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Binary Operations

Theorem 1. Properties of binary operations
Let ∗ be a binary operation on a set S. Then
1. Closure: S is closed under ∗.
2. Well defined: (∀a, b, c, d ∈ S)(a = c ∧ b = d → a ∗ b = c ∗ d). Law of

Substitution.
3. Left multiply (∀a, b, c ∈ S)(a = b→ c ∗ a = c ∗ b).
4. Right multiply (∀a, b, c ∈ S)(a = b→ a ∗ c = b ∗ c).

Proof. We prove 1.
Let a, b ∈ S.
Then (a, b) ∈ S × S.
Since ∗ is a binary operation on S, then ∗ : S × S → S is a function.
Therefore, x ∗ y ∈ S for every (x, y) ∈ S × S.
In particular, a ∗ b ∈ S.

Proof. We prove 2.
Let a, b, c, d ∈ S such that a = c and b = d.
Since a, b ∈ S, then (a, b) ∈ S × S.
Since c, d ∈ S, then (c, d) ∈ S × S.
By definition of equality of ordered pairs, (a, b) = (c, d) iff a = c and b = d.
Therefore, (a, b) = (c, d).
Since ∗ is a binary operation on S, then ∗ : S × S → S is a function.
Since every function is well defined, then for every (w, x), (y, z) ∈ S×S such

that (w, x) = (y, z), we have w ∗ x = y ∗ z.
Since, (a, b) = (c, d), then we conclude a ∗ b = c ∗ d.

Proof. We prove 3.
Let a, b, c ∈ S such that a = b.
Since equality is reflexive, then x = x for every x ∈ S.
Since c ∈ S, then this implies c = c.
Thus, by statement 2, c = c and a = b imply c ∗ a = c ∗ b.
Since c = c and a = b, then we conclude c ∗ a = c ∗ b.



Proof. We prove 4.
Let a, b, c ∈ S such that a = b.
Since equality is reflexive, then x = x for every x ∈ S.
Since c ∈ S, then this implies c = c.
Thus, by statement 2, a = b and c = c imply a ∗ c = b ∗ c.
Since a = b and c = c, then we conclude a ∗ c = b ∗ c.

Proposition 2. If a binary structure has an identity element, then the identity
element is unique.

Proof. Let (S, ∗) be a binary structure with an identity element e ∈ S.
Since e ∈ S is an identity element, then e ∗ a = a ∗ e = a for every a ∈ S.
Suppose e′ is an identity element of S.
Then e′ ∈ S and e′ ∗ a = a ∗ e′ = a for every a ∈ S.
Since e′ ∈ S and e ∗ a = a ∗ e = a for every a ∈ S, then in particular,

e ∗ e′ = e′.
Since e ∈ S and e′ ∗ a = a ∗ e′ = a for every a ∈ S, then in particular,

e ∗ e′ = e.
Hence, e = e ∗ e′ = e′, so e = e′.
Therefore, the identity element in S is unique.

Proposition 3. Let (S, ∗) be an associative binary structure with identity.
Then
1. The inverse of every invertible element of S is unique.
2. Let a ∈ S.
If a is invertible, then (a−1)−1 = a. inverse of an inverse
3. Let a, b ∈ S.
If a and b are invertible, then (a ∗ b)−1 = b−1 ∗ a−1. inverse of a product

Proof. We prove 1.
Let e be the identity element of the set S.
Let a be an arbitrary invertible element of S.
Then a ∈ S.
Since a is invertible, then there exists b ∈ S such that ab = ba = e.
Therefore, at least one inverse of a exists in S.

Suppose b′ is an inverse of a.
Then b ∈ S and b′a = e.
Observe that

b′ = b′e

= b′(ab)

= (b′a)b

= eb

= b.

Hence, b′ = b, so at most one inverse of a exists.
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Since at least one inverse of a exists and at most one inverse of a exists, then
exactly one inverse of a exists, so the inverse of a is unique.

Since a is arbitrary, then the inverse of every invertible element of S is
unique.

Proof. We prove 2.
Let a ∈ S.
Suppose a is invertible.
Then there exists a unique a−1 ∈ S such that a ∗ a−1 = a−1 ∗ a = e.
Since a ∗ a−1 = a−1 ∗ a = e, then a−1 ∗ a = a ∗ a−1 = e.
Hence, a is an inverse of a−1, by definition of inverse element.
Thus, a−1 is invertible.
From statement 1, we know that the inverse of each invertible element of

an associative binary structure with identity is unique, so the inverse of a−1 is
unique.

Therefore, the inverse of a−1 must be a, so (a−1)−1 = a.

Proof. We prove 3.
Let a, b ∈ S.
Suppose a and b are invertible.
Then there exist unique a−1 ∈ S and b−1 ∈ S such that a∗a−1 = a−1 ∗a = e

and b ∗ b−1 = b−1 ∗ b = e.
Since (S, ∗) is a binary structure, then S is closed under ∗.
Since a ∈ S and b ∈ S, then a ∗ b ∈ S.
Since a−1 ∈ S and b−1 ∈ S, then b−1 ∗ a−1 ∈ S.
Observe that

(a ∗ b) ∗ (b−1 ∗ a−1) = a ∗ (b ∗ b−1) ∗ a−1

= a ∗ e ∗ a−1

= a ∗ a−1

= e

and

(b−1 ∗ a−1) ∗ (a ∗ b) = b−1 ∗ (a−1 ∗ a) ∗ b
= b−1 ∗ e ∗ b
= b−1 ∗ b
= e.

Hence, b−1 ∗ a−1 is an inverse of a ∗ b, by definition of inverse element.
Thus, a ∗ b is invertible.
From statement 1, we know that the inverse of each invertible element of

an associative binary structure with identity is unique, so the inverse of a ∗ b is
unique.

Therefore, b−1 ∗a−1 must be the inverse of a∗ b, so (a∗ b)−1 = b−1 ∗a−1.
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Proposition 4. Let (S, ∗) be an associative binary structure with a left identity
such that each element has a left inverse.

Then the left cancellation law holds.

Proof. Let e be a left identity of S.
Let a, b, c ∈ S such that ca = cb.
Since e is a left identity and a ∈ S and b ∈ S, then a = ea and b = eb.
Since each element of S has a left inverse and c ∈ S, then then there exists

c′ ∈ S such that c′c = e.
Observe that

a = ea

= (c′c)a

= c′(ca)

= c′(cb)

= (c′c)b

= eb

= b.

Therefore, ca = cb implies a = b, so the left cancellation law holds.

Proposition 5. Let (S, ∗) be an associative binary structure with a right identity
such that each element has a right inverse.

Then the right cancellation law holds.

Proof. Let e be a right identity of S.
Let a, b, c ∈ S such that ac = bc.
Since e is a right identity and a ∈ S and b ∈ S, then a = ae and b = be.
Since each element of S has a right inverse and c ∈ S, then then there exists

c′ ∈ S such that cc′ = e.
Observe that

a = ae

= a(cc′)

= (ac)c′

= (bc)c′

= b(cc′)

= be

= b.

Therefore, ac = bc implies a = b, so the right cancellation law holds.

Proposition 6. If a binary structure has a zero element, then the zero element
is unique.
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Proof. Let (S, ∗) be a binary structure with a zero element.
Let z be a zero element of S.
Then z ∈ S and zx = xz = z for all x ∈ S.
Suppose z′ is a zero element of S.
Then z′ ∈ S and z′x = xz′ = z′ for all x ∈ S.
Since z ∈ S and z′x = xz′ = z′ for all x ∈ S, then we conclude zz′ = z′.
Since z′ ∈ S and zx = xz = z for all x ∈ S, then we conclude zz′ = z.
Therefore, z = zz′ = z′, so z = z′.
Therefore, at most one zero element exists in S.
Since at least one zero element exists in S and at most one zero element

exists in S, then exactly one zero element exists in S.
Therefore, the zero element in S is unique.

Groups

Theorem 7. Uniqueness of group identity
The identity element of a group is unique.

Proof. Let (G, ∗) be a group.
Then there exists an identity element for ∗ in G.
Let e be an identity element of G.
Since (G, ∗) is a group, then G is a set with a binary operation ∗ defined on

G, so (G, ∗) is a binary structure.
Thus, (G, ∗) is a binary structure with identity e.
If a binary structure has an identity element, then the identity element is

unique, by proposition 2
Therefore, we conclude the identity element is unique, so e is unique.

Theorem 8. Uniqueness of group inverses
The inverse of each element in a group is unique.

Proof. Let (G, ∗) be a group.
Let a be an arbitrary element of G.
Since each element of G has an inverse in G, then in particular, a has an

inverse in G, so a is invertible.
Let b be an inverse of a in G.
Since (G, ∗) is a group, then (G, ∗) is an associative binary structure with

identity.
The inverse of every invertible element of an associative binary structure

with identity is unique, by proposition 3.
Hence, the inverse of every invertible element of (G, ·) is unique.
Since a is an invertible element of G, then we conclude the inverse of a is

unique, so b is unique.

Proposition 9. The identity element in a group is its own inverse.
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Proof. Let (G, ∗) be a group with identity e ∈ G.
Since G is a group and e ∈ G, then e has an inverse in G.
Let e−1 ∈ G be the inverse of e.
Then by definition of inverse, ee−1 = e.
Since e = ee−1 = e−1, then e = e−1.
Therefore, e is the inverse of e.

Theorem 10. Group inverse properties
Let (G, ∗) be a group. Then
1) (a−1)−1 = a for all a ∈ G. inverse of an inverse
2) (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G. inverse of a product

Proof. We prove 1.
Let a ∈ G.
Each element in a group has an inverse, by definition of group.
Hence, a has an inverse a−1 ∈ G, so a is invertible.
Since (G, ∗) is a group, then (G, ∗) is an associative binary structure with

identity.
Since (G, ∗) is an associative binary structure with identity and a is invert-

ible, then by proposition 3, we conclude (a−1)−1 = a.

Proof. We prove 2.
Let a, b ∈ G.
Since (G, ∗) is a group, then (G, ∗) is an associative binary structure with

identity.
By definition of a group, every element of G is invertible, so a is invertible

and b is invertible.
Since (G, ∗) is an associative binary structure with identity and a is invertible

and b is invertible, then by proposition 3, we conclude (a∗ b)−1 = b−1 ∗a−1.

Proposition 11. inverse of a finite product
Let g1, g2, ..., gn be elements of a group (G, ∗).
Then (g1g2...gn)−1 = g−1n g−1n−1...g

−1
2 g−11 for all n ∈ Z+.

Proof. To prove (g1g2...gn)−1 = g−1n g−1n−1...g
−1
2 g−11 for all n ∈ Z+, let Sn :

(g1g2...gn)−1 = g−1n g−1n−1...g
−1
2 g−11 .

We must prove
1. Sn is true for all n ∈ Z+.
We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since (g1)−1 = g−11 , then S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Then (g1g2...gk)−1 = g−1k g−1k−1...g

−1
2 g−11 .
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Observe that

(g1g2...gkgk+1)−1 = [(g1g2...gk)gk+1]−1

= g−1k+1 ∗ (g1g2...gk)−1

= g−1k+1 ∗ (g−1k g−1k−1 ∗ ... ∗ g
−1
2 g−11 )

= g−1k+1 ∗ g
−1
k ∗ g

−1
k−1 ∗ ... ∗ g

−1
2 ∗ g

−1
1 .

Therefore, (g1g2...gkgk+1)−1 = g−1k+1 ∗ g
−1
k ∗ g

−1
k−1... ∗ g

−1
2 g−11 , so Sk+1 is true.

Hence, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Theorem 12. Group Cancellation Laws
Let (G, ∗) be a group.
For all a, b, c ∈ G
1. if c ∗ a = c ∗ b then a = b. (left cancellation law)
2. if a ∗ c = b ∗ c then a = b. (right cancellation law)

Proof. We prove the left cancellation law holds in a group.
Since (G, ∗) is a group, then ∗ is a binary operation on G and ∗ is associative,

so (G, ∗) is an associative binary structure.
Since (G, ∗) is a group, then an identity element exists in G.
Let e ∈ G be the identity of G.
Then e ∗ a = a ∗ e = a for all a ∈ G, so e ∗ a = a for all a ∈ G.
Hence, e is a left identity with respect to ∗, so (G, ∗) has a left identity.

Let a ∈ G be arbitrary.
By definition of a group, a has an inverse in G, so there exists b ∈ G such

that a ∗ b = b ∗ a = e.
Hence, there exists b ∈ G such that b ∗ a = e, so b is a left inverse of a.
Thus, a has a left inverse.
Since a is arbitrary, then each element of G has a left inverse.

Since (G, ∗) is an associative binary structure and (G, ∗) has a left identity
and each element of G has a left inverse, then by proposition 4, we conclude the
left cancellation law holds in (G, ∗).

Proof. We prove the right cancellation law holds in a group.
Since (G, ∗) is a group, then ∗ is a binary operation on G and ∗ is associative,

so (G, ∗) is an associative binary structure.
Since (G, ∗) is a group, then an identity element exists in G.
Let e ∈ G be the identity of G.
Then e ∗ a = a ∗ e = a for all a ∈ G, so a ∗ e = a for all a ∈ G.
Hence, e is a right identity with respect to ∗, so (G, ∗) has a right identity.
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Let a ∈ G be arbitrary.
By definition of a group, a has an inverse in G, so there exists b ∈ G such

that a ∗ b = b ∗ a = e.
Hence, there exists b ∈ G such that a ∗ b = e, so b is a right inverse of a.
Thus, a has a right inverse.
Since a is arbitrary, then each element of G has a right inverse.

Since (G, ∗) is an associative binary structure and (G, ∗) has a right identity
and each element of G has a right inverse, then by proposition 5, we conclude
the right cancellation law holds in (G, ∗).

Corollary 13. Unique solutions to linear equations
Let (G, ∗) be a group.
Let a, b ∈ G.
1. The linear equation a ∗ x = b has a unique solution in G.
2. The linear equation x ∗ a = b has a unique solution in G.

Proof. We prove a solution to the linear equation a ∗ x = b is unique.
Let a, b ∈ G.
Since G is a group, then the inverse of a exists in G, so a−1 ∈ G.
Existence:
Let x = a−1 ∗ b.
Since G is closed under ∗, then a−1 ∗ b ∈ G, so x ∈ G.
Observe that a ∗ (a−1 ∗ b) = (a ∗ a−1) ∗ b = e ∗ b = b.
Hence, a−1 ∗ b ∈ G is a solution to the equation a ∗ x = b.
Therefore, at least one solution exists.
Uniqueness:
Suppose x1, x2 ∈ G are solutions to the equation a ∗ x = b.
Then a ∗ x1 = b and a ∗ x2 = b, so b = a ∗ x1 = a ∗ x2.
By the left cancellation law for groups we obtain x1 = x2.
Therefore, at most one solution exists.

Since at least one solution exists and at most one solution exists, then exactly
one solution exists.

Therefore, a solution to the equation a ∗ x = b is unique.

Proof. We prove a solution to the linear equation x ∗ a = b is unique.
Let a, b ∈ G.
Since G is a group, then the inverse of a exists in G, so a−1 ∈ G.
Existence:
Let x = b ∗ a−1.
Since G is closed under ∗, then b ∗ a−1 ∈ G, so x ∈ G.
Observe that (b ∗ a−1) ∗ a = b ∗ (a−1 ∗ a) = b ∗ e = b.
Hence, b ∗ a−1 ∈ G is a solution to the equation x ∗ a = b.
Therefore, at least one solution exists.
Uniqueness:
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Suppose x1, x2 ∈ G are solutions to the equation x ∗ a = b.
Then x1 ∗ a = b and x2 ∗ a = b, so b = x1 ∗ a = x2 ∗ a.
By the right cancellation law for groups we obtain x1 = x2.
Therefore, at most one solution exists.

Since at least one solution exists and at most one solution exists, then exactly
one solution exists.

Therefore, a solution to the equation x ∗ a = b is unique.

Proposition 14. A group has exactly one idempotent element, the identity
element.

Proof. Let (G, ∗) be a group with identity e ∈ G.
Existence:
Then e ∗ e = e, by definition of identity element.
Hence, e is an idempotent element, by definition of idempotent element.
Thus, there is at least one idempotent element in G.
Uniqueness:
Suppose x is an idempotent element of G.
Then x ∗ x = x = x ∗ e.
By the left cancellation law for groups we obtain x = e.
Therefore, there is at most one idempotent element in G.
Since there is at least one idempotent element in G and there is at most

one idempotent element in G, then there is exactly one idempotent element in
G.

Proposition 15. left sided definition of a group
A group (G, ∗) is a set G with a binary operation ∗ defined on G such that

the following axioms hold:
G1. ∗ is associative.
(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
G2. There is a left identity element for ∗.
(∃e ∈ G)(∀a ∈ G)(e ∗ a = a).
G3. Each element has a left inverse for ∗.
(∀a ∈ G)(∃b ∈ G)(b ∗ a = e).

Proof. Let G be a set with a binary operation ∗ defined on G such that ∗ is
associative and there is a left identity element for ∗ and each element has a left
inverse.

Since G is a set and ∗ is a binary operation on G and ∗ is associative, then G
is an associative binary structure, so G is an associative binary structure with
a left identity and each element has a left inverse.
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Let e be a left identity of G.
Let a ∈ G.
Since e is a left identity, then e ∈ G and ex = x for all x ∈ G.
In particular, ea = a and ee = e.
Since a ∈ G and each element of G has a left inverse, then there exists a′ ∈ G

such that a′a = e.
Observe that

a′a = e

= ee

= (a′a)e

= a′(ae).

Thus, a′a = a′(ae).
Since G is an associative binary structure with a left identity and each ele-

ment has a left inverse, then by proposition 4, the left cancellation law holds.
Therefore, a = ae.
Hence, ea = a = ae.
Since a is arbitrary, then ea = ae = a for all a ∈ G, so e is an identity for ∗.

Since e is an identity for ∗, then ex = xe = x for all x ∈ G.
Since a′ ∈ G, then we conclude ea′ = a′e = a′.
Observe that

a′e = a′

= ea′

= (a′a)a′

= a′(aa′).

Thus, a′e = a′(aa′).
By the left cancellation law, we have e = aa′.
Hence, a′a = e = aa′.
Since a′ ∈ G and aa′ = a′a = e, then a′ is an inverse of a, so a has an inverse

for ∗.
Since a is arbitrary, then every element of G has an inverse for ∗.

Since ∗ is a binary operation on G and ∗ is associative and e is an identity
element for ∗ and every element of G has an inverse for ∗, then by definition of
group, (G, ∗) is a group.

Proposition 16. right sided definition of a group
A group (G, ∗) is a set G with a binary operation ∗ defined on G such that

the following axioms hold:
G1. ∗ is associative.
(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
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G2. There is a right identity element for ∗.
(∃e ∈ G)(∀a ∈ G)(a ∗ e = a).
G3. Each element has a right inverse for ∗.
(∀a ∈ G)(∃b ∈ G)(a ∗ b = e).

Proof. Let G be a set with a binary operation ∗ defined on G such that ∗ is
associative and there is a right identity element for ∗ and each element has a
right inverse.

Since G is a set and ∗ is a binary operation on G and ∗ is associative, then
G is an associative binary structure, G is an associative binary structure with
a right identity and each element has a right inverse.

Let e be a right identity of G.
Let a ∈ G.
Since e is a right identity, then e ∈ G and xe = x for all x ∈ G.
In particular, ae = a and ee = e.
Since a ∈ G and each element of G has a right inverse, then there exists

a′ ∈ G such that aa′ = e.
Observe that

aa′ = e

= ee

= e(aa′)

= (ea)a′.

Thus, aa′ = (ea)a′.
Since G is an associative binary structure with a right identity and each

element has a right inverse, then by proposition 5, the right cancellation law
holds.

Therefore, a = ea.
Hence, ae = a = ea.
Since a is arbitrary, then ea = ae = a for all a ∈ G, so e is an identity for ∗.

Since e is an identity for ∗, then ex = xe = x for all x ∈ G.
Since a′ ∈ G, then we conclude ea′ = a′e = a′.
Observe that

ea′ = a′

= a′e

= a′(aa′)

= (a′a)a′.

Thus, ea′ = (a′a)a′.
By the right cancellation law, we have e = a′a.
Hence, aa′ = e = a′a.

11



Since a′ ∈ G and aa′ = a′a = e, then a′ is an inverse of a, so a has an inverse
for ∗.

Since a is arbitrary, then every element of G has an inverse for ∗.

Since ∗ is a binary operation on G and ∗ is associative and e is an identity
element for ∗ and every element has an inverse for ∗, then by definition of group,
(G, ∗) is a group.

multiplicative group notation

Lemma 17. Let (G, ·) be a multiplicative group.
Let a ∈ G.
Then an · a = a · an for all n ∈ Z+.

Proof. To prove an · a = a · an for all n ∈ Z+, let Sn : an · a = a · an.
We must prove
1. Sn is true for all n ∈ Z+.
We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Observe that

a1 · a = (a1−1 · a) · a
= (a0 · a) · a
= (a0 · a) · (e · a)

= (a0 · a) · (a0 · a)

= (e · a) · (a1−1 · a)

= a · a1.

Therefore, a1 · a = a · a1, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Then ak · a = a · ak and k > 0, so k + 1 > 0.
Observe that

ak+1 · a = (ak · a) · a
= (a · ak) · a
= a · (ak · a)

= a · ak+1.

Hence, ak+1 · a = a · ak+1, so Sk+1 is true.
Thus, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.
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Theorem 18. Laws of Exponents for a multiplicative group
Let (G, ·) be a multiplicative group.
1. If a ∈ G, then a−n = (a−1)n = (an)−1 for all n ∈ Z+.
2. If a ∈ G, then an ∈ G for all n ∈ Z.
3. If a ∈ G, then am · an = am+n for all m,n ∈ Z.
4. If a ∈ G, then (am)n = amn for all m,n ∈ Z.
5. If a, b ∈ G and G is abelian, then (ab)n = an · bn for all n ∈ Z.

Proof. We prove 1.
If a ∈ G, then a−n = (a−1)n = (an)−1 for all n ∈ Z+.
Let a ∈ G be arbitrary.
To prove a−n = (a−1)n = (an)−1 for all n ∈ Z+, let n ∈ Z+.
Then n ∈ Z and n > 0, so a−n = (a−1)n.

Since n ∈ Z+, then (a−1)n is a product of a−1 with itself n times.
Hence, (a−1)n = (a−1) · (a−1) · ... · (a−1).
The expression (a−1) · (a−1) · ... · (a−1) is the same as the inverse of the

product of a with itself n times, by proposition 11 .
Thus, (a−1) · (a−1) · ... · (a−1) = (a · a... · a)−1 = (an)−1.
Hence, (a−1)n = (a−1) · (a−1) · ... · (a−1) = (a · a... · a)−1 = (an)−1, so

(a−1)n = (an)−1.

Therefore, a−n = (a−1)n and (a−1)n = (an)−1, so a−n = (a−1)n = (an)−1.

Proof. We prove 2.
If a ∈ G, then an ∈ G for all n ∈ Z.
Let e ∈ G be the identity of G.
Let a ∈ G be arbitrary.
To prove an ∈ G for all n ∈ Z, let Sn : an ∈ G and let Tn : a−n ∈ G.
We must prove
1. a0 ∈ G.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We first prove a0 ∈ G.
Since a0 = e and e ∈ G, then a0 ∈ G.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since a ∈ G and a1 = a1−1 · a = a0 · a = e · a = a, then a1 ∈ G, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Since k ∈ Z+, then k > 0, so k + 1 > 0.
Since Sk is true, then ak ∈ G.
Since ak+1 = ak · a and ak ∈ G and a ∈ G, then by closure of G under ·, the

product ak+1 is an element of G, so ak+1 ∈ G.
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Therefore, Sk+1 is true.
Thus, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
Since a ∈ G and every element in G is invertible by definition of a group,

then its inverse a−1 is in G, so a−1 ∈ G.
Therefore, T1 is true.
Induction:
Let k ∈ Z+ such that Tk is true.
Since k ∈ Z+, then k > 0 and k + 1 ∈ Z+, so k + 1 > 0.
Since k > 0, then a−k = (a−1)k.
Since Tk is true, then a−k ∈ G.
Observe that

a−(k+1) = (a−1)(k+1)

= (a−1)k · (a−1)

= (a−k) · (a−1).

Since a−k ∈ G and a−1 ∈ G, then by closure of G under ·, we have a−k ·a−1 ∈
G, so a−(k+1) ∈ G.

Therefore, Tk+1 is true.
Thus, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+.

Proof. We prove 3.
If a ∈ G, then am · an = am+n for all m,n ∈ Z.
Let a ∈ G be arbitrary.
Let m ∈ Z.
To prove am · an = am+n for all n ∈ Z, let Sn : am · an = am+n and let

Tn : am · a−n = am−n.
We must prove
1. am · a0 = am+0.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We prove am · a0 = am+0.
Since am+0 = am = am · e = am · a0, then am · a0 = am+0.

Proof. We prove T1 is true.
Basis:
Either m− 1 > 0 or m− 1 = 0 or m− 1 < 0.
We consider these cases separately.
Case 1: Suppose m− 1 > 0.
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Then m > 1, so m > 0.
Since am · a−1 = (am−1 · a) · a−1 = am−1 · (a · a−1) = am−1 · e = am−1, then

am · a−1 = am−1.
Therefore, T1 is true.
Case 2: Suppose m− 1 = 0.
Then m = 1.
Since am · a−1 = a1 · a−1 = a · a−1 = e = a0 = am−1, then am · a−1 = am−1.
Therefore, T1 is true.
Case 3: Suppose m− 1 < 0.
Then m < 1.
We must prove am · a−1 = am−1 for all integers m < 1.
The statement am · a−1 = am−1 for all integers m < −1 is equivalent to the

statement am · a−1 = am−1 for all integers m ≤ −2 which is equivalent to the
statement a−k · a−1 = a−k−1 for all integers k ≥ 2.

So, to prove the statement am · a−1 = am−1 for all integers m < −1, we
prove the equivalent statement a−k · a−1 = a−k−1 for all integers k ≥ 2.

Let k ∈ Z and k ≥ 2.
Since k ≥ 2 and 2 > 0, then k > 0.
Since k > 0 and 1 > 0, we add to obtain k + 1 > 0.
Observe that

a−k · a−1 = (ak)−1 · a−1

= (a · ak)−1

= (ak · a)−1

= (ak+1)−1

= a−(k+1)

= a−k−1.

Hence, a−k · a−1 = a−k−1, so am · a−1 = am−1 for all integers m < −1.
Therefore, T1 is true.

In all cases, T1 is true.
Therefore, am · a−1 = am−1 for all m ∈ Z.

Proof. Induction:
Let k ∈ Z+ such that Tk is true.
Since k ∈ Z+, then k > 0, so k + 1 > 0.
Since Tk is true, then am · a−k = am−k.
Either m− k − 1 > 0 or m− k − 1 = 0 or m− k − 1 < 0.
We consider these cases separately.
Case 1: Suppose m− k − 1 > 0.
Then m− k > 1, so m− k > 0.
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Observe that

am · a−(k+1) = am · (a−1)k+1

= am · ((a−1)k · a−1)

= am · (a−k · a−1)

= (am · a−k) · a−1

= am−k · a−1

= (am−k−1 · a) · a−1

= am−k−1 · (a · a−1)

= am−k−1 · e
= am−k−1

= am−(k+1).

Thus, am · a−(k+1) = am−(k+1).
Therefore, Tk+1 is true.
Case 2: Suppose m− k − 1 = 0.
Then m− k = 1.
Observe that

am · a−(k+1) = am · (a−1)k+1

= am · ((a−1)k · a−1)

= am · (a−k · a−1)

= (am · a−k) · a−1

= am−k · a−1

= a1 · a−1

= a · a−1

= e

= a0

= am−k−1

= am−(k+1).

Thus, am · a−(k+1) = am−(k+1).
Therefore, Tk+1 is true.
Case 3: Suppose m− k − 1 < 0.
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Observe that

am · a−(k+1) = am · (a−1)k+1

= am · ((a−1)k · a−1)

= am · (a−k · a−1)

= (am · a−k) · a−1

= am−k · a−1

= am−k−1

= am−(k+1).

Thus, am · a−(k+1) = am−(k+1).
Therefore, Tk+1 is true.

In all cases, Tk+1 is true.
Hence, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Either m+ 1 > 0 or m+ 1 = 0 or m+ 1 < 0.
We consider these cases separately.
Case 1: Suppose m+ 1 > 0.
Since am · a1 = am · a = am+1−1 · a = am+1, then am · a1 = am+1.
Therefore, S1 is true.
Case 2: Suppose m+ 1 = 0.
Then m = −1.
Since am · a1 = a−1 · a1 = a−1 · a = e = a0 = am+1, then am · a1 = am+1.
Therefore, S1 is true.
Case 3: Suppose m+ 1 < 0.
Then m < −1.
We must prove am · a1 = am+1 for all integers m < −1.
The statement am · a1 = am+1 for all integers m < −1 is equivalent to the

statement am · a1 = am+1 for all integers m ≤ −2 which is equivalent to the
statement a−k · a1 = a−k+1 for all integers k ≥ 2.

So, to prove the statement am ·a1 = am+1 for all integers m < −1, we prove
the equivalent statement a−k · a1 = a−k+1 for all integers k ≥ 2.

Let k ∈ Z and k ≥ 2.
Since k ≥ 2 and 2 > 0, then k > 0.
Since k ≥ 2, then k − 1 ≥ 1, so k − 1 > 0.
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Observe that

a−k · a1 = a−k · a
= (a−1)k · a
= [(a−1)k−1 · a−1] · a
= (a−1)k−1 · (a−1 · a)

= (a−1)k−1 · e
= (a−1)k−1

= a−(k−1)

= a−k+1.

Hence, a−k · a1 = a−k+1, so am · a1 = am+1 for all integers m < −1.
Therefore, S1 is true.

In all cases, S1 is true.

Proof. Induction:
Let k ∈ Z+ such that Sk is true.
Since k ∈ Z+, then k > 0.
Since Sk is true, then am · ak = am+k.
Either m+ k + 1 > 0 or m+ k + 1 = 0 or m+ k + 1 < 0.
We consider these cases separately.
Case 1: Suppose m+ k + 1 > 0.
Observe that

am · ak+1 = am · (ak · a)

= (am · ak) · a
= am+k · a
= am+k+1−1 · a
= am+k+1

= am+(k+1).

Thus, am · ak+1 = am+(k+1).
Therefore, Sk+1 is true.
Case 2: Suppose m+ k + 1 = 0.
Then m+ k = −1.
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Observe that

am · ak+1 = am · (ak · a)

= (am · ak) · a
= am+k · a
= a−1 · a
= e

= a0

= am+k+1

= am+(k+1).

Thus, am · ak+1 = am+(k+1).
Therefore, Sk+1 is true.
Case 3: Suppose m+ k + 1 < 0.
Then m+ k < −1.
Since S1 is true, then am · a1 = am+1 for all integers m < −1.
Hence, am+k · a1 = a(m+k)+1.
Observe that

am · ak+1 = am · (ak · a)

= (am · ak) · a
= am+k · a
= am+k · a1

= a(m+k)+1

= am+(k+1).

Thus, am · ak+1 = am+(k+1).
Therefore, Sk+1 is true.

In all cases, Sk+1 is true.
Hence, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove 4.
If a ∈ G, then (am)n = amn for all m,n ∈ Z.
Let a ∈ G.
Let m ∈ Z.
To prove (am)n = amn for all n ∈ Z, let Sn : (am)n = amn and let Tn :

(am)−n = am(−n).
We must prove
1. (am)0 = am0.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.
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Proof. We prove (am)0 = am0.
Since a ∈ G and m ∈ Z, then am ∈ G, so (am)0 = e = a0 = am·0.
Therefore, (am)0 = am0.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since (am)1 = am = am1, then (am)1 = am1, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Then (am)k = amk.
Observe that

(am)k+1 = (am)k · am

= amk · am

= amk+m

= am(k+1).

Thus, (am)k+1 = am(k+1), so Sk+1 is true.
Therefore, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
Since m ∈ Z, then either m > 0 or m = 0 or m < 0.
We consider these cases separately.
Case 1: Suppose m > 0.
Then (am)−1 = a−m = am(−1), so (am)−1 = am(−1).
Therefore, T1 is true.
Case 2: Suppose m = 0.
Then (am)−1 = (a0)−1 = e−1 = e = a0 = a0(−1) = am(−1), so (am)−1 =

am(−1).
Therefore, T1 is true.
Case 3: Suppose m < 0.
Then −m > 0, so a−(−m) = (a−m)−1.
Observe that

(am)−1 = [a−(−m)]−1

= [(a−m)−1]−1

= a−m

= am(−1).

Thus, (am)−1 = am(−1), so T1 is true.
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In all cases, T1 is true.
Therefore, (am)−1 = am(−1) for all m ∈ Z.
Induction:
Let k ∈ Z+ such that Tk is true.
Then (am)−k = am(−k).
Observe that

(am)−(k+1) = (am)(k+1)(−1)

= [(am)k+1]−1

= [(am)k · am]−1

= (am)−1 · [(am)k]−1

= (am)−1 · (am)k(−1)

= (am)−1 · (am)−k

= (am)−1 · am(−k)

= am(−1) · am(−k)

= a−m · a−mk

= a−m−mk

= a−m(1+k)

= a−m(k+1).

Thus, (am)−(k+1) = a−m(k+1), so Tk+1 is true.
Therefore, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+.

