then o is a permutation of X, so ¢ : X — X is a bijective function.
A function is invertible iff it is bijective.
Hence, o is invertible, so the inverse function of ¢ exists and is unique.
Let 7 : X — X defined by 7(y) = z iff o(x) = y be the inverse function of

Let z € X.
Then 7(z) =y iff o(y) = x.
Observe that

(cor)(z) = o(r(x))
= o(y)

Thus, (o o7)(z) =id(z) for all z € X, so 0 o7 = id.

Let z € X.
Then o(x) =y iff 7(y) = «.
Observe that

id(x).

Thus, (7 o00)(z) =id(x) for all z € X, so T o0 = id.

Hence, Too =id = o o1, so ¢ is an inverse of 7.

Consequently, 7 is invertible, so 7 is bijective.

Therefore, 7 is a permutation of X, so 7 € Sx.

Therefore, for every permutation o, there exists a permutation 7 in Sx such
that 0 o7 = 7 00 = id, so every permutation in Sx has an inverse in Sx.

Since o is a binary operation on Sx and o is associative and the identity map
id is an identity for o and every permutation in Sx has an inverse in Sy, then
(Sx,0) is a group. O

Corollary 47. Letn € Z+.
The symmetric group on n symbols is a group under function composition.
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Proof. Let X ={1,2,....,n}.

Let S, be the set of all permutations on the set X.

Since n € Z*,thenn >1,s01 ¢ X.

Hence, X is not empty.

Let o be function composition on S,,.

Since the set X is not empty and S, is the set of all permutations of X, then
by the previous theorem, (S,,0) is a group under function composition. O

Proposition 48. Letn € ZT.
If n > 3, then (Sy,0) is non-abelian.

Proof. Let X be a finite set of n symbols.

Since n > 3, let a, b, ¢ be distinct elements of X.

Let 0 : X — X be the function defined by o(a) = b and o(b) = a and
o(x) = x for every other z € X.

Then o is a one to one and onto function, so o € S,.

Let 7 : X — X be the function defined by 7(a) = b and 7(b) = ¢ and
7(c) = a and 7(z) = x for every other x € X.

Then 7 is a one to one and onto function, so 7 € S,,.

Since (o o7)(a) = o((7(a)) = o(b) =a and (too)(a) =1(c(a)) =7(b) =¢
and a # ¢, then (co7)(a) # (Too)(a),so coT #To0O0,

Since there exist o, 7 € S,, such that co7 # 7o, then o is not commutative,
so S}, is not abelian. O

Proof. Let n be an integer greater than or equal to 3.

Let X ={1,2,3,...,n} be a finite set of n symbols.

Let S,, be the symmetric group on n symbols of X.

Then there exist transpositions (1,2) and (1,3) in S,,.

Let o0 =(1,2) and 7 = (1, 3).

Then o,7€ S, and o7 = (12)(13)=(132) #(123)=(13)(12) =70.

Therefore, there exist a distinct pair of elements in S,, that do not commute,
so S}, is not abelian. O

Theorem 49. Cayley’s Theorem
Every group G is isomorphic to a subgroup of the symmetric group on G.

Solution. Let (G, *) and (Sg, o) be groups.

We need to devise an bijective map from G to Sg that satisfies the homo-
morphism property ¢(gh) = ¢(g) o 3(h).

The key insight is to break down the problem and first devise a bijective
function from G to G.

We have to devise a suitable bijective function.

We can look at the Cayley multiplication table for a group to devise a bijec-
tion.

We can let A\,(x) = gz for all z € G (left multiply by g).

When we left multiply we have the left representation of G.

We could also let py(x) = zg for all z € G (right multiply by g).
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When we right multiply we have the right representation of G.
Either choice is fine in the proof. O

Proof. Let (G, ) be a group.
Let (Sg,0) be the symmetric group on G.
Define for each g € G the function A\, : G — G by A\;(z) = gz for all z € G.
Let g € G.

We prove A4 is a permutation of G.
We first prove A, is injective.
Let ,y € G such that \j(z) = Ay (y).
Then gz = gy.
By the cancellation law for groups, we have z = y.
Hence, A\;(z) = A\y(y) implies © = y, so A, is injective.

We prove ), is surjective.
Let y € G.
Let g~! be the inverse of g.
Let x = g~ 1y.
Since G is closed under its binary operation and ¢~',y € G, then z € G.
Let e be the identity of G.
Observe that

Ag(2) = Ag(g7'y)
= g(g7'y)
= (997"
— ey
_—

Hence, there exists = € G such that Aj(z) =y, so A, is surjective.
Thus, Ay is bijective, so )4 is a permutation of G.
Let G' ={)\; : g € G}.
Then G’ C Sg.

We prove G’ < Sg by the subgroup test.

Let i¢d be the identity of S¢g.

Then id : G — G is the identity map on G defined by id(z) = « for all
z€d.

Since e € G, then A\ (x) = ex = z =id(x) for all x € G.

Hence, \. = id.

Since A\, € G', then id € G'.

Let Ay, \p € G-

Then a,b € G.

Let z € G.

60



Observe that

Hence, Aoy = Aap.

(Mg 0 Xp)(x)

Aa[Ap(2)]
Ao ()
a(bx)
(ab)x
)\ab(x)-

Since a,b € G and G is closed under *, then ab € G.
Thus, Mgy € G', 50 Ag Xy € G
Therefore, G’ is closed under o.

Let )\g_l be the inverse of Ay in Sg.

Then )\g)\g_l =id.

Since g~* € G, then \,-1 € G'.
Since G’ C Sg, then A\;-1 € Sg.

Let z € G. Then

Hence, AgAg—1 = id.

)\g/\g—l (33)

Thus, AgA; ! = Aghg-1.
By the cancellation law for groups, we have )\;1 =Ag-1.
Thus, )\g_l € G’, so G’ is closed under taking inverses.

Therefore, G’ < Sq.

Ag(Ag-1(x))

)‘9(9_155)
g(g~ ')
(99~ M
id(x).

Let ¢ : G — G’ be a function defined by ¢(g) = A, for all g € G.
To prove G =2 G’, we prove ¢ is an isomorphism.
Let g, h € G such that ¢(g) = ¢(h).

Then Ay = Ap.
Let z € G.

Then A\, (z) = Ap(x), so gz = hx.
By the cancellation law for groups, we have g = h.
Thus, ¢(g) = ¢(h) implies g = h, so ¢ is injective.
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Let Ay € G'.
Then by definition of G/, g € G.
Hence, there exists g € G such that ¢(g) = Ag.
Therefore, ¢ is surjective.
Hence, ¢ is a bijective function.
Since Agp = AgXp for all a,b € G, then ¢(ab) = ¢(a)p(b) for all a,b € G.
Therefore, ¢ is a homomorphism.
Hence, ¢ is a bijective homomorphism, so ¢ : G — G’ is an isomorphism.
Thus, G = G'. O

Corollary 50. Fvery finite group of order n is isomorphic to a subgroup of Sy,.

Proof. TODO O

Cycle notation for permutations

Proposition 51. inverse of a cycle
Let {ay,as, ...,ar} be a subset of a nonempty set X.
Let o be a k cycle in the symmetric group on X.
If o = (ay ay ... ag), then o~ = (ap ax_1 ... az a1).

Proof. Suppose o = (ay as ... ag).
Let ¢d be the identity permutation in the symmetric group on X.
Observe that

olag ag—1 ... az a1) = (a1 ag ... ag)(ag ag—1 ... az ay)
= (a1)(a2)...(an-1)(ax)
= id

(a1)(az)...(an-1)(ar)
(ag ag—1 ... az a1)(ay ag ... ay)
(

ak ag—1 ... G2 41)0.

Hence, o(ay ax—1 ... ag a1) = id = (ag ag—1 ... a2 a1)0, 80 (af Ag—1 ... a2 a1)
is the inverse of o.
Therefore, (ag ar_1 ... az a1) = o~ L. O

Proposition 52. order of a cycle
Let k € Z+.
A cycle of length k has order k.

Proof. Let n € Z with n > 2.
Let X ={1,2,...,n}.
Let k € Z* such that 2 < k < n.
Let o be a cycle of length k in the symmetric group (S, o).
Then o = (a; ag ... ag).
Let S = {aj,as,...,ar} be a subset of X.
Then o(a;) = @; (mod k)41 for all a; € S and o(z) =« for all z € X — S.
Let id € S,, be the identity permutation.
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Let x € X.

Then either t € Sorxz & S.

We consider these cases separately.

Case 1: Suppose xz € S.

Let a; be an arbitrary element of S.

Then o(a1) = ag and o(az2) = a3 and o(ag) = aq and ... and o(ai) = a;.

Since a1 # as, then o # id.

Observe that 0%(a;) = o(o(a1)) = o(az) = as.

Since a; # as, then o2 # id.

Observe that 0®(a1) = 0%(0(ay)) = 0%(az) = o(o(az)) = o(az) = as.

Since a; # ay, then o3 # id.

We repeat this process.

Observe that o*~1(a1) = 0¥ 2(0(a1)) = o(ax_1) = ax.

Since a; # ay, then o*~1 £ id.

Observe that o*(a;) = 0% (0 (a1)) = o(a) = a;.

Thus, o*(a;) = a;.

Since a; is arbitrary, then o*(z) = z for all x € S.

Since ¢ # id and 02 # id and ... and ¢*~! # id, then o° # id for each s
with s € {1,2,...,k — 1}.

Case 2: Suppose x € S.

Sincex € X and z ¢ S, then x € X — S.

Thus, o(z) = «.

Since z is arbitrary, then o(z) =z for all z € X — S.

Thus, 0 =id for all z € X — S.

In any group with identity e, et = e for all t € Z.
Since k € Z, then this implies id* = id, so o* = id.
Hence, (oF)(z) =z forallz € X — S.

Since o¥(z) = x for all x € S and (0%)(z) = = for all z € X — S, then
(6¥)(z) =z for all z € X, so 0% = id.

Since o* # id for each s with s € {1,2,...,k — 1} and o = id, then k is the

least positive integer such that o* = id, so the order of ¢ is k. O

Theorem 53. Disjoint cycles commute.
Let o and B be disjoint cycles in the symmetric group on set X.

Then af = Ba.

Proof. Let X be a nonempty set.

Let (Sx, o) be the symmetric group on X.

Let o and 8 be disjoint cycles in (Sx, o).

Since « is a cycle, then there exist distinct a1, as, ..., ax € X for some integer
k > 2 such that a = (a1 ag ... ag).

Since S is a cycle, then there exist distinct by, ba, ..., b, € X for some integer
m > 2 such that 8 = (b1 ba ... byy).

Let A ={aq,as,...,a} be a subset of X.
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Let B = {b1,ba,...,b} be a subset of X.

Since o and 3 are disjoint cycles, then A and B are disjoint sets, so ANB = (.

Since « is a cycle, then for every z € X, a(z) € Aiff z € A and a(x) = x iff
x & A.

Since f is a cycle, then for every z € X, f(z) € B iff z € B and f(z) =«
iff x ¢ B.

To prove af = Ba, we must prove (af)(x) = (Ba)(x) for all z € X.
Let x € X.
We must prove (af)(x) = (Ba)(x).
Either x €¢ AUB orz ¢ AU B.
Thus, either x € A or z € B or z is in neither A nor in B.
We consider these cases separately.
Case 1: Suppose x € A.
Since z € A iff a(z) € A, then a(x) € A.
Since a(x) € A and A and B are disjoint, then a(z) ¢ B.
Since f(a(x)) = a(x) iff a(z) € B, then f(a(x)) = a(x).
Since x € A and A and B are disjoint, then x ¢ B.
Since B(x) = z iff x € B, then f(z) = x.
Observe that

(af)(z) = «

I

e
= = =

8

Therefore, (af)(z) = (Ba)(x).

Case 2: Suppose x € B.

Since z € B iff f(x) € B, then S(z) € B.

Since (x) € B and A and B are disjoint, then §(x) ¢ A.
Since a(A(z)) = B(z) iff B(z) ¢ A, then a(8(x)) = A(x).
Since = € B and A and B are disjoint, then x & A.

Since a(z) =z iff x & A, then o(z) = =.

Observe that

(@B)(z) = a(B(z))

(5(
()
(o

)

I
@

Bla(x))
= (Ba)(z).

Therefore, (af)(z) = (Ba)(x).

Case 3: Suppose z is in neither A nor in B.
Then z ¢ A and = ¢ B.

Since z € A and a(x) =z iff z € A, then a(z) = x.
Since © € B and B(z) = z iff x ¢ B, then §(z) = x.
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Observe that

1
== s
NS
5

Therefore, (af)(x) = (Ba)(x).

Hence, in all cases (af)(x) = (Ba)(x), as desired. O

Theorem 54. Cycle Decomposition Theorem
FEvery permutation of a nonempty finite set can be written as a finite product
of disjoint cycles.

Proof. Define predicate p(n) : every permutation of a set of size n is a finite
product of disjoint cycles.

We must prove p(n) is true for all n € Z7.

We prove p(n) is true for all n € Z* by strong induction.

Basis:

Let X = {z} be a set of size 1.

The only permutation of X is the identity map id : X — X defined by
id(z) = x.

The identity map in cycle notation is the 1 cycle (1), so (1) is a single product
of a cycle.

Hence, the only permutation of X is a single product of a cycle.

Thus, every permutation of X is a single product of a cycle, so every per-
mutation of a set of size 1 is a single product of a cycle.

Therefore, p(1) is true.

Induction:

Let m € Z+.

Suppose p(k) is true for every 1 < k < m.

Then p(1) and p(2) and ... and p(m) are true.

Thus, every permutation of a finite set of size between 1 and m is a finite
product of disjoint cycles.

To prove p(m + 1) is true, we must prove every permutation of a set of size
m + 1 is a finite product of disjoint cycles.

Let (S;u+1,0) be the symmetric group on a set X of size m + 1.

Let X ={1,2,...,m,m + 1}.

Then | X| =m+ 1.
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Let o be an arbitrary element of S, 11.
Then o is an arbitrary permutation of X.
We must prove o can be written as a finite product of disjoint cycles.
Let id be the identity permutation in Sy,41.
Every element of a finite group has finite order.
Since S;,41 is a finite group and o € S,,,41, then ¢ has finite order.
Let s be the order of o.
Then s is the least positive integer such that ¢® = id.
Let S = {1,0(1),02(1),03(1),...,0571(1)}.
Then S C X and |S| = s and (1 o(1) 0%(1) ... 0571(1)) is a cycle of length

Since X is finite and |X| = m 4+ 1 and S C X and |S| = s, then either
s=m-+1lors<m+1.

We consider these cases separately.

Case 1: Suppose s =m + 1.

Then S = {1,0(1),0%(1),03(1),...,a™(1)}.

Thus, ¢ is the cycle (1 (1) 02(1) ... ¢™(1)) of length m + 1.

Therefore, o is a single product of a cycle.

Case 2: Suppose s < m + 1.

Then 0 <m+1—s.

Since X = SU (X — 5) and S and X — S are disjoint sets, then

m+1 = |X|
= [SUX -9
= IS+ X =S5
= s+|X -9

Thus, m+1=s+|X —S|,s0|X —-S|=m+1-—s.

Since s is positive, then s > 0, so —s < 0.

Thus, m+1—-—s<m+1.

Therefore, 0 <m+1—sand m+1—s<m+1,s00<m+1—s<m-+1.

Hence, 1<m+1—-s<m,s01<|X -S| <m.

Consequently, X — S is a set of size between 1 and m.

By the induction hypothesis, every permutation of X — S'is a finite product
of disjoint cycles.

Let 7 be an arbitrary permutation of the set X — S.
Then 7 is a finite product of disjoint cycles.
Thus, there exists a positive integer ¢ such that 7 = 7y7» ... 7% and 7; is a
disjoint cycle for each i € {1,2,...,t}.
Since S and X — S are disjoint sets, then the cycles
(10(1) 02(1) ... 0°~1(1))
and 7; are disjoint for each i € {1,2,...,t}.
Hence, (1 o(1) 02(1) ... 0*=1(1)), 71, T2, ..., and 74 are all disjoint cycles.
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Observe that

= (1o(1)o*(1) ..o *())nm2.. .7

Thus, o is a finite product of disjoint cycles.

In all cases, o is a finite product of disjoint cycles, so every permutation of a
set of size m + 1 is a finite product of disjoint cycles.
Hence, p(m + 1) is true, so p(1) and p(2) and ... and p(m) imply p(m + 1).
Since p(1) is true and the statements p(1) and p(2) and ... and p(m) imply
p(m+ 1), then by the principle of strong induction, p(m) is true for all m € Z*.
Therefore, every permutation of a set of size n is a finite product of disjoint
cycles for all n € Z+. O

Corollary 55. The order of a permutation is the least common multiple of the
orders of its disjoint cycles.

Proof. Let n € ZT.

Let o be a permutation in the symmetric group (S, o).

Let id € S,, be the identity permutation.

Every permutation in S,, can be written as a finite product of disjoint cycles.

Thus, there exist a positive integer k and disjoint cycles aq, as, ..., in S,
such that 0 = a1 0oag 0... 0 a.

Every element of a finite group has finite order.

Since ay, asg, ..., ag, 0 € S, and S, is a finite group, then each of ay, as, ..., ag,
and o has a finite order.

Let m; be the finite order of o; and let mso be the finite order of oy and ...
let my, be the finite order of ¢y, and let m be the finite order of o.

Since ¢ has finite order m, then m is the least positive integer such that
o™ =1d.

Disjoint cycles commute, so a; 0 oj = aj 0 o for each 1 < 4,7 < k.

Hence,

id = o™

= (oqoozgo...oak)m

= affoajo..oap.

Thus, 0™ = id iff o = id for each i € {1,2,...,k}.
If an element « has finite order m, then o = id iff m|N.
Thus, af* = id iff mq1|m and of = id iff mg|m and ... and o} = id iff my|m.
Hence, of* = id and of* = id and ... and of" = id iff m;|m and mg|m and
. and mg|m, so m must be a common multiple of my,ma, ..., mg.
Since m is the least positive integer such that ¢” = id, then this implies m
must be the least common multiple of mq,mo, ..., my.
Therefore, m = lem(my, ma, ..., myg). O
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Proposition 56. Let 7 be a k cycle.

If o is a permutation, then oro~! is a k cycle.

1 1

Solution. To prove o7o™" is a k cycle, let a = o707 ".

We must prove there exists by,bs,...,br € X such that a(b;) = by and
a(by) = bs and ... and «(bg) = by and for all other z € X, a(z) = z.

Since 7 is a k cycle, then there exist ai,as,...,ar € X such that 7 =
(al,ag, ...,ak).

Let by = o(aq). O

Proof. Let X be a nonempty set. Let 7 be a k cycle. Then there exist distinct
ai,asz, ...,a; € X such that 7 = (a1, ag, ..., ag).

Let A ={ay,as,...,a;}. Then A C X.

