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Binary Operations

Exercise 1. Let a, b, c, x ∈ R.

If ax2 + bx+ c = 0 and a 6= 0, then x = −b±
√
b2−4ac
2a .

Proof. Suppose ax2 + bx+ c = 0 and a 6= 0.
Since a 6= 0 we can divide by a and simplify to get x2 + bx

a = −c
a .

Completing the square we get x2 + 2( b
2a )x+ ( b

2a )2 = −c
a + ( b

2a )2.

We simplify to obtain (x+ b
2a )2 = b2−4ac

4a2 .

Taking the square root and simplifying we obtain x+ b
2a = ±

√
b2−4ac
2a .

Therefore, x = −b±
√
b2−4ac
2a .

Exercise 2. If ∗ is an associative and commutative binary operation on a set
S, then (a ∗ b) ∗ (c ∗ d) = [(d ∗ c) ∗ a] ∗ b for all a, b, c, d ∈ S.

Proof. Suppose ∗ is an associative and commutative binary operation on a set
S.

Let a, b, c, d ∈ S.
Then

(a ∗ b) ∗ (c ∗ d) = (c ∗ d) ∗ (a ∗ b)
= [(c ∗ d) ∗ a] ∗ b
= [(d ∗ c) ∗ a] ∗ b.

Exercise 3. Let ∗ be defined by a ∗ b = ab+ 1 for all a, b ∈ Q.
Is ∗ a binary operation on Q?
If so, is ∗ associative or commutative?

Proof. We prove ∗ is a binary operation on Q.
Let a, b ∈ Q.
Then a ∗ b = ab+ 1.
Since Q is closed under addition and multiplication, then ab+ 1 ∈ Q.
Therefore, a ∗ b ∈ Q.
Since ab+ 1 is uniquely determined by a and b, then a ∗ b is unique.
Since a ∗ b ∈ Q and a ∗ b is unique, then ∗ is a binary operation on Q.



We prove ∗ is not associative.
Since (1 ∗ 2) ∗ 3 = 3 ∗ 3 = 10, but 1 ∗ (2 ∗ 3) = 1 ∗ 7 = 8 and 10 6= 8, then ∗

is not associative.

We prove ∗ is commutative.
Let a, b ∈ Q.
Since a ∗ b = ab+ 1 = ba+ 1 = b ∗ a, then a ∗ b = b ∗ a.
Therefore a ∗ b = b ∗ a for all a, b ∈ Q, so ∗ is commutative.

Exercise 4. Let ∗ be defined by a ∗ b = a− b for all a, b ∈ Q.
Is ∗ a binary operation on Q?
If so, is ∗ associative or commutative?

Solution. We observe that ∗ is subtraction defined on Q.

Proof. We prove ∗ is a binary operation on Q.
Let a, b ∈ Q.
Since a ∈ Q, then a = m

n for some m,n ∈ Z and n 6= 0.
Since b ∈ Q, then b = p

q for some p, q ∈ Z and q 6= 0.

Observe that a ∗ b = a− b = m
n −

p
q = mq−np

nq .
Since Z is closed under multiplication and subtraction, then mq − np ∈ Z

and nq ∈ Z.
Since n 6= 0 and q 6= 0, then nq 6= 0.
Since mq − np ∈ Z and nq ∈ Z and nq 6= 0, then mq−np

nq ∈ Q, so a ∗ b ∈ Q.

Since mq−np
nq is uniquely determined by m,n, p, q, then a ∗ b is uniquely

determined by a and b, so a ∗ b is unique.
Since a ∗ b ∈ Q and a ∗ b is unique, then ∗ is a binary operation on Q.

We prove ∗ is not associative.
Since (1 ∗ 2) ∗ 3 = (1 − 2) − 3 = −4, but 1 ∗ (2 ∗ 3) = 1 − (2 − 3) = 2 and

−4 6= 2, then ∗ is not associative.

We prove ∗ is not commutative.
Since 1 ∗ 5 = 1 − 5 = −4, but 5 ∗ 1 = 5 − 1 = 4 and −4 6= 4, then ∗ is not

commutative.

Exercise 5. Let (S, ∗) be an associative binary structure.
If ∗ is commutative, then {a ∈ S : a ∗ a = a} is closed under ∗.

Solution. Let T = {a ∈ S : a ∗ a = a}.
We note the condition a ∗ a = a means each element of T is an idempotent

for the binary operation *.

Proof. Suppose ∗ is commutative.
Let T = {a ∈ S : a ∗ a = a}.
To prove T is closed under ∗, let x, y ∈ T .
We must prove x ∗ y ∈ T .
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Since x ∈ T , then x ∈ S and x ∗ x = x.
Since y ∈ T , then y ∈ S and y ∗ y = y.
Since (S, ∗) is a binary structure, then S is closed under ∗.
Since x ∈ S and y ∈ S, then this implies x ∗ y ∈ S.
Observe that

x ∗ y = (x ∗ x) ∗ (y ∗ y)

= x ∗ (x ∗ y) ∗ y
= x ∗ (y ∗ x) ∗ y
= (x ∗ y) ∗ (x ∗ y).

Since x ∗ y ∈ S and (x ∗ y) ∗ (x ∗ y) = x ∗ y, then x ∗ y ∈ T .

Exercise 6. How many different binary operations exist on a finite set?

Solution. Let S be a finite set.
Then there exists n ∈ Z+ such that |S| = n.
Let t represent the number of different binary operations on S.
Let T = {∗| ∗ is a binary operation defined on S}.
Then t = |T |.
Observe that t = the number of different binary structures on S = the

number of different ways to create a binary structure on S = the number of
different binary structure tables.

We enumerate each element of S.
Thus, let S = {a1, a2, a3, ..., an}.

How many different ways exist to create a binary structure table ?
The task is to assign a value to each pair of elements in the table of n rows

and n columns.
The total number of ways to assign a value to each pair = number of different

ways to create a binary structure.

We assign a value to first pair, then assign a value to 2nd pair,... assign value
to n2 pair.

Thus, we use multiplication principle for this sequence of tasks.
Each pair can be assigned one of n possible values.
Thus, the total number of assignments is n ∗ n ∗ n ∗ ...n = nn

2

.

Hence, there are nn
2

different binary structures that can be formed.
Therefore, the number of different binary operations on a finite set of size n

is nn
2

.

Exercise 7. How many different commutative binary operations exist on a
finite set?
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Solution. Let S be a finite set.
Then there exists n ∈ Z+ such that |S| = n.
Let t represent the number of different commutative binary operations on S.
Let T = {∗| ∗ is a commutative binary operation defined on S} = {∗ : S ×

S → S| ∗ is commutative}.
Observe that t = the number of different ways to create a commutative

binary operation on S = the number of different binary structure tables that
preserve commutativity = the number of different ways to create a binary struc-
ture table that preserves commutativity of ∗.

We enumerate each element of S.
Thus, let S = {a1, a2, a3, ..., an}.

How many different ways exist to create a binary structure table such that
commutativity of ∗ is preserved?

The number of ways to create such a binary structure = number of ways to
assign a value to each pair of elements in the table of n rows and n columns
such that commutativity is preserved.

To preserve commutativity, each ai ∗ aj = aj ∗ ai for all i, j ∈ {1, 2, .., n}.
Thus once we assign values to half of the table, the other half of the table is

fixed and completely determined.
Therefore we only have to assign values to half of the table.
Each pair can be assigned one of n values.

Since it doesn’t matter which half of the table to choose, we do the bottom
half, including the main diagonal.

How many pairs exist in half of the table?
There are 1 pair in first row, 2 pairs in 2nd row, 3 pairs in 3rd row, ... k

pairs in kth row, n pairs in nth row.
Therefore, the total number of pairs in half of the table = 1+2+3+ ...+n =∑n
k=1 k = n(n+1)

2 .

Since each pair has n possible choices for the assigned value, by the multipli-

cation principle, the total number of assignments is n
n(n+1)

2 .
Therefore, the number of different commutative binary operations on a finite

set of size n is n
n(n+1)

2 .

Groups

Exercise 8. The set of integers Z under subtraction is not a group.

Solution. Subtraction is a binary operation on Z, but subtraction is not asso-
ciative.

For example, (1− 2)− 3 = −4, but 1− (2− 3) = 2 and −4 6= 2.
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Exercise 9. The set of integers Z under multiplication is not a group.

Solution. Multiplication is a binary operation on Z and multiplication is asso-
ciative and 1 ∈ Z is multiplicative identity.

Since 0 ∈ Z and 0x = 0 = x0 for all x ∈ Z, then there is no x ∈ Z such that
0x = 1, so 0 does not have a multiplicative inverse.

Therefore, Z under multiplication is not a group.

Exercise 10. The set of non-zero integers Z∗ under multiplication is not a
group.

Solution. Let a, b ∈ Z∗.
Then a, b ∈ Z and a 6= 0 and b 6= 0.
Since Z is closed under multiplication and a, b ∈ Z, then ab ∈ Z.
Since a, b ∈ Z and a 6= 0 and b 6= 0, then ab 6= 0.
Since ab ∈ Z and ab 6= 0, then ab ∈ Z∗, so Z∗ is closed under multiplication.
Therefore, multiplication is a binary operation on Z∗.
Multiplication is associative in Z.
Since Z∗ ⊂ Z, then multiplication is associative in Z∗.
Since 1 ∈ Z and 1 6= 0, then 1 ∈ Z∗.
Since 1x = 1 = x1 for all x ∈ Z and Z∗ ⊂ Z, then 1x = 1 = x1 for all x ∈ Z∗.
Since 1 ∈ Z∗ and 1x = 1 = x1 for all x ∈ Z∗, then 1 is a multiplicative

identity in Z∗.
Not every non-zero integer has a multiplicative inverse.
For example, 2 ∈ Z∗, but there is no n ∈ Z∗ such that 2n = 1.

Exercise 11. The set of positive integers Z+ under multiplication is not a
group.

Solution. Let a, b ∈ Z+.
Then a, b ∈ Z and a > 0 and b > 0.
Since Z is closed under multiplication and a, b ∈ Z, then ab ∈ Z.
Since a, b ∈ Z and a > 0 and b > 0, then ab > 0.
Since ab ∈ Z and ab > 0, then ab ∈ Z+, so Z+ is closed under multiplication.
Therefore, multiplication is a binary operation on Z+.
Multiplication is associative in Z.
Since Z+ ⊂ Z, then multiplication is associative in Z+.
Since 1 ∈ Z+ and 1 > 0, then 1 ∈ Z+.
Since 1x = 1 = x1 for all x ∈ Z and Z+ ⊂ Z, then 1x = 1 = x1 for all

x ∈ Z+.
Since 1 ∈ Z+ and 1x = 1 = x1 for all x ∈ Z+, then 1 is a multiplicative

identity in Z+.
Not every positive integer has a multiplicative inverse.
For example, 2 ∈ Z+, but there is no n ∈ Z+ such that 2n = 1.

Exercise 12. The set of nonzero rational numbers Q∗ under addition is not a
group.
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Solution. Addition is not a binary operation on Q∗ because Q∗ is not closed
under addition.

For example, 1
2 ∈ Q∗ and −1

2 ∈ Q∗, but the sum is 1
2 + −1

2 = 0 and 0 6∈
Q∗.

Exercise 13. The set of elements of Z6 under multiplication modulo 6 is not
a group.

Solution. Observe that Z6 = {0, 1, 2, 3, 4, 5} and |Z6| = 6.

The Cayley table is shown below.
· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Observe that 1 · x = x · 1 = x for all x ∈ Z6, so 1 ∈ Z6 is multiplicative
identity.

Since 0·x = 0 = x·0 for all x ∈ Z6, then 0 ∈ Z6 does not have a multiplicative
inverse.

Therefore, not every element of Z6 has a multiplicative inverse, so Z6 under
multiplication modulo 6 is not a group.

Exercise 14. The set of nonzero elements of Z6 under multiplication modulo
6 is not a group.

Solution. Let S be the set of nonzero elements of Z6.
Then S = {1, 2, 3, 4, 5} and |S| = 5.

The Cayley table is shown below.
· 1 2 3 4 5
1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

Since 2 ∈ S and 3 ∈ S and 2 · 3 = 0 but 0 6∈ S, then S is not closed under
multiplication modulo 6.

Therefore, multiplication modulo 6 is not a binary operation on Z6, so Z6

under multiplication modulo 6 is not a group.

Exercise 15. The set of rational numbers Q under multiplication is not a group.
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Solution. Since 1 = 1
1 ∈ Q and 1x = x1 = x for all x ∈ Q, then 1 is a

multiplicative identity for Q.
Since 0 = 0

1 ∈ Q and 0x = 0 = x0 for all x ∈ Q, then there is no x ∈ Q such
that 0x = 1 = x0.

Therefore, 0 ∈ Q does not have a multiplicative inverse, so Q is not a group
under multiplication.

Exercise 16. The set of real numbers R under multiplication is not a group.

Solution. Since 1 ∈ R and 1x = x1 = x for all x ∈ R, then 1 is a multiplicative
identity for R.

Since 0 ∈ R and 0x = 0 = x0 for all x ∈ R, then there is no x ∈ R such that
0x = 1 = x0.

Therefore, 0 ∈ R does not have a multiplicative inverse, so R is not a group
under multiplication.

Exercise 17. The set of complex numbers C under multiplication is not a
group.

Solution. Since 1 = 1 + 0i ∈ C and 1z = z1 = z for all z ∈ C, then 1 is a
multiplicative identity for C.

Since 0 = 0 + 0i ∈ C and 0z = 0 = z0 for all z ∈ C, then there is no z ∈ C
such that 0z = 1 = z0.

Therefore, 0 ∈ C does not have a multiplicative inverse, so C is not a group
under multiplication.

Exercise 18. The 4th roots of unity U4 = {1, i,−1,−i} under complex multi-
plication is an abelian group.

Solution. The Cayley table for U4 is shown below.
· 1 i -1 -i
1 1 i -1 -i
i i -1 -i 1
-1 -1 -i 1 i
-i -i 1 i -1

Exercise 19. Let (G,+) be an additive group.
Let a, b ∈ G.
If a+ b = 0, then b = −a.

Proof. Suppose a+ b = 0.
Then

b = 0 + b

= (−a+ a) + b

= −a+ (a+ b)

= −a+ 0

= −a.
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Exercise 20. Let (G,+) be an additive group.
Let a, b ∈ G.
If a+ b = b, then a = 0.