Proof. We prove 5.
If a, b ∈ G and G is abelian, then (ab)n = anbn for all n ∈ Z.
Suppose a, b ∈ G and G is abelian.
To prove (ab)n = anbn for all n ∈ Z, let Sn : (ab)n = anbn and let Tn :

(ab)−n = a−nb−n.
We must prove
1. (ab)0 = a0b0.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We prove (ab)0 = a0b0.
Since a ∈ G and b ∈ G, then by closure of G under ·, we have ab ∈ G.
Therefore, (ab)0 = e = ee = a0b0, so (ab)0 = a0b0, as desired.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since (ab)1 = ab = a1b1, then (ab)1 = a1b1, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
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Since k ∈ Z+, then k ∈ Z and k > 0.
Since Sk is true, then (ab)k = akbk.
Observe that

(ab)k+1 = (ab)k(ab)

= (akbk)(ab)

= ak(bka)b

= ak(abk)b

= (aka)(bkb)

= ak+1bk+1

Therefore, (ab)k+1 = ak+1bk+1, so Sk+1 is true.
Hence, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
Since (ab)−1 = b−1a−1 = a−1b−1, then (ab)−1 = a−1b−1, so T1 is true.
Induction:
Let k ∈ Z+ such that Tk is true.
Since k ∈ Z+, then k ∈ Z and k > 0.
Since Tk is true, then (ab)−k = a−kb−k.
Observe that

(ab)−(k+1) = (ab)−k−1

= (ab)−k(ab)−1

= (a−kb−k)(ab)−1

= (a−kb−k)(b−1a−1)

= a−k(b−kb−1)a−1

= (a−ka−1)(b−kb−1)

= a−k−1b−k−1

= a−(k+1)b−(k+1)

Hence, (ab)−(k+1) = a−(k+1)b−(k+1), so Tk+1 is true.
Therefore, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+

Proposition 19. Let (G, ·) be a multiplicative group with multiplicative identity
e ∈ G.

(∀n ∈ Z)(en = e).
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Proof. To prove (∀n ∈ Z)(en = e), let Sn : en = e and let Tn : e−n = e.
We must prove
1. e0 = e.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We prove e0 = e.
Since G is a multiplicative group and a0 = e for all a ∈ G and e ∈ G, then

e0 = e.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since G is a multiplicative group and e ∈ G, then e1 = e1−1 · e = e0 · e =

e · e = e, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Since k ∈ Z+, then k > 0, so k + 1 > 0.
Since Sk is true, then ek = e.
Since ek+1 = ek · e = e · e = e, then Sk+1 is true.
Therefore, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction Sn is

true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
Since the identity element of a group is its own inverse, then e−1 = e, so T1

is true.
Induction:
Let k ∈ Z+ such that Tk is true.
Then e−k = e.
Since e−(k+1) = e−k−1 = e−ke−1 = ee−1 = ee = e, then Tk+1 is true..
Therefore, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction Tn is

true for all n ∈ Z+.

additive group notation

Lemma 20. Let (G,+) be an additive group.
Let a ∈ G.
Then na+ a = a+ na for all n ∈ Z+.

Proof. To prove na+ a = a+ na for all n ∈ Z+, let Sn : na+ a = a+ na.
We must prove
1. Sn is true for all n ∈ Z+.
We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
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Observe that

1a+ a = [(1− 1)a+ a] + a

= (0a+ a) + a

= (0a+ a) + (0 + a)

= (0a+ a) + (0a+ a)

= (0 + a) + [(1− 1)a+ a]

= a+ 1a.

Therefore, 1a+ a = a+ 1a, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Then ka+ a = a+ ka and k > 0, so k + 1 > 0.
Observe that

(k + 1)a+ a = (ka+ a) + a

= (a+ ka) + a

= a+ (ka+ a)

= a+ (k + 1)a.

Hence, (k + 1)a+ a = a+ (k + 1)a, so Sk+1 is true.
Thus, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Theorem 21. Laws of Exponents for an additive group
Let (G,+) be an additive group.
1. If a ∈ G, then (−n)a = n(−a) = −(na) for all n ∈ Z+.
2. If a ∈ G, then na ∈ G for all n ∈ Z.
3. If a ∈ G, then ma+ na = (m+ n)a.
4. If a ∈ G, then n(ma) = (mn)a for all m,n ∈ Z.
5. If a, b ∈ G and G is abelian, then n(a+ b) = na+ nb for all n ∈ Z.

Proof. We prove 1.
If a ∈ G, then (−n)a = n(−a) = −(na) for all n ∈ Z+.
Let a ∈ G be arbitrary.
To prove (−n)a = n(−a) = −(na) for all n ∈ Z+, let n ∈ Z+.
Then n ∈ Z and n > 0, so (−n)a = n(−a).

Since n ∈ Z+, then n(−a) is a sum of −a with itself n times.
Hence, n(−a) = (−a) + (−a) + ...+ (−a).
The expression (−a)+(−a)+ ...+(−a) is the same as the inverse of the sum

of a with itself n times, by proposition 11 .
Thus, (−a) + (−a) + ...+ (−a) = −(a+ a+ ...+ a) = −(na).
Hence, n(−a) = (−a) + (−a) + ... + (−a) = −(a + a + ... + a) = −(na), so

n(−a) = −(na).
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Therefore, (−n)a = n(−a) and n(−a) = −(na), so (−n)a = n(−a) = −(na).

Proof. We prove 2.
If a ∈ G, then na ∈ G for all n ∈ Z.
Let 0 ∈ G be the identity of G.
Let a ∈ G be arbitrary.
To prove na ∈ G for all n ∈ Z, let Sn : na ∈ G and let Tn : (−n)a ∈ G.
We must prove
1. 0a ∈ G.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We first prove 0a ∈ G.
Since 0a = 0 and 0 ∈ G, then 0a ∈ G.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since a ∈ G and 1a = (1− 1)a+ a = 0a+ a = 0 + a = a, then 1a ∈ G, so S1

is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Since k ∈ Z+, then k > 0, so k + 1 > 0.
Since Sk is true, then ka ∈ G.
Since (k + 1)a = ka+ a and ka ∈ G and a ∈ G, then by closure of G under

+, the sum (k + 1)a is an element of G, so (k + 1)a ∈ G.
Therefore, Sk+1 is true.
Thus, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
Since a ∈ G and every element in G is invertible by definition of a group,

then its inverse −a is in G, so −a ∈ G.
Since (−1)a = −a and −a ∈ G, then T1 is true.
Induction:
Let k ∈ Z+ such that Tk is true.
Since k ∈ Z+, then k > 0 and k + 1 ∈ Z+, so k + 1 > 0.
Since Tk is true, then (−k)a ∈ G.
Observe that

−(k + 1)a = (k + 1)(−a)

= k(−a) + (−a)

= (−k)a+ (−a).
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Since (−k)a ∈ G and −a ∈ G, then by closure of G under +, we have
(−k)a+ (−a) ∈ G, so −(k + 1)a ∈ G.

Therefore, Tk+1 is true.
Thus, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+.

Proof. We prove 3.
If a ∈ G, then ma+ na = (m+ n)a for all m,n ∈ Z.
Let a ∈ G be arbitrary.
Let m ∈ Z.
To prove ma + na = (m + n)a for all n ∈ Z, let Sn : ma + na = (m + n)a

and let Tn : ma+ (−n)a = (m− n)a.
We must prove
1. ma+ 0a = (m+ 0)a.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We prove ma+ 0a = (m+ 0)a.
Since (m+ 0)a = ma = ma+ 0 = ma+ 0a, then ma+ 0a = (m+ 0)a.

Proof. We prove T1 is true.
Basis:
Either m− 1 > 0 or m− 1 = 0 or m− 1 < 0.
We consider these cases separately.
Case 1: Suppose m− 1 > 0.
Then m > 1, so m > 0.
Sincema+(−1)a = ma+(−a) = [(m−1)a+a]+(−a) = (m−1)a+[a+(−a)] =

(m− 1)a+ 0 = (m− 1)a, then ma+ (−1)a = (m− 1)a.
Therefore, T1 is true.
Case 2: Suppose m− 1 = 0.
Then m = 1.
Since ma+(−1)a = 1a+(−1)a = a+(−1)a = a+(−a) = 0 = 0a = (m−1)a,

then ma+ (−1)a = (m− 1)a.
Therefore, T1 is true.
Case 3: Suppose m− 1 < 0.
Then m < 1.
We must prove ma+ (−1)a = (m− 1)a for all integers m < 1.
The statement ma+ (−1)a = (m− 1)a for all integers m < −1 is equivalent

to the statement ma + (−1)a = (m − 1)a for all integers m ≤ −2 which is
equivalent to the statement (−k)a+ (−1)a = (−k − 1)a for all integers k ≥ 2.

So, to prove the statement ma+ (−1)a = (m− 1)a for all integers m < −1,
we prove the equivalent statement (−k)a + (−1)a = (−k − 1)a for all integers
k ≥ 2.

Let k ∈ Z and k ≥ 2.
Since k ≥ 2 and 2 > 0, then k > 0, so −k < 0.
Since k > 0 and 1 > 0, then we add to obtain k + 1 > 0.
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Observe that

(−k)a+ (−1)a = (−k)a+ (−a)

= −(ka) + (−a)

= −(a+ ka)

= −(ka+ a)

= −[(k + 1)a]

= −(k + 1)a

= (−k − 1)a.

Hence, (−k)a+(−1)a = (−k−1)a, so ma+(−1)a = (m−1)a for all integers
m < −1.

Therefore, T1 is true.

In all cases, T1 is true.
Therefore, ma+ (−1)a = (m− 1)a for all m ∈ Z.

Proof. Induction:
Let k ∈ Z+ such that Tk is true.
Since k ∈ Z+, then k > 0, so k + 1 > 0.
Since Tk is true, then ma+ (−k)a = (m− k)a.
Either m− k − 1 > 0 or m− k − 1 = 0 or m− k − 1 < 0.
We consider these cases separately.
Case 1: Suppose m− k − 1 > 0.
Then m− k > 1, so m− k > 0.
Observe that

ma+ [−(k + 1)]a = ma+ [(k + 1)(−a)]

= ma+ [k(−a) + (−a)]

= ma+ [(−k)a+ (−a)]

= [ma+ (−k)a] + (−a)

= (m− k)a+ (−a)

= [(m− k − 1)a+ a] + (−a)

= (m− k − 1)a+ [a+ (−a)]

= (m− k − 1)a+ 0

= (m− k − 1)a

= [m− (k + 1)]a.

Thus, ma+ [−(k + 1)]a = [m− (k + 1)]a.
Therefore, Tk+1 is true.
Case 2: Suppose m− k − 1 = 0.
Then m− k = 1.
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Observe that

ma+ [−(k + 1)]a = ma+ (k + 1)(−a)

= ma+ [k(−a) + (−a)]

= ma+ [(−k)a+ (−a)]

= [ma+ (−k)a] + (−a)

= (m− k)a+ (−a)

= 1a+ (−a)

= a+ (−a)

= 0

= 0a

= (m− k − 1)a

= [m− (k + 1)]a.

Thus, ma+ [−(k + 1)]a = [m− (k + 1)]a.
Therefore, Tk+1 is true.
Case 3: Suppose m− k − 1 < 0.
Observe that

ma+ [−(k + 1)]a = ma+ (k + 1)(−a)

= ma+ [k(−a) + (−a)]

= ma+ [(−k)a+ (−a)]

= [ma+ (−k)a] + (−a)

= (m− k)a+ (−a)

= (m− k)a+ (−1)a

= (m− k − 1)a

= [m− (k + 1)]a.

Thus, ma+ [−(k + 1)]a = [m− (k + 1)]a.
Therefore, Tk+1 is true.

In all cases, Tk+1 is true.
Hence, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Either m+ 1 > 0 or m+ 1 = 0 or m+ 1 < 0.
We consider these cases separately.
Case 1: Suppose m+ 1 > 0.
Sincema+1a = ma+a = (m+1−1)a+a = (m+1)a, thenma+1a = (m+1)a.
Therefore, S1 is true.
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Case 2: Suppose m+ 1 = 0.
Then m = −1.
Since ma + 1a = (−1)a + 1a = (−1)a + a = −a + a = 0 = 0a = (m + 1)a,

then ma+ 1a = (m+ 1)a.
Therefore, S1 is true.
Case 3: Suppose m+ 1 < 0.
Then m < −1.
We must prove ma+ 1a = (m+ 1)a for all integers m < −1.
The statement ma+ 1a = (m+ 1)a for all integers m < −1 is equivalent to

the statement ma+ 1a = (m+ 1)a for all integers m ≤ −2 which is equivalent
to the statement (−k)a+ 1a = (−k + 1)a for all integers k ≥ 2.

So, to prove the statement ma+ 1a = (m+ 1)a for all integers m < −1, we
prove the equivalent statement (−k)a+ 1a = (−k + 1)a for all integers k ≥ 2.

Let k ∈ Z and k ≥ 2.
Since k ≥ 2 and 2 > 0, then k > 0.
Since k ≥ 2, then k − 1 ≥ 1, so k − 1 > 0.
Observe that

(−k)a+ 1a = (−k)a+ a

= k(−a) + a

= [(k − 1)(−a) + (−a)] + a

= (k − 1)(−a) + [(−a) + a]

= (k − 1)(−a) + 0

= (k − 1)(−a)

= −(k − 1)a

= (−k + 1)a.

Hence, (−k)a + 1a = (−k + 1)a, so ma + 1a = (m + 1)a for all integers
m < −1.

Therefore, S1 is true.

In all cases, S1 is true.

Proof. Induction:
Let k ∈ Z+ such that Sk is true.
Since k ∈ Z+, then k > 0.
Since Sk is true, then ma+ ka = (m+ k)a.
Either m+ k + 1 > 0 or m+ k + 1 = 0 or m+ k + 1 < 0.
We consider these cases separately.
Case 1: Suppose m+ k + 1 > 0.
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Observe that

ma+ (k + 1)a = ma+ (ka+ a)

= (ma+ ka) + a

= (m+ k)a+ a

= (m+ k + 1− 1)a+ a

= (m+ k + 1)a

= [m+ (k + 1)]a.

Thus, ma+ (k + 1)a = [m+ (k + 1)]a.
Therefore, Sk+1 is true.
Case 2: Suppose m+ k + 1 = 0.
Then m+ k = −1.
Observe that

ma+ (k + 1)a = ma+ (ka+ a)

= (ma+ ka) + a

= (m+ k)a+ a

= (−1)a+ a

= −a+ a

= 0

= 0a

= (m+ k + 1)a

= [m+ (k + 1)]a.

Thus, ma+ (k + 1)a = [m+ (k + 1)]a.
Therefore, Sk+1 is true.
Case 3: Suppose m+ k + 1 < 0.
Then m+ k < −1.
Since S1 is true, then ma+ 1a = (m+ 1)a for all integers m < −1.
Hence, (m+ k)a+ 1a = [(m+ k) + 1]a.
Observe that

ma+ (k + 1)a = ma+ (ka+ a)

= (ma+ ka) + a

= (m+ k)a+ a

= (m+ k)a+ 1a

= [(m+ k) + 1]a

= [m+ (k + 1)]a.

Thus, ma+ (k + 1)a = [m+ (k + 1)]a.
Therefore, Sk+1 is true.
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In all cases, Sk+1 is true.
Hence, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove 4.
If a ∈ G, then n(ma) = (mn)a for all m,n ∈ Z.
Let a ∈ G.
Let m ∈ Z.
To prove n(ma) = (mn)a for all n ∈ Z, let Sn : n(ma) = (mn)a and let

Tn : (−n)(ma) = [m(−n)]a.
We must prove
1. 0(ma) = (m0)a.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We prove 0(ma) = (m0)a.
Since a ∈ G and m ∈ Z, then ma ∈ G, so 0(ma) = 0 = 0a = (m0)a.
Therefore, 0(ma) = (m0)a.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since 1(ma) = ma = (m1)a, then 1(ma) = (m1)a, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Then k(ma) = (mk)a.
Observe that

(k + 1)(ma) = k(ma) + (ma)

= (mk)a+ (ma)

= (mk +m)a

= m(k + 1)a.

Thus, (k + 1)(ma) = m(k + 1)a, so Sk+1 is true.
Therefore, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
Since m ∈ Z, then either m > 0 or m = 0 or m < 0.
We consider these cases separately.
Case 1: Suppose m > 0.
Then (−1)(ma) = −(ma) = [(−m)]a = [m(−1)]a, so (−1)(ma) = [m(−1)]a.
Therefore, T1 is true.
Case 2: Suppose m = 0.
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Then (−1)(ma) = (−1)(0a) = (−1)0 = 0 = 0a = [0(−1)]a = [m(−1)]a, so
(−1)(ma) = [m(−1)]a.

Therefore, T1 is true.
Case 3: Suppose m < 0.
Then −m > 0, so [−(−m)]a = −[(−m)a].
Observe that

(−1)(ma) = −(ma)

= −[[−(−m)]a]

= −[−[(−m)a]]

= (−m)a

= [m(−1)]a.

Thus, (−1)(ma) = [m(−1)]a, so T1 is true.

In all cases, T1 is true.
Therefore, (−1)(ma) = [m(−1)]a for all m ∈ Z.
Induction:
Let k ∈ Z+ such that Tk is true.
Then (−k)(ma) = [m(−k)]a.
Observe that

[−(k + 1)](ma) = [(k + 1)(−1)](ma)

= (−1)[(k + 1)(ma)]

= (−1)[k(ma) +ma]

= −[k(ma) +ma]

= −(ma) + (−k)(ma)

= −(ma) + [m(−k)]a

= (−1)(ma) + [m(−k)]a

= [m(−1)]a+ [m(−k)]a

= (−m)a+ (−mk)a

= (−m−mk)a

= [−m(1 + k)]a

= [−m(k + 1)]a

= [m(−(k + 1))]a.

Thus, [−(k + 1)](ma) = [m(−(k + 1))]a, so Tk+1 is true.
Therefore, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+.

Proof. We prove 5.
If a, b ∈ G and G is abelian, then n(a+ b) = na+ nb for all n ∈ Z.
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Suppose a, b ∈ G and G is abelian.
To prove n(a + b) = na + nb for all n ∈ Z, let Sn : n(a + b) = na + nb and

let Tn : (−n)(a+ b) = (−n)a+ (−n)b.
We must prove
1. 0(a+ b) = 0a+ 0b.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We prove 0(a+ b) = 0a+ 0b.
Since a ∈ G and b ∈ G, then by closure of G under +, we have a+ b ∈ G.
Therefore, 0(a+b) = 0 = 0+0 = 0a+0b, so 0(a+b) = 0a+0b, as desired.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since 1(a+ b) = a+ b = 1a+ 1b, then 1(a+ b) = 1a+ 1b, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Since k ∈ Z+, then k ∈ Z and k > 0.
Since Sk is true, then k(a+ b) = ka+ kb.
Observe that

(k + 1)(a+ b) = k(a+ b) + (a+ b)

= (ka+ kb) + (a+ b)

= ka+ (kb+ a) + b

= ka+ (a+ kb) + b

= (ka+ a) + (kb+ b)

= (k + 1)a+ (k + 1)b

Therefore, (k + 1)(a+ b) = (k + 1)a+ (k + 1)b, so Sk+1 is true.
Hence, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction, Sn

is true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
Since (−1)(a+ b) = −(a+ b) = (−b) + (−a) = (−a) + (−b) = (−1)a+ (−1)b,

then (−1)(a+ b) = (−1)a+ (−1)b, so T1 is true.
Induction:
Let k ∈ Z+ such that Tk is true.
Since k ∈ Z+, then k ∈ Z and k > 0.
Since Tk is true, then (−k)(a+ b) = (−k)a+ (−k)b.
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Observe that

[−(k + 1)](a+ b) = (−k − 1)(a+ b)

= (−k)(a+ b) + (−1)(a+ b)

= [(−k)a+ (−k)b] + (−1)(a+ b)

= [(−k)a+ (−k)b] + [−(a+ b)]

= [(−k)a+ (−k)b] + [(−b) + (−a)]

= (−k)a+ [(−k)b+ (−b)] + (−a)

= [(−k)a+ (−a)] + [(−k)b+ (−b)]
= (−k − 1)a+ (−k − 1)b

= [−(k + 1)]a+ [−(k + 1)]b

Hence, [−(k + 1)](a+ b) = [−(k + 1)]a+ [−(k + 1)]b, so Tk+1 is true.
Therefore, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction, Tn

is true for all n ∈ Z+

Proposition 22. Let (G,+) be an additive group with additive identity 0 ∈ G.
(∀n ∈ Z)(n0 = 0).

Proof. To prove (∀n ∈ Z)(n0 = 0), let Sn : n0 = 0 and let Tn : (−n)0 = 0.
We must prove
1. 00 = 0.
2. Sn is true for all n ∈ Z+.
3. Tn is true for all n ∈ Z+.

Proof. We prove 00 = 0.
Since G is an additive group and 0a = 0 for all a ∈ G and 0 ∈ G, then

00 = 0.

Proof. We prove Sn is true for all n ∈ Z+ by induction on n.
Basis:
Since G is an additive group and 0 ∈ G, then 1 · 0 = (1 − 1) · 0 + 0 =

(0 · 0) + 0 = 0 + 0 = 0, so S1 is true.
Induction:
Let k ∈ Z+ such that Sk is true.
Since k ∈ Z+, then k > 0, so k + 1 > 0.
Since Sk is true, then k0 = 0.
Since (k + 1)0 = k0 + 0 = 0 + 0 = 0, then Sk+1 is true.
Therefore, Sk implies Sk+1 for all k ∈ Z+.
Since S1 is true and Sk implies Sk+1 for all k ∈ Z+, then by induction Sn is

true for all n ∈ Z+.

Proof. We prove Tn is true for all n ∈ Z+ by induction on n.
Basis:
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Since the identity element of a group is its own inverse, then −0 = 0, so
(−1)0 = −0 = 0.

Therefore, T1 is true.
Induction:
Let k ∈ Z+ such that Tk is true.
Then (−k)0 = 0.
Since [−(k + 1)]0 = (−k − 1)0 = (−k)0 + (−1)0 = 0 + (−1)0 = 0 + 0 = 0,

then Tk+1 is true..
Therefore, Tk implies Tk+1 for all k ∈ Z+.
Since T1 is true and Tk implies Tk+1 for all k ∈ Z+, then by induction Tn is

true for all n ∈ Z+.

Subgroups

Theorem 23. Two-Step Subgroup Test
Let H be a nonempty subset of a group (G, ∗).
Then H < G iff
1. Closed under ∗: (∀a, b ∈ H)(a ∗ b ∈ H).
2. Closed under inverses: (∀a ∈ H)(a−1 ∈ H).

Proof. Suppose a ∗ b ∈ H for all a, b ∈ H and a−1 ∈ H for all a ∈ H.
We must prove H < G.

Let e ∈ G be the identity of G.
We prove e ∈ H.
Since H is not empty, then there exists a ∈ H.
Since a−1 ∈ H for all a ∈ H, then a−1 ∈ H.
Since a ∗ b ∈ H for all a, b ∈ H and a ∈ H and a−1 ∈ H, then a ∗ a−1 ∈ H,

so e ∈ H.

We prove ∗ is a binary operation on H.
Let a, b ∈ H.
By assumption, a ∗ b ∈ H for all a, b ∈ H, so we conclude a ∗ b ∈ H.
Since a ∈ H and H ⊂ G, then a ∈ G.
Since b ∈ H and H ⊂ G, then b ∈ G.
Since G is a group, then ∗ is a binary operation on G, so a ∗ b is unique.
Therefore, a ∗ b ∈ H and a ∗ b is unique, so ∗ is a binary operation on H.

We prove the binary operation ∗ over H is associative.
Since ∗ over G is associative and H ⊂ G, then ∗ over H is associative.
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We prove e ∈ H is an identity for ∗.
Let a ∈ H.
Since H ⊂ G, then a ∈ G.
Since e ∈ G is identity for ∗, then a ∗ e = e ∗ a = a for all a ∈ G, so

a ∗ e = e ∗ a = a.
Hence, a ∗ e = e ∗ a = a for all a ∈ H.
Since e ∈ H and a ∗ e = e ∗ a = a for all a ∈ H, then e ∈ H is an identity

for ∗.

We prove for every element a ∈ H, there exists an inverse a−1 ∈ H.
Let a ∈ H.
By assumption a−1 ∈ H for all a ∈ H.
In particular, a−1 ∈ H.
Since (G, ∗) is a group, then a ∗ a−1 = a−1 ∗ a = e for all a ∈ G.
Since a ∈ H and H ⊂ G, then a ∈ G, so we conclude a ∗ a−1 = a−1 ∗ a = e.
Thus, for every a ∈ H there exists a−1 ∈ H such that a ∗ a−1 = a−1 ∗ a = e.
Therefore, for every a ∈ H, there exists an inverse a−1 ∈ H.

Since ∗ is a binary operation on H and ∗ over H is associative and e ∈ H is
an identity for ∗ and for every element a ∈ H, there exists an inverse a−1 ∈ H,
then (H, ∗) is a group.

Since H ⊂ G and (H, ∗) is a group, then H is a subgroup of G, so H < G.

Proof. Conversely, suppose H < G.
Then H ⊂ G and (H, ∗) is a group under the binary operation of (G, ∗).
We must prove a ∗ b ∈ H for all a, b ∈ H and a−1 ∈ H for all a ∈ H.

We prove a ∗ b ∈ H for all a, b ∈ H.
Since (H, ∗) is a group under the binary operation of G, then ∗ is a binary

operation on H, so H is closed under ∗ of G.
Therefore, a ∗ b ∈ H for all a, b ∈ H.

We prove a−1 ∈ H for all a ∈ H.
Let a ∈ H.
Since (H, ∗) is a group, then the inverse of a exists in H.
Let a−1 be the inverse of a.
Then a−1 ∈ H, so a−1 ∈ H for all a ∈ H.

Theorem 24. One-Step Subgroup Test
Let H be a nonempty subset of a group (G, ∗).
Then H < G iff
1. (∀a, b ∈ H)(a ∗ b−1 ∈ H).

Proof. Suppose a ∗ b−1 ∈ H for all a, b ∈ H.
We must prove H < G.
Let e ∈ G be the identity of G.
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We prove a−1 ∈ H for all a ∈ H.
Let a ∈ H.
By assumption, a ∗ b−1 ∈ H for all a, b ∈ H.
Since a ∈ H and a ∈ H, then we conclude a ∗ a−1 ∈ H, so e ∈ H.
Since e ∈ H and a ∈ H, then we conclude e ∗ a−1 ∈ H, so a−1 ∈ H.
Therefore, a−1 ∈ H for all a ∈ H.

We prove a ∗ b ∈ H for all a, b ∈ H.
Let a, b ∈ H.
Since a−1 ∈ H for all a ∈ H and b ∈ H, then b−1 ∈ H.
By assumption, a ∗ b−1 ∈ H for all a, b ∈ H.
Since a ∈ H and b−1 ∈ H, then we conclude a ∗ (b−1)−1 ∈ H, so a ∗ b ∈ H.
Therefore, a ∗ b ∈ H for all a, b ∈ H.

Since H is a nonempty subset of G and a∗b ∈ H for all a, b ∈ H and a−1 ∈ H
for all a ∈ H, then by the two-step subgroup test, H is a subgroup of G, so
H < G.

Proof. Conversely, suppose H < G.
We must prove a ∗ b−1 ∈ H for all a, b ∈ H.
Let a, b ∈ H.
Since H < G, then H is a group, so for every a ∈ H, there exists an inverse

a−1 ∈ H.
Since b ∈ H, then this implies there exists b−1 ∈ H.
Since H < G, then H is closed under the binary operation of G, so a∗ b ∈ H

for all a, b ∈ H.
Since a ∈ H and b−1 ∈ H, then this implies a ∗ b−1 ∈ H.
Therefore, a ∗ b−1 ∈ H for all a, b ∈ H.

Theorem 25. Subgroup relation is transitive.
Let (G, ∗) be a group.
If H < K and K < G, then H < G.

Proof. Suppose H < K and K < G.
We must prove H < G.

We prove H ⊂ G.
Since H < K, then H ⊂ K.
Since K < G, then K ⊂ G.
Since H ⊂ K and K ⊂ G, then H ⊂ G.
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We prove a ∗ b ∈ H for all a, b ∈ H.
Since K < G, then K is closed under the binary operation of G, so the

binary operation of K is the same as the binary operation of G.
Since H < K, then H is closed under the binary operation of K.
Since the binary operation of K is the same as the binary operation of G

and ∗ is the binary operation on G, then ∗ is the binary operation on K.
Since H is closed under the binary operation of K and ∗ is the binary

operation on K, then H is closed under ∗.
Therefore, a ∗ b ∈ H for all a, b ∈ H.

We prove e ∈ H.
Let e ∈ G be the identity of G.
Since K < G and e ∈ G, then K is closed under identity by the first subgroup

test, so e ∈ K.
Since H < K and e ∈ K, then H is closed under identity by the first

subgroup test, so e ∈ H.

We prove a−1 ∈ H for all a ∈ H.
Let a ∈ H.
Since H < K, then H is a subgroup of K, so H is a group.
Hence, every element of H has an inverse in H.
Since a ∈ H, then this implies a−1 ∈ H.
Therefore, a−1 ∈ H for all a ∈ H.

Since H ⊂ G and a ∗ b ∈ H for all a, b ∈ H and e ∈ H and a−1 ∈ H for all
a ∈ H, then by the first subgroup test, H is a subgroup of G, so H < G.

Theorem 26. The intersection of subgroups is a subgroup.
The intersection of a family of subgroups is a subgroup.

Proof. Let (G, ∗) be a group with identity e ∈ G.
Let {Hi : i ∈ I} be a collection of subgroups of G for some index set I.
Then each Hi is a subgroup of G, so Hi < G for all i ∈ I.
Let H = ∩i∈IHi be the intersection of all these subgroups.
Then H = {x : x ∈ Hi for all i ∈ I}, by definition of intersection of a family

of sets.
We must prove H is a subgroup of G.

We prove H ⊂ G.
Let x ∈ H.
Then x ∈ Hi for all i ∈ I.
Let i ∈ I.
Then x ∈ Hi and Hi < G.
Since Hi < G, then Hi ⊂ G.
Since x ∈ Hi and Hi ⊂ G, then x ∈ G.
Therefore, x ∈ H implies x ∈ G, so H ⊂ G.
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We prove H 6= ∅.
Let i ∈ I.
Then Hi < G.
Since Hi < G, then Hi is closed under identity by the first subgroup test.
Since e ∈ G, then this implies e ∈ Hi.
Since i is arbitrary, then e ∈ Hi for all i ∈ I.
Therefore, e ∈ H, so H 6= ∅.

We prove a ∗ b−1 ∈ H for all a, b ∈ H.
Let a, b ∈ H.
Then a ∈ Hi for all i ∈ I and b ∈ Hi for all i ∈ I.
Let i ∈ I.
Then a ∈ Hi and b ∈ Hi and Hi < G.
Since Hi < G, then Hi is a subgroup of G, so Hi is a group.
Since Hi is a group and b ∈ Hi, then b−1 ∈ Hi.
Since Hi is a subgroup of G, then Hi is closed under ∗ of G.
Since a ∈ Hi and b−1 ∈ Hi, then we conclude a ∗ b−1 ∈ Hi.
Since i is arbitrary, then a ∗ b−1 ∈ Hi for all i ∈ I.
Therefore, a ∗ b−1 ∈ H, so a ∗ b−1 ∈ H for all a, b ∈ H.

Since H ⊂ G and H 6= ∅ and a ∗ b−1 ∈ H for all a, b ∈ H, then by the second
subgroup test, H < G.

Cyclic groups

Order of a group element

Theorem 27. Let (G, ∗) be a group.
Let a ∈ G.
If as = at and s 6= t for some s, t ∈ Z, then a has finite order.

Proof. Suppose there exist integers s and t such that as = at and s 6= t.
Since s 6= t, then either s < t or s > t.
Without loss of generality, assume s < t.
Then 0 < t− s.
Let e ∈ G be the identity of G.
Observe that

e = a0

= as−s

= as ∗ a−s

= at ∗ a−s

= at−s.

Since s and t are integers, then t− s is an integer.
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Since t− s is an integer and t− s > 0, then t− s ∈ Z+.
Since t− s ∈ Z+ and at−s = e, then a has finite order.

Theorem 28. Let (G, ∗) be a group with identity e ∈ G.
If a ∈ G has finite order n, then ak = e iff n|k for all k ∈ Z.

Proof. Suppose a ∈ G has finite order n.
Then n is the least positive integer such that an = e.

We must prove ak = e iff n|k for all k ∈ Z.
Let k ∈ Z.

We prove if n|k, then ak = e.
Suppose n|k.
Then k = nm for some integer m.
Thus,

ak = anm

= (an)m

= em

= e.

Therefore, ak = e.

Proof. Conversely, we prove if ak = e, then n|k.
Suppose ak = e.
We divide k by n
By the division algorithm, k = nq + r for integers q, r with 0 ≤ r < n.
Thus,

e = ak

= anq+r

= anq ∗ ar

= (an)q ∗ ar

= eq ∗ ar

= e ∗ ar

= ar.

Hence, ar = e.
Since r ≥ 0, then either r > 0 or r = 0.
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Suppose r > 0.
Since r ∈ Z and r > 0, then r ∈ Z+.
Since n is the least positive integer such that an = e, then n ≤ x for every

x ∈ Z+ such that ax = e.
Since r ∈ Z+ and ar = e, then we conclude n ≤ r, so r ≥ n.
But, this contradicts r < n.
Hence, r cannot be greater than zero, so we must conclude r = 0.
Therefore, k = nq + r = nq + 0 = nq, so n|k, as desired.

Corollary 29. Let (G, ∗) be a group with identity e ∈ G.
If a ∈ G has finite order n, then as = at iff s ≡ t (mod n) for all s, t ∈ Z.

Proof. Suppose a ∈ G has finite order n.
Then n is the least positive integer such that an = e.
Let s and t be arbitrary integers.
We must prove as = at iff s ≡ t (mod n).

We prove if s ≡ t (mod n) then as = at.
Suppose s ≡ t (mod n).
Then n|s− t, so there exists an integer k such that s− t = nk.
Observe that

as = ank+t

= ank ∗ at

= (an)k ∗ at

= ek ∗ at

= e ∗ at

= at.

Therefore, as = at.

Proof. Conversely, we prove if as = at then s ≡ t (mod n).
Suppose as = at.
Then

as−t = as ∗ a−t

= at ∗ a−t

= at−t

= a0

= e.

Thus, as−t = e.
Since a has finite order n and s− t ∈ Z, then as−t = e iff n|(s− t).
Hence, n|(s− t).
Therefore, s ≡ t (mod n).
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Theorem 30. Let (G, ∗) be a group with identity e ∈ G.
If a ∈ G has finite order n, then the order of as is n

gcd(s,n) for all s ∈ Z.