Let o be an arbitrary permutation in Sx. Then o : X — X is a bijective
function. Thus, for every x € X, o(x) € X. Hence, o(a;) € X for each
i€ {1,2,....k}. Let b; = o(a;) for each i € {1,2,...,k}. Since o is injective,
then a;, # a; implies o(a;) # o(a;) for all 4,5 € {1,2,...,k}. Hence, for all
i,j € {1,2,...,k}, if a; # a;, then b; # b;. Thus, each b; is distinct, so let
B = {b1,ba, ..., bx}.

Let x € X. Either x € Bor z ¢ B.

Case 1: Suppose x € B.

Let ¢ be an arbitrary positive integer such that = = b;.

Observe that

)

oro (b)) = or

CaUh)
(

T ai)
7(a:))

(
(ai (mod k)+1)

)

Q

Q

= bz (mod k)+1)~

Since 4 is arbitrary, then 070~ (b;) = b; (mod k)+1) for all positive integers .

Thus, in particular, oro~1(b;) = by and oro 1(by) = b3 and ... and
o170 (bk) = bi (mod k)+1 = bot1 = b1.

Case 2: Suppose = ¢ B.

Since o is bijective, then ¢ is surjective. Hence, there exists y € X such that
o(y) = . Thus, o(y) € B. For every x € X, o(z) € B iff x € A. Thus, for
every x € X, o(x) ¢ Biff x ¢ A. Hence, o(y) € B iff y ¢ A. Therefore, y & A.
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Observe that

oro ! (z) = oro ! (o(y))

Therefore, if z & B, then oo~} (z) = .

Since there exist by, ba, ..., by € X such that 7o~ 1(by) = by and o701 (by) =
bs and ... and 070 (bk) = bi (mod k)41 = Dot1 = b1 and oro ™! () = 2 for all
other x, then o701 is a cycle of length k. O

Parity of a permutation

Theorem 57. A permutation is a product of transpositions
Every permutation of a finite set containing at least two elements can be
written as a finite product of transpositions.

Proof. Let n be a fixed integer greater than or equal to 2.

Let X be a set of n elements.

Since n > 2, then X is a nonempty finite set.

Let 0 : X — X be an arbitrary permutation of X.

By the cycle decomposition theorem, every permutation of a nonempty finite
set can be written as a finite product of disjoint cycles.

Since o is a permutation of X and X is a nonempty finite set, then ¢ can
be written as a finite product of disjoint cycles.

Hence, there exists a positive integer m such that aq, as, ..., a,, are disjoint
cycles and 0 = ajas...0,.

To prove o can be written as a finite product of transpositions, we must prove
an arbitrary cycle of o can be written as a finite product of transpositions.

Let 7 be an arbitrary cycle of length & in o.
Then k is a positive integer such that 7 = (ay ag ... ar) and {a1,as,...,ar}
is a subset of X.
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Observe that

(a1 az)(az az)(az ag)...(ax—1 ax) = (a1 az)(az a3)...(ar—3 ax—2)(ax—2 ax—1)(ax—1 ax)
= (Cl1 02)(Cl2 as)(a3 a4)...(ak_3 ak—2)(%—2 af—1 ak)
= (a1 az)(az az)(asg as)...(ax—3 ap—2 ar—1 ax)
= (a1 a2)(a2 a3)(as as ...0x—3 Ap—2 ax—1 ax)
= (a1 az)(az ag ag ... Q-3 Q-2 Ak—1 ak)

= (Cl1 a2 a3 a4 ... A3 Q-2 Ak—1 Gk)

= T

Hence, 7 = (a1 ag ... ai) = (a1 az)(az2 a3)...(ax—1 ag) is a product of k — 1
transpositions.
Therefore, 7 is a finite product of transpositions.

Since 7 is an arbitrary cycle of o, then every cycle of ¢ is a finite product of
transpositions.
Thus, each «; for i € {1,2,...,m} is a finite product of transpositions.
Since o = ajas...quy, then this implies o is a finite product of transpositions.
O

Lemma 58. Reduction Lemma
If the identity permutation id can be written as a product of k transpositions,
then id can be written as a product of k — 2 transpositions.

Solution. The solution is a clever insight. We start with e = 7 75...7%, where
each 7; is a transposition.

Let 7 and 75 be two transpositions.

We observe that the product of 7 and 75 can be categorized as one of 4
possibilities:

1. 71 = 712. So, if 71 = (a,b), then 75 = (a,b). And we know (a,b)(a,d) = e.

2. 71 and 7o are disjoint cycles. So, if 7 = (a,b), let 5 = (¢,d). Since
disjoint cycles commute, then we have (a,b)(c,d) = (¢, d)(a,b).

The other possibilities are when 7, and 75 share exactly one element in
common.

Thus, if we let 5 = (a,b), then 7, = (a,c) or 71 = (¢, b).

3. If ; = (a,¢) and 5 = (a,b), then (a, ¢)(a,b) = (a,b)(b,c).

4. If 11 = (¢,b) and 7 = (a, b), then (¢, b)(a,b) = (a,c)(b, ).

The key insight is that we may reduce a product of k transpositions for e into
a product of k — 2 transpositions by moving a given element a of a transposition
to the left, preserving e. We see this after computing many different example
products for e.

We keep moving a to the left and either obtain scenario 1 in which we
have two identical transpositions which cancel each other, resulting in k& — 2
transpositions or we end up with k transpositions in which a is the only element
in the left most transposition, say 71. O
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Proof. Let X be a finite set of at least two elements. Let id be the identity
permutation of X. Any permutation of a finite set containing at least two
elements can be written as a finite product of transpositions. Therefore, id can
be written as a finite product of transpositions. Hence, there exists a positive
integer k such that 71, 7%, ..., 7, are transpositions and id = T 75...7%.

We must prove id can be written as a product of k — 2 transpositions.

Let a, b, ¢,d be distinct elements of X. Let 7, = (a,b). Since (a,b) = (b,a),
then we may arbitrarily choose either a or b. Without loss of generality, choose
a. The product of two transpositions either has no elements in common, or has
exactly one element in common, or has exactly two elements in common.

Hence, there are 4 possible scenarios for the product 75 _17%.

1. identical cycles (two elements in common): (a,b)(a,b) = id.

2. exactly one element in common ¢: (a,c)(a,b) = (a,b)(b,c).

3. exactly one element in common ¢: (¢,b)(a,b) = (a,c)(b, c).

4. disjoint cycles (no elements in common): (¢, d)(a,b) = (a,b)(c, d).

If case 1 occurs, then we may delete 7,_17; in the original product id =
T1To...Tk. We then obtain id = T17o...7x_2, S0 id is a product of k — 2 transpo-
sitions, as desired.

If one of the other 3 cases occurs, then we replace 74,_17, with what appears
on the right to obtain a new product of k transpositions which equals ¢d and
for which the right most occurrence of a is moved one transposition to the left.

Repeat this process. At each stage, either we cancel the 2 transpositions
(case 1) so we’re done, or we form a new product of k transpositions in which
a has moved to the left by another transposition.

The process must terminate since there are a finite number of transpositions.

Suppose for the sake of contradiction that the process terminates and id is
not the product of k—2 transpositions. Then id is the product of k transpositions
in which a is in the left most transposition 71. Thus, either 7, = (a,b) or
71 = (a,c). Hence, 71(a) # a, Therefore, this product of k transpositions maps
a to some element of X other than a. Thus, this product of k£ transpositions
is not the identity map, which contradicts the statement that id equals this
product.

Therefore, id must be the product of k — 2 transpositions. O

Lemma 59. Even Identity Lemma
If the identity permutation is a product of k transpositions, then k is even.

Proof. Let X be a finite set of at least two elements. Let id be the identity
permutation of X. Any permutation of a finite set containing at least two
elements can be written as a finite product of transpositions. Therefore, ¢d can
be written as a finite product of transpositions. Hence, there exists a positive
integer k such that 71,7, ..., 7, are transpositions and id = T 7%...7%.

To prove k is even, suppose for the sake of contradiction that k is not even.
Then £k is odd.

By the reduction lemma, if ¢d can be written as a product of k transpositions,
then id can be written as a product of k — 2 transpositions.

71



Since id is a product of k transpositions, then it follows that id can be written
as a product of £ — 2 transpositions.

Repeat this process. At each stage id is a product of 2 fewer transpositions.
Since the difference between an odd number and 2 is odd, then the number of
transpositions remains odd. Hence, id remains a product of an odd number of
transpositions at each stage.

Since k is finite, then this process must terminate.

Suppose the process terminates. Since k is a positive integer and id must
be the product of an odd number of transpositions, then k& = 1. Hence, id is a
product of exactly one transposition. Thus, there exists a transposition equal
to id.

Let 7 = (4, ) be a transposition of distinct elements i and j in X such that
id = 7. Then i # j and 7(i) = j. Hence, 7() # 4. Since 7 = id, then 7(z) = x
for all z. Hence, 7(i) = i. Thus we have 7(i) = ¢ and 7(4) # i, a contradiction.
Therefore, k cannot be odd, so k must be even. O

Theorem 60. Parity Theorem
If a permutation is a product of k and m transpositions, then either k and
m are both even or k and m are both odd.

Solution. There are various proofs and approaches one can take. We take the
approach to first prove a lemma: establish that identity permutation in S,, can
be expressed as an even number of transpositions (not odd) because this will
make the proof easier.

We can right multiply by the inverse of each ¢ in reverse order. O

Proof. Let n € Z* and n > 2. Let o be a permutation in the symmetric group
(Sn,0). Any permutation of a finite set containing at least two elements can
be written as a finite product of transpositions. Since S, is a finite set, then «
can be written as a finite product of transpositions. Let k,m € Z*. Suppose o
is a finite product of k and m transpositions. Then there exist transpositions
T1, T2, ..., Tk and oy, 09, ..., 0y, such that a = 7 75...7, and o = 0103...0,, .

Let ¢d be the identity of S,,. Then id is the identity permutation and id =
aoa~!. Since the inverse of a sequence of transpositions is the composition of
their inverses in reverse order, and since each transposition is its own inverse,
then

id = aa!

T1T9...T) © (0109...0,) "

(
= (nm..mp)o (oot oy torh)
(

T1T2...Tk) © (OmOm—1...01).

Hence, the identity permutation is a product of k 4+ m transpositions. By the
even identity lemma, if id is a product of k + m transpositions, then k& 4+ m is
even. Thus, k + m is even. The sum k + m is even iff k¥ and m are both even
or both odd. Therefore, k and m are either both even or both odd, so & and m
have the same parity. O
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Theorem 61. A cycle of even length is odd and a cycle of odd length is even.

Proof. Let n € Z,n > 2. Let X = {1,2,...,n}. Let k be a positive integer such
that 2 <k <n. Let o be a k cycle. Then there exist aj,as, ...,a; € {1,2,...,k}
such that o = (a1, az,...,a;) and o(x) =z for all x € X — {1,2,....k} .

Any permutation of a finite set containing at least two elements can be
written as a finite product of transpositions. Thus, o is a finite product of
transpositions. Observe that

g = (alaa25a3a"'aak)

= (alaak)(aflvak—l)'"(al,ag).

Thus, o is a product of k — 1 transpositions.

Either k is even or k is odd.

We consider these cases separately.

Case 1: Suppose k is even.

Then k —1 is odd. Thus, o is a product of an odd number of transpositions.
By the parity theorem, a permutation is either even or odd, but not both.
Therefore, o must be odd.

Case 2: Suppose k is odd.

Then k—1 is even. Thus, ¢ is a product of an even number of transpositions.
By the parity theorem, a permutation is either even or odd, but not both.
Therefore, o must be even. O

Theorem 62. The parity of a permutation is the same as the parity of its
1muverse.

Solution. This statement means: Let o be a permutation. Let a~! be the
inverse of o. Then if « is even, then a~! is even and if « is odd, then o~ is

odd. O

Proof. Let n be an integer greater than or equal to 2. Let (S,,0) be the sym-
metric group of n symbols. Let o be a permutation of S,,. Since S, is a group,
then the inverse of a exists. Let a~! be the inverse of a.

Any permutation in S, can be written as a finite product of transpositions.
Hence, « can be written as a finite product of transpositions. Thus, there exists a
positive integer k such that oy, s, ..., ay are transpositions and a = ajas - - - ag.
Observe that

1
o = (a1 ay)
1 1
= 0 O
= QpQE_1°°-07.

Hence, o~ ! is a product of k transpositions. Since « is a product of k transpo-
sitions, then o and a~! are each a product of k transpositions.
Either k is even or k is odd.

We consider these cases separately.
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Case 1: Suppose k is even.

Then a and o~ ! are each a product of an even number of transpositions.
By the parity theorem, a permutation is either even or odd, but not both.
Therefore, o and o' are each even permutations. Hence, the parity of « is the
same as the parity of o~ !.

Case 2: Suppose k is odd.

Then o and o~ ! are each a product of an odd number of transpositions.
By the parity theorem, a permutation is either even or odd, but not both.
Therefore, o and o~ ! are each odd permutations. Hence, the parity of « is the
same as the parity of o~ !.

Therefore, in all cases, o and o' have the same parity. O

Theorem 63. The composition of two permutations of the same parity is even.

Proof. Letn € ZT,n > 2. Let 0,7 € S, such that o and 7 have the same parity.
We must prove o7 is an even permutation.

For n > 2, any permutation in (S,, o) can be written as a finite product of
transpositions. Thus, ¢ and 7 each can be written as a finite product of trans-
positions. Hence, there exist positive integers k and m such that o = o109 - - - o,
and for each i € {1,2,...,k}, 0; is a transposition and 7 = 7173 - - - 73, and for each
Jj € {1,2,...,m}, 7; is a transposition. Thus, o7 = (0102 04)(T1T2 - Tn)-
Hence, o7 is a product of k + m transpositions.

Since ¢ and 7 have the same parity, then either k& and m are both even or
both odd.

We consider these cases separately.

Case 1: Suppose k and m are both even.

The sum of any two even integers is even. Hence, k + m is even.

Case 2: Suppose k and m are both odd.

The sum of any two odd integers is even. Hence, k 4+ m is even.

Thus, in all cases k + m is even. By the parity theorem, the parity of o7 is
either even or odd, but not both. Therefore, o7 must be an even permutation.

O

Theorem 64. The composition of two permutations of opposite parity is odd.

Proof. Let n € ZT,n > 2. Let 0,7 € S, such that o and 7 have opposite parity.
We must prove o7 is an odd permutation.

For n > 2, any permutation in (S,,0) can be written as a finite product
of transpositions. Thus, ¢ and 7 each can be written as a finite product of
transpositions. Hence, there exist positive integers k£ and m such that ¢ =
o109 -+ o and for each i € {1,2,...,k}, o; is a transposition and 7 = 775 - - T
and for each j € {1,2,...,m}, 7; is a transposition.

Thus, o7 = (0102 -0k)(T172 - Tm). Hence, o7 is a product of k + m
transpositions.

The sum of two integers of opposite parity is odd. Hence, k 4+ m is odd.
By the parity theorem, the parity of o7 is either even or odd, but not both.
Therefore, o7 must be an odd permutation. O
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Proposition 65. The function S, — {—1,1} that assigns to each permutation
of Sy, its signature is a group homomorphism.

Proof. Let S,, be the symmetric group on n symbols.

Let f: S, — {—1,1} be defined by f(o) = sgn(o) for each o € S,,.

Let ¢ € S,,. Then f(0) = sgn(o) and sgn(c) € {—1,1}. Since any permu-
tation is either even or odd, but not both, then sgn(o) is either 1 or —1, but
not both. Hence, sgn(o) is uniquely determined, so f(o) is unique. Thus, f(o)
is unique for every o € S,,. Therefore, f is a function.

Observe that {—1,1} is a group under multiplication of integers.

Let o, 8 € S,,. Let k = sgn(a) and m = sgn(f).

Since a, 8 are either even or odd we have 4 cases to consider.

Case 1: Suppose «, 3 are both even.

Then sgn(a) = 1 and sgn(B) = 1. The composition of two permutations of
the same parity is even. Hence, af is even, so sgn(af) = 1.

Observe that

f(aB) = sgn(aB)
=1
= (@A)
= sgn(a)sgn(B)
= fl@)f(B).
Case 2: Suppose «, 3 are both odd.
Then sgn(a) = —1 and sgn(B) = —1. The composition of two permutations

of the same parity is even. Hence, a3 is even, so sgn(af) = 1.
Observe that

flaB) = sgn(ap)

=1
= (-1)(-1)
= sgn(a)sgn(B)
f(e) f(B).
Case 3: Suppose « is even and f is odd.
Then sgn(a) = 1 and sgn(f) = —1. The composition of two permutations

of opposite parity is odd. Hence, a3 is odd, so sgn(af) = —1.
Observe that

fap) = sgn(aB)
= -1
= ()1
= sgn(@)sgn(5)
= (@5

(6]



Case 4: Suppose « is odd and [ is even.

Then sgn(a) = —1 and sgn(B) = 1. The composition of two permutations
of opposite parity is odd. Hence, a8 is odd, so sgn(af) = —1.

Observe that

flap) = sgn(ap)

- -1
= (1))
= sgn(a)sgn(p)
= fl@)f(B)
Therefore, in all cases, f(af) = f(a)f(8). Hence, f is a group homomor-
phism. O

Theorem 66. Let (S,,0) be the symmetric group on n symbols.
Let A, = {oc € S, : 0 is an even permutation }.
Then A,, < S,,.

Solution. To prove A, is a subgroup of S,,, we use the finite subgroup test:
Thus, we prove:
1. A, is closed under o of S,,: Vo, 8 € A,)(afB € Ayp).
2. A, # (. We prove this by proving e € A,, where e € S, is identity map
on a set of n symbols. O

Proof. Observe that A, C S,. Since |S,| = n!, then S, is finite. Every subset
of a finite set is finite. Hence, A, is finite.

Let id be the identity permutation in S,,. Since ¢d is an even permutation,
then id € A,,. Hence, A,, is not empty.

Thus, A, is a nonempty finite subset of .5,,.

To prove A, < S,, we prove A, is closed under o of S,,.

Let a,8 € A,. Then o, € S,, and « and S are even. Thus, a and 3 have
the same parity. Let a8 be the composition of o and 5. By closure of the
symmetric group S,, we have aff € S,,. The composition of two permutations
of the same parity is even. Hence, a3 is even. Since aff € S,, and af is even,
then af € A,,. Therefore, A, is closed under o of S,.

Thus, by the finite subgroup test, A, < .S,. O

Theorem 67. For n > 2, the number of even permutations in S, equals the
number of odd permutations.
Moreover, the order of A, is %’

Solution. Let ¢ € S,,. Then o is either an even permutation or an odd
permutation, but not both, by the parity theorem. Hence, the set of even
permutations is disjoint from the set of odd permutations, and the collection
of even and odd permutations forms a partition of S,,. To prove the number
of even permutations equals the number of odd permutations, we must prove
|A,| = |A,|. Hence, we must devise a bijection between A,, and A,,.
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How do we devise a bijective function? After working thru examples, such
as 51,959,553, 54 we see that there does not exist an obvious pattern between a
given even permutation and an odd permutation.

However, the key insight is to use the left or right representation of A,, just
as was done in the proof of Cayley’s theorem.

Thus, let ¢(0) = 70 be a function from 4, to A, for a fixed 7 € S,,. We
must prove ¢ is one to one and onto.

