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Binary Operations

Example 1. (2S ,∪) is an associative binary structure
Let S be a set.
Let 2S be the powerset of S.
Then set union ∪ is a binary operation on 2S .

Proof. Let X,Y ∈ 2S .
Then X ⊂ S and Y ⊂ S.
By definition of set union, X ∪ Y is a set uniquely determined by X and Y .

Let a ∈ X ∪ Y .
Then either a ∈ X or a ∈ Y .
We consider these cases separately.
Case 1: Suppose a ∈ X.
Since X ⊂ S, then a ∈ S.
Case 2: Suppose a ∈ Y .
Since Y ⊂ S, then a ∈ S.
Hence, in either case a ∈ S.
Thus, a ∈ X ∪ Y implies a ∈ S, so X ∪ Y ⊂ S.
Therefore, X ∪ Y ∈ 2S .
Since X ∪ Y ∈ 2S and X ∪ Y is unique, then set union is a binary operation

on 2S .
Hence, (2S ,∪) is a binary structure.
Since set union is associative, then (2S ,∪) is an associative binary structure.

Example 2. (2S ,∩) is an associative binary structure
Let S be a set.
Let 2S be the powerset of S.
Then set intersection ∩ is a binary operation on 2S .

Proof. Let X,Y ∈ 2S .
Since X ∈ 2S , then X ⊂ S.
Since Y ∈ 2S , then Y ⊂ S.



By definition of set intersection, X ∩ Y is a set uniquely determined by X
and Y .

In general, A ∩B ⊂ A for any sets A,B.
In particular, X ∩ Y ⊂ X.
Since X ∩ Y ⊂ X and X ⊂ S, then by transitivity of the subset relation,

X ∩ Y ⊂ S.
Therefore, X ∩ Y ∈ 2S .
Since X ∩ Y ∈ 2S and X ∩ Y is unique, then set intersection is a binary

operation on 2S .
Hence, (2S ,∩) is a binary structure.
Since set intersection is associative, then (2S ,∩) is an associative binary

structure.

Example 3. Let S be a nonempty set.
Let P be the power set of S.

A. (P,∪)
Set union is a binary operation on P, so (P,∪) is a binary structure and

∪ is associative and commutative and identity is ∅ and the zero is S and each
subset of S is idempotent with respect to set union.

The empty set is its inverse under ∪ since ∅∪∅ = ∅. Every nonempty subset
of S is not invertible.

B. (P,∩).
Set intersection is a binary operation on P, so (P,∩) is a binary structure

and ∩ is associative and commutative and identity is S and the zero is ∅ and
each subset of S is idempotent with respect to set intersection.

The set S is its inverse under ∩ since S ∩ S = S. Every nonempty subset of
S is not invertible.

Example 4. (T, ◦) is a binary structure
Let S be a set.
Let T = {X : X ⊂ S × S}.
Then composition of relations ◦ is a binary operation on T .

Proof. Let A,B ∈ T .
Then A ⊂ S × S and B ⊂ S × S, so A and B are relations on set S.
By definition of composition of relations, we have B ◦ A = {(a, c) ∈ S × S :

∃b ∈ S.aAb ∧ bBc}, so B ◦A ⊂ S × S.
Therefore, B ◦A ∈ T , so T is closed under ◦.

By definition of composition of relations, B ◦ A is uniquely determined, so
B ◦A is unique.

Since A and B are arbitrary, then B ◦A ∈ T is unique for all A,B ∈ T .
Therefore, ◦ is a binary operation on T .
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Example 5. (SS , ◦) is an associative binary structure
Let S be a set.
Let SS = {f : S → S|f is a function}.
Then (SS , ◦) is an associative binary structure.

Proof. Let f, g ∈ SS .
Then f : S → S and g : S → S are functions.
By definition of function composition, f ◦ g : S → S is the unique function

defined by (f ◦ g)(x) = f(g(x)) for all x ∈ S.
Hence, f ◦ g ∈ SS and f ◦ g is unique.
Therefore, function composition is a binary operation on SS , so (SS , ◦) is a

binary structure.

Since function composition is associative, then ◦ is associative, so (SS , ◦) is
an associative binary structure.

Example 6. Let S be a nonempty set.
Let SS = {f : S → S|f is a function}.
Then function composition ◦ is a binary operation on SS , so (SS , ◦) is a

binary structure and ◦ is associative, but not commutative.
The identity is the identity function I : S → S defined by I(x) = x for all

x ∈ S.
Each bijective function is invertible.
The identity function is idempotent with respect to function composition.

Example 7. Let F = {f : R→ R|f is a function}.
Let f, g ∈ F .
Define f + g by (f + g)(x) = f(x) + g(x) for all x ∈ R.
Define f − g by (f − g)(x) = f(x)− g(x) for all x ∈ R.
Define f · g by (f · g)(x) = f(x)g(x) for all x ∈ R.
Define f ◦ g by (f ◦ g)(x) = f(g(x)) for all x ∈ R.

Then (F,+) is a binary structure and + is associative and commutative.
The additive identity is the zero function Z : R → R defined by Z(x) = 0

for all x ∈ R.
If f : R→ R is a function, then its inverse is the function g : R→ R defined

by g(x) = −f(x) for all x ∈ R.

Then (F,−) is a binary structure and − is not associative and not commuta-
tive.

Then (F, ·) is binary structure and · is associative and commutative.
The multiplicative identity is the constant function I : R → R defined by

I(x) = 1 for all x ∈ R.
If f : R→ R is a function, then its inverse is the function g : R→ R defined

by g(x) = 1
f(x) where f(x) 6= 0.

The zero is the function Z : R→ R defined by Z(x) = 0 for all x ∈ R.
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Then (F, ◦) is a binary structure and ◦ is associative, but not commutative.
The identity is the identity function I : R → R defined by I(x) = x for all

x ∈ R.
Each bijective function is invertible.
The identity function is idempotent with respect to function composition.

Additive Number Groups

Example 8. The set of all integers under addition is an abelian group.
(Z,+) is an abelian group.

Proof. Let a, b ∈ Z.
Since Z is closed under addition, then a+ b is a unique integer, so addition

is a binary operation on Z.
Since (a+ b) + c = a+ (b+ c) for all a, b, c ∈ Z, then addition of integers is

associative.
Since a+ b = b+ a for all a, b ∈ Z, then addition of integers is commutative.
Since 0 ∈ Z and 0 + a = a + 0 = a for all a ∈ Z, then 0 ∈ Z is an additive

identity.
For each a ∈ Z, there is −a ∈ Z such that a + (−a) = −a + a = 0, so for

each integer a there is an additive inverse −a ∈ Z.

Since addition is a binary operation on Z and addition of integers is associative
and 0 ∈ Z is an additive identity and for each integer a there is an additive
inverse −a ∈ Z, then (Z,+) is a group.

Since (Z,+) is a group and addition of integers is commutative, then (Z,+)
is an abelian group.

Example 9. The set of all multiples of an integer n under addition is
an abelian group.

Let n ∈ Z.
Then (nZ,+) is an abelian group.

Proof. We prove addition is a binary operation on nZ.
Let na, nb ∈ nZ.
Then a, b ∈ Z.
Since Z is closed under addition and a, b ∈ Z, then a+b ∈ Z, so n(a+b) ∈ nZ.
Hence, na+ nb ∈ nZ, so nZ is closed under addition.
Therefore, addition is a binary operation on nZ.

We prove addition over nZ is associative.
Let na, nb, nc ∈ nZ.
Then a, b, c ∈ Z.
Since Z is closed under multiplication and n ∈ Z and a, b, c ∈ Z, then

na, nb, nc ∈ Z.
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Since addition of integers is associative, then (na+nb)+nc = na+(nb+nc).
Therefore, addition over nZ is associative.

We prove addition over nZ is commutative.
Let na, nb ∈ nZ.
Then a, b ∈ Z.
Since Z is closed under multiplication and n ∈ Z and a, b ∈ Z, then na, nb ∈

Z.
Since addition of integers is commutative, then na+ nb = nb+ na.
Therefore, addition over nZ is commutative.

We prove 0 ∈ nZ is an additive identity.
Since 0 ∈ Z and 0 = n · 0, then 0 ∈ nZ.
Let na ∈ nZ.
Since nZ ⊂ Z, then na ∈ Z.
Since 0 ∈ Z is additive identity, then na + 0 = na = 0 + na, so na + 0 =

na = 0 + na for all na ∈ nZ.
Since 0 ∈ nZ and na + 0 = na = 0 + na for all na ∈ nZ, then 0 ∈ nZ is an

additive identity.

We prove for every nk ∈ nZ there is an additive inverse −nk ∈ nZ.
Let nk ∈ nZ.
Then k ∈ Z, so −k ∈ Z.
Since −nk = n(−k) and −k ∈ Z, then −nk ∈ nZ.
Observe that

nk + (−nk) = nk − nk
= 0

= 0k

= (−n+ n)k

= −nk + nk.

Thus, nk + (−nk) = 0 = −nk + nk.
Since −nk ∈ nZ and nk + (−nk) = 0 = −nk + nk, then −nk ∈ nZ is an

additive inverse of nk.
Therefore, for every nk ∈ nZ there is an additive inverse −nk ∈ nZ.

Since addition is a binary operation on nZ and addition over nZ is associative
and 0 ∈ nZ is an additive identity and for every nk ∈ nZ there is an additive
inverse −nk ∈ nZ, then (nZ,+) is a group.

5



Since (nZ,+) is a group and addition over nZ is commutative, then (nZ,+)
is an abelian group.

Example 10. Integers modulo n under addition is an abelian group.
Let n ∈ Z+.
Then (Zn,+) is an abelian group.

Proof. Let n be a positive integer.
Let Zn be the set of all congruence classes modulo n.
Then Zn = {[a] : a ∈ Z} and addition modulo n is a binary operation on

Zn.
Since ([a] + [b]) + [c] = [a] + ([b] + [c]) for all [a], [b], [c] ∈ Zn, then addition

modulo n is associative.
Since [a] + [b] = [b] + [a] for all [a], [b] ∈ Zn, then addition modulo n is

commutative.
Since [0] ∈ Zn and [0] + [a] = [a] + [0] = [a] for all [a] ∈ Zn, then [0] ∈ Zn is

an additive identity.