Proof. Suppose a ∈ G has finite order n.
Then n is the least positive integer such that an = e.
Let s ∈ Z.
Observe that

(as)n = asn

= ans

= (an)s

= es

= e.

Hence, there exists a positive integer n such that (as)n = e.
Therefore, as has finite order.

Proof. Let d = gcd(s, n).
Then d is a positive integer and d|s and d|n.
Hence, s

d is an integer and n
d is a positive integer.

We prove the order of as is n
d .

Since as has finite order, let t be the order of as.
Then t is the least positive integer such that (as)t = e, so e = ast.
Since a has finite order n, then ast = e if and only if n|st.
Hence, n|st, so there exists an integer b such that st = nb.
Since d > 0, we divide by d to obtain s

d t = n
d b.

Since s
d and t are integers, then the product s

d t is an integer.
Since n

d and b are integers, then n
d divides s

d t.

Since d = gcd(s, n), then gcd( sd ,
n
d ) = 1, so gcd(nd ,

s
d ) = 1.

Since n
d divides s

d t and gcd(nd ,
s
d ) = 1, then n

d divides t.
Observe that

(as)
n
d = a

sn
d

= (an)
s
d

= e
s
d

= e.

Since as has finite order t, then (as)m = e iff t|m for all integers m.
Since n

d is an integer, then we conclude (as)
n
d = e iff t divides n

d .
Hence, t divides n

d .
Since t ∈ Z+ and n

d ∈ Z+ and t divides n
d and n

d divides t, then t = n
d , by

the anti-symmetric property of the divides relation on Z+.
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Corollary 31. Let (G, ∗) be a group.
Let a ∈ G have order n.
Let s ∈ Z.
If s and n are relatively prime, then as has order n.

Proof. Suppose s and n are relatively prime.
Then gcd(s, n) = 1.
Observe that

|as| =
n

gcd(s, n)

=
n

1
= n.

Therefore, as has order n.

Corollary 32. Let (G, ∗) be a group.
Let a ∈ G have order n.
Let s ∈ Z.
If s divides n, then as has order n

s .

Proof. Suppose s divides n.
Then there exists t ∈ Z such that n = st.
Thus, t = n

s .
Since a has order n, then n is a positive integer, so n 6= 0.

Suppose s = 0.
Then n = st = 0t = 0.
Thus, n = 0 and n 6= 0, a contradiction.
Therefore, s 6= 0.

Observe that

|as| =
n

gcd(s, n)

=
st

gcd(s, st)

=
st

s gcd(1, t)

=
t

gcd(1, t)

=
t

1
= t

=
n

s
.

Therefore, as has order n
s .
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Proposition 33. The order of a is the same as the order of a−1.
Let (G, ∗) be a group.
Let a ∈ G.
Then |a| = |a−1|.

Proof. Let e ∈ G be the identity of G.
Suppose a has finite order.
Let n be the order of a.
Then n is the least positive integer such that an = e and ak = e iff n|k for

all k ∈ Z.
Observe that (a−1)n = (an)−1 = e−1 = e.
Since n ∈ Z+ and (a−1)n = e, then a−1 has finite order.
Let m be the order of a−1.
Then m is the least positive integer such that (a−1)m = e and (a−1)k = e

iff m|k for all k ∈ Z.
Since n ∈ Z, then (a−1)n = e iff m|n.
Since (a−1)n = e, then we conclude m|n.
Observe that e = (a−1)m = a−m.
Since ak = e iff n|k for all k ∈ Z and −m ∈ Z, then a−m = e iff n|(−m).
Since a−m = e, then we conclude n|(−m), so n|m.
Since m|n and n|m, then m = n.
Therefore, |a| = n = m = |a−1|, so |a| = |a−1|, as desired.

Proposition 34. The order of ab is the same as the order of ba.
Let (G, ∗) be a group.
Let a, b ∈ G.
Then |ab| = |ba|.

Proof. Let e ∈ G be the identity of G.
Suppose ab has finite order.
Let n be the order of ab.
Then n is the least positive integer such that (ab)n = e and (ab)k = e iff n|k

for all integers k.
Right multiply by a to obtain (ab)na = ea = a.
Thus, (ab)(ab)...(ab)a = a, so a(ba)(ba)...(ba) = a.
Hence, a(ba)n = a = ae, so by left cancellation we obtain (ba)n = e.
Since n ∈ Z+ and (ba)n = e, then ba has finite order.
Let m be the order of ba.
Then m is the least positive integer such that (ba)m = e and (ba)n = e iff

m|n.
Since (ba)n = e, then we conclude m|n.
Since (ba)m = e, left multiply by a to obtain a(ba)m = ae = a.
Thus, a(ba)(ba)...(ba) = a, so (ab)(ab)...(ab)a = a.
Hence, (ab)ma = a = ea, so by right cancellation we obtain (ab)m = e.
Since m ∈ Z and (ab)m = e iff n|m, then we conclude n|m.
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Since m|n and n|m, then m = n.
Therefore, |ab| = n = m = |ba|, so |ab| = |ba|.

Proposition 35. Every element of a finite group has finite order.
Let (G, ∗) be a finite group with identity e ∈ G.
Then (∀a ∈ G)(∃k ∈ Z+)(ak = e).

Proof. Since G is finite, let n be the number of elements in G.
Then |G| = n.
Since G is a group, then G 6= ∅, so n is a positive integer.
Let a ∈ G.
Either all distinct positive integer powers of a are distinct or not.
We consider these cases separately.
Case 1: Suppose all distinct positive integer powers of a are distinct.
Let S = {a, a2, a3, ..., an}.
Then S = {ak : 1 ≤ k ≤ n, k ∈ Z}.
By the laws of exponents, an ∈ G for all n ∈ Z, so S ⊂ G.
Since G is finite and |S| = n = |G| and S ⊂ G, then S = G.
Since e ∈ G, then this implies e ∈ S.
Hence, there exists an integer k such that 1 ≤ k ≤ n and e = ak.
Therefore, there exists a positive integer k such that ak = e.
Case 2: Suppose not all distinct positive integer powers of a are distinct.
Then there exist distinct positive integer powers of a that are the same.
Hence, there exist distinct positive integers s and t such that as = at.
Thus, s 6= t and as = at.
Since s 6= t, then either s < t or s > t.
Without loss of generality, assume s < t.
Then t > s, so t− s > 0.
Hence, t− s is a positive integer.
Observe that

at−s = at ∗ a−s

= as ∗ a−s

= as−s

= a0

= e.

Therefore, there exists a positive integer t− s such that at−s = e.

Theorem 36. Finite Subgroup Test
Let H be a nonempty finite subset of a group (G, ∗).
Then H < G iff H is closed under ∗ of G.

Proof. We prove if H < G, then H is closed under ∗ of G.
Suppose H < G.
Then H is a subgroup of G, so H is a group under the binary operation of

G.
Hence, ∗ is a binary operation on H, so H is closed under ∗ of G.
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Proof. Conversely, we prove if H is closed under ∗ of G, then H < G.

Suppose H is closed under ∗ of G.
Then a ∗ b ∈ H for all a, b ∈ H.
Since H is a nonempty set, then there exists an element a ∈ H.

We first prove ak ∈ H for all k ∈ Z+ by induction on k.
Define predicate p(k) : ak ∈ H over Z+.
Basis:
Since a ∈ H and a1 = a, then a1 ∈ H, so p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then ak ∈ H.
Since a ∗ b ∈ H for all a, b ∈ H and ak ∈ H and a ∈ H, then ak ∗ a ∈ H, so

ak+1 ∈ H.
Hence, p(k + 1) is true.
Thus, p(k) implies p(k + 1) for all k ∈ Z+.
Since p(1) is true and p(k) implies p(k+1) for all k ∈ Z+, then by induction,

p(k) is true for all k ∈ Z+.
Therefore, ak ∈ H for all k ∈ Z+.

Since H is finite, then H contains a finite number of elements.
Let n be the number of elements in H.
Then n ∈ Z.
Since H is not empty, then n ≥ 1.
Since ak ∈ H for all k ∈ Z+ and H contains exactly n elements, then H

consists of n distinct powers of a, so H = {a, a2, a3, ..., an} = {ai : 1 ≤ i ≤ n}.
Since ak ∈ H for all k ∈ Z+ and n+ 1 ∈ Z+, then an+1 ∈ H, so an+1 = ak

for some integer k with 1 ≤ k ≤ n.
Since 1 ≤ k ≤ n and n < n+ 1, then 1 ≤ k ≤ n < n+ 1, so 1 ≤ k < n+ 1.
Thus, k < n+ 1, so k 6= n+ 1.
Since a ∈ H and H ⊂ G, then a ∈ G.
Since G is a group and a ∈ G and ak = an+1 and k and n + 1 are integers

and k 6= n+ 1, then a has finite order.
Let m be the order of a.
Then m is the least positive integer such that am = e.
Since ak ∈ H for all k ∈ Z+ and m ∈ Z+, then am ∈ H, so e ∈ H.
Since am ∈ H, then 1 ≤ m ≤ n.

Suppose m < n.
Then n−m > 0.
Since ak ∈ H for all k ∈ Z+ and n−m ∈ Z+, then an−m ∈ H.
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Observe that

an−m = e ∗ an−m

= am ∗ an−m

= am+n−m

= an.

Since an−m = an and an−m ∈ H and an ∈ H, then we must conclude
n−m = n.

Hence, n− n = m, so m = 0.
But, this contradicts that m is positive, so m cannot be less than n.
Since m ≤ n and m is not less than n, then m must equal n, so m = n.

Therefore, the order of a is n, so an = e.

Since n ∈ Z+, then either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then e = a1 = a.
Thus, a ∈ H implies a ∈ {e}.
Hence, H ⊂ {e}.
Since e ∈ H, then {e} ⊂ H.
Thus, H ⊂ {e} and {e} ⊂ H, so H = {e}.
Since the trivial group is a subgroup of every group, then H < G.
Case 2: Suppose n > 1.
Observe that

a ∗ an−1 = a1+n−1

= an

= e

= an

= an−1+1

= an−1 ∗ a.

Since a ∗ an−1 = e = an−1 ∗ a, then an−1 is the inverse of a.
Therefore, a−1 = an−1.
Since n ∈ Z and n > 1, then n ≥ 2, so n− 1 ≥ 1.
Since 1 ≤ n− 1 and n− 1 < n, then 1 ≤ n− 1 < n.
Since n− 1 ∈ Z and 1 ≤ n− 1 < n, then an−1 ∈ H, so a−1 ∈ H.
Since a is arbitrary, then a−1 ∈ H for all a ∈ H.
Since H is a nonempty subset of G and a ∗ b ∈ H for all a, b ∈ H and

a−1 ∈ H for all a ∈ H, then by the two-step subgroup test, H is a subgroup of
G, so H < G.
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Therefore, in all cases, H < G, as desired.

Cyclic subgroups

Theorem 37. The cyclic subgroup of a group G generated by g ∈ G is
the smallest subgroup of G that contains g.

Let (G, ∗) be a group.
Let g ∈ G.
Then 〈g〉 = {gn : n ∈ Z} is a subgroup of G.
Moreover, 〈g〉 is the smallest subgroup of G that contains g.

Proof. Let H = {gn : n ∈ Z}.
Let e ∈ G be the identity element of G.
We must prove H < G.

Since g0 = e and 0 ∈ Z, then e ∈ H, so H 6= ∅.

We prove H ⊂ G.
Let h ∈ H.
Then h = gk for some k ∈ Z.
By the law of exponents for a group G, if a ∈ G, then an ∈ G for all n ∈ Z.
Since G is a group and g ∈ G and k ∈ Z, then we conclude gk ∈ G, so h ∈ G.
Therefore, h ∈ H implies h ∈ G, so H ⊂ G.

Since H ⊂ G and H 6= ∅, then H is a nonempty subset of G.

We prove H is closed under the binary operation of G.
Let gi, gj ∈ H.
Then i, j ∈ Z.
Since gi ∗ gj = gi+j and i+ j ∈ Z, then gi+j ∈ H, so gi ∗ gj ∈ H.
Therefore, gi ∗ gj ∈ H for all gi, gj ∈ H.

We prove H is closed under inverses.
Let gm ∈ H.
Then m ∈ Z.
Since gm ∈ H and H ⊂ G, then gm ∈ G.
Since G is a group and gm ∈ G, then the inverse of gm exists.
Let (gm)−1 ∈ G be the inverse of gm.
Then (gm)−1 = g−m and gm ∗g−m = gm−m = g0 = e = g−m+m = g−m ∗gm.
Since −m ∈ Z, then g−m ∈ H, so (gm)−1 ∈ H.
Therefore, (gm)−1 ∈ H for all gm ∈ H.
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Since H is a nonempty subset of G and gi ∗ gj ∈ H for all gi, gj ∈ H and
(gm)−1 ∈ H for all gm ∈ H, then by the two-step subgroup test, H is a subgroup
of G, so H < G.

Proof. To prove H is the smallest subgroup of G containing g, let K < G and
g ∈ K.

We must prove H < K.

We prove H ⊂ K.
Let h ∈ H.
Then h = gk for some k ∈ Z.
By the law of exponents for a group K, if a ∈ K, then an ∈ K for all n ∈ Z.
Since K < G, then K is a subgroup of G, so K is a group.
Since g ∈ K and k ∈ Z, then we conclude gk ∈ K, so h ∈ K.
Therefore, h ∈ H implies h ∈ K, so H ⊂ K.

Since H ⊂ K and H 6= ∅, then H is a nonempty subset of K.

We prove H is closed under the binary operation on K.
Since K < G, then K is closed under the binary operation on G, so the

binary operation on K is the binary operation on G.
Since H < G, then H is closed under the binary operation on G, so the

binary operation on H is the binary operation on G.
Since the binary operation on H is the binary operation on G and the binary

operation on G is the binary operation on K, then the binary operation on H
is the binary operation on K.

Therefore, H is closed under the binary operation on K.

We prove a−1 ∈ H for all a ∈ H.
Since H < G, then H is a group under the binary operation of G, so for

every a ∈ H, there exists a−1 ∈ H such that a ∗ a−1 = a−1 ∗ a = e.
Therefore, a−1 ∈ H for all a ∈ H.

Since H is a nonempty subset of K and H is closed under the binary operation
on K and a−1 ∈ H for all a ∈ H, then by the two-step subgroup test, H is a
subgroup of K, so H < K.

Theorem 38. Every cyclic group is abelian.

Proof. Let (G, ∗) be a cyclic group.
Then G = {gn : n ∈ Z} for some generator g ∈ G.
Let a, b ∈ G.
Since a ∈ G, then a = gk for some k ∈ Z.
Since b ∈ G, then b = gm for some m ∈ Z.
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Observe that

a ∗ b = gk ∗ gm

= gk+m

= gm+k

= gm ∗ gk

= b ∗ a.

Since a ∗ b = b ∗ a, then ∗ is commutative, so G is abelian.

Theorem 39. Every subgroup of a cyclic group is cyclic.

Proof. Let (G, ∗) be a cyclic group.
Let (H, ∗) be an arbitrary subgroup of (G, ∗).
We must prove H is cyclic.

Let e ∈ G be the identity of G.
Since H is a subgroup of G, then either H is the trivial group or H is not

the trivial group.
We consider these cases separately.
Case 1: Suppose H is the trivial group.
Then H = {e}.
Since en = e for all n ∈ Z, then the cyclic group generated by e is 〈e〉 =

{en : n ∈ Z} = {e} = H.
Therefore, H is cyclic.
Case 2: Suppose H is not the trivial group.
Then H contains at least one element that is not the identity element of G.
Hence, there exists a ∈ H such that a 6= e.
Since G is cyclic, then there exists g ∈ G such that G = {gk : k ∈ Z}.
Since H < G, then H ⊂ G.
Since a ∈ H and H ⊂ G, then a ∈ G, so there exists k ∈ Z such that a = gk.

Since g0 = e 6= a = gk, then k 6= 0, so either k < 0 or k > 0.
Without loss of generality, assume k > 0.
Then there exists k ∈ Z+ such that a = gk.
Since a ∈ H and a = gk, then gk ∈ H.

Let S = {n ∈ Z+ : gn ∈ H}.
Then S ⊂ Z+

Since k ∈ Z+ and gk ∈ H, then k ∈ S, so S 6= ∅.
Since S ⊂ Z+ and S 6= ∅, then S contains a least element by the well ordering

property of Z+.
Let m be the least element of S.
Then m ∈ S and m ≤ n for all n ∈ S.
Since m ∈ S, then m ∈ Z+ and gm ∈ H.
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Let b ∈ H be arbitrary.
Since b ∈ H and H ⊂ G, then b ∈ G, so there exists s ∈ Z such that b = gs.
Since b ∈ H and b = gs, then gs ∈ H.
We divide s by m.
By the division algorithm, there exist unique integers q, r such that s =

mq + r and 0 ≤ r < m.
Observe that

b = gs

= gmq+r

= gmq ∗ gr

= (gm)q ∗ gr.

Hence, gs = (gm)q ∗ gr.
We left multiply by [(gm)q]−1 to obtain gr = [(gm)q]−1 ∗ gs = (gm)−q ∗ gs.
By the laws of exponents for a multiplicative group, if G is a group and

a ∈ G, then an ∈ G for all n ∈ Z.
Since H is a group and gm ∈ H and −q ∈ Z, then we conclude (gm)−q ∈ H.
Since H is a group, then H is closed under its binary operation ∗.
Since (gm)−q ∈ H and gs ∈ H, then we conclude gr ∈ H.

Since 0 ≤ r < m, then 0 ≤ r and r < m.
Since 0 ≤ r, then either r > 0 or r = 0.

Suppose r > 0.
Since r is an integer and r > 0, then r ∈ Z+.
Since r ∈ Z+ and gr ∈ H, then r ∈ S, so m ≤ r.
Thus, we have r < m and r ≥ m, a violation of trichotomy law for integers.
Therefore, r cannot be greater than zero.
Since either r > 0 or r = 0, we must conclude r = 0, so s = mq + r =

mq + 0 = mq.
Thus,

b = gs

= gmq

= (gm)q.

Let H ′ = {(gm)n : n ∈ Z}.
Since b = (gm)q and q ∈ Z, then b ∈ H ′.
Therefore, b ∈ H implies b ∈ H ′, so H ⊂ H ′.

We prove H ′ ⊂ H.
Let h′ ∈ H ′.
Then h′ = (gm)n for some n ∈ Z.
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By the laws of exponents for a multiplicative group, if G is a group and
a ∈ G, then an ∈ G for all n ∈ Z.

Since H is a group and gm ∈ H and n ∈ Z, then we conclude (gm)n ∈ H,
so h′ ∈ H.

Therefore, h′ ∈ H ′ implies h′ ∈ H, so H ′ ⊂ H.

Since H ⊂ H ′ and H ′ ⊂ H, then H = H ′.
Therefore, H = H ′ = {(gm)n : n ∈ Z} is the cyclic subgroup generated by

the element gm ∈ H, so H is cyclic.

Corollary 40. The only subgroups of (Z,+) are (nZ,+) for all n ∈ Z.

Proof. To prove the only subgroups of Z are nZ for all n ∈ Z, we prove the set
of all subgroups of Z is the set of all nZ.

Let S be the set of all subgroups of Z.
Then S = {H : H < Z}.
Let T = {nZ : n ∈ Z}.
We must prove S = T .

We prove S ⊂ T .
Let H ∈ S.
Then H < Z, so H is a subgroup of Z.
Thus, H ⊂ Z.
Every subgroup of a cyclic group is cyclic.
Since H is a subgroup of Z and Z is cyclic, then H is cyclic.
Therefore, there exists h ∈ H such that H = {nh : n ∈ Z} = hZ.
Since h ∈ H and H ⊂ Z, then h ∈ Z.
Since H = hZ and h ∈ Z, then H ∈ T .
Therefore, H ∈ S implies H ∈ T , so S ⊂ T .

We prove T ⊂ S.
Let G ∈ T .
Then G = nZ for some n ∈ Z.
Since nZ is a subgroup of Z, then G < Z, so G ∈ S.
Therefore, G ∈ T implies G ∈ S, so T ⊂ S.

Since S ⊂ T and T ⊂ S, then S = T .

Theorem 41. Characterization of cyclic subgroup
Let (G, ∗) be a group.
Let a ∈ G.
The order of a is the order of the cyclic subgroup of G generated by a.
1. If a has finite order n, then 〈a〉 is finite and 〈a〉 = {e, a1, a2, ..., an−1}.
2. If a has infinite order, then 〈a〉 is infinite and 〈a〉 = {..., a−2, a−1, e, a1, a2, ...}

and each power of a is distinct.
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Proof. Every element of a group G generates a cyclic subgroup of G.
Since G is a group and a ∈ G, then a generates a cyclic subgroup of G.
Let H be the cyclic subgroup of G generated by a.
Then H = {ak : k ∈ Z}.
Either there exists k ∈ Z+ such that ak = e or there does not exist k ∈ Z+

such that ak = e.
We consider these cases separately.
Case 1: Suppose there exists k ∈ Z+ such that ak = e.
Then a has finite order.
Let n be the order of a.
Then n is the least positive integer such that an = e.
Let H ′ = {a0, a1, a2, ..., an−1} = {ak : k ∈ Z ∧ 0 ≤ k < n}.
Then |H ′| = n and H ′ ⊂ H.
We must prove H = H ′ and |H| = n.

Let ak ∈ H.
Then k is an integer.
We divide k by n.
By the division algorithm, there exist unique integers q, r such that k = nq+r

and 0 ≤ r < n.
Observe that

ak = anq+r

= anq ∗ ar

= (an)q ∗ ar

= eq ∗ ar

= e ∗ ar

= ar.

Hence, there exists an integer r such that 0 ≤ r < n and ak = ar, so ak ∈ H ′.
Thus, ak ∈ H implies ak ∈ H ′, so H ⊂ H ′.
Since H ⊂ H ′ and H ′ ⊂ H, then H = H ′.
Therefore, |H| = |H ′| = n, so |H| = n.
Case 2: Suppose there does not exist k ∈ Z+ such that ak = e.
Then a has infinite order, so a does not have finite order.
If as = at and s 6= t for some s, t ∈ Z, then a has finite order.
Hence, if a does not have finite order, then there does not exist s, t ∈ Z with

s 6= t and as = at.
Since a does not have finite order, then we conclude there does not exist

s, t ∈ Z with s 6= t and as = at.
Hence, as 6= at for every distinct s, t ∈ Z, so every integer power of a is

distinct.
Therefore, the cyclic subgroup generated by a is 〈a〉 = {ak : k ∈ Z} =

{..., a−2, a−1, a0, a1, a2, a3, ..., }, so 〈a〉 is infinite.
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Proposition 42. Generators of a finite cyclic group
Let n ∈ Z+.
Let G be a cyclic group of order n.
If g ∈ G is a generator of G, then the generators of G are elements gk such

that gcd(k, n) = 1.

Proof. Suppose g ∈ G is a generator of G.
Then G = {gk : k ∈ Z}.
Let S be the set of all generators of G.
Then S = {s ∈ G : G = 〈s〉}.
Let T = {gk : gcd(k, n) = 1, k ∈ Z}.
We must prove S = T .

We prove S ⊂ T .
Since g ∈ G and G = {gk : k ∈ Z} = 〈g〉, then g ∈ S, so S 6= ∅.
The order of g is the order of the cyclic subgroup generated by g.
Therefore, |g| = |〈g〉| = |{gk : k ∈ Z}| = |G| = n, so g has finite order n.
Let s ∈ S.
Then s ∈ G and G = 〈s〉.
Since s ∈ G, then there exists k ∈ Z such that s = gk.
The order of s is the order of the cyclic subgroup generated by s.
Hence, |s| = |〈s〉| = |G| = n.
Since g has finite order n, then |s| = |gk| = n

gcd(k,n) .

Thus, n = |s| = n
gcd(k,n) , so n gcd(k, n) = n.

Consequently, gcd(k, n) = 1.
Since there exists k ∈ Z such that s = gk and gcd(k, n) = 1, then s ∈ T , so

S ⊂ T .

We prove T ⊂ S.
Let t ∈ T .
Then there exists m ∈ Z such that t = gm and gcd(m,n) = 1.
By the law of exponents, gn ∈ G for all n ∈ Z.
Since m ∈ Z, then gm ∈ G, so t ∈ G.
Every element of a group G generates a cyclic subgroup of G.
Since t ∈ G, then t generates a cyclic subgroup of G, so 〈t〉 is a subgroup of

G.
Hence, 〈t〉 is a subset of G.
Since |G| = n, then G is a finite group.
Every element of a finite group has finite order.
Thus, every element of G has finite order.
Since t ∈ G, then t has finite order.
Thus, |t| = |gm| = n

gcd(m,n) = n
1 = n = |G|.

The order of t is the order of the cyclic subgroup generated by t.
Hence, |t| = |〈t〉|.
Thus, |G| = |t| = |〈t〉|.
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Since 〈t〉 is a subset of G and G is finite and |G| = |〈t〉|, then G = 〈t〉.
Since t ∈ G and G = 〈t〉, then t ∈ S, so T ⊂ S.

Since S ⊂ T and T ⊂ S, then S = T , as desired.

Corollary 43. The generators of (Zn,+) are congruence classes [k] such that
k ∈ Z+ and 1 ≤ k ≤ n and gcd(k, n) = 1.

Proof. Let n ∈ Z+.
Observe that (Zn,+) is a cyclic group of order n.
Since [1] ∈ Zn is a generator of Zn, then by the previous proposition 42, the

generators of Zn are elements k[1] such that gcd(k, n) = 1 for k ∈ Z.
Since k ∈ Z, then k[1] = [k].
Since Zn = {[1], [2], ..., [n− 1], [n]} = {[k] : 1 ≤ k ≤ n}, then k ∈ Z+.
Therefore, the generators of Zn are congruence classes [k] ∈ Zn such that

k ∈ Z+ and 1 ≤ k ≤ n and gcd(k, n) = 1.

Theorem 44. Let (G, ∗) be a group.
Let a1, a2, ..., an ∈ G.
Then 〈a1, a2, ..., an〉 is a subgroup of G.
Moreover, 〈a1, a2, ..., an〉 is the smallest subgroup of G that contains {a1, a2, ..., an}.

Solution. We must prove
1. 〈a1, a2, ..., an〉 is a subgroup of (G, ∗).
2. To prove 〈a1, a2, ..., an〉 is the smallest subgroup of G that contains

{a1, a2, ..., an}, we must prove for every subgroup K of G such that
{a1, a2, ..., an} ⊂ K, 〈a1, a2, ..., an〉 ⊂ K.

Proof. Let H = 〈a1, a2, ..., an〉. Let N0 = {0, 1, 2, 3, ...}.
Then H = {bε11 · b

ε2
2 · · · b

εk
k : k ∈ N0, bi ∈ {a1, ..., an}, εi ∈ Z}.

Let x ∈ H. Then there exists k ∈ N0 and for each i ∈ {1, ..., k} there exists
bi ∈ {a1, ..., an} and integer εi such that x = bε11 b

ε2
2 · · · b

εk
k . Let i be an arbitrary

integer in {1, 2, ..., k}. Since bi ∈ {a1, ..., an} and {a1, ..., an} ⊂ G, then bi ∈ G.
Every integer power of bi is an element of the group that contains bi. Thus,
bεii ∈ G. Since i is arbitrary, then bεii ∈ G for each i. By closure of G we have
bε11 b

ε2
2 · · · b

εk
k ∈ G, so x ∈ G. Hence, x ∈ H implies x ∈ G, so H ⊂ G.

Let e be the identity element of G. If k = 0, then bε11 · b
ε2
2 · · · b

εk
k is a product

of zero factors. By definition, this implies bε11 · b
ε2
2 · · · b

εk
k = e. Thus, e ∈ H, so

H 6= ∅.
Let x, y ∈ H. Then there exists k ∈ N0 and for each i in {1, ..., k} there

exist bi ∈ {a1, ..., an} and integer εi such that x = bε11 b
ε2
2 . . . bεkk and there exists

m ∈ N0 and for each j in {1, ...,m} there exist cj ∈ {a1, ..., an} and integer δj
such that y = cδ11 c

δ2
2 . . . cδmm . Observe that

xy−1 = (bε11 b
ε2
2 . . . bεkk )(cδ11 c

δ2
2 . . . cδmm )−1

= (bε11 b
ε2
2 . . . bεkk )(c−δmm c

−δm−1

m−1 . . . c−δ11 )

= bε11 b
ε2
2 . . . bεkk c

−δm
m c

−δm−1

m−1 . . . c−δ11 .
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Hence, xy−1 is a product of k +m factors and k +m ∈ N0 and each factor has
a base in {a1, ..., an} and an integer exponent. Therefore, xy−1 ∈ H.

Hence, H is a subgroup of G.
To prove H is the smallest subgroup of G containing {a1, a2, ..., an}, let K

be an arbitrary subgroup of G such that {a1, a2, ..., an} ⊂ K.
We must prove H ⊂ K.
Let x ∈ H. Then there exists k ∈ N0 and for each i in {1, 2, ..., k} there

exist bi ∈ {a1, a2, ..., an} and integer εi such that x = bε11 b
ε2
2 · · · b

εk
k .

Let i be an arbitrary element of {1, 2, ..., k}. Since bi ∈ {a1, a2, ..., an} and
{a1, a2, ..., an} ⊂ K, then bi ∈ K. Every integer power of bi is an element of
the group that contains bi. Thus, bεii ∈ K. Since i is arbitrary, then bεii ∈ K for
every i in {1, 2, ..., k}. Since K is a subgroup of G, then K is closed under the
binary operation of G. Hence, bε11 b

ε2
2 · · · b

εk
k ∈ K, so x ∈ K.

Thus, x ∈ H implies x ∈ K, so H ⊂ K, as desired.

Theorem 45. Let (G, ∗) be a group.
Let S ⊂ G.
The smallest subgroup that contains S is the intersection of all subgroups

that contain S.

Proof. Let Hi be a subgroup of G such that S ⊂ Hi. Let I be some index set.
Then T = {Hi : i ∈ I} is the collection of all subgroups of G that contain S.
Since G < G and S ⊂ G, then G ∈ T . Hence, T is not empty.

Let H be the intersection of all the subgroups in T . Then H = ∩i∈IHi =
{x : x ∈ Hi for all i ∈ I}.

The intersection of a collection of subgroups is a subgroup. Hence, H < G.
We prove S ⊂ H. Let x ∈ S. To prove x ∈ H, we must prove x ∈ Hi for

all i ∈ I. Let i ∈ I. Then Hi is an arbitrary subgroup of G that contains S.
Thus, S ⊂ Hi. Since x ∈ S and S ⊂ Hi, then x ∈ Hi. Since i is arbitrary, then
x ∈ Hi for all i ∈ I. Thus, x ∈ H. Hence, x ∈ S implies x ∈ H, so S ⊂ H.

To prove H is the smallest subgroup of G that contains S, we must prove
H < K for every subgroup K that contains S.

Let i ∈ I. Then Hi is an arbitrary subgroup of G that contains S.
We prove H < Hi.
We prove H ⊂ Hi. Let x ∈ H. Then x ∈ Hi for all i ∈ I. In particular,

x ∈ Hi. Hence, x ∈ H implies x ∈ Hi, so H ⊂ Hi.
We prove H is closed under the binary operation of Hi. Since Hi < G, then

Hi is closed under the binary operation of G. Thus, the binary operation of Hi

is the same as in G. Since H < G, then H is closed under the binary operation
of G. Hence, H is closed under the binary operation of Hi.

Let e be the identity of G. Since Hi < G, then e ∈ Hi. Since H < G, then
e ∈ H. Thus, the identity of Hi is contained in H.

Let a ∈ H. We prove the inverse of a is in H. Since H < G, then H ⊂ G.
Thus, a ∈ G. Since G is a group, then the inverse of a exists in G. Let b be the
inverse of a in G. Then b ∈ G and ab = e. Since H < G, then b ∈ H.
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Since a ∈ H and H ⊂ Hi, then a ∈ Hi. Since Hi is a group, then the inverse
of a exists in Hi. Let b′ be the inverse of a in Hi. Then b′ ∈ Hi and ab′ = e.

Thus, ab = e = ab′, so ab = ab′. Since b′ ∈ Hi and Hi ⊂ G, then b′ ∈ G.
Hence, a, b, b′ ∈ G, so by the left cancellation law, we have b = b′. Since b′ = b
and b ∈ H, then b′ ∈ H. Thus, the inverse of a in Hi is in H.

Therefore, H < Hi.

Permutation Groups

Theorem 46. (SX , ◦) is a group under function composition
Let X be a nonempty set.
Let SX be the set of all permutations of X.
Define ◦ to be function composition on SX .
Then (SX , ◦) is a group, called the symmetric group on X.

Proof. We prove ◦ is a binary operation on SX .
Let σ : X → X and τ : X → X be elements of SX .
Then σ : X → X and τ : X → X are permutations of X.
Hence, σ and τ are bijective functions, so σ and τ are bijections.
Let σ ◦ τ : X → X be the function defined by (σ ◦ τ)(x) = σ(τ(x)) for all

x ∈ X.
Since the composition of functions is a function and σ is a function and τ is

a function, then σ ◦ τ is a function and σ ◦ τ is unique.
Since the composition of bijections is a bijection and σ is a bijection and τ

is a bijection, then σ ◦ τ is a bijection, so σ ◦ τ is a permutation.
Therefore, σ ◦ τ is an element of SX , so ◦ is a binary operation on SX .

We prove ◦ is associative.
Since function composition is associative, then (σ ◦ τ) ◦ µ = σ ◦ (τ ◦ µ) for

all σ, τ, µ ∈ SX .
Therefore, ◦ is associative.

We prove the identity map is an identity for ◦.
Let id : X → X be the identity map defined by id(x) = x for all x ∈ X.
Since the identity map is a bijection of X, then the identity map is a per-

mutation of X, so id ∈ SX .