Also, we note that if n = 1, then Sy = {id}. Since id is even, then there is
exactly one even permutation in S;. However, there are no odd permutations
in S7. That’s why we restrict n to n > 2. O

Proof. Let n be an integer greater than or equal to 2.

Let X ={1,2,...,n}.

Let (Sy,0) be the symmetric group on n symbols.

Then S, = {0 : 0 is a permutation of X }.

Let id be the identity element of S,,. Then id : X — X is the identity
permutation and id is even.

Let A be the set of all even permutations of S,,. Then A = {0 € 5, :
o is even.}.

Let B be the set of all odd permutations of S,. Then B = {o € S, :
o is odd.}.

Thus, AC S, and BC S, and AUB C S,,.

Let P = {A, B}.

We prove P is a partition of S,,.

Since id € S,, and id is even, then id € A. Hence, A # (.

Since n > 2, then a transposition exists in S,,. Let 7 be a transposition in
S,,. Since 7 € S,, and 7 is odd, then 7 € B. Hence, B # (.

We prove AUB = 5,,.

Let 0 € S,,. By the parity theorem, either ¢ is even or odd, but not both
even and odd. Hence, either c € Aoro € Bbut c ¢ ANB. Thus,c € AUB
and 0 € AN B.

Therefore o € S,, implies c € AUB, so S,, C AU B.

Since AUB C S, and S,, C AUB, then AUB = 5,,.

Since o is arbitrary, then ¢ € AN B for all o € S,,. Hence, there does not
exist o € S, such that 0 € AN B. Therefore, AN B = {).

Thus, P is a partition of S,.

To prove |A| = |B|, we must prove there exists a bijective function f: A —

Let \; : A — B be defined by A, (o) = 70 for all 0 € A.

Let 0 € A. Then o € S,, and o is even.

By closure of S,, under o, we have 7o € S,,. Since ¢ is even and 7 is odd,
then o and 7 have opposite parity. The composition of permutations of opposite
parity is odd. Hence, 7o is odd. Since 7o € S,, and 7o is odd, then 70 € B.

Since 0,7 € S, and o is a binary operation on S, then the product 7o is
unique.

Therefore, 7o € B and is unique, so A, (o) € B is unique.
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Thus, A is a function.

We prove A is injective. Let 01,09 € S, such that A;(o1) = A-(02). Then
To1 = Toy. Since 7 € B and B C S, then 7 € S,,. Since 7,01,09 € S, and
Sy, is a group, we apply the cancellation law to obtain oy = o3. Therefore,
Ar(01) = Ar(02) implies 01 = 09, so A is injective.

We prove A is surjective. Let 5 be an arbitrary element of B. We must find
some « € A such that ¢(a) = B.

Let a =18.

Since 7,8 € S,, and S,, is closed under o, then 75 € S,,.

Since 7 and S are odd permutations, then 7 and S have the same parity.
The composition of two permutations of the same parity is even. Therefore, 74
is even.

Since 78 € S, and 73 is even, then 78 € A.

Hence, a € A. Observe that

Ar(@) = A(7B)
7(78)
= (r7)B
1d3

= A

Therefore, A is surjective.
Since A is injective and surjective, then A; : A — B is bijective. Thus,
Ar : A — B is a bijective function, so |A| = |B|.
Observe that
nl = |5,
= |AUB|
— JAl+|B|- AN B
— A+ 4] - |0
= 2x|A|-0
= 2|A|.

Therefore, [A] = % Since A4,, = A, then [4,| = |[A| = &, so |4,| = 2. O

Symmetry groups

Theorem 68. The set of all geometric transformations of n dimensional space
18 a group under function composition.

Proof. Let n be a positive integer. Let X = R™ be an n dimensional vector
space. Since (0,0, ...,0) € R™, then R™ # (. Let Sx be the set of all geometric
transformations of R™. Then Sx is the set of all bijective maps from R™ to R™.
Hence, Sx is the set of all permutations of R™. Let o be function composition
on Sx. Then (Sx,o) is the symmetric group on R™. O
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Theorem 69. The set of all bijective isometries of 2 dimensional space is a
subgroup of Sym(R?).

Proof. Let R? be 2 dimensional space. Let Sym(R?) be the symmetric group
on R? under function composition o. Then Sym(RR?) is the group of all permu-
tations of R?. Hence, Sym(R?) is the set of all bijective maps from R? onto
R2.

Let S be the set of all bijective isometries of R2.

Then S = {a|a : R? — RZ%is a bijective isometry}.

We must prove (S, 0) is a subgroup of Sym(IR?).

Let o € S. Then o : R? — R? is a bijective isometry. Hence, « is a bijective
function, so a € Sym(R?). Thus, a € S implies a € Sym(R?), so S C Sym(R?).

Let id be the identity of Sym(R?). Then id : R? — R? is the identity map
and id(P) = P for every point P € R?. Since the identity map is bijective, then
id is bijective.

We prove id is an isometry. Let P,Q € R2. Let d(P,Q) be the distance
between points P and @ in R?. Then d(id(P),id(Q)) = d(P,Q). Hence, id is
an isometry. Since id is a bijective isometry, then id € S.

Let o, 8 € S. Then o : RZ — R? and 8 : R? — R? are bijective isometries.

We prove Sa is an isometry.

Let P,Q € R2. Since a is an isometry, then the distance between the
images of P and ) under « equals the distance between P and @). Hence,
d(a(P),a(Q)) = d(P, Q).

Since f is an isometry, then the distance between the images of a(P) and
a(Q) under j equals the distance between a(P) and «(Q). Hence, d(S(a(P)), B(a(Q))) =
d(a(P),(Q)).

Therefore, by transitivity of equality, we have

d(3(a(P)), B(a(Q))) = d(P,Q).

Thus, d((Ba)(P), (Ba)(Q)) = d(P,Q). Hence, the distance between the
images of P and @ under Sa equals the distance between P and ). Therefore,
Ba is an isometry.

The composition of bijections is a bijection. Hence, S« is a bijection, so S«
is bijective. Since S« is a bijective isometry, then fa € S.

Therefore, S is closed under function composition.

Let a € S. Then « : R? — R? is a bijective isometry. Let a~! : R? — R? be
the inverse of a in Sym(R?). Then aa™! = a~ta =1id, so (a=1)~! = a. Thus,
a~ 1 is invertible. A map is invertible iff it is bijective. Hence, a~! is bijective.

To prove a~! € S, we must prove a~! is an isometry. To prove a~! is an
isometry, let P, @ € R? be arbitrary.

We must prove d(a=*(P),a"1(Q)) = d(P,Q).

Since « is bijective, then « is surjective. Hence, there exist points A, B € R?
such that a(A) = P and a(B) = Q.
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Observe that

d(ail(P)aail(Q) - d(AaB)
= d(a(A),a(B))
— 4(P,Q).

1 1

Hence, a~! is an isometry. Since a~! is a bijective isometry, then a~! € S.
Thus, S is closed under taking inverses.

Therefore, S is a subgroup of Sym(R?). O

Theorem 70. The set of all symmetries of a reqular n-gon in R? under function
composition is a subgroup of the isometry group of R?.

Proof. Let (Iso(R?),0) be the isometry group of R2.

Then Iso = {o|o : R? — R? is a bijective isometry}.

Let X be a regular n— gon in R2.

Then X C R2.

Let G be the set of all symmetries of a regular n-gon.

Then G = {0 : o( is a symmetry of X } = {0 : R? = R? € Iso(R?)|o(X) =
X}
Observe that G C Iso(R?).

We apply the subgroup test.
Let id be the identity element of Iso(R?). Then id : R? — R? is the identity
map and id € Iso(R?) and id(P) = P for all points P € R2.

Let p € X. Since X C R2? then p € R2. Hence, id(p) = p. Since p is
arbitrary, then id(p) = p for all points p € X. Hence, id(X) = X.

Since id € Iso(R?) and id(X) = X, then id € G. Therefore the identity of
Iso(R?) is in G.

Let o, 3 € G. Then « and 3 are symmetries of X. Hence, o : R? = R? is a
bijective isometry such that a(X) = X and 8 : R? — R? is a bijective isometry
such that 8(X) = X. Since a, 3 € G and G C Iso(R?), then a, 3 € Iso(R?).
By closure of Iso(R?) under o, a3 € Iso(R?).

Observe that

(@B)(X) = a

Hence, (af)(X) = X.

Since a3 € Iso(R?) and (af8)(X) = X, then a3 € G. Therefore, G is closed
under o.

Let @ € G. Then o : R? — R? is a bijective isometry such that a(X) = X.

Let a~! be the inverse of a € Iso(R?). Then a~! : R? — R? is a bijective
isometry. Since a(X) = X and a~! is the inverse of «, then a™1(X) = X.
Since a~! € Iso(R?) and a=1(X) = X, then o~ ! € G.

Therefore, (G, o) is a subgroup of (Iso(R?),0). O
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Theorem 71. (D,,0) is isomorphic to a subgroup of (Sy,o).

Solution. We first construct a set H that is a subset of S,, and show that
H < S,,. Then we show that D,, & H. O

Proof. Let f: D, — S, be defined by f(a) = g for all « € D,,, where 3 is the
unique permutation of the n vertices of the regular n—gon associated with the
symmetry «. Clearly, f is a function. Since each distinct symmetry corresponds
to a distinct permutation, then f is injective.

Let H be the set of all permutations of the n vertices associated with each
symmetry of D,,. Then H = {f(a) € S, : « € D,,}. Hence, H C S,,.

We prove H < S,,. Let id be the identity symmetry in D,,. Then f(id) = (1),
the identity permutation in S, so (1) € H. Hence, H is not empty.

Every subset of a finite set is finite. Thus, H is finite since .S, is finite.
Hence, H is a nonempty finite subset of S,.

Let 0,7 € H. Then o = f(a) for some o € D,, and 7 = f(8) for some
B € D,,. Multiplication of ¢ and 7 in H corresponds to multiplication of o and
B in D,,. Thus, o7 = f(af). Since D, is closed under function composition,
then af € D,,. Hence, there exists a8 € D,, such that f(af) = o7, so or € H.
Therefore, H is closed under function composition.

Thus, by the finite subgroup test, H < S,.

Let ¢ be the restriction of f to H. Then ¢ : D,, — H is a function defined
by ¢(a) = f(«) for all « € D,,.

Let 8 € H. Then there exists a € D,, such that f(«) = 8. Observe that
¢(a) = f(a) = B. Hence, there exists o € D,, such that ¢(a) = 3, so ¢ is
surjective.

Let o, 8 € D, such that ¢(a) = ¢(8). Then f(a) = f(B). Since f is
injective, then o = 8. Hence, ¢(a) = ¢(8) implies = 3, so ¢ is injective.
Thus, ¢ is bijective.

Let o, 8 € D,, such that ¢(a) = 0 and ¢(8) = 7. Then 0,7 € H since ¢ is
a function. Multiplication of ¢ and 7 in H corresponds to multiplication of «
and 8 in D,,. Thus, o7 = f(af).

Observe that

p(af) = f(ab)

= oT
= ¢(@)o(B).

Therefore, ¢ is a homomorphism, so ¢ is a bijective homomorphism. Thus,

¢ : D, — H is an isomorphism, so D, = H. O

Cosets
Theorem 72. Let H be a subgroup of a group G. Define relation ~y, on G for

every a,b € G bya~rbiffa*be H and a ~g b iff ab=* € H. Then ~1, and
~gr are equivalence relations on G.
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Solution. To prove ~j and ~p are equivalence relations, we must prove each
relation is reflexive, symmetric, and transitive. O

Proof. Let a,b, and ¢ be arbitrary elements of G.

We prove ~, is reflexive. Observe that a 'a = e € G. Since H is a subgroup
of G, then e € H. Hence, a'a € H, so a ~, a. Therefore, ~, is reflexive.

We prove ~ is symmetric. Suppose a ~ b. Then a~'b € H. Since H is
a group, then the inverse of a='b is in H. Hence, (a7 'b)~! = b~ 1(a"1)"! =
b~la € H. Thus, b ~1, a, so ~, is symmetric.

We prove ~ is transitive. Suppose a ~r b and b ~p ¢. Then a='b € H
and b='c € H. Since H is closed under -, then (a='b)(b~'c) € H. Hence,
(a ) (b~ te) = a=1(bb~1)e = a~tec = a~lc € H. Therefore, a ~p, ¢, so ~, is
transitive.

Since ~, is reflexive, symmetric, and transitive on G, then ~, is an equiv-
alence relation on G.

We prove ~p is reflexive. Observe that aa™! = e € G. Since H is a subgroup
of G, then e € H. Hence, aa~' € H, so a ~g a. Therefore, ~p is reflexive.

We prove ~p is symmetric. Suppose a ~g b. Then ab~! € H. Since H is
a group, then the inverse of ab=! is in H. Hence, (ab~!)~! = (b=1)"la~! =
ba~! € H. Thus, b ~g a, so ~g is symmetric.

We prove ~p is transitive. Suppose a ~r b and b ~5 ¢. Then ab™! € H
and bc™! € H. Since H is closed under -, then (ab=1)(bc™!) € H. Hence,
(ab=)(be™ 1) = a(b™tb)c™! = aec™! = ac™! € H. Therefore, a ~r ¢, s0 ~p is
transitive.

Since ~pg is reflexive, symmetric, and transitive on G, then ~g is an equiv-
alence relation on G. O

Theorem 73. Let H be a subgroup of G. Let a,b € G. Then the following are
equivalent:

1.a"'be H.

2. (3h € H)(a = bh).

3. a€bH.

4. aH = bH.

Proof. We prove a='b € H = (3h € H)(a = bh).

Suppose a~'b € H. Let h = (a'b)~!. Since H is a group, then every
element of H has an inverse in H. Since a='b € H, then its inverse (a=1b)~! is
in H. Hence, h € H. Observe that

bh = b((a"'D)7h)
b(b~ (™))
b(b~'a)

(bb"Ha

= ea

= a.
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Therefore, there exists h € H such that a = bh, as desired.

We prove (3h € H)(a = bh) = a € bH.

Suppose there exists h € H such that a = bh. Then a € bH, by definition of
bH.

We prove a € bH = (aH = bH).

Suppose a € bH. To prove aH = bH, we prove aH C bH and bH C aH.

Let z € aH. Then there exists hy € H such that = ahq, by definition of
aH. Since a € bH, then there exists ho € H such that a = bhs, by definition
of bH. Let h = hohy. Since H is a group, then H is closed under its binary
operation. Since hy, ho € H, then hohy € H,so h € H.

Observe that

bh = b(hahq)
= (bha)hy
= ah1
=
Hence, there exists h € H such that x = bh, so by definition of bH, z € bH.
Therefore, x € aH implies x € bH, so aH C bH.
Let y € bH. Then there exists h; € H such that y = bhy, by definition of
bH. Since a € bH, then by definition of bH, there exists ho € H such that

a = bhy. Let h = h;lhl. Since H is closed under its binary operation and
hi,hy' € H, then h € H. Observe that

ah = (bha)(hy " hy)
= b(hohy Yy
= beh1
= b
= y'
Hence, there exists h € H such that y = ah, so by definition of aH, y € aH.
Therefore, y € bH implies y € aH, so bH C aH.
Since aH C bH and bH C aH, then aH = bH, as desired.
We prove (aH = bH) = a~'b € H.
Suppose aH = bH. Since a € aH and aH = bH, then a € bH. Thus, there
exists h € H such that a = bh, by definition of bH. Observe that

a'bv = (bh)"'b
= (W' Ho

o

Since H is a group, then each element of H has an inverse in H. Therefore,
since h € H, then h™! € H. Hence, a~'b € H, as desired. O

83



Theorem 74. Let H be a subgroup of G. Let a,b € G. Then the following are
equivalent:

1.ab '€ H.

2. (3h € H)(a = hbd).

3. a € Hb.

4. Ha = Hb.

Proof. We prove ab=' € H = (3h € H)(a = hb).
Suppose ab~' € H. Let h = ab~!'. Then h € H.
Observe that

W = (ab~\)b
a(b=1b)

ae

a.

Therefore, there exists h € H such that a = hb, as desired.

We prove (3h € H)(a = hb) = a € Hb.

Suppose there exists h € H such that a = hb. Then a € Hb, by definition of
Hb.

We prove a € Hb = (Ha = Hb).

Suppose a € Hb. To prove Ha = Hb, we prove Ha C Hb and Hb C Ha.

Let x € Ha. Then there exists hy € H such that z = hja, by definition of
Ha. Since a € Hb, then there exists ho € H such that a = hyb, by definition
of Hb. Let h = hiho. Since H is a group, then H is closed under its binary
operation. Since hy,ho € H, then h € H.

Observe that

ht = (hiha)b
= hy(hod)
= h1a
=
Hence, there exists h € H such that x = hb, so by definition of Hb, x € Hb.
Therefore, z € Ha implies z € Hb, so Ha C Hb.

Let y € Hb. Then there exists h; € H such that y = hyb, by definition of
Hb. Since a € Hb, then by definition of Hb, there exists hy € H such that
a = hsb. Let h = hlhgl. Since H is closed under its binary operation and
hi,hy' € H, then h € H.

Observe that

ha = (hihy")(hob)
hi(hy ' ha)b
hleb
h1b
= y.
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Hence, there exists h € H such that y = ha, so by definition of Ha, y € Ha.
Therefore, y € Hb implies y € Ha, so Hb C Ha.

Since Ha C Hb and Hb C Ha, then Ha = Hb, as desired.

We prove (Ha = Hb) = ab~! € H.

Suppose Ha = Hb. Since a € Ha and Ha = Hb, then a € Hb. Thus, there
exists h € H such that a = hb, by definition of Hb. Right multiply by b~! to
obtain ab~! = h. Therefore, since h € H, then ab~! € H, as desired. O

Lemma 75. Let H be a subgroup of G. Let a,b € G. Then aH = bH iff
Ha ' =Hb !,

Proof. Observe that

aH=bH < o 'beH
s a o leH
& Ha '=Hb'.

O

Theorem 76. Let H be a subgroup of a group G. The number of left cosets of
H in G equals the number of right cosets of H in G.

Solution. To prove the number of left cosets of H equals the number of right
cosets of H, we let H;, be the collection of distinct left cosets of H and Hg
be the collection of distinct right cosets of H. Thus Hy = {gH : g € G} and
Hp={Hg:g€ G}

We must prove |Hp| = |Hg].

To prove this, we must devise a bijective map ¢ : Hy, — Hpg.

The key insight is to use figure out what map would work.

We try ¢(gH) = Hg™ .

Thus, we must show that ¢ maps each gH € Hy, to a unique Hg~' € Hg
and show that ¢ is injective and surjective. O

Proof. Let Hy, be the collection of distinct left cosets of H in G. Let Hp be
the collection of distinct right cosets of H in G. Then Hy, = {¢gH : g € G} and
Hr={Hg:g9€G}.

Let ¢ : Hy — Hp be a binary relation defined by ¢(gH) = Hg~! for all
g €G.

Suppose g € G. Then gH € Hy, so ¢(gH) = Hg~'. Since G is a group and
g € G, then g~ € G. Hence, Hg~' € Hp.