We prove for every [a] ∈ Zn there is an additive inverse [n− a] ∈ Zn.
Let [a] ∈ Zn.
Then a ∈ Z.
Since a ∈ Z and n ∈ Z and Z is closed under subtraction, then n − a ∈ Z,

so [n− a] ∈ Zn.
Observe that

[a] + [n− a] = [a+ (n− a)]

= [n]

= [0]

= [n]

= [(n− a) + a]

= [n− a] + [a].

Thus, [a] + [n− a] = [0] = [n− a] + [a].
Since [n − a] ∈ Zn and [a] + [n − a] = [0] = [n − a] + [a], then [n − a] is an

additive inverse of [a].
Therefore, for every [a] ∈ Zn there exists an additive inverse [n− a] ∈ Zn.

Since addition modulo n is a binary operation on Zn and addition modulo n
is associative and [0] ∈ Zn is an additive identity and for every [a] ∈ Zn there
is an additive inverse [n− a] ∈ Zn, then (Zn,+) is a group.

Since (Zn,+) is a group and addition modulo n is commutative, then (Zn,+)
is an abelian group.

Example 11. The set of all rational numbers under addition is an
abelian group.

(Q,+) is an abelian group.
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Proof. Addition is a binary operation on Q and addition over Q is associative
and commutative.

We prove 0 ∈ Q is an additive identity.
Since 0 and 1 are integers and 1 6= 0, then 0 = 0

1 ∈ Q.
Observe that a

b + 0 = 0 + a
b = a

b for all a
b ∈ Q.

Since 0 ∈ Q and a
b + 0 = 0 + a

b = a
b for all ab ∈ Q, then 0 ∈ Q is an additive

identity.

We prove for every a
b ∈ Q there is an additive inverse −ab ∈ Q.

Let a
b ∈ Q.

Then a, b ∈ Z and b 6= 0.
Since a ∈ Z, then −a ∈ Z.
Since −a and b are integers and b 6= 0, then −ab ∈ Q.
Observe that a

b + −a
b = −a

b + a
b = 0.

Since −ab ∈ Q and a
b + −a

b = −a
b + a

b = 0, then −ab is an additive inverse of
a
b .

Therefore, for every a
b ∈ Q there is an additive inverse −ab ∈ Q.

Since addition is a binary operation on Q and addition over Q is associative
and 0 ∈ Q is an additive identity and for every a

b ∈ Q there is an additive
inverse −ab ∈ Q, then (Q,+) is a group.

Since (Q,+) is a group and addition over Q is commutative, then (Q,+) is
an abelian group.

Example 12. The set of all real numbers under addition is an abelian
group.

(R,+) is an abelian group.

Proof. Let a, b ∈ R.
Then a+ b is a unique real number.
Therefore, R is closed under addition, so addition is a binary operation on

R.
Addition of real numbers is associative and commutative.
Since 0 ∈ R and a + 0 = 0 + a = a for all a ∈ R, then 0 ∈ R is an additive

identity.
For each a ∈ R, there exists −a ∈ R such that a + (−a) = −a + a = 0, so

for every real number a there is an additive inverse −a ∈ R.

Since addition is a binary operation on R and addition of real numbers is
associative and 0 ∈ R is an additive identity and for every real number a there
is an additive inverse −a ∈ R, then (R,+) is a group.
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Since (R,+) is a group and addition of real numbers is commutative, then
(R,+) is an abelian group.

Example 13. The set of all complex numbers under addition is an
abelian group.

(C,+) is an abelian group.

Proof. Addition is a binary operation on C and addition over C is associative
and commutative.

Since 0 = 0 + 0i ∈ C and z + 0 = 0 + z = z for all z ∈ C, then 0 ∈ C is an
additive identity.

We prove for every z ∈ C there is an additive inverse −z ∈ C.
Let z ∈ C.
Then z = x+ yi for some x, y ∈ R.
Since x ∈ R, then −x ∈ R.
Since y ∈ R, then −y ∈ R.
Let −z = −x− yi.
Since −x ∈ R and −y ∈ R, then −z ∈ C.
Observe that

z + (−z) = −z + z

= (−x− yi) + (x+ yi)

= (−x+ x) + (−y + y)i

= 0 + 0i

= 0.

Therefore, z + (−z) = (−z) + z = 0.
Since −z ∈ C and z + (−z) = (−z) + z = 0, then −z is an additive inverse

of z.
Therefore, for every z ∈ C there is an additive inverse −z ∈ C.

Since addition is a binary operation on C and addition of complex numbers
is associative and 0 = 0 + 0i ∈ C is an additive identity and for every z ∈ C
there is an additive inverse −z ∈ C, then (C,+) is a group.

Since (C,+) is a group and addition of complex numbers is commutative,
then (C,+) is an abelian group.

Multiplicative Number Groups

Example 14. The set of all nonzero rational numbers under multipli-
cation is an abelian group.

(Q∗, ·) is an abelian group.
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Proof. We prove multiplication is a binary operation on Q∗.
Let a

b ,
c
d ∈ Q∗.

Since a
b ∈ Q∗, then a

b ∈ Q and a
b 6= 0.

Since c
d ∈ Q∗, then c

d ∈ Q and c
d 6= 0.

Since a
b ∈ Q, then a, b ∈ Z and b 6= 0.

Since c
d ∈ Q, then c, d ∈ Z and d 6= 0.

Since multiplication is a binary operation on Q, then Q is closed under
multiplication.

Since a
b ∈ Q and c

d ∈ Q, then this implies a
b ·

c
d ∈ Q, so ac

bd ∈ Q.
Since a

b 6= 0 and b 6= 0, then a 6= 0.
Since c

d 6= 0 and d 6= 0, then c 6= 0.
Since a, c ∈ Z and a 6= 0 and c 6= 0, then ac 6= 0.
Since ac

bd ∈ Q and ac 6= 0, then ac
bd 6= 0.

Since ac
bd ∈ Q and ac

bd 6= 0, then ac
bd ∈ Q∗, so Q∗ is closed under multiplication.

Therefore, multiplication is a binary operation on Q∗.

Since multiplication over Q is associative and Q∗ ⊂ Q, then multiplication
over Q∗ is associative.

Since multiplication over Q is commutative and Q∗ ⊂ Q, then multiplication
over Q∗ is commutative.

We prove 1 ∈ Q∗ is a multiplicative identity.
Since 1 ∈ Z and 1 = 1

1 and 1 6= 0, then 1 ∈ Q∗.
Let a

b ∈ Q∗.
Since Q∗ ⊂ Q, then a

b ∈ Q.
Thus, a

b · 1 = 1 · ab = a
b .

Since 1 ∈ Q∗ and a
b · 1 = 1 · ab = a

b , then 1 ∈ Q∗ is a multiplicative identity.

We prove for every a
b ∈ Q∗, there is a multiplicative inverse b

a ∈ Q∗.
Let a

b ∈ Q∗.
Then a

b ∈ Q and a
b 6= 0.

Since a
b ∈ Q, then a, b ∈ Z and b 6= 0.

Since a
b 6= 0 and b 6= 0, then a 6= 0, so b

a 6= 0.
Since a, b ∈ Z and a 6= 0 and b 6= 0, then ab 6= 0.
Since b, a ∈ Z and a 6= 0, then b

a ∈ Q.

Since b
a ∈ Q and b

a 6= 0, then b
a ∈ Q∗.
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Observe that

a

b
· b
a

=
ab

ba

=
ab

ab
= 1

=
ab

ab

=
ba

ab

=
b

a
· a
b
.

Thus, a
b ·

b
a = 1 = b

a ·
a
b .

Since there exists b
a ∈ Q∗ such that a

b ·
b
a = 1 = b

a ·
a
b , then b

a ∈ Q∗ is a
multiplicative inverse of a

b .

Therefore, for every a
b ∈ Q∗, there is a multiplicative inverse b

a ∈ Q∗.

Since multiplication is a binary operation on Q∗ and multiplication over Q∗
is associative and 1 ∈ Q∗ is a multiplicative identity and for every a

b ∈ Q∗, there

is a multiplicative inverse b
a ∈ Q∗, then (Q∗, ·) is a group.

Since (Q∗, ·) is a group and multiplication over Q∗ is commutative, then (Q∗, ·)
is an abelian group.

Example 15. The set of all nonzero real numbers under multiplication
is an abelian group.

(R∗, ·) is an abelian group.

Proof. We prove multiplication is a binary operation on R∗.
Let a, b ∈ R∗.
Then a, b ∈ R and a 6= 0 and b 6= 0.
Since R is closed under multiplication and a, b ∈ R, then ab ∈ R.
Since the product of two nonzero real numbers is nonzero and a 6= 0 and

b 6= 0, then ab 6= 0.
Since ab ∈ R and ab 6= 0, then ab ∈ R∗, so R∗ is closed under multiplication.
Since ab is unique, then this implies multiplication is a binary operation on

R∗.

Since multiplication of real numbers is associative and R∗ ⊂ R, then multi-
plication over R∗ is associative.

Since multiplication of real numbers is commutative and R∗ ⊂ R, then mul-
tiplication over R∗ is commutative.
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We prove 1 ∈ R∗ is a multiplicative identity.
Since 1 ∈ R and 1 6= 0, then 1 ∈ R∗.
Since the number 1 is a multiplicative identity of R, then 1x = x1 = x for

all x ∈ R.
Let r ∈ R∗.
Since R∗ ⊂ R, then r ∈ R, so 1r = r1 = r.
Hence, 1r = r1 = r for all r ∈ R∗.
Since 1 ∈ R∗ and 1r = r1 = r for all r ∈ R∗, then 1 ∈ R∗ is a multiplicative

identity of R∗.

We prove for every a ∈ R∗ there is a multiplicative inverse 1
a ∈ R∗.

