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Cyclic Groups

Order of a group element

Exercise 1. Compute the order of the elements below.
a. 5 in the group (Z12,+).
b.
√

3 in the group (R,+).
c.
√

3 in the group (R∗, ·))
d. −i in the group (C∗, ·)
e. 72 in the group (Z240,+)
f. 312 in the group (Z471,+)

Solution. a. Since |Z12| = 12, then the group (Z12,+) is finite.
Every element of a finite group has finite order, so 5 ∈ Z12 has finite order.
Let n be the order of 5.
Then n is the least positive integer such that 5n ≡ 0 (mod 12), so n is the

least positive integer such that 12 divides 5n.
Therefore, n = 12, so 5 ∈ Z12 has order 12 and |5| = 12.

b. There is no positive integer n such that n
√

3 = 0, so
√

3 ∈ R has infinite
order.

We prove there is no n ∈ Z+ such that n
√

3 = 0.
Let n ∈ Z+.
Then n ∈ Z and n > 0.
Since n ∈ Z and Z ⊂ R, then n ∈ R.
Since n > 0, then n 6= 0.
Since n ∈ R and n 6= 0, then n is a nonzero real number.
Since

√
3 ∈ R and

√
3 6= 0, then

√
3 is a nonzero real number.

The product of two nonzero real numbers is nonzero, so n
√

3 is a nonzero
real number.

Hence, n
√

3 6= 0.
Thus, n

√
3 6= 0 for all n ∈ Z+, so there is no ∈ Z+ such that n

√
3 = 0.

Therefore,
√

3 ∈ R has infinite order and |
√

3| =∞.



c. There is no n ∈ Z+ such that n
√

3 = 1 so
√

3 ∈ R∗ has infinite order.
We prove there is no n ∈ Z+ such that n

√
3 = 1.

Let n ∈ Z+.
The n ≥ 1.
Since 3 > 1, then

√
3 >
√

1, so
√

3 > 1.
Since n ≥ 1 and

√
3 > 1, then n

√
3 > 1, so n

√
3 6= 1.

Hence, n
√

3 6= 1 for all n ∈ Z+, so there is no n ∈ Z+ such that n
√

3 = 1.
Therefore,

√
3 ∈ R∗ has infinite order and |

√
3| =∞.

d. Since (−i)1 = −i and (−i)2 = −1 and (−i)3 = i and (−i)4 = 1, then −i
has order 4, so | − i| = 4.

e. Since |Z240| = 240, then the group (Z240,+) is finite.
Every element of a finite group has finite order, so 72 ∈ Z240 has finite order.
Let n be the order of 72.
Then n is the least positive integer such that 72n ≡ 0 (mod 240), so n is the

least positive integer such that 240 divides 72n.
Therefore, n = 10, so 72 ∈ Z240 has order 10 and |72| = 10.

f. Since |Z471| = 471, then the group (Z471,+) is finite.
Every element of a finite group has finite order, so 312 ∈ Z471 has finite

order.
Let n be the order of 312.
Then n is the least positive integer such that 312n ≡ 0 (mod 471), so n is

the least positive integer such that 471 divides 312n.
Therefore, n = 157, so 312 ∈ Z741 has order 157 and |312| = 157.

Exercise 2. Compute the order of the groups below.
a. Z18

b. D4

c. S4

d. S5

e. Z∗18

Solution. a. The group (Z18,+) is the group of integers modulo 18 under
addition.

The order is |Z18| = 18 and Z18 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}.

b. The group D4 is TODO.

c. The group (S4, ◦) is the symmetric group of degree 4 under function com-
position.

The order of S4 is |S4| = 4! = 24, so there are 24 permutations on a set of 4
symbols.
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d. The group (S5, ◦) is the symmetric group of degree 5 under function
composition.

The order of S5 is |S5| = 5! = 120, so there are 120 permutations on a set of
5 symbols.

e. The group (Z∗18, ·) is the group of units of the integers modulo 18 under
multiplication.

The order of Z∗18 is |Z∗18| = φ(18) = 6 and Z∗18 = {1, 5, 7, 11, 13, 17}.

Exercise 3. The number 2 has infinite order in the group (R∗, ·).

Proof. We first prove 2n > 1 for all n ∈ Z+ by induction on n.
Define the predicate p(n) : 2n > 1 over Z.
We prove p(n) is true for all n ≥ 1 by induction on n.
Basis:
Since 21 = 2 > 1, then p(1) is true.
Induction:
Suppose p(k) is true for any k ∈ Z+.
Then 2k > 1.
Since 2k+1 = 2k · 2 > 1 · 2 = 2 > 1, then 2k+1 > 1, so p(k + 1) is true.
Therefore, p(k) implies p(k + 1) for all k ∈ Z+.

Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ Z+, then by PMI, p(n)
is true for all n ∈ Z+.

Since 2n > 1 for all n ∈ Z+, then 2n 6= 1 for all n ∈ Z+, so there is no n ∈ Z+

such that 2n = 1.
Therefore, the order of 2 is infinite.
The cyclic subgroup generated by 2 is 〈2〉 = {2n : n ∈ Z} = {..., 1

32 ,
1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8, 16, 32, ...}.

Exercise 4. Calculate the orders of each element in the 4th roots of unity group
(U4, ·).

Solution. Since U4 = {1, i,−1,−i}, then |U4| = 4, so U4 is a finite group.
Since every element of a finite group has finite order, then every element of

U4 has finite order.
Since 11 = 1, then the order of 1 is |1| = 1 and 〈1〉 = {1}.
Since i1 = i and i2 = −1 and i3 = −i and i4 = 1, then the order of i is

|i| = 4 and 〈i〉 = U4.
Since (−1)1 = −1 and (−1)2 = 1, then the order of −1 is | − 1| = 2 and

〈−1〉 = {1,−1}.
Since (−i)1 = −i and (−i)2 = −1 and (−i)3 = i and (−i)4 = i, then the

order of −i is | − i| = 4 and 〈−i〉 = U4.
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Exercise 5. Calculate the order of the element σ ∈ S3.

σ =

(
1 2 3
3 1 2

)
Solution. The symmetric group (S3, ◦) has order |S3| = 3! = 6, so S3 is a finite
group.

Since every element of a finite group has finite order, then every element of
S3 has finite order.

Let k be the order of σ.
Then k is the least positive integer such that σk = id, where id is the identity

permutation in (S3, ◦).

σ2 =

(
1 2 3
2 3 1

)

σ3 =

(
1 2 3
1 2 3

)
Therefore, k = 3, so the order of σ is |σ| = 3.
Hence, 3 is the order of the cyclic subgroup generated by σ.
The cyclic subgroup generated by σ is 〈σ〉 = {id, σ, σ2}.

Exercise 6. Calculate the order of the element 8 in the group (Z12,+).

Solution. Since (Z12,+) has order |Z12| = 12, then Z12 is a finite group.
Since every element of a finite group has finite order, then every element of

Z12 has finite order.
The order of 8 is the least positive integer k such that 8k ≡ 0 (mod 12).
We compute 8 ∗ 1 = 8 and 8 ∗ 2 = 16 = 4 and 8 ∗ 3 = 24 = 0.
Therefore, k = 3, so the order of 8 is |8| = 3.
Hence, 3 is the order of the cyclic subgroup generated by 8.
The cyclic subgroup generated by 8 is 〈8〉 = {8k : k ∈ Z} = {0, 4, 8}.

Exercise 7. Calculate the order of the element 5 in the group (Z∗8, ·).

Solution. Since the group of units (Z∗8, ·) has order |Z∗8| = φ(8) = 4, then Z∗8
is a finite group.

Since every element of a finite group has finite order, then every element of
Z∗8 has finite order.

The order of 5 is the least positive integer k such that 5k ≡ 1 (mod 8).
We compute 51 = 5 and 52 = 25 ≡ 1 (mod 8).
Therefore, k = 2, so the order of 5 is 2.
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Alternatively, we analyze the Cayley multiplication table for the group of
units Z∗8.

Since the order of Z∗8 is φ(8) = 4, then there are 4 elements in the group
of units Z∗8 and each element is relatively prime to the modulus 8. Hence, if
a ∈ Z∗8, then gcd(a, 8) = 1, so a = 1 or a = 3 or a = 5 or a = 7.

The Cayley table is below.
* 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

We observe that |5| = 2. Therefore, 2 is the order of the cyclic subgroup
generated by 5.

The cyclic subgroup generated by 5 is {1, 5}.

Exercise 8. Calculate the order of the element σ ∈ S7.

σ =

(
1 2 3 4 5 6 7
2 3 7 5 1 4 6

)
Solution. Since the symmetric group (S7, ◦) has order |S7| = 7! = 5040, then
S7 is a finite group.

Since every element of a finite group has finite order, then every element of
S7 has finite order.

Let k be the order of σ.
Then k is the least positive integer such that σk = id, where id is the identity

permutation in (S7, ◦).