Let σ ∈ SX .
Let x ∈ X.
Observe that

(id ◦ σ)(x) = id(σ(x))

= σ(x)

= σ(id(x))

= (σ ◦ id)(x).
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Thus, (id ◦ σ)(x) = σ(x) = (σ ◦ id)(x) for all x ∈ X, so id ◦ σ = σ = σ ◦ id.
Since id ∈ SX and id◦σ = σ = σ ◦ id, then the identity map id is an identity

for ◦.

We prove every permutation in SX has an inverse in SX .
Let σ ∈ SX .
Then σ is a permutation of X, so σ : X → X is a bijective function.
A function is invertible iff it is bijective.
Hence, σ is invertible, so the inverse function of σ exists and is unique.
Let τ : X → X defined by τ(y) = x iff σ(x) = y be the inverse function of

σ.

Let x ∈ X.
Then τ(x) = y iff σ(y) = x.
Observe that

(σ ◦ τ)(x) = σ(τ(x))

= σ(y)

= x

= id(x).

Thus, (σ ◦ τ)(x) = id(x) for all x ∈ X, so σ ◦ τ = id.

Let x ∈ X.
Then σ(x) = y iff τ(y) = x.
Observe that

(τ ◦ σ)(x) = τ(σ(x))

= τ(y)

= x

= id(x).

Thus, (τ ◦ σ)(x) = id(x) for all x ∈ X, so τ ◦ σ = id.
Hence, τ ◦ σ = id = σ ◦ τ , so σ is an inverse of τ .
Consequently, τ is invertible, so τ is bijective.
Therefore, τ is a permutation of X, so τ ∈ SX .
Therefore, for every permutation σ, there exists a permutation τ in SX such

that σ ◦ τ = τ ◦ σ = id, so every permutation in SX has an inverse in SX .

Since ◦ is a binary operation on SX and ◦ is associative and the identity map
id is an identity for ◦ and every permutation in SX has an inverse in SX , then
(SX , ◦) is a group.

Corollary 47. Let n ∈ Z+.
The symmetric group on n symbols is a group under function composition.
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Proof. Let X = {1, 2, ..., n}.
Let Sn be the set of all permutations on the set X.
Since n ∈ Z+, then n ≥ 1, so 1 ∈ X.
Hence, X is not empty.
Let ◦ be function composition on Sn.
Since the set X is not empty and Sn is the set of all permutations of X, then

by the previous theorem, (Sn, ◦) is a group under function composition.

Proposition 48. Let n ∈ Z+.
If n ≥ 3, then (Sn, ◦) is non-abelian.

Proof. Let X be a finite set of n symbols.
Since n ≥ 3, let a, b, c be distinct elements of X.
Let σ : X → X be the function defined by σ(a) = b and σ(b) = a and

σ(x) = x for every other x ∈ X.
Then σ is a one to one and onto function, so σ ∈ Sn.
Let τ : X → X be the function defined by τ(a) = b and τ(b) = c and

τ(c) = a and τ(x) = x for every other x ∈ X.
Then τ is a one to one and onto function, so τ ∈ Sn.
Since (σ ◦ τ)(a) = σ((τ(a)) = σ(b) = a and (τ ◦ σ)(a) = τ(σ(a)) = τ(b) = c

and a 6= c, then (σ ◦ τ)(a) 6= (τ ◦ σ)(a), so σ ◦ τ 6= τ ◦ σ,
Since there exist σ, τ ∈ Sn such that σ◦τ 6= τ ◦σ, then ◦ is not commutative,

so Sn is not abelian.

Proof. Let n be an integer greater than or equal to 3.
Let X = {1, 2, 3, ..., n} be a finite set of n symbols.
Let Sn be the symmetric group on n symbols of X.
Then there exist transpositions (1, 2) and (1, 3) in Sn.
Let σ = (1, 2) and τ = (1, 3).
Then σ, τ ∈ Sn and στ = (1 2)(1 3) = (1 3 2) 6= (1 2 3) = (1 3)(1 2) = τσ.
Therefore, there exist a distinct pair of elements in Sn that do not commute,

so Sn is not abelian.

Theorem 49. Cayley’s Theorem
Every group G is isomorphic to a subgroup of the symmetric group on G.

Solution. Let (G, ∗) and (SG, ◦) be groups.
We need to devise an bijective map from G to SG that satisfies the homo-

morphism property φ(gh) = φ(g) ◦ φ(h).
The key insight is to break down the problem and first devise a bijective

function from G to G.
We have to devise a suitable bijective function.
We can look at the Cayley multiplication table for a group to devise a bijec-

tion.
We can let λg(x) = gx for all x ∈ G (left multiply by g).
When we left multiply we have the left representation of G.
We could also let ρg(x) = xg for all x ∈ G (right multiply by g).
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When we right multiply we have the right representation of G.
Either choice is fine in the proof.

Proof. Let (G, ∗) be a group.
Let (SG, ◦) be the symmetric group on G.
Define for each g ∈ G the function λg : G→ G by λg(x) = gx for all x ∈ G.
Let g ∈ G.

We prove λg is a permutation of G.
We first prove λg is injective.
Let x, y ∈ G such that λg(x) = λg(y).
Then gx = gy.
By the cancellation law for groups, we have x = y.
Hence, λg(x) = λg(y) implies x = y, so λg is injective.

We prove λg is surjective.
Let y ∈ G.
Let g−1 be the inverse of g.
Let x = g−1y.
Since G is closed under its binary operation and g−1, y ∈ G, then x ∈ G.
Let e be the identity of G.
Observe that

λg(x) = λg(g
−1y)

= g(g−1y)

= (gg−1)y

= ey

= y.

Hence, there exists x ∈ G such that λg(x) = y, so λg is surjective.
Thus, λg is bijective, so λg is a permutation of G.
Let G′ = {λg : g ∈ G}.
Then G′ ⊂ SG.

We prove G′ < SG by the subgroup test.
Let id be the identity of SG.
Then id : G → G is the identity map on G defined by id(x) = x for all

x ∈ G.
Since e ∈ G, then λe(x) = ex = x = id(x) for all x ∈ G.
Hence, λe = id.
Since λe ∈ G′, then id ∈ G′.
Let λa, λb ∈ G′.
Then a, b ∈ G.
Let x ∈ G.
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Observe that

(λa ◦ λb)(x) = λa[λb(x)]

= λa(bx)

= a(bx)

= (ab)x

= λab(x).

Hence, λaλb = λab.
Since a, b ∈ G and G is closed under ∗, then ab ∈ G.
Thus, λab ∈ G′, so λaλb ∈ G′.
Therefore, G′ is closed under ◦.

Let λ−1g be the inverse of λg in SG.
Then λgλ

−1
g = id.

Since g−1 ∈ G, then λg−1 ∈ G′.
Since G′ ⊂ SG, then λg−1 ∈ SG.
Let x ∈ G. Then

λgλg−1(x) = λg(λg−1(x))

= λg(g
−1x)

= g(g−1x)

= (gg−1)x

= ex

= x

= id(x).

Hence, λgλg−1 = id.
Thus, λgλ

−1
g = λgλg−1 .

By the cancellation law for groups, we have λ−1g = λg−1 .
Thus, λ−1g ∈ G′, so G′ is closed under taking inverses.
Therefore, G′ < SG.

Let φ : G→ G′ be a function defined by φ(g) = λg for all g ∈ G.
To prove G ∼= G′, we prove φ is an isomorphism.
Let g, h ∈ G such that φ(g) = φ(h).
Then λg = λh.
Let x ∈ G.
Then λg(x) = λh(x), so gx = hx.
By the cancellation law for groups, we have g = h.
Thus, φ(g) = φ(h) implies g = h, so φ is injective.
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Let λg ∈ G′.
Then by definition of G′, g ∈ G.
Hence, there exists g ∈ G such that φ(g) = λg.
Therefore, φ is surjective.
Hence, φ is a bijective function.
Since λab = λaλb for all a, b ∈ G, then φ(ab) = φ(a)φ(b) for all a, b ∈ G.
Therefore, φ is a homomorphism.
Hence, φ is a bijective homomorphism, so φ : G→ G′ is an isomorphism.
Thus, G ∼= G′.

Corollary 50. Every finite group of order n is isomorphic to a subgroup of Sn.

Proof. TODO

Cycle notation for permutations

Proposition 51. inverse of a cycle
Let {a1, a2, ..., ak} be a subset of a nonempty set X.
Let σ be a k cycle in the symmetric group on X.
If σ = (a1 a2 ... ak), then σ−1 = (ak ak−1 ... a2 a1).

Proof. Suppose σ = (a1 a2 ... ak).
Let id be the identity permutation in the symmetric group on X.
Observe that

σ(ak ak−1 ... a2 a1) = (a1 a2 ... ak)(ak ak−1 ... a2 a1)

= (a1)(a2)...(an−1)(ak)

= id

= (a1)(a2)...(an−1)(ak)

= (ak ak−1 ... a2 a1)(a1 a2 ... ak)

= (ak ak−1 ... a2 a1)σ.

Hence, σ(ak ak−1 ... a2 a1) = id = (ak ak−1 ... a2 a1)σ, so (ak ak−1 ... a2 a1)
is the inverse of σ.

Therefore, (ak ak−1 ... a2 a1) = σ−1.

Proposition 52. order of a cycle
Let k ∈ Z+.
A cycle of length k has order k.

Proof. Let n ∈ Z with n ≥ 2.
Let X = {1, 2, ..., n}.
Let k ∈ Z+ such that 2 ≤ k ≤ n.
Let σ be a cycle of length k in the symmetric group (Sn, ◦).
Then σ = (a1 a2 ... ak).
Let S = {a1, a2, ..., ak} be a subset of X.
Then σ(ai) = ai (mod k)+1 for all ai ∈ S and σ(x) = x for all x ∈ X − S.
Let id ∈ Sn be the identity permutation.
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Let x ∈ X.
Then either x ∈ S or x 6∈ S.
We consider these cases separately.
Case 1: Suppose x ∈ S.
Let a1 be an arbitrary element of S.
Then σ(a1) = a2 and σ(a2) = a3 and σ(a3) = a4 and ... and σ(ak) = a1.
Since a1 6= a2, then σ 6= id.
Observe that σ2(a1) = σ(σ(a1)) = σ(a2) = a3.
Since a1 6= a3, then σ2 6= id.
Observe that σ3(a1) = σ2(σ(a1)) = σ2(a2) = σ(σ(a2)) = σ(a3) = a4.
Since a1 6= a4, then σ3 6= id.
We repeat this process.
Observe that σk−1(a1) = σk−2(σ(a1)) = σ(ak−1) = ak.
Since a1 6= ak, then σk−1 6= id.
Observe that σk(a1) = σk−1(σ(a1)) = σ(ak) = a1.
Thus, σk(a1) = a1.
Since a1 is arbitrary, then σk(x) = x for all x ∈ S.
Since σ 6= id and σ2 6= id and ... and σk−1 6= id, then σs 6= id for each s

with s ∈ {1, 2, ..., k − 1}.
Case 2: Suppose x 6∈ S.
Since x ∈ X and x 6∈ S, then x ∈ X − S.
Thus, σ(x) = x.
Since x is arbitrary, then σ(x) = x for all x ∈ X − S.
Thus, σ = id for all x ∈ X − S.

In any group with identity e, et = e for all t ∈ Z.
Since k ∈ Z, then this implies idk = id, so σk = id.
Hence, (σk)(x) = x for all x ∈ X − S.

Since σk(x) = x for all x ∈ S and (σk)(x) = x for all x ∈ X − S, then
(σk)(x) = x for all x ∈ X, so σk = id.

Since σs 6= id for each s with s ∈ {1, 2, ..., k − 1} and σk = id, then k is the
least positive integer such that σk = id, so the order of σ is k.

Theorem 53. Disjoint cycles commute.
Let α and β be disjoint cycles in the symmetric group on set X.
Then αβ = βα.

Proof. Let X be a nonempty set.
Let (SX , ◦) be the symmetric group on X.
Let α and β be disjoint cycles in (SX , ◦).
Since α is a cycle, then there exist distinct a1, a2, ..., ak ∈ X for some integer

k ≥ 2 such that α = (a1 a2 ... ak).
Since β is a cycle, then there exist distinct b1, b2, ..., bm ∈ X for some integer

m ≥ 2 such that β = (b1 b2 ... bm).
Let A = {a1, a2, ..., ak} be a subset of X.
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Let B = {b1, b2, ..., bm} be a subset of X.
Since α and β are disjoint cycles, then A and B are disjoint sets, so A∩B = ∅.
Since α is a cycle, then for every x ∈ X, α(x) ∈ A iff x ∈ A and α(x) = x iff

x 6∈ A.
Since β is a cycle, then for every x ∈ X, β(x) ∈ B iff x ∈ B and β(x) = x

iff x 6∈ B.

To prove αβ = βα, we must prove (αβ)(x) = (βα)(x) for all x ∈ X.
Let x ∈ X.
We must prove (αβ)(x) = (βα)(x).
Either x ∈ A ∪B or x 6∈ A ∪B.
Thus, either x ∈ A or x ∈ B or x is in neither A nor in B.
We consider these cases separately.
Case 1: Suppose x ∈ A.
Since x ∈ A iff α(x) ∈ A, then α(x) ∈ A.
Since α(x) ∈ A and A and B are disjoint, then α(x) 6∈ B.
Since β(α(x)) = α(x) iff α(x) 6∈ B, then β(α(x)) = α(x).
Since x ∈ A and A and B are disjoint, then x 6∈ B.
Since β(x) = x iff x 6∈ B, then β(x) = x.
Observe that

(αβ)(x) = α(β(x))

= α(x)

= β(α(x))

= (βα)(x).

Therefore, (αβ)(x) = (βα)(x).
Case 2: Suppose x ∈ B.
Since x ∈ B iff β(x) ∈ B, then β(x) ∈ B.
Since β(x) ∈ B and A and B are disjoint, then β(x) 6∈ A.
Since α(β(x)) = β(x) iff β(x) 6∈ A, then α(β(x)) = β(x).
Since x ∈ B and A and B are disjoint, then x 6∈ A.
Since α(x) = x iff x 6∈ A, then α(x) = x.
Observe that

(αβ)(x) = α(β(x))

= β(x)

= β(α(x))

= (βα)(x).

Therefore, (αβ)(x) = (βα)(x).
Case 3: Suppose x is in neither A nor in B.
Then x 6∈ A and x 6∈ B.
Since x 6∈ A and α(x) = x iff x 6∈ A, then α(x) = x.
Since x 6∈ B and β(x) = x iff x 6∈ B, then β(x) = x.
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Observe that

(αβ)(x) = α(β(x))

= α(x)

= x

= β(x)

= β(α(x))

= (βα)(x).

Therefore, (αβ)(x) = (βα)(x).

Hence, in all cases (αβ)(x) = (βα)(x), as desired.

Theorem 54. Cycle Decomposition Theorem
Every permutation of a nonempty finite set can be written as a finite product

of disjoint cycles.

Proof. Define predicate p(n) : every permutation of a set of size n is a finite
product of disjoint cycles.

We must prove p(n) is true for all n ∈ Z+.
We prove p(n) is true for all n ∈ Z+ by strong induction.
Basis:
Let X = {x} be a set of size 1.
The only permutation of X is the identity map id : X → X defined by

id(x) = x.
The identity map in cycle notation is the 1 cycle (1), so (1) is a single product

of a cycle.
Hence, the only permutation of X is a single product of a cycle.
Thus, every permutation of X is a single product of a cycle, so every per-

mutation of a set of size 1 is a single product of a cycle.
Therefore, p(1) is true.
Induction:
Let m ∈ Z+.
Suppose p(k) is true for every 1 ≤ k ≤ m.
Then p(1) and p(2) and ... and p(m) are true.
Thus, every permutation of a finite set of size between 1 and m is a finite

product of disjoint cycles.
To prove p(m+ 1) is true, we must prove every permutation of a set of size

m+ 1 is a finite product of disjoint cycles.
Let (Sm+1, ◦) be the symmetric group on a set X of size m+ 1.
Let X = {1, 2, ...,m,m+ 1}.
Then |X| = m+ 1.
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Let σ be an arbitrary element of Sm+1.
Then σ is an arbitrary permutation of X.
We must prove σ can be written as a finite product of disjoint cycles.
Let id be the identity permutation in Sm+1.
Every element of a finite group has finite order.
Since Sm+1 is a finite group and σ ∈ Sm+1, then σ has finite order.
Let s be the order of σ.
Then s is the least positive integer such that σs = id.
Let S = {1, σ(1), σ2(1), σ3(1), ..., σs−1(1)}.
Then S ⊂ X and |S| = s and (1 σ(1) σ2(1) ... σs−1(1)) is a cycle of length

s.
Since X is finite and |X| = m + 1 and S ⊂ X and |S| = s, then either

s = m+ 1 or s < m+ 1.
We consider these cases separately.
Case 1: Suppose s = m+ 1.
Then S = {1, σ(1), σ2(1), σ3(1), ..., σm(1)}.
Thus, σ is the cycle (1 σ(1) σ2(1) ... σm(1)) of length m+ 1.
Therefore, σ is a single product of a cycle.
Case 2: Suppose s < m+ 1.
Then 0 < m+ 1− s.
Since X = S ∪ (X − S) and S and X − S are disjoint sets, then

m+ 1 = |X|
= |S ∪ (X − S)|
= |S|+ |X − S|
= s+ |X − S|.

Thus, m+ 1 = s+ |X − S|, so |X − S| = m+ 1− s.
Since s is positive, then s > 0, so −s < 0.
Thus, m+ 1− s < m+ 1.
Therefore, 0 < m+ 1− s and m+ 1− s < m+ 1, so 0 < m+ 1− s < m+ 1.
Hence, 1 ≤ m+ 1− s ≤ m, so 1 ≤ |X − S| ≤ m.
Consequently, X − S is a set of size between 1 and m.
By the induction hypothesis, every permutation of X −S is a finite product

of disjoint cycles.

Let τ be an arbitrary permutation of the set X − S.
Then τ is a finite product of disjoint cycles.
Thus, there exists a positive integer t such that τ = τ1τ2 . . . τt and τi is a

disjoint cycle for each i ∈ {1, 2, ..., t}.
Since S and X − S are disjoint sets, then the cycles
(1 σ(1) σ2(1) ... σs−1(1))
and τi are disjoint for each i ∈ {1, 2, ..., t}.
Hence, (1 σ(1) σ2(1) ... σs−1(1)), τ1, τ2, ..., and τt are all disjoint cycles.
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Observe that

σ = (1 σ(1) σ2(1) ... σs−1(1))τ

= (1 σ(1) σ2(1) ... σs−1(1))τ1τ2 . . . τt.

Thus, σ is a finite product of disjoint cycles.

In all cases, σ is a finite product of disjoint cycles, so every permutation of a
set of size m+ 1 is a finite product of disjoint cycles.

Hence, p(m+ 1) is true, so p(1) and p(2) and ... and p(m) imply p(m+ 1).
Since p(1) is true and the statements p(1) and p(2) and ... and p(m) imply

p(m+ 1), then by the principle of strong induction, p(m) is true for all m ∈ Z+.
Therefore, every permutation of a set of size n is a finite product of disjoint

cycles for all n ∈ Z+.

Corollary 55. The order of a permutation is the least common multiple of the
orders of its disjoint cycles.

Proof. Let n ∈ Z+.
Let σ be a permutation in the symmetric group (Sn, ◦).
Let id ∈ Sn be the identity permutation.
Every permutation in Sn can be written as a finite product of disjoint cycles.
Thus, there exist a positive integer k and disjoint cycles α1, α2, ..., αk in Sn

such that σ = α1 ◦ α2 ◦ ... ◦ αk.
Every element of a finite group has finite order.
Since α1, α2, ..., αk, σ ∈ Sn and Sn is a finite group, then each of α1, α2, ..., αk,

and σ has a finite order.
Let m1 be the finite order of α1 and let m2 be the finite order of α2 and ...

let mk be the finite order of αk and let m be the finite order of σ.
Since σ has finite order m, then m is the least positive integer such that

σm = id.
Disjoint cycles commute, so αi ◦ αj = αj ◦ αi for each 1 ≤ i, j ≤ k.
Hence,

id = σm

= (α1 ◦ α2 ◦ ... ◦ αk)m

= αm1 ◦ αm2 ◦ ... ◦ αmk .

Thus, σm = id iff αmi = id for each i ∈ {1, 2, ..., k}.
If an element α has finite order m, then αN = id iff m|N .
Thus, αm1 = id iff m1|m and αm2 = id iff m2|m and ... and αmk = id iff mk|m.
Hence, αm1 = id and αm2 = id and ... and αmk = id iff m1|m and m2|m and

... and mk|m, so m must be a common multiple of m1,m2, ...,mk.
Since m is the least positive integer such that σm = id, then this implies m

must be the least common multiple of m1,m2, ...,mk.
Therefore, m = lcm(m1,m2, ...,mk).
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Proposition 56. Let τ be a k cycle.
If σ is a permutation, then στσ−1 is a k cycle.

Solution. To prove στσ−1 is a k cycle, let α = στσ−1.
We must prove there exists b1, b2, ..., bk ∈ X such that α(b1) = b2 and

α(b2) = b3 and ... and α(bk) = b1 and for all other x ∈ X, α(x) = x.
Since τ is a k cycle, then there exist a1, a2, ..., ak ∈ X such that τ =

(a1, a2, ..., ak).
Let b1 = σ(a1).

Proof. Let X be a nonempty set. Let τ be a k cycle. Then there exist distinct
a1, a2, ..., ak ∈ X such that τ = (a1, a2, ..., ak).

Let A = {a1, a2, ..., ak}. Then A ⊂ X.
Let σ be an arbitrary permutation in SX . Then σ : X → X is a bijective

function. Thus, for every x ∈ X, σ(x) ∈ X. Hence, σ(ai) ∈ X for each
i ∈ {1, 2, ..., k}. Let bi = σ(ai) for each i ∈ {1, 2, ..., k}. Since σ is injective,
then ai 6= aj implies σ(ai) 6= σ(aj) for all i, j ∈ {1, 2, ..., k}. Hence, for all
i, j ∈ {1, 2, ..., k}, if ai 6= aj , then bi 6= bj . Thus, each bi is distinct, so let
B = {b1, b2, ..., bk}.

Let x ∈ X. Either x ∈ B or x 6∈ B.
Case 1: Suppose x ∈ B.
Let i be an arbitrary positive integer such that x = bi.
Observe that

στσ−1(bi) = στ(σ−1(bi))

= στ(ai)

= σ(τ(ai))

= σ(ai (mod k)+1)

= bi (mod k)+1).

Since i is arbitrary, then στσ−1(bi) = bi (mod k)+1) for all positive integers i.
Thus, in particular, στσ−1(b1) = b2 and στσ−1(b2) = b3 and ... and

στσ−1(bk) = bk (mod k)+1 = b0+1 = b1.
Case 2: Suppose x 6∈ B.
Since σ is bijective, then σ is surjective. Hence, there exists y ∈ X such that

σ(y) = x. Thus, σ(y) 6∈ B. For every x ∈ X, σ(x) ∈ B iff x ∈ A. Thus, for
every x ∈ X, σ(x) 6∈ B iff x 6∈ A. Hence, σ(y) 6∈ B iff y 6∈ A. Therefore, y 6∈ A.
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Observe that

στσ−1(x) = στσ−1(σ(y))

= (στσ−1)(σ(y))

= [στσ−1σ](y)

= [(στ)(σ−1σ)](y)

= [(στ)(id)](y)

= (στ)(y)

= σ(τ(y))

= σ(y)

= x.

Therefore, if x 6∈ B, then στσ−1(x) = x.
Since there exist b1, b2, ..., bk ∈ X such that στσ−1(b1) = b2 and στσ−1(b2) =

b3 and ... and στσ−1(bk) = bk (mod k)+1 = b0+1 = b1 and στσ−1(x) = x for all
other x, then στσ−1 is a cycle of length k.

Parity of a permutation

Theorem 57. A permutation is a product of transpositions
Every permutation of a finite set containing at least two elements can be

written as a finite product of transpositions.

Proof. Let n be a fixed integer greater than or equal to 2.
Let X be a set of n elements.
Since n ≥ 2, then X is a nonempty finite set.
Let σ : X → X be an arbitrary permutation of X.
By the cycle decomposition theorem, every permutation of a nonempty finite

set can be written as a finite product of disjoint cycles.
Since σ is a permutation of X and X is a nonempty finite set, then σ can

be written as a finite product of disjoint cycles.
Hence, there exists a positive integer m such that α1, α2, ..., αm are disjoint

cycles and σ = α1α2...αm.
To prove σ can be written as a finite product of transpositions, we must prove

an arbitrary cycle of σ can be written as a finite product of transpositions.

Let τ be an arbitrary cycle of length k in σ.
Then k is a positive integer such that τ = (a1 a2 ... ak) and {a1, a2, ..., ak}

is a subset of X.
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Observe that

(a1 a2)(a2 a3)(a3 a4)...(ak−1 ak) = (a1 a2)(a2 a3)...(ak−3 ak−2)(ak−2 ak−1)(ak−1 ak)

= (a1 a2)(a2 a3)(a3 a4)...(ak−3 ak−2)(ak−2 ak−1 ak)

= (a1 a2)(a2 a3)(a3 a4)...(ak−3 ak−2 ak−1 ak)

= (a1 a2)(a2 a3)(a3 a4 ...ak−3 ak−2 ak−1 ak)

= (a1 a2)(a2 a3 a4 ... ak−3 ak−2 ak−1 ak)

= (a1 a2 a3 a4 ... ak−3 ak−2 ak−1 ak)

= τ.

Hence, τ = (a1 a2 ... ak) = (a1 a2)(a2 a3)...(ak−1 ak) is a product of k − 1
transpositions.

Therefore, τ is a finite product of transpositions.

Since τ is an arbitrary cycle of σ, then every cycle of σ is a finite product of
transpositions.

Thus, each αi for i ∈ {1, 2, ...,m} is a finite product of transpositions.
Since σ = α1α2...αm, then this implies σ is a finite product of transpositions.

Lemma 58. Reduction Lemma
If the identity permutation id can be written as a product of k transpositions,

then id can be written as a product of k − 2 transpositions.

Solution. The solution is a clever insight. We start with e = τ1τ2...τk, where
each τi is a transposition.

Let τ1 and τ2 be two transpositions.
We observe that the product of τ1 and τ2 can be categorized as one of 4

possibilities:
1. τ1 = τ2. So, if τ1 = (a, b), then τ2 = (a, b). And we know (a, b)(a, b) = e.
2. τ1 and τ2 are disjoint cycles. So, if τ1 = (a, b), let τ2 = (c, d). Since

disjoint cycles commute, then we have (a, b)(c, d) = (c, d)(a, b).
The other possibilities are when τ1 and τ2 share exactly one element in

common.
Thus, if we let τ2 = (a, b), then τ1 = (a, c) or τ1 = (c, b).
3. If τ1 = (a, c) and τ2 = (a, b), then (a, c)(a, b) = (a, b)(b, c).
4. If τ1 = (c, b) and τ2 = (a, b), then (c, b)(a, b) = (a, c)(b, c).
The key insight is that we may reduce a product of k transpositions for e into

a product of k−2 transpositions by moving a given element a of a transposition
to the left, preserving e. We see this after computing many different example
products for e.

We keep moving a to the left and either obtain scenario 1 in which we
have two identical transpositions which cancel each other, resulting in k − 2
transpositions or we end up with k transpositions in which a is the only element
in the left most transposition, say τ1.

70



Proof. Let X be a finite set of at least two elements. Let id be the identity
permutation of X. Any permutation of a finite set containing at least two
elements can be written as a finite product of transpositions. Therefore, id can
be written as a finite product of transpositions. Hence, there exists a positive
integer k such that τ1, τ2, ..., τk are transpositions and id = τ1τ2...τk.

We must prove id can be written as a product of k − 2 transpositions.
Let a, b, c, d be distinct elements of X. Let τk = (a, b). Since (a, b) = (b, a),

then we may arbitrarily choose either a or b. Without loss of generality, choose
a. The product of two transpositions either has no elements in common, or has
exactly one element in common, or has exactly two elements in common.

Hence, there are 4 possible scenarios for the product τk−1τk.
1. identical cycles (two elements in common): (a, b)(a, b) = id.
2. exactly one element in common c: (a, c)(a, b) = (a, b)(b, c).
3. exactly one element in common c: (c, b)(a, b) = (a, c)(b, c).
4. disjoint cycles (no elements in common): (c, d)(a, b) = (a, b)(c, d).
If case 1 occurs, then we may delete τk−1τk in the original product id =

τ1τ2...τk. We then obtain id = τ1τ2...τk−2, so id is a product of k − 2 transpo-
sitions, as desired.

If one of the other 3 cases occurs, then we replace τk−1τk with what appears
on the right to obtain a new product of k transpositions which equals id and
for which the right most occurrence of a is moved one transposition to the left.

Repeat this process. At each stage, either we cancel the 2 transpositions
(case 1) so we’re done, or we form a new product of k transpositions in which
a has moved to the left by another transposition.

The process must terminate since there are a finite number of transpositions.
Suppose for the sake of contradiction that the process terminates and id is

not the product of k−2 transpositions. Then id is the product of k transpositions
in which a is in the left most transposition τ1. Thus, either τ1 = (a, b) or
τ1 = (a, c). Hence, τ1(a) 6= a, Therefore, this product of k transpositions maps
a to some element of X other than a. Thus, this product of k transpositions
is not the identity map, which contradicts the statement that id equals this
product.

Therefore, id must be the product of k − 2 transpositions.

Lemma 59. Even Identity Lemma
If the identity permutation is a product of k transpositions, then k is even.

Proof. Let X be a finite set of at least two elements. Let id be the identity
permutation of X. Any permutation of a finite set containing at least two
elements can be written as a finite product of transpositions. Therefore, id can
be written as a finite product of transpositions. Hence, there exists a positive
integer k such that τ1, τ2, ..., τk are transpositions and id = τ1τ2...τk.

To prove k is even, suppose for the sake of contradiction that k is not even.
Then k is odd.

By the reduction lemma, if id can be written as a product of k transpositions,
then id can be written as a product of k − 2 transpositions.
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Since id is a product of k transpositions, then it follows that id can be written
as a product of k − 2 transpositions.

Repeat this process. At each stage id is a product of 2 fewer transpositions.
Since the difference between an odd number and 2 is odd, then the number of
transpositions remains odd. Hence, id remains a product of an odd number of
transpositions at each stage.

Since k is finite, then this process must terminate.
Suppose the process terminates. Since k is a positive integer and id must

be the product of an odd number of transpositions, then k = 1. Hence, id is a
product of exactly one transposition. Thus, there exists a transposition equal
to id.

Let τ = (i, j) be a transposition of distinct elements i and j in X such that
id = τ . Then i 6= j and τ(i) = j. Hence, τ(i) 6= i. Since τ = id, then τ(x) = x
for all x. Hence, τ(i) = i. Thus we have τ(i) = i and τ(i) 6= i, a contradiction.
Therefore, k cannot be odd, so k must be even.

Theorem 60. Parity Theorem
If a permutation is a product of k and m transpositions, then either k and

m are both even or k and m are both odd.

Solution. There are various proofs and approaches one can take. We take the
approach to first prove a lemma: establish that identity permutation in Sn can
be expressed as an even number of transpositions (not odd) because this will
make the proof easier.

We can right multiply by the inverse of each σ in reverse order.

Proof. Let n ∈ Z+ and n ≥ 2. Let α be a permutation in the symmetric group
(Sn, ◦). Any permutation of a finite set containing at least two elements can
be written as a finite product of transpositions. Since Sn is a finite set, then α
can be written as a finite product of transpositions. Let k,m ∈ Z+. Suppose α
is a finite product of k and m transpositions. Then there exist transpositions
τ1, τ2, ..., τk and σ1, σ2, ..., σm such that α = τ1τ2...τk and α = σ1σ2...σm .

Let id be the identity of Sn. Then id is the identity permutation and id =
α ◦ α−1. Since the inverse of a sequence of transpositions is the composition of
their inverses in reverse order, and since each transposition is its own inverse,
then

id = αα−1

= (τ1τ2...τk) ◦ (σ1σ2...σm)−1

= (τ1τ2...τk) ◦ (σ−1m σ−1m−1...σ
−1
2 σ−11 )

= (τ1τ2...τk) ◦ (σmσm−1...σ1).

Hence, the identity permutation is a product of k + m transpositions. By the
even identity lemma, if id is a product of k + m transpositions, then k + m is
even. Thus, k + m is even. The sum k + m is even iff k and m are both even
or both odd. Therefore, k and m are either both even or both odd, so k and m
have the same parity.

72



Theorem 61. A cycle of even length is odd and a cycle of odd length is even.

Proof. Let n ∈ Z, n ≥ 2. Let X = {1, 2, ..., n}. Let k be a positive integer such
that 2 ≤ k ≤ n. Let σ be a k cycle. Then there exist a1, a2, ..., ak ∈ {1, 2, ..., k}
such that σ = (a1, a2, ..., ak) and σ(x) = x for all x ∈ X − {1, 2, ..., k} .

Any permutation of a finite set containing at least two elements can be
written as a finite product of transpositions. Thus, σ is a finite product of
transpositions. Observe that

σ = (a1, a2, a3, ..., ak)

= (a1, ak)(a1, ak−1) · · · (a1, a2).

Thus, σ is a product of k − 1 transpositions.
Either k is even or k is odd.
We consider these cases separately.
Case 1: Suppose k is even.
Then k− 1 is odd. Thus, σ is a product of an odd number of transpositions.

By the parity theorem, a permutation is either even or odd, but not both.
Therefore, σ must be odd.

Case 2: Suppose k is odd.
Then k−1 is even. Thus, σ is a product of an even number of transpositions.

By the parity theorem, a permutation is either even or odd, but not both.
Therefore, σ must be even.

Theorem 62. The parity of a permutation is the same as the parity of its
inverse.

Solution. This statement means: Let α be a permutation. Let α−1 be the
inverse of α. Then if α is even, then α−1 is even and if α is odd, then α−1 is
odd.

Proof. Let n be an integer greater than or equal to 2. Let (Sn, ◦) be the sym-
metric group of n symbols. Let α be a permutation of Sn. Since Sn is a group,
then the inverse of α exists. Let α−1 be the inverse of α.