Let a ∈ R∗.
Then a ∈ R and a 6= 0.
Thus, 1

a ∈ R and 1
a 6= 0, so 1

a ∈ R∗.
Since a · 1

a = 1
a · a = 1, then 1

a ∈ R∗ is a multiplicative inverse of a.
Therefore, for every a ∈ R∗ there is a multiplicative inverse 1

a ∈ R∗.

Since multiplication is a binary operation on R∗ and multiplication over R∗
is associative and 1 ∈ R∗ is a multiplicative identity and for every a ∈ R∗ there
is a multiplicative inverse 1

a ∈ R∗, then (R∗, ·) is a group.

Since (R∗, ·) is a group and multiplication over R∗ is commutative, then (R∗, ·)
is an abelian group.

Example 16. The set of all nonzero complex numbers under multipli-
cation is an abelian group.

(C∗, ·) is an abelian group.

Proof. We prove multiplication is a binary operation on C∗.
Let z, w ∈ C∗.
Then z ∈ C and z 6= 0 and w ∈ C and w 6= 0.
Since z ∈ C, then z = a+ bi for some a, b ∈ R.
Since w ∈ C, then w = c+ di for some c, d ∈ R.
Since multiplication is a binary operation on C, then C is closed under

multiplication.
Since z ∈ C and w ∈ C, then this implies zw ∈ C.
Observe that zw = (a+bi)(c+di) = (ac−bd)+(ad+bc)i is zero iff ac−bd = 0

and ad+ bc = 0.

We prove ac − bd = 0 and ad + bc = 0 if and only if either a = b = 0 or
c = d = 0.

Suppose either a = b = 0 or c = d = 0.
If a = b = 0, then ac − bd = 0c − 0d = 0 − 0 = 0 and ad + bc = 0d + 0c =

0 + 0 = 0.
If c = d = 0, then ac − bd = a0 − b0 = 0 − 0 = 0 and ad + bc = a0 + b0 =

0 + 0 = 0.
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Conversely, we prove if ac− bd = 0 and ad+ bc = 0, then either a = b = 0 or
c = d = 0.

Suppose ac− bd = 0 and ad+ bc = 0 and either a 6= 0 or b 6= 0.
We must prove c = d = 0.
Since a 6= 0 or b 6= 0, we consider these cases separately.
We consider these cases separately.
Case 1: Suppose a 6= 0.
Since ac− bd = 0, then ac = bd.
Since 0 = ad+ bc, we multiply by d to obtain

0 = d0

= d(ad+ bc)

= dad+ dbc

= dad+ (bd)c

= dad+ (ac)c

= a(d2 + c2).

Thus, a(d2 + c2) = 0, so either a = 0 or d2 + c2 = 0.
Since a 6= 0, then d2 + c2 = 0, so c2 = −d2.
If c 6= 0, then c2 > 0, so −d2 > 0.
Thus, d2 < 0, a contradiction, since the square of a real number is nonneg-

ative.
Hence, c = 0, so 0 = d2 + c2 = d2 + 02 = d2 + 0 = d2.
Therefore, d2 = 0, so d = 0.
Consequently, c = 0 = d, as desired.
Case 2: Suppose b 6= 0.
Since ac− bd = 0, then ac = bd.
Since 0 = ad+ bc, we multiply by c to obtain

0 = c0

= c(ad+ bc)

= cad+ cbc

= (ac)d+ cbc

= (bd)d+ cbc

= b(d2 + c2).

Thus, b(d2 + c2) = 0, so either b = 0 or d2 + c2 = 0.
Since b 6= 0, then d2 + c2 = 0, so c2 = −d2.
If c 6= 0, then c2 > 0, so −d2 > 0.
Thus, d2 < 0, a contradiction, since the square of a real number is nonneg-

ative.
Hence, c = 0, so 0 = d2 + c2 = d2 + 02 = d2 + 0 = d2.

12



Therefore, d2 = 0, so d = 0.
Consequently, c = 0 = d, as desired.

Therefore, we proved ac−bd = 0 and ad+bc = 0 if and only if either a = b = 0
or c = d = 0.

Hence, zw is zero if and only if either a = b = 0 or c = d = 0, so zw = 0 if
and only if either a = b = 0 or c = d = 0.

Thus, zw 6= 0 if and only if both a 6= 0 or b 6= 0 and c 6= 0 or d 6= 0.
Since z = 0 if and only if a = b = 0, then z 6= 0 if and only if either a 6= 0

or b 6= 0.
Since z 6= 0, then we conclude either a 6= 0 or b 6= 0.
Since w = 0 if and only if c = d = 0, then w 6= 0 if and only if either c 6= 0

or d 6= 0.
Since w 6= 0, then we conclude either c 6= 0 or d 6= 0.
Thus, both a 6= 0 or b 6= 0 and c 6= 0 or d 6= 0, so we conclude zw 6= 0.
Since zw ∈ C and zw 6= 0, then zw ∈ C∗, so C∗ is closed under multiplica-

tion.
Since zw is unique, then we conclude multiplication is a binary operation on

C∗.

Proof. Since multiplication of complex numbers is associative and C∗ ⊂ C, then
multiplication over C∗ is associative.

Since multiplication of complex numbers is commutative and C∗ ⊂ C, then
multiplication over C∗ is commutative.

Proof. We prove 1 ∈ C∗ is a multiplicative identity.
Since 1 = 1 + 0i, then 1 ∈ C.
Since 1 6= 0, then 1 ∈ C∗.
Let z ∈ C∗.
Since C∗ ⊂ C, then z ∈ C.
Thus, 1 · z = z · 1 = z, so 1 · z = z · 1 = z for all z ∈ C∗.
Since 1 ∈ C∗ and 1·z = z ·1 = z for all z ∈ C∗, then 1 ∈ C∗ is a multiplicative

identity.

Proof. We prove every nonzero complex number has a multiplicative inverse.
Let z ∈ C∗.
Then z ∈ C and z 6= 0, so there exists 1

z ∈ C∗ such that 1
z = z̄

|z|2 and

z · 1
z = 1

z · z = 1.
Hence, 1

z ∈ C∗ is a multiplicative inverse of z.
Therefore, every nonzero complex number has a multiplicative inverse.

Proof. Since multiplication is a binary operation on C∗ and multiplication over
C∗ is associative and 1 ∈ C∗ is a multiplicative identity and every nonzero
complex number has a multiplicative inverse in C∗, then (C∗, ·) is a group.

Since multiplication over C∗ is commutative, then (C∗, ·) is an abelian group.
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Example 17. The set of all positive rational numbers under multipli-
cation is an abelian group.

(Q+, ·) is an abelian group.

Proof. We prove multiplication is a binary operation on Q+.
Let a

b ,
c
d ∈ Q+.

Since a
b ∈ Q+, then a

b ∈ Q and a
b > 0.

Since c
d ∈ Q+, then c

d ∈ Q and c
d > 0.

Since a
b ∈ Q, then a, b ∈ Z and b 6= 0.

Since c
d ∈ Q, then c, d ∈ Z and d 6= 0.

Since Q is closed under multiplication and a
b ∈ Q and c

d ∈ Q, then a
b ·

c
d =

ac
bd ∈ Q.

Since b 6= 0, then either b > 0 or b < 0.
Since d 6= 0, then either d > 0 or d < 0.
Thus, either b > 0 and d > 0, or b > 0 and d < 0, or b < 0 and d > 0, or

b < 0 and d < 0.
We consider these cases separately.
Case 1: Suppose b > 0 and d > 0.
Then bd > 0.
Since a

b > 0 and b > 0, then a > 0.
Since c

d > 0 and d > 0, then c > 0.
Since a > 0 and c > 0, then ac > 0.
Since ac > 0 and bd > 0, then ac

bd > 0.
Case 2: Suppose b > 0 and d < 0.
Then bd < 0.
Since a

b > 0 and b > 0, then a > 0.
Since c

d > 0 and d < 0, then c < 0.
Since a > 0 and c < 0, then ac < 0.
Since ac < 0 and bd < 0, then ac

bd > 0.
Case 3: Suppose b < 0 and d > 0.
Then bd < 0.
Since a

b > 0 and b < 0, then a < 0.
Since c

d > 0 and d > 0, then c > 0.
Since a < 0 and c > 0, then ac < 0.
Since ac < 0 and bd < 0, then ac

bd > 0.
Case 4: Suppose b < 0 and d < 0.
Then bd > 0.
Since a

b > 0 and b < 0, then a < 0.
Since c

d > 0 and d < 0, then c < 0.
Since a < 0 and c < 0, then ac > 0.
Since ac > 0 and bd > 0, then ac

bd > 0.

Thus, in all cases, ac
bd > 0.

Since ac
bd ∈ Q and ac

bd > 0, then ac
bd ∈ Q+, so Q+ is closed under multiplication.

Therefore, multiplication is a binary operation on Q+.
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Proof. Since multiplication of rational numbers is associative and Q+ ⊂ Q, then
multiplication over Q+ is associative.

Since multiplication of rational numbers is commutative and Q+ ⊂ Q, then
multiplication over Q+ is commutative.

Proof. We prove 1 ∈ Q+ is a multiplicative identity.
Since 1 = 1

1 ∈ Q and 1 > 0, then 1 ∈ Q+.
Since the number 1 is a multiplicative identity of Q, then 1q = q1 = q for

all q ∈ Q.
Let q ∈ Q+.
Since Q+ ⊂ Q, then q ∈ Q, so 1q = q1 = q.
Hence, 1q = q1 = q for all q ∈ Q+.
Since 1 ∈ Q+ and 1q = q1 = q for all q ∈ Q+, then 1 ∈ Q+ is a multiplicative

identity.

Proof. We prove for every a
b ∈ Q+ there is a multiplicative inverse b

a ∈ Q+.
Let a

b ∈ Q+.
Then a

b ∈ Q and a
b > 0.

Since a
b ∈ Q, then a, b ∈ Z and b 6= 0.