σ2 =

(
1 2 3 4 5 6 7
3 7 6 1 2 5 4

)

σ3 =

(
1 2 3 4 5 6 7
7 6 4 2 3 1 5

)

σ4 =

(
1 2 3 4 5 6 7
6 4 5 3 7 2 1

)

σ5 =

(
1 2 3 4 5 6 7
4 5 1 7 6 3 2

)

σ6 =

(
1 2 3 4 5 6 7
5 1 2 6 4 7 3

)

σ7 =

(
1 2 3 4 5 6 7
1 2 3 4 5 6 7

)
Therefore, k = 7, so the order of σ is 7.
Hence, 7 is the order of the cyclic subgroup generated by σ, so |σ| = 7.
The cyclic subgroup generated by σ is {id, σ, σ2, σ3, σ4, σ5, σ6}.
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Exercise 9. Calculate the order of the element A ∈ GL2(R).

A =

[
0 −1

1 1

]

Solution. We first show that the matrix A is an element of GL2(R).
Since detA = 0(1)−(−1)1 = 1 6= 0, then A has an inverse, so A is invertible.
Therefore, A is an element of GL2(R).
The inverse matrix is

A−1 =

[
1 1

−1 0

]

Observe that AA−1 = A−1A = I, where I is the identity matrix.

Let k be the order of A.
Then k is the least positive integer such that Ak = I.
Observe that

A2 =

[
−1 −1

1 0

]

A3 =

[
−1 0

0 −1

]

A4 =

[
0 1

−1 −1

]

A5 =

[
1 1

−1 0

]

A6 =

[
1 0

0 1

]

Thus, k = 6, so the multiplicative order of A is 6 and |A| = 6.
Since the order of A is 6, then 6 is the order of the cyclic subgroup generated

by A.
The cyclic subgroup generated by A is {I, A,A2, A3, A4, A5}.
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Exercise 10. Calculate the order of the element A ∈ GL2(R).

A =

[
− 1

2
1
2

− 3
2 − 1

2

]

Solution. We first show that the matrix A is an element of GL2(R).
Since detA = (−12 )(−12 ) − ( 1

2 )(−32 ) = 1 6= 0, then A has an inverse, so A is
invertible.

Therefore, A is an element of GL2(R).
The inverse matrix is

A−1 =

[
− 1

2 − 1
2

3
2 − 1

2

]

Observe that AA−1 = A−1A = I, where I is the identity matrix.

Let k be the order of A.
Then k is the least positive integer such that Ak = I.
Observe that

A2 =

[
− 1

2 − 1
2

3
2 − 1

2

]

A3 =

[
1 0

0 1

]

Thus, k = 3, so the multiplicative order of A is 3 and |A| = 3.
Since the order of A is 3, then 3 is the order of the cyclic subgroup generated

by A.
The cyclic subgroup generated by A is {I, A,A2}.
Note that A−1 = A2.

Cyclic subgroups

Exercise 11. The group (3Z,+) is a cyclic group.

Proof. For any n ∈ Z, (nZ,+) is a subgroup of (Z,+), so (3Z,+) is a subgroup
of (Z,+).

Hence, (3Z,+) is a group.
The cyclic subgroup generated by 3 is the set of all multiples of 3.
Therefore, 〈3〉 = {3k : k ∈ Z} = 3Z.
Since 3 ∈ Z and 3Z = 〈3〉, then 3Z is a cyclic group with generator 3.
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Exercise 12. Let H = {2k : k ∈ Z}.
The group (H, ·) is a cyclic group.

Proof. We previously proved that (H, ·) is a subgroup of (Q∗, ·), so (H, ·) is a
group.

The cyclic subgroup generated by 2 is the set of all integer powers of 2.
Therefore, 〈2〉 = {2n : n ∈ Z} = H.
Since 2 = 21 and 1 ∈ Z, then 2 ∈ H.
Since 2 ∈ H and H = 〈2〉, then H is a cyclic group generated by 2.

Exercise 13. Analyze the order of the group (Z,+).

Solution. Observe that Z is the abelian group of integers under addition.
Since 1 · 0 = 0, then the order of 0 ∈ Z is |0| = 1 and the cyclic subgroup

generated by 0 is 〈0〉 = {0}.