Any permutation in Sn can be written as a finite product of transpositions.
Hence, α can be written as a finite product of transpositions. Thus, there exists a
positive integer k such that α1, α2, ..., αk are transpositions and α = α1α2 · · ·αk.
Observe that

α−1 = (α1α2 · · ·αk)−1

= α−1k α−1k−1 · · ·α
−1
1

= αkαk−1 · · ·α1.

Hence, α−1 is a product of k transpositions. Since α is a product of k transpo-
sitions, then α and α−1 are each a product of k transpositions.

Either k is even or k is odd.
We consider these cases separately.
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Case 1: Suppose k is even.
Then α and α−1 are each a product of an even number of transpositions.

By the parity theorem, a permutation is either even or odd, but not both.
Therefore, α and α−1 are each even permutations. Hence, the parity of α is the
same as the parity of α−1.

Case 2: Suppose k is odd.
Then α and α−1 are each a product of an odd number of transpositions.

By the parity theorem, a permutation is either even or odd, but not both.
Therefore, α and α−1 are each odd permutations. Hence, the parity of α is the
same as the parity of α−1.

Therefore, in all cases, α and α−1 have the same parity.

Theorem 63. The composition of two permutations of the same parity is even.

Proof. Let n ∈ Z+, n ≥ 2. Let σ, τ ∈ Sn such that σ and τ have the same parity.
We must prove στ is an even permutation.

For n ≥ 2, any permutation in (Sn, ◦) can be written as a finite product of
transpositions. Thus, σ and τ each can be written as a finite product of trans-
positions. Hence, there exist positive integers k and m such that σ = σ1σ2 · · ·σk
and for each i ∈ {1, 2, ..., k}, σi is a transposition and τ = τ1τ2 · · · τm and for each
j ∈ {1, 2, ...,m}, τj is a transposition. Thus, στ = (σ1σ2 · · ·σk)(τ1τ2 · · · τm).
Hence, στ is a product of k +m transpositions.

Since σ and τ have the same parity, then either k and m are both even or
both odd.

We consider these cases separately.
Case 1: Suppose k and m are both even.
The sum of any two even integers is even. Hence, k +m is even.
Case 2: Suppose k and m are both odd.
The sum of any two odd integers is even. Hence, k +m is even.
Thus, in all cases k +m is even. By the parity theorem, the parity of στ is

either even or odd, but not both. Therefore, στ must be an even permutation.

Theorem 64. The composition of two permutations of opposite parity is odd.

Proof. Let n ∈ Z+, n ≥ 2. Let σ, τ ∈ Sn such that σ and τ have opposite parity.
We must prove στ is an odd permutation.

For n ≥ 2, any permutation in (Sn, ◦) can be written as a finite product
of transpositions. Thus, σ and τ each can be written as a finite product of
transpositions. Hence, there exist positive integers k and m such that σ =
σ1σ2 · · ·σk and for each i ∈ {1, 2, ..., k}, σi is a transposition and τ = τ1τ2 · · · τm
and for each j ∈ {1, 2, ...,m}, τj is a transposition.

Thus, στ = (σ1σ2 · · ·σk)(τ1τ2 · · · τm). Hence, στ is a product of k + m
transpositions.

The sum of two integers of opposite parity is odd. Hence, k + m is odd.
By the parity theorem, the parity of στ is either even or odd, but not both.
Therefore, στ must be an odd permutation.
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Proposition 65. The function Sn → {−1, 1} that assigns to each permutation
of Sn its signature is a group homomorphism.

Proof. Let Sn be the symmetric group on n symbols.
Let f : Sn → {−1, 1} be defined by f(σ) = sgn(σ) for each σ ∈ Sn.
Let σ ∈ Sn. Then f(σ) = sgn(σ) and sgn(σ) ∈ {−1, 1}. Since any permu-

tation is either even or odd, but not both, then sgn(σ) is either 1 or −1, but
not both. Hence, sgn(σ) is uniquely determined, so f(σ) is unique. Thus, f(σ)
is unique for every σ ∈ Sn. Therefore, f is a function.

Observe that {−1, 1} is a group under multiplication of integers.
Let α, β ∈ Sn. Let k = sgn(α) and m = sgn(β).
Since α, β are either even or odd we have 4 cases to consider.
Case 1: Suppose α, β are both even.
Then sgn(α) = 1 and sgn(β) = 1. The composition of two permutations of

the same parity is even. Hence, αβ is even, so sgn(αβ) = 1.
Observe that

f(αβ) = sgn(αβ)

= 1

= (1)(1)

= sgn(α)sgn(β)

= f(α)f(β).

Case 2: Suppose α, β are both odd.
Then sgn(α) = −1 and sgn(β) = −1. The composition of two permutations

of the same parity is even. Hence, αβ is even, so sgn(αβ) = 1.
Observe that

f(αβ) = sgn(αβ)

= 1

= (−1)(−1)

= sgn(α)sgn(β)

= f(α)f(β).

Case 3: Suppose α is even and β is odd.
Then sgn(α) = 1 and sgn(β) = −1. The composition of two permutations

of opposite parity is odd. Hence, αβ is odd, so sgn(αβ) = −1.
Observe that

f(αβ) = sgn(αβ)

= −1

= (1)(−1)

= sgn(α)sgn(β)

= f(α)f(β).
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Case 4: Suppose α is odd and β is even.
Then sgn(α) = −1 and sgn(β) = 1. The composition of two permutations

of opposite parity is odd. Hence, αβ is odd, so sgn(αβ) = −1.
Observe that

f(αβ) = sgn(αβ)

= −1

= (−1)(1)

= sgn(α)sgn(β)

= f(α)f(β).

Therefore, in all cases, f(αβ) = f(α)f(β). Hence, f is a group homomor-
phism.

Theorem 66. Let (Sn, ◦) be the symmetric group on n symbols.
Let An = {σ ∈ Sn : σ is an even permutation }.
Then An < Sn.

Solution. To prove An is a subgroup of Sn, we use the finite subgroup test:
Thus, we prove:
1. An is closed under ◦ of Sn: (∀α, β ∈ An)(αβ ∈ An).
2. An 6= ∅. We prove this by proving e ∈ An, where e ∈ Sn is identity map

on a set of n symbols.

Proof. Observe that An ⊂ Sn. Since |Sn| = n!, then Sn is finite. Every subset
of a finite set is finite. Hence, An is finite.

Let id be the identity permutation in Sn. Since id is an even permutation,
then id ∈ An. Hence, An is not empty.

Thus, An is a nonempty finite subset of Sn.
To prove An < Sn, we prove An is closed under ◦ of Sn.
Let α, β ∈ An. Then α, β ∈ Sn and α and β are even. Thus, α and β have

the same parity. Let αβ be the composition of α and β. By closure of the
symmetric group Sn, we have αβ ∈ Sn. The composition of two permutations
of the same parity is even. Hence, αβ is even. Since αβ ∈ Sn and αβ is even,
then αβ ∈ An. Therefore, An is closed under ◦ of Sn.

Thus, by the finite subgroup test, An < Sn.

Theorem 67. For n ≥ 2, the number of even permutations in Sn equals the
number of odd permutations.

Moreover, the order of An is n!
2 .

Solution. Let σ ∈ Sn. Then σ is either an even permutation or an odd
permutation, but not both, by the parity theorem. Hence, the set of even
permutations is disjoint from the set of odd permutations, and the collection
of even and odd permutations forms a partition of Sn. To prove the number
of even permutations equals the number of odd permutations, we must prove
|An| = |An|. Hence, we must devise a bijection between An and An.
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How do we devise a bijective function? After working thru examples, such
as S1, S2, S3, S4 we see that there does not exist an obvious pattern between a
given even permutation and an odd permutation.

However, the key insight is to use the left or right representation of An just
as was done in the proof of Cayley’s theorem.

Thus, let φ(σ) = τσ be a function from An to An for a fixed τ ∈ Sn. We
must prove φ is one to one and onto.

Also, we note that if n = 1, then S1 = {id}. Since id is even, then there is
exactly one even permutation in S1. However, there are no odd permutations
in S1. That’s why we restrict n to n ≥ 2.

Proof. Let n be an integer greater than or equal to 2.
Let X = {1, 2, ..., n}.
Let (Sn, ◦) be the symmetric group on n symbols.
Then Sn = {σ : σ is a permutation of X }.
Let id be the identity element of Sn. Then id : X → X is the identity

permutation and id is even.
Let A be the set of all even permutations of Sn. Then A = {σ ∈ Sn :

σ is even.}.
Let B be the set of all odd permutations of Sn. Then B = {σ ∈ Sn :

σ is odd.}.
Thus, A ⊂ Sn and B ⊂ Sn and A ∪B ⊂ Sn.
Let P = {A,B}.
We prove P is a partition of Sn.
Since id ∈ Sn and id is even, then id ∈ A. Hence, A 6= ∅.
Since n ≥ 2, then a transposition exists in Sn. Let τ be a transposition in

Sn. Since τ ∈ Sn and τ is odd, then τ ∈ B. Hence, B 6= ∅.
We prove A ∪B = Sn.
Let σ ∈ Sn. By the parity theorem, either σ is even or odd, but not both

even and odd. Hence, either σ ∈ A or σ ∈ B but σ 6∈ A ∩ B. Thus, σ ∈ A ∪ B
and σ 6∈ A ∩B.

Therefore σ ∈ Sn implies σ ∈ A ∪B, so Sn ⊂ A ∪B.
Since A ∪B ⊂ Sn and Sn ⊂ A ∪B, then A ∪B = Sn.
Since σ is arbitrary, then σ 6∈ A ∩ B for all σ ∈ Sn. Hence, there does not

exist σ ∈ Sn such that σ ∈ A ∩B. Therefore, A ∩B = ∅.
Thus, P is a partition of Sn.
To prove |A| = |B|, we must prove there exists a bijective function f : A→

B.
Let λτ : A→ B be defined by λτ (σ) = τσ for all σ ∈ A.
Let σ ∈ A. Then σ ∈ Sn and σ is even.
By closure of Sn under ◦, we have τσ ∈ Sn. Since σ is even and τ is odd,

then σ and τ have opposite parity. The composition of permutations of opposite
parity is odd. Hence, τσ is odd. Since τσ ∈ Sn and τσ is odd, then τσ ∈ B.

Since σ, τ ∈ Sn and ◦ is a binary operation on Sn, then the product τσ is
unique.

Therefore, τσ ∈ B and is unique, so λτ (σ) ∈ B is unique.
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Thus, λ is a function.
We prove λ is injective. Let σ1, σ2 ∈ Sn such that λτ (σ1) = λτ (σ2). Then

τσ1 = τσ2. Since τ ∈ B and B ⊂ Sn, then τ ∈ Sn. Since τ, σ1, σ2 ∈ Sn and
Sn is a group, we apply the cancellation law to obtain σ1 = σ2. Therefore,
λτ (σ1) = λτ (σ2) implies σ1 = σ2, so λ is injective.

We prove λ is surjective. Let β be an arbitrary element of B. We must find
some α ∈ A such that φ(α) = β.

Let α = τβ.
Since τ, β ∈ Sn and Sn is closed under ◦, then τβ ∈ Sn.
Since τ and β are odd permutations, then τ and β have the same parity.

The composition of two permutations of the same parity is even. Therefore, τβ
is even.

Since τβ ∈ Sn and τβ is even, then τβ ∈ A.
Hence, α ∈ A. Observe that

λτ (α) = λτ (τβ)

= τ(τβ)

= (ττ)β

= idβ

= β.

Therefore, λ is surjective.
Since λ is injective and surjective, then λτ : A → B is bijective. Thus,

λτ : A→ B is a bijective function, so |A| = |B|.
Observe that

n! = |Sn|
= |A ∪B|
= |A|+ |B| − |A ∩B|
= |A|+ |A| − |∅|
= 2 ∗ |A| − 0

= 2|A|.

Therefore, |A| = n!
2 . Since An = A, then |An| = |A| = n!

2 , so |An| = n!
2 .

Symmetry groups

Theorem 68. The set of all geometric transformations of n dimensional space
is a group under function composition.

Proof. Let n be a positive integer. Let X = Rn be an n dimensional vector
space. Since (0, 0, ..., 0) ∈ Rn, then Rn 6= ∅. Let SX be the set of all geometric
transformations of Rn. Then SX is the set of all bijective maps from Rn to Rn.
Hence, SX is the set of all permutations of Rn. Let ◦ be function composition
on SX . Then (SX , ◦) is the symmetric group on Rn.
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Theorem 69. The set of all bijective isometries of 2 dimensional space is a
subgroup of Sym(R2).

Proof. Let R2 be 2 dimensional space. Let Sym(R2) be the symmetric group
on R2 under function composition ◦. Then Sym(R2) is the group of all permu-
tations of R2. Hence, Sym(R2) is the set of all bijective maps from R2 onto
R2.

Let S be the set of all bijective isometries of R2.
Then S = {α|α : R2 → R2is a bijective isometry}.
We must prove (S, ◦) is a subgroup of Sym(R2).
Let α ∈ S. Then α : R2 → R2 is a bijective isometry. Hence, α is a bijective

function, so α ∈ Sym(R2). Thus, α ∈ S implies α ∈ Sym(R2), so S ⊂ Sym(R2).
Let id be the identity of Sym(R2). Then id : R2 → R2 is the identity map

and id(P ) = P for every point P ∈ R2. Since the identity map is bijective, then
id is bijective.

We prove id is an isometry. Let P,Q ∈ R2. Let d(P,Q) be the distance
between points P and Q in R2. Then d(id(P ), id(Q)) = d(P,Q). Hence, id is
an isometry. Since id is a bijective isometry, then id ∈ S.

Let α, β ∈ S. Then α : R2 → R2 and β : R2 → R2 are bijective isometries.
We prove βα is an isometry.
Let P,Q ∈ R2. Since α is an isometry, then the distance between the

images of P and Q under α equals the distance between P and Q. Hence,
d(α(P ), α(Q)) = d(P,Q).

Since β is an isometry, then the distance between the images of α(P ) and
α(Q) under β equals the distance between α(P ) and α(Q). Hence, d(β(α(P )), β(α(Q))) =
d(α(P ), α(Q)).

Therefore, by transitivity of equality, we have
d(β(α(P )), β(α(Q))) = d(P,Q).
Thus, d((βα)(P ), (βα)(Q)) = d(P,Q). Hence, the distance between the

images of P and Q under βα equals the distance between P and Q. Therefore,
βα is an isometry.

The composition of bijections is a bijection. Hence, βα is a bijection, so βα
is bijective. Since βα is a bijective isometry, then βα ∈ S.

Therefore, S is closed under function composition.
Let α ∈ S. Then α : R2 → R2 is a bijective isometry. Let α−1 : R2 → R2 be

the inverse of α in Sym(R2). Then αα−1 = α−1α = id, so (α−1)−1 = α. Thus,
α−1 is invertible. A map is invertible iff it is bijective. Hence, α−1 is bijective.

To prove α−1 ∈ S, we must prove α−1 is an isometry. To prove α−1 is an
isometry, let P,Q ∈ R2 be arbitrary.

We must prove d(α−1(P ), α−1(Q)) = d(P,Q).
Since α is bijective, then α is surjective. Hence, there exist points A,B ∈ R2

such that α(A) = P and α(B) = Q.
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Observe that

d(α−1(P ), α−1(Q) = d(A,B)

= d(α(A), α(B))

= d(P,Q).

Hence, α−1 is an isometry. Since α−1 is a bijective isometry, then α−1 ∈ S.
Thus, S is closed under taking inverses.

Therefore, S is a subgroup of Sym(R2).

Theorem 70. The set of all symmetries of a regular n-gon in R2 under function
composition is a subgroup of the isometry group of R2.

Proof. Let (Iso(R2), ◦) be the isometry group of R2.
Then Iso = {σ|σ : R2 → R2 is a bijective isometry}.
Let X be a regular n− gon in R2.
Then X ⊂ R2.
Let G be the set of all symmetries of a regular n-gon.
Then G = {σ : σ( is a symmetry of X } = {σ : R2 → R2 ∈ Iso(R2)|σ(X) =

X}.
Observe that G ⊂ Iso(R2).
We apply the subgroup test.
Let id be the identity element of Iso(R2). Then id : R2 → R2 is the identity

map and id ∈ Iso(R2) and id(P ) = P for all points P ∈ R2.
Let p ∈ X. Since X ⊂ R2, then p ∈ R2. Hence, id(p) = p. Since p is

arbitrary, then id(p) = p for all points p ∈ X. Hence, id(X) = X.
Since id ∈ Iso(R2) and id(X) = X, then id ∈ G. Therefore the identity of

Iso(R2) is in G.
Let α, β ∈ G. Then α and β are symmetries of X. Hence, α : R2 → R2 is a

bijective isometry such that α(X) = X and β : R2 → R2 is a bijective isometry
such that β(X) = X. Since α, β ∈ G and G ⊂ Iso(R2), then α, β ∈ Iso(R2).
By closure of Iso(R2) under ◦, αβ ∈ Iso(R2).

Observe that

(αβ)(X) = α(β(X))

= α(X)

= X.

Hence, (αβ)(X) = X.
Since αβ ∈ Iso(R2) and (αβ)(X) = X, then αβ ∈ G. Therefore, G is closed

under ◦.
Let α ∈ G. Then α : R2 → R2 is a bijective isometry such that α(X) = X.
Let α−1 be the inverse of α ∈ Iso(R2). Then α−1 : R2 → R2 is a bijective

isometry. Since α(X) = X and α−1 is the inverse of α, then α−1(X) = X.
Since α−1 ∈ Iso(R2) and α−1(X) = X, then α−1 ∈ G.

Therefore, (G, ◦) is a subgroup of (Iso(R2), ◦).
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Theorem 71. (Dn, ◦) is isomorphic to a subgroup of (Sn, ◦).

Solution. We first construct a set H that is a subset of Sn and show that
H < Sn. Then we show that Dn

∼= H.

Proof. Let f : Dn → Sn be defined by f(α) = β for all α ∈ Dn, where β is the
unique permutation of the n vertices of the regular n−gon associated with the
symmetry α. Clearly, f is a function. Since each distinct symmetry corresponds
to a distinct permutation, then f is injective.

Let H be the set of all permutations of the n vertices associated with each
symmetry of Dn. Then H = {f(α) ∈ Sn : α ∈ Dn}. Hence, H ⊂ Sn.

We prove H < Sn. Let id be the identity symmetry in Dn. Then f(id) = (1),
the identity permutation in Sn, so (1) ∈ H. Hence, H is not empty.

Every subset of a finite set is finite. Thus, H is finite since Sn is finite.
Hence, H is a nonempty finite subset of Sn.

Let σ, τ ∈ H. Then σ = f(α) for some α ∈ Dn and τ = f(β) for some
β ∈ Dn. Multiplication of σ and τ in H corresponds to multiplication of α and
β in Dn. Thus, στ = f(αβ). Since Dn is closed under function composition,
then αβ ∈ Dn. Hence, there exists αβ ∈ Dn such that f(αβ) = στ , so στ ∈ H.
Therefore, H is closed under function composition.

Thus, by the finite subgroup test, H < Sn.
Let φ be the restriction of f to H. Then φ : Dn → H is a function defined

by φ(α) = f(α) for all α ∈ Dn.
Let β ∈ H. Then there exists α ∈ Dn such that f(α) = β. Observe that

φ(α) = f(α) = β. Hence, there exists α ∈ Dn such that φ(α) = β, so φ is
surjective.

Let α, β ∈ Dn such that φ(α) = φ(β). Then f(α) = f(β). Since f is
injective, then α = β. Hence, φ(α) = φ(β) implies α = β, so φ is injective.
Thus, φ is bijective.

Let α, β ∈ Dn such that φ(α) = σ and φ(β) = τ . Then σ, τ ∈ H since φ is
a function. Multiplication of σ and τ in H corresponds to multiplication of α
and β in Dn. Thus, στ = f(αβ).

Observe that

φ(αβ) = f(αβ)

= στ

= φ(α)φ(β).

Therefore, φ is a homomorphism, so φ is a bijective homomorphism. Thus,
φ : Dn → H is an isomorphism, so Dn

∼= H.

Cosets

Theorem 72. Let H be a subgroup of a group G. Define relation ∼L on G for
every a, b ∈ G by a ∼L b iff a−1b ∈ H and a ∼R b iff ab−1 ∈ H. Then ∼L and
∼R are equivalence relations on G.
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Solution. To prove ∼L and ∼R are equivalence relations, we must prove each
relation is reflexive, symmetric, and transitive.

Proof. Let a, b, and c be arbitrary elements of G.
We prove ∼L is reflexive. Observe that a−1a = e ∈ G. Since H is a subgroup

of G, then e ∈ H. Hence, a−1a ∈ H, so a ∼L a. Therefore, ∼L is reflexive.
We prove ∼L is symmetric. Suppose a ∼L b. Then a−1b ∈ H. Since H is

a group, then the inverse of a−1b is in H. Hence, (a−1b)−1 = b−1(a−1)−1 =
b−1a ∈ H. Thus, b ∼L a, so ∼L is symmetric.

We prove ∼L is transitive. Suppose a ∼L b and b ∼L c. Then a−1b ∈ H
and b−1c ∈ H. Since H is closed under ·, then (a−1b)(b−1c) ∈ H. Hence,
(a−1b)(b−1c) = a−1(bb−1)c = a−1ec = a−1c ∈ H. Therefore, a ∼L c, so ∼L is
transitive.

Since ∼L is reflexive, symmetric, and transitive on G, then ∼L is an equiv-
alence relation on G.

We prove ∼R is reflexive. Observe that aa−1 = e ∈ G. Since H is a subgroup
of G, then e ∈ H. Hence, aa−1 ∈ H, so a ∼R a. Therefore, ∼R is reflexive.

We prove ∼R is symmetric. Suppose a ∼R b. Then ab−1 ∈ H. Since H is
a group, then the inverse of ab−1 is in H. Hence, (ab−1)−1 = (b−1)−1a−1 =
ba−1 ∈ H. Thus, b ∼R a, so ∼R is symmetric.

We prove ∼R is transitive. Suppose a ∼R b and b ∼R c. Then ab−1 ∈ H
and bc−1 ∈ H. Since H is closed under ·, then (ab−1)(bc−1) ∈ H. Hence,
(ab−1)(bc−1) = a(b−1b)c−1 = aec−1 = ac−1 ∈ H. Therefore, a ∼R c, so ∼R is
transitive.

Since ∼R is reflexive, symmetric, and transitive on G, then ∼R is an equiv-
alence relation on G.

Theorem 73. Let H be a subgroup of G. Let a, b ∈ G. Then the following are
equivalent:

1. a−1b ∈ H.
2. (∃h ∈ H)(a = bh).
3. a ∈ bH.
4. aH = bH.

Proof. We prove a−1b ∈ H ⇒ (∃h ∈ H)(a = bh).
Suppose a−1b ∈ H. Let h = (a−1b)−1. Since H is a group, then every

element of H has an inverse in H. Since a−1b ∈ H, then its inverse (a−1b)−1 is
in H. Hence, h ∈ H. Observe that

bh = b((a−1b)−1)

= b(b−1(a−1)−1)

= b(b−1a)

= (bb−1)a

= ea

= a.
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Therefore, there exists h ∈ H such that a = bh, as desired.
We prove (∃h ∈ H)(a = bh)⇒ a ∈ bH.
Suppose there exists h ∈ H such that a = bh. Then a ∈ bH, by definition of

bH.
We prove a ∈ bH ⇒ (aH = bH).
Suppose a ∈ bH. To prove aH = bH, we prove aH ⊂ bH and bH ⊂ aH.
Let x ∈ aH. Then there exists h1 ∈ H such that x = ah1, by definition of

aH. Since a ∈ bH, then there exists h2 ∈ H such that a = bh2, by definition
of bH. Let h = h2h1. Since H is a group, then H is closed under its binary
operation. Since h1, h2 ∈ H, then h2h1 ∈ H, so h ∈ H.

Observe that

bh = b(h2h1)

= (bh2)h1

= ah1

= x.

Hence, there exists h ∈ H such that x = bh, so by definition of bH, x ∈ bH.
Therefore, x ∈ aH implies x ∈ bH, so aH ⊂ bH.

Let y ∈ bH. Then there exists h1 ∈ H such that y = bh1, by definition of
bH. Since a ∈ bH, then by definition of bH, there exists h2 ∈ H such that
a = bh2. Let h = h−12 h1. Since H is closed under its binary operation and
h1, h

−1
2 ∈ H, then h ∈ H. Observe that

ah = (bh2)(h−12 h1)

= b(h2h
−1
2 )h1

= beh1

= bh1

= y.

Hence, there exists h ∈ H such that y = ah, so by definition of aH, y ∈ aH.
Therefore, y ∈ bH implies y ∈ aH, so bH ⊂ aH.

Since aH ⊂ bH and bH ⊂ aH, then aH = bH, as desired.
We prove (aH = bH)⇒ a−1b ∈ H.
Suppose aH = bH. Since a ∈ aH and aH = bH, then a ∈ bH. Thus, there

exists h ∈ H such that a = bh, by definition of bH. Observe that

a−1b = (bh)−1b

= (h−1b−1)b

= h−1(b−1b)

= h−1e

= h−1.

Since H is a group, then each element of H has an inverse in H. Therefore,
since h ∈ H, then h−1 ∈ H. Hence, a−1b ∈ H, as desired.
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Theorem 74. Let H be a subgroup of G. Let a, b ∈ G. Then the following are
equivalent:

1. ab−1 ∈ H.
2. (∃h ∈ H)(a = hb).
3. a ∈ Hb.
4. Ha = Hb.

Proof. We prove ab−1 ∈ H ⇒ (∃h ∈ H)(a = hb).
Suppose ab−1 ∈ H. Let h = ab−1. Then h ∈ H.
Observe that

hb = (ab−1)b

= a(b−1b)

= ae

= a.

Therefore, there exists h ∈ H such that a = hb, as desired.
We prove (∃h ∈ H)(a = hb)⇒ a ∈ Hb.
Suppose there exists h ∈ H such that a = hb. Then a ∈ Hb, by definition of

Hb.
We prove a ∈ Hb⇒ (Ha = Hb).
Suppose a ∈ Hb. To prove Ha = Hb, we prove Ha ⊂ Hb and Hb ⊂ Ha.
Let x ∈ Ha. Then there exists h1 ∈ H such that x = h1a, by definition of

Ha. Since a ∈ Hb, then there exists h2 ∈ H such that a = h2b, by definition
of Hb. Let h = h1h2. Since H is a group, then H is closed under its binary
operation. Since h1, h2 ∈ H, then h ∈ H.

Observe that

hb = (h1h2)b

= h1(h2b)

= h1a

= x.

Hence, there exists h ∈ H such that x = hb, so by definition of Hb, x ∈ Hb.
Therefore, x ∈ Ha implies x ∈ Hb, so Ha ⊂ Hb.

Let y ∈ Hb. Then there exists h1 ∈ H such that y = h1b, by definition of
Hb. Since a ∈ Hb, then by definition of Hb, there exists h2 ∈ H such that
a = h2b. Let h = h1h

−1
2 . Since H is closed under its binary operation and

h1, h
−1
2 ∈ H, then h ∈ H.

Observe that

ha = (h1h
−1
2 )(h2b)

= h1(h−12 h2)b

= h1eb

= h1b

= y.
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Hence, there exists h ∈ H such that y = ha, so by definition of Ha, y ∈ Ha.
Therefore, y ∈ Hb implies y ∈ Ha, so Hb ⊂ Ha.

Since Ha ⊂ Hb and Hb ⊂ Ha, then Ha = Hb, as desired.
We prove (Ha = Hb)⇒ ab−1 ∈ H.
Suppose Ha = Hb. Since a ∈ Ha and Ha = Hb, then a ∈ Hb. Thus, there

exists h ∈ H such that a = hb, by definition of Hb. Right multiply by b−1 to
obtain ab−1 = h. Therefore, since h ∈ H, then ab−1 ∈ H, as desired.

Lemma 75. Let H be a subgroup of G. Let a, b ∈ G. Then aH = bH iff
Ha−1 = Hb−1.

Proof. Observe that

aH = bH ⇔ a−1b ∈ H
⇔ a−1(b−1)−1 ∈ H
⇔ Ha−1 = Hb−1.

Theorem 76. Let H be a subgroup of a group G. The number of left cosets of
H in G equals the number of right cosets of H in G.

Solution. To prove the number of left cosets of H equals the number of right
cosets of H, we let HL be the collection of distinct left cosets of H and HR

be the collection of distinct right cosets of H. Thus HL = {gH : g ∈ G} and
HR = {Hg : g ∈ G}.

We must prove |HL| = |HR|.
To prove this, we must devise a bijective map φ : HL 7→ HR.
The key insight is to use figure out what map would work.
We try φ(gH) = Hg−1.
Thus, we must show that φ maps each gH ∈ HL to a unique Hg−1 ∈ HR

and show that φ is injective and surjective.

Proof. Let HL be the collection of distinct left cosets of H in G. Let HR be
the collection of distinct right cosets of H in G. Then HL = {gH : g ∈ G} and
HR = {Hg : g ∈ G}.

Let φ : HL 7→ HR be a binary relation defined by φ(gH) = Hg−1 for all
g ∈ G.

Suppose g ∈ G. Then gH ∈ HL, so φ(gH) = Hg−1. Since G is a group and
g ∈ G, then g−1 ∈ G. Hence, Hg−1 ∈ HR.

To prove φ is well-defined, let a and b be arbitrary elements of G. Then aH
and bH are arbitrary left cosets inHL. Suppose aH = bH. Then φ(aH) = Ha−1

and φ(bH) = Hb−1. Since Ha−1 = Hb−1 iff aH = bH, then Ha−1 = Hb−1.
Hence, φ(aH) = φ(bH). Therefore, aH = bH implies φ(aH) = φ(bH), so φ is a
well defined map from HL to HR.

We prove φ is injective. Suppose aH and bH are arbitrary left cosets in
HL such that φ(aH) = φ(bH). Then a and b are some elements in G and
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Ha−1 = Hb−1. By a previous lemma, Ha−1 = Hb−1 iff aH = bH. Hence,
we conclude aH = bH. Therefore, φ(aH) = φ(bH) implies aH = bH, so φ is
injective.

We prove φ is surjective. Suppose Hg is an arbitrary right coset in HR. Then
g ∈ G. Since G is a group, then g−1 ∈ G. Let a = g−1H. Since there exists
g−1 ∈ G such that a = g−1H, then a ∈ HL. Observe that φ(a) = φ(g−1H) =
H(g−1)−1 = Hg. Therefore, there exists a ∈ HL such that φ(a) = Hg, so φ is
surjective.

Since φ is injective and surjective, then φ is bijective.
Therefore, φ : HL 7→ HR is a bijective map, so |HL| = |HR|, as desired.

Theorem 77. Let H be a subgroup of a group G.
Let g ∈ G be fixed.
Then |gH| = |H| and |Hg| = |H|.

Solution. We must prove |gH| = |H| and |Hg| = |H|.
To prove |gH| = |H|, we show there exists a bijection between gH and H.
To prove |Hg| = |H|, we show there exists a bijection between Hg and H.
To prove |gH| = |H|, we must devise a bijective map φ : H 7→ gH.
We know that the left coset gH = {gh : h ∈ H}.
Hence, let’s try φ(h) = gh for all h ∈ H.
We observe this is similar to a left representation of H, except that g is not

necessarily in H.
We must prove φ maps each h ∈ H to some element in gH and show that φ

is one to one and onto gH.
Since φ is bijective, then we conclude |H| = |gH|.
Hence, if H is of finite order, then gH is finite and gH has the same number

of elements as H.

Proof. To prove |gH| = |H|, let φ : H 7→ gH be a binary relation defined by
φ(h) = gh for all h ∈ H.

Let h be an arbitrary element of H.
Then φ(h) = gh.
Since gh ∈ gH, then φ(h) ∈ gH.

We prove φ is well defined.
Suppose h1 and h2 are arbitrary elements of H such that h1 = h2.
We must prove φ(h1) = φ(h2).
Since h1, h2 ∈ H and H ⊂ G, then h1, h2 ∈ G.
Since g, h1, h2 ∈ G and G is a group, then we left multiply by g to obtain

gh1 = gh2.
Observe that φ(h1) = gh1 = gh2 = φ(h2).
Hence, φ is well defined, so φ : H 7→ gH is a function.

86



Suppose h1 and h2 are arbitrary elements of H such that φ(h1) = φ(h2).
Then gh1 = gh2.
Since h1, h2 ∈ H and H ⊂ G, then h1, h2 ∈ G.
Since G is a group and g, h1, h2 ∈ G, then we apply the left cancellation law

to obtain h1 = h2.
Hence, φ(h1) = φ(h2) implies h1 = h2, so φ is injective.

Suppose k is an arbitrary element of gH.
Then there exists some h ∈ H such that k = gh.
Observe that φ(h) = gh = k.
Hence, there exists h ∈ H such that φ(h) = k, so φ is surjective.
Since φ is a function that is injective and surjective, then φ : H 7→ gH is

bijective.
Therefore, |gH| = |H|, as desired.

To prove |Hg| = |H|, let σ : H 7→ Hg be a binary relation defined by
σ(h) = hg for all h ∈ H.

Let h be an arbitrary element of H.
Then σ(h) = hg.
Since hg ∈ Hg, then σ(h) ∈ Hg.

We prove σ is well defined.
Suppose h1 and h2 are arbitrary elements of H such that h1 = h2.
We must prove σ(h1) = σ(h2).
Since h1, h2 ∈ H and H ⊂ G, then h1, h2 ∈ G.
Since g, h1, h2 ∈ G and G is a group, then we right multiply by g to obtain

h1g = h2g.
Observe that σ(h1) = h1g = h2g = σ(h2).
Hence, σ is well defined, so σ : H 7→ Hg is a function.

Suppose h1 and h2 are arbitrary elements of H such that σ(h1) = σ(h2).
Then h1g = h2g.
Since h1, h2 ∈ H and H ⊂ G, then h1, h2 ∈ G.
Since G is a group and g, h1, h2 ∈ G, then we apply the right cancellation

law to obtain h1 = h2.
Hence, σ is injective.