Proof. Suppose a+ b = b.
Then

a = a+ 0

= a+ [b+ (−b)]
= (a+ b) + (−b)
= b+ (−b)
= 0.

Exercise 21. Analyze the inverses of the group of units of Z3 under multipli-
cation modulo 3.

Solution. The integers modulo 3 is Z3 = {0, 1, 2} and |Z3| = 3.
The group of units of Z3 under multiplication modulo 3 is Z∗3.
The order of Z∗3 is |Z∗3| = φ(3) = 2 and gcd(a, 3) = 1 for each a ∈ Z∗3.
Hence, Z∗3 = {1, 2}.

The Cayley table is shown below.
· 1 2
1 1 2
2 2 1

The inverse of each element is shown below.
1−1 = 1
2−1 = 2

Exercise 22. Analyze the inverses of the group of units of Z5 under multipli-
cation modulo 5.

Solution. The integers modulo 5 is Z5 = {0, 1, 2, 3, 4} and |Z5| = 5.
The group of units of Z5 under multiplication modulo 5 is Z∗5.
The order of Z∗5 is |Z∗5| = φ(5) = 4 and gcd(a, 5) = 1 for each a ∈ Z∗5.
Hence, Z∗5 = {1, 2, 3, 4}.

The Cayley table is shown below.
· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
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The inverse of each element is shown below.
1−1 = 1
2−1 = 3
3−1 = 2
4−1 = 4

Exercise 23. Analyze the inverses of the group of units of Z7 under multipli-
cation modulo 7.

Solution. The integers modulo 7 is Z7 = {0, 1, 2, 3, 4, 5, 6} and |Z7| = 7.
The group of units of Z7 under multiplication modulo 7 is Z∗7.
The order of Z∗7 is |Z∗7| = φ(7) = 6 and gcd(a, 7) = 1 for each a ∈ Z∗7.
Hence, Z∗7 = {1, 2, 3, 4, 5, 6}.

The Cayley table is shown below.
· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

The inverse of each element is shown below.
1−1 = 1
2−1 = 4
3−1 = 5
4−1 = 2
5−1 = 3
6−1 = 6

Exercise 24. Let G = {2, 4, 6, 8} be a subset of Z10.
Define a ∗ b = ab for all a, b ∈ G.
Then (G, ∗) is a group.

Solution. We can draw the Cayley table for Z10 and G.

The Cayley table for Z10 under multiplication modulo 10 is shown below.
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· 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

The Cayley table for G under multiplication modulo 10 is shown below.
· 2 4 6 8
2 4 8 2 6
4 8 6 4 2
6 2 4 6 8
8 6 2 8 4

The table shows that G is closed under multiplication modulo 10 and the
identity is 6.

Multiplication modulo is associative, so multiplication modulo 10 is associa-
tive in G.

The inverse of each element is shown below.
2−1 = 8
4−1 = 4
6−1 = 6
8−1 = 2

Since G is closed under multiplication modulo 10 and multiplication modulo
10 is associative and 6 ∈ G is a multiplicative identity and each element of G
has an inverse in G, then (G, ∗) is a group.

Since ∗ has symmetry along the main diagonal of the Cayley table, then ∗
is commutative, so (G, ∗) is an abelian group.

Exercise 25. Let G = {n ∈ Z : is odd}.
Then (G,+) is not a group.

Solution. The set of odd integers G under addition is not a group because G
is not closed under addition.

For example, both 3 and 5 are odd integers, but the sum 3 + 5 = 8 is even,
not odd.

Exercise 26. Let G = {2x : x ∈ Q}.
Then (G, ·) is a group.
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Proof. We prove · is a binary operation on G.
Let 2x ∈ G and 2y ∈ G.
Since 2x ∈ G, then x ∈ Q, so x = a

b for a, b ∈ Z and b 6= 0.
Since 2y ∈ G, then y ∈ Q, so y = c

d for c, d ∈ Z and d 6= 0.

The product is 2x · xy = 2x+y = 2
a
b +

c
d = 2

ad+bc
bd .

Since Z is closed under addition and multiplication then ad + bc ∈ Z and
bd ∈ Z.

Since b 6= 0 and d 6= 0, then bd 6= 0.
Thus, ad+bc

bd ∈ Q, so 2x+y ∈ G.
Therefore,, G is closed under multiplication.
Since 2x+y ∈ G is unique, then · is a binary operation on G.

We prove · is associative.
Let 2x ∈ G and 2y ∈ G and 2z ∈ G.
Then x, y, z ∈ Q.
Since addition in Q is associative, we have

(2x · 2y) · 2z = (2x+y) · 2z

= 2(x+y)+z

= 2x+(y+z)

= 2x · 2y+z

= 2x · (2y · 2z).

Therefore, · is associative in G.

We prove 1 ∈ G is a multiplicative identity in G.
Since 0 ∈ Q, then 1 = 20 ∈ G.
Let 2x ∈ G.
Then x ∈ Q.
Since Q is closed under addition, we have 2x·20 = 2x+0 = 2x = 20+x = 20·2x.
Since 20 ∈ G and 2x · 20 = 2x = 20 · 2x, then 20 is an identity for ∗.

We prove every element of G has an inverse in G.
Let 2x ∈ G.
Then x ∈ Q, so −x ∈ Q.
Hence, 2−x ∈ G.
Observe that 2x · 2−x = 2x−x = 20 = 2−x+x = 2−x · 2x.
Thus, 2−x ∈ G is an inverse of 2x.
Therefore, the inverse of each element 2x ∈ G is the element 2−x ∈ G.

Since · is a binary operation on G and · is associative and 20 ∈ G is a
multiplicative identity and the inverse of each element 2x ∈ G is 2−x ∈ G, then
(G, ·) is a group.
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We prove · is commutative.
Let 2x, 2y ∈ G.
Then x, y ∈ Q.
Since 2x · 2y = 2x+y = 2y+x = 2y · 2y, then · is commutative.
Therefore, (G, ·) is an abelian group.

Exercise 27. Compute the multiplicative inverse of the element A ∈ GL2(Z3)
below.

A =

[
2 0

2 1

]

Solution. We solve the equation AA−1 = I, where I is identity matrix and
A−1 is the multiplicative inverse of matrix A over Z3.

After solving this equation, we find that

A−1 =

[
2 0

2 1

]

We verify that AA−1 = I = A−1A.

Exercise 28. Compute the multiplicative inverse of the element A ∈ GL2(Z5)
below.

A =

[
1 2

3 4

]

Solution. We solve the equation AA−1 = I, where I is identity matrix and
A−1 is the multiplicative inverse of matrix A over Z5.

After solving this equation, we find that

A−1 =

[
3 1

4 2

]

We verify that AA−1 = I = A−1A.

Exercise 29. Compute the multiplicative inverse of the element A ∈ GL2(Z7)
below.

A =

[
3 5

4 6

]
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Solution. We solve the equation AA−1 = I, where I is identity matrix and
A−1 is the multiplicative inverse of matrix A over Z7.

After solving this equation, we find that

A−1 =

[
4 6

2 2

]

We verify that AA−1 = I = A−1A.

Exercise 30. Analyze the group GL2(Z2).

Solution. Observe that GL2(Z2) is a subset of M2(Z2).

We first enumerate all elements of M2(Z2).
Note that |M2(Z2)| = 24 = 16, so there are 16 2× 2 matrices with entries in

Z2 = {0, 1}.
Invertible matrices have non-zero determinant, so we compute the determi-

nant of each matrix and determine if it is non-zero.

A1 =

[
0 0

0 0

]
does not have an inverse.

A2 =

[
1 0

0 0

]
does not have an inverse.

A3 =

[
0 1

0 0

]
does not have an inverse.

A4 =

[
0 0

1 0

]
does not have an inverse.

A5 =

[
0 0

0 1

]
does not have an inverse.

A6 =

[
1 1

0 0

]
does not have an inverse.

A7 =

[
0 0

1 1

]
does not have an inverse.
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A8 =

[
1 0

1 0

]
does not have an inverse.

A9 =

[
0 1

0 1

]
does not have an inverse.

A10 =

[
1 0

0 1

]
= A−110 . Therefore, A10 is its own inverse and A10 is identity matrix.

A11 =

[
0 1

1 0

]
= A−111 . Therefore, A11 is its own inverse.

A12 =

[
0 1

1 1

]
= A−115 . Therefore, A12 and A15 are inverses of each other.

A13 =

[
1 0

1 1

]
= A−113 . Therefore, A13 is its own inverse.

A14 =

[
1 1

0 1

]
= A−114 . Therefore, A14 is its own inverse.

A15 =

[
1 1

1 0

]
= A−112 . Therefore, A12 and A15 are inverses of each other.

A16 =

[
1 1

1 1

]
does not have an inverse.

Since there are 6 matrices of M2(Z2) that are invertible, then the order of
GL2(Z2) is 6.

Therefore, |GL2(Z2)| = 6.
The elements of GL2(Z2) are shown below.

I =

[
1 0

0 1

]
= I−1 . Therefore, I is its own inverse and I is identity matrix.
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B1 =

[
0 1

1 0

]
= B−11 . Therefore, B1 is its own inverse.

B2 =

[
0 1

1 1

]
= B−15 . Therefore, B2 and B5 and are inverses of each other.

B3 =

[
1 0

1 1

]
= B−13 . Therefore, B3 is its own inverse.

B4 =

[
1 1

0 1

]
= B−14 . Therefore, B4 is its own inverse.

B5 =

[
1 1

1 0

]
= B−12 . Therefore, B2 and B5 and are inverses of each other.

We show that GL2(Z2) is non-abelian.
We compute B1B2 and B2B1.
Observe that

B1B2 =

[
1 1

0 1

]
and

B2B1 =

[
1 0

1 1

]
Since B1B2 6= B2B1, then matrix multiplication is not commutative in

GL2(Z2), so GL2(Z2) is non-abelian.

Exercise 31. The group GL2(R) is non-abelian.

Solution.

Let A =

[
1
2 π

1
3 −5

]

Let B =

[
4 −3

2
5 −7

]
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Then

A−1 =

[
2− 4π

2π+15
6π

2π+15

2
2π+15 − 3

2π+15

]

and

B−1 =

[
35
134 − 15

134

1
67 − 10

67

]

Therefore, A,B ∈ GL2(R).

Observe that

AB =

[
2π
5 + 2 −7π − 3

2

− 2
3 34

]

BA =

[
1 4π + 15

− 32
15

2π
5 + 35

]

Since AB 6= BA, then matrix multiplication is not commutative, so GL2(R)
is not abelian.

Exercise 32. List the elements of the multiplicative group of units (Z∗4, ·).

Solution. The order of Z∗4 is |Z∗4| = φ(4) = 2, so there are 2 elements a ∈ Z∗4
that are relatively prime to the modulus 4.

The elements of Z∗4 are in the set {1, 3}.
The Cayley table for Z4∗∗ is shown below.
· 1 3
1 1 3
3 3 1

Exercise 33. List the elements of the multiplicative group of units (Z∗6, ·).

Solution. The order of Z∗6 is |Z∗6| = φ(6) = 2, so there are 2 elements a ∈ Z∗6
that are relatively prime to the modulus 6.

The elements of Z∗6 are in the set {1, 5}.
The Cayley table for Z6∗∗ is shown below.
· 1 5
1 1 5
5 5 1
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Exercise 34. List the elements of the multiplicative group of units (Z∗8, ·).

Solution. The order of Z∗8 is |Z∗8| = φ(8) = 4, so there are 4 elements a ∈ Z∗8
that are relatively prime to the modulus 8.

The elements of Z∗8 are in the set {1, 3, 5, 7}.
The Cayley table for Z8∗∗ is shown below.
· 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Exercise 35. List the elements of the multiplicative group of units (Z∗10, ·).

Solution. The order of Z∗10 is |Z∗10| = φ(10) = 4, so there are 4 elements a ∈ Z∗10
that are relatively prime to the modulus 10.

The elements of Z∗10 are in the set {1, 3, 7, 9}.
The Cayley table for Z10∗∗ is shown below.
· 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Exercise 36. List the elements of the multiplicative group of units (Z∗15, ·).

Solution. The order of Z∗15 is |Z∗15| = φ(15) = 8, so there are 8 elements a ∈ Z∗15
that are relatively prime to the modulus 15.

The elements of Z∗15 are in the set {1, 2, 4, 7, 8, 11, 13, 14}.
The Cayley table for Z15∗∗ is shown below.
· 1 2 4 7 8 11 13 14
1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

Exercise 37. List the elements of the multiplicative group of units (Z∗20, ·).

Solution. The order of Z∗20 is |Z∗20| = φ(20) = 8, so there are 8 elements a ∈ Z∗20
that are relatively prime to the modulus 20.

The elements of Z∗20 are in the set {1, 3, 7, 9, 11, 13, 17, 19}.
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The Cayley table for Z20∗∗ is shown below.
· 1 3 7 9 11 13 17 19
1 1 3 7 9 11 13 17 19
3 3 9 1 7 13 19 11 17
7 7 1 9 3 17 11 19 13
9 9 7 3 1 19 17 13 11
11 11 13 17 19 1 3 7 9
13 13 19 11 17 3 9 1 7
17 17 11 19 13 7 1 9 3
19 19 17 13 11 9 7 3 1

Exercise 38. List the elements of the multiplicative group of units (Z∗30, ·).

Solution. The order of Z∗30 is |Z∗30| = φ(30) = 8, so there are 8 elements a ∈ Z∗30
that are relatively prime to the modulus 30.

The elements of Z∗30 are in the set {1, 7, 11, 13, 17, 19, 23, 29}.
The Cayley table for Z30∗∗ is shown below.
· 1 7 11 13 17 19 23 29
1 1 7 11 13 17 19 23 29
7 7 19 17 1 29 13 11 23
11 11 17 1 23 7 29 13 19
13 13 1 23 19 11 7 29 17
17 17 29 7 11 19 23 1 13
19 19 13 29 7 23 1 17 11
23 23 11 13 29 1 17 19 7
29 29 23 19 17 13 11 7 1

Exercise 39. Define a ∗ b = a+ b+ 3 over Q.
Then (Q, ∗) an abelian group.

Proof. We prove ∗ is a binary operation on Q.
Since addition is well-defined on Q, then a ∗ b = a+ b+ 3 ∈ Q is unique for

any a, b ∈ Q, so Q is closed under ∗.
Since a ∗ b is unique and Q is closed under ∗, then ∗ is a binary operation

on Q.