To prove ¢ is well-defined, let a and b be arbitrary elements of G. Then a H
and bH are arbitrary left cosets in Hy. Suppose aH = bH. Then ¢(aH) = Ha ™!
and ¢(bH) = Hb~'. Since Ha=! = Hb! iff aH = bH, then Ha=' = Hb~!.
Hence, ¢p(aH) = ¢(bH). Therefore, aH = bH implies ¢(aH) = ¢(bH), so ¢ is a
well defined map from Hy, to Hg.

We prove ¢ is injective. Suppose aH and bH are arbitrary left cosets in
Hy, such that ¢(aH) = ¢(bH). Then a and b are some elements in G and
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Ha ' = Hb~'. By a previous lemma, Ha~' = Hb~! iff aH = bH. Hence,
we conclude aH = bH. Therefore, ¢p(aH) = ¢(bH) implies aH = bH, so ¢ is
injective.

We prove ¢ is surjective. Suppose Hg is an arbitrary right coset in Hz. Then
g € G. Since G is a group, then g~ € G. Let a = g~ 'H. Since there exists
g~! € G such that a = g7'H, then a € Hy. Observe that ¢(a) = ¢p(g~1H) =
H(g~Y)~! = Hg. Therefore, there exists a € Hy, such that ¢(a) = Hg, so ¢ is
surjective.

Since ¢ is injective and surjective, then ¢ is bijective.

Therefore, ¢ : Hy, — Hp is a bijective map, so |Hy| = |Hg|, as desired. 0O

Theorem 77. Let H be a subgroup of a group G.
Let g € G be fized.
Then |gH| = |H| and |Hg| = |H|.

Solution. We must prove |gH| = |H| and |Hg| = |H].

To prove |gH| = |H|, we show there exists a bijection between gH and H.

To prove |Hg| = |H|, we show there exists a bijection between Hg and H.

To prove |gH| = |H|, we must devise a bijective map ¢ : H — gH.

We know that the left coset gH = {gh: h € H}.

Hence, let’s try ¢(h) = gh for all h € H.

We observe this is similar to a left representation of H, except that g is not
necessarily in H.

We must prove ¢ maps each h € H to some element in gH and show that ¢
is one to one and onto gH.

Since ¢ is bijective, then we conclude |H| = |gH]|.

Hence, if H is of finite order, then gH is finite and gH has the same number
of elements as H. O

Proof. To prove |gH| = |H]|, let ¢ : H — gH be a binary relation defined by
¢(h) =gh for all h € H.

Let h be an arbitrary element of H.

Then ¢(h) = gh.

Since gh € gH, then ¢(h) € gH.

We prove ¢ is well defined.

Suppose hi and hs are arbitrary elements of H such that hy = hs.

We must prove ¢(hy) = ¢(ha).

Since hy,ho € H and H C G, then hy, he € G.

Since g, h1,hy € G and G is a group, then we left multiply by ¢ to obtain
gh1 = gha.

Observe that ¢(h1) = ghy = gha = ¢(hs).

Hence, ¢ is well defined, so ¢ : H — gH is a function.
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Suppose h; and hg are arbitrary elements of H such that ¢(hy) = ¢(hs).
Then ghy = gho.
Since hy,he € H and H C G, then hy, he € G.
Since G is a group and g, h1, he € G, then we apply the left cancellation law
to obtain hi; = hs.
Hence, ¢(h1) = ¢(ha) implies hy = ha, so ¢ is injective.

Suppose k is an arbitrary element of gH.
Then there exists some h € H such that k = gh.
Observe that ¢(h) = gh = k.
Hence, there exists h € H such that ¢(h) =k, so ¢ is surjective.
Since ¢ is a function that is injective and surjective, then ¢ : H — gH is
bijective.
Therefore, |gH| = |H|, as desired.

To prove |Hg| = |H|, let ¢ : H — Hg be a binary relation defined by
o(h) = hg for all h € H.
Let h be an arbitrary element of H.
Then o(h) = hg.
Since hg € Hg, then o(h) € Hg.

We prove o is well defined.

Suppose hi and hs are arbitrary elements of H such that hy = hs.

We must prove o(hy) = o(hs).

Since hy,he € H and H C G, then hy, he € G.

Since g, h1,he € G and G is a group, then we right multiply by ¢ to obtain
h1g = hag.

Observe that o(hy) = h1g = hag = o(h2).

Hence, o is well defined, so 0 : H +— Hg is a function.

Suppose h; and hg are arbitrary elements of H such that o(hy) = o(hz).
Then hig = hag.
Since hi,ho € H and H C G, then hy, he € G.
Since G is a group and g, hi,he € G, then we apply the right cancellation
law to obtain hi = hs.
Hence, o is injective.

Suppose k is an arbitrary element of Hg.
Then there exists some h € H such that k = hg.
Observe that o(h) = hg = k.
Hence, ¢ is surjective.
Since o is a function that is injective and surjective, then o : H — Hg is
bijective.
Therefore, |Hg| = |H|, as desired. O
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Finite Groups

Theorem 78. Lagrange’s Theorem
The order of a subgroup of a finite group divides the order of the group.

Proof. Let H be a subgroup of a finite group G.
We must prove |H| divides |G|.
Since G is a finite group, then |G| = n for some positive integer n.
Since G is finite and H C G, then H is finite.
Hence, |H| = m for some positive integer m.

To prove |H| divides |G|, we must prove m|n.
Let g € G.
Let gH be the left coset of H in G with representative g.
Then |gH| = |H| =m.
Hence, each left coset of H in G contains the same number of elements as
H.

Since G is finite, then there are a finite number of subsets of G.
In particular, there are a finite number of left cosets of H in G.
Let k& be the number of left cosets of H in G.

Then k is an integer.
Since H is a left coset, then k& > 0, so k is a positive integer.

Since the collection of left cosets of H in G is a partition of G, then the
number of elements in G equals the number of left cosets times the number of
elements in each left coset.

Thus, |G| = km = k|H|.
Therefore, |H| divides |G|. O

Corollary 79. The order of an element of a finite group divides the order of
the group.

Solution. This means:
If G is a finite group, then the order of g € G divides the order of G. O

Proof. Let G be a finite group.
Then there exists a positive integer n such that |G| = n.

Let g € G.
Every element of a finite group has finite order.
In particular, g has finite order.
Let m be the order of g.
Then m is the order of the cyclic subgroup generated by g.
Let H be the cyclic subgroup of G generated by g.
Then m = |H| and H < G.
Since H < G and G is finite, then by LaGrange’s theorem, |H| divides |G]|.
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Therefore, m|n. O

Corollary 80. Let G be a finite group.
IfH < K <G, then |G: H| =[G : K|[K : H].

Proof. Suppose H < K < G.
Then H < G and

G|
[G:H] = +—
|H|
K
K| |H|
= [G:K]|K :H].
O
Corollary 81. Let G be a finite group of order n.
Then g™ = e for all g € G.
Solution. Let n € Z*. Let e be the identity of G.
We must prove (Vg € G)(g™ = e). O

Proof. Suppose G is a finite group of order n. Then n is a positive integer and
|G| = n.

Let g be an arbitrary element of G with identity e.

Every element in a finite group has finite order.

In particular, g has finite order.

Let m be the order of g.

The order of g is the order of the cyclic subgroup generated by g.

Let H be the cyclic subgroup of G generated by g.

Then m = |H| and H < G.

Since H < G and G is finite, then by LaGrange’s theorem, the order of H
divides the order of G.

Hence, m|n.

Since the order of g is m, then g™ = e iff m|n. Therefore, g" = e. O

Corollary 82. Every group of prime order is cyclic.

Solution. Let G be an arbitrary group of prime order.

To prove G is cyclic, we must find an element a € G such that G = {a™ :
m € Z}.

How do we find a?

Consider the cyclic group generated by a. Then (a) = {a™ : m € Z}. O

Proof. Let G be an arbitrary group of prime order p.
Then |G| = p.
Since p is prime, then p > 2.
Therefore, there are at least two elements in G and G is finite.
Let e be the identity of G.
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Since at least two elements exist in GG, then there exists at least one element
that is distinct from e.
Let a be an arbitrary element of G such that a # e.

Every element of a finite group has finite order.

In particular, a has finite order.

Let m be the order of a.

Then m is a positive integer.

The order of a is the order of the cyclic subgroup generated by a.

Let H be the cyclic subgroup of G generated by a.

Then H = {a* : k € Z} and m = |H| and H < G.

Since a = a', then a € H.

Since e = a, then e € H.

Since a # e, then this implies H contains at least two elements.

Hence, |H| > 2, so |H| > 1.

Therefore, m > 1.

Since H < G and G is finite, then by LaGrange’s theorem, the order of H
divides the order of G.

Hence, m/|p.

Since p is prime, then the only positive divisors of p are 1 and p.

Thus, either m =1 or m = p.

Since m > 1, then m # 1.

Therefore, m = p.

Hence, |H| = p.

Since H C G and |H| = p = |G| and G is finite, then H = G.

Thus, there exists a € GG such that G = H.

Therefore, G is cyclic. O

Direct Products

Theorem 83. Let A, B be groups.
Let G be the Cartesian product A x B = {(a,b) :a € A,b € B}.
Define o : G x G — G by (a1,b1) o (az,b2) = (arag,by * ba).
Then (G, o) is a group, called the external direct product of A and B.

Proof. We prove o is a binary operation.

We first prove G is closed under o.

Let z,y € G.

Then there exist aj,as € A and by,by € B such that © = (ay,b;) and
Y= (a27 bQ)

Thus, z oy = (a1,b1) o (az,b2) = (a1a2,b1b2).

By closure of A and B, ajas € A and b1by € B.

Hence, zy € G, so G is closed under o.
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We prove o is well defined.
Suppose (z,y) and (z,w) are arbitrary elements of G x G such that (z,y) =
(z,w).
Then there exist ay, as, asz,aq € A and by, bg, bs, by € B such that x = (ay,b1)
and y = (a2,b2) and z = (a3, bs) and w = (a4, bs) and z = z and y = w.
Thus, a1 = ag and by = b3 and as = a4 and by = by.
Observe that

a1, b1) o (az, b2)
ala27b1b2)

(
(
(azaz, b3bs)
(
(

asaq, bzbs)
as, bs) o (a4, bs)

= Zow.

Therefore, o is well defined.
Hence, o is a binary operation on G.

Let x,y,2z € G. Then there exist aj,as,a3 € A and by, by, b3 € B such that
x = (a1,b1) and y = (azg,b2) and z = (ag, b3). Observe that

(a1,01)(az,b2)](as, bs)
ajaz,biba)(as, b3)
(araz)as, (b1b2)b3)

(zy)z [
(
(
(a1(azas), by (babs))
(
(

ay, b )(agdg, b2b3)
a1, b)[(az, b2)(as, bs)]
= x(yz).

Therefore, o is associative.

Let e be the identity of A and ¢’ be the identity of B.
Then (e, €’) € G.
Let « be an arbitrary element of G.
Then = = (a,b) for some a € A and b € B.
Observe that

(e,¢')(a,b) =

Thus, (e,€’) is an identity element of G.
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Let x € G. Then z = (a,b) for some a € A and b € B. Since A and B are
groups, then a=! € A and b=! € B. Hence, (a71,b7!) € G.
Observe that

(a,b)(a" 1,07 Y =

Thus, the inverse of (a,b) is (a=!,b71), so each element of G has an inverse in
G.
Therefore, (G, o) is a group. O

Theorem 84. Letn € Z*,n > 2.
The external direct product of n groups is a group.

Proof. Let n € Z*t,n > 2.

LetG:G1 XGQX...XGH.

Let a,b € G. Then for each i € {1,2,...,n} there exist a;,b; € G; such
that a = (a1, as,...,a,) and b = (b1, ba,...,b,). Thus, aob = (a1,as,...,a,) ©
(b1, b2, ..., by) = (a1b1, agba, ..., anby,). For each i, the group G; is closed. There-
fore, for each i, the product g;h; is in the group G;. Hence, ab € G, so G is
closed under o.

Suppose (a,b) and (¢, d) are arbitrary elements of G x G such that (a,b) =
(¢,d). Then for each i € {1,2,...,n} there exist a;,b;,¢;,d; € G; such that
a = (a,a2,....a,) and b = (by,ba,....,0,) and ¢ = (c1,¢2,...,¢p) and d =
(d1,da,...,d,) and a = ¢ and b = d. Thus, for each i, a; = ¢; and b; = d;.
Observe that

ab = (a1,ag,...,a,)(b1,b2,....0,)

a1b17a2b2a"'aanbn)

c1dy, cada, ..., cndy,)

C1,C2, "'7cn)(d17 d27 7dn)
= «cd.

(
(
(c1b1, caba, ..., cnby)
(
(

Therefore, o is well defined. Hence, o is a binary operation on G.
Let a,b,c € G. Then for each i € {1,2,...,n} there exist a;,b;,¢; € G; such
that @ = (a1, as,...,a,) and b = (b1, ba,...,b,) and ¢ = (¢1, ¢, ..., ;). Observe
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that

an)(bl, bg, veey bn)}(cl, Co, ...
b )(01, Coyeeny Cn)
(a1by)cr, (a252)02, oy (anbn)ecn)

[ s Cn)
(
(
= (a1(brc1),az(baca), ..., an(bncy))
(
(

(ay,aq, ...

albl, agbg, ..

an)(blcl, bQCQ, ceey bncn)
an)[(b1, bg, ceey bn)(Cl, Co, ...

a1,a9, ...,

a1,0a92, ...,
= a(be).

Therefore, o is associative.

Let e; be the identity of G; for each i € {1,2,...,n}. Then (eq, eq, ...,
Let x be an arbitrary element of G. Then for each i € {1,2, ...,

acn)}

en) € G.
n} there exist

a; € G; such that = (a1, as, ...,a,). Observe that
(e1,€2,....,en)(a1,as, ...;an) (e1a1, e2az, ..., enan)
= (a1,a9,...,an)
= (ar€1,a2€,...,aney)
= (a1,0a2,...,a,)(€1,€2,....€p).

Thus, (e, ea, ...,

en) is an identity element of G.
Let a be an arbitrary element of G. Then for each i € {1,2, ...

,n} there exist

a; € G; such that a = (a1, a9, ...,a,). Since each G; is a group, then a;l e G;
for each i. Hence, (a7, a5",...,a;") € G. Observe that
1 -1 -1 -1 -1 -1
(a1,a2,...,an)(ay " a5y .yay, ) (ara7 ", a2a5 ", ..., ana, )
= (e1,e2,...,6n)
_ -1
= (a7* al,a2 Yag, ...,a; tay)
-1
= (a1 wyay, ) (a1, ag,y ey ay).
Thus, the inverse of (a1, aq,...,ay) is (a7 1,a2_1, ...,a;l), so each element of G
has an inverse in G.
Therefore, (G, o) is a group. O

Theorem 85. A direct product of abelian groups is an abelian group.

Proof. Let n € ZT,n > 2. Let G1,Go,...,G, be n abelian groups. Then
H?:l G; is the direct product of n groups. The direct product of n groups is a
group. Therefore, H?zl G; is a group.

Let a,b € ]!, G;. Then for each i € {1,2,
ap) and b = (by, ba, ...

that a = (a1, aqg, ...,

ab

(a1,a9,...,a,)(b1, b, ...

(a1b1, agba, ..., anby)
(bra1, baas, ..., byay,)
(b1, b2, ...,b,) (a1, as, ...
ba.
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Therefore, component wise multiplication in []"_; G; is commutative. Hence,
[T;_, Gi is abelian. Thus, []_; G; is an abelian group. O

Theorem 86. Let G x H be the external direct product of groups G,H. Let
(g,h) € G x H. If g and h have finite order, then the order of (g,h) in G x H
1s the least common multiple of the orders of g and h.

Solution. We must prove:
1. The order of (g, h) is finite.
2. The order of (g, h) equals lem(a,b). O

Proof. Let e be the identity of G and e’ be the identity of H. Then (e, e’) is the
identity of G x H. Since (g,h) € G x H, then g € G and h € H.

Suppose g and h have finite order. Let a be the order of g and let b be the
order of h. Then a is the least positive integer such that ¢* = e and b is the
least positive integer such that h® = e’

We prove the order of (g, h) is finite. Let n = ab. Then n is a positive integer
and a|n and bjn. For any integer M, g™ = e iff a|M and for any integer N,
N = ¢’ iff |N. Hence, g" = e iff a|n and h"® = ¢ iff bjn. Thus, g" = e and
h™ = ¢’. Observe that

(g, )" = (g,h)(g,h)...(g, 1)
= (e €).

Therefore, there exists a positive integer n such that (g,h)™ = (e, e’), so the
order of (g, h) is finite.

Let k be the order of (g,h). Then k is the least positive integer such that
(g,h)¥ = (e,e’). Thus,

(e,¢) = (g,h)"
(9,h)(g, h)---(g, )
(9", h").
Hence, g* = e and h* = ¢/. Thus, a|k and b|k.
Let m be the least common multiple of a and b. Then a|m and bjm and for
every integer ¢, if alc and blc, then m|c. Thus, if alk and b|k, then m|k. Since

alk and blk, then m|k.
Since a|lm and b|m, then g™ = e and "™ = ¢’. Thus,

(e,e) = (9" h™)
= (gvh)m'

For any integer N, (g, h)N = (e, e’) iff k|N. Hence, in particular, (g, h)™ = (e, ¢’)
iff k|m. Thus, k|lm.

By the antisymmetric property of Z*, k|m and m|k implies kK = m. Since
m,k € Z" and m|k and k|m, then we conclude k = m.

Therefore, the order of (g, h) is the least common multiple of ¢ and b. [
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Corollary 87. Letn € Zt,n > 2. Let [[_, G; be the external direct product
of n groups. Let (91,92, ..., 9n) € [lieqy Gi- If each g; has finite order a; in
G;, then the order of (91,92, .., gn) in [[;—, Gi is the least common multiple of
A1,0a2,...,Ap,.

Solution. We must prove:
1. The order of (g1, g2, ..., gn) is finite.
2. The order of (g1, 92, ..., gn) equals lem(ay, az, ..., ay). O

Proof. Let G = G1 x G2 X ... x G,,. Then for each i € {1,2,...,n}, G; is a group.
Let e; be the identity of each group G;. Then (e, ea, ..., e,) is the identity of
G. Since (g1, 92, -, gn) € G, then each element g; is in the group G;.

Suppose each g; has finite order a; in G;. Then for each i, a; is the least
positive integer such that g = e;.

We prove the order of (g1, g2, ..., gn) is finite. Let m = ajas...a,. Then m is
a positive integer and for each ¢, a;|m.

For each i and for any integer M, gM = e; iff a;|/M. Hence, for each i,
g = e; iff a;lm. Thus, for each i, g/* = e;. Observe that

(glvg27"'7gn)m = (g{nyggbvvggl)
= (617 €2, .0y en).

Therefore, there exists a positive integer m such that (g1, 92,...,9,)™ =
(e1,€2,...,en), so the order of (g1, g2, ..., gn) is finite.