Suppose k is an arbitrary element of Hg.
Then there exists some h ∈ H such that k = hg.
Observe that σ(h) = hg = k.
Hence, σ is surjective.
Since σ is a function that is injective and surjective, then σ : H 7→ Hg is

bijective.
Therefore, |Hg| = |H|, as desired.
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Finite Groups

Theorem 78. Lagrange’s Theorem
The order of a subgroup of a finite group divides the order of the group.

Proof. Let H be a subgroup of a finite group G.
We must prove |H| divides |G|.
Since G is a finite group, then |G| = n for some positive integer n.
Since G is finite and H ⊂ G, then H is finite.
Hence, |H| = m for some positive integer m.

To prove |H| divides |G|, we must prove m|n.
Let g ∈ G.
Let gH be the left coset of H in G with representative g.
Then |gH| = |H| = m.
Hence, each left coset of H in G contains the same number of elements as

H.

Since G is finite, then there are a finite number of subsets of G.
In particular, there are a finite number of left cosets of H in G.
Let k be the number of left cosets of H in G.
Then k is an integer.
Since H is a left coset, then k > 0, so k is a positive integer.

Since the collection of left cosets of H in G is a partition of G, then the
number of elements in G equals the number of left cosets times the number of
elements in each left coset.

Thus, |G| = km = k|H|.
Therefore, |H| divides |G|.

Corollary 79. The order of an element of a finite group divides the order of
the group.

Solution. This means:
If G is a finite group, then the order of g ∈ G divides the order of G.

Proof. Let G be a finite group.
Then there exists a positive integer n such that |G| = n.

Let g ∈ G.
Every element of a finite group has finite order.
In particular, g has finite order.
Let m be the order of g.
Then m is the order of the cyclic subgroup generated by g.
Let H be the cyclic subgroup of G generated by g.
Then m = |H| and H < G.
Since H < G and G is finite, then by LaGrange’s theorem, |H| divides |G|.

88



Therefore, m|n.

Corollary 80. Let G be a finite group.
If H < K < G, then [G : H] = [G : K][K : H].

Proof. Suppose H < K < G.
Then H < G and

[G : H] =
|G|
|H|

=
|G|
|K|
∗ |K|
|H|

= [G : K][K : H].

Corollary 81. Let G be a finite group of order n.
Then gn = e for all g ∈ G.

Solution. Let n ∈ Z+. Let e be the identity of G.
We must prove (∀g ∈ G)(gn = e).

Proof. Suppose G is a finite group of order n. Then n is a positive integer and
|G| = n.

Let g be an arbitrary element of G with identity e.
Every element in a finite group has finite order.
In particular, g has finite order.
Let m be the order of g.
The order of g is the order of the cyclic subgroup generated by g.
Let H be the cyclic subgroup of G generated by g.
Then m = |H| and H < G.
Since H < G and G is finite, then by LaGrange’s theorem, the order of H

divides the order of G.
Hence, m|n.
Since the order of g is m, then gn = e iff m|n. Therefore, gn = e.

Corollary 82. Every group of prime order is cyclic.

Solution. Let G be an arbitrary group of prime order.
To prove G is cyclic, we must find an element a ∈ G such that G = {am :

m ∈ Z}.
How do we find a?
Consider the cyclic group generated by a. Then 〈a〉 = {am : m ∈ Z}.

Proof. Let G be an arbitrary group of prime order p.
Then |G| = p.
Since p is prime, then p ≥ 2.
Therefore, there are at least two elements in G and G is finite.
Let e be the identity of G.
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Since at least two elements exist in G, then there exists at least one element
that is distinct from e.

Let a be an arbitrary element of G such that a 6= e.

Every element of a finite group has finite order.
In particular, a has finite order.
Let m be the order of a.
Then m is a positive integer.
The order of a is the order of the cyclic subgroup generated by a.
Let H be the cyclic subgroup of G generated by a.
Then H = {ak : k ∈ Z} and m = |H| and H < G.
Since a = a1, then a ∈ H.
Since e = a0, then e ∈ H.
Since a 6= e, then this implies H contains at least two elements.
Hence, |H| ≥ 2, so |H| > 1.
Therefore, m > 1.
Since H < G and G is finite, then by LaGrange’s theorem, the order of H

divides the order of G.
Hence, m|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Thus, either m = 1 or m = p.
Since m > 1, then m 6= 1.
Therefore, m = p.
Hence, |H| = p.
Since H ⊂ G and |H| = p = |G| and G is finite, then H = G.
Thus, there exists a ∈ G such that G = H.
Therefore, G is cyclic.

Direct Products

Theorem 83. Let A,B be groups.
Let G be the Cartesian product A×B = {(a, b) : a ∈ A, b ∈ B}.
Define ◦ : G×G 7→ G by (a1, b1) ◦ (a2, b2) = (a1a2, b1 ∗ b2).
Then (G, ◦) is a group, called the external direct product of A and B.

Proof. We prove ◦ is a binary operation.
We first prove G is closed under ◦.
Let x, y ∈ G.
Then there exist a1, a2 ∈ A and b1, b2 ∈ B such that x = (a1, b1) and

y = (a2, b2).
Thus, x ◦ y = (a1, b1) ◦ (a2, b2) = (a1a2, b1b2).
By closure of A and B, a1a2 ∈ A and b1b2 ∈ B.
Hence, xy ∈ G, so G is closed under ◦.
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We prove ◦ is well defined.
Suppose (x, y) and (z, w) are arbitrary elements of G×G such that (x, y) =

(z, w).
Then there exist a1, a2, a3, a4 ∈ A and b1, b2, b3, b4 ∈ B such that x = (a1, b1)

and y = (a2, b2) and z = (a3, b3) and w = (a4, b4) and x = z and y = w.
Thus, a1 = a3 and b1 = b3 and a2 = a4 and b2 = b4.
Observe that

x ◦ y = (a1, b1) ◦ (a2, b2)

= (a1a2, b1b2)

= (a3a2, b3b2)

= (a3a4, b3b4)

= (a3, b3) ◦ (a4, b4)

= z ◦ w.

Therefore, ◦ is well defined.
Hence, ◦ is a binary operation on G.

Let x, y, z ∈ G. Then there exist a1, a2, a3 ∈ A and b1, b2, b3 ∈ B such that
x = (a1, b1) and y = (a2, b2) and z = (a3, b3). Observe that

(xy)z = [(a1, b1)(a2, b2)](a3, b3)

= (a1a2, b1b2)(a3, b3)

= ((a1a2)a3, (b1b2)b3)

= (a1(a2a3), b1(b2b3))

= (a1, b1)(a2a3, b2b3)

= (a1, b1)[(a2, b2)(a3, b3)]

= x(yz).

Therefore, ◦ is associative.

Let e be the identity of A and e′ be the identity of B.
Then (e, e′) ∈ G.
Let x be an arbitrary element of G.
Then x = (a, b) for some a ∈ A and b ∈ B.
Observe that

(e, e′)(a, b) = (ea, e′b)

= (a, b)

= (ae, be′)

= (a, b)(e, e′).

Thus, (e, e′) is an identity element of G.
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Let x ∈ G. Then x = (a, b) for some a ∈ A and b ∈ B. Since A and B are
groups, then a−1 ∈ A and b−1 ∈ B. Hence, (a−1, b−1) ∈ G.

Observe that

(a, b)(a−1, b−1) = (aa−1, bb−1)

= (e, e′)

= (a−1a, b−1b)

= (a−1, b−1)(a, b).

Thus, the inverse of (a, b) is (a−1, b−1), so each element of G has an inverse in
G.

Therefore, (G, ◦) is a group.

Theorem 84. Let n ∈ Z+, n ≥ 2.
The external direct product of n groups is a group.

Proof. Let n ∈ Z+, n ≥ 2.
Let G = G1 ×G2 × ...×Gn.
Let a, b ∈ G. Then for each i ∈ {1, 2, ..., n} there exist ai, bi ∈ Gi such

that a = (a1, a2, ..., an) and b = (b1, b2, ..., bn). Thus, a ◦ b = (a1, a2, ..., an) ◦
(b1, b2, ..., bn) = (a1b1, a2b2, ..., anbn). For each i, the group Gi is closed. There-
fore, for each i, the product gihi is in the group Gi. Hence, ab ∈ G, so G is
closed under ◦.

Suppose (a, b) and (c, d) are arbitrary elements of G × G such that (a, b) =
(c, d). Then for each i ∈ {1, 2, ..., n} there exist ai, bi, ci, di ∈ Gi such that
a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) and c = (c1, c2, ..., cn) and d =
(d1, d2, ..., dn) and a = c and b = d. Thus, for each i, ai = ci and bi = di.
Observe that

ab = (a1, a2, ..., an)(b1, b2, ..., bn)

= (a1b1, a2b2, ..., anbn)

= (c1b1, c2b2, ..., cnbn)

= (c1d1, c2d2, ..., cndn)

= (c1, c2, ..., cn)(d1, d2, ..., dn)

= cd.

Therefore, ◦ is well defined. Hence, ◦ is a binary operation on G.
Let a, b, c ∈ G. Then for each i ∈ {1, 2, ..., n} there exist ai, bi, ci ∈ Gi such

that a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) and c = (c1, c2, ..., cn). Observe
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that

(ab)c = [(a1, a2, ..., an)(b1, b2, ..., bn)](c1, c2, ..., cn)

= (a1b1, a2b2, ..., anbn)(c1, c2, ..., cn)

= ((a1b1)c1, (a2b2)c2, ..., (anbn)cn)

= (a1(b1c1), a2(b2c2), ..., an(bncn))

= (a1, a2, ..., an)(b1c1, b2c2, ..., bncn)

= (a1, a2, ..., an)[(b1, b2, ..., bn)(c1, c2, ..., cn)]

= a(bc).

Therefore, ◦ is associative.
Let ei be the identity of Gi for each i ∈ {1, 2, ..., n}. Then (e1, e2, ..., en) ∈ G.

Let x be an arbitrary element of G. Then for each i ∈ {1, 2, ..., n} there exist
ai ∈ Gi such that x = (a1, a2, ..., an). Observe that

(e1, e2, ..., en)(a1, a2, ..., an) = (e1a1, e2a2, ..., enan)

= (a1, a2, ..., an)

= (a1e1, a2e2, ..., anen)

= (a1, a2, ..., an)(e1, e2, ..., en).

Thus, (e1, e2, ..., en) is an identity element of G.
Let a be an arbitrary element of G. Then for each i ∈ {1, 2, ..., n} there exist

ai ∈ Gi such that a = (a1, a2, ..., an). Since each Gi is a group, then a−1i ∈ Gi
for each i. Hence, (a−11 , a−12 , ..., a−1n ) ∈ G. Observe that

(a1, a2, ..., an)(a−11 , a−12 , ..., a−1n ) = (a1a
−1
1 , a2a

−1
2 , ..., ana

−1
n )

= (e1, e2, ..., en)

= (a−11 a1, a
−1
2 a2, ..., a

−1
n an)

= (a−11 , a−12 , ..., a−1n )(a1, a2, ..., an).

Thus, the inverse of (a1, a2, ..., an) is (a−11 , a−12 , ..., a−1n ), so each element of G
has an inverse in G.

Therefore, (G, ◦) is a group.

Theorem 85. A direct product of abelian groups is an abelian group.

Proof. Let n ∈ Z+, n ≥ 2. Let G1, G2, ..., Gn be n abelian groups. Then∏n
i=1Gi is the direct product of n groups. The direct product of n groups is a

group. Therefore,
∏n
i=1Gi is a group.

Let a, b ∈
∏n
i=1Gi. Then for each i ∈ {1, 2, ..., n} there exist ai, bi ∈ Gi such

that a = (a1, a2, ..., an) and b = (b1, b2, ..., bn). Observe that

ab = (a1, a2, ..., an)(b1, b2, ..., bn)

= (a1b1, a2b2, ..., anbn)

= (b1a1, b2a2, ..., bnan)

= (b1, b2, ..., bn)(a1, a2, ..., an)

= ba.
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Therefore, component wise multiplication in
∏n
i=1Gi is commutative. Hence,∏n

i=1Gi is abelian. Thus,
∏n
i=1Gi is an abelian group.

Theorem 86. Let G × H be the external direct product of groups G,H. Let
(g, h) ∈ G×H. If g and h have finite order, then the order of (g, h) in G×H
is the least common multiple of the orders of g and h.

Solution. We must prove:
1. The order of (g, h) is finite.
2. The order of (g, h) equals lcm(a, b).

Proof. Let e be the identity of G and e′ be the identity of H. Then (e, e′) is the
identity of G×H. Since (g, h) ∈ G×H, then g ∈ G and h ∈ H.

Suppose g and h have finite order. Let a be the order of g and let b be the
order of h. Then a is the least positive integer such that ga = e and b is the
least positive integer such that hb = e′.

We prove the order of (g, h) is finite. Let n = ab. Then n is a positive integer
and a|n and b|n. For any integer M , gM = e iff a|M and for any integer N ,
hN = e′ iff b|N . Hence, gn = e iff a|n and hn = e′ iff b|n. Thus, gn = e and
hn = e′. Observe that

(g, h)n = (g, h)(g, h)...(g, h)

= (gn, hn)

= (e, e′).

Therefore, there exists a positive integer n such that (g, h)n = (e, e′), so the
order of (g, h) is finite.

Let k be the order of (g, h). Then k is the least positive integer such that
(g, h)k = (e, e′). Thus,

(e, e′) = (g, h)k

= (g, h)(g, h)...(g, h)

= (gk, hk).

Hence, gk = e and hk = e′. Thus, a|k and b|k.
Let m be the least common multiple of a and b. Then a|m and b|m and for

every integer c, if a|c and b|c, then m|c. Thus, if a|k and b|k, then m|k. Since
a|k and b|k, then m|k.

Since a|m and b|m, then gm = e and hm = e′. Thus,

(e, e′) = (gm, hm)

= (g, h)m.

For any integer N, (g, h)N = (e, e′) iff k|N . Hence, in particular, (g, h)m = (e, e′)
iff k|m. Thus, k|m.

By the antisymmetric property of Z+, k|m and m|k implies k = m. Since
m, k ∈ Z+ and m|k and k|m, then we conclude k = m.

Therefore, the order of (g, h) is the least common multiple of a and b.
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Corollary 87. Let n ∈ Z+, n ≥ 2. Let
∏n
i=1Gi be the external direct product

of n groups. Let (g1, g2, ..., gn) ∈
∏n
i=1Gi. If each gi has finite order ai in

Gi, then the order of (g1, g2, ..., gn) in
∏n
i=1Gi is the least common multiple of

a1, a2, ..., an.

Solution. We must prove:
1. The order of (g1, g2, ..., gn) is finite.
2. The order of (g1, g2, ..., gn) equals lcm(a1, a2, ..., an).

Proof. Let G = G1×G2× ...×Gn. Then for each i ∈ {1, 2, ..., n}, Gi is a group.
Let ei be the identity of each group Gi. Then (e1, e2, ..., en) is the identity of
G. Since (g1, g2, ..., gn) ∈ G, then each element gi is in the group Gi.

Suppose each gi has finite order ai in Gi. Then for each i, ai is the least
positive integer such that gaii = ei.

We prove the order of (g1, g2, ..., gn) is finite. Let m = a1a2...an. Then m is
a positive integer and for each i, ai|m.

For each i and for any integer M , gMi = ei iff ai|M . Hence, for each i,
gmi = ei iff ai|m. Thus, for each i, gmi = ei. Observe that

(g1, g2, ..., gn)m = (gm1 , g
m
2 , ..., g

m
n )

= (e1, e2, ..., en).

Therefore, there exists a positive integer m such that (g1, g2, ..., gn)m =
(e1, e2, ..., en), so the order of (g1, g2, ..., gn) is finite.

Let k be the order of (g1, g2, ..., gn). Then k is the least positive integer such
that (g1, g2, ..., gn)k = (e1, e2, ..., en). Thus,

(e1, e2, ..., en) = (g1, g2, ..., gn)k

= (gk1 , g
k
2 , ..., g

k
n).

Hence, for each i, gki = ei. Thus, for each i, ai|k.
Let s be the least common multiple of each ai. Then for each i, ai|s and for

every integer c, if each ai|c, then s|c. Thus, if each ai|k, then s|k. Since each ai
divides k, then s|k.

Since each ai divides s, then gsi = ei for each i. Thus,

(e1, e2, ..., en) = (gs1, g
s
2, ..., g

s
n)

= (g1, g2, ..., gn)s.

For any integer N, (g1, g2, ..., gn)N = (e1, e2, ..., en) iff k|N . Hence, in particular,
(g1, g2, ..., gn)s = (e1, e2, ..., en) iff k|s. Thus, k|s.

By the antisymmetric property of Z+, k|s and s|k implies k = s. Since s|k
and k|s, then we conclude k = s.

Therefore, the order of
(g1, g2, ..., gn)
is the least common multiple of a1, a2, ..., an.

Theorem 88. Let m,n ∈ Z+. Then (Zm×Zn,+) ∼= (Zmn,+) iff gcd(m,n) = 1.
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Proof. We prove gcd(m,n) = 1 implies (Zm × Zn,+) ∼= (Zmn,+).
Suppose gcd(m,n) = 1. Observe that (Zm,+) is a cyclic group with gen-

erator [1]m ∈ Zm. Thus, the order of [1]m in Zm is m. Observe that (Zn,+)
is a cyclic group with generator [1]n ∈ Zn. Thus, the order of [1]n in Zn is n.
Therefore, the order of ([1]m, [1]n) ∈ Zm × Zn is the least common multiple of
m and n. Observe that

mn = gcd(m,n) ∗ lcm(m,n)

= 1 ∗ lcm(m,n)

= lcm(m,n).

Hence, the order of ([1]m, [1]n) is mn.
The order of ([1]m, [1]n) ∈ Zm × Zn is the order of the cyclic subgroup of

Zm × Zn generated by ([1]m, [1]n). Let G be the cyclic subgroup of Zm × Zn
generated by ([1]m, [1]n). Then G ⊂ Zm × Zn and |G| = mn = |Zm||Zn| =
|Zm × Zn|. If S is a finite set and T is a subset of S such that |T | = |S|,
then T = S. Observe that Zm × Zn is a finite set and G ⊂ Zm × Zn and
|G| = |Zm × Zn|. Hence, G = Zm × Zn. Thus, ([1]m, [1]n) is a generator of
Zm × Zn, so Zm × Zn is cyclic.

Every cyclic group of finite order n is isomorphic to (Zn,+). Hence, every
cyclic group of finite order mn is isomorphic to (Zmn,+). Observe that Zm×Zn
is a cyclic group of order mn. Therefore, (Zm×Zn,+) is isomorphic to (Zmn,+).

Conversely, we prove (Zm × Zn,+) ∼= (Zmn,+) implies gcd(m,n) = 1. We
prove by contrapositive. Suppose gcd(m,n) 6= 1. Then gcd(m,n) > 1. Let
d = gcd(m,n). Then d > 1 and d|m and d|n, so d|mn. Thus, md , nd , and mn

d are
positive integers. Since 1|nd , then m|mnd . Since 1|md , then n|mnd . Let w = mn

d .
Then m|w and n|w.

Let (a, b) ∈ Zm × Zn. Then a ∈ Zm and b ∈ Zn.
Every element of a finite group has finite order. Since Zm and Zn and

Zm × Zn are finite groups, then every element of Zm and Zn and Zm × Zn has
finite order. In particular, a and b and (a, b) have finite order. Let k be the
order of a and l be the order of b and s be the order of (a, b).

The order of an element of a finite group G divides the order of G. Thus,
the order of a divides |Zm| and the order of b divides |Zn|, so k|m and l|n. Since
k|m and m|w, then k|w. Since l|n and n|w, then l|w. Thus, k|w and l|w.

Since a has finite order k, then wa = 0 iff k|w. Since k|w, then wa = 0.
Since b has finite order l, then wb = 0 iff l|w. Since l|w, then wb = 0.
Thus, w(a, b) = (wa,wb) = (0, 0).
Since (a, b) has finite order s, then w(a, b) = (0, 0) iff s|w. Since w(a, b) =

(0, 0), then s|w. Since s and w are positive integers, then this implies s ≤ w.
Since d > 1, then 1 < d, so 1

d < 1. Thus, mn
d < mn, so w < mn. Since

s ≤ w and w < mn, then s < mn. Hence, s 6= mn, so |(a, b)| 6= |Zm × Zn|.
If a finite group G is cyclic, then there exists g ∈ G such that |g| = |G|.

Thus, if |g| 6= |G| for all g ∈ G, then a finite group G is not cyclic. Hence,
if g is an arbitrary element of a finite group G such that |g| 6= |G|, then G is
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not cyclic. Since (a, b) is an arbitrary element of the finite group Zm × Zn and
|(a, b)| 6= |Zm × Zn|, then we conclude Zm × Zn is not cyclic.

Suppose Zmn is isomorphic to Zm × Zn. Then there exists an isomorphism
between Zmn and Zm×Zn. Let φ : Zmn → Zm×Zn be an isomorphism. Since φ
preserves the cyclic property of groups and Zmn is cyclic, then Zm×Zn is cyclic.
Thus, we have Zm × Zn is cyclic and Zm × Zn is not cyclic, a contradiction.
Therefore, Zmn is not isomorphic to Zm × Zn.

Corollary 89. Let n1, ..., nk be positive integers.
Then

∏k
i=1 Zni

∼= Zn1...nk
.

Proof.

Corollary 90. Let p1, ..., pk be distinct primes. Let n = pe11 ...p
ek
k .

Then Zn ∼= Zpe11 × ...× Zpekk .

Proof.

Proposition 91. If H and K are subgroups of an abelian group G, then HK <
G.

Solution. Let HK = {hk : h ∈ H, k ∈ K}.
The hypothesis is:
G is an abelian group and H < G and K < G.
The conclusion is: HK < G.
Suppose G is an abelian group and H < G and K < G.
To prove HK < G, we use a subgroup test.

Proof. Suppose G is an abelian group and H < G and K < G.
Let hk ∈ HK. Then h ∈ H and k ∈ K. Since H < G, then H ⊂ G, so

h ∈ G. Since K < G, then K ⊂ G, so k ∈ G. By closure of G, hk ∈ G. Thus,
hk ∈ HK implies hk ∈ G, so HK ⊂ G.

Let h1k1, h2k2 ∈ HK. Then h1, h2 ∈ H and k1, k2 ∈ K. Observe that

(h1k1)(h2k2) = h1(k1h2)k2

= h1(h2k1)k2

= (h1h2)(k1k2).

By closure of H and K, h1h2 ∈ H and k1k2 ∈ K. Hence, (h1k1)(h2k2) ∈ HK.
Therefore, HK is closed under the binary operation of G.

Let e be the identity of G. Since H < G and K < G, then e ∈ H and e ∈ K.
Hence, ee = e ∈ HK. Therefore, HK contains the identity of G.

Let hk ∈ HK. Since H < G and K < G, then h−1 ∈ H and k−1 ∈ K.
Observe that

(hk)−1 = k−1h−1

= h−1k−1.

Hence, (hk)−1 ∈ HK.
Therefore, HK < G.
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Proposition 92. Let H and K be subgroups of a group G.
If h−1kh ∈ K for all h ∈ H and all k ∈ K, then HK < G.

Proof. Let G be a group and H < G and K < G.
Suppose h−1kh ∈ K for all h ∈ H and all k ∈ K.
Let hk ∈ HK. Then h ∈ H and k ∈ K. Since H < G, the H ⊂ G, so

h ∈ G. Since K < G, then K ⊂ G, so k ∈ G. By closure of G, hk ∈ G. Hence,
hk ∈ HK implies hk ∈ G, so HK ⊂ G.

Let h1k1, h2k2 ∈ HK. Then h1, h2 ∈ H and k1, k2 ∈ K.
Since h2 ∈ H and k1 ∈ K, then h−12 k1h2 ∈ K. Thus, there exists k′ ∈ K

such that k′ = h−12 k1h2. Hence, h2k
′ = k1h2. Observe that

(h1k1)(h2k2) = h1(k1h2)k2

= h1(h2k
′)k2

= (h1h2)(k′k2).

By closure of H and K, h1h2 ∈ H and k′k2 ∈ K. Hence, (h1k1)(h2k2) ∈ HK.
Therefore, HK is closed under the binary operation of G.

Let e be the identity of G. Since H < G and K < G, then e ∈ H and e ∈ K.
Hence, ee = e ∈ HK. Therefore, HK contains the identity of G.

Let hk ∈ HK. Then h ∈ H and k ∈ K. Since H < G, then h−1 ∈ H. Since
h−1 ∈ H and k ∈ K, then (h−1)−1k(h−1) ∈ K. Hence, there exists k′ ∈ K such
that k′ = hkh−1. Thus, k′h = hk. Let (hk)−1 be the inverse of hk in G. Then

(hk)−1 = (k′h)−1

= h−1k′−1.

Since h−1 ∈ H and k′−1 ∈ K, then this implies (hk)−1 ∈ HK. Hence, HK is
closed under inverses.

Therefore, HK < G.

Proposition 93. Let H and K be subgroups of a group G.
Then HK < G iff KH ⊂ HK.

Proof. We prove if HK < G, then KH ⊂ HK.
Suppose HK < G.
Let kh ∈ KH. Then k ∈ K and h ∈ H. Since H < G and K < G, then

e ∈ H and e ∈ K. Since e ∈ H and k ∈ K, then ek = k ∈ HK. Since h ∈ H and
e ∈ K, then he = h ∈ HK. Since HK < G, then HK is closed, so k ∈ HK and
h ∈ HK imply kh ∈ HK. Thus, kh ∈ KH implies kh ∈ HK, so KH ⊂ HK.

Conversely, we prove if KH ⊂ HK, then HK < G.
Suppose KH ⊂ HK.
Let e be the identity of G. Since H < G and K < G, then e ∈ H and e ∈ K.

Hence, ee = e ∈ HK. Therefore, HK contains the identity of G.
Let hk ∈ HK. Then h ∈ H and k ∈ K. Since H < G, the H ⊂ G, so

h ∈ G. Since K < G, then K ⊂ G, so k ∈ G. By closure of G, hk ∈ G. Hence,
hk ∈ HK implies hk ∈ G, so HK ⊂ G.
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Let h1k1, h2k2 ∈ HK. Then h1, h2 ∈ H and k1, k2 ∈ K.
Since h2 ∈ H and k1 ∈ K, then k1h2 ∈ KH. Since KH ⊂ HK, then

k1h2 ∈ HK. Thus, there exists h′ ∈ H and k′ ∈ K such that h′k′ = k1h2.
Observe that

(h1k1)(h2k2) = h1(k1h2)k2

= h1(h′k′)k2

= (h1h
′)(k′k2).

By closure of H and K, h1h
′ ∈ H and k′k2 ∈ K. Hence, (h1k1)(h2k2) ∈ HK.

Therefore, HK is closed under the binary operation of G.
Let hk ∈ HK. Then h ∈ H and k ∈ K. Since H < G and K < G,

then h−1 ∈ H and k−1 ∈ K. Thus, k−1h−1 ∈ KH. Since KH ⊂ HK, then
k−1h−1 ∈ HK. Since (hk)−1 = k−1h−1, then this implies (hk)−1 ∈ HK.
Hence, HK is closed under inverses. Therefore, HK < G.

Normal Subgroups

Theorem 94. Let H < G. Then the following are equivalent:
1. H CG.
2. gHg−1 ⊂ H for all g ∈ G.
3. gHg−1 = H for all g ∈ G.

Proof. We prove 1 implies 2.
Suppose H CG. Then ghg−1 ∈ H for all g ∈ G and all h ∈ H.
Let g ∈ G. Let x ∈ gHg−1. Then x = ghg−1 for some h ∈ H. Since H CG,

then x ∈ H. Hence, x ∈ gHg−1 implies x ∈ H, so gHg−1 ⊂ H.
We prove 2 implies 3.
Suppose gHg−1 ⊂ H for all g ∈ G. We prove H ⊂ gHg−1 for all g ∈ G.
Let g ∈ G. Let h ∈ H. Let h′ = g−1hg. Since g−1 ∈ G, then g−1H(g−1)−1 ⊂

H. Hence, g−1Hg ⊂ H. Since h′ = g−1hg for some h ∈ H, then h′ ∈ g−1Hg.
Thus, h′ ∈ H. Observe that

gh′g−1 = g(g−1hg)g−1

= (gg−1)h(gg−1)

= h.

Hence, there exists h′ ∈ H such that h = gh′g−1, so h ∈ gHg−1. Thus, h ∈ H
implies h ∈ gHg−1, so H ⊂ gHg−1.

Since gHg−1 ⊂ H and H ⊂ gHg−1, then gHg−1 = H.
We prove 3 implies 1.
Suppose gHg−1 = H for all g ∈ G. Let g ∈ G and h ∈ H. Then gHg−1 = H.

Thus, gHg−1 ⊂ H. Hence, ghg−1 ∈ H.

Theorem 95. Let H < G. Then H CG iff gH = Hg for all g ∈ G.
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Proof. Suppose H CG. Then ghg−1 ∈ H for all g ∈ G and all h ∈ H.
Let g ∈ G.
Suppose gh ∈ gH. Then h ∈ H. Let h′ = ghg−1. Then h′g = gh. Since

g ∈ G and h ∈ H and H CG, then h′ ∈ H. Observe that

gh ∈ gH ⇒ h′g ∈ gH
⇒ h′g ∈ Hg
⇒ gh ∈ Hg.

Hence, gh ∈ gH implies gh ∈ Hg, so gH ⊂ Hg.
Suppose hg ∈ Hg. Then h ∈ H. Let h′′ = g−1hg = g−1h(g−1)−1. Then

gh′′ = hg. Since g−1 ∈ G and h ∈ H and H CG, then h′′ ∈ H. Observe that

hg ∈ Hg ⇒ gh′′ ∈ Hg
⇒ gh′′ ∈ gH
⇒ hg ∈ gH.

Hence, hg ∈ Hg implies hg ∈ gH, so Hg ⊂ gH.
Since gH ⊂ Hg and Hg ⊂ gH, then gH = Hg.
Conversely, suppose gH = Hg for all g ∈ G. Let g ∈ G and h ∈ H. Then

gH = Hg, so gh = h′g for some h′ ∈ H. Thus, ghg−1 = h′, so ghg−1 ∈ H.
Therefore, H CG.

Theorem 96. Every subgroup of an abelian group is normal.

Solution. To prove H is normal in G, we prove ghg−1 ∈ H for all g ∈ G and
all h ∈ H.

Proof. Let H be an arbitrary subgroup of an abelian group G.
Let g ∈ G and h ∈ H. Since h ∈ H and H ⊂ G, then h ∈ G. Thus,

ghg−1 = (gh)g−1

= (hg)g−1

= h(gg−1)

= he

= h.

Hence, ghg−1 ∈ H, so H CG.

Proof. Let g, h ∈ G.
Observe that

gh ∈ gH ⇒ hg ∈ gH
⇒ hg ∈ Hg
⇒ gh ∈ Hg.

Therefore, gH ⊂ Hg.
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Observe that

hg ∈ Hg ⇒ gh ∈ Hg
⇒ gh ∈ gH
⇒ hg ∈ gH.

Therefore, Hg ⊂ gH.
Thus, gH ⊂ Hg and Hg ⊂ gH, so gH = Hg.
Hence, H CG.

Theorem 97. The intersection of two normal subgroups is a normal subgroup.

Solution. This statement means:
if H and K are normal subgroups of a group G, then H ∩K CG.
Hence, we assume H and K are normal subgroups of a group G.
To prove H ∩K C G, we must prove ghg−1 ∈ H ∩K for all g ∈ G and all

h ∈ H ∩K.

Proof. Let H and K be normal subgroups of a group G. Let g ∈ G and h ∈
H ∩K. Since G is a group and g ∈ G, then g−1 ∈ G. Since h ∈ H ∩K, then
h ∈ H and h ∈ K.

Since H C G, then ghg−1 ∈ H. Since K C G, then ghg−1 ∈ K. Hence,
ghg−1 ∈ H and ghg−1 ∈ K, so ghg−1 ∈ H ∩K. Therefore, H ∩K CG.

Proposition 98. If G is a group and H < G, then gHg−1 < G and gHg−1 ∼= H
for all g ∈ G.

Proof. Suppose G is a group and H < G.
Let g ∈ G.
We first prove gHg−1 < G.
Let x ∈ gHg−1.
Then there exists h ∈ H such that x = ghg−1.
Since h ∈ H and H ⊂ G, then h ∈ G.
By closure of G, x ∈ G.
Hence, x ∈ gHg−1 implies x ∈ G, so gHg−1 ⊂ G.

Let x, y ∈ gHg−1.
Then x = gh1g

−1 for some h1 ∈ H and y = gh2g
−1 for some h2 ∈ H.

Thus,

xy = (gh1g
−1)(gh2g

−1)

= (gh1)(g−1g)(h2g
−1)

= (gh1)(h2g
−1)

= g(h1h2)g−1.

By closure of H,h1h2 ∈ H.
Hence, there exists h1h2 ∈ H such that xy = g(h1h2)g−1, so xy ∈ gHg−1.
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Let e be the identity of G.
Since H < G, then e ∈ H.
Observe that e = gg−1 = geg−1.
Hence, e ∈ gHg−1.

Let x ∈ gHg−1.
Then there exists h ∈ H such that x = ghg−1.
Since H < G, then h−1 ∈ H.
Thus, x−1 = (ghg−1)−1 = gh−1g−1.
Hence, there exists h−1 ∈ H such that x−1 = gh−1g−1, so x−1 ∈ gHg−1.
Therefore, by the subgroup test, gHg−1 < G.

Proof. Let g ∈ G.
We prove gHg−1 ∼= H.
Define φ : H → gHg−1 by φ(h) = ghg−1 for all h ∈ H.
Let h1, h2 ∈ H such that h1 = h2. Then gh1 = gh2, so gh1g

−1 = gh2g
−1.

Hence, φ(h1) = φ(h2). Thus, h1 = h2 implies φ(h1) = φ(h2), so φ is well
defined. Therefore, φ is a function.