We prove ∗ is associative.
Let a, b, c ∈ Q.
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Then

(a ∗ b) ∗ c = (a+ b+ 3) ∗ c
= [(a+ b+ 3) + c] + 3

= [a+ (b+ 3 + c)] + 3

= [a+ (b+ c+ 3)] + 3

= [a+ (b ∗ c)] + 3

= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c), so ∗ is associative.

We prove −3 is identity for G.
Observe that −3 = −3

1 ∈ Q.
Let a ∈ Q.
Then a ∗ (−3) = a + (−3) + 3 = a + 0 = a = 0 + a = (−3) + 3 + a =

−3 + a+ 3 = (−3) ∗ a.
Since −3 ∈ Q and a ∗ (−3) = a = (−3) ∗ a, then −3 is identity for ∗ in Q.

We prove every a ∈ Q has inverse −a− 6 ∈ Q.
Let a ∈ Q.
Since Q is closed under subtraction, then −a− 6 ∈ Q.
Observe that

a ∗ (−a− 6) = a+ (−a− 6) + 3

= [(a+ (−a)]− 6 + 3

= 0− 6 + 3

= −3

= −6 + 3

= (0− 6) + 3

= [(−a+ a)− 6] + 3

= [(−a− 6) + a] + 3

= (−a− 6) ∗ a.

Since −a − 6 ∈ Q and a ∗ (−a − 6) = −3 = (−a − 6) ∗ a, then every a ∈ Q
has an inverse −a− 6 ∈ Q.

Since ∗ is a binary operation on Q and ∗ is associative and −3 ∈ Q is an
identity for ∗ and every a ∈ Q has an inverse −a−6 ∈ Q, then (Q, ∗) is a group.

We prove ∗ is commutative.
Let a, b ∈ Q.
Then a ∗ b = a+ b+ 3 = b+ a+ 3 = b ∗ a, so ∗ is commutative.
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Since (Q, ∗) is a group and ∗ is commutative, then (Q, ∗) is an abelian group.

Exercise 40. Let S = {r ∈ R∗ : r 6= 1}.
Let G = {f1, f2, f3, f4, f5, f6} where
f1 : S → S is the function defined by f1(x) = x and
f2 : S → S is the function defined by f2(x) = 1− x and
f3 : S → S is the function defined by f3(x) = 1

x and
f4 : S → S is the function defined by f4(x) = 1

1−x and

f5 : S → S is the function defined by f5(x) = x−1
x and

f6 : S → S is the function defined by f6(x) = x
x−1 .

Then G is a group under function composition.

Solution. We compute the composition of every pair of functions of G to
construct the Cayley multiplication table.

The Cayley table for G is shown below.
◦ f1 f2 f3 f4 f5 f6
f1 f1 f2 f3 f4 f5 f6
f2 f2 f1 f5 f6 f3 f4
f3 f3 f4 f1 f2 f6 f5
f4 f4 f3 f6 f5 f1 f2
f5 f5 f6 f2 f1 f4 f3
f6 f6 f5 f4 f3 f2 f1

The Cayley table shows that the composition of every pair of functions in G
is a unique function in G, so function composition is a binary operation on G.

Function composition is associative.
The Cayley table shows that f1 ◦ f = f = f ◦ f1 for all f ∈ G, so f1 is the

identity function for ◦.
Since f1 ◦ f1 = f1, then f1 is its own inverse.
Since f2 ◦ f2 = f1, then f2 is its own inverse.
Since f3 ◦ f3 = f1, then f3 is its own inverse.
Since f4 ◦ f5 = f1 = f5 ◦ f4, then f4 and f5 are inverses of each other.
Since f6 ◦ f6 = f1, then f6 is its own inverse.
Therefore, every function in G has an inverse in G.

Since function composition is a binary operation on G and function com-
position is associative and the identity function f1 is an identity for function
composition and every function in G has an inverse in G, then (G, ◦) is a group.

Since f2 ◦ f3 = f5 6= f4 = f3 ◦ f2, then function composition is not commuta-
tive.

Since (G, ◦) is a group and ◦ is not commutative, then (G, ◦) is a non-abelian
group.
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Exercise 41. Define a ∗ b = |a|b for all a, , b ∈ R∗.
Is (R∗, ∗) a group?

Solution. There is no identity for ∗, so R∗ is not a group.

Proof. Suppose there exists e ∈ R∗ such that e is an identity for ∗.
Then a ∗ e = e ∗ a = a for all a ∈ R∗.
Let a ∈ R∗.
Then a ∈ R and a 6= 0, so either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then a = a ∗ e = |a|e = ae, so a = ae.
Since a 6= 0, then we divide by a to obtain e = 1.
Case 2: Suppose a < 0.
Then a = a ∗ e = |a|e = −ae, so a = −ae.
Since a 6= 0, then we divide by a to obtain e = −1.
Therefore, an identity is either 1 or −1.
But, the identity in any group must be unique.
Since the identity of R∗ is not unique, then (R∗, ∗) cannot be a group.

Exercise 42. Let (G, ∗) be a group.
Define a4b = b ∗ a for all a, b ∈ G.
Then (G,4) is a group.

Proof. Let a, b ∈ G.
Since (G, ∗) is a group, then by closure of G under ∗, b ∗ a ∈ G, so a4b ∈ G.
Therefore, G is closed under 4.
Since ∗ is a binary operation on G, then b ∗ a is unique, so a4b is unique.
Since G is closed under 4 and a4b is unique, then 4 is a binary operation

on G.

We prove 4 is associative.
Let a, b, c ∈ G.
Then

(a4b)4c = (b ∗ a)4c
= c ∗ (b ∗ a)

= (c ∗ b) ∗ a
= (b4c) ∗ a
= a4(b4c).

Therefore, (a4b)4c = a4(b4c), so 4 is associative.
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Let e ∈ G be identity for ∗.
Then e ∗ a = a ∗ e = a for all a ∈ G.
Let a ∈ G.
Then

a4e = e ∗ a
= a

= a ∗ e
= e4a.

Since a4e = a = e4a and e ∈ G, then e is an identity for 4.

We prove every element of G has an inverse.
Let a ∈ G.
Since (G∗) is a group, then a−1 ∈ G and a ∗ a−1 = e = a−1 ∗ a.
Observe that

a4a−1 = a−1 ∗ a
= e

= a ∗ a−1

= a−14a.

Since a−1 ∈ G and a4a−1 = e = a−14a, then a−1 is an inverse of a for 4.
Therefore, every element of G has an inverse for 4.

Since 4 is a binary operation on G and 4 is associative and e ∈ G is an
identity for 4 and every element of G has an inverse for 4, then (G,4) is a
group.

Exercise 43. Define ∗ for all a, b ∈ R∗ by

a ∗ b =

{
ab if a > 0
a
b if a < 0

Then (R∗, ∗) is a group.

Proof. We prove ∗ is a binary operation on R∗.
Let a, b ∈ R∗.
Since a ∈ R∗, then a ∈ R and a 6= 0.
Since b ∈ R∗, then b ∈ R and b 6= 0.
Since a 6= 0, then either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then a ∗ b = ab.
Since R is closed under multiplication and a, b ∈ R, then ab ∈ R.
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The product of two non-zero real numbers is non-zero.
Since a, b ∈ R and a 6= 0 and b 6= 0, then ab 6= 0.
Since ab ∈ R and ab 6= 0, then ab ∈ R∗.
Case 2: Suppose a < 0.
Then a ∗ b = a

b .
Since a, b ∈ R and b 6= 0, then a

b ∈ R.
Since a 6= 0, then a

b 6= 0.
Since a

b ∈ R and a
b 6= 0, then a

b ∈ R∗, so a ∗ b ∈ R∗.

Hence, in all cases, a ∗ b ∈ R∗, so R∗ is closed under ∗.
Therefore, ∗ is a binary operation on R∗.

Proof. We prove ∗ is associative.
Let a, b, c ∈ R∗.
Then a, b, c ∈ R and a 6= 0 and b 6= 0 and c 6= 0.
Since a 6= 0, then either a > 0 or a < 0.
Since b 6= 0, then either b > 0 or b < 0.
Since c 6= 0, then either c > 0 or c < 0.
Hence, either
a > 0 and b > 0 and c > 0, or
a > 0 and b > 0 and c < 0, or
a > 0 and b < 0 and c > 0, or
a > 0 and b < 0 and c < 0, or
a < 0 and b > 0 and c > 0, or
a < 0 and b > 0 and c < 0, or
a < 0 and b < 0 and c > 0, or
a < 0 and b < 0 and c < 0.
We consider these 23 = 8 cases separately.
Case 1: Suppose a > 0 and b > 0 and c > 0.
Since a > 0 and b > 0, then ab > 0.
Observe that

(a ∗ b) ∗ c = ab ∗ c
= (ab)c

= a(bc)

= a ∗ (bc)

= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Case 2: Suppose a > 0 and b > 0 and c < 0.
Since a > 0 and b > 0, then ab > 0.
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Observe that

(a ∗ b) ∗ c = ab ∗ c
= (ab)c

= a(bc)

= a ∗ (bc)

= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Case 3: Suppose a > 0 and b < 0 and c > 0.
Since a > 0 and b < 0, then ab < 0.
Observe that

(a ∗ b) ∗ c = ab ∗ c

=
ab

c

= a(
b

c
)

= a(b ∗ c)
= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Case 4: Suppose a > 0 and b < 0 and c < 0.
Since a > 0 and b < 0, then ab < 0.
Observe that

(a ∗ b) ∗ c = ab ∗ c

=
ab

c

= a(
b

c
)

= a(b ∗ c)
= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Case 5: Suppose a < 0 and b > 0 and c > 0.
Since a < 0 and b > 0, then a

b < 0.
Observe that

(a ∗ b) ∗ c = (
a

b
) ∗ c

=
a

b
/c

=
a

bc
= a ∗ (bc)

= a ∗ (b ∗ c).
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Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Case 6: Suppose a < 0 and b > 0 and c < 0.
Since a < 0 and b > 0, then a

b < 0.
Observe that

(a ∗ b) ∗ c = (
a

b
) ∗ c

=
a

b
/c

=
a

bc
= a ∗ (bc)

= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Case 7: Suppose a < 0 and b < 0 and c > 0.
Since a < 0 and b < 0, then a

b > 0.
Observe that

(a ∗ b) ∗ c = (
a

b
) ∗ c

= (
a

b
)c

=
ac

b

= a/
b

c
= a/(b ∗ c)
= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
Case 8: Suppose a < 0 and b < 0 and c < 0.
Since a < 0 and b < 0, then a

b > 0.
Observe that

(a ∗ b) ∗ c = (
a

b
) ∗ c

= (
a

b
)c

=
ac

b

= a/
b

c
= a/(b ∗ c)
= a ∗ (b ∗ c).

Therefore, (a ∗ b) ∗ c = a ∗ (b ∗ c).
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In all cases, (a ∗ b) ∗ c = a ∗ (b ∗ c), so ∗ is associative.

Proof. We prove 1 ∈ R∗ is identity for ∗.
Since 1 ∈ R and 1 6= 0, then 1 ∈ R∗.
Let a ∈ R∗.
Then a ∈ R and a 6= 0, so either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then a ∗ 1 = a(1) = a = 1(a) = 1 ∗ a.
Case 2: Suppose a < 0.
Then a ∗ 1 = a

1 = a = 1(a) = 1 ∗ a.

In all cases, a ∗ 1 = a = 1 ∗ a.
Since 1 ∈ R∗ and a ∗ 1 = a = 1 ∗ a, then 1 ∈ R∗ is an identity for ∗.

Proof. We prove every a ∈ R∗ has an inverse.
Let a ∈ R∗.
Then a ∈ R and a 6= 0, so either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Let a−1 = 1

a .
Since a 6= 0, then 1

a ∈ R.
Since 1 > 0 and a > 0, then 1

a > 0, so 1
a 6= 0.

Since 1
a ∈ R and 1

a 6= 0, then 1
a ∈ R∗.

Observe that

a ∗ 1

a
= a(

1

a
)

= 1

=
1

a
(a)

=
1

a
∗ a.

Since 1
a ∈ R∗ and a ∗ 1

a = 1 = 1
a ∗ a, then 1

a ∈ R∗ is an inverse of a.
Case 2: Suppose a < 0.
Observe that

a ∗ a =
a

a
= 1.

Since a ∈ R∗ and a ∗ a = 1, then a is an inverse of a.

Therefore, if a > 0, then 1
a ∈ R∗ is an inverse and if a < 0, then a ∈ R∗ is its

own inverse.
Hence, every a ∈ R∗ has an inverse in R∗.

Proof. Since ∗ is a binary operation on R∗ and ∗ is associative and 1 ∈ R∗ is an
identity for ∗ and every a ∈ R∗ has an inverse, then (R∗, ∗) is a group.
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Since 2 ∗ (−3) = 2(−3) = −6 6= − 3
2 = (−3) ∗ 2, then ∗ is not commutative.

Since (R∗, ∗) is a group and ∗ is not commutative, then (R∗, ∗) is a non-
abelian group.

Exercise 44. Let G be a group and a, b, c ∈ G.
If ab = ac, then b = c.

Proof. Suppose ab = ac.
Then

b = eb

= (a−1a)b

= a−1(ab)

= a−1(ac)

= (a−1a)c

= ec

= c.

Therefore, b = c.

Exercise 45. Each element of a finite group appears exactly once in each row
and exactly once in each column of the group’s operation table.

Proof. Let G be a finite group.
Let a ∈ G such that a = rc for some r ∈ G and c ∈ G.
Then a appears at least once in the row with row header r and a appears at

least once in the column with column header c.
Suppose a appears more than once in the row with row header r.
Then there exists b 6= c such that rb = a.
Thus, rb = a = rc, so rb = rc.
By the left cancellation law for groups, we obtain b = c.
But, this contradicts that b 6= c.
Therefore, a cannot appear more than once in the row with row header r.
Since a appears at least once in the row with row header r and a cannot

appear more than once in the row with row header r, then a appears exactly
once in the row with row header r.

Suppose a appears more than once in the column with column header c.
Then there exists d 6= r such that dc = a.
Thus, dc = a = rc, so dc = rc.
By the right cancellation law for groups, we obtain d = r.
But, this contradicts that d 6= r.
Therefore, a cannot appear more than once in the column with column

header c.
Since a appears at least once in the column with column header c and a

cannot appear more than once in the column with column header c, then a
appears exactly once in the column with column header c.
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Since a appears exactly once in the row with row header r and r is arbitrary,
then a appears exactly once in any row of the operation table of G.