Let k be the order of (g1, 92, ..., gn)- Then k is the least positive integer such
that (g1, g2, ..., gn)* = (e1,€2,...,e,). Thus,

(615627"'76n) = (91?927"'agn)k
(91,95, -, 9n)-

Hence, for each 1, gf = e;. Thus, for each i, a;k.

Let s be the least common multiple of each a;. Then for each i, a;|s and for
every integer ¢, if each a;|c, then s|c. Thus, if each a;|k, then s|k. Since each a;
divides k, then s|k.

Since each a; divides s, then g = e; for each 7. Thus,

(617623"'a€n) = (gfaggaagi)

= (917927"'7971)3'

For any integer N, (g1, 2, -, gn)Y = (€1, €2, ..., €, ) iff k| N. Hence, in particular,
(91,92, -, 9n)° = (€1, €2, ..., e,) iff k|s. Thus, kls.

By the antisymmetric property of ZT, k|s and s|k implies k¥ = s. Since s|k
and k|s, then we conclude k = s.

Therefore, the order of

<91>g2> ,gn)
is the least common multiple of aq, as, ..., a,. O

Theorem 88. Let m,n € ZT. Then (L xZ, +) =2 (Zyn, +) iff ged(m, n) = 1.
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Proof. We prove ged(m,n) =1 implies (Zy, X Zpn,+) = (Zmn, +)-

Suppose ged(m,n) = 1. Observe that (Z,,,+) is a cyclic group with gen-
erator [1],, € Zy,,. Thus, the order of [1],, in Z,, is m. Observe that (Z,,+)
is a cyclic group with generator [1],, € Z,,. Thus, the order of [1],, in Z, is n.
Therefore, the order of ([1]m, [1]n) € Zm X Zy, is the least common multiple of
m and n. Observe that

mn = ged(m,n) *lem(m,n)
= 1xlem(m,n)

= lem(m,n).

Hence, the order of ([1],,, [1]n) is mn.

The order of ([1]m,[1]n) € Zm X Z,, is the order of the cyclic subgroup of
L X 7y, generated by ([1)m,[1]n). Let G be the cyclic subgroup of Z,, x Zj,
generated by ([1]m,[1]n). Then G C Z,, X Z,, and |G| = mn = |Z,||Z,| =
|Zy, X Zy|. If S is a finite set and T is a subset of S such that |T| = |S|,
then T" = S. Observe that Z,, x Z,, is a finite set and G C Z,, X Z,, and
|G| = |Zy, x Zy,|. Hence, G = Z,, X Zy,. Thus, ([1]m,[1]n) is a generator of
Ly X Loy SO Loy, X Ly is cyclic.

Every cyclic group of finite order n is isomorphic to (Z,,+). Hence, every
cyclic group of finite order mn is isomorphic to (Z,,, +). Observe that Z,, X Z,
is a cyclic group of order mn. Therefore, (Z,, X Zy,,+) is isomorphic to (Zn, +).

Conversely, we prove (Z,, X Zn,~+) = (Zmn,+) implies ged(m,n) = 1. We
prove by contrapositive. Suppose ged(m,n) # 1. Then ged(m,n) > 1. Let
d = ged(m, n). Then d > 1 and d|m and d|n, so d|mn. Thus, %, &, and ™7 are
positive integers. Since 1|%, then m|™®. Since 1|7, then n|™". Let w = ™.
Then m|w and n|w.

Let (a,b) € Zy, X Zy,. Then a € Z,, and b € Z,.

Every element of a finite group has finite order. Since Z,, and Z, and
Ly X Ly, are finite groups, then every element of Z,, and Z,, and Z,, X Z, has
finite order. In particular, a and b and (a,b) have finite order. Let k be the
order of a and [ be the order of b and s be the order of (a,b).

The order of an element of a finite group G divides the order of G. Thus,
the order of a divides |Z,,| and the order of b divides |Z,|, so k|m and {|n. Since
klm and m|w, then k|w. Since I|n and n|w, then l|w. Thus, k|w and I|w.

Since a has finite order k, then wa = 0 iff k|w. Since k|w, then wa = 0.

Since b has finite order I, then wb = 0 iff [|w. Since l|w, then wb = 0.

Thus, w(a,b) = (wa,wb) = (0,0).

Since (a, b) has finite order s, then w(a,b) = (0,0) iff s|lw. Since w(a,b) =
(0,0), then s|w. Since s and w are positive integers, then this implies s < w.

Since d > 1, then 1 < d, so é < 1. Thus, ®* < mn, so w < mn. Since
s <w and w < mn, then s < mn. Hence, s # mn, so |(a,b)| # |Zm X Zy]|.

If a finite group G is cyclic, then there exists g € G such that |g| = |G|.
Thus, if |g| # |G| for all ¢ € G, then a finite group G is not cyclic. Hence,
if g is an arbitrary element of a finite group G such that |g| # |G|, then G is

96



not cyclic. Since (a,b) is an arbitrary element of the finite group Z,, x Z,, and
[(a,b)| # |Zm, X Zy|, then we conclude Z,, X Zj, is not cyclic.

Suppose Zy, is isomorphic to Z,, X Z,. Then there exists an isomorphism
between Z,,,, and Z, X Zy,. Let ¢ : Zippy, — Loy, X Zy, be an isomorphism. Since ¢
preserves the cyclic property of groups and Z,,,, is cyclic, then Z,, X Z,, is cyclic.
Thus, we have Z,, x Z, is cyclic and Z,, x Z, is not cyclic, a contradiction.
Therefore, Z,,,, is not isomorphic to Z,, X Z,,. O

Corollary 89. Let ny,...,ng be positive integers.
k ~
Then [[;_q Zn, = Ly ...y, -

Proof. O

Corollary 90. Let p,...,py be distinct primes. Let n = pi*...piF.
Then Z.,, = Zpil X ... X ZPE"'

Proof. O

Proposition 91. If H and K are subgroups of an abelian group G, then HK <
G.

Solution. Let HK = {hk : h € H,k € K}.
The hypothesis is:
G is an abelian group and H < G and K < G.
The conclusion is: HK < G.
Suppose G is an abelian group and H < G and K < G.
To prove HK < (G, we use a subgroup test. O

Proof. Suppose G is an abelian group and H < G and K < G.

Let hk € HK. Then h € H and k € K. Since H < G, then H C G, so
h € G. Since K < G, then K C G, so k € G. By closure of G,hk € G. Thus,
hk € HK implies hk € G, so HK C G.

Let h1kq, hoko € HK. Then hq, ho € H and ki, ke € K. Observe that

(hiki)(hoke) = hi(kiho)ks
ha(hok1)ko
(hlhg)(k’lkg).

By closure of H and K, h1hy € H and kiko € K. Hence, (h1k1)(hoke) € HK.
Therefore, HK is closed under the binary operation of G.

Let e be the identity of G. Since H < G and K < GG, thene € H and e € K.
Hence, ee = e € HK. Therefore, HK contains the identity of G.

Let hk € HK. Since H < G and K < G, then h™! € H and k™! € K.
Observe that

(hk)~' = ka7t
Rkt

Hence, (hk)™' € HK.
Therefore, HK < G. O
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Proposition 92. Let H and K be subgroups of a group G.
Ifh " 'kh € K for allh € H and all k € K, then HK < G.

Proof. Let G be a group and H < G and K < G.

Suppose h='kh € K for all h € H and all k € K.

Let hk € HK. Then h € H and k € K. Since H < G, the H C G, so
h € G. Since K < G, then K C G, so k € G. By closure of G, hk € G. Hence,
hk € HK implies hk € G, so HK C G.

Let hiki, hoko € HK. Then hy,hy € H and ki, ks € K.

Since hy € H and k1 € K, then h;lklhg € K. Thus, there exists ¥’ € K
such that k' = h;lklhg. Hence, hok’ = k1hs. Observe that

(h1k1)(hak2) = hi(kiha)ks
hq (hgk/)kjg
= (hlhg)(k/kz)

By closure of H and K, hihe € H and k’'ke € K. Hence, (h1k1)(h2ks) € HK.
Therefore, HK is closed under the binary operation of G.

Let e be the identity of G. Since H < G and K < G, thene € H ande € K.
Hence, ee = e € HK. Therefore, HK contains the identity of G.

Let hk € HK. Then h € H and k € K. Since H < G, then h™' € H. Since
h=' € H and k € K, then (h=1)"'k(h~!) € K. Hence, there exists k¥’ € K such
that k' = hkh~!. Thus, k¥'h = hk. Let (hk)~! be the inverse of hk in G. Then

(hk)™' = (K'h)~"
Wk

Since h™! € H and k'~! € K, then this implies (hk)™' € HK. Hence, HK is
closed under inverses.
Therefore, HK < G. O

Proposition 93. Let H and K be subgroups of a group G.
Then HK < G iff KH C HK.

Proof. We prove if HK < G, then KH C HK.

Suppose HK < G.

Let kh € KH. Then k € K and h € H. Since H < G and K < G, then
e€ Hande € K. Sincee € H and k € K, thenek =k € HK. Since h € H and
e € K,then he =h € HK. Since HK < G, then HK is closed, so k € HK and
h € HK imply kh € HK. Thus, kh € KH implies kh € HK,so KH C HK.

Conversely, we prove if KH C HK, then HK < G.

Suppose KH C HK.

Let e be the identity of G. Since H < G and K < G, thene € H ande € K.
Hence, ee = e € HK. Therefore, HK contains the identity of G.

Let hk € HK. Then h € H and kK € K. Since H < G, the H C G, so
h € G. Since K < G, then K C G, so k € G. By closure of G, hk € G. Hence,
hk € HK implies hk € G, so HK C G.
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Let hik1, hoks € HK. Then hy,ho € H and kq, ks € K.

Since ho € H and k; € K, then kiho, € KH. Since KH C HK, then
kiho € HK. Thus, there exists b’ € H and k' € K such that W'k’ = kihs.
Observe that

(hiky)(haks) = hi(kiha)ke
— (WK )k
— () (K ka).

By closure of H and K, h1h' € H and k'ke € K. Hence, (h1k1)(hoko) € HK.
Therefore, HK is closed under the binary operation of G.

Let hk € HK. Then h € H and kK € K. Since H < G and K < G,
then h™' € H and k' € K. Thus, k'h~! € KH. Since KH C HK, then
k='h=! € HK. Since (hk)™! = k='h~!, then this implies (hk)~! € HK.
Hence, HK is closed under inverses. Therefore, HK < G. O

Normal Subgroups

Theorem 94. Let H < G. Then the following are equivalent:
1. H«G.
2. gHg~ ' C H for all g € G.
3. gHg ' =H forallg € G.

Proof. We prove 1 implies 2.

Suppose H < G. Then ghg~! € H forall g € G and all h € H.

Let g € G. Let « € gHg™'. Then x = ghg~"' for some h € H. Since H < G,
then « € H. Hence, x € gHg™ ! implies x € H, so gHg~ ! C H.

We prove 2 implies 3.

Suppose gHg™' € H for all g € G. We prove H C gHg ! for all g € G.

Letg€ G. Leth € H. Let h’ = g~ 'hg. Sinceg™! € G, then g 'H (g7 ')~ C
H. Hence, g~ 'Hg C H. Since h' = g~ 'hg for some h € H, then h/ € g~ Hg.
Thus, b’ € H. Observe that

gh'g™" = glg "hg)g™"
= (99 "h(gg™")
- h

Hence, there exists h’ € H such that h = gh'g~!, so h € gHg™'. Thus, h € H
implies h € gHg™ !, so H C gHg™ .

Since gHg™! C H and H C gHg™!, then gHg~ ! = H.

We prove 3 implies 1.

Suppose gHg™ ! = Hforallg € G. Letg € Gand h € H. Then gHg ' = H.
Thus, gHg~! € H. Hence, ghg™! € H. O

Theorem 95. Let H < G. Then H <G iff gH = Hg for all g € G.
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Proof. Suppose H <{G. Then ghg~! € H for all g € G and all h € H.

Let g € G.

Suppose gh € gH. Then h € H. Let i’ = ghg~!. Then h’g = gh. Since
g€ Gand h € H and H <G, then ' € H. Observe that

ghegH = MWgecgH
= hg€Hyg
= ghe Hg.
Hence, gh € gH implies gh € Hg, so gH C Hg.
Suppose hg € Hg. Then h € H. Let h” = g=thg = g 'h(g~)~!. Then
gh"” = hg. Since g7 € G and h € H and H <1 G, then h'' € H. Observe that
hge Hg = gh"” € Hyg
= gh" e gH
= hgegH.
Hence, hg € Hg implies hg € gH, so Hg C gH.
Since gH C Hg and Hg C gH, then gH = Hg.
Conversely, suppose gH = Hg for all g € G. Let g € G and h € H. Then

gH = Hg, so gh = h'g for some b/ € H. Thus, ghg~* = k', so ghg™' € H.
Therefore, H <1 G. O

Theorem 96. Fvery subgroup of an abelian group is normal.

Solution. To prove H is normal in G, we prove ghg~' € H for all g € G and
all h € H. O

Proof. Let H be an arbitrary subgroup of an abelian group G.
Let g€ Gand h € H. Since h € H and H C G, then h € G. Thus,

ghg™! (gh)g™"
(

= h(gg™")
= he

Hence, ghg~! € H, so H < G. O

Proof. Let g,h € G.
Observe that

ghegH = hgegH
= hge€ Hyg
= gh€ Hyg.

Therefore, gH C Hg.
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Observe that

hge Hg = ghe€ Hg
= ghegH
= hg € gH.

Therefore, Hg C gH.
Thus, gH C Hgand Hg C gH, so gH = Hg.
Hence, H < G. O

Theorem 97. The intersection of two normal subgroups is a normal subgroup.

Solution. This statement means:

if H and K are normal subgroups of a group G, then H N K < G.

Hence, we assume H and K are normal subgroups of a group G.

To prove H N K < G, we must prove ghg~* € HN K for all g € G and all
he HNK. O

Proof. Let H and K be normal subgroups of a group G. Let g € G and h €
HNK. Since G is a group and g € G, then ¢g~! € G. Since h € HN K, then
he Hand he K.

Since H <1 G, then ghg™! € H. Since K < G, then ghg~' € K. Hence,
ghg~' € H and ghg™' € K, so ghg~' € HN K. Therefore, HN K < G. O

Proposition 98. IfG is a group and H < G, then gHg™' < G and gHg~* = H
forall g € G.

Proof. Suppose G is a group and H < G.
Let g € G.
We first prove gHg~! < G.
Let v € gHg .
Then there exists h € H such that z = ghg™".
Since h € H and H C G, then h € G.
By closure of G,z € G.
Hence, x € gHg™" implies = € G, so gHg™ ' C G.
Let x,y € gHg™'.
Then = = ghi1g~ ! for some hy € H and y = ghog~" for some hy € H.
Thus,

(gh1g™")(ghag™)
(gh1)(g~ " g)(hag™")
(gh1)(h2g™")

= g(hih2)g™".

Ty

By closure of H, h1hs € H.
Hence, there exists hiho € H such that zy = g(h1h2)g~t, so zy € gHg™ L.
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Let e be the identity of G.
Since H < G, then e € H.
Observe that e = gg—!
Hence, e € gHg ™.

=geg L.

Let x € gHg™ .
Then there exists h € H such that = ghg™*.
Since H < G, then h™! € H.
Thus, 27! = (ghg~ )"t =gh~1g7 L.
Hence, there exists h~! € H such that =! = gh~'¢g7!,so 7! € gHg
Therefore, by the subgroup test, gHg™! < G. O

—1

Proof. Let g € G.

We prove gHg™' = H.

Define ¢ : H — gHg~* by ¢(h) = ghg™! for all h € H.

Let hi,hy € H such that hy = ho. Then ghy = ghs, 50 ghig™! = ghag™'.
Hence, ¢(h1) = ¢(ha). Thus, hy = hy implies ¢p(hy) = @(ha), so ¢ is well
defined. Therefore, ¢ is a function.

Let h1,hy € H such that ¢(hy) = ¢(h2). Then gh1g~! = ghog™!. By the
right cancellation law, we have ghy = ghs. By the left cancellation law, we have
hi = ho. Hence, ¢(h1) = ¢(hs) implies hy = ha, so ¢ is injective.

Let ghg~! € gHg™!. Then h € H. Hence, there exists h € H such that
ghg™' € gHg™'. Therefore, ¢ is surjective.

Thus, ¢ is a bijective function.

Let hi,hy € H. Then

¢(hihy) = g(hiha)g™!
(gh1)(hag™")
(gh1)(g~ " g)(hag™")
(ghig™")(ghag™")
= ¢(h1)o(he).

Thus, ¢ is a group homomorphism, so ¢ : H — gHg™" is an isomorphism.
Therefore, H = gHg™!. O

1

Proof. Let g € G.

Define ¢ : H — G by ¢(h) = ghg~* for all h € H.

Let hi,hy € H such that h; = hy. Then gh; = ghg, so gh1g™' = ghag™'.
Hence, ¢(h1) = ¢(ha). Thus, hy = he implies ¢(h1) = ¢(ha), so ¢ is well
defined. Therefore, ¢ is a function.
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Let hq,hy € H. Then

¢(hih2) = g(hlhz)g
)

(

= (ghl)e(h2g
(
(

= o(h

Therefore, ¢ is a group homomorphism.
Since ¢ : H — G is a group homomorphism, then ¢(H) < G.

We prove ¢p(H) = gHg ™!

Let € ¢(H). Then there exists h € H such that x = ¢(h). Thus, there
exists h € H such that z = ghg~!. Hence, x € gHg~!. Therefore, x € ¢(H)
implies # € gHg™ ', so ¢(H) C gHg™*.

Let y € gHg™'. Then there exists h € H such that y = ghg~!. Hence,
there exists h € H such that y = ¢(h). Thus, y € ¢(H). Therefore, y € gHg™*
implies y € ¢(H), so gHg™' C ¢(H).

Since ¢(H) C gHg™ ! and gHg™! C ¢(H), then ¢(H) = gHg~'. Therefore,
gHg™ ' < G.

Let hi,ho € H such that ¢(h1) = ¢(h2). Then ghig~!' = ghog™!. By the
right cancellation law, we have ghy = ghs. By the left cancellation law, we have
hi = ho. Hence, ¢(h1) = ¢(ho) implies hy = ha, so ¢ is injective.

Since ¢ is injective, then H = ¢(H). Thus, H 2 gHg ', sogHg ' = H. O

Proposition 99. Let H be a subgroup of group G.
Let N(H) ={g9 € G: (VYh € H)(gh = hg)}.
Then N(H) is a subgroup of G, called the normalizer of H in G.

Proof. Observe that N(H) is a subset of G.
Let e be the identity of G.
Let h € H.
Then eh = h = he, so e € N(H).
Hence, N(H) is not empty.

Let a,b € N(H).
Then a € G and for every h € H,ah = ha and b € G and for every h €
H, bh = hb.
Thus, ah = ha and bh = hb.
Hence, b = hbh™1L.
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Since G is a group, then b=! € G.
By closure of G, ab™! € G.
Observe that

(ab™"h = (a(hbh™ ") M)A
= (a(hb~'h"")h
= (ah)b™ ( ~'h)
= (ah)b™
= (ah)b™!
— (ha)b~
= h(ab™h).
Hence, (ab=1)h = h(ab™1).
Therefore, ab~' € N(H).
Thus, N(H) is a subgroup of G. O

Proposition 100. IfG is a group and H < G, then N(H) < G and H C N(H).