Let h1, h2 ∈ H such that φ(h1) = φ(h2). Then gh1g
−1 = gh2g

−1. By the
right cancellation law, we have gh1 = gh2. By the left cancellation law, we have
h1 = h2. Hence, φ(h1) = φ(h2) implies h1 = h2, so φ is injective.

Let ghg−1 ∈ gHg−1. Then h ∈ H. Hence, there exists h ∈ H such that
ghg−1 ∈ gHg−1. Therefore, φ is surjective.

Thus, φ is a bijective function.
Let h1, h2 ∈ H. Then

φ(h1h2) = g(h1h2)g−1

= (gh1)(h2g
−1)

= (gh1)(g−1g)(h2g
−1)

= (gh1g
−1)(gh2g

−1)

= φ(h1)φ(h2).

Thus, φ is a group homomorphism, so φ : H → gHg−1 is an isomorphism.
Therefore, H ∼= gHg−1.

Proof. Let g ∈ G.
Define φ : H → G by φ(h) = ghg−1 for all h ∈ H.
Let h1, h2 ∈ H such that h1 = h2. Then gh1 = gh2, so gh1g

−1 = gh2g
−1.

Hence, φ(h1) = φ(h2). Thus, h1 = h2 implies φ(h1) = φ(h2), so φ is well
defined. Therefore, φ is a function.
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Let h1, h2 ∈ H. Then

φ(h1h2) = g(h1h2)g−1

= (gh1)(h2g
−1)

= (gh1)e(h2g
−1)

= (gh1)(g−1g)(h2g
−1)

= (gh1g
−1)(gh2g

−1)

= φ(h1)φ(h2).

Therefore, φ is a group homomorphism.
Since φ : H → G is a group homomorphism, then φ(H) < G.

We prove φ(H) = gHg−1.
Let x ∈ φ(H). Then there exists h ∈ H such that x = φ(h). Thus, there

exists h ∈ H such that x = ghg−1. Hence, x ∈ gHg−1. Therefore, x ∈ φ(H)
implies x ∈ gHg−1, so φ(H) ⊂ gHg−1.

Let y ∈ gHg−1. Then there exists h ∈ H such that y = ghg−1. Hence,
there exists h ∈ H such that y = φ(h). Thus, y ∈ φ(H). Therefore, y ∈ gHg−1
implies y ∈ φ(H), so gHg−1 ⊂ φ(H).

Since φ(H) ⊂ gHg−1 and gHg−1 ⊂ φ(H), then φ(H) = gHg−1. Therefore,
gHg−1 < G.

Let h1, h2 ∈ H such that φ(h1) = φ(h2). Then gh1g
−1 = gh2g

−1. By the
right cancellation law, we have gh1 = gh2. By the left cancellation law, we have
h1 = h2. Hence, φ(h1) = φ(h2) implies h1 = h2, so φ is injective.

Since φ is injective, then H ∼= φ(H). Thus, H ∼= gHg−1, so gHg−1 ∼= H.

Proposition 99. Let H be a subgroup of group G.
Let N(H) = {g ∈ G : (∀h ∈ H)(gh = hg)}.
Then N(H) is a subgroup of G, called the normalizer of H in G.

Proof. Observe that N(H) is a subset of G.
Let e be the identity of G.
Let h ∈ H.
Then eh = h = he, so e ∈ N(H).
Hence, N(H) is not empty.

Let a, b ∈ N(H).
Then a ∈ G and for every h ∈ H, ah = ha and b ∈ G and for every h ∈

H, bh = hb.
Thus, ah = ha and bh = hb.
Hence, b = hbh−1.
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Since G is a group, then b−1 ∈ G.
By closure of G, ab−1 ∈ G.
Observe that

(ab−1)h = (a(hbh−1)−1)h

= (a(hb−1h−1))h

= (ah)b−1(h−1h)

= (ah)b−1e

= (ah)b−1

= (ha)b−1

= h(ab−1).

Hence, (ab−1)h = h(ab−1).
Therefore, ab−1 ∈ N(H).
Thus, N(H) is a subgroup of G.

Proposition 100. If G is a group and H < G, then N(H) < G and H ⊂ N(H).

Proof. Suppose G is a group and H < G.
Let x ∈ N(H).
Then x ∈ G.
Hence, N(H) ⊂ G.
Let e be the identity of G. To prove e ∈ N(H), we must prove eHe−1 = H.
Let h ∈ eHe−1. Then there exists h′ ∈ H such that h = eh′e−1. Thus,

h = eh′e−1

= h′e−1

= h′e

= h′.

Hence, h ∈ H. Therefore, h ∈ eHe−1 implies h ∈ H, so eHe−1 ⊂ H.
Let h ∈ H. Then

ehe−1 = he−1

= he

= h.

Hence, there exists h ∈ H such that h = ehe−1, so h ∈ eHe−1. Therefore,
h ∈ H implies h ∈ eHe−1, so H ⊂ eHe−1.

Since eHe−1 ⊂ H and H ⊂ eHe−1, then eHe−1 = H. Since e ∈ G and
eHe−1 = H, then e ∈ N(H).

Let a, b ∈ N(H). Then a, b ∈ G and aHa−1 = H and bHb−1 = H. By
closure of G, ab ∈ G.

We prove (ab)H(ab)−1 = H.
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Let x ∈ (ab)H(ab)−1. Then there exists h ∈ H such that x = (ab)h(ab)−1.
Hence, x = abhb−1a−1. Let h′ = bhb−1. Since h ∈ H, then h′ ∈ bHb−1. Since
bHb−1 = H, then h′ ∈ H. Thus, x = ah′a−1. Since h′ ∈ H, then x ∈ aHa−1.
Since aHa−1 = H, then x ∈ H. Hence, x ∈ (ab)H(ab)−1 implies x ∈ H, so
(ab)H(ab)−1 ⊂ H.

Let y ∈ H. Since H = aHa−1 = bHb−1, then y ∈ aHa−1 and y ∈ bHb−1.
Hence, y = aha−1 for some h ∈ H and y = bh′b−1 for some h′ ∈ H.

Let h′′ = b−1hb.
We must prove h′′ ∈ H!!!
Observe that

(ab)h′′(ab)−1 = (ab)(b−1hb)(ab)−1

= (ab)(b−1hb)(b−1a−1)

= a(bb−1)h(bb−1)a−1

= aha−1

= y.

Hence, y ∈ (ab)H(ab)−1. Thus, y ∈ H implies y ∈ (ab)H(ab)−1, so H ⊂
(ab)H(ab)−1.

Since (ab)H(ab)−1 ⊂ H and H ⊂ (ab)H(ab)−1, then (ab)H(ab)−1 = H.
Since ab ∈ G and (ab)H(ab)−1 = H, then ab ∈ N(H). Therefore, N(H) is

closed under the binary operation of G.
We prove N(H) is closed under taking inverses. Let a ∈ N(H). Then a ∈ G

and aHa−1 = H. By closure of G, a−1 ∈ G.
To prove a−1 ∈ N(H), we must prove a−1Ha = H. Thus, we must prove

aHa−1 = H implies a−1Ha = H.

Suppose aHa−1 = H. To prove a−1Ha = H, we must prove a−1Ha =
aHa−1. Thus, we must prove a−1Ha ⊂ aHa−1 and aHa−1 ⊂ a−1Ha.

Theorem 101. Let G be a group.
Let g ∈ G.
Then C(g) < G.
If g generates a normal subgroup of G, then C(g) CG.

Proof. Observe that C(g) is a subset of G. Let e be the identity element of G.
Since e ∈ G and eg = ge, then e ∈ C(g).

Let a, b ∈ C(g). Then a ∈ G and ag = ga and b ∈ G and bg = gb. By closure
of G, ab ∈ G. Observe that

(ab)g = a(bg)

= a(gb)

= (ag)b

= (ga)b

= g(ab).
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Since ab ∈ G and (ab)g = g(ab), then ab ∈ C(g). Hence, C(g) is closed under
the binary operation of G.

Let a ∈ C(g). Then a ∈ G and ag = ga. Thus, a = gag−1, so a−1 =
(gag−1)−1 = ga−1g−1. Hence, a−1g = ga−1. Since a−1 ∈ G and a−1g = ga−1,
then a−1 ∈ C(g). Hence, C(g) is closed under taking inverses.

Therefore, by the subgroup test, C(g) < G.
Let 〈g〉 be the cyclic subgroup of G generated by g. Then 〈g〉 = {gk : k ∈ Z}.

Suppose 〈g〉CG. Then agka−1 ∈ 〈g〉 for all a ∈ G and all gk ∈ 〈g〉.
Let H = C(g).
To prove H CG, we prove aha−1 ∈ H for all a ∈ G and all h ∈ H.
Let a ∈ G.
Let h ∈ H.
Then h ∈ G and gh = gh.

Theorem 102. The center of a group G is a normal subgroup of G.
Let G be a group.
Then Z(G) CG.

Proof. We first prove Z(G) < G.
Since Z(G) = {x ∈ G : (∀g ∈ G)(xg = gx)}, then Z(G) ⊂ G.
Let e be the identity of G.
By definition of group, eg = ge for all g ∈ G.
Since e ∈ G and eg = ge for all g ∈ G, then e ∈ Z(G), so Z(G) 6= ∅.
Since Z(G) ⊂ G and Z(G) 6= ∅, then Z(G) is a nonempty subset of G.

We prove Z(G) is closed under the binary operation of G.
Let a, b ∈ Z(G).
Then a ∈ G and ag = ga for all g ∈ G and b ∈ G and bg = gb for all g ∈ G.
By closure of G, a ∈ G and b ∈ G implies ab ∈ G.
Let g ∈ G.
Observe that

(ab)g = a(bg)

= a(gb)

= (ag)b

= (ga)b

= g(ab).

Since ab ∈ G and (ab)g = g(ab), then ab ∈ Z(G).
Therefore, Z(G) is closed under the binary operation of G.

We prove Z(G) is closed under inverses.
Let a ∈ Z(G).
Then a ∈ G and ag = ga for all g ∈ G.
Since a ∈ G and G is a group, then a−1 ∈ G.
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Let g ∈ G.
Then ag = ga, so a = gag−1.
Hence, a−1 = (gag−1)−1 = ga−1g−1, so a−1g = ga−1.
Thus, a−1g = ga−1 for all g ∈ G.
Since a−1 ∈ G and a−1g = ga−1 for all g ∈ G, then a−1 ∈ Z(G).
Therefore, a−1 ∈ Z(G) for all a ∈ Z(G).

Since Z(G) is a nonempty subset of G and Z(G) is closed under the binary
operation of G and a−1 ∈ Z(G) for all a ∈ Z(G), then by the two-step subgroup
test, Z(G) is a subgroup of G, so Z(G) < G.

Proof. We prove Z(G) CG.
Let g ∈ G and h ∈ Z(G). Then h ∈ G and hx = xh for all x ∈ G. By

closure of G, ghg−1 ∈ G. Let x ∈ G. Observe that

(ghg−1)x = (gh)(g−1x)

= (hg)(g−1x)

= h(gg−1)x

= hx

= xh

= x(gg−1)h

= (xg)(g−1h)

= (xg)(hg−1)

= x(ghg−1).

Since ghg−1 ∈ G and (ghg−1)x = x(ghg−1) for all x ∈ G, then ghg−1 ∈ Z(G).
Therefore, Z(G) CG.

Theorem 103. Let H CG.
Let G

H be the set of all cosets of H in G.

Define (aH)(bH) = (ab)H for all aH, bH ∈ G
H .

Then (GH , ∗) is a group and |GH | = [G : H].

Proof. Since e ∈ G, then eH = H is a coset of H in G. Therefore, H ∈ G
H , so

G
H is not empty.

Let aH, bH ∈ G
H . Then a, b ∈ G and (aH)(bH) = (ab)H. Since G is a

group, then ab ∈ G, so (ab)H ∈ G
H . Therefore, G

H is closed under multiplication
of cosets.

We prove that multiplication of cosets is well defined.
Suppose cH, dH ∈ G

H such that aH = cH and bH = dH. Then a, b, c, d ∈ G.
To prove coset multiplication is well defined, we must prove (aH)(bH) is unique.
Hence, we must prove (aH)(bH) = (cH)(dH).

Since aH = cH iff a ∈ cH, then a ∈ cH. Thus, there exists h1 ∈ H such that
a = ch1. Since bH = dH iff b ∈ dH, then b ∈ dH. Thus, there exists h2 ∈ H
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such that b = dh2. Since H is normal in G, then for every g ∈ G and h ∈ H,
ghg−1 ∈ H. Since d−1 ∈ G and h1 ∈ H, then d−1h1(d−1)−1 = d−1h1d ∈ H.
Let h3 = d−1h1d. Then h3 ∈ H.

Let h = h3h2. Since H is a group, then H is closed under its binary opera-
tion. Hence, h ∈ H since h2, h3 ∈ H.

Observe that

(cd)h = (cd)(h3h2)

= (cd)(d−1h1d)h2

= c(dd−1)h1dh2

= (ch1)(dh2)

= ab.

Since ab = (cd)h for some h ∈ H, then ab ∈ (cd)H. Since ab ∈ (ab)H and
ab ∈ (cd)H, then (ab)H = (cd)H. Therefore,

(aH)(bH) = (ab)H

= (cd)H

= (cH)(dH).

Therefore, multiplication of cosets is well defined, so multiplication of cosets is
a binary operation on G

H .

Let aH, bH, cH ∈ G
H . Observe that

[(aH)(bH)](cH) = (abH)(cH)

= ((ab)c)H

= (a(bc))H

= (aH)(bcH)

= (aH)[(bH)(cH)].

Therefore, multiplication of cosets is associative.
Let aH ∈ G

H . Then (aH)(H) = (aH)(eH) = (ae)H = aH = (ea)H =

(eH)(aH) = (H)(aH). Since H ∈ G
H and (aH)(H) = (H)(aH) = aH, then H

is an identity element of G
H .

Since a−1 ∈ G, then a−1H ∈ G
H . Observe that (aH)(a−1H) = (aa−1)H =

eH = (a−1a)H = (a−1H)(aH). Hence, an inverse of aH is a−1H, so each
element of G

H has an inverse.

Therefore, (GH , ∗) is a group.

The order of the group G
H is the number of cosets of H in G. Since H is

normal in G, then gH = Hg for every g ∈ G. Thus, each left coset equals
each right coset. Hence, the number of cosets equals the number of left cosets.
Therefore, |GH | = [G : H].

Theorem 104. If N is a subgroup of an abelian group G, then G
N is abelian.

108



Proof. Suppose G is an abelian group and N < G.
Every subgroup of an abelian group is normal, so N CG.
Let aN, bN ∈ G

N .
Then a, b ∈ G.
Observe that

(aN)(bN) = (ab)N

= (ba)N

= (bN)(aN).

Therefore, G
N is abelian.

Theorem 105. If N is a subgroup of a cyclic group G, then G
N is cyclic.

Proof. Suppose N is a subgroup of a cyclic group G. Every cyclic group is
abelian, so G is abelian. Every subgroup of an abelian group is normal, so N is
normal. Therefore, G

N is a group and G
N = {aN : a ∈ G}.

Since G is cyclic, then there exists g ∈ G such that G = {gn : n ∈ Z}. Since
g ∈ G, then gN ∈ G

N . Every element of a group generates a cyclic subgroup. Let

T be the cyclic subgroup of G
N generated by gN . Then T = {(gN)n : n ∈ Z}.

Let aN ∈ G
N . Then a ∈ G. Since G is cyclic, then there exists an integer n

such that a = gn. Therefore, aN = gnN = (g∗g∗...∗g)N = (gN)(gN)...(gN) =
(gN)n. Thus, there exists an integer n such that aN = (gN)n, so aN ∈ T .
Hence, aN ∈ G

N implies aN ∈ T , so G
N ⊂ T .

Let y ∈ T . Then there exists an integer m such that y = (gN)m. Thus, y =
(gN)(gN)...(gN) = (gg...g)N = (gm)N . Since gm ∈ G, then y = (gm)N ∈ G

N .

Thus, y ∈ T implies y ∈ G
N , so T ⊂ G

N .

Since G
N ⊂ T and T ⊂ G

N , then G
N = T . Thus, G

N = {(gN)n : n ∈ Z}. Since

there exists gN ∈ G
N such that G

N = {(gN)n : n ∈ Z}, then G
N is cyclic.

Theorem 106. Let G be a group and let Z(G) be the center of G.
If G

Z(G) is cyclic, then G is abelian.

Proof. Let H = Z(G) = {x ∈ G : (∀g ∈ G)(xg = gx)}.
Since Z(G) CG, then H CG, so G

H exists.

Suppose G
H is cyclic.

Then there exists gH ∈ G
H such that G

H = {(gH)k : k ∈ Z}.
Hence, there exists g ∈ G such that G

H = {gkH : k ∈ Z}.

Let aH, bH ∈ G
H .

Then a, b ∈ G and there exist integers m and n such that aH = gmH and
bH = gnH.

Since aH = gmH, then a = gmh1 for some h1 ∈ H.
Since bH = gnH, then b = gnh2 for some h2 ∈ H.
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Observe that

ab = (gmh1)(gnh2)

= gm(h1g
n)h2

= gm(gnh1)h2

= (gmgn)(h1h2)

= (gm+n)(h1h2)

= (gn+m)(h1h2)

= (gngm)(h1h2)

= (gngm)(h2h1)

= gn(gmh2)h1

= gn(h2g
m)h1

= (gnh2)(gmh1)

= ba.

Therefore, G is abelian.

Homomorphisms

Theorem 107. preservation properties of a group homomorphism
Let (G, ∗) be a group with identity e.
Let (G′, ?) be a group with identity e′.
Let φ : G→ G′ be a homomorphism.
Then
1. φ(e) = e′. preserves identity
2. (∀a ∈ G)[φ(a−1) = (φ(a))−1]. preserves inverses
3. (∀k ∈ Z)[φ(ak) = (φ(a))k]. preserves powers of a
4. If H < G, then φ(H) < G′. preserves subgroups of G
In particular, since G < G, then φ(G) < G′.
This means the image of a homomorphism is a subgroup of G′.
5. If K ′ < G′, then φ−1(K ′) < G. preserves subgroups of G′

Moreover, if K ′ CG′, then φ−1(K ′) CG.

Proof. To prove 1: we must prove φ(e) = e′.
Observe that

e′φ(e) = φ(e)

= φ(ee)

= φ(e)φ(e).

Applying the right cancellation law, we obtain e′ = φ(e), as desired.

Proof. We prove 2.
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Let a ∈ G.
We must prove φ(a−1) = (φ(a))−1.
Observe that

e′ = φ(e)

= φ(aa−1)

= φ(a)φ(a−1).

Hence, φ(a) and φ(a−1) are inverses of each other in G′.
Therefore, (φ(a))−1 = φ(a−1), as desired.

Proof. To prove 3: define predicate p(k) : φ(ak) = (φ(a))k over Z.
We must prove (∀k ∈ Z)(p(k)).
Observe that (∀k ∈ Z)(p(k))⇔ (∀k ∈ Z+)(p(k)) ∧ p(0) ∧ (∀k ∈ Z+)(p(−k)).
Thus, we must prove:
3a. (∀k ∈ Z+)(p(k)).
3b. p(0).
3c. (∀k ∈ Z+)(p(−k)).

Observe that

φ(a0) = φ(e)

= e′

= (φ(a))0.

Therefore, p(0) is true.

We prove (∀k ∈ Z+)(p(k)) by induction on k.
If k = 1, then φ(a1) = φ(a) = (φ(a))1, so p(1) is true.
Suppose k ∈ Z+ such that p(k) is true.
Then φ(ak) = (φ(a))k.
Observe that

φ(ak+1) = φ(aka)

= φ(ak)φ(a)

= (φ(a))kφ(a)

= (φ(a))k+1.

Hence, φ(k + 1) is true, so p(k) implies p(k + 1).
Therefore, by induction, p(k) is true for all k ∈ Z+.
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We prove (∀k ∈ Z+)(p(−k)) by induction on k.
Let k = 1.
Since a group homomorphism preserves inverses, then φ(a−1) = (φ(a))−1,

so p(−1) is true.
Suppose k ∈ Z+ such that p(−k) is true.
Then φ(a−k) = (φ(a))−k.
Observe that

φ(a−(k+1)) = φ(a−k−1)

= φ(a−ka−1)

= φ(a−k)φ(a−1)

= (φ(a))−kφ(a−1)

= (φ(a))−k(φ(a))−1

= (φ(a))−k−1

= (φ(a))−(k+1).

Thus, p(−(k + 1)) is true, so p(−k) implies p(−(k + 1)).
Hence, by induction, p(−k) is true for all k ∈ Z+.
Therefore, p(−k) is true for all k ∈ Z.

Proof. We prove 4.
Suppose H < G.
We must prove φ(H) < G′.

Let φ(H) be the image of H under φ.
Then φ(H) = {φ(h) ∈ G′ : h ∈ H}.
Thus, φ(H) ⊂ G′, so φ(H) is a subset of G′.

Every subgroup of G contains the identity of G.
Since H < G and e ∈ G, then e ∈ H.
Since e ∈ H and φ(e) = e′ and e′ ∈ G′, then e′ ∈ φ(H).
Therefore, φ(H) is closed under the identity of G′.

Let φ(a), φ(b) ∈ φ(H).
Since φ(a) ∈ φ(H), then φ(a) ∈ G′ and a ∈ H.
Since φ(b) ∈ φ(H), then φ(b) ∈ G′ and b ∈ H.
Since H is a group and a ∈ H and b ∈ H, then by closure of H, we have

ab ∈ H.
Since φ(a) ∈ G′, then a ∈ G.
Since φ(b) ∈ G′, then b ∈ G.
Since G is a group and a ∈ G and b ∈ G, then by closure of G, we have

ab ∈ G, so φ(ab) ∈ G′.
Since φ(a)φ(b) = φ(ab) and φ(ab) ∈ G′ and ab ∈ H, then φ(a)φ(b) ∈ φ(H).
Therefore, φ(H) is closed under the binary operation of G′.
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Let φ(a) ∈ φ(H).
Then a ∈ H by definition of φ(H).
Since H is a group, then a−1 ∈ H.
Since a−1 ∈ H and φ(a−1) = (φ(a))−1, then (φ(a))−1 ∈ φ(H).
Consequently, φ(H) is closed under taking of inverses.

Since φ(H) is a subset of G′ and is closed under the binary operation of G′

and is closed under the identity of G′ and is closed under inverses, then by the
subgroup test, φ(H) is a subgroup of G′.

Therefore, φ(H) < G′.

Proof. We prove 5:
Suppose K ′ < G′.
We must prove the pre-image of K ′ is a subgroup of G.
Let K be the pre-image of K ′.
Then K = φ−1(K ′) = {a ∈ G : φ(a) ∈ K ′}, so K ⊂ G.
Therefore, K is a subset of G.

Let x, y ∈ K.
Since x ∈ K, then x ∈ G and φ(x) ∈ K ′.
Since y ∈ K, then y ∈ G and φ(y) ∈ K ′.
Since G is a group and x ∈ G and y ∈ G, then by closure of G, we have

xy ∈ G.
Since K ′ < G′, then K ′ is a group.
Since K ′ is a group and φ(x) ∈ K ′ and φ(y) ∈ K ′, then by closure of K ′, we

have φ(x)φ(y) ∈ K ′.
Since xy ∈ G and φ(xy) = φ(x)φ(y) and φ(x)φ(y) ∈ K ′, then xy ∈ K.
Therefore, K is closed under the binary operation of G.

Since K ′ < G′, then e′ ∈ K ′.
Since e′ = φ(e), then φ(e) ∈ K ′.
Since e ∈ G and φ(e) ∈ K ′, then e ∈ K.
Therefore, K is closed under the identity of G.

Let x ∈ K.
Then x ∈ G and φ(x) ∈ K ′.
Since G is a group and x ∈ G, then x−1 ∈ G.
Since K ′ is a group and φ(x) ∈ K ′, then (φ(x))−1 ∈ K ′.
Since x−1 ∈ G and φ(x−1) = (φ(x))−1 and (φ(x))−1 ∈ K ′, then x−1 ∈ K.
Therefore, K is closed under inverses.

Since K is a subset of G and K is closed under the binary operation of G and
K is closed under the identity of G and K is closed under inverses, then by the
subgroup test, K < G.

Therefore, φ−1(K ′) < G.
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Suppose K ′ CG′.
Let g ∈ G and h ∈ K.
Let g′ = ghg−1.
To prove K C G, we must prove g′ ∈ K, so we must prove g′ ∈ G and

φ(g′) ∈ K ′.

Since g ∈ G and G is a group, then g−1 ∈ G.
Since K is a subgroup of G, then K is a subset of G.
Since h ∈ K and K ⊂ G, then h ∈ G.
Since G is closed under its binary operation and g, g−1, h ∈ G, then g′ ∈ G.

Observe that

φ(g′) = φ(ghg−1)

= φ(gh)φ(g−1)

= φ(g)φ(h)φ(g−1)

= φ(g)φ(h)(φ(g))−1.

Since h ∈ K, then φ(h) ∈ K ′, by definition of K.
Since K ′ CG′, then aba−1 ∈ K ′ for every a ∈ G′ and every b ∈ K ′.
Since φ(g) ∈ G′ and φ(h) ∈ K ′, then this implies φ(g)φ(h)(φ(g))−1 ∈ K ′.
Since φ(g)φ(h)(φ(g))−1 = φ(g′), then φ(g′) ∈ K ′.
Since g′ ∈ G and φ(g′) ∈ K ′, then g′ ∈ K.
Therefore, K CG.

Theorem 108. Let φ : G→ G′ be a group homomorphism.
Then ker(φ) CG.

Proof. We prove K < G.
Let e be the identity of G and e′ be the identity of G′.
Let K = ker(φ) = {g ∈ G : φ(g) = e′}.
Then K ⊂ G, so K is a subset of G.

Let a, b ∈ K.
Then a, b ∈ G and φ(a) = φ(b) = e′. Thus,

φ(ab) = φ(a)φ(b)

= e′e′

= e′.

Since ab ∈ G and φ(ab) = e′, then ab ∈ K.
Therefore, K is closed under the binary operation of G.

Since e ∈ G and φ(e) = e′, then e ∈ K.
Therefore, K is closed under the identity of G.
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Let a ∈ K.
Then a ∈ G and φ(a) = e′.
Let a−1 ∈ G. Then

φ(a−1) = (φ(a))−1

= e′−1

= e′.

Since a−1 ∈ G and φ(a−1) = e′, then a−1 ∈ K.
Therefore, K is closed under inverses.

Since K is a subset of G and K is closed under the binary operation of G and
K is closed under the identity of G and K is closed under inverses, then by the
subgroup test, K < G.

Proof. To prove K is normal in G, we must prove (∀g ∈ G)(∀h ∈ K)(ghg−1 ∈
K).

Let g ∈ G and h ∈ K.
Since h ∈ K, then h ∈ G and φ(h) = e′.
Since g ∈ G and G is a group, then g−1 ∈ G.
Since g, g−1, h ∈ G and G is closed under its binary operation, then ghg−1 ∈

G.
Observe that

φ(ghg−1) = φ(g)φ(h)φ(g−1)

= φ(g)e′φ(g−1)

= φ(g)φ(g−1)

= φ(gg−1)

= φ(e)

= e′.

Since ghg−1 ∈ G and φ(ghg−1) = e′, then ghg−1 ∈ K.
Therefore, K CG.

Theorem 109. Let φ : G→ G′ be a group homomorphism.
If φ is injective, then G ∼= φ(G).

Solution. Suppose φ is injective.
To prove G ∼= φ(G), we must prove there exists an isomorphism f : G →

φ(G).

Proof. Suppose φ is injective.
Let f : G→ φ(G) be the restriction of φ to φ(G).
Then f(g) = φ(g) for all g ∈ G.
Clearly, f is a function.
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Let a, b ∈ G.
Since φ is a homomorphism, then φ(ab) = φ(a)φ(b) and φ(G) < G′.
Observe that

f(ab) = φ(ab)

= φ(a)φ(b)

= f(a)f(b).

Hence, f is a group homomorphism.

Suppose f(a) = f(b).
Then φ(a) = φ(b).
Since φ is injective, then φ(a) = φ(b) implies a = b.
Hence, a = b.
Therefore, f(a) = f(b) implies a = b, so f is injective.

Let b ∈ φ(G).
By definition of φ(G), there exists a ∈ G such that φ(a) = b.
Since f(a) = φ(a) = b, then there exists a ∈ G such that f(a) = b.
Therefore, f is surjective.

Since f is injective and surjective, then f is bijective.
Thus, f is a bijective homomorphism, so f : G→ φ(G) is an isomorphism.
Therefore, G ∼= φ(G).

Theorem 110. Let φ : G→ G′ be a group homomorphism.
Let e be the identity of G.
Then φ is injective if and only if ker(φ) = {e}.

Solution. Consider if the kernel of a homomorphism has more than one ele-
ment, then by the pigeonhole principle there will be at least two elements in the
kernel which map to e′ ∈ G′.

Hence, φ would not be one to one.
Now, let’s suppose the kernel has exactly one element in it.
Then the only element that maps to e′ is e ∈ G.
We must prove P ⇔ Q:
1. Necessary ONLY IF ⇒ φ is injective, then ker(φ) = {e}.
2. Sufficient IF ker(φ) = {e}, then φ is injective.

Proof. Let e′ be the identity of G′.
We prove if φ is injective, then ker(φ) = {e}.
Suppose φ is injective.
Let a ∈ ker(φ).
Then a ∈ G and φ(a) = e′.
Observe that φ(e) = e′ = φ(a).
Since φ is injective, then φ(e) = φ(a) implies e = a.
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Hence, e = a, so a ∈ {e}.
Thus, a ∈ ker(φ) implies a ∈ {e}, so ker(φ) ⊂ {e}.
Since e ∈ G and φ(e) = e′, then e ∈ ker(φ).
Hence, {e} ⊂ ker(φ).
Since ker(φ) ⊂ {e} and {e} ⊂ ker(φ), then ker(φ) = {e}, as desired.

Proof. We prove if ker(φ) = {e}, then φ is injective.
Conversely, suppose ker(φ) = {e}.
To prove φ is injective, we must prove (∀a, b ∈ G)(φ(a) = φ(b)→ a = b).
Let a, b ∈ G such that φ(a) = φ(b).
Observe that

e′ = φ(a)[φ(a)]−1

= φ(b)[φ(a)]−1

= φ(b)φ(a−1)

= φ(ba−1).

Since φ(ba−1) = e′ and ba−1 ∈ G, then ba−1 ∈ ker(φ).
Since ker(φ) = {e}, then, ba−1 ∈ {e}, so ba−1 = e.
Observe that

a = ea

= (ba−1)a

= b(a−1a)

= be

= b.

Therefore, a = b, as desired.

Theorem 111. Let φ : G→ G′ be a group homomorphism.
Let e be the identity of G. Then
1. φ is an epimorphism iff Im(φ) = G′.
2. φ is a monomorphism iff ker(φ) = {e}.
3. φ is an isomorphism iff ker(φ) = {e} and Im(φ) = G′.

Proof. We prove 1.
Suppose φ is an epimorphism.
Then φ is surjective, so the image of φ is G′.
Therefore, Im(φ) = G′.

Conversely, suppose Im(φ) = G′.Then φ is surjective, so φ is an epimorphism.

Proof. We prove 2.
Suppose φ is a monomorphism.
Then φ is injective.
The homomorphism φ is injective iff ker(φ) = {e}.
Therefore, ker(φ) = {e}.
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Conversely, suppose ker(φ) = {e}.
The homomorphism φ is injective iff ker(φ) = {e}.
Therefore, φ is injective, so φ is a monomorphism.

Proof. We prove 3.
Suppose φ is an isomorphism.
Then φ is bijective, so φ is injective and surjective.
Since φ is surjective, then Im(φ) = G′.
Since φ is injective and a homomorphism φ is injective iff ker(φ) = {e}, then

ker(φ) = {e}.
Therefore, ker(φ) = {e} and Im(φ) = G′.

Conversely, suppose ker(φ) = {e} and Im(φ) = G′.
Since ker(φ) = {e} iff φ is injective and ker(φ) = {e}, then φ is injective.
Since Im(φ) = G′, then φ is surjective.
Since φ is injective and surjective, then φ is bijective.
Since φ is a homomorphism and φ is bijective, then φ is an isomorphism.

Theorem 112. The composition of group homomorphisms is a group homo-
morphism.

Proof. Let f1 : G→ G′ be a group homomorphism.
Let f2 : G′ → G′′ be a group homomorphism.
Let f2 ◦ f1 : G→ G′′ be the composition of f1 and f2.
We must prove f2 ◦ f1 is a group homomorphism.

Let a, b ∈ G.
Then

(f2 ◦ f1)(ab) = f2[f1(ab)]

= f2[f1(a)f1(b)]

= f2[f1(a)] ∗ f2[f1(b)]

= (f2 ◦ f1)(a) ∗ (f2 ◦ f1)(b).

Hence, (f2 ◦ f1)(ab) = (f2 ◦ f1)(a) ∗ (f2 ◦ f1)(b).
Therefore, f2 ◦ f1 : G→ G′′ is a group homomorphism.

Theorem 113. Let φ : G→ G′ be a group homomorphism with kernel K.
Then xK = Kx = φ−1(φ(x)) for all x ∈ G.

Proof. Let e′ be the identity of G′.
Let x ∈ G.
Observe that φ−1(φ(x)) = {a ∈ G : φ(a) = φ(x)}, by definition of preimage

of an element.
Observe that K = ker(φ) = {a ∈ G : φ(a) = e′} and xK = {xk : k ∈ K}.
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Let xk ∈ xK.
Then k ∈ K, so k ∈ G and φ(k) = e′.
Since K < G, then K ⊂ G.
Since k ∈ K and K ⊂ G, then k ∈ G.
By closure of G, xk ∈ G.
Observe that

φ(xk) = φ(x)φ(k)

= φ(x)e′

= φ(x).