Since a
b > 0, then b

a > 0.
Since b 6= 0, then either b > 0 or b < 0.
We consider these cases separately.
Case 1: Suppose b > 0.
Since a

b > 0 and b > 0, then a > 0, so a 6= 0.
Case 2: Suppose b < 0.
Since a

b > 0 and b < 0, then a < 0, so a 6= 0.
Therefore, in all cases, a 6= 0.
Since a, b ∈ Z and a 6= 0 and b 6= 0, then ab 6= 0.

Since b, a ∈ Z and a 6= 0, then b
a ∈ Q.

Since b
a ∈ Q and b

a > 0, then b
a ∈ Q+.

Observe that

a

b
· b
a

=
ab

ba

=
ab

ab
= 1

=
ab

ab

=
ba

ab

=
b

a
· a
b
.

Thus, a
b ·

b
a = 1 = b

a ·
a
b .
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Since there exists b
a ∈ Q+ such that a

b ·
b
a = 1 = b

a ·
a
b , then b

a ∈ Q+ is a
multiplicative inverse of a

b .

Therefore, for every a
b ∈ Q+ there is a multiplicative inverse b

a ∈ Q+.

Proof. Since multiplication is a binary operation on Q+ and multiplication over
Q+ is associative and 1 ∈ Q+ is a multiplicative identity and for every a

b ∈ Q+

there is a multiplicative inverse b
a ∈ Q+, then (Q+, ·) is a group.

Since (Q+, ·) is a group and multiplication over Q+ is commutative, then
(Q+, ·) is an abelian group.

Example 18. The set of all positive real numbers under multiplication
is an abelian group.

(R+, ·) is an abelian group.

Proof. We prove multiplication is a binary operation on R+.
Let a, b ∈ R+.
Then a, b ∈ R and a > 0 and b > 0.
Since R is closed under multiplication and a, b ∈ R, then ab ∈ R.
Since the product of two positive real numbers is positive and a > 0 and

b > 0, then ab > 0.
Since ab ∈ R and ab > 0, then ab ∈ R+, so R+ is closed under multiplication.
Since ab is unique, then this implies multiplication is a binary operation on

R+.

Since multiplication of real numbers is associative and R+ ⊂ R, then multi-
plication over R+ is associative.

Since multiplication of real numbers is commutative and R+ ⊂ R, then
multiplication over R+ is commutative.

We prove 1 ∈ R+ is a multiplicative identity.
Since 1 ∈ R and 1 > 0, then 1 ∈ R+.
Since the number 1 is a multiplicative identity of R, then 1x = x1 = x for

all x ∈ R.
Let r ∈ R+.
Since R+ ⊂ R, then r ∈ R, so 1r = r1 = r.
Hence, 1r = r1 = r for all r ∈ R+.
Since 1 ∈ R+ and 1r = r1 = r for all r ∈ R+, then 1 ∈ R+ is a multiplicative

identity of R+.

We prove for every a ∈ R+ there is a multiplicative inverse 1
a ∈ R+.

Let a ∈ R+.
Then a ∈ R and a > 0.
Thus, 1

a ∈ R and 1
a > 0, so 1

a ∈ R+.
Since a · 1

a = 1
a · a = 1, then 1

a ∈ R+ is a multiplicative inverse of a.
Therefore, for every a ∈ R+ there is a multiplicative inverse 1

a ∈ R+.
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Since multiplication is a binary operation on R+ and multiplication over R+

is associative and 1 ∈ R+ is a multiplicative identity and for every a ∈ R+ there
is a multiplicative inverse 1

a ∈ R+, then (R+, ·) is a group.

Since (R+, ·) is a group and multiplication over R+ is commutative, then
(R+, ·) is an abelian group.

Subgroup Relationships of number groups

Example 19. (Z,+) is a subgroup of (Q,+).

Proof. We prove Z ⊂ Q.
Let n ∈ Z.
Then n = n

1 .
Since n ∈ Z and 1 ∈ Z and 1 6= 0, then n ∈ Q, so Z ⊂ Q.

Since 0 ∈ Z, then Z 6= ∅.

We prove a+ b ∈ Z for all a, b ∈ Z.
Since Z is closed under addition, then a+ b ∈ Z for all a, b ∈ Z.

We prove −a ∈ Z for all a ∈ Z.
Every integer has an inverse, so if a ∈ Z, then −a ∈ Z.
Therefore, −a ∈ Z for all a ∈ Z.

Since Z 6= ∅ and Z ⊂ Q and (Q,+) is a group, then Z is a nonempty subset
of the additive group Q.

Since a+b ∈ Z for all a, b ∈ Z and −a ∈ Z for all a ∈ Z, then by the two-step
subgroup test, Z is a subgroup of Q, so (Z,+) < (Q,+).

Example 20. (R+, ·) is a subgroup of (R∗, ·).
Proof. We prove R+ ⊂ R∗.

Let r ∈ R+.
Then r ∈ R and r > 0.
Since r > 0, then r 6= 0.
Since r ∈ R and r 6= 0, then r ∈ R∗.
Therefore, R+ ⊂ R∗.

Since 1 ∈ R and 1 > 0, then 1 ∈ R+, so R+ 6= ∅.

We prove ab ∈ R+ for all a, b ∈ R+.
Let a, b ∈ R+.
Then a and b are positive real numbers.
The product of positive real numbers is a positive real number, so ab is a

positive real number.
Therefore, ab ∈ R+, so ab ∈ R+ for all a, b ∈ R+.
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We prove a−1 ∈ R+ for all a ∈ R+.
Let a ∈ R+.
Then a ∈ R and a > 0.
Since a ∈ R+ and R+ ⊂ R∗, then a ∈ R∗.
Since (R∗, ·) is a group, the inverse of a is a−1 = 1

a ∈ R∗.
Since a ∈ R and a > 0, then 1

a ∈ R and 1
a > 0, so 1

a ∈ R+.
Therefore, a−1 ∈ R+, so a−1 ∈ R+ for all a ∈ R+.

Since R+ 6= ∅ and R+ ⊂ R∗ and (R∗, ·) is a group, then R+ is a nonempty
subset of the group R∗.

Since ab ∈ R+ for all a, b ∈ R+ and a−1 ∈ R+ for all a ∈ R+, then by the
two-step subgroup test, R+ is a subgroup of R∗, so (R+, ·) < (R∗, ·).

Example 21. Gaussian integers (Z[i],+)
Let Z[i] = {a+ bi : a, b ∈ Z}.
Then (Z[i],+) is an abelian group under complex addition.

Proof. We prove (Z[i],+) is a subgroup of (C,+) using the two-step subgroup
test.

We prove Z[i] ⊂ C.
Let n ∈ Z[i].
Then n = a+ bi for some a, b ∈ Z.
Since a ∈ Z and Z ⊂ R, then a ∈ R.
Since b ∈ Z and Z ⊂ R, then b ∈ R.
Since a ∈ R and b ∈ R, then n ∈ C, so Z[i] ⊂ C.

Since 0 ∈ Z, then 0 + 0i ∈ Z[i], so Z[i] is not empty.
Since Z[i] ⊂ C and Z[i] is not empty, then Z[i] is a nonempty subset of C.

We prove Z[i] is closed under addition.
Let z, w ∈ Z[i].
Then z = a+ bi and w = c+ di for some integers a, b, c, d.
Thus, z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.
Since a+ c ∈ Z and b+ d ∈ Z, then z + w ∈ Z[i].
Therefore, Z[i] is closed under addition.

We prove Z[i] is closed under inverses.
Let z ∈ Z[i].
Then z = a+ bi for some a, b ∈ Z.
Thus, −z = −a− bi and z + (−z) = −z + z = 0.
Since a ∈ Z, then −a ∈ Z.
Since b ∈ Z, then −b ∈ Z.
Since −a,−b ∈ Z, then −z ∈ Z[i].
Therefore, Z[i] is closed under inverses.
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Since Z[i] is a nonempty subset of C and Z[i] is closed under addition and in-
verses, then by the two-step subgroup test, Z[i] is a subgroup of C, so (Z[i],+) <
(C,+).

Therefore, (Z[i],+) is a group.

Since (C,+) is an abelian group, then addition over C is commutative.

Since addition over C is commutative and Z[i] ⊂ C, then addition over Z[i] is
commutative.

Since Z[i] is a group and addition over Z[i] is commutative, then Z[i] is an
abelian group.

Example 22. (U4, ·) is a subgroup of (C∗, ·).

Proof. We prove U4 ⊂ C∗.
Let z ∈ U4.
Then z ∈ C and z4 = 1.
Since 04 = 0 6= 1, then z 6= 0.
Since z ∈ C and z 6= 0, then z ∈ C∗.
Therefore, U4 ⊂ C∗.

Since 1 = 1 + 0i ∈ C and 14 = 1, then 1 ∈ U4, so U4 6= ∅.

We prove z1z2 ∈ U4 for all z1, z2 ∈ U4.
Let z1, z2 ∈ U4.
Since z1 ∈ U4, then z1 ∈ C and (z1)4 = 1.
Since z2 ∈ U4, then z2 ∈ C and (z2)4 = 1.
Since C is closed under multiplication and z1 ∈ C and z2 ∈ C, then z1z2 ∈ C.
Observe that

(z1 · z2)4 = (z1)4 · (z2)4

= 1 · 1
= 1.

Since z1z2 ∈ C and (z1z2)4 = 1, then z1z2 ∈ U4.
Therefore, z1z2 ∈ U4 for all z1, z2 ∈ U4.

We prove z−1 ∈ U4 for all z ∈ U4.
Let z ∈ U4.
Then z ∈ C and z4 = 1.
Since z ∈ U4 and U4 ⊂ C∗, then z ∈ C∗.
Since (C∗, ·) is a group, the inverse of z is z−1 ∈ C∗.
Thus, z−1 ∈ C and z−1 6= 0.
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Observe that

(z−1)4 = z−4

=
1

z4

=
1

1
= 1.

Since z−1 ∈ C and (z−1)4 = 1, then z−1 ∈ U4.
Therefore, z−1 ∈ U4 for all z ∈ U4.

Since U4 6= ∅ and U4 ⊂ C∗ and (C∗, ·) is a group, then U4 is a nonempty
subset of the group C∗.