Proof. Suppose G is a group and H < G.
Let x € N(H).
Then z € G.
Hence, N(H) C G.
Let e be the identity of G. To prove e € N(H), we must prove eHe ! = H.
Let h € eHe . Then there exists ' € H such that h = eh/e~!. Thus,

eh'e™!
_ h/e—l
= he
K.

h

Hence, h € H. Therefore, h € eHe™' implies h € H, so eHe ! C H.
Let h € H. Then

ehe ™ = he !
= he
h.

Hence, there exists h € H such that h = ehe™', so h € eHe™!. Therefore,
h € H implies h € eHe !, s0o H C eHe L.

Since eHe ™! ¢ H and H C eHe ', then eHe ' = H. Since e € G and
eHe ' = H, then e € N(H).

Let a,b € N(H). Then a,b € G and aHa™! = H and bHb™! = H. By
closure of G, ab € G.

We prove (ab)H (ab)~! = H.
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Let z € (ab)H (ab)~!. Then there exists h € H such that x = (ab)h(ab)~!.
Hence, x = abhb~'a~'. Let ' = bhb~!. Since h € H, then h’' € bHb~!. Since
bHb™! = H, then b’ € H. Thus, = ah’a™!. Since b/ € H, then z € aHa™!.
Since aHa™! = H, then x € H. Hence, z € (ab)H (ab)~! implies z € H, so
(ab)H (ab)~! C H.

Let y € H. Since H = aHa™' = bHb™ !, then y € aHa~! and y € bHb™ L.
Hence, y = aha™! for some h € H and y = bh/b~" for some h' € H.

Let h"" = b~ 'hb.

We must prove b € H!I!

Observe that

(ab)h"(ab)™' = (ab)(b~'hb)(ab)™?
(ab) (b~ hb) (b~ ta™t)
a(bb"Yh(bb1)a ™!

-1

= aha

Hence, y € (ab)H(ab)~'. Thus, y € H implies y € (ab)H(ab)~!, so H C
(ab)H (ab)~!.

Since (ab)H (ab)™' C H and H C (ab)H (ab)™!, then (ab)H (ab)~! = H.

Since ab € G and (ab)H (ab)~t = H, then ab € N(H). Therefore, N(H) is
closed under the binary operation of G.

We prove N(H) is closed under taking inverses. Let a € N(H). Thena € G
and aHa~! = H. By closure of G,a™! € G.

To prove a~* € N(H), we must prove a~*Ha = H. Thus, we must prove
aHa ' = H implies a 'Ha = H.

Suppose aHa™! = H. To prove a"'Ha = H, we must prove a 'Ha =
aHa~'. Thus, we must prove a 'Ha C aHa™ ! and aHa™! C a~'Ha. O

Theorem 101. Let G be a group.
Let g € G.
Then C(g) < G.
If g generates a normal subgroup of G, then C(g) < G.

Proof. Observe that C(g) is a subset of G. Let e be the identity element of G.
Since e € G and eg = ge, then e € C(g).

Let a,b € C(g). Then a € G and ag = ga and b € G and bg = gb. By closure
of G,ab € G. Observe that

(ab)g = a(bg)

|
S = 2
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Since ab € G and (ab)g = g(ab), then ab € C(g). Hence, C(g) is closed under
the binary operation of G.

Let a € C(g). Then a € G and ag = ga. Thus, a = gag™!, so a™! =
(gag=)™! = gatg~!. Hence, a='g = ga=!. Since a=! € G and a~'g = ga™ 1,
then a=! € C(g). Hence, C(g) is closed under taking inverses.

Therefore, by the subgroup test, C(g) < G.

Let (g) be the cyclic subgroup of G generated by g. Then (g) = {¢g* : k € Z}.
Suppose (g) < G. Then ag®a="! € (g) for all @ € G and all g € (g).

Let H = C(g).

To prove H <1 G, we prove aha™! € H for alla € G and all h € H.

Let a € G.

Let h € H.

Then h € G and gh = gh. O

Theorem 102. The center of a group G is a normal subgroup of G.
Let G be a group.
Then Z(G) < G.

Proof. We first prove Z(G) < G.
Since Z(G) ={z € G : (Vg € G)(xg = gx)}, then Z(G) C G.
Let e be the identity of G.
By definition of group, eg = ge for all g € G.
Since e € G and eg = ge for all g € G, then e € Z(G), so Z(G) # 0.
Since Z(G) C G and Z(@G) # 0, then Z (@) is a nonempty subset of G.

We prove Z(G) is closed under the binary operation of G.
Let a,b € Z(G).
Then a € G and ag = ga for all g € G and b € G and bg = gb for all g € G.
By closure of G,a € G and b € G implies ab € G.
Let g € G.
Observe that

(ab)g = a(bg)
= al(gb)
= (ag)b
= (ga)b
= g(ab).

Since ab € G and (ab)g = g(ab), then ab € Z(G).
Therefore, Z(G) is closed under the binary operation of G.

We prove Z(G) is closed under inverses.
Let a € Z(G).
Then a € G and ag = ga for all g € G.
Since a € G and G is a group, then a~! € G.
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Let g € G.

Then ag = ga, so a = gag™—'.
Hence, a=! = (gag=') "t = ga=tg~
Thus, a~'g = ga™! for all g € G.
Since a=! € G and a~lg = ga~! for all g € G, then a~! € Z(G).
Therefore, a=t € Z(G) for all a € Z(G).

1 1

o=l —
,s0a”"g=ga"".

Since Z(G) is a nonempty subset of G and Z(G) is closed under the binary
operation of G and a~! € Z(G) for all a € Z(G), then by the two-step subgroup
test, Z(@) is a subgroup of G, so Z(G) < G. O

Proof. We prove Z(G) < G.
Let g € G and h € Z(G). Then h € G and hxz = zh for all z € G. By
closure of G, ghg~! € G. Let x € G. Observe that

(ghg™Hz = (gh)(g™ ')
= (hg)(9™ ')
h(gg™")x
hx
xh
z(99~")h
(xg)(9™"h)
(xg)(hg™")
= z(ghg™).

Since ghg™! € G and (ghg~1')x = 2(ghg™!) for all x € G, then ghg™! € Z(G).
Therefore, Z(G) < G. O

Theorem 103. Let H < G.

Let % be the set of all cosets of H in G.

Define (aH)(bH) = (ab)H for all aH,bH € &.

Then (&) is a group and | S| = [G : H].

Proof. Since e € G, then eH = H is a coset of H in G. Therefore, H € %, SO
% is not empty.

Let af,bH € €. Then a,b € G and (aH)(bH) = (ab)H. Since G is a
group, then ab € G, so (ab)H € % Therefore, % is closed under multiplication
of cosets.

We prove that multiplication of cosets is well defined.

Suppose cH,dH € % such that aH = ¢H and bH = dH. Then a,b,c,d € G.
To prove coset multiplication is well defined, we must prove (aH )(bH) is unique.
Hence, we must prove (aH)(bH) = (cH)(dH).

Since aH = cH iff a € cH, then a € cH. Thus, there exists hy € H such that
a = chy. Since bH = dH iff b € dH, then b € dH. Thus, there exists ho € H
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such that b = dhs. Since H is normal in G, then for every g € G and h € H,
ghg™ € H. Since d~! € G and hy € H, then d~'hi(d=*)"! = d~'hid € H.
Let hy = d_lhld. Then hs € H.

Let h = hghs. Since H is a group, then H is closed under its binary opera-
tion. Hence, h € H since hy, hy € H.

Observe that

(cd)h = (cd)(hsha)
= (cd)(d" hid)hy
= c¢(dd™ )hldhz
= (Chl)(th)
= ab.

Since ab = (cd)h for some h € H, then ab € (cd)H. Since ab € (ab)H and
ab € (cd)H, then (ab)H = (¢d)H. Therefore,

(aH)(bH) = (ab)H
= (ed)H

Therefore, multiplication of cosets is well defined, so multiplication of cosets is
a binary operation on %

Let aH,bH,cH € % Observe that

[(aH)(bH)|(cH) = (
-
= (a(bec
=
(

Therefore, multiplication of cosets is associative.

Let aH € &. Then (aH)(H) = (aH)(eH) = (ae)H = aH = (ea)H =
(eH)(aH) = (H)(aH). Since H € & and (aH)(H) = (H)(aH) = aH, then H
is an identity element of %

Since a=! € G, then a='H € %&. Observe that (aH)(a 'H) = (aa™')H =
eH = (a ta)H = (a *H)(aH). Hence, an inverse of aH is a~'H, so each
element of % has an inverse.

E\Q

Therefore, (£, %) is a group

The order of the group + is the number of cosets of H in G. Since H is
normal in G, then gH = H g for every g € G. Thus, each left coset equals
each right coset. Hence, the number of cosets equals the number of left cosets.
Therefore, |&| = [G : H]. O

Theorem 104. If N is a subgroup of an abelian group G, then % is abelian.
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Proof. Suppose G is an abelian group and N < G.
Every subgroup of an abelian group is normal, so N <1 G.
Let aN,bN € &.
Then a,b € G.
Observe that

(aN)(bN) = (ab)N
= (ba)N
(bN)(aN).
Therefore, % is abelian. O

Theorem 105. If N is a subgroup of a cyclic group G, then % is cyclic.

Proof. Suppose N is a subgroup of a cyclic group G. Every cyclic group is
abelian, so G is abelian. Every subgroup of an abelian group is normal, so N is
normal. Therefore, % is a group and % = {aN :a € G}.

Since G is cyclic, then there exists g € G such that G = {¢" : n € Z}. Since
g € G, then gN € % Every element of a group generates a cyclic subgroup. Let
T be the cyclic subgroup of % generated by gN. Then T = {(gN)" : n € Z}.

Let aN € % Then a € G. Since G is cyclic, then there exists an integer n
such that a = ¢g". Therefore, aN = g"N = (gxgx*...xg)N = (¢N)(gN)...(9N) =
(gN)™. Thus, there exists an integer n such that aN = (gN)", so aN € T.
Hence, aN € % implies aN € T, so % cT.

Let y € T. Then there exists an integer m such that y = (¢/N)™. Thus, y =
(gN)(gN)...(gN) = (gg...9)N = (¢g"™)N. Since g™ € G, then y = (¢™)N € <.
Thus, y € T implies y € %, soT C %

Since & C T and T C &, then & =T. Thus, & = {(¢N)" : n € Z}. Since
there exists gN € & such that & = {(gN)" : n € Z}, then < is cyclic. O

Theorem 106. Let G be a group and let Z(G) be the center of G.
If % 1s cyclic, then G is abelian.

Proof. Let H=Z(G) ={z € G: (Vg € G)(xg = gx)}.
Since Z(G) < G, then H <1 G, so % exists.

Suppose % is cyclic.
Then there exists gH € < such that & = {(gH)" : k € Z}.
Hence, there exists g € G such that & = {g*H : k € Z}.

Let aH,bH € &.
Then a,b € G and there exist integers m and n such that aH = ¢ H and
bH = g"H.
Since aH = ¢ H, then a = g"h, for some hy € H.
Since bH = ¢g""H, then b = g"hs for some hy € H.
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Observe that

ab = (9"h1)(g"ha)

Therefore, G is abelian.

Homomorphisms

Theorem 107. preservation properties of a group homomorphism
Let (G, %) be a group with identity e.
Let (G, %) be a group with identity €.
Let ¢ : G — G’ be a homomorphism.
Then
1. ¢(e) = €'. preserves identity
2. (Va € Q)[p(a™t) = (¢(a))~1]. preserves inverses
3. (Vk € Z)[p(a*) = (¢(a))*]. preserves powers of a
4. If H < G, then ¢(H) < G'. preserves subgroups of G
In particular, since G < G, then ¢(G) < G'.
This means the image of a homomorphism is a subgroup of G'.
5. If K' < G, then ¢~ 1(K') < G. preserves subgroups of G’
Moreover, if K' < G’, then ¢~ (K') < G.

Proof. To prove 1: we must prove ¢(e) = ¢'.

Observe that

e'gle) = ¢(e)

Applying the right cancellation law, we obtain e’ = ¢(e), as desired.
Proof. We prove 2.
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Let a € G.
We must prove ¢(a=1) = (¢(a)) .
Observe that

¢ = ¢l
= ¢laa")
= ¢la)p(a™).
Hence, ¢(a) and ¢(a~1) are inverses of each other in G.
Therefore, (¢(a)) ™! = ¢(a™!), as desired. O

Proof. To prove 3: define predicate p(k) : ¢(a*) = (¢(a))* over Z.
We must prove (Vk € Z)(p(k)).
Observe that (Vk € Z)(p(k)) < (Vk € Z1)(p(k)) Ap(0) A (Vk € Z1)(p(—k)).
Thus, we must prove:
3a. (Vk € Z7)(p(k)).
3b. p(0).
3c. (Vk € Z1)(p(—k)).

Observe that

I
o

Therefore, p(0) is true.

We prove (Vk € Z7)(p(k)) by induction on k.
If k =1, then ¢(a') = ¢(a) = (¢(a))!, so p(1) is true.
Suppose k € ZT such that p(k) is true.

Then ¢(a*) = (¢(a))¥.
Observe that

Blartl) =

Hence, ¢(k + 1) is true, so p(k) implies p(k + 1).
Therefore, by induction, p(k) is true for all k € Z*.
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We prove (Vk € Z1)(p(—k)) by induction on k.
Let £ =1.
Since a group homomorphism preserves inverses, then ¢(a=!) = (¢(a)) 1,
so p(—1) is true.
Suppose k € ZT such that p(—k) is true.
Then g(a~) = (¢(a)~*.
Observe that

pla”*T)y = a1
= ¢(a"at)
= ¢laF)pa™)
= (¢(a))Fe(a)
= (¢(a)) " (¢(a))!
= (¢(a)) !
= (¢(a))~*+V)

Thus, p(—(k + 1)) is true, so p(—k) implies p(—(k + 1)).
Hence, by induction, p(—k) is true for all k € ZT.
Therefore, p(—k) is true for all k € Z. O

Proof. We prove 4.
Suppose H < G.
We must prove ¢(H) < G'.

Let ¢(H) be the image of H under ¢.
Then ¢(H) = {¢(h) € G' - h € H}.
Thus, ¢(H) C G, so ¢(H) is a subset of G'.

Every subgroup of G contains the identity of G.
Since H < G and e € G, then e € H.
Since e € H and ¢(e) =€’ and €’ € G’, then €' € ¢(H).
Therefore, ¢p(H) is closed under the identity of G’.

Let ¢(a), 6(b) € 6(H).

Since ¢(a) € ¢(H), then ¢(a) € G’ and a € H.

Since ¢(b) € ¢p(H), then ¢(b) € G’ and b € H.

Since H is a group and a € H and b € H, then by closure of H, we have
abe H.

Since ¢(a) € G', then a € G.

Since ¢(b) € G', then b € G.

Since G is a group and a € G and b € G, then by closure of G, we have
ab € G, so ¢(ab) € G'.

Since ¢(a)p(b) = ¢(ab) and ¢(ab) € G’ and ab € H, then ¢(a)p(b) € ¢(H).

Therefore, ¢p(H) is closed under the binary operation of G’.

112



Let ¢(a) € ¢(H).
Then a € H by definition of ¢(H).
Since H is a group, then a=! € H.
Since a=! € H and ¢(a™t) = (¢(a))™!, then (¢(a))~! € ¢(H).
Consequently, ¢(H) is closed under taking of inverses.

Since ¢(H) is a subset of G’ and is closed under the binary operation of G’
and is closed under the identity of G’ and is closed under inverses, then by the
subgroup test, ¢(H) is a subgroup of G'.

Therefore, ¢p(H) < G’. O

Proof. We prove 5:
Suppose K’ < G'.
We must prove the pre-image of K’ is a subgroup of G.
Let K be the pre-image of K'.
Then K = ¢ 1 (K')={a € G:¢(a) € K'},s0 K C G.
Therefore, K is a subset of G.

Let z,y € K.

Since z € K, then z € G and ¢(z) € K'.

Since y € K, then y € G and ¢(y) € K.

Since G is a group and € G and y € G, then by closure of G, we have
xy € G.

Since K’ < G’, then K’ is a group.

Since K’ is a group and ¢(z) € K’ and ¢(y) € K’, then by closure of K', we
have ¢(x)p(y) € K'.

Since zy € G and ¢(xy) = ¢(x)d(y) and ¢(x)p(y) € K', then zy € K.

Therefore, K is closed under the binary operation of G.

Since K/ < G’, then ¢’ € K'.
Since €’ = ¢(e), then ¢(e) € K.
Since e € G and ¢(e) € K’, then e € K.
Therefore, K is closed under the identity of G.

Let z € K.
Then z € G and ¢(z) € K'.
Since G is a group and = € G, then 27! € G.
Since K’ is a group and ¢(z) € K’, then (¢(z))~! € K'.
Since 7! € G and ¢(x71) = (¢(z))"! and (¢(z))~! € K/, then 27! € K.
Therefore, K is closed under inverses.

Since K is a subset of G and K is closed under the binary operation of G and
K is closed under the identity of G and K is closed under inverses, then by the
subgroup test, K < G.

Therefore, ¢~ 1(K') < G.
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Suppose K’ < G'.
Let g€ G and h € K.
Let ¢’ = ghg™!
To prove K <1 G, we must prove ¢’ € K, so we must prove ¢’ € G and
o(g') € K.

Since g € G and G is a group, then ¢! € G.
Since K is a subgroup of G, then K is a subset of G.
Since h € K and K C G, then h € G.
Since G is closed under its binary operation and g,¢g~ !, h € G, then ¢’ € G.

Observe that

(ghg™")
(gh)p(g™")

= d(g9)¢(h)p(g™")
= d(g)p(h)(p(g)) "

Since h € K, then ¢(h) € K', by definition of K.
Since K’ <1 G/, then aba~! € K' for every a € G’ and every b € K.
Since ¢(g) € G" and ¢(h) € K’, then this implies ¢(g)p(h)(¢(g))~! € K'.
Since ¢(g)p(h)(¢(9)) " = ¢(g'), then ¢(g') € K.
Since ¢’ € G and ¢(¢') € K’, then ¢’ € K.
Therefore, K < G. O

og) = ¢

<

Theorem 108. Let ¢ : G — G’ be a group homomorphism.
Then ker(¢) < G.

Proof. We prove K < G.
Let e be the identity of G and €’ be the identity of G'.
Let K =ker(¢) ={g € G: ¢(g) =¢€'}.
Then K C G, so K is a subset of G.

Let a,b € K.
Then a,b € G and ¢(a) = ¢(b) = ¢’. Thus,

¢(ab) = ¢(a)p(b)

/
€.

Since ab € G and ¢(ab) = €', then ab € K.
Therefore, K is closed under the binary operation of G.

Since e € G and ¢(e) = ¢/, then e € K.
Therefore, K is closed under the identity of G.
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Let a € K.
Then a € G and ¢(a) = €.
Let a=! € G. Then

$la™) = (¢(a)”"
6/—1

= .
Since a=! € G and ¢(a~!) =€, then a~! € K.
Therefore, K is closed under inverses.