Since a appears exactly once in the column with column header c and c is
arbitrary, then a appears exactly once in any column of the operation table of
G.

Since a is an arbitrary element of G, then this implies any element of G
appears exactly once in any row of the operation table of G and any element of
G appears exactly once in any column of the operation table of G.

Exercise 46. Let T be an infinite set.
Let (ST , ◦) be the symmetric group on T under function composition.
Let G = {f ∈ ST : f(t) 6= t for only a finite number of t ∈ T} .
Then (G, ◦) is a group.

Proof. We prove ◦ is a binary operation on G.
Let f, g ∈ G.
Since f ∈ G, then f ∈ ST and f(t) 6= t for only a finite number of t ∈ T .
Since g ∈ G, then g ∈ ST and g(t) 6= t for only a finite number of t ∈ T .
Since f ∈ ST , then f : T → T is a permutation, so f is a bijection.
Since g ∈ ST , then g : T → T is a permutation, so g is a bijection.
Let f ◦ g : T → T be defined by (f ◦ g)(t) = f(g(t)) for all t ∈ T .
Since composition of bijections is a bijection and f is a bijection and g is a

bijection, then f ◦ g is a bijection, so f ◦ g : T → T is a permutation.
Hence, f ◦ g ∈ ST .

Since f(t) 6= t for only a finite number of t ∈ T , then there exists m ∈ Z with
m ≥ 0 such that f(x1) 6= x1 and f(x2) 6= x2 and ... and f(xm) 6= xm for some
x1, x2, ..., xm ∈ T .

Since g(t) 6= t for only a finite number of t ∈ T , then there exists n ∈ Z with
n ≥ 0 such that f(y1) 6= y1 and f(y2) 6= y2 and ... and f(yn) 6= yn for some
y1, y2, ..., yn ∈ T .

Let f(x1) = s1 and f(x2) = s2 and ... and f(xm) = sm.
Then x1 6= s1 and x2 6= s2 and ... and xm 6= sm for s1, s2, ..., sm ∈ T .
Let g(y1) = t1 and f(y2) = t2 and ... and f(yn) = tn.
Then y1 6= t1 and y2 6= t2 and ... and yn 6= tn for t1, t2, ..., tn ∈ T .
TODO We’re stuck.

Exercise 47. Real linear functions under function composition is a
group.

Let Ta,b : R → R be the function defined by Ta,b(x) = ax + b for a, b ∈ R
and a 6= 0.

Then G = {Ta,b : a, b ∈ R and a 6= 0 } is a non-abelian group under function
composition.
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Proof. We prove ◦ is a binary operation on G.
Let Sa,b and Tc,d be elements of G.
Since Sa,b ∈ G, then Sa,b : R→ R is the function defined by Sa,b(x) = ax+b

for a, b ∈ R and a 6= 0.
Since Tc,d ∈ G, then Tc,d : R→ R is the function defined by Tc,d(x) = cx+d

for c, d ∈ R and c 6= 0.
Let S ◦ T : R → R be the function defined by (S ◦ T )(x) = S(T (x)) for all

x ∈ R.
Let x ∈ R.
Then (S ◦ T )(x) = S(T (x)) = S(cx + d) = a(cx + d) + b = acx + ad + b =

(ac)x+ (ad+ b).
Thus, (S ◦ T ) = (S ◦ T )ac,ad+b.
Since a, c ∈ R and R is closed under multiplication, then ac ∈ R.
Since R is closed under multiplication and addition and a, b, d ∈ R, then

ad+ b ∈ R.
Since a 6= 0 and c 6= 0, then ac 6= 0.
Since ac ∈ R and ad + b ∈ R and ac 6= 0, then (S ◦ T )ac,ad+b ∈ G, so

(S ◦ T ) ∈ G.
Therefore, G is closed under ◦, so ◦ is a binary operation on G.

Proof. Function composition is associative, so ◦ is associative in G.

Proof. We prove the identity function I is identity for G.
Let I : R→ R be the function defined by I(x) = x for all x ∈ R.
Then I(x) = x = 1x+ 0, so I = I1,0.
Since 1, 0 ∈ R and 1 6= 0, then I1,0 ∈ G, so I ∈ G.

Let Ta,b ∈ G.
Then Ta,b : R → R is the function defined by Ta,b(x) = ax + b for a, b ∈ R

and a 6= 0.
Let x ∈ R.
Observe that

(T ◦ I)(x) = T (I(x))

= T (x)

= ax+ b

= I(ax+ b)

= I(T (x))

= (I ◦ T )(x).

Thus, (T ◦ I)(x) = T (x) = (I ◦ T )(x), so T ◦ I = T = I ◦ T .
Since I ∈ G and T ◦ I = T = I ◦ T , then I is an identity of G.

Proof. We prove every element of G has an inverse.
Let Ta,b ∈ G.
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Then Ta,b : R → R is the function defined by Ta,b(x) = ax + b for a, b ∈ R
and a 6= 0.

Since a ∈ R and a 6= 0, then 1
a ∈ R and 1

a 6= 0.

Since a, b ∈ R and a 6= 0, then −ba ∈ R.

Let T−1 : R → R be the function defined by T−1(x) = ( 1
a )x − b

a for all
x ∈ R.

Since 1
a ∈ R and −ba ∈ R and 1

a 6= 0, then T−1 ∈ G.

Let x ∈ R.
Observe that

(T ◦ T−1)(x) = T (T−1(x))

= T ((
1

a
)x− b

a
)

= a((
1

a
)x− b

a
) + b

= x− b+ b

= x

= I(x)

= x

= x+
b

a
− b

a

=
1

a
(ax+ b)− b

a

=
1

a
(T (x))− b

a

= T−1(T (x))

= I(T (x))

= (T−1 ◦ T )(x).

Thus, (T ◦ T−1)(x) = I(x) = (T−1 ◦ T )(x), so T ◦ T−1 = I = T−1 ◦ T .
Since T−1 ∈ G and T ◦ T−1 = I = T−1 ◦ T , then T−1 is an inverse of T .
Therefore, for every Ta,b ∈ G defined by T (x) = ax+b, there exists T−1 ∈ G

defined by T−1(x) = ( 1
a )x− b

a such that T−1 is an inverse of T .

Proof. Since ◦ is a binary operation on G and ◦ is associative and the identity
function I : R → R defined by I(x) = x for all x ∈ R is an identity of G and
for every Ta,b ∈ G defined by Ta,b(x) = ax+ b, there exists T−1 ∈ G defined by
T−1(x) = ( 1

a )x− b
a such that T−1 is an inverse of T , then G is a group.

Proof. We prove ◦ is not commutative.
Let f2,3 ∈ G and let g4,−5 ∈ G.
Then f : R → R is the function defined by f(x) = 2x + 3 and g : R → R is

the function defined by g(x) = 4x− 5.
Let x ∈ R.
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Observe that

(f ◦ g)(x) = f(g(x))

= f(4x− 5)

= 2(4x− 5) + 3

= 8x− 10 + 3

= 8x− 7.

and

(g ◦ f)(x) = g(f(x))

= g(2x+ 3)

= 4(2x+ 3)− 5

= 8x+ 12− 5

= 8x+ 7.

Since 8x−7 6= 8x+7 for all x ∈ R, then (f ◦g)(x) 6= (g◦f)(x), so f ◦g 6= g◦f .
Hence, ◦ is not commutative.
Since G is a group and ◦ is not commutative, then G is a non-abelian group.

Exercise 48. Let Ta,b : R→ R be the function defined by Ta,b(x) = ax+ b for
a, b ∈ R and a 6= 0.

Let H = {T1,b : b ∈ R}.
Then H is an abelian group under function composition.

Proof. We prove function composition ◦ is a binary operation on H.
Let S1,a and T1,b be arbitrary elements of H.
Since S1,a ∈ H, then S : R→ R is the function defined by S(x) = x+ a for

a ∈ R.
Since T1,B ∈ H, then T : R→ R is the function defined by T (x) = x+ b for

b ∈ R.
Let S ◦ T : R → R be the function defined by (S ◦ T )(x) = S(T (x)) for all

x ∈ R.
Let x ∈ R.
Then (S◦T )(x) = S(T (x)) = S(x+b) = (x+b)+a = x+(b+a) = x+(a+b).
Thus, (S ◦ T ) = (S ◦ T )1,a+b.
Since a, b ∈ R and R is closed under addition, then a+ b ∈ R.
Since a+ b ∈ R, then (S ◦ T )1,a+b ∈ H, so (S ◦ T ) ∈ H.
Therefore, H is closed under ◦, so ◦ is a binary operation on H.

Proof. Function composition is associative, so ◦ is associative in H.

Proof. We prove the identity function I is identity for H.
Let I : R→ R be the function defined by I(x) = x for all x ∈ R.
Then I(x) = x = 1x+ 0, so I = I1,0.
Since 0 ∈ R, then I1,0 ∈ H, so I ∈ H.
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Let T1,a ∈ H.
Then T1,a : R→ R is the function defined by T (x) = x+ a for a ∈ R.
Let x ∈ R.
Observe that

(T ◦ I)(x) = T (I(x))

= T (x)

= x+ a

= I(x+ a)

= I(T (x))

= (I ◦ T )(x).

Thus, (T ◦ I)(x) = T (x) = (I ◦ T )(x), so T ◦ I = T = I ◦ T .
Since I ∈ H and T ◦ I = T = I ◦ T , then I is an identity of H.

Proof. We prove every element of H has an inverse.
Let T1,a ∈ H.
Then T1,a : R→ R is the function defined by T (x) = x+ a for a ∈ R.
Let T1,−a : R→ R be the function defined by T1,−a(x) = x−a for all x ∈ R.
Since −a ∈ R, then T1,−a ∈ H.

Let x ∈ R.
Observe that

(T ◦ T1,−a)(x) = T (T1,−a(x))

= T (x− a)

= (x− a) + a

= x

= I(x)

= x

= (x+ a)− a
= T (x)− a
= T1,−a(T (x))

= (T1,−a ◦ T )(x).

Thus, (T ◦ T1,−a)(x) = I(x) = (T1,−a ◦ T )(x), so T ◦ T1,−a = I = T1,−a ◦ T .
Since T1,−a ∈ H and T ◦ T1,−a = I = T1,−a ◦ T , then T1,−a is an inverse of

T .
Therefore, for every T1,a ∈ H defined by T (x) = x+a, there exists T1,−a ∈ H

defined by T1,−a(x) = x− a such that T1,−a is an inverse of T .

Proof. Since ◦ is a binary operation on H and ◦ is associative and the identity
function I : R → R defined by I(x) = x for all x ∈ R is an identity of H and
for every T1,a ∈ H defined by T (x) = x + a, there exists T1,−a ∈ H defined by
T1,−a(x) = x− a such that T1,−a is an inverse of T , then H is a group.
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Proof. We prove H is abelian.
Let S1,a and T1,b be arbitrary elements of H.
Then S : R → R is the function defined by S(x) = x − a and T : R → R is

the function defined by T (x) = x+ b for a, b ∈ R.
Let x ∈ R.
Observe that

(S ◦ T )(x) = S(T (x))

= S(x+ b)

= (x+ b)− a
= x+ b− a
= x− a+ b

= (x− a) + b

= T (x− a)

= T (S(x))

= (T ◦ S)(x).

Thus, (S ◦ T )(x) = (T ◦ S)(x), so S ◦ T = T ◦ S.
Therefore, ◦ is commutative.
Since H is a group and ◦ is commutative, then H is an abelian group.

Exercise 49. Let f ∈ Sn.
Let I be the identity permutation of the symmetric group Sn.
Then there exists k ∈ Z+ such that fk = I, where fk = f ◦ f ◦ f... ◦ f

(composition of f with itself k times).

Proof. TODO
Let X = {1, 2, ..., n}.
Observations.
Let n = the number of elements of set X.
Let x represent the number of elements of X that are in the desired position

for the identity permutation.
This means 1 is in the first slot, 2 is in the second slot, 3 is in the third slot,

... and n is in the last slot.
Let m represent the number of moves an element requires to move to the

desired slot in the identity permutation.
Then m is 0 if x = n and m = n− x otherwise.
Let k be power of f , so that k = m+ 1.
Each move corresponds to an element a ∈ X that moves to a different slot,

if the elements are arranged in linear order.

Exercise 50. Let G = {0, 1, 2, 3, 4, 5, 6, 7}.
Let (G, ∗) be a group with the following properties.
1. a ∗ b ≤ a+ b for all a, b ∈ G.
2. a ∗ a = 0 for all a ∈ G.
Compute the operation table for G.
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Solution. We must ensure each row and each column contains an element
exactly once and satisfies the properties above.

We find that 0 ∈ G is the identity.

The operation table for G is shown below.
· 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 4 5 6 7 2
2 2 3 0 5 6 7 4 1
3 3 4 5 0 7 1 2 6
4 4 5 6 7 0 2 1 3
5 5 6 7 1 2 0 3 4
6 6 7 4 2 1 3 0 5
7 7 2 1 6 3 4 5 0

Exercise 51. Let (G, ∗) be a group with identity e ∈ G.
Let a ∈ G.
If a2 = a, then a = e.

Proof. Suppose a2 = a.
Then

aa = a2

= a

= ae.

Hence, aa = ae.
By the left cancellation law, we obtain a = e.

Exercise 52. Let G be a group.
Let a, b, c, d ∈ G.
Compute (abcd)−1.

Solution. We show the inverse of abcd is d−1c−1b−1a−1.
Let e ∈ G be the identity of G.
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Observe that

(abcd)(d−1c−1b−1a−1) = (abc)(dd−1)(c−1b−1a−1)

= (abc)(e)(c−1b−1a−1)

= (abc)(c−1b−1a−1)

= (ab)(cc−1)(b−1a−1)

= (ab)(e)(b−1a−1)

= (ab)(b−1a−1)

= a(bb−1)a−1

= a(e)a−1

= aa−1

= e.

Observe that

(d−1c−1b−1a−1)(abcd) = (d−1c−1b−1)(a−1a)(bcd)

= (d−1c−1b−1)(e)(bcd)

= (d−1c−1b−1)(bcd)

= (d−1c−1)(b−1b)(cd)

= (d−1c−1)(e)(cd)

= (d−1c−1)(cd)

= d−1(c−1c)d

= d−1(e)d

= d−1d

= e.