Since z1z2 ∈ U4 for all z1, z2 ∈ U4 and z−1 ∈ U4 for all z ∈ U4, then by the
two-step subgroup test, U4 is a subgroup of C∗, so (U4, ·) < (C∗, ·).

Group of Units of Integers modulo n

Lemma 23. Let a, b ∈ Z and n ∈ Z+.
If gcd(a, n) = gcd(b, n) = 1, then gcd(ab, n) = 1.

Proof. Suppose gcd(a, n) = gcd(b, n) = 1.
Then there exist integers x, y, s, and t such that xa+yn = 1 and sb+tn = 1.
Observe that

1 = 1 · 1
= (xa+ yn)(sb+ tn)

= xasb+ xatn+ ynsb+ yntn

= (xs)ab+ n(xat+ ysb+ ytn)

= (xs)ab+ (xat+ ysb+ ytn)n.

Since (xs)ab + (xat + ysb + ytn)n = 1 is a linear combination of ab and n,
then gcd(ab, n) = 1.

Proposition 24. Group of units of Zn under multiplication is abelian.
Let n ∈ Z+.
Let Z∗n be the set of all congruence classes of Zn that have multiplicative

inverses.
Then (Z∗n, ·) is an abelian group under multiplication modulo n.

Proof. We prove multiplication modulo n is a binary operation on Z∗n.
Since Z∗n = {[a] ∈ Zn : gcd(a, n) = 1}, then Z∗n ⊂ Zn.
Let [x], [y] ∈ Z∗n.
Since [x] ∈ Z∗n, then [x] ∈ Zn and gcd(x, n) = 1.
Since [y] ∈ Z∗n, then [y] ∈ Zn and gcd(y, n) = 1.
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Since multiplication modulo n is a binary operation on Zn, then [x][y] =
[xy] ∈ Zn and [xy] is unique.

By the previous lemma, if gcd(x, n) = gcd(y, n) = 1, then gcd(xy, n) = 1.
Since gcd(x, n) = 1 = gcd(y, n), then we conclude gcd(xy, n) = 1.
Since [xy] ∈ Zn and gcd(xy, n) = 1, then [xy] ∈ Z∗n.
Since [xy] ∈ Z∗n and is unique, then multiplication modulo n is a binary

operation on Z∗n.

Since multiplication modulo n over Zn is associative and Z∗n ⊂ Zn, then
multiplication modulo n over Z∗n is associative.

Since multiplication modulo n over Zn is commutative and Z∗n ⊂ Zn, then
multiplication modulo n over Z∗n is commutative.

We prove [1] ∈ Z∗n is a multiplicative identity.
Since [1] ∈ Zn and gcd(1, n) = 1, then [1] ∈ Z∗n.
Since [1] is a multiplicative identity in Zn, then [1][a] = [a][1] = [a] for every

[a] ∈ Zn.
Let [x] ∈ Z∗n.
Since Z∗n ⊂ Zn, then [x] ∈ Zn, so [1][x] = [x][1] = [x].
Hence, [1][x] = [x][1] = [x] for all x ∈ Z∗n.
Since [1] ∈ Z∗n and [1][x] = [x][1] = [x] for all x ∈ Z∗n, then [1] ∈ Z∗n is a

multiplicative identity.

We prove for every [x] ∈ Z∗n there is a multiplicative inverse [y] ∈ Z∗n.
Let [x] ∈ Z∗n.
Then [x] ∈ Zn and [x] is a unit, so [x] has a multiplicative inverse in Zn.
Thus, there exists [y] ∈ Zn such that [x][y] = [y][x] = [1].
Hence, there exists [x] ∈ Zn such that [y][x] = [x][y] = [1], so [x] is an inverse

of [y].
Consequently, [y] is a unit.
Since [y] ∈ Zn and [y] is a unit, then [y] ∈ Z∗n.
Thus, there exists [y] ∈ Z∗n. such that [x][y] = [y][x] = [1].
Therefore, for every [x] ∈ Z∗n there is a multiplicative inverse [y] ∈ Z∗n such

that [x][y] = [y][x] = [1].

Since multiplication modulo n is a binary operation on Z∗n and multiplication
modulo n over Z∗n is associative and [1] ∈ Z∗n is a multiplicative identity and
for every [x] ∈ Z∗n there is a multiplicative inverse [y] ∈ Z∗n such that [x][y] =
[y][x] = [1], then (Z∗n, ·) is a group.

Since (Z∗n, ·) is a group and multiplication modulo n over Z∗n is commutative,
then (Z∗n, ·) is an abelian group.
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Proposition 25. Let n ∈ Z+.
Let Z∗n be the group of units of Zn.
Then |Z∗n| = φ(n).

Proof. Let n be a positive integer.
Observe that Zn = {[a] : a ∈ Z} = {[0], [1], ..., [n − 1]} = {[1], [2], ..., [n −

1], [n]} and Z∗n = {[a] ∈ Zn : gcd(a, n) = 1}.
Let [a] ∈ Z∗n.
Then [a] ∈ Zn and gcd(a, n) = 1.
Since [a] ∈ Zn, then a ∈ Z+ and 1 ≤ a ≤ n.
Thus, Z∗n consists of all congruence classes [a] such that a is a positive integer

less than or equal to n and relatively prime to n.
Therefore, |Z∗n| = φ(n).

Complex Number Groups

Example 26. The circle group is a subgroup of (C∗, ·)
Let T = {z ∈ C : |z| = 1}.
Then (T, ·) is a subgroup of (C∗, ·).

Proof. We prove using the two-step subgroup test.

We prove T ⊂ C∗.
Let t ∈ T.
Then t ∈ C and |t| = 1.
Since |t| = 1, then |t| 6= 0.
Since t ∈ C and |t| 6= 0, then t 6= 0.
Since t ∈ C and t 6= 0, then t ∈ C∗.
Therefore, T ⊂ C∗.

We prove T is not empty.
Since 1 + 0i ∈ C and |1 + 0i| =

√
12 + 02 = 1, then 1 + 0i ∈ T, so T 6= ∅.

Therefore, T is not empty.

Since T ⊂ C∗ and T is not empty, then T is a nonempty subset of C∗.

Proof. We prove T is closed under complex multiplication.
Let z1, z2 ∈ T.
Then z1 ∈ C and |z1| = 1 and z2 ∈ C and |z2| = 1.
Hence, there exist θ1, θ2 ∈ R such that z1 = |z1|(cos θ1 + i sin θ1) and z2 =

|z2|(cos θ2 + i sin θ2).
Since C is closed under multiplication and z1 ∈ C and z2 ∈ C, then z1·z2 ∈ C.
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Observe that

z1 = |z1| · (cos θ1 + i sin θ1)

= 1 · (cos θ1 + i sin θ1)

= cos θ1 + i sin θ1

= eiθ1 .

and

z2 = |z2| · (cos θ2 + i sin θ2)

= 1 · (cos θ2 + i sin θ2)

= cos θ2 + i sin θ2

= eiθ2 .

and

z1 · z2 = eiθ1 · eiθ2

= eiθ1+iθ2

= ei(θ1+θ2).

Since θ1, θ2 ∈ R, then θ1 + θ2 ∈ R, so |ei(θ1+θ2)| = 1.
Since z1 · z2 = ei(θ1+θ2), then this implies |z1 · z2| = 1.
Since z1 · z2 ∈ C and |z1 · z2| = 1, then z1 · z2 ∈ T.
Therefore, T is closed under complex multiplication.

Proof. We prove T is closed under inverses.
Let z ∈ T.
Then z ∈ C and |z| = 1.
Since z ∈ T and T ⊂ C∗, then z ∈ C∗.
Hence there exists 1

z ∈ C∗ such that z · 1
z = 1

z · z = 1.
Since 1

z ∈ C∗ and C∗ ⊂ C, then 1
z ∈ C.

Observe that

1 = |1|

= |z · 1

z
|

= |z| · |1
z
|

= 1 · |1
z
|

= |1
z
|.

Thus, | 1z | = 1.
Since 1

z ∈ C and | 1z | = 1, then 1
z ∈ T.

Therefore, the multiplicative inverse 1
z is an element of T for every z ∈ T, so

T is closed under inverses.
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Since T is a nonempty subset of C∗ and T is closed under complex multipli-
cation and T is closed under inverses, then by the two-step subgroup test, (T, ·)
is a subgroup of (C∗, ·), so (T, ·) is a group.

Since C∗ is an abelian group, then complex multiplication over C∗ is com-
mutative.

Since complex multiplication over C∗ is commutative and T ⊂ C∗, then
complex multiplication over T is commutative.

Since (T, ·) is a group and complex multiplication over T is commutative,
then (T, ·) is an abelian group.

Example 27. nth Roots of Unity is a subgroup of the circle group
under complex multiplication

Let n ∈ Z+.
Then nth roots of unity (Un, ·) is a subgroup of the circle group (T, ·).

Proof. We prove using the two-step subgroup test.

We prove Un ⊂ T.
Let z ∈ Un.
Then z ∈ C and zn = 1.
Since z ∈ C, then z = |z| · (cos θ + i sin θ) for some θ ∈ R.
Since |z|n = |zn| = |1| = 1, then |z|n = 1, so |z|n − 1 = 0.

Since |z| ∈ R and n ∈ Z+ and |z|n − 1 = (|z| − 1)
∑n−1
k=0 |z|k for all n ∈ Z+,

then |z|n − 1 = (|z| − 1)
∑n−1
k=0 |z|k.

Thus, 0 = |z|n − 1 = (|z| − 1)
∑n−1
k=0 |z|k, so |z| − 1 = 0.

Hence, |z| = 1.
Since z ∈ C and |z| = 1, then z ∈ T.
Therefore, Un ⊂ T.

We prove Un is not empty.
Since 1 ∈ C and 1n = 1, then 1 ∈ Un, so Un 6= ∅.
Therefore, Un is not empty.

Since Un ⊂ T and Un is not empty, then Un is a nonempty subset of T.