Since K is a subset of G and K is closed under the binary operation of G and
K is closed under the identity of G and K is closed under inverses, then by the
subgroup test, K < G. O

Proof. To prove K is normal in G, we must prove (Vg € G)(Vh € K)(ghg™! €
K).

Let g€ G and h € K.

Since h € K, then h € G and ¢(h) = ¢'.

Since g € G and G is a group, then g~! € G.

Since g, g™, h € G and G is closed under its binary operation, then ghg~! €

Observe that

)o(h)p(g™")
9)e'd(g)
)

d(ghg™") = o
(
(9)o(g™h)
(
(

9

99~ ")
e)

Il
[ S S S ST S

Since ghg™! € G and ¢(ghg~?') = €, then ghg™! € K.
Therefore, K < G. O

Theorem 109. Let ¢ : G — G’ be a group homomorphism.
If ¢ is injective, then G = ¢(G).

Solution. Suppose ¢ is injective.
To prove G = ¢(G), we must prove there exists an isomorphism f : G —
?(G).
O

Proof. Suppose ¢ is injective.
Let f: G — ¢(G) be the restriction of ¢ to ¢(G).
Then f(g) = ¢(g) for all g € G.
Clearly, f is a function.
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Let a,b € G.
Since ¢ is a homomorphism, then ¢(ab) = ¢(a)p(b) and ¢(G) < G'.
Observe that

fab) = o(ab

Hence, f is a group homomorphism.

Suppose f(a) = /().
Then ¢(a) = ¢(b).
Since ¢ is injective, then ¢(a) = ¢(b) implies a = b.
Hence, a = b.
Therefore, f(a) = f(b) implies a = b, so f is injective.

Let b € ¢(G).
By definition of ¢(G), there exists a € G such that ¢(a) = b.
Since f(a) = ¢(a) = b, then there exists a € G such that f(a) = b.
Therefore, f is surjective.

Since f is injective and surjective, then f is bijective.
Thus, f is a bijective homomorphism, so f : G — ¢(G) is an isomorphism.
Therefore, G = ¢(G). O

Theorem 110. Let ¢ : G — G’ be a group homomorphism.
Let e be the identity of G.
Then ¢ is injective if and only if ker(¢) = {e}.

Solution. Consider if the kernel of a homomorphism has more than one ele-
ment, then by the pigeonhole principle there will be at least two elements in the
kernel which map to ¢’ € G'.

Hence, ¢ would not be one to one.

Now, let’s suppose the kernel has exactly one element in it.

Then the only element that maps to €’ is e € G.

We must prove P < Q:

1. Necessary ONLY IF = ¢ is injective, then ker(¢) = {e}.

2. Sufficient IF ker(¢) = {e}, then ¢ is injective. O

Proof. Let ¢’ be the identity of G’.
We prove if ¢ is injective, then ker(¢) = {e}.
Suppose ¢ is injective.
Let a € ker(¢).
Then a € G and ¢(a) = €.
Observe that ¢(e) = ¢’ = ¢(a).
Since ¢ is injective, then ¢(e) = ¢(a) implies e = a.
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Hence, e = a, so a € {e}.

Thus, a € ker(¢) implies a € {e}, so ker(¢) C {e}.

Since e € G and ¢(e) = €', then e € ker(¢).

Hence, {e} C ker(¢).

Since ker(¢) C {e} and {e} C ker(¢), then ker(¢) = {e}, as desired. O

Proof. We prove if ker(¢) = {e}, then ¢ is injective.
Conversely, suppose ker(¢) = {e}.
To prove ¢ is injective, we must prove (Va,b € G)(é(a) = ¢(b) — a =b).
Let a,b € G such that ¢(a) = ¢(b).
Observe that

¢ = ¢(a)lg(a)]”!
= ¢®)e(a)] ™
= ¢(b)e(a™)
= ¢(ba™")

Since ¢(ba~!) = ¢’ and ba~! € G, then ba~! € ker(¢).
Since ker(¢) = {e}, then, ba=! € {e}, so ba™! =e.
Observe that

a = ea
= (ba YHa
b(a"ta)

= be

b.

Therefore, a = b, as desired. O

Theorem 111. Let ¢ : G — G’ be a group homomorphism.
Let e be the identity of G. Then
1. ¢ is an epimorphism iff Im(¢) = G'.
2. ¢ is a monomorphism iff ker(¢) = {e}.
3. ¢ is an isomorphism iff ker(¢) = {e} and Im(¢) = G'.

Proof. We prove 1.
Suppose ¢ is an epimorphism.
Then ¢ is surjective, so the image of ¢ is G.
Therefore, Im(¢) = G’.

Conversely, suppose I'm(¢) = G'.Then ¢ is surjective, so ¢ is an epimorphism.

O

Proof. We prove 2.
Suppose ¢ is a monomorphism.
Then ¢ is injective.
The homomorphism ¢ is injective iff ker(¢) = {e}.
Therefore, ker(¢) = {e}.
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Conversely, suppose ker(¢) = {e}.
The homomorphism ¢ is injective iff ker(¢) = {e}.
Therefore, ¢ is injective, so ¢ is a monomorphism. O

Proof. We prove 3.

Suppose ¢ is an isomorphism.

Then ¢ is bijective, so ¢ is injective and surjective.

Since ¢ is surjective, then Im(¢) = G’.

Since ¢ is injective and a homomorphism ¢ is injective iff ker(¢) = {e}, then
Ker(¢) = {c}.

Therefore, ker(¢) = {e} and Im(¢) = G'.

Conversely, suppose ker(¢) = {e} and I'm(¢) = G.
Since ker(¢) = {e} iff ¢ is injective and ker(¢) = {e}, then ¢ is injective.
Since Im(¢) = G’, then ¢ is surjective.
Since ¢ is injective and surjective, then ¢ is bijective.
Since ¢ is a homomorphism and ¢ is bijective, then ¢ is an isomorphism. [

Theorem 112. The composition of group homomorphisms is a group homo-
morphism.

Proof. Let f1 : G — G’ be a group homomorphism.
Let f5 : G' — G” be a group homomorphism.
Let foo fi1 : G — G” be the composition of fi and fs.
We must prove fs o fi is a group homomorphism.

Let a,b € G.
Then
(f20 fi)(ab) = fa[fi(ab)]
= folfi(a)f1(D)]
= felfi(@)] * falf1(b)]

= (f20 fi)(a) * (f20 f1)(b).
Hence, (f2 o f1)(ab) = (f2 0 f1)(a) * (f2 o f1)(b).

Therefore, fo o f1 : G — G” is a group homomorphism. O

Theorem 113. Let ¢ : G — G’ be a group homomorphism with kernel K.
Then xK = Kz = ¢~ Y(¢(x)) for all z € G.

Proof. Let €’ be the identity of G'.

Let x € G.

Observe that ¢~(é(x)) = {a € G : ¢(a) = ¢(x)}, by definition of preimage
of an element.

Observe that K =ker(¢) ={a € G: ¢(a) =€’} and =K = {ak : k € K}.
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Let zk € K.
Then k € K, so k € G and ¢(k) = €.
Since K < G, then K C G.
Since k € K and K C G, then k € G.
By closure of G, zk € G.
Observe that

o(zk) = o(x)

I
<
—
G
m\

Since zk € G and ¢(zk) = ¢(x), then zk € ¢~ 1(¢(x)).
Thus, zk € zK implies 2k € ¢! (¢(x)), so zK C ¢~ 1(d(x)).

Let a € ¢~ (op(z)).
Then a € G and ¢(a) = ¢(x).
Let k = ™ ta.
Since 7%, a € G, then by closure of G,k € G.
Observe that

¢(k) = ¢(a""a)

I
/\/\/ﬂ\
8
L
S~—"
Ls
S

Since k € G and ¢(k) = ¢/, then k € K.

Hence, there exists k¥ € K such that k = z7'a, so there exists k € K such
that zk = a.

Thus, a € zK.

Therefore, a € ¢~1(¢p(z)) implies a € 2K, so ¢~ (¢(z)) C zK.

Since zK C ¢~ 1(¢(z)) and ¢~ (¢(z)) C 2K, then 2K = ¢~ (p(z)).

Since K <1 G, then K = K.

Therefore, 1K = Kz = ¢~ (4(x)). O

Corollary 114. If G is a finite group and ¢ : G — G’ is a group homomor-
phism, then |G| = |ker(o)|[Im()].

Proof. Let G be a finite group and ¢ : G — G’ be a group homomorphism with
kernel K.

Then Im(¢) = ¢(G) ={d(g) € G' : g € G}.

Let ¢(g) € Im(¢).

Then g € G and the preimage of ¢(g) is the left coset gK.

Thus, |Im(¢)| is the number of distinct left cosets of K in G.

Therefore, |Im(¢)| =[G : K| = %, so |G| = |K[[Im(¢)|. 0
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Theorem 115. Let G be a group.
If NG, thenn : G — % defined by n(a) = aN for all a € G is a
homomorphism such that ker(n) = N.
We call 7 the natural homomorphism from G onto %

Proof. Suppose N is a normal subgroup of G.

Then % is a group under coset multiplication with identity V.

Suppose a,b € G such that a = b.
Then n(a) = aN and n(b) = bN.
Since a = b and b € bN, then a € bN.
Thus, aN = bN, so n(a) = n(b).
Hence, a = b implies n(a) = n(b), so n is well defined.
Therefore, 7 is a function.

Let a,b € G.
Then n(ab) = (ab)N = (aN)(bN) = n(a)n(b).
Therefore, 1 is a homomorphism.

Let DN € %
Then b € G, by definition of %
Observe that n(b) = bN.
Hence, there exists b € G such that n(b) = bN, so 7 is surjective.
Observe that ker(n) = {g € G : n(g) = N}.

Let z € ker(n).
Then x € G and N = n(z) = zN.
Since x € N and N = N, then x € N.
Thus, « € ker(n) implies © € N, so ker(n) C N.

Let y € N.
Since N is a subgroup of G, then N is a subset of G.
Since y € N and N C G, then y € G.
Since y € yN and y € N, then yN = N.
Thus, n(y) =yN = N.
Since y € G and n(y) = N, then y € ker(n).
Hence, y € N implies y € ker(n), so N C ker(n).
Since ker(n) C N and N C ker(n), then ker(n) = N. O

Isomorphisms

Lemma 116. The isomorphism relation on groups is reflexive.
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Proof. Let (G, *) be a group.
To prove the isomorphic relation is reflexive, we must prove G = G.
Let ¢ : G — G be defined by ¢(x) = z for all x € G.
Then ¢ is the identity map and is bijective.

Let a,b € G.
Then ¢(ab) = ab = ¢(a)d(b).

Therefore, ¢ is a homomorphism.

Since ¢ is a homomorphism and ¢ is bijective, then ¢ : G — G is an isomor-
phism.
Therefore, G = G. O

Lemma 117. The isomorphism relation on groups is symmetric.

Proof. Let (G, ) and (H,-) be a groups.
To prove is isomorphic to is symmetric, we must prove if G = H, then
H=G.

Suppose G = H.
Then there exists an isomorphism from G to H.
Let ¢ : G — H be an isomorphism.
Then ¢ is a bijective function and is a homomorphism.
Since ¢ is bijective, then the inverse function exists.
Let ¢~ : H — G be the inverse function of ¢.

Since (¢~ 1)~ = ¢, then ¢~ is invertible.
All invertible functions are bijective, so ¢! is bijective.
Therefore, ¢! is a bijective function.

We prove ¢! is a homomorphism.
Let by,b0 € H.
Since ¢ is bijective, then ¢ is surjective.
Thus there exists aj, as € G such that ¢(a;) = by and ¢(az) = bs.
Hence, ¢~1(b1) = a; and ¢~ 1(ba) = as.

Since ¢ and ¢! are inverses, then ¢~! o ¢ = id.
Hence, (¢~ ! o ¢)(x) = for all z € G.
Since G is closed under * and a1, as € G, then ajas € G.
Thus, (¢~ 0 ¢)(a1a2) = aras.
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Observe that

¢~ (byba) o (
= ¢ "(¢(araz))
= (¢ "o ¢)(araz)

= aiaz

= ¢ 1 b1)o " (ba).

Thus, ¢~ (b1b2) = ¢~ 1(b1)p~1(b2), so ¢~ ! is a homomorphism.

Since ¢! is a bijective homomorphism, then ¢! : H — G is an isomor-
phism.

Therefore, H = G. O

Lemma 118. The isomorphism relation on groups is transitive.

Proof. Let (G,x),(H,-),(K,©) be groups.
To prove is isomorphic to is transitive, we must prove if G = H and H 2 K,
then G =2 K.

Suppose G 2 H and H 2 K.
Then there exist isomorphisms ¢ : G — H and ¢ : H — K.
Thus, ¢ is a bijective homomorphism and 1 is a bijective homomorphism.
Since ¢ is a bijective homomorphism, then ¢ is a homomorphism and ¢ is a
bijection.
Since 1 is a bijective homomorphism, then 1 is a homomorphism and 1 is
a bijection.

Let ¥ o ¢ : G — K be the composition of ¢ and .
The composition of bijections is a bijection.
Since ¢ is a bijection and v is a bijection, then 1) o ¢ is a bijection.

The composition of group homomorphisms is a group homomorphism.
Since ¢ is a homomorphism and ¥ is a homomorphism, then 1 o ¢ is a
homomorphism.
Since ¥ o ¢ is a bijection and 1) o ¢ is a homomorphism, then Y o¢: G — K
is an isomorphism.
Therefore, G &£ K. O

Theorem 119. The isomorphism relation on groups is an equivalence relation
on the class of all groups.

Proof. The isomorphism relation on the class of all groups is reflexive, symmet-
ric, and transitive.
Therefore, the isomorphism relation is an equivalence relation. O
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Theorem 120. preservation properties of a group isomorphism

Let ¢ : G — G’ be a group isomorphism. Then

1. |G| = |G'|. preserves cardinality

2. If G is abelian, then G’ is abelian. preserves commutativity

3. If G is cyclic, then G’ is cyclic. preserves cyclic property

4. If H is a subgroup of G of order n, then ¢(H) is a subgroup of G' of
order n. preserves finite subgroups

5. (Va € Gyn € Z)(Jla| = n — |¢(a)| = n). preserves finite order of an
element

Proof. We prove 1.

Since ¢ is an isomorphism, then ¢ is a bijective homomorphism, so ¢ is a
bijection.

Thus, ¢ is a bijective function from G to G’.

Since there exists a bijective function from G to G’, then |G| = |G| O

Proof. We prove 2.

Suppose G is abelian.

Let a/,b € G'.

Since ¢ is an isomorphism, then ¢ is a bijective homomorphism, so ¢ is a
bijective function.

Hence, ¢ is surjective, so there exists a € G such that ¢(a) = @’ and there
exists b € G such that ¢(b) =b'.

Observe that

a v ¢(a) - o(b)
= ¢(ab)
= ¢(ba)
= ¢(b)- ¢(a)
= bv-d.
Therefore, a’b’ = b'a’, so G’ is abelian. O

Proof. We prove 3.
Suppose G is cyclic.
Then there exists g € G such that G = {¢g* : k € Z}.

Since ¢ is a function, then there exists a unique g’ € G’ such that ¢(g) = ¢'.

Every element of a group generates a cyclic subgroup.
Since ¢’ € G’ and G’ is a group, then ¢’ generates a cyclic subgroup.
Let T be the cyclic subgroup of G’ generated by g¢'.
Then T = {(¢")* : k € Z}.
Since T is a subgroup of G’, then T is a subset of G', so T' C G'.
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Let b € G'.
Since ¢ is surjective, then there exists a € G such that ¢(a) = b.
Since a € G, then there exists m € Z such that a = ¢g™.
Observe that

(@) = (sle)™
= ¢
= ¢
= b

Thus, there exists m € Z such that b = (¢')™,sobe T.
Hence, b € G’ implies be T, so G' C T.
Since G’ CTand T C G', then G' =T.
Therefore, there exists ¢’ € G’ such that G’ =T, so G’ is cyclic. O

Proof. We prove 4.
Suppose H is a subgroup of G of order n.
Then n is a positive integer and |H| = n.

Since ¢ is an isomorphism, then ¢ is a bijective homomorphism, so ¢ is a
bijective function and ¢ is a homomorphism.
Every homomorphism preserves subgroups.
Since ¢ is a homomorphism, then ¢ preserves subgroups.
Thus, if H is a subgroup of G, then ¢(H) is a subgroup of G’.
Since H is a subgroup of G, then we conclude ¢(H) is a subgroup of G'.

Let ¢' : H — ¢(H) be the function defined by ¢'(h) = ¢(h) for all h € H.

We prove ¢’ is surjective.
Let b € ¢(H).
Then b = ¢(a) for some a € H, so ¢’'(a) = ¢(a) =b.
Since ¢’(a) = b for some a € H, then ¢’ is surjective.

We prove ¢’ is injective.

Let z,y € H such that ¢'(z) = ¢'(y).

Then ¢(2) = ¢'(z) = ¢ (3) = 6(y).

Since ¢ is bijective, then ¢ is injective, so for every a,b € G, ¢(a) = ¢(b)
implies a = b.

Since H < G, then H C G.

Since x € H and H C G, then z € G.

Since y € H and H C G, then y € G.

Since z € G and y € G, then ¢(x) = ¢(y) implies = = y.

Since ¢(x) = ¢(y), then we conclude x = y.

Therefore, ¢’ is injective.
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Since ¢’ is injective and surjective, then ¢’ is bijective, so |H| = |¢(H)|.
Thus, n = |H| = |¢(H)|.

Since ¢(H) is a subgroup of G’ and |¢p(H)| = n, then ¢(H) is a subgroup of
G’ of order n. O

Proof. We prove 5.
Let a be an arbitrary element of G of finite order n.
Then a € G and |a| = n.
The order of a is the order of the cyclic group generated by a.
Let H be the cyclic subgroup of G generated by a.
Then H ={a*: k€ Z} and H < G and |H| =n and a € H.

Since ¢ is an isomorphism, then if H is a subgroup of G of order n, then the
image of H is a subgroup of G’ of order n.
Since H is a subgroup of G of order n, then we conclude the image of H is
a subgroup of G’ of order n.
Let ¢(H) be the image of H under ¢.
Then ¢(H) = {¢(h) € G : he€ H} and ¢(H) < G' and |¢(H)| = n.
Thus, |H| = |¢(H)|.

Since G’ is a group, then every element of G’ generates a cyclic subgroup of
G
Since ¢(a) € G, then ¢(a) generates a cyclic subgroup of G’.
Let H' be the cyclic subgroup of G’ generated by ¢(a).
Then H' = {(¢(a))* : k € Z}.
The order of ¢(a) is the order of the cyclic subgroup generated by ¢(a).
Thus, |¢(a)| = | H'|.

The cyclic subgroup of G’ generated by ¢(a) is the smallest subgroup of G’
that contains ¢(a).
Thus, if K is a subgroup of G’ that contains ¢(a), then H' C K.
Since a € H and ¢(a) € G', then ¢(a) € ¢(H).
Since ¢(H) is a subgroup of G’ that contains ¢(a), then H' C ¢(H).