Since (abcd)(d−1c−1b−1a−1) = e = (d−1c−1b−1a−1)(abcd), then d−1c−1b−1a−1

is the inverse of abcd.
Therefore, (abcd)−1 = d−1c−1b−1a−1.

Exercise 53. Let G be a group with identity e ∈ G.
Let a, b ∈ G.
If ab = e, then ba = e.

Proof. Observe that

ba = (eb)a

= e(ba)

= (a−1a)(ba)

= a−1(ab)a

= a−1(e)a

= a−1a

= e.
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Therefore, ba = e.

Exercise 54. Let G be a group.
Let f : G→ G be a function defined by f(a) = a−1 for all a ∈ G.
Then f is bijective.

Proof. We prove f is injective.
Let a, b ∈ G such that f(a) = f(b).
Then a−1 = f(a) = f(b) = b−1, so a−1 = b−1.
Hence, a = (a−1)−1 = (b−1)−1 = b, so a = b.
Therefore, f(a) = f(b) implies a = b, so f is injective.

We prove f is surjective.
Let b ∈ G.
Since G is a group and b ∈ G, then b−1 ∈ G.
Observe that f(b−1) = (b−1)−1 = b.
Since b−1 ∈ G and f(b−1) = b, then f is surjective.

Since f is injective and surjective, then f is bijective.

Exercise 55. Let S = R− {−1}.
Define ∗ on S by a ∗ b = a+ b+ ab for all a, b ∈ S.
Then (S, ∗) is an abelian group.

Proof. We first prove ∗ is a binary operation on S.
Let a, b ∈ S.
Then a, b ∈ R and a 6= −1 and b 6= −1 and a ∗ b = a+ b+ ab.
Since a, b ∈ R and a ∗ b = a + b + ab, then by closure of R under addition

and multiplication, a ∗ b ∈ R.

We prove S is closed under ∗.
Suppose for the sake of contradiction S is not closed under ∗.
Then there exist x, y ∈ S such that x ∗ y 6∈ S.
Since x, y ∈ S, then x, y ∈ R and x 6= −1 and y 6= −1.
Since x ∗ y 6∈ S, then either x ∗ y 6∈ R or x ∗ y = −1.
Since x, y ∈ R, then we know x ∗ y ∈ R.
Hence, we conclude x ∗ y = −1.
Thus, x + y + xy = −1, so 0 = x + y + xy + 1 = x + xy + y + 1 =

x(1 + y) + (y + 1) = x(y + 1) + (y + 1) = (x+ 1)(y + 1).
This implies either x+ 1 = 0 or y + 1 = 0, so either x = −1 or y = −1.
But, neither x nor y is negative one, since x 6= −1 and y 6= −1.
Therefore, S is closed under ∗.
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We next prove ∗ is well defined.
Let (a, b), (c, d) ∈ S × S such that (a, b) = (c, d).
Since (a, b) = (c, d), then by definition of equality of ordered pairs, a = c

and b = d.
Thus, by substitution, we have a ∗ b = a+ b+ ab = c+ d+ cd = c ∗ d.
Therefore, ∗ is well defined.
Since S is closed under ∗ and ∗ is well defined, then ∗ is a binary operation

on S, so (S, ∗) is a binary structure.

Proof. We prove ∗ is associative.
Let a, b, c ∈ S.
Observe that

(a ∗ b) ∗ c = (a+ b+ ab) ∗ c
= (a+ b+ ab) + c+ (a+ b+ ab)c

= a+ b+ ab+ c+ ac+ bc+ abc

= a+ b+ c+ bc+ ab+ ac+ abc

= a+ (b+ c+ bc) + a(b+ c+ bc)

= a ∗ (b+ c+ bc)

= a ∗ (b ∗ c).

Therefore, ∗ is associative.

We prove ∗ is commutative.
Let a, b ∈ S.
Observe that

a ∗ b = a+ b+ ab

= b+ a+ ab

= b+ a+ ba

= b ∗ a.

Therefore, ∗ is commutative.

We next prove 0 is an identity for ∗.
Let a ∈ S.
Then a ∈ R.
Since 0 ∈ R and 0 6= −1, then 0 ∈ S.
Since a ∗ 0 = 0 ∗ a = 0 + a+ 0a = a+ 0a = a+ 0 = a, then a ∗ 0 = 0 ∗ a = a,

so 0 is an identity for ∗.

Proof. We next prove the inverse of a is −aa+1 .
Let a ∈ S.
Let b = −a

a+1 .
We prove b is an inverse of a.
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Since a ∈ S, then a ∈ R and a 6= −1.
Since a 6= −1, then a+ 1 6= 0.
Since a ∈ R, then −a ∈ R, so b ∈ R.

Suppose that b = −1.
Then −1 = b = −a

a+1 , so 1 = a
a+1 .

Since a+ 1 6= 0, then we multiply both sides by a+ 1 to obtain a+ 1 = a.
We subtract a from both sides to obtain 1 = 0, a contradiction.
Therefore, b 6= −1.
Since b ∈ R and b 6= −1, then b ∈ S.

Observe that

a ∗ b = b ∗ a
= b+ a+ ba

=
−a
a+ 1

+ a+ (
−a
a+ 1

)a

=
−a
a+ 1

+
a(a+ 1)

a+ 1
− a2

a+ 1

=
−a+ a(a+ 1)− a2

a+ 1

=
−a+ a2 + a− a2

a+ 1
= 0.

Since b ∈ S and a ∗ b = b ∗ a = 0, then b is an inverse of a, so a has an
inverse.

Since a is arbitrary, then every element of S has an inverse.

Since (S, ∗) is an associative binary structure with identity 0 and each element
of S has an inverse, then (S, ∗) is a group.

Since ∗ is commutative, then (S, ∗) is an abelian group.

Exercise 56. Let (Z∗n, ·) be the group of units of Zn, where · is multiplication
modulo n.

If n > 2, then there is an element [a] ∈ Z∗n such that [a]2 = [1] and [a] 6= [1].

Solution. Let n ∈ Z+.
The statement to prove is P : if n ≥ 3, then (∃[a] ∈ Z∗n)([a]2 = [1]∧[a] 6= [a]).
We try different values of n, like n = 1, 2, 3, 4, 5, 6, ....
We find that when n < 3, then [1]2 = [1], but [1] = [1].
Now, when n ≥ 3, we find that [n− 1]2 = [1].

Proof. Let n be a positive integer.
Suppose n > 2.
Since n ∈ Z, then n− 1 ∈ Z, so [n− 1] ∈ Zn.
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Since n|n, then n|(n− 1 + 1), so n|(n− 1)− (−1).
Hence, n− 1 ≡ −1 (mod n), so [n− 1] = [−1].
Observe that [n− 1]2 = [n− 1][n− 1] = [−1][−1] = [(−1)(−1)] = [1].
Since [n− 1] ∈ Zn and [n− 1][n− 1] = [1], then [n− 1] ∈ Z∗n.

Since n > 2, then n− 2 > 0.
Since n > 2 and n− 2 > 0, then n > 0 and n− 2 > 0.
Hence, n and n− 2 are positive integers and n > n− 2.
Since n|n− 2 implies n ≤ n− 2, then n > n− 2 implies n 6 |n− 2.
Thus, since n > n− 2, then we conclude n 6 |n− 2.
Therefore, n 6 |(n− 1)− 1, so n− 1 6≡ 1 (mod n).
Thus, [n− 1] 6= [1].
Let a = n− 1.
Then [a] = [n− 1].
Since [n − 1] ∈ Z∗n and [n − 1]2 = [1] and [n − 1] 6= [1], then there exists

[a] ∈ Z∗n such that [a]2 = [1] and [a] 6= [1].

Exercise 57. Let (Z∗n, ·) be the group of units of Zn where · is multiplication
modulo n.

For n > 2, there exists k ∈ Z∗n such that k2 = 1 and k 6= 1.

Solution. Let n ∈ Z+ such that n > 2.
Let k = n− 1.
Since gcd(k, n) = gcd(n − 1, n) = 1, then k has a multiplicative inverse in

Zn, so k ∈ Z∗n.
Since n > 2, then k = n− 1 > 1, so k > 1.
Hence, k 6= 1.
Observe that

k2 = (n− 1)2

= n2 − 2n+ 1

= n(n− 2) + 1

= 0(n− 2) + 1

= 0 + 1

= 1.

Exercise 58. Let G be a group such that g2 = e for all g ∈ G.
Then G is abelian.

Proof. Let a, b ∈ G.
Since G is closed under ∗, then ab ∈ G.
Since xx = e for all x ∈ G, then x−1 = x by definition of inverse element.
Thus, a−1 = a and b−1 = b and (ab)−1 = ab.
Observe that ab = (ab)−1 = b−1a−1 = ba.
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Thus, ab = ba.
Since a, b are arbitrary then ab = ba for all a, b ∈ G.
Hence, ∗ is commutative, so (G, ∗) is abelian.

Proof. Let a, b ∈ G.
Then ab ∈ G.
Since g2 = e for all g ∈ G, then a2 = e and b2 = e and (ab)2 = e.
Observe that

aabb = a2b2

= ee

= e

= (ab)2

= (ab)(ab)

= abab.

Thus, aabb = abab.
We apply the left cancellation law to obtain abb = bab.
We apply the right cancellation law to obtain ab = ba.
Therefore, ab = ba for all a, b ∈ G, so ∗ is commutative.
Hence, G is abelian.

Exercise 59. Let G be a finite group of even order with identity e ∈ G.
Then there exists a ∈ G such that a 6= e and a2 = e.

Proof. Suppose G is a finite group of even order with identity e ∈ G.
Let n be the order of G.
Then n ∈ Z+ and n = 2k for some integer k and n is the number of elements

in G.
We can represent the elements of G such that G = {a1, a2, ..., an−1, an} and

an = e.
Since there are n = 2k elements in G, then there are k pairs of elements in

G.
The pairs of elements of G are given by (aj , aj+1) where j = 2i − 1 and

i ∈ {1, 2, ..., k} and the last pair is (an−1, an).
We pair consecutive elements of G as inverses of each other, starting in order

from left to right, beginning with the element a1.
Thus, we pair a1 and a2 as inverses of each other, so we form the pair (a1, a2)

and (a1)−1 = a2 and (a2)−1 = a1.
We continue this process, taking the next pair of elements of G in order from

left to right.
Thus, the first k− 1 pairs can be formed such that in the pair (aj , aj+1), we

have (aj)
−1 = aj+1 and (aj+1)−1 = aj .
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Consider the last pair (an−1, an) = (an−1, e) = (a2k−1, e).
This pair contains distinct elements an−1 and e, so an−1 6= e.
Let a = an−1.
Then a ∈ G and a 6= e.
Let b be the inverse of a in G.
Then ab = ba = e.

Suppose b = e.
Then e = ab = ae = a, so a = e.
But, this contradicts a 6= e.
Therefore, b 6= e.

Suppose b is one of the elements in the first k − 1 pairs.
Choose some pair (aj , aj+1) where j = 2i− 1 and i ∈ {1, 2, ..., k − 1}.
Then (aj)

−1 = aj+1 and (aj+1)−1 = aj .
Either b = aj or b = aj+1.
We consider each case separately.
Case 1: Suppose b = aj .
Then e = ba = aja, so (aj)

−1 = a.
Hence, a = (aj)

−1 = aj+1.
But, a is in the last pair, and aj+1 is in one of the first k − 1 pairs, so

a 6= aj+1.
Therefore, b 6= aj .
Case 2: Suppose b = aj+1.
Then e = ba = aj+1a, so (aj+1)−1 = a.
Hence, a = (aj+1)−1 = aj .
But, a is in the last pair and aj is in one of the first k − 1 pairs, so a 6= aj .
Therefore, b 6= aj+1.

Consequently, b is not one of the elements in the first k − 1 pairs.
Since b 6= e and b is not one of the elements in the first k − 1 pairs, then we

are forced to conclude b must be a itself, so b = a.
Hence, e = ab = aa = a2, so a2 = e.

Therefore, there exists a = an−1 ∈ G such that a 6= e and a2 = e, as
desired.

Exercise 60. Let (G, ∗) be a group with the property : if a, b, c ∈ G and
ab = ca, then b = c.

Then G is abelian.

Proof. Let e ∈ G be the identity of G.
Let a, b ∈ G.
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Observe that

ab = ab(e)

= ab(a−1a)

= (aba−1)a.

Thus, ab = (aba−1)a.
Since a ∈ G and b ∈ G and aba−1 ∈ G and ab = (aba−1)a, then we conclude

b = aba−1.
Hence, ab = (aba−1)a = ba.
Therefore, ab = ba for all a, b ∈ G, so G is abelian.

Exercise 61. Let (G, ∗) be a group.
If (ab)2 = a2b2 for all a, b ∈ G, then G is abelian.

Proof. Let a, b ∈ G.
Suppose (ab)2 = a2b2.
Then aabb = a2b2 = (ab)2 = (ab)(ab) = abab.
Hence, aabb = abab.
By the left cancellation law, we obtain abb = bab.
By the right cancellation law, we obtain ab = ba.
Therefore, ab = ba for all a, b ∈ G, so G is abelian.

Exercise 62. Let (G, ∗) be a group.
Then G is abelian iff (ab)−1 = a−1b−1 for all a, b ∈ G.

Proof. Suppose G is abelian.
Let a, b ∈ G.
Then (ab)−1 = b−1a−1 = a−1b−1, so (ab)−1 = a−1b−1 for all a, b ∈ G.

Proof. Conversely, suppose (ab)−1 = a−1b−1 for all a, b ∈ G.
Let a, b ∈ G.
Then (ab)−1 = a−1b−1 = (ba)−1.
Observe that

ab = [(ab)−1]−1

= [(ba)−1]−1

= ba.

Hence, ab = ba, so ab = ba for all a, b ∈ G.
Therefore, G is abelian.

Exercise 63. Let (G, ∗) be a group.
Let a, b, c ∈ G.
Then there is a unique x ∈ G such that axb = c.
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Proof. Let e ∈ G be the identity of G.
Let x = a−1cb−1.
Since a ∈ G, then a−1 ∈ G.
Since b ∈ G, then b−1 ∈ G.
Since a−1 ∈ G and b−1 ∈ G and c ∈ G, then x ∈ G, by closure of G under ∗.
Observe that

a(a−1cb−1)b = (aa−1)c(b−1b)

= ece

= ce

= c.