Since xk ∈ G and φ(xk) = φ(x), then xk ∈ φ−1(φ(x)).
Thus, xk ∈ xK implies xk ∈ φ−1(φ(x)), so xK ⊂ φ−1(φ(x)).

Let a ∈ φ−1(φ(x)).
Then a ∈ G and φ(a) = φ(x).
Let k = x−1a.
Since x−1, a ∈ G, then by closure of G, k ∈ G.
Observe that

φ(k) = φ(x−1a)

= φ(x−1)φ(a)

= (φ(x))−1φ(a)

= (φ(a))−1φ(a)

= e′.

Since k ∈ G and φ(k) = e′, then k ∈ K.
Hence, there exists k ∈ K such that k = x−1a, so there exists k ∈ K such

that xk = a.
Thus, a ∈ xK.
Therefore, a ∈ φ−1(φ(x)) implies a ∈ xK, so φ−1(φ(x)) ⊂ xK.
Since xK ⊂ φ−1(φ(x)) and φ−1(φ(x)) ⊂ xK, then xK = φ−1(φ(x)).
Since K CG, then xK = Kx.
Therefore, xK = Kx = φ−1(φ(x)).

Corollary 114. If G is a finite group and φ : G → G′ is a group homomor-
phism, then |G| = | ker(φ)||Im(φ)|.

Proof. Let G be a finite group and φ : G→ G′ be a group homomorphism with
kernel K.

Then Im(φ) = φ(G) = {φ(g) ∈ G′ : g ∈ G}.
Let φ(g) ∈ Im(φ).
Then g ∈ G and the preimage of φ(g) is the left coset gK.
Thus, |Im(φ)| is the number of distinct left cosets of K in G.

Therefore, |Im(φ)| = [G : K] = |G|
|K| , so |G| = |K||Im(φ)|.
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Theorem 115. Let G be a group.
If N C G, then η : G 7→ G

N defined by η(a) = aN for all a ∈ G is a
homomorphism such that ker(η) = N .

We call η the natural homomorphism from G onto G
N .

Proof. Suppose N is a normal subgroup of G.
Then G

N is a group under coset multiplication with identity N .

Suppose a, b ∈ G such that a = b.
Then η(a) = aN and η(b) = bN .
Since a = b and b ∈ bN , then a ∈ bN .
Thus, aN = bN , so η(a) = η(b).
Hence, a = b implies η(a) = η(b), so η is well defined.
Therefore, η is a function.

Let a, b ∈ G.
Then η(ab) = (ab)N = (aN)(bN) = η(a)η(b).
Therefore, η is a homomorphism.

Let bN ∈ G
N .

Then b ∈ G, by definition of G
N .

Observe that η(b) = bN .
Hence, there exists b ∈ G such that η(b) = bN , so η is surjective.
Observe that ker(η) = {g ∈ G : η(g) = N}.

Let x ∈ ker(η).
Then x ∈ G and N = η(x) = xN .
Since x ∈ xN and xN = N , then x ∈ N .
Thus, x ∈ ker(η) implies x ∈ N , so ker(η) ⊂ N .

Let y ∈ N .
Since N is a subgroup of G, then N is a subset of G.
Since y ∈ N and N ⊂ G, then y ∈ G.
Since y ∈ yN and y ∈ N , then yN = N .
Thus, η(y) = yN = N .
Since y ∈ G and η(y) = N , then y ∈ ker(η).
Hence, y ∈ N implies y ∈ ker(η), so N ⊂ ker(η).
Since ker(η) ⊂ N and N ⊂ ker(η), then ker(η) = N .

Isomorphisms

Lemma 116. The isomorphism relation on groups is reflexive.
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Proof. Let (G, ∗) be a group.
To prove the isomorphic relation is reflexive, we must prove G ∼= G.
Let φ : G→ G be defined by φ(x) = x for all x ∈ G.
Then φ is the identity map and is bijective.

Let a, b ∈ G.
Then φ(ab) = ab = φ(a)φ(b).
Therefore, φ is a homomorphism.

Since φ is a homomorphism and φ is bijective, then φ : G→ G is an isomor-
phism.

Therefore, G ∼= G.

Lemma 117. The isomorphism relation on groups is symmetric.

Proof. Let (G, ∗) and (H, ·) be a groups.
To prove is isomorphic to is symmetric, we must prove if G ∼= H, then

H ∼= G.

Suppose G ∼= H.
Then there exists an isomorphism from G to H.
Let φ : G→ H be an isomorphism.
Then φ is a bijective function and is a homomorphism.
Since φ is bijective, then the inverse function exists.
Let φ−1 : H → G be the inverse function of φ.

Since (φ−1)−1 = φ, then φ−1 is invertible.
All invertible functions are bijective, so φ−1 is bijective.
Therefore, φ−1 is a bijective function.

We prove φ−1 is a homomorphism.
Let b1, b2 ∈ H.
Since φ is bijective, then φ is surjective.
Thus there exists a1, a2 ∈ G such that φ(a1) = b1 and φ(a2) = b2.
Hence, φ−1(b1) = a1 and φ−1(b2) = a2.

Since φ and φ−1 are inverses, then φ−1 ◦ φ = id.
Hence, (φ−1 ◦ φ)(x) = x for all x ∈ G.
Since G is closed under ∗ and a1, a2 ∈ G, then a1a2 ∈ G.
Thus, (φ−1 ◦ φ)(a1a2) = a1a2.
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Observe that

φ−1(b1b2) = φ−1(φ(a1)φ(a2))

= φ−1(φ(a1a2))

= (φ−1 ◦ φ)(a1a2)

= a1a2

= φ−1(b1)φ−1(b2).

Thus, φ−1(b1b2) = φ−1(b1)φ−1(b2), so φ−1 is a homomorphism.
Since φ−1 is a bijective homomorphism, then φ−1 : H → G is an isomor-

phism.
Therefore, H ∼= G.

Lemma 118. The isomorphism relation on groups is transitive.

Proof. Let (G, ∗), (H, ·), (K, �) be groups.
To prove is isomorphic to is transitive, we must prove if G ∼= H and H ∼= K,

then G ∼= K.

Suppose G ∼= H and H ∼= K.
Then there exist isomorphisms φ : G→ H and ψ : H → K.
Thus, φ is a bijective homomorphism and ψ is a bijective homomorphism.
Since φ is a bijective homomorphism, then φ is a homomorphism and φ is a

bijection.
Since ψ is a bijective homomorphism, then ψ is a homomorphism and ψ is

a bijection.

Let ψ ◦ φ : G→ K be the composition of φ and ψ.
The composition of bijections is a bijection.
Since φ is a bijection and ψ is a bijection, then ψ ◦ φ is a bijection.

The composition of group homomorphisms is a group homomorphism.
Since φ is a homomorphism and ψ is a homomorphism, then ψ ◦ φ is a

homomorphism.
Since ψ ◦ φ is a bijection and ψ ◦ φ is a homomorphism, then ψ ◦ φ : G→ K

is an isomorphism.
Therefore, G ∼= K.

Theorem 119. The isomorphism relation on groups is an equivalence relation
on the class of all groups.

Proof. The isomorphism relation on the class of all groups is reflexive, symmet-
ric, and transitive.

Therefore, the isomorphism relation is an equivalence relation.
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Theorem 120. preservation properties of a group isomorphism
Let φ : G→ G′ be a group isomorphism. Then
1. |G| = |G′|. preserves cardinality
2. If G is abelian, then G′ is abelian. preserves commutativity
3. If G is cyclic, then G′ is cyclic. preserves cyclic property
4. If H is a subgroup of G of order n, then φ(H) is a subgroup of G′ of

order n. preserves finite subgroups
5. (∀a ∈ G,n ∈ Z+)(|a| = n → |φ(a)| = n). preserves finite order of an

element

Proof. We prove 1.
Since φ is an isomorphism, then φ is a bijective homomorphism, so φ is a

bijection.
Thus, φ is a bijective function from G to G′.
Since there exists a bijective function from G to G′, then |G| = |G′|.

Proof. We prove 2.
Suppose G is abelian.
Let a′, b′ ∈ G′.
Since φ is an isomorphism, then φ is a bijective homomorphism, so φ is a

bijective function.
Hence, φ is surjective, so there exists a ∈ G such that φ(a) = a′ and there

exists b ∈ G such that φ(b) = b′.
Observe that

a′ · b′ = φ(a) · φ(b)

= φ(ab)

= φ(ba)

= φ(b) · φ(a)

= b′ · a′.

Therefore, a′b′ = b′a′, so G′ is abelian.

Proof. We prove 3.
Suppose G is cyclic.
Then there exists g ∈ G such that G = {gk : k ∈ Z}.
Since φ is a function, then there exists a unique g′ ∈ G′ such that φ(g) = g′.

Every element of a group generates a cyclic subgroup.
Since g′ ∈ G′ and G′ is a group, then g′ generates a cyclic subgroup.
Let T be the cyclic subgroup of G′ generated by g′.
Then T = {(g′)k : k ∈ Z}.
Since T is a subgroup of G′, then T is a subset of G′, so T ⊂ G′.
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Let b ∈ G′.
Since φ is surjective, then there exists a ∈ G such that φ(a) = b.
Since a ∈ G, then there exists m ∈ Z such that a = gm.
Observe that

(g′)m = (φ(g))m

= φ(gm)

= φ(a)

= b.

Thus, there exists m ∈ Z such that b = (g′)m, so b ∈ T .
Hence, b ∈ G′ implies b ∈ T , so G′ ⊂ T .
Since G′ ⊂ T and T ⊂ G′, then G′ = T .
Therefore, there exists g′ ∈ G′ such that G′ = T , so G′ is cyclic.

Proof. We prove 4.
Suppose H is a subgroup of G of order n.
Then n is a positive integer and |H| = n.

Since φ is an isomorphism, then φ is a bijective homomorphism, so φ is a
bijective function and φ is a homomorphism.

Every homomorphism preserves subgroups.
Since φ is a homomorphism, then φ preserves subgroups.
Thus, if H is a subgroup of G, then φ(H) is a subgroup of G′.
Since H is a subgroup of G, then we conclude φ(H) is a subgroup of G′.

Let φ′ : H → φ(H) be the function defined by φ′(h) = φ(h) for all h ∈ H.

We prove φ′ is surjective.
Let b ∈ φ(H).
Then b = φ(a) for some a ∈ H, so φ′(a) = φ(a) = b.
Since φ′(a) = b for some a ∈ H, then φ′ is surjective.

We prove φ′ is injective.
Let x, y ∈ H such that φ′(x) = φ′(y).
Then φ(x) = φ′(x) = φ′(y) = φ(y).
Since φ is bijective, then φ is injective, so for every a, b ∈ G, φ(a) = φ(b)

implies a = b.
Since H < G, then H ⊂ G.
Since x ∈ H and H ⊂ G, then x ∈ G.
Since y ∈ H and H ⊂ G, then y ∈ G.
Since x ∈ G and y ∈ G, then φ(x) = φ(y) implies x = y.
Since φ(x) = φ(y), then we conclude x = y.
Therefore, φ′ is injective.
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Since φ′ is injective and surjective, then φ′ is bijective, so |H| = |φ(H)|.
Thus, n = |H| = |φ(H)|.

Since φ(H) is a subgroup of G′ and |φ(H)| = n, then φ(H) is a subgroup of
G′ of order n.

Proof. We prove 5.
Let a be an arbitrary element of G of finite order n.
Then a ∈ G and |a| = n.
The order of a is the order of the cyclic group generated by a.
Let H be the cyclic subgroup of G generated by a.
Then H = {ak : k ∈ Z} and H < G and |H| = n and a ∈ H.

Since φ is an isomorphism, then if H is a subgroup of G of order n, then the
image of H is a subgroup of G′ of order n.

Since H is a subgroup of G of order n, then we conclude the image of H is
a subgroup of G′ of order n.

Let φ(H) be the image of H under φ.
Then φ(H) = {φ(h) ∈ G′ : h ∈ H} and φ(H) < G′ and |φ(H)| = n.
Thus, |H| = |φ(H)|.

Since G′ is a group, then every element of G′ generates a cyclic subgroup of
G′.

Since φ(a) ∈ G′, then φ(a) generates a cyclic subgroup of G′.
Let H ′ be the cyclic subgroup of G′ generated by φ(a).
Then H ′ = {(φ(a))k : k ∈ Z}.
The order of φ(a) is the order of the cyclic subgroup generated by φ(a).
Thus, |φ(a)| = |H ′|.

The cyclic subgroup of G′ generated by φ(a) is the smallest subgroup of G′

that contains φ(a).
Thus, if K is a subgroup of G′ that contains φ(a), then H ′ ⊂ K.
Since a ∈ H and φ(a) ∈ G′, then φ(a) ∈ φ(H).
Since φ(H) is a subgroup of G′ that contains φ(a), then H ′ ⊂ φ(H).

Let h′ ∈ φ(H).
Then there exists h ∈ H such that h′ = φ(h) ∈ G′.
Since h ∈ H, then there exists k ∈ Z such that h = ak.
Thus, h′ = φ(h) = φ(ak) = (φ(a))k.
Hence, there exists k ∈ Z such that h′ = (φ(a))k, so h′ ∈ H ′.
Therefore, h′ ∈ φ(H) implies h′ ∈ H ′, so φ(H) ⊂ H ′.
Since φ(H) ⊂ H ′ and H ′ ⊂ φ(H), then φ(H) = H ′.
Thus, n = |H| = |φ(H)| = |H ′| = |φ(a)|.
Therefore, |φ(a)| = n, as desired.

Theorem 121. Every cyclic group of infinite order is isomorphic to (Z,+).
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Proof. Let f : Z→ H be a binary relation defined by n 7→ an for all n ∈ Z.
Let n ∈ Z.
Then f(n) = an ∈ H.
Let n1, n2 ∈ Z such that n1 = n2.
Then f(n1) = an1 = an2 = f(n2).
Thus, n1 = n2 implies f(n1) = f(n2), so f is well defined.
Therefore, f is a function.

Let s, t ∈ Z such that as = at. Observe that as−t = asa−t = ata−t = at−t =
a0 = e. Thus, as−t = e. Since a is of infinite order and s− t ∈ Z, then as−t = e
iff s− t = 0. Hence, s− t = 0, so s = t.

Thus, as = at implies s = t, so f is injective. Since as = at implies s = t,
then s 6= t implies as 6= at. Hence, each power of a is distinct.

Let b ∈ H. Then there exists k ∈ Z such that b = ak. Observe that f(k) =
ak = b. Hence, there exists k ∈ Z such that f(k) = b. Therefore, f is surjective.

Since f is injective and surjective, then f is bijective. Thus, f : Z 7→ H is a
bijective function.

We prove f is a group homomorphism from (Z,+) to (H, ∗). Let m,n ∈ Z.
Observe that

f(m+ n) = am+n

= aman

= f(m)f(n).

Hence, f(m+n) = f(m)f(n), so f is a group homomorphism. Since f is a bijec-
tive homomorphism, then f : Z→ H is an isomorphism. Therefore, Z ∼= H, so
H ∼= Z. Since H is arbitrary, then every cyclic group of infinite order is isomor-
phic to (Z,+). Thus, H = {ak : k ∈ Z} = {..., a−3, a−2, a−1, a0, a1, a2, a3, ...}
and |H| =∞.

Theorem 122. Every cyclic group of finite order n is isomorphic to (Zn,+).

Proof. Let (G, ∗) be a cyclic group of finite order n.
Then |G| = n.
We must prove G ∼= Zn.
Since G is cyclic, then there exists a ∈ G such that G = {ak : k ∈ Z}.
Thus, n = |G| = |{ak : k ∈ Z}|.
The order of a is the order of the cyclic subgroup of G generated by a.
Thus, the order of a is the order of G, so |a| = n.

Let φ : Zn → G be a binary relation defined by φ([k]) = ak for all [k] ∈ Zn.
Let [k] ∈ Zn.
Then φ([k]) = ak ∈ G.
Suppose [x], [y] ∈ Zn such that [x] = [y].
Then x ≡ y (mod n).
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Since a has finite order n, then x ≡ y (mod n) iff ax = ay.
Hence, ax = ay, so φ([x]) = φ([y]).
Thus, [x] = [y] implies φ([x]) = φ([y]), so φ is well defined.
Therefore, φ is a function.
Let [x], [y] ∈ Zn.
Then

φ([x] + [y]) = φ([x+ y])

= ax+y

= axay

= φ([x])φ([y]).

Therefore, φ is a homomorphism.
Let [x], [y] ∈ Zn such that φ([x]) = φ([y]).
Then ax = ay.
Since a has finite order, then ax = ay iff x ≡ y (mod n).
Thus, x ≡ y (mod n), so [x] = [y].
Hence, φ([x]) = φ([y]) implies [x] = [y], so φ is injective.

Let y ∈ G.
Then there exists k ∈ Z such that y = ak, by definition of G.
Thus, [k] ∈ Zn and φ([k]) = ak = y.
Hence, there exists [k] ∈ Zn such that φ([k]) = y.
Therefore, φ is surjective.
Since φ is injective and surjective, then φ is bijective.
Thus, φ is a bijective homomorphism, so φ : Zn → G is an isomorphism.
Therefore, Zn ∼= G, so G ∼= Zn.

Corollary 123. Every group of prime order p is isomorphic to (Zp,+).

Proof. Let G be a group of prime order p.
Every group of prime order is cyclic.
Therefore, G is cyclic.
Every cyclic group of finite order n is isomorphic to (Zn,+).
Thus, every cyclic group of finite order p is isomorphic to (Zp,+).
Since G is a cyclic group of finite order p, then G is isomorphic to Zp.

Proposition 124. Let G be an abelian group with subgroups H and K.
If HK = G and H ∩K = {e}, then G ∼= H ×K.

Proof. Let e be the identity of G.
Suppose HK = G and H ∩K = {e}.
Let φ : H ×K → G be defined by φ(h, k) = hk for all (h, k) ∈ H ×K.
Clearly, φ is a function.
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Let (h1, k1), (h2, k2) ∈ H ×K.
Then

φ((h1, k1)(h2, k2)) = φ(h1h2, k1k2)

= (h1h2)(k1k2)

= h1(h2k1)k2

= h1(k1h2)k2

= (h1k1)(h2k2)

= φ(h1, k1)φ(h2, k2)

Therefore, φ is a group homomorphism.

Let g ∈ G.
Since G = HK, then there exist h ∈ H and k ∈ K such that g = hk.
Thus, there exists (h, k) ∈ H ×K such that g = φ(h, k).
Hence, φ is surjective.

To prove φ is injective, we prove ker(φ) = {(e, e)}.
Let (a, b) ∈ ker(φ). Then (a, b) ∈ H ×K and φ(a, b) = e. Thus, a ∈ H and

b ∈ K and ab = e. Hence, a = b−1 and b = a−1. Since a ∈ H and H < G, then
a−1 ∈ H. Thus, b ∈ H. Since b ∈ K and K < G, then b−1 ∈ K. Thus, a ∈ K.
Since a ∈ H and a ∈ K, then a ∈ H∩K. Since b ∈ H and b ∈ K, then b ∈ H∩K.
Since a ∈ H ∩K and H ∩K = {e}, then a ∈ {e}, so a = e. Since b ∈ H ∩K and
H ∩K = {e}, then b ∈ {e}, so b = e. Thus, (a, b) = (e, e), so (a, b) ∈ {(e, e)}.
Therefore, (a, b) ∈ ker(φ) implies (a, b) ∈ {(e, e)}, so ker(φ) ⊂ {(e, e)}.

Since φ is a group homomorphism, then (e, e) ∈ ker(φ), so {(e, e)} ⊂ ker(φ).
Thus, ker(φ) ⊂ {(e, e)} and {(e, e)} ⊂ ker(φ), so ker(φ) = {(e, e)}.
Since ker(φ) = {(e, e)} iff φ is injective, then φ is injective.
Therefore, φ is a bijective homomorphism, so φ is an isomorphism.
Thus, H ×K ∼= G, so G ∼= H ×K.

Proposition 125. The identity map is an automorphism in any group.

Proof. Let (G, ∗) be a group.
Let IG : G → G be the identity map on G defined by IG(x) = x for all

x ∈ G.
Then IG is a bijection, so IG is a bijective function.

Let a, b ∈ G.
Since IG(ab) = ab = IG(a)IG(b), then IG is a homomorphism.
Since IG is a homomorphism and IG is bijective, then IG is an isomorphism.
Therefore, IG : G→ G is an automorphism.

Theorem 126. Let Aut(G) be the set of all automorphisms of a group G.
Then (Aut(G), ◦) is a subgroup of (SG, ◦).
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Proof. Let α ∈ Aut(G).
Then α : G→ G is an isomorphism, so α is a bijective homomorphism.
Thus, α is a bijective function, so α is a permutation of G.
Hence, α ∈ SG.
Therefore, α ∈ Aut(G) implies α ∈ SG, so Aut(G) ⊂ SG.
Consequently, Aut(G) is a subset of SG.

Let α, β ∈ Aut(G).
Then α : G→ G and β : G→ G are isomorphisms, so α and β are bijective

homomorphisms.
Since α is a bijective homomorphism, then α is a homomorphism.
Since β is a bijective homomorphism, then β is a homomorphism.
Since α ∈ Aut(G) and Aut(G) ⊂ SG, then α ∈ SG.
Since β ∈ Aut(G) and Aut(G) ⊂ SG, then β ∈ SG.

Let αβ : G→ G be the composition of α and β.
Since α ∈ SG and β ∈ SG and SG is a group, then by closure of SG, we have

αβ ∈ SG, so αβ is a permutation.
Hence, αβ is a bijective function.
The composition of homomorphisms is a homomorphism.
Since α is a homomorphism and β is a homomorphism, then αβ is a homo-

morphism.
Since αβ is a bijective function and αβ is a homomorphism, then αβ is an

isomorphism, so αβ ∈ Aut(G).
Therefore, Aut(G) is closed under function composition of SG.

Let id : G→ G be the identity element of SG.
Then id is the identity map, so id is an isomorphism.
Hence, id ∈ Aut(G), so Aut(G) is closed under the identity of SG.

Let α ∈ Aut(G).
Then α : G→ G is an isomorphism.
Since the isomorphism relation is an equivalence relation on the class of

groups, then the isomorphism relation is symmetric.
Thus, for groups G and H, if G ∼= H, then H ∼= G.
Hence, if φ : G→ H is an isomorphism, then the inverse map φ−1 : H → G

is an isomorphism.
Since α : G → G is an isomorphism, then we conclude the inverse map

α−1 : G→ G is an isomorphism.
Therefore, α−1 ∈ Aut(G)., so Aut(G) is closed under taking inverses.

Since Aut(G) is a subset of SG and Aut(G) is closed under function composi-
tion of SG and Aut(G) is closed under the identity of SG and Aut(G) is closed
under inverses, then by the subgroup test, Aut(G) is a subgroup of SG.
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Proposition 127. inner automorphism
Let 〈G, ∗〉 be a group.
Let g ∈ G be a fixed element.
Then the map ig : G→ G defined by ig(x) = g ∗ x ∗ g−1 for all x ∈ G is an

isomorphism of G with itself.

Solution. We must prove ig is an isomorphism of G with G.
Thus we must prove:
1) ig is one to one.
To prove this we must show: ∀a, b ∈ G.ig(a) = ig(b)→ a = b.
2) ig is onto. To prove this we must show: ∀b ∈ G.∃a ∈ G.ig(a) = b.
3) (∀a, b ∈ G)(ig(a ∗ b) = ig(a) ∗ ig(b)).
ig is called an inner automorphism.
The set of all inner automorphisms of G is denoted Inn(G).

Proof. Since g ∈ G and G is a group, then g−1 ∈ G.
Let a, b ∈ G.
Since G is closed under ∗ then gag−1 ∈ G and gbg−1 ∈ G.

Suppose ig(a) = ig(b).
Then gag−1 = gbg−1.
By the left cancellation law of G, ag−1 = bg−1.
By the right cancellation law of G, a = b.
Hence, ig(a) = ig(b) implies a = b.
Since a, b are arbitrary then ig(a) = ig(b) implies a = b is true for all a, b ∈ G.
Therefore, ig is one to one, by definition of injective function.

Suppose b ∈ G.
Since g ∈ G by definition of group g−1 ∈ G.
Set a = g−1bg.
Since G is closed under ∗, then a ∈ G.
Observe that

ig(a) = ig(g
−1bg)

= g(g−1bg)g−1

= (gg−1)b(gg−1)

= ebe

= b

Thus, there exists a ∈ G such that ig(a) = b.
Since b is arbitrary then there exists a ∈ G such that ig(a) = b for all b ∈ G.
Therefore, by definition of surjective function, ig is onto.
Since ig is one to one and onto, then ig is a bijective map.
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Let a, b ∈ G.
Observe that

ig(a) ∗ ig(b) = (g ∗ a ∗ g−1) ∗ (g ∗ b ∗ g−1)

= (g ∗ a) ∗ (g−1 ∗ g) ∗ (b ∗ g−1)

= (g ∗ a) ∗ e ∗ (b ∗ g−1)

= (g ∗ a) ∗ (b ∗ g−1)

= g ∗ (a ∗ b) ∗ g−1

= ig(a ∗ b)

Thus, ig(a) ∗ ig(b) = ig(a ∗ b).
Since a, b are arbitrary then ig(a) ∗ ig(b) = ig(a ∗ b) for all a, b ∈ G.
Therefore, by definition of isomorphism, ig : G→ G is an isomorphism.

Theorem 128. First Isomorphism Theorem
Let φ : G→ G′ be a group homomorphism with kernel K.
Then there exists a group isomorphism ψ : G

K → φ(G) defined by ψ(gK) =

φ(g) for all g ∈ G such that ψ ◦ η = φ, where η : G → G
K is the natural

homomorphism.

Proof. Since φ is a group homomorphism, then φ(G) < G′. Let e′ be the identity
of G′. Since K is the kernel of φ, then K = ker(φ) = {g ∈ G : φ(g) = e′}. Since
K CG, then the quotient group G

K exists.

Define binary relation ψ : GK → φ(G) by ψ(gK) = φ(g) for all gK ∈ G
K .

To prove ψ is an isomorphism, we must prove ψ is a function and ψ is a
homomorphism and ψ is injective and ψ is surjective.

We prove the binary relation ψ is well defined. Let aK, bK ∈ G
K such that

aK = bK. Then a, b ∈ G. Since aK = bK iff a ∈ bK, then a ∈ bK. Hence,
a = bk for some k ∈ K, by definition of bK. By definition of K, k ∈ G and
φ(k) = e′. Observe that

ψ(aK) = φ(a)

= φ(bk)

= φ(b)φ(k)

= φ(b)e′

= φ(b)

= ψ(bK).

Hence, ψ(aK) = ψ(bK). Therefore, aK = bK implies ψ(aK) = ψ(bK). Thus,
ψ is well defined, so ψ is a function from G

K to φ(G).
Observe that

ψ((aK)(bK)) = ψ((ab)K)

= φ(ab)

= φ(a)φ(b)

= ψ(aK)ψ(bK).
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Therefore, ψ is a homomorphism.
We prove ψ is injective. Let aK, bK ∈ G

K such that ψ(aK) = ψ(bK). Then
a, b ∈ G and φ(a) = φ(b).

Observe that φ(a−1b) = φ(a−1)φ(b) = φ(a−1)φ(a) = (φ(a))−1φ(a) = e′.
Since a−1b ∈ G and φ(a−1b) = e′, then a−1b ∈ K, by definition of K. Since
K < G, then a−1b ∈ K iff aK = bK. Therefore, aK = bK.

Hence, ψ(aK) = ψ(bK) implies aK = bK, so ψ is injective.
We prove ψ is surjective. Let φ(g) ∈ φ(G). Then g ∈ G, by definition of

φ(G). Thus, gK ∈ G
K . Observe that ψ(gK) = φ(g). Hence, there exists gK ∈ G

K
such that ψ(gK) = φ(G), so ψ is surjective.

Since ψ is injective and surjective, then ψ is bijective. Thus, ψ is a bijective
homomorphism, so ψ : GK → φ(G) is an isomorphism. Hence, G

K
∼= φ(G).

The composition of homomorphisms is a homomorphism. Since ψ is a ho-
momorphism and η is the natural homomorphism from G onto G

K , then ψ ◦ η
is a homomorphism. Hence, ψ ◦ η is a function. Observe that φ : G → G′ and
ψ ◦ η : G→ G′ have the same domain G and the same codomain G′.

Let g ∈ G. Then (ψ ◦ η)(g) = ψ(η(g)) = ψ(gK) = φ(g). Since g is arbitrary,
then (ψ ◦ η)(g) = φ(g) for all g ∈ G.

Therefore, ψ ◦ η = φ.

Theorem 129. Second Isomorphism Theorem
Let H be a subgroup of G and let N be a normal subgroup of G.
Let HN = {hk : h ∈ H ∧ k ∈ N}.
Then HN < G and N CHN and H ∩N CH and H

H∩N
∼= HN

N .

Solution. We must prove:
1. HN < G.
2. N CHN .
3. H ∩N CH.
4. H

H∩N
∼= HN

N .

Proof. We first prove HN < G.
Let x ∈ HN . Then there exists h ∈ H and k ∈ N such that x = hk. Since

H < G, then H ⊂ G. Since h ∈ H and H ⊂ G, then h ∈ G. Since N < G,
then N ⊂ G. Since k ∈ N and N ⊂ G, then k ∈ G. Since G is a group, then
G is closed under its binary operation. Thus, since h, k ∈ G, then hk = x ∈ G.
Therefore, x ∈ HN implies x ∈ G, so HN ⊂ G.

We apply a subgroup test.
Let e be the identity of G. Since H < G, then e ∈ H. Since N < G, then

e ∈ N . Since e = ee, then e ∈ HN , by definition of HN . Therefore, HN 6= ∅.
Let a, b ∈ HN . Then there exist h1 ∈ H and k1 ∈ N such that a = h1k1

and there exist h2 ∈ H and k2 ∈ N such that b = h2k2, by definition of HN .
Since a, b ∈ HN and HN ⊂ G, then a, b ∈ G. Thus, ab−1 = (h1k1)(h2k2)−1 =
(h1k1)(k−12 h−12 ) = h1k1k

−1
2 h−12 . Let k = k1k

−1
2 . Since N is a group, then k ∈ N

and ab−1 = h1kh
−1
2 .
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Since h2 ∈ H and H ⊂ G, then h2 ∈ G. Since N C G, then for every
g ∈ G, h ∈ N, ghg−1 ∈ N . Thus, in particular, if we let g = h2 and h = k,
then h2kh

−1
2 ∈ N . Let k3 = h2kh

−1
2 . Then k3 ∈ N and kh−12 = h−12 k3, so

ab−1 = h1(h−12 k3) = (h1h
−1
2 )k3. Since H is a group, then H is closed under

its binary operation. Therefore, since h1 ∈ H and h−12 ∈ H, then h1h
−1
2 ∈ H.

Since h1h
−1
2 ∈ H and k3 ∈ N , then ab−1 ∈ HN , by definition of HN .

Therefore, HN is a subgroup of G.
We prove N is normal in HN . We first prove N is a subgroup of HN and

then prove for every g ∈ HN and k ∈ N , gkg−1 ∈ N .
Let x ∈ N . Then x = ex. Since e ∈ H and x ∈ N , then x ∈ HN , by

definition of HN . Thus, x ∈ N implies x ∈ HN , so N ⊂ HN .
Since N < G, then e ∈ N , so N 6= ∅.
Let a, b ∈ N . Since N is a group, then b−1 ∈ N . Since N is closed under its

binary operation, then ab−1 ∈ N .
Thus, N is a subgroup of HN .
Let g ∈ HN and k′ ∈ N . Then g = hk for some h ∈ H and k ∈ N .

Observe that gk′g−1 = (hk)k′(hk)−1 = hkk′k−1h−1. Let k′′ = kk′k−1. Then
gk′g−1 = hk′′h−1. Since N CG, then hk′′h−1 ∈ N , so gk′g−1 ∈ N . Therefore,
N is a normal subgroup of HN .

Since N is normal in HN , then the quotient group HN
N exists.

Let HN
N be the set of all cosets of N in HN . Then HN

N = {aN : a ∈ HN} =
{hnN : h ∈ H,n ∈ N} = {hN : h ∈ H}.

Define binary relation φ : H 7→ HN
N by φ(h) = hN for all h ∈ H.

We prove φ is well defined. Let h1, h2 ∈ H such that h1 = h2. Then
h1N = h2N . Thus, φ(h1) = h1N = h2N = φ(h2). Hence, h1 = h2 implies
φ(h1) = φ(h2), so φ is well defined. Therefore, φ is a function.

Let y ∈ HN
N . Then there exists h ∈ H such that y = hN , by definition of

HN
N . Thus, φ(h) = hN = y, so there exists h ∈ H such that φ(h) = y. Hence,

φ is surjective. Therefore, φ(H) = HN
N .

Let a, b ∈ H. Then φ(ab) = (ab)N = (aN)(bN) = φ(a)φ(b). Thus, φ is a
homomorphism.

We prove ker(φ) = H ∩ N . Let x ∈ ker(φ). Then x ∈ H and φ(x) = N ,
by definition of kernel of φ. Thus, N = φ(x) = xN . Since xN = N iff x ∈ N ,
then x ∈ N . Thus x ∈ H and x ∈ N , so x ∈ H ∩N . Hence, x ∈ ker(φ) implies
x ∈ H ∩N , so ker(φ) ⊂ H ∩N .

Let y ∈ H ∩ N . Then y ∈ H and y ∈ N . Since y ∈ H and H ⊂ G, then
y ∈ G. Since y ∈ N iff yN = N , then yN = N . Thus, φ(y) = yN = N . Since
y ∈ H and φ(y) = N , then y ∈ ker(φ). Hence, y ∈ H ∩N implies y ∈ ker(φ), so
H ∩N ⊂ ker(φ).

Since ker(φ) ⊂ H ∩ N and H ∩ N ⊂ ker(φ), then ker(φ) = H ∩ N . The
kernel of φ is normal in H, so H ∩N CH.

Hence, φ : H 7→ HN
N is a homomorphism with kernel H∩N and φ(H) = HN

N .

Thus, by the first isomorphism theorem, H
H∩N

∼= HN
N .
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