Proof. We prove Un is closed under complex multiplication.
Let z1, z2 ∈ Un.
Then z1 ∈ C and (z1)n = 1 and z2 ∈ C and (z2)n = 1.
Since C is closed under multiplication and z1 ∈ C and z2 ∈ C, then z1·z2 ∈ C.
Since z1, z2 ∈ Un and Un ⊂ T, then z1, z2 ∈ T.
Since (T, ·) is an abelian group, then (ab)n = anbn for every integer n and

every a, b ∈ T.
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Observe that

(z1z2)n = (z1)n · (z2)n

= 1 · 1
= 1.

Thus, (z1z2)n = 1.
Since z1 · z2 ∈ C and (z1z2)n = 1, then z1z2 ∈ Un.
Therefore, Un is closed under complex multiplication.

Proof. We prove Un is closed under inverses.
Let z ∈ Un.
Then z ∈ C and zn = 1.
Since z ∈ Un and Un ⊂ T and T ⊂ C∗, then z ∈ C∗.
Hence there exists 1

z ∈ C∗ such that z · 1
z = 1

z · z = 1.
Since 1

z ∈ C∗ and C∗ ⊂ C, then 1
z ∈ C.

Observe that

(
1

z
)n =

1

zn

=
1

1
= 1.

Thus, ( 1
z )n = 1.

Since 1
z ∈ C and ( 1

z )n = 1, then 1
z ∈ Un.

Therefore, the multiplicative inverse 1
z is an element of Un for every z ∈ Un,

so Un is closed under inverses.

Since Un is a nonempty subset of T and Un is closed under complex multi-
plication and Un is closed under inverses, then by the two-step subgroup test,
(Un, ·) is a subgroup of (T, ·), so (Un, ·) is a group.

Since complex multiplication over C is commutative and Un ⊂ C, then
complex multiplication over Un is commutative.

Since (Un, ·) is a group and complex multiplication over Un is commutative,
then (Un, ·) is an abelian group.

Example 28. Quaternion Group of Order 8 (Q8, ·)
Let i2 = −1 and define

1 =

[
1 0
0 1

]

i =

[
i 0
0 −i

]
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j =

[
0 1
−1 0

]

k =

[
0 i
i 0

]
Then i2 = j2 = k2 = −1 and

ij = k and jk = i and ki = j and
ik = −j and kj = −i and ji = −k.
Let Q8 = {±1,±i,±j,±k}.
Then (Q8, ·) is a non-abelian group where · is matrix multiplication over C.
|Q8| = 8
· 1 -1 i -i j -j k -k
1 1 -1 i -i j -j k -k
-1 -1 1 -i i -j j -k k
i i -i -1 1 k -k -j j
-i -i i 1 -1 -k k j -j
j j -j -k k -1 1 i -i
-j -j j k -k 1 -1 -i i
k k -k j -j -i i -1 1
-k -k k -j j i -i 1 -1

Proof. We prove (Q8, ·) is a non-abelian group.

The Cayley multiplication table for Q8 shows that the product of any two
elements of Q8 is a unique element of Q8, so matrix multiplication is a binary
operation on Q8.

Matrix multiplication is associative in general, so matrix multiplication over
C is associative.

Since Q8 consists of 2× 2 matrices over C, then matrix multiplication over
Q8 is associative.

The Cayley multiplication table for Q8 shows that 1 ·m = m = m · 1 for all
m ∈ Q8, so 1 ∈ Q8 is identity for ·.

The Cayley multiplication table for (Q8, ·) shows the following.
Since 1 · 1 = 1, then 1 is an inverse of 1.
Since −1 · −1 = 1, then −1 is an inverse of itself.
Since i · −i = 1 = −i · i, then i and −i are inverses of each other.
Since j · −j = 1 = −j · j, then j and −j are inverses of each other.
Since k · −k = 1 = −k · k, then k and −k are inverses of each other.
Therefore, for every m ∈ Q8 there is a multiplicative inverse m−1 ∈ Q8.
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Since matrix multiplication is a binary operation on Q8 and matrix multipli-
cation over Q8 is associative and 1 ∈ Q8 is a multiplicative identity for · and
for every m ∈ Q8 there is a multiplicative inverse m−1 ∈ Q8, then (Q8, ·) is a
group.

Since i · j = k 6= −k = j · i, then matrix multiplication over Q8 is not
commutative.

Since (Q8, ·) is a group and matrix multiplication over Q8 is not commuta-
tive, then (Q8, ·) is a non-abelian group.

Subgroups

Example 29. For all n ∈ Z, (nZ,+) < (Z,+).

Proof. Let n ∈ Z.

We prove nZ ⊂ Z.
Observe that nZ = {nk : k ∈ Z}.
Let x ∈ nZ.
Then there exists an integer k such that x = nk.
By closure of Z under multiplication, nk ∈ Z, so x ∈ Z.
Therefore, x ∈ nZ implies x ∈ Z, so nZ ⊂ Z.

We prove nZ is closed under addition.
Let a, b ∈ nZ.
Since a ∈ nZ, then a = ns for some integer s.
Since b ∈ nZ, then b = nt for some integer t.
Thus, a+ b = ns+ nt = n(s+ t).
Since s+ t is an integer, then n(s+ t) ∈ nZ, so a+ b ∈ nZ.
Therefore, nZ is closed under addition.

We prove the additive identity 0 ∈ Z is in nZ.
Since 0 = n · 0 and 0 ∈ Z is the additive identity of Z, then 0 ∈ nZ.
Therefore, the additive identity 0 ∈ Z is in nZ.

We prove nZ is closed under inverses.
Let nk ∈ nZ.
Then k ∈ Z.
Since nk+(−nk) = [n+(−n)]k = 0k = 0 = k0 = k(−n+n) = k(−n)+kn =

(−n)k+nk = (−nk)+nk, then nk+(−nk) = 0 = (−nk)+nk, so −nk is additive
inverse of nk.

Since −nk = n(−k) and −k ∈ Z, then −nk ∈ nZ.
Therefore, for every nk ∈ nZ, there is an additive inverse −nk in nZ, so nZ

is closed under inverses.
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Since nZ ⊂ Z and nZ is closed under addition and the additive identity 0 ∈ Z
is in nZ and nZ is closed under inverses, then by the first subgroup test, nZ is
a subgroup of Z.

Example 30. (Z,+) < (Q,+).

Proof. Let n ∈ Z. Then n = n
1 . Since 1, n ∈ Z and 1 6= 0, then n ∈ Q. Hence,

n ∈ Z implies n ∈ Q, so Z ⊂ Q.
Since Z is an additive group, then Z is closed under addition .
The additive identity of Q is zero. Since 0 is an integer, then the additive

identity of Q is in Z.
Let n ∈ Z. Since Z ⊂ Q, then n ∈ Q. The additive inverse of n in Q is −n.

Since −n is also an integer, then Z is closed under taking of inverses.
Therefore, Z is a subgroup of the additive group Q.

Cyclic Groups

Example 31. (Z,+) is a cyclic group.

Proof. The set of all integers under addition is the group (Z,+).
The cyclic subgroup generated by 1 is the set of all multiples of 1.
Therefore, 〈1〉 = {k · 1 : k ∈ Z} = {k : k ∈ Z} = Z.
Since 1 ∈ Z and Z = 〈1〉, then Z is cyclic with generator 1.

The cyclic subgroup generated by −1 is the set of all multiples of −1.
Therefore, 〈−1〉 = {k(−1) : k ∈ Z} = {−k : k ∈ Z} = Z.
Since −1 ∈ Z and Z = 〈−1〉, then Z is cyclic with generator −1.
Therefore, Z = 〈1〉 = 〈−1〉 and both 1 and −1 are generators of Z.

Example 32. Let n ∈ Z.
Then (nZ,+) is a cyclic group.

Proof. For any n ∈ Z, (nZ,+) is a subgroup of (Z,+), so (nZ,+) is a group.
The cyclic subgroup generated by n is the set of all multiples of n.
Therefore, 〈n〉 = {kn : k ∈ Z} = nZ.
Since n ∈ Z and nZ = 〈n〉, then nZ is a cyclic group with generator n.

The cyclic subgroup generated by −n is the set of all multiples of −n.
Therefore, 〈−n〉 = {k(−n) : k ∈ Z} = {−kn : k ∈ Z} = nZ.
Since −n ∈ Z and nZ = 〈−n〉, then nZ is cyclic with generator −n.
Therefore, nZ = 〈n〉 = 〈−n〉 and both n and −n are generators of nZ.

Example 33. (Zn,+) is a cyclic group.
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Proof. Let n ∈ Z+.
The set of integers modulo n under addition is the group (Zn,+) and Zn =

{[0], [1], ..., [n− 1]}.
The cyclic subgroup generated by [1] is the set of all multiples of [1] modulo

n.
Therefore, 〈[1]〉 = {k[1] : k ∈ Z} = {[k] : k ∈ Z} = {[0], [1], ..., [n− 1]} = Zn.
Since [1] ∈ Zn and Zn = 〈[1]〉, then Zn is a cyclic group with generator

[1].

Example 34. The set of all linear combinations of positive integers a
and b under addition is a cyclic group with generator gcd(a, b)

Let a, b ∈ Z+.
Let G = {ma+ nb : m,n ∈ Z}.
Then (G,+) is a cyclic group with generator gcd(a, b).

Proof. We prove (G,+) is a group.
We prove addition is a binary operation on G.
Let x, y ∈ G.
Since x ∈ G then there exist integers m1 and n1 such that x = m1a+ n1b.
Since y ∈ G then there exist integers m2 and n2 such that y = m2a+ n2b.
Observe that

x+ y = (m1a+ n1b) + (m2a+ n2b)

= m1a+ (n1b+m2a) + n2b

= m1a+ (m2a+ n1b) + n2b

= (m1a+m2a) + (n1b+ n2b)

= (m1 +m2)a+ (n1 + n2)b.