Therefore, there is at least one solution to the equation axb = c.

Proof. We prove there is at most one solution to the equation axb = c.
Suppose x′ and x′′ are solutions to the equation axb = c.
Then ax′b = c and ax′′b = c, so ax′b = c = ax′′b.
By the left cancellation law we obtain x′b = x′′b.
By the right cancellation law we obtain x′ = x′′.
Therefore, there is at most one solution to the equation axb = c.

Proof. Since there is at least one solution to the equation axb = c and there is at
most one solution to the equation axb = c, then there is exactly one solution to
the equation axb = c, so there is a unique solution to the equation axb = c.

Exercise 64. Let a, b be elements of a group (G, ∗) with identity e ∈ G.
If a4b = ba and a3 = e, then ab = ba.

Proof. Suppose a4b = ba and a3 = e.
Then

ab = e(ab)

= (a3)(ab)

= (a3a)b

= a4b

= ba.

Therefore, ab = ba.

Exercise 65. Let (G, ∗) be a group.
If a4b = ba and a3 = e for all a, b ∈ G, then G is abelian.

Proof. Let a, b ∈ G.
Suppose a4b = ba and a3 = e.
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Then

ab = e(ab)

= (a3)(ab)

= (a3a)b

= a4b

= ba.

Hence, ab = ba.
Therefore, ab = ba for all a, b ∈ G, so G is abelian.

Exercise 66. Let G be a group.
If (ab)3 = a3b3 and (ab)5 = a5b5 for all a, b ∈ G, then G is abelian.

Proof. Suppose (ab)3 = a3b3 and (ab)5 = a5b5 for all a, b ∈ G.
Let a, b ∈ G.
Since (ab)3 = a3b3, then (ab)(ab)(ab) = (aaa)(bbb), so by cancellation, we

obtain baba = aabb.
Since (ab)5 = a5b5, then (ab)(ab)(ab)(ab)(ab) = (aaaaa)(bbbbb), so by can-

cellation, we obtain babababa = aaaabbbb.
Substituting, we obtain (aabb)(aabb) = (aaaa)(bbbb).
By cancellation, we obtain bbaa = aabb.
Thus, baba = aabb = bbaa, so baba = bbaa.
Hence, by cancellation, we obtain ab = ba, so G is abelian.

Exercise 67. Let G be a group with identity e ∈ G.
If a, b ∈ G and b6 = e and ab = b4a, then b3 = e and ab = ba.

Proof. Suppose a, b ∈ G and b6 = e and ab = b4a.
Since ab = b4a, then aba−1 = b4.
Observe that

e = e2

= (b6)2

= b12

= (b4)3

= (aba−1)3

= (aba−1)(aba−1)(aba−1)

= abbba−1.

Thus, e = abbba−1, so ae = a = ea = abbba−1a = abbbe = abbb.
Therefore, ae = abbb, so e = bbb = b3.
Hence, b3 = e.
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Observe that

ab = b4a

= (b3b)a

= (eb)a

= ba.

Therefore, b3 = e and ab = ba.

Exercise 68. Let (G, ∗) be a group such that for all x, y ∈ G, xy = x−1y−1.
Then (G, ∗) is abelian.

Proof. Let e be the identity of G.
Let x ∈ G.
Then xe = x−1e−1.
Thus,

x = xe

= x−1e−1

= x−1e

= x−1.

Hence, each element in G is its own inverse.

Let a, b ∈ G.
By closure of G, ab ∈ G.
Since each element in G is its own inverse and a ∈ G and b ∈ G and ab ∈ G,

then a is its own inverse and b is its own inverse, and ab is its own inverse, so
a−1 = a and b−1 = b and (ab)−1 = ab.

Observe that

ab = (ab)−1

= b−1a−1

= ba.

Therefore, G is abelian.

Exercise 69. Let (G, ∗) be a group such that for all x, y ∈ G, (xy)2 = xy.
Then (G, ∗) is abelian.

Proof. Let x ∈ G.
Then (xx)2 = xx.
Thus,

xxe = xx

= (xx)2

= (xx)(xx).
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Hence, xxe = xxxx, so by the left cancellation law, e = xx.
Thus, x−1 = x.
Therefore, each element of G is its own inverse.

Let a, b ∈ G.
Then ab ∈ G.
Observe that

ab = (ab)−1

= b−1a−1

= ba.

Therefore, ab = ba, so G is abelian.

Exercise 70. Let G = {x ∈ R : x > 1}.
Define x ∗ y = xy − x− y + 2 for all x, y ∈ G.
Then (G, ∗) is an abelian group.

Solution. To prove G is a group, we must prove:
1. ∗ is a binary operation on G.
2. ∗ is associative.
3. There exists an identity element in G.
4. Each element of G has an inverse in G.
To prove ∗ we must prove G is closed under ∗.
Thus, assume a, b ∈ G.
To prove a ∗ b ∈ G, we must prove a ∗ b ∈ R and ab− a− b+ 2 > 1.
Let’s work backwards.
Suppose a, b ∈ G. Then a, b ∈ R and a > 1 and b > 1. To prove a ∗ b > 1,

we must prove ab− a− b+ 2 > 1. Thus, ab− a− b+ 2 > 1 iff ab− a− b+ 1 > 0
iff a(b − 1) − b + 1 > 0 iff a(b − 1) − (b − 1) > 0 iff (a − 1)(b − 1) > 0. Since
a > 1, then a− 1 > 0 and b > 1 implies b− 1 > 0.

Proof. Since 2 ∈ R and 2 > 1, then 2 ∈ G, so G 6= ∅.
Therefore, G is a nonempty set.

We prove ∗ is a binary operation on G.
Let x, y ∈ G.
Then x, y ∈ R and x > 1 and y > 1 and x ∗ y = xy − x− y + 2 is unique.
Since x > 1 and y > 1, then x− 1 > 0 and y − 1 > 0.
We multiply to obtain (x− 1)(y − 1) > 0.
Thus, xy − x− y + 1 > 0, so xy − x− y + 2 > 1.
Hence, x ∗ y > 1.
By closure of R under addition and multiplication, x ∗ y ∈ R.
Since x ∗ y ∈ R and x ∗ y > 1, then x ∗ y ∈ G.
Since x ∗ y ∈ G and x ∗ y is unique, then ∗ is a binary operation on G.
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We prove ∗ is commutative.
Let x, y ∈ G.
Then

x ∗ y = xy − x− y + 2

= yx− x− y + 2

= yx− y − x+ 2

= y ∗ x.

Therefore, ∗ is commutative.

We prove ∗ is associative.
Let x, y, z ∈ G.
Then

(x ∗ y) ∗ z = (xy − x− y + 2) ∗ z
= (xy − x− y + 2)z − (xy − x− y + 2)− z + 2

= xyz − xz − yz + 2z − xy + x+ y − 2− z + 2

= xyz − xz − yz + z − xy + x+ y

= xyz − xy − xz − yz + z + x+ y

= xyz − xy − xz + x− yz + z + y

= xyz − xy − xz + x− yz + y + z

= xyz − xy − xz + 2x− x− yz + y + z − 2 + 2

= x(yz − y − z + 2)− x− (yz − y − z + 2) + 2

= x(y ∗ z)− x− (y ∗ z) + 2

= x ∗ (y ∗ z).

Therefore, ∗ is associative.

We prove 2 is an identity for ∗.
Observe that 2 ∈ G.
Let a ∈ G.
Then a ∗ 2 = a(2)− a− 2 + 2 = 2a− a = a and 2 ∗ a = 2a− 2− a+ 2 = a.
Since 2 ∈ G and a ∗ 2 = a = 2 ∗ a, then 2 is an identity for ∗.

We prove every element of G has an inverse.
Let a ∈ G.
Then a ∈ R and a > 1.
Let b = a

a−1 .
Since a > 1, then a− 1 > 0, so a− 1 6= 0.
Since a ∈ R and a− 1 6= 0, then b ∈ R.
Since 0 > −1, then a > a− 1.
Since a− 1 > 0, we divide by a− 1 to get a

a−1 > 1, so b > 1.
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Since b ∈ R and b > 1, then b ∈ G.
Observe that

a ∗ b = ab− a− b+ 2

= (a− 1)b− a+ 2

= (a− 1)
a

a− 1
− a+ 2

= a− a+ 2

= 2

and a ∗ b = b ∗ a.
Since b ∈ G and a ∗ b = b ∗ a = 2, then b is an inverse of a.
Therefore, for every element a ∈ G, there exists an inverse a

a−1 ∈ G.

Since ∗ is a binary operation on G and ∗ is associative and 2 ∈ G is an identity
for ∗ and for every element a ∈ G, there exists an inverse a

a−1 ∈ G, then (G, ∗)
is a group.

Since ∗ is commutative, then (G, ∗) is an abelian group.

Exercise 71. Define a ∗ b = ab
2 for all a, b ∈ Q∗.

Then (Q∗, ∗) is an abelian group.

Proof. Let a, b ∈ Q∗.
Since multiplication is a binary operation over Q∗, then ab ∈ Q∗ and ab is

unique.
Therefore, ab

2 ∈ Q∗ and ab
2 is unique, so ∗ is a binary operation over Q∗.

We prove ∗ is associative.
Let a, b, c ∈ Q∗.
Then

(a ∗ b) ∗ c =
ab

2
∗ c

=
(ab2 )c

2

=
a( bc2 )

2

= a ∗ bc
2

= a ∗ (b ∗ c).

Therefore, ∗ is associative.
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We prove ∗ is commutative.
Let a, b ∈ Q∗.
Then

a ∗ b =
ab

2

=
ba

2
= b ∗ a.

Therefore, ∗ is commutative.

We prove Q∗ has an identity for ∗.
Let a ∈ Q∗.
Since 2 ∈ Q∗ and 2 ∗ a = 2a

2 = a = a2
2 = a ∗ 2, then 2 ∈ Q∗ is an identity for

∗.

We prove every element of Q∗ has an inverse for ∗.
Let a ∈ Q∗.
Then a ∈ Q and a 6= 0.
Let b = 4

a .
Since a 6= 0, then b ∈ Q∗.
Observe that

a ∗ 4

a
=

4

a
∗ a

=
( 4
a )a

2

=
4

2
= 2.

Therefore, for every element a ∈ Q∗, there exists an inverse 4
a ∈ Q∗.

Since ∗ is a binary operation on Q∗ and ∗ is associative and 2 ∈ Q∗ is an
identity for ∗ and for every element a ∈ Q∗, there exists an inverse 4

a ∈ Q∗, then
(Q∗, ∗) is a group.

Since ∗ is commutative, then (Q∗, ∗) is an abelian group.

Exercise 72. Let G be a group with identity e ∈ G.
Let a, b, c ∈ G.
Solve the equation axc = b.

Solution. Since axc = b, then axcc−1 = bc−1, so ax = bc−1.
Thus, a−1ax = a−1bc−1, so x = a−1bc−1.
Since a(a−1bc−1)c = (aa−1)b(c−1c) = ebe = b, then the solution is x =

a−1bc−1.
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Exercise 73. Let C[0, 1] = {f : [0, 1]→ R|f is continuous on [0, 1]}.
Then C[0, 1] is an abelian group under function addition defined by (f +

g)(x) = f(x) + g(x) for all x ∈ [0, 1] for all f, g ∈ C[0, 1].

Proof. Let f, g ∈ C[0, 1].
Then f : [0, 1] → R and g : [0, 1] → R are continuous functions on the

interval [0, 1].
The sum f + g : [0, 1] → R is the unique function defined by (f + g)(x) =

f(x) + g(x) for all x ∈ [0, 1].

Let c ∈ [0, 1].
Since f is continuous at x = c and g is continuous at x = c, then the sum

f + g is continuous at x = c.
Since c is arbitrary, then f + g is continuous on the interval [0, 1].
Thus, f + g : [0, 1] → R is a continuous function on the interval [0, 1], so

f + g ∈ C[0, 1].
Since f + g ∈ C[0, 1] and f + g is unique, then function addition is a binary

operation on the set C[0, 1].

We prove function addition is associative.
Let f, g, h ∈ C[0, 1].
Then f : [0, 1] → R and g : [0, 1] → R and h : [0, 1] → R are continuous

functions on [0, 1].
Observe that

[(f + g) + h](x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x))

= f(x) + (g + h)(x)

= [f + (g + h)](x)

for all x ∈ [0, 1].
Hence, (f + g) + h = f + (g + h) for all f, g, h ∈ C[0, 1]
Therefore, function addition is associative.

We prove function addition is commutative.
Let f, g ∈ C[0, 1].
Observe that

(f + g)(x) = f(x) + g(x)

= g(x) + f(x)

= (g + f)(x)

for all x ∈ [0, 1].
Hence, f + g = g + f for all f, g ∈ C[0, 1].
Therefore, function addition is commutative.
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Let i : [0, 1]→ R be defined by i(x) = 0 for all x ∈ [0, 1].
Since any constant function is continuous on its domain, then in particular,

i is continuous on [0, 1].
Hence, i ∈ C[0, 1].

We prove i is an identity for function addition.
Let f ∈ C[0, 1].
Then f : [0, 1]→ R is a continuous function.
For all x ∈ [0, 1] we have

(i+ f)(x) = i(x) + f(x)

= 0 + f(x)

= f(x)

= f(x) + 0

= f(x) + i(x)

= (f + i)(x).

Thus, (i + f)(x) = f(x) = (f + i)(x) for all x ∈ [0, 1], so i + f = f = f + i
for all f ∈ C[0, 1].

Since i ∈ C[0, 1] and i+f = f+ i = f for all f ∈ C[0, 1], then i is an identity
for function addition.

We prove every function in C[0, 1] has an inverse for function addition.
Let f ∈ C[0, 1].
Then f : [0, 1]→ R is a continuous function.

Let −f : [0, 1]→ R be defined by (−f)(x) = −f(x) for all x ∈ [0, 1].
Let c ∈ [0, 1].
Then limx→c (−f)(x) = limx→c−f(x) = − limx→c f(x) = −f(c).
Hence, −f is continuous at x = c.
Since c is arbitrary, then −f is continuous on [0, 1].
Hence, −f ∈ C[0, 1].

For all x ∈ [0, 1] we have
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(f + (−f))(x) = f(x) + (−f)(x)

= f(x) + [−f(x)]

= 0

= i(x)

= 0

= −f(x) + f(x)

= (−f)(x) + f(x)

= (−f + f)(x).