Let b/ € ¢(H).
Then there exists h € H such that b’ = ¢(h) € G'.
Since h € H, then there exists k € Z such that h = a*.
Thus, B = ¢(h) = $(a*) = (6(a))*.
Hence, there exists k& € Z such that b’ = (¢(a))*, so b’ € H'.
Therefore, ' € ¢(H) implies b’ € H', so ¢(H) C H'.
Since ¢(H) C H' and H' C ¢(H), then ¢(H) = H'.
Thus, n = [H| = [6(H)| = |B'| = o(a)].
Therefore, |¢(a)| = n, as desired. O

Theorem 121. FEvery cyclic group of infinite order is isomorphic to (Z,+).
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Proof. Let f:7 — H be a binary relation defined by n — o™ for all n € Z.
Let n € Z.
Then f(n) =a™ € H.
Let ny,no € Z such that ny = no.
Then f(n1) = a™ = a" = f(na).
Thus, n; = ny implies f(nl) = f(n2), so f is well defined.
Therefore, f is a function.

Let s,t € Z such that a® = a*. Observe that a*~! =a®a~ ! =ala! =al~! =
a® = e. Thus, a®*~t = e. Since a is of infinite order and s —t € Z, then a** = ¢
iff s —t=0. Hence, s—t=0,s0 s =1.

Thus, a® = a' implies s = ¢, so f is injective. Since a® = a implies s = ¢,
then s # t implies a® # a®. Hence, each power of a is distinct.

Let b € H. Then there exists k € Z such that b = a*. Observe that f(k) =
a® = b. Hence, there exists k € Z such that f(k) = b. Therefore, f is surjective.
Since f is injective and surjective, then f is bijective. Thus, f:Z +— H is a
bijective function.
We prove f is a group homomorphism from (Z, +) to (H,*). Let m,n € Z.
Observe that

flm+n) = amt
= a a

= fm)f(n).

Hence, f(m+n) = f(m)f(n), so f is a group homomorphism. Since f is a bijec-
tive homomorphism, then f : Z — H is an isomorphism. Therefore, Z = H, so
H = 7Z. Since H is arbitrary, then every cyclic group of infinite order is isomor-
phic to (Z,+). Thus, H = {a* : k € Z} = {...,a73,a72,a7,a"% al,a?,a?,...}
and |H| = co. O

Theorem 122. FEvery cyclic group of finite order n is isomorphic to (Z,,+).

Proof. Let (G, *) be a cyclic group of finite order n.
Then |G| = n.
We must prove G = Z,,.
Since G is cyclic, then there exists a € G such that G = {a* : k € Z}.
Thus, n = |G| = [{d* : k € Z}|.
The order of a is the order of the cyclic subgroup of G generated by a.
Thus, the order of a is the order of G, so |a| = n.

Let ¢ : Z,, — G be a binary relation defined by ¢([k]) = a* for all [k] € Z,.
Let [k] € Z,.
Then ¢([k]) = a* € G.
Suppose [z], [y] € Z,, such that [z] = [y].
Then x =y (mod n).
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Since a has finite order n, then z =y (mod n) iff a* = a¥.
Hence, a® = a¥, so ¢([z]) = ¢([y]).

Thus, [z] = [y] implies ¢([x]) = &([y]), so ¢ is well defined.
Therefore, ¢ is a function.

Let [z], [y] € Zp.

Then

o[z +[y) = o[z +y))
= g%tV

a*a¥

= ¢([=z])o([y))-

Therefore, ¢ is a homomorphism.
Let [2], [y] € Z such that ¢((z]) = o((y]).
Then a® = a¥.
Since a has finite order, then a® = ¥ iff x =y (mod n).
Thus, x =y (mod n), so [z] = [y].
Hence, ¢([x]) = ¢([y]) implies [z] = [y], so ¢ is injective.

Let y € G.
Then there exists k € Z such that y = a*, by definition of G.
Thus, [k] € Z,, and ¢([k]) = a* = y.
Hence, there exists [k] € Z,, such that ¢([k]) = .
Therefore, ¢ is surjective.
Since ¢ is injective and surjective, then ¢ is bijective.
Thus, ¢ is a bijective homomorphism, so ¢ : Z,, — G is an isomorphism.
Therefore, Z,, = G, so G = Z,. O

Corollary 123. Every group of prime order p is isomorphic to (Z,,+).

Proof. Let G be a group of prime order p.
Every group of prime order is cyclic.
Therefore, G is cyclic.
Every cyclic group of finite order n is isomorphic to (Z,, +).
Thus, every cyclic group of finite order p is isomorphic to (Z,,+).
Since G is a cyclic group of finite order p, then G is isomorphic to Z,. O

Proposition 124. Let G be an abelian group with subgroups H and K.
IfHK =G and HNK = {e}, then G =2 H x K.

Proof. Let e be the identity of G.
Suppose HK = G and H N K = {e}.
Let ¢ : H x K — G be defined by ¢(h, k) = hk for all (h,k) € H x K.
Clearly, ¢ is a function.
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Let (hi, k1), (ha, ko) € H X K.
Then

¢((h1, k1) (h2,k2)) = ¢(hiha, kiks)
= (hih2)(kik2)
= hy(hoky)keo
—  hu(kiho )k
= (hik1)(hok2)
= ¢(h1,k1)9(ha, k2)

Therefore, ¢ is a group homomorphism.

Let g € G.
Since G = HK, then there exist h € H and k € K such that g = hk.
Thus, there exists (h, k) € H x K such that g = ¢(h, k).
Hence, ¢ is surjective.

To prove ¢ is injective, we prove ker(¢) = {(e,e)}.

Let (a,b) € ker(¢). Then (a,b) € H x K and ¢(a,b) = e. Thus, a € H and
be K and ab=e. Hence, a =b' and b=a"'. Since a € H and H < G, then
a~' € H. Thus, b€ H. Since b€ K and K < G, then b~! € K. Thus, a € K.
Sincea € Handa € K,thena € HNK. Sinceb € H andb € K, thenb € HNK.
Since a € HNK and HNK = {e}, then a € {e}, so a =e. Since b € HNK and
HnNK = {e}, then b € {e}, so b =e. Thus, (a,b) = (e,e), so (a,b) € {(e,e)}.
Therefore, (a,b) € ker(¢) implies (a,b) € {(e,e)}, so ker(¢) C {(e,e)}.

Since ¢ is a group homomorphism, then (e, e) € ker(¢), so {(e,e)} C ker(¢).
Thus, ker(¢) C {(e,e)} and {(e,e)} C ker(¢), so ker(¢) = {(e,e)}.
Since ker(¢) = {(e,e)} iff ¢ is injective, then ¢ is injective.
Therefore, ¢ is a bijective homomorphism, so ¢ is an isomorphism.
Thus, H x K 2 G,s0 G2 H x K. O

Proposition 125. The identity map is an automorphism in any group.

Proof. Let (G, ) be a group.

Let I¢ : G — G be the identity map on G defined by Ig(x) = x for all
x € G.

Then Ig is a bijection, so I is a bijective function.

Let a,b € G.
Since Ig(ab) = ab = Ig(a)lg(b), then I is a homomorphism.
Since I is a homomorphism and I is bijective, then I is an isomorphism.
Therefore, I : G — G is an automorphism. O

Theorem 126. Let Aut(G) be the set of all automorphisms of a group G.
Then (Aut(G),0) is a subgroup of (Sg, o).
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Proof. Let o € Aut(Q).
Then o : G — G is an isomorphism, so « is a bijective homomorphism.
Thus, « is a bijective function, so « is a permutation of G.
Hence, a € S¢.
Therefore, a € Aut(G) implies a € Sg, so Aut(G) C Sg.
Consequently, Aut(G) is a subset of Sg.

Let a, 8 € Aut(G).
Then a: G — G and B : G — G are isomorphisms, so « and 3 are bijective
homomorphisms.
Since « is a bijective homomorphism, then « is a homomorphism.
Since f is a bijective homomorphism, then £ is a homomorphism.
Since o € Aut(G) and Aut(G) C Sg, then a € Sg.
Since € Aut(G) and Aut(G) C Sg, then 5 € Sg.

Let aff : G — G be the composition of o and S.

Since o € S and g € Sg and S¢ is a group, then by closure of Sg, we have
af € Sg, so af is a permutation.

Hence, af is a bijective function.

The composition of homomorphisms is a homomorphism.

Since « is a homomorphism and ( is a homomorphism, then af is a homo-
morphism.

Since a3 is a bijective function and «f is a homomorphism, then af is an
isomorphism, so af € Aut(G).

Therefore, Aut(G) is closed under function composition of Sg.

Let id : G — G be the identity element of S¢.
Then id is the identity map, so id is an isomorphism.
Hence, id € Aut(G), so Aut(G) is closed under the identity of Sg.

Let a € Aut(G).

Then o : G — G is an isomorphism.

Since the isomorphism relation is an equivalence relation on the class of
groups, then the isomorphism relation is symmetric.

Thus, for groups G and H, if G = H, then H = G.

Hence, if ¢ : G — H is an isomorphism, then the inverse map ¢~' : H — G
is an isomorphism.

Since o : G — G is an isomorphism, then we conclude the inverse map
a~!:G = G is an isomorphism.

Therefore, o= € Aut(G)., so Aut(G) is closed under taking inverses.

Since Aut(G) is a subset of S and Aut(G) is closed under function composi-
tion of S¢ and Aut(QG) is closed under the identity of S and Aut(G) is closed
under inverses, then by the subgroup test, Aut(G) is a subgroup of Sg. O
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Proposition 127. inner automorphism

Let (G, *) be a group.

Let g € G be a fized element.

Then the map i, : G — G defined by ig(z) = gxxxg~* for all x € G is an
isomorphism of G with itself.

Solution. We must prove i, is an isomorphism of G with G.
Thus we must prove:
1) ig4 is one to one.
To prove this we must show: Va,b € G.iz(a) =i4(b) = a =0.
2) i4 is onto. To prove this we must show: Vb € G.3a € G.i4(a) = D.
3) (¥a,b € G)(igla+b) = igla) %y (b)):
ig is called an inner automorphism.
The set of all inner automorphisms of G is denoted Inn(G). O

Proof. Since g € G and G is a group, then g~ ! € G.
Let a,b € G.
Since G is closed under * then gag™' € G and gbg™! € G.

Suppose i4(a) = ig(b).
Then gag™* = gbg~".

By the left cancellation law of G, ag™! = bg~".

By the right cancellation law of G, a = b.

Hence, i4(a) = i4(b) implies a = b.

Since a, b are arbitrary then i4(a) = i4(b) implies @ = b is true for alla,b € G.

Therefore, i4 is one to one, by definition of injective function.

Suppose b € G.
Since g € G by definition of group ¢g=' € G.
Set a = g~ 'bg.
Since G is closed under *, then a € G.
Observe that

igla) = ig(g™"bg)
= g(g~'bg)g™"
= (99 ")blgg™")
= ebe
b

Thus, there exists a € G such that i4(a) = b.

Since b is arbitrary then there exists a € G such that i4(a) = b for all b € G.
Therefore, by definition of surjective function, ¢, is onto.

Since i4 is one to one and onto, then 7, is a bijective map.
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Let a,b € G.
Observe that

ig(a) xig() = (gxaxg ') x(gxbxg™")
= (g*a)x* ( Tag)x(bxgTh)
= (gra)xex(bxg™)
= (gxa)x (b*g 1)
= gx*(axb)x
= ig(axb)

Thus, ig(a) * ig(b) = ig(a*b).
Since a, b are arbitrary then ig(a) * ig(b) = iy4(a * b) for all a,b € G.
Therefore, by definition of isomorphism, iy : G — G is an isomorphism. [

Theorem 128. First Isomorphism Theorem

Let ¢ : G — G’ be a group homomorphism with kernel K.

Then there exists a group isomorphism 1 : & — ¢(G) defined by 1(gK) =
o(g) for all g € G such that Y on = ¢, where n : G — % is the natural
homomorphism.

Proof. Since ¢ is a group homomorphism, then ¢(G) < G'. Let €’ be the identity
of G’. Since K is the kernel of ¢, then K =ker(¢) = {g € G : #(g) = €'}. Since
K <1 G, then the quotient group % exists.

Define binary relation 1 : & — ¢(G) by 1(gK) = ¢(g) for all gK € £.

To prove 1 is an isomorphism, we must prove 1 is a function and % is a
homomorphism and 1 is injective and ) is surjective.

We prove the binary relation ¢ is well defined. Let aK,bK € % such that
aK = bK. Then a,b € G. Since aK = bK iff a € bK, then a € bK. Hence,
a = bk for some k € K, by definition of bK. By definition of K, k € G and
¢(k) = ¢’. Observe that

PlaK) = ¢

[

= ¢
= ¢
= ¢Y(bK).

Hence, ¥(aK) = ¢(bK). Therefore, a K = bK implies ¢(aK) = ¢(bK). Thus,

1) is well defined, so 1 is a function from % to ¢(@G).
Observe that

P((aK)(DK)) =



Therefore, 1 is a homomorphism.

We prove 1) is injective. Let aK,bK € < such that ¢(aK) = ¢(bK). Then
a,b € G and ¢(a) = ¢(b).

Observe that ¢(a™'b) = ¢(a~1)é(b) = dla~)é(a) = (Bla))"'é(a) = €'
Since a~'b € G and ¢(a~'b) = €', then a~'b € K, by definition of K. Since
K < G, then a™'b € K iff aK = bK. Therefore, aK = bK.

Hence, 1(aK) = ¢(bK) implies a K = bK, so 1 is injective.

We prove 9 is surjective. Let ¢(g) € ¢(G). Then g € G, by definition of
¢(G). Thus, gK € % Observe that ¥(gK) = ¢(g). Hence, there exists gK € %
such that ¥(gK) = ¢(G), so 9 is surjective.

Since 1) is injective and surjective, then ) is bijective. Thus, 1) is a bijective
homomorphism, so ¥ : % — ¢(@G) is an isomorphism. Hence, % >~ #(G).

The composition of homomorphisms is a homomorphism. Since v is a ho-
momorphism and 7 is the natural homomorphism from G onto %, then ¢ on
is a homomorphism. Hence, v o 7 is a function. Observe that ¢ : G — G’ and
¥ on: G — G have the same domain G and the same codomain G'.

Let g € G. Then (¥ on)(g) = v(n(g)) = Y (gK) = ¢(g). Since g is arbitrary,

then (v on)(g) = ¢(g) for all g € G.
Therefore, 1) on = ¢. ]

Theorem 129. Second Isomorphism Theorem
Let H be a subgroup of G and let N be a normal subgroup of G.
Let HN ={hk:he€ HAk € N}.

Then HN < G and N <HN and HNN < H and 25 =~ ZX.

Solution. We must prove:
1. HN < @G.
2. N HN.
3. HNN<H.
4 H ~ HN
*HON — N °

O

Proof. We first prove HN < G.

Let x € HN. Then there exists h € H and k € N such that x = hk. Since
H < G, then H C G. Since h € H and H C G, then h € G. Since N < G,
then N C G. Since k € N and N C G, then k € G. Since G is a group, then
G is closed under its binary operation. Thus, since h,k € G, then hk =z € G.
Therefore, x € HN implies x € G, so HN C G.

We apply a subgroup test.

Let e be the identity of G. Since H < G, then e € H. Since N < G, then
e € N. Since e = ee, then e € HN, by definition of HN. Therefore, HN # {.

Let a,b € HN. Then there exist hy € H and k1 € N such that a = hik;
and there exist hy € H and ky € N such that b = hoks, by definition of HN.
Since a,b € HN and HN C G, then a,b € G. Thus, ab™! = (hik;)(hoks) ™t =
(haky)(ky tha ) = hakiky 'hy b, Let k = kiky ', Since N is a group, then k € N
and ab~ = hikhy .
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Since hy € H and H C G, then hy € G. Since N < G, then for every
g € G,h € N,ghg~! € N. Thus, in particular, if we let ¢ = hy and h = k,
then hokhy' € N. Let ks = hokhy'. Then k3 € N and khy' = hy 'ks, so
ab™" = hy(hy'ks) = (hihy ')ks. Since H is a group, then H is closed under
its binary operation. Therefore, since hy € H and h2_1 € H, then h1h2_1 € H.
Since hlhgl € H and k3 € N, then ab~—! € HN, by definition of HN.

Therefore, HN is a subgroup of G.

We prove N is normal in HN. We first prove N is a subgroup of HN and
then prove for every g € HN and k € N, gkg~! € N.

Let x € N. Then x = ex. Since e € H and € N, then x € HN, by
definition of HN. Thus, x € N implies xt € HN, so N C HN.

Since N < G, then e € N, so N # (.

Let a,b € N. Since N is a group, then b= € N. Since N is closed under its
binary operation, then ab=! € N.

Thus, N is a subgroup of HN.

Let g € HN and k¥’ € N. Then g = hk for some h € H and k € N.
Observe that gk’g~! = (hk)k'(hk)~™! = hkk'k='h~'. Let k" = kk’k—!. Then
gk'g~! = hk"h~1. Since N < G, then hk"h~! € N, so gk'¢g~! € N. Therefore,
N is a normal subgroup of HN.

Since N is normal in HN, then the quotient group Z& exists.

Let X be the set of all cosets of N in HN. Then HN ={aN:a€ HN} =
{hnN : hEHneN}—{hN heH}

Define binary relation ¢ : H — £ by ¢(h) = hN for all h € H.

We prove ¢ is well defined. Let hi,he € H such that hy = hy. Then
th = h2N Thus, qb(hl) = th = th = gb(hg) Hence, hl = h2 implies
@(h1) = ¢(hs), so ¢ is well defined. Therefore, ¢ is a function.

HNN . Then there exists h € H such that y = hN, by definition of
HI . Thus, ¢(h) = hN =y, so there exists h € H such that ¢(h) = y. Hence,
¢ is surjective. Therefore, ¢(H) = N .

Let a,b € H. Then ¢(ab) = (ab)N = (aN)(bN) = ¢(a)¢p(b). Thus, ¢ is a
homomorphism.

We prove ker(¢) = HN N. Let « € ker(¢). Then « € H and ¢(x) = N,
by definition of kernel of ¢. Thus, N = ¢(x) = «N. Since N = N iff z € N,
then z € N. Thus ¢ € H and x € N, so x € HN N. Hence, z € ker(¢) implies
x € HNN, so ker(¢) C HNN.

Let y€e HNN. Then y € H and y € N. Since y € H and H C G, then
y € G. Since y € N iff yN = N, then yN = N. Thus, ¢(y) = yN = N. Since
y € H and ¢(y) = N, then y € ker(¢). Hence, y € HN N implies y € ker(¢), so
HNN C ker(o).

Since ker(¢) € HN N and H NN C ker(¢), then ker(¢) = H N N. The
kernel of ¢ is normal in H, so H NN < H.

Hence, ¢ : H — % is a homomorphism with kernel HNN and ¢(H) = HT;V
Thus, by the first isomorphism theorem

H ~ HN
» ANN — N - 0

133