Since m1,m2 ∈ Z, then m1 +m2 ∈ Z.
Since n1, n2 ∈ Z, then n1 + n2 ∈ Z.
Since m1 +m2 ∈ Z and n1 + n2 ∈ Z and x+ y = (m1 +m2)a+ (n1 + n2)b,

then x+ y ∈ G, so G is closed under addition.
Therefore, addition is a binary operation on G.

We prove addition over G is associative.
Since addition of integers is associative and G ⊂ Z, then addition over G is

associative.

We prove 0 ∈ G is an additive identity.
Since 0 ∈ Z and 0 = 0 + 0 = 0a+ 0b, then 0 ∈ G.
Let x ∈ G.
Then there exist integers m and n such that x = ma+ nb.
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Observe that

x+ 0 = (ma+ nb) + (0a+ 0b)

= ma+ (nb+ 0a) + 0b

= ma+ (0a+ nb) + 0b

= (ma+ 0a) + (nb+ 0b)

= (m+ 0)a+ (n+ 0)b

= ma+ nb

= x

= ma+ nb

= (0 +m)a+ (0 + n)b

= (0a+ma) + (0b+ nb)

= 0a+ (ma+ 0b) + nb

= 0a+ (0b+ma) + nb

= (0a+ 0b) + (ma+ nb)

= 0 + x

Thus, x+ 0 = x = 0 + x.
Since 0 ∈ G and x+ 0 = x = 0 + x, then 0 ∈ G is an additive identity.

We prove for every ma+ nb ∈ G there exists an inverse −ma− nb ∈ G.
Let x ∈ G.
Then there exist m,n ∈ Z such that x = ma+ nb.
Since m,n ∈ Z, then −m,−n ∈ Z.
Let y = −ma− nb.
Since y = −ma− nb = (−m)a+ (−n)b and m,−n ∈ Z, then y ∈ G.
Observe that

x+ y = (ma+ nb) + (−ma− nb)
= ma+ (nb−ma)− nb
= ma+ (−ma+ nb)− nb
= (ma−ma) + (nb− nb)
= 0 + 0

= 0

= 0 + 0

= (−ma+ma) + (−nb+ nb)

= −ma+ (ma− nb) + nb

= −ma+ (−nb+ma) + nb

= (−ma− nb) + (ma+ nb)

= y + x.
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Thus, x+ y = 0 = y + x.
Therefore, for every ma+nb ∈ G there exists an additive inverse −ma−nb ∈

G.

Since addition is a binary operation on G and addition over G is associative
and 0 ∈ G is an additive identity and for every ma + nb ∈ G there exists an
additive inverse −ma− nb ∈ G, then (G,+) is a group.

Proof. We prove G is cyclic.
Let d = gcd(a, b).
Since d is the greatest common divisor of a and b, then d is the least positive

linear combination of a and b, so there exist integers m and n such that d =
ma+ nb.

Therefore, d ∈ G.
Let G′ be the cyclic subgroup generated by d.
Then G′ = {kd : k ∈ Z}.

We must prove G = G′.
We prove G ⊂ G′.
Let x ∈ G.
Then there exist integers r and s such that x = ra + sb, so x is a linear

combination of a and b.
Since any common divisor of a and b divides any linear combination of a and

b, then the greatest common divisor of a and b divides x, so d|x.
Hence, x = dt for some integer t, so x ∈ G′.
Therefore, G ⊂ G′.

We prove G′ ⊂ G.
Let y ∈ G′.
Then there exists an integer k such that y = kd.
Thus, y = kd = k(ma+ nb) = kma+ knb = (km)a+ (kn)b.
Since y = (km)a+ (kn)b and km, kn ∈ Z, then y ∈ G, so G′ ⊂ G.

Since G ⊂ G′ and G′ ⊂ G, then G = G′.
Therefore, there exists d ∈ G such that G = G′ = {kd : k ∈ Z}, so G is

cyclic.

Example 35. The group (Q,+) is not cyclic.

Proof. Suppose (Q,+) is cyclic.
Then there exists q ∈ Q such that Q = 〈q〉 = {nq : n ∈ Z}.
Since q ∈ Q, then there exist integers a, b with b 6= 0 such that q = a

b .
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Suppose q = 0.
Then Q = {nq : n ∈ Z} = {n0 : n ∈ Z} = {0}, so Q = {0}.
But, Q 6= {0}, so q 6= 0.
Since q = a

b and b 6= 0 and q 6= 0, then a 6= 0.

Either b|a or b 6 |a.
We consider these cases separately.
Case 1: Suppose b|a.
Then a

b ∈ Z.
Since q = a

b , then q ∈ Z.
Let x = q

2 .
Since q ∈ Z and 2 ∈ Z and 2 6= 0, then q

2 ∈ Q, so x ∈ Q.
Since Q = {nq : n ∈ Z}, then there exists an integer n such that x = nq, so

q
2 = nq.

Hence, q = 2nq, so 2nq = q.
Since q 6= 0, then 2n = 1, so 1 is even.
But, this contradicts that 1 is odd.
Case 2: Suppose b 6 |a.
Let y = a

2b .
Since a ∈ Z and 2b ∈ Z and 2b 6= 0, then y ∈ Q.
Since Q = {nq : n ∈ Z}, then there exists an integer n such that y = nq, so

a
2b = y = nq = na

b .
Thus, a

2b = na
b , so ab = 2nab.

Since a, b ∈ Z and a 6= 0 and b 6= 0, then ab 6= 0, so cancelling, we obtain
1 = 2n.

But, 1 = 2n implies 1 is even which contradicts 1 is odd.

Therefore, in all cases, a contradiction is reached, so (Q,+) cannot be cyclic.

Example 36. The group (R,+) is not cyclic.

Proof. Suppose (R,+) is cyclic.
Then there exists g ∈ R such that R = {ng : n ∈ Z}.
Therefore, every real number is an integer multiple of g.
Since g ∈ R, then either g = 0 or g 6= 0.
We consider these cases separately.
Case 1: Suppose g = 0.
Then R = {ng : n ∈ Z} = {n · 0 : n ∈ Z} = {0}.
But, R 6= {0}.
Case 2: Suppose g 6= 0.
Since g ∈ R, then g

2 ∈ R.
Since 1

2 6∈ Z, then g
2 is not an integer multiple of g.

Thus, there exists g
2 ∈ R such that g

2 is not an integer multiple of g.
But, this contradicts the assumption that every real number is an integer

multiple of g.
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TODO THIS PROOF IS NOT CORRECT b/c we could have g/2 be an
integer when g is even.

So, we need to re-work this proof!!!

Hence, in all cases, we have a contradiction.
Therefore, (R,+) is not cyclic.

Example 37. (Q∗, ·) is not a cyclic group.

Solution. We must disprove that Q∗ is cyclic.
By definition of cyclic group Q∗ is cyclic iff ∃g ∈ Q∗ such that Q∗ = {gn :

n ∈ Z}.
We know Q∗ = {ab : a, b ∈ Z∗}.

Proof. Suppose the group (Q∗, ·) is cyclic.
Then there is g ∈ Q∗ such that Q∗ = {gn : n ∈ Z}.
Since g ∈ Q∗, then g = p

q and p, q ∈ Z∗.
TODO RE work this proof b/c this is not correct.
Let n ∈ Z.
Either |(pq )n| < 1 or |(pq )n| ≥ 1.
There are two cases to consider.
Case 1: Suppose |(pq )n| < 1.
Then no rational number greater than or equal to one can be represented by

any power of g.
For example, 2 cannot be represented by any power of g.
Case 2: Suppose |(pq )n| ≥ 1.
Then no positive rational number less than one can be represented by any

power of g.
For example, 1

2 cannot be represented by any power of g.
Hence, in either case at least one nonzero rational number cannot be ex-

pressed as a power of g.
Therefore, g ∈ Q∗ cannot be a generator of Q∗.
Thus, there is no generator in Q∗ that can generate all of Q∗.
Hence, (Q∗, ·) is not cyclic.

Example 38. Circle group is not cyclic.
Let T = {z ∈ C : |z| = 1}.
Then (T, ·) is not cyclic.

Proof. We use proof by contradiction.
Suppose (T, ·) is cyclic.
Then there exists g ∈ T such that T = {gn : n ∈ Z}.
Since g ∈ T, then g ∈ C and |g| = 1.
Since g ∈ C, then there exists θ ∈ R such that g = |g| · cis θ = 1 · cis θ =

cis θ = eiθ, so g = eiθ.
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We prove θ 6= 0.
Suppose θ = 0.
Then g = eiθ = ei(0) = e0 = 1, so g = 1.
Thus, T = {gn : n ∈ Z} = {1n : n ∈ Z} = {1}, so T = {1}.
Since −1 = −1 + 0i, then −1 ∈ C.
Since −1 ∈ C and | − 1| = 1, then −1 ∈ T.
Since T = {1}, then this implies −1 ∈ {1}, a contradiction.
Hence, θ 6= 0.

Let t = ei
θ
2 .

Then t ∈ C.
Since θ

2 ∈ R, then |ei θ2 | = 1, so |t| = 1.
Since t ∈ C and |t| = 1, then t ∈ T.
Hence, there exists an integer n such that t = gn.
Observe that

ei
θ
2 = t

= gn

= (eiθ)n

= einθ.

Thus, ei
θ
2 = einθ, so θ

2 = nθ.
Hence, θ = 2nθ.
Since θ 6= 0, we divide to obtain 1 = 2n.
Thus, 1 is even, a contradiction.
Consequently, there is no integer n such that t = gn.
Thus, there is no g ∈ T such that T = {gn : n ∈ Z}.
Therefore, (T, ·) is not cyclic.

Example 39. The nth roots of unity is a cyclic group.
The group (Un, ·) is cyclic with generator ei

2π
n and has order |Un| = n.

Proof. Let n be a positive integer.
Let Un = {z ∈ C : zn = 1} be the nth roots of unity.
Let g = cis 2π

n .

Then g ∈ C and g = ei
2π
n .

Observe that

gn = (e
2πi
n )n

= e2πi

= 1.