Thus, (f + (−f))(x) = i(x) = (−f + f)(x) for all x ∈ [0, 1], so f + (−f) =
i = −f + f for all f ∈ C[0, 1].

Hence, for every continuous function f : [0, 1] → R, there exists an inverse
continuous function −f : [0, 1]→ R.

Since function addition is a binary operation on the set C[0, 1] and function
addition is associative and the constant function i : [0, 1]→ R defined by i(x) =
0 for all x ∈ [0, 1] is an identity for function addition and for every continuous
function f : [0, 1]→ R, there exists an inverse continuous function −f : [0, 1]→
R defined by (−f)(x) = −f(x) for all x ∈ [0, 1], then C[0, 1] is a group under
function addition.

Since function addition is commutative, then C[0, 1] is an abelian group.

Exercise 74. Let (G, ·) be a group.
Let a ∈ G.
Define ∗ on G by x ∗ y = xay for all x, y ∈ G.
Then (G, ∗) is a group.

Proof. We prove ∗ is a binary operation on G.
Let x, y ∈ G.
Then x ∗ y = xay.
Since (G, ·) is a group, then G is closed under ·, so xay ∈ G.
Therefore, x ∗ y ∈ G.
Since xay is unique, then x ∗ y is unique.
Since x ∗ y ∈ G and x ∗ y is unique, then ∗ is a binary operation on G.

We prove ∗ is associative.
Let x, y, z ∈ G.
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Then

(x ∗ y) ∗ z = (xay) ∗ z
= (xay)az

= xayaz

= xa(yaz)

= xa(y ∗ z)
= x ∗ (y ∗ z).

Since (x ∗ y) ∗ z = x ∗ (y ∗ z), then ∗ is associative.

We prove there is an identity for ∗.
Let e ∈ G be the identity for ·.
Since G is a group and a ∈ G, then a−1 ∈ G.
Let x ∈ G.
Then

x ∗ a−1 = xaa−1

= xe

= x

= ex

= a−1ax

= a−1 ∗ x.

Hence, x ∗ a−1 = x = a−1 ∗ x for all x ∈ G.
Therefore, a−1 ∈ G is an identity for ∗.

We prove for every element x ∈ G, there exists an inverse in G.
Let x ∈ G.
Since G is closed under · and a, x ∈ G, then (axa)−1 ∈ G.
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Observe that

x ∗ (axa)−1 = xa(axa)−1

= xaa−1x−1a−1

= xex−1a−1

= xx−1a−1

= ea−1

= a−1

= a−1e

= a−1x−1x

= a−1x−1ex

= a−1x−1a−1ax

= (axa)−1ax

= (axa)−1 ∗ x.

Hence, x ∗ (axa)−1 = a−1 = (axa)−1 ∗ x.
Thus, (axa)−1 ∈ G is an inverse of x.
Therefore, for every x ∈ G there exists an inverse (axa)−1 ∈ G.

Since ∗ is a binary operation on G and ∗ is associative and a−1 ∈ G is an
identity for ∗ and for every element x ∈ G, there exists an inverse (axa)−1 ∈ G,
then (G, ∗) is a group.

Exercise 75. Let G = R∗ × Z.
Define ◦ on G by (a,m) ◦ (b, n) = (ab,m + n) for all a, b ∈ R∗ and for all

m,n ∈ Z.
Then (G, ◦) is an abelian group.

Proof. We prove ◦ is a binary operation on G.
Let (a,m) ∈ G and (b, n) ∈ G.
Then a ∈ R∗ and m ∈ Z and b ∈ R∗ and n ∈ Z.
Since (R∗, ·) is a group, then R∗ is closed under multiplication.
Since a ∈ R∗ and b ∈ R∗, then this implies ab ∈ R∗.
Since (Z,+) is a group, then Z is closed under addition.
Since m ∈ Z and n ∈ Z, then this implies m+ n ∈ Z.
Since ab ∈ R∗ and m+ n ∈ Z, then (ab,m+ n) ∈ G.
Since (a,m) ◦ (b, n) = (ab,m + n) and (ab,m + n) ∈ G, then G is closed

under ◦.
Since (ab,m+ n) is unique, then ◦ is a binary operation on G.

We prove ◦ is associative.
Let (a,m) ∈ G and (b, n) ∈ G and (c, p) ∈ G.
Then a ∈ R∗ and m ∈ Z and b ∈ R∗ and m ∈ Z and c ∈ R∗ and p ∈ Z.
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Observe that

[(a,m) ◦ (b, n)] ◦ (c, p) = (ab,m+ n) ◦ (c, p)

= ((ab)c, (m+ n) + p)

= (a(bc),m+ (n+ p))

= (a,m) ◦ (bc, n+ p)

= (a,m) ◦ [(b, n) ◦ (c, p)].

Therefore, [(a,m) ◦ (b, n)] ◦ (c, p) = (a,m) ◦ [(b, n) ◦ (c, p)], so ◦ is associative.

We prove ◦ is commutative.
Let (a,m) ∈ G and (b, n) ∈ G.
Then a ∈ R∗ and m ∈ Z and b ∈ R∗ and n ∈ Z.
Observe that

(a,m) ◦ (b, n) = (ab,m+ n)

= (ba,m+ n)

= (ba, n+m)

= (b, n) ◦ (a,m).

Therefore, (a,m) ◦ (b, n) = (b, n) ◦ (a,m), so ◦ is commutative.

We prove (1, 0) is identity for ◦.
Since 1 ∈ R and 1 6= 0, then 1 ∈ R∗.
Since 1 ∈ R∗ and 0 ∈ Z, then (1, 0) ∈ G.
Let (a,m) ∈ G.
Then a ∈ R∗ and m ∈ Z.
Observe that

(a,m) ◦ (1, 0) = (a · 1,m+ 0)

= (a,m)

= (1 · a, 0 +m)

= (1, 0) ◦ (a,m).

Since (1, 0) ∈ G and (a,m) ◦ (1, 0) = (1, 0) ◦ (a,m) = (a,m), then (1, 0) is
an identity element for ◦.

We prove each element of G has an inverse in G.
Let (a,m) ∈ G.
Then a ∈ R∗ and m ∈ Z.
Since (R∗, ·) is a group and a ∈ R∗, then 1

a ∈ R∗.
Since (Z,+) is a group and m ∈ Z, then −m ∈ Z.
Since 1

a ∈ R∗ and −m ∈ Z, then ( 1
a ,−m) ∈ G.
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Observe that

(a,m) ◦ (
1

a
,−m) = (a · 1

a
,m+ (−m))

= (1, 0)

= (
1

a
· a,−m+m)

= (
1

a
,−m) ◦ (a,m).

Since ( 1
a ,−m) ∈ G and (a,m) ◦ ( 1

a ,−m) = ( 1
a ,−m) ◦ (a,m) = (1, 0), then

( 1
a ,−m) is an inverse of (a,m).

Therefore, for every (a,m) ∈ G, there is an inverse ( 1
a ,−m) ∈ G.

Since ◦ is a binary operation on G and ◦ is associative and (1, 0) ∈ G is an
identity element and for every (a,m) ∈ G, there is an inverse ( 1

a ,−m) ∈ G, then
(G, ◦) is a group.

Since ◦ is commutative, then (G, ◦) is an abelian group.

Exercise 76. Let (G, ∗) be a group.
Define a relation ∼ on G for all x, y ∈ G by x ∼ y iff there exists some a ∈ G

such that y = axa−1.
Then ∼ is an equivalence relation on G.

Proof. We prove ∼ is reflexive.
Let x be an arbitrary element of G.
Let e be the identity element in G.
Since e ∈ G and x = xe = xe−1 = exe−1, then ∼ is reflexive.

Proof. We prove ∼ is symmetric.
Let x and y be arbitrary elements of G such that x ∼ y.
Then there exists some a ∈ G such that y = axa−1.
Hence, ya = ax.
Let b = a−1.
Since a ∈ G, then a−1 ∈ G, so b ∈ G.
Observe that

byb−1 = a−1y(a−1)−1

= a−1ya

= a−1(ya)

= a−1(ax)

= (a−1a)x

= ex

= x.

Since b ∈ G and x = byb−1, then y ∼ x, so ∼ is symmetric.
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Proof. We prove ∼ is transitive.
Let x, y, and z be arbitrary elements of G such that x ∼ y and y ∼ z.
Since x ∼ y, then there exists a ∈ G such that y = axa−1.
Since y ∼ z, then there exists b ∈ G such that z = byb−1.
Let c = ba.
Since a ∈ G and b ∈ G and G is closed under ∗, then ba ∈ G, so c ∈ G.
Observe that

cxc−1 = (ba)x(ba)−1

= (ba)x(a−1b−1)

= b(axa−1)b−1

= byb−1

= z.

Since c ∈ G and z = cxc−1, then x ∼ z, so ∼ is transitive.

Since ∼ is reflexive, symmetric, and transitive, then ∼ is an equivalence rela-
tion on G.

Subgroups

Exercise 77. The set of even integers 2Z is a subgroup of (Z,+).

Proof. We prove 2Z ⊂ Z.
Since 2Z = {2k : k ∈ Z}, then 2Z is a subset of Z, so 2Z ⊂ Z.

We prove 2Z is closed under addition.
Let a, b ∈ 2Z.
Since a ∈ 2Z, then a = 2m for some integer m.
Since b ∈ 2Z, then b = 2n for some integer n.
Thus, a+ b = 2m+ 2n = 2(m+ n).
Since m+ n is an integer, then 2(m+ n) ∈ 2Z, so a+ b ∈ 2Z.
Therefore, 2Z is closed under addition.

We prove the additive identity 0 ∈ Z is in 2Z.
Since 0 = 2 · 0 and 0 ∈ Z is the additive identity of Z, then 0 ∈ 2Z.
Therefore, the additive identity 0 ∈ Z is in 2Z.

We prove 2Z is closed under inverses.
Let 2k ∈ 2Z.
Then k ∈ Z.
Since 2k+ (−2k) = [2 + (−2)]k = 0k = 0 = k0 = k(−2 + 2) = k(−2) + 2k =

−2k + 2k, then 2k + (−2k) = 0 = −2k + 2k, so −2k is additive inverse of 2k.
Since −2k = 2(−k) and −k is an integer, then −2k ∈ 2Z.
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Therefore, for every 2k ∈ 2Z, there is an additive inverse −2k in 2Z, so 2Z
is closed under inverses.

Since 2Z ⊂ Z and 2Z is closed under addition and the additive identity 0 ∈ Z
is in 2Z and 2Z is closed under inverses, then by the first subgroup test, 2Z is
a subgroup of Z.

Exercise 78. Let H = {2k : k ∈ Z}.
Then (H, ·) is a subgroup of (Q∗, ·).

Proof. We prove H ⊂ Q∗.
Let h ∈ H.
Then h = 2k for some integer k.
Either k > 0 or k = 0 or k < 0.
We consider these cases separately.
Case 1: Suppose k = 0.
Then h = 20 = 1 = 1

1 6= 0.
Therefore, h ∈ Q∗.
Case 2: Suppose k > 0.
Then 2k ∈ Z and 2k > 0, so 2k 6= 0.

Therefore, h = 2k = 2k

1 ∈ Q∗.
Case 3: Suppose k < 0.
Since k ∈ Z, then −k ∈ Z.
Since k < 0, then −k > 0.
Thus, 2−k ∈ Z and 2−k > 0, so 2−k 6= 0.
Therefore, h = 2k = 1

2−k ∈ Q∗.
Hence, in all cases, h ∈ Q∗.
Since h ∈ H implies h ∈ Q∗, then H ⊂ Q∗.

We prove H is closed under multiplication.
Let a, b ∈ H.
Since a ∈ H, then a = 2k for some integer k.
Since b ∈ H, then b = 2m for some integer m.
Thus, ab = (2k)(2m) = 2k+m.
Since k +m ∈ Z, then ab ∈ H, so H is closed under multiplication.

We prove the multiplicative identity 1 ∈ Q∗ is in H.
Since 0 ∈ Z and 1 = 20, then 1 ∈ H.
Therefore, the multiplicative identity 1 ∈ Q∗ is in H.

We prove H is closed under inverses.
Let 2k ∈ H.
Then k ∈ Z.
Since 2k · 2−k = 2k−k = 20 = 1 = 20 = 2−k+k = 2−k · 2k, then 2k · 2−k =

1 = 2−k · 2k, so 2−k is multiplicative inverse of 2k.
Since −k ∈ Z, then 2−k ∈ H.
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Therefore, for every 2k ∈ H, there is a multiplicative inverse 2−k ∈ H, so H
is closed under inverses.

Since H ⊂ Q∗ and H is closed under multiplication and the multiplicative
identity 1 ∈ Q∗ is in H and H is closed under inverses, then by the first subgroup
test, H < G.

Exercise 79. Let (G, ·) be an abelian group.
Let H = {a ∈ G : a2 = e}.
Then H is a subgroup of G.

Proof. Let e ∈ G be the identity of G.
Let x ∈ H.
Then by definition of H, x ∈ G.
Hence, x ∈ H implies x ∈ G, so H ⊂ G.

Let x, y ∈ H.
Then x, y ∈ G and x2 = e and y2 = e.
Since G is closed under · and x ∈ G and y ∈ G, then xy ∈ G.
Observe that

(xy)2 = (xy)(xy)

= x(yx)y

= x(xy)y

= (xx)(yy)

= x2y2

= ee

= e.

Since xy ∈ G and (xy)2 = e, then xy ∈ H.
Therefore, H is closed under ∗.
Since e ∈ G and e2 = ee = e, then by definition of H, e ∈ H.

Let x ∈ H.
Then x ∈ G and x2 = e.
Since G is a group then x−1 ∈ G.
Observe that (x−1)2 = (x2)−1 = e−1 = e.
Since x−1 ∈ G and (x−1)2 = e, then x−1 ∈ H.
Therefore, for each x ∈ H there exists x−1 ∈ H.

Since H ⊂ G and H is closed under · and e ∈ H and for every x ∈ H there
exists x−1 ∈ H, then by the subgroup test, H is a subgroup of G.

Exercise 80. Let G be an abelian group.
Let H = {e} ∪ {g ∈ G : |g| = 2}.
Then H < G.
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Proof. Let e be the identity of G.
Let h ∈ H.
Then either h ∈ {e} or h ∈ {g ∈ G : |g| = 2}.
Thus, either h = e or h ∈ G.
Since e ∈ G, then either h ∈ G or h ∈ G.
Hence, h ∈ G.
Therefore, h ∈ H implies h ∈ G, so H ⊂ G.
Since e ∈ {e}, then e ∈ H.

Let a, b ∈ H.
Since a ∈ H, then either a = e or |a| = 2.
Since b ∈ H, then either b = e or |b| = 2.
Therefore, there are four cases to consider.
Case 1: Suppose a = e and b = e.
Then ab = ee = e.
Since e ∈ H, then ab ∈ H.
Case 2: Suppose a = e and |b| = 2.
Then ab = eb = b.
Since b ∈ H, then ab ∈ H.
Case 3: Suppose |a| = 2 and b = e.
Then ab = ae = a.
Since a ∈ H, then ab ∈ H.
Case 4: Suppose |a| = 2 and |b| = 2.
Then a2 = e = b2.
Thus,

(ab)2 = a2b2

= ee

= e.

Let k be the order of ab.
Then (ab)2 = e iff k|2.
Hence, k|2.
Thus, either k = 1 or k = 2.
Suppose k = 1.
Then e = (ab)1 = ab, so ab = e.
Thus, ab ∈ {e}, so ab ∈ H.
Suppose k = 2.
Then |ab| = 2.
Since a, b ∈ H and H ⊂ G, then a, b ∈ G.
By closure of G under its binary operation, ab ∈ G.
Since ab ∈ G and |ab| = 2, then ab ∈ {g ∈ G : |g| = 2}.
Thus, ab ∈ H.
Hence, in either case, ab ∈ H.
Therefore, in all cases, ab ∈ H.
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Hence, H is closed under ∗ of G.

Let a ∈ H.
Then either a = e or |a| = 2.
We consider these cases separately.
Case 1: Suppose a = e.
Then a−1 = e−1 = e.
Since e ∈ H, then a−1 ∈ H.
Case 2: Suppose |a| = 2.
Then 2 is the least positive integer such that a2 = e. Therefore, a = a1 6= e,

so a 6= e. Suppose that a−1 = e. Then aa−1 = ae, so e = a. Thus, we have
a 6= e and a = e, a contradiction. Hence, a−1 6= e. Observe that

(a−1)2 = (a2)−1

= e−1

= e.

Thus, the order of a−1 is 2.
Since a−1 ∈ G and |a−1| = 2, then a−1 ∈ H.
Hence, in all cases, a−1 ∈ H.
Therefore, H is closed under taking inverses.
Thus, H < G.

Exercise 81. Let G be an abelian group and let n be a fixed positive integer.
Let H = {an : a ∈ G}. Then H < G.

Proof. Let an ∈ H.
Then a ∈ G.
Since ak ∈ G for every integer k, then in particular, an ∈ G.
Hence, an ∈ H implies an ∈ G, so H ⊂ G.

Let e be the identity of G.
Since e ∈ G and e = en, then e ∈ H.

Let x, y ∈ H.
Then x = an for some a ∈ G and y = bn for some b ∈ G.
By closure of G, ab ∈ G.
Observe that xy = anbn = (ab)n.
Thus, there exists ab ∈ G such that xy = (ab)n.
Hence, xy ∈ H, so H is closed.

Let x−1 be the inverse of x in G.
Since a−1 ∈ G and x−1 = (an)−1 = (a−1)n, then x−1 ∈ H.
Thus, H is closed under inverses.
Therefore, by the subgroup test, H < G.
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Exercise 82. Let G be an abelian group and let n be a fixed positive integer.
Let Gn = {x ∈ G : xn = e}.
Then Gn < G.

Proof. Let e be the identity of G.
Since e ∈ G and en = e, then e ∈ Gn.
Observe that Gn is a subset of G.

Let a, b ∈ Gn.
Then a, b ∈ G and an = e = bn.
By closure of G, ab ∈ G.
Observe that (ab)n = anbn = ee = e.
Thus, ab ∈ G and (ab)n = e, so ab ∈ Gn.

Let a ∈ Gn.
Then a ∈ G and an = e.
Let a−1 be the inverse of a in G.
Then (a−1)n = (an)−1 = e−1 = e.
Thus, a−1 ∈ G4 and (a−1)n = e, so a−1 ∈ Gn.
Therefore, Gn < G.

Exercise 83. Let 〈G, ∗〉 be an abelian group.
Let H = {a ∈ G : an = e, n ∈ Z+}.
Then H is a subgroup of G.

Solution. Our hypothesis is: 〈G, ∗〉 is an abelian group.
Our conclusion is: H is a subgroup of G.
We must prove: H is a subgroup of G.
To prove this we must show:
1. H ⊂ G.
2. H is closed under ∗.
3. e ∈ H.
4. ∀x ∈ H.x−1 ∈ H.
Note that H is simply a collection of all elements of G which have finite

order.
Thus, we’re proving the set of all elements of an abelian group G which have

finite order is a subgroup of G.

Proof. Let e ∈ G be the identity of group G.
Observe that H ⊂ G.
Let x, y ∈ H.
Then x, y ∈ G and xm = e and yn = e for some m,n ∈ Z+. Since x, y ∈ G

and G is closed under ∗, then xy ∈ G. Since G is an abelian group we know
(xy)k = xkyk for any k ∈ Z. Observe that (xy)mn = xmnymn = (xm)nymn =
enymn = eymn = ymn = ynm = (yn)m = em = e. Since xy ∈ G and (xy)mn = e
and mn ∈ Z+, then xy ∈ H. Since x, y are arbitrary then xy ∈ H for all
x, y ∈ H. Therefore, H is closed under ∗.
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Since e ∈ G and e1 = e, then e ∈ H.

Let x ∈ H. Then x ∈ G and xk = e for some k ∈ Z+. Since G is a group and
x ∈ G, then x−1 ∈ G. Observe that (x−1)k = (xk)−1 = e−1 = e. Since x−1 ∈ G
and (x−1)k = e, then x−1 ∈ H. Hence, for each x ∈ H, x−1 ∈ H.

Therefore, H is a subgroup of G.

Exercise 84. Let C[0, 1] = {f : [0, 1] → R|f is continuous on [0, 1]} be the
abelian group under function addition.

Let Pn be the set of all functions in C[0, 1] of the form anx
n + ...+a1x+a0,

where each ai ∈ R.
Then Pn is subgroup of C[0, 1].

Proof. Clearly, Pn ⊂ C[0, 1].
Let f, g ∈ Pn.
Then f, g ∈ C[0, 1] and f : [0, 1] → R is a function of the form f(x) =

anx
n+ ...+a1x+a0 and each ai ∈ R and g : [0, 1]→ R is a function of the form

g(x) = bnx
n + ...+ b1x+ b0 and each bi ∈ R.

By closure of C[0, 1], the sum f + g is in C[0, 1].
Observe that

(f + g)(x) = (anx
n + ...+ a1x+ a0) + (bnx

n + ...+ b1x+ b0)

= (an + bn)xn + ...+ (a1 + b1)x+ (a0 + b0).

Hence, f + g ∈ Pn.
Since function addition is associative in C[0, 1] and Pn ⊂ C[0, 1], then func-

tion addition is associative in Pn.
Let the additive identity of C[0, 1] be the function i : [0, 1] → R defined by

i(x) = 0 for all x ∈ [0, 1] .
Since i(x) = 0 = 0xn + ...+ 0x+ 0, then i ∈ Pn.
Let f ∈ Pn.
Then f : [0, 1]→ R is a function and f(x) = anx

n + ...+ a1x+ a0 and each
ai ∈ R.

The additive inverse of f is the continuous function −f : [0, 1]→ R defined
by (−f)(x) = −f(x) for all x ∈ [0, 1].

Observe that

(−f)(x) = −f(x)

= −(anx
n + ...+ a1x+ a0)

= −anxn − ...− a1x− a0

and each coefficient −ai is a real number.
Hence, −f ∈ Pn.
Therefore, Pn < C[0, 1]

63



Exercise 85. Let C[0, 1] = {f : [0, 1] → R|f is continuous on [0, 1]} be the
abelian group under function addition.

Let X ⊂ [0, 1].
Let H = {f ∈ C[0, 1] : (∀x ∈ X)(f(x) = 0)}.
Then H < C[0, 1].

Proof. TO DO

Exercise 86. Let G be a group.
If H < G and K < G, then H ∩K < K.

Proof. Suppose H < G and K < G.
Since H ∩K = K ∩H and K ∩H ⊂ K, then H ∩K ⊂ K.

Let e be the identity of G.
Since H < G, then e ∈ H.
Since K < G, then e ∈ K.
Hence, e ∈ H and e ∈ K, so e ∈ H ∩K.

Let a, b ∈ H ∩K.
Then a ∈ H ∩K and b ∈ H ∩K.
Thus, a ∈ H and a ∈ K and b ∈ H and b ∈ K.
By closure of H, ab ∈ H.
By closure of K, ab ∈ K.
Hence, ab ∈ H and ab ∈ K, so ab ∈ H ∩K.

Let a ∈ H ∩K.
Then a ∈ H and a ∈ K.
Since H is a group, then a−1 ∈ H.
Since K is a group, then a−1 ∈ K.
Hence, a−1 ∈ H and a−1 ∈ K, so a−1 ∈ H ∩K.
Therefore, by the subgroup test, H ∩K < K.

Exercise 87. Let n be an integer greater than 1.
Let Hn = {x ∈ R+ : xn ∈ Q}.
Then Hn is a subgroup of R+.
Also, Q+ ⊂ H2 ⊂ H4 ⊂ ... ⊂ H2n ⊂ ... is an increasing chain of subgroups

of R+.

Proof. Clearly, Hn ⊂ R+.
Let x, y ∈ Hn.
Then x ∈ R+ and xn ∈ Q and y ∈ R+ and yn ∈ Q.
Thus, there exist integers a, b with b 6= 0 such that xn = a

b and there exist
integers c, d with d 6= 0 such that yn = c

d .
By closure of R+ under multiplication, xy ∈ R+.
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Observe that

(xy)n = xnyn

=
a

b

c

d

=
ac

bd

Since b 6= 0 and d 6= 0, then bd 6= 0.
Since ac and bd are integers and bd 6= 0, then (xy)n ∈ Q.
Thus, xy ∈ R+ and (xy)n ∈ Q, so xy ∈ Hn.
Hence, Hn is closed under multiplication.
Since 1 is a positive real number and 1n = 1 = 1

1 , then 1n ∈ Q.
Thus, 1 ∈ Hn.

Let x ∈ Hn.
Then x ∈ R+ and xn ∈ Q.
Hence, there exist integers a, b with b 6= 0 such that xn = a

b .
Since x ∈ R+, then x ∈ R and x > 0.
By closure of R+ under multiplication, xn ∈ R+, so a

b ∈ R+.
Hence, a

b > 0, so a
b 6= 0.

Since a
b = 0 iff a 6= 0, then a 6= 0.

Since R+ is a group, then x−1 ∈ R+.
Observe that

(x−1)n = (xn)−1

= (
a

b
)−1

=
b

a
.

Since a, b ∈ Z and a 6= 0, then (x−1)n ∈ Q.
Thus, x−1 ∈ R+ and (x−1)n ∈ Q, so x−1 ∈ Hn.
Therefore, Hn < R+.

Exercise 88. Let G be a group.
Let a, b ∈ G.
If either ab ∈ C(a) or ba ∈ C(a), then b ∈ C(a).

Proof. Suppose either ab ∈ C(a) or ba ∈ C(a).
We consider these cases separately.
Case 1: Suppose ab ∈ C(a).
Then ab ∈ G and (ab)a = a(ab).
Thus, aba = aab.
By the left cancellation law, we have ba = ab.
Hence, b ∈ G and ba = ab, so b ∈ C(a).
Case 2: Suppose ba ∈ C(a).
Then ba ∈ G and (ba)a = a(ba).
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Thus, baa = aba.
By the right cancellation law, we have ba = ab.
Hence, b ∈ G and ba = ab, so b ∈ C(a).
Therefore, in either case, b ∈ C(a), as desired.

Exercise 89. The normalizer N(H) of H in G is a subgroup.
Let (H, ∗) be a subgroup of a group (G, ∗).
Define N(H) = {g ∈ G : gh = hg for all h ∈ H }.
Then N(H) is a subgroup of G.

Proof. Since N(H) = {g ∈ G : gh = hg for all h ∈ H }, then N(H) ⊂ G.

We prove N(H) is closed under the binary operation ∗ of G.
Let e ∈ G be the identity of G.
Let a, b ∈ N(H).
Since a ∈ N(H), then a ∈ G and ah = ha for all h ∈ H.
Since b ∈ N(H), then b ∈ G and bh = hb for all h ∈ H.
Since a ∈ G and b ∈ G, then by closure of G, we have ab ∈ G.
Let h ∈ H.
Observe that

(ab)h = a(bh)

= a(hb)

= (ah)b

= (ha)b

= h(ab).

Thus, (ab)h = h(ab) for all h ∈ H.
Since ab ∈ G and (ab)h = h(ab) for all h ∈ H, then ab ∈ N(H).
Therefore, N(H) is closed under the binary operation of G.

Proof. We prove N(H) is closed under the identity e ∈ G.
Since e ∈ G and H < G, then e ∈ H.

Let h ∈ H.
Since H is a group and e ∈ H, then eh = he = h, so eh = he.
Therefore, eh = he for all h ∈ H.
Since e ∈ G and eh = he for all h ∈ H, then e ∈ N(H).
Therefore, N(H) is closed under the identity e ∈ G.

Proof. We prove N(H) is closed under inverses.
Let a ∈ N(H).
Then a ∈ G and ah = ha for all h ∈ H.
Since G is a group and a ∈ G, then a−1 ∈ G.
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Let h ∈ H.
Observe that

a−1h = a−1he

= a−1h(aa−1)

= a−1(ha)a−1

= a−1(ah)a−1

= (a−1a)(ha−1)

= eha−1

= ha−1.

Thus, a−1h = ha−1 for all h ∈ H.
Since a−1 ∈ G and a−1h = ha−1 for all h ∈ H, then a−1 ∈ N(H).
Therefore, N(H) is closed under inverses.

Proof. Since N(H) ⊂ G and N(H) is closed under the binary operation of G
and N(H) is closed under the identity e ∈ G and N(H) is closed under inverses,
then by the subgroup test, N(H) is a subgroup of G.
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