Since g ∈ C and gn = 1, then g ∈ Un.
Every element of a group G generates a cyclic subgroup of G.
Since Un is a group and g ∈ Un, then g generates a cyclic subgroup of Un.
Let G be the cyclic subgroup of Un generated by g.
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Then

G = {gk : k ∈ Z}
= {(ei 2πn )k : k ∈ Z}
= {ei 2kπn : k ∈ Z}.

Since G is a subgroup of Un, then G is a subset of Un, so G ⊂ Un.

We prove |g| = n.
For k = 0, g0 = ei0 = e0 = 1.
For k = 1, g1 = g = ei

2π
n = ei2π

1
n .

For k = 2, g2 = (ei
2π
n )2 = ei2π

2
n .

For k = 3, g3 = (ei
2π
n )3 = ei2π

3
n .

...
For k = n− 1, gn−1 = (ei

2π
n )n−1 = ei2π

n−1
n .

For k = n, gn = (ei
2π
n )n = ei2π = 1.

Therefore, g has finite order n, so |g| = n.
Since the order of g ∈ Un is the order of the cyclic subgroup of Un generated

by g, then n = |g| = |G|, so n = |G|.

We prove |Un| = n.
Since Un = {z ∈ C : zn = 1}, then z ∈ Un iff zn = 1 iff zn − 1 = 0.
By the fundamental theorem of algebra, a polynomial of degree n has at

most n zeros.
Hence, zn − 1 has at most n zeroes, so there are at most n elements in Un.
Therefore, |Un| ≤ n.

Since Un has order at most n, then Un is a finite group.
Since G ⊂ Un and Un is finite and |G| = n, then Un has at least n elements,

so |Un| ≥ n.
Since |Un| ≤ n and n ≤ |Un|, then |Un| = n, so |Un| = |G|.

Since Un is finite and G ⊂ Un and |G| = |Un|, then G = Un.
Since g ∈ Un and Un = G, then Un is cyclic, as desired.

Multiplicative Matrix Groups

Example 40. General linear group is a group under matrix multipli-
cation

Let F be a field.
Then GLn(F ) is a group under matrix multiplication.
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Proof. We prove matrix multiplication is a binary operation on GLn(F ).
Let A,B ∈ GLn(F ).
Then A and B are n× n invertible matrices with entries in F .
The product of any two square matrices is a unique square matrix, so AB is

a unique n× n matrix.
Since A and B are invertible, then A−1 and B−1 exist and are square ma-

trices.
Thus, B−1A−1 is a square matrix.
Observe that

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= AA−1

= I

and

(B−1A−1)(AB) = B−1(A−1A)B

= B−1IB

= B−1B

= I

Hence, AB is invertible.
Since AB is an invertible square matrix, then AB ∈ GLn(F ).
Since AB is a unique invertible square matrix in GLn(F ), then matrix mul-

tiplication is a binary operation on GLn(F ).

Matrix multiplication is associative.
In particular, matrix multiplication over GLn(F ) is associative.

We prove I is an identity for matrix multiplication for GLn(F ).
Let I be the identity n× n matrix.
Since I2 = I, then I is invertible, so I ∈ GLn(F ).
Since I is a square matrix and AI = IA = A for all A ∈ GLn(F ), then I is

an identity for matrix multiplication in GLn(F ).

We prove every A ∈ GLn(F ) has a multiplicative inverse in GLn(F ).
Let A ∈ GLn(F ).
Then A is a square invertible matrix.
Since A is invertible, then its inverse exists.
Let A−1 be the inverse matrix of A.
Then A−1 is a square matrix and AA−1 = A−1A = I.
Thus, A−1A = AA−1 = I, so A−1 is invertible.
Therefore, A−1 is an invertible square matrix, so A−1 ∈ GLn(F ).
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Since matrix multiplication is a binary operation on GLn(F ) and matrix
multiplication over GLn(F ) is associative and the identity matrix I is an identity
for matrix multiplication and every square invertible matrix A has an inverse
matrix A−1 ∈ GLn(F ), then (GLn(F ), ·) is a group.

Permutation Groups

Example 41. (S3, ◦) is a non-abelian group.
Let S = {1, 2, 3}.
Then |S3| = 3! = 6, so there are 6 permutations of S.
The permutations are:
I. (1)

(
1 2 3
1 2 3

)
= motion that does nothing (identity permutation)

II. (2 3)(
1 2 3
1 3 2

)
= keep position 1 fixed, and swap 2 and 3

III. (1 2)(
1 2 3
2 1 3

)
= keep position 3 fixed, and swap 1 and 2

IV. (1 2 3)(
1 2 3
2 3 1

)
= rotate each position once to the left

V. (1 3 2)(
1 2 3
3 1 2

)
= rotate each position once to the right

VI. (1 3)(
1 2 3
3 2 1

)
= keep position 2 fixed, and swap 1 and 3

The Cayley table for (S3, ◦) is shown below.
◦ (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1) (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1 2) (1 2) (1) (1 3 2) (1 2 3) (2 3) (1 3)
(1 3) (1 3) (1 2 3) (1) (1 3 2) (1 2) (2 3)
(2 3) (2 3) (1 3 2) (1 2 3) (1) (1 3) (1 2)
(1 2 3) (1 2 3) (1 3) (2 3) (1 2) (1 3 2) (1)
(1 3 2) (1 3 2) (2 3) (1 2) (1 3) (1) (1 2 3)
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Isomorphisms

Example 42. Let (U4, ·) be the fourth roots of unity with complex multiplica-
tion and (Z4,+) be the group of integers modulo 4 under addition.

Then (Z4,+) ∼= (U4, ·).

Proof. Let φ : Z4 → U4 be a binary relation defined by φ([k]) = ik for all
[k] ∈ Z4.

The domain is Z4 = {[0], [1], [2], [3]}.
Observe that U4 = {(cis 2π

4 )k : k ∈ Z} = {(cis π
2 )k : k ∈ Z} = {ik : k ∈

Z} = {1, i,−1,−i}.
Observe that φ([0]) = i0 = 1 and φ([1]) = i1 = i and φ([2]) = i2 = −1 and

φ([3]) = i3 = −i.
Thus, φ is a function.
Since φ(Z4) = U4, then φ is surjective.
Clearly, φ is injective.
Since φ is injective and surjective, then φ is bijective.

Let [a], [b] ∈ Z4.
Then a, b ∈ Z and φ([a] + [b]) = φ([a+ b]) = ia+b = iaib = φ([a])φ([b]).
Therefore, φ is a homomorphism.

Since φ is a bijective and φ is a homomorphism, then φ : Z4 → U4 is an
isomorphism.

Therefore, (Z4,+) ∼= (U4, ·).

Example 43. Complex conjugation is an automorphism of the additive
group of complex numbers.

Let (C,+) be the additive group of complex numbers.
Then φ : C→ C defined by φ(a+ bi) = a− bi is an automorphism of C.

Proof. Let a+ bi, c+ di ∈ C.
Then a, b, c, d ∈ R.
Clearly, φ is a function.
Observe that

φ((a+ bi) + (c+ di)) = φ((a+ c) + (b+ d)i)

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= φ(a+ bi) + φ(c+ di).

Therefore, φ is a homomorphism.
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Let a+ bi, c+ di ∈ C.
Suppose φ(a+ bi) = φ(c+ di).
Then a− bi = c− di, so a = c and b = d.
If z1 = a+ bi and z2 = c+ di, then z1 = z2 iff a = c and b = d.
Hence, z1 = z2, so a+ bi = c+ di.
Thus, φ(a+ bi) = φ(c+ di) implies a+ bi = c+ di, so φ is injective.

Let a+ bi ∈ C.
Then a, b ∈ R, so a− bi ∈ C.
Observe that φ(a− bi) = φ(a+ (−b)i) = a− (−b)i = a+ bi.
Hence, there exists a− bi ∈ C such that φ(a− bi) = a+ bi, so φ is surjective.
Since φ is injective and surjective, then φ is bijective.
Since φ is bijective and φ is a homomorphism, then φ : C→ C is an isomor-

phism, so φ is an automorphism of C.

Example 44. Complex conjugation is an automorphism of the multi-
plicative group of nonzero complex numbers.

Let (C∗, ·) be the multiplicative group of nonzero complex numbers.
Then φ : C∗ → C∗ defined by φ(a+ bi) = a− bi is an automorphism of C∗.

Proof. Let a+ bi, c+ di ∈ C∗.
Then a, b, c, d ∈ R and a+ bi 6= 0 and c+ di 6= 0.
Clearly, φ is a function.
Observe that

φ((a+ bi)(c+ di)) = φ(ac+ adi+ bci− bd)

= φ((ac− bd) + (ad+ bc)i)

= (ac− bd)− (ad+ bc)i

= ac− bd− adi− bci
= a(c− di)− bci+ bdi2

= a(c− di)− bi(c− di)
= (a− bi)(c− di)
= φ(a+ bi)φ(c+ di).

Therefore, φ is a homomorphism.

Let a+ bi, c+ di ∈ C∗.
Suppose φ(a+ bi) = φ(c+ di).
Then a− bi = c− di, so a = c and b = d.
If z1 = a+ bi and z2 = c+ di, then z1 = z2 iff a = c and b = d.
Hence, z1 = z2, so a+ bi = c+ di.
Thus, φ(a+ bi) = φ(c+ di) implies a+ bi = c+ di, so φ is injective.
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Let a+ bi ∈ C∗.
Then a, b ∈ R and a and b are not both zero.
A complex number z = x− yi is zero iff x = y = 0.
Hence, a complex number z = x− yi is nonzero iff either x 6= 0 or y 6= 0.
Since a and b are not both zero, then either a is nonzero or b is nonzero.
Thus, a− bi ∈ C∗.
Observe that φ(a− bi) = φ(a+ (−b)i) = a− (−b)i = a+ bi.
Hence, there exists a−bi ∈ C∗ such that φ(a−bi) = a+bi, so φ is surjective.

Since φ is injective and surjective, then φ is bijective.
Since φ is bijective and φ is a homomorphism, then φ : C∗ → C∗ is an

isomorphism, so φ is an automorphism of C∗.
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