We prove if k ∈ Z∗, then nk 6= 0 for all n ∈ Z+.
Let n ∈ Z+.
Suppose k ∈ Z∗.
Then k ∈ Z and k 6= 0, so either k > 0 or k < 0.
We consider these cases separately.
Case 1: Suppose k > 0.
Since k ∈ Z and k > 0, then k is a positive integer.
Since the product of positive integers is positive and n is a positive integer

and k is a positive integer, then the product nk is a positive integer, so nk > 0.
Therefore, nk 6= 0.
Case 1: Suppose k < 0.
Since k ∈ Z and k < 0, then k is a negative integer.
Since the product of a positive integer and a negative integer is negative

and n is a positive integer and k is a negative integer, then the product nk is
negative, so nk < 0.

Therefore, nk 6= 0.
Hence, in all cases, nk 6= 0.

Thus, if k ∈ Z∗, then nk 6= 0 for all n ∈ Z+, so if k ∈ Z∗, then there is no
n ∈ Z+ such that nk = 0.

Therefore, if k ∈ Z∗, then k has infinite order.

Examples of cyclic subgroups generated by each non-zero integer are shown
below.
〈1〉 = Z and 1 has infinite order
〈2〉 = 2Z and 2 has infinite order
〈3〉 = 3Z and 3 has infinite order
〈−1〉 = Z and −1 has infinite order
〈−2〉 = 2Z and −2 has infinite order
〈−3〉 = 3Z and −3 has infinite order
Observe that Z is a cyclic group with generators 1 and −1.
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The order of the inverse of an element is the same as the order of the element.
|0| = | − 0| = 1
|1| = | − 1| =∞
|2| = | − 2| =∞
|3| = | − 3| =∞

Exercise 14. Analyze the order of the cyclic group (Z4,+).

Solution. Observe that Z4 is the group of integers modulo 4 under addition
modulo 4.

The integers modulo 4 is {0, 1, 2, ..., 3} and |Z4| = 4.

The Cayley table is below.
+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Every element of a group G generates a cyclic subgroup of G, so every element
of Z4 generates a cyclic subgroup of Z4.

The cyclic subgroup generated by a ∈ Z4 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
4/2 = 2 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 3), (2, 2), (3, 1)
So, we consider the first 2 elements and the identity 0.

Since Z4 is a cyclic group of order 4, then Z4 is a finite cyclic group, so the
number of generators is φ(4) = 2 and the generators of (Z4,+) are positive
integers that are relatively prime to the modulus 4.

Therefore, the generators are positive integers a such that gcd(a, 4) = 1.
The set of all generators of Z4 is {1, 3}.
Let S = {0, 1, 2} and T = {1}.
Then S − T = {0, 2} is the set of elements whose cyclic subgroups we need

to consider and |S − T | = 2.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 4).

The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2}.
The order of 2 is |2| = 2 since 2 · 2 ≡ 0 (mod 4).
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The order of the inverse of an element is the same as the order of the element.
|0| = | − 0| = |0| = 1
|1| = | − 1| = |3| = 4
|2| = | − 2| = |2| = 2
|3| = | − 3| = |1| = 4

The subgroups of (Z4,+) are:
Z4 = {0, 1, 2, 3}
{0, 2}
{0}

Exercise 15. The group (Z6,+) is a cyclic group.

Solution. The Cayley table is shown below.
+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Every element of a group G generates a cyclic subgroup of G, so every element
of Z6 generates a cyclic subgroup of Z6.

The cyclic subgroup generated by a ∈ Z6 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
6/2 = 3 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)
So, we consider the first 6 elements and the identity 0.

Since Z6 is a cyclic group of order 6, then Z6 is a finite cyclic group, so the
number of generators is φ(6) = 2 and the generators of (Z6,+) are positive
integers that are relatively prime to the modulus 6.

Therefore, the generators are positive integers a such that gcd(a, 6) = 1.
The set of all generators of Z6 is {1, 5}.
Let S = {0, 1, 2, 3} and T = {1}.
Then S−T = {0, 2, 3} is the set of elements whose cyclic subgroups we need

to consider and |S − T | = 3.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 6).

10



The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2, 4}.
The order of 2 is |2| = 3 since 3 · 2 · 0 ≡ 0 (mod 6).

The cyclic subgroup generated by 3 is
〈3〉 = {3k : k ∈ Z} = {0, 3}.
The order of 3 is |3| = 2 since 2 · 3 · 0 ≡ 0 (mod 6).

The subgroups of (Z6,+) are:
Z6

{0, 2, 4}
{0, 3}
{0}

Exercise 16. The group (Z10,+) is a cyclic group.

Solution. The Cayley table is shown below.
+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

Every element of a group G generates a cyclic subgroup of G, so every element
of Z10 generates a cyclic subgroup of Z10.

The cyclic subgroup generated by a ∈ Z10 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
10/2 = 5 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)
So, we consider the first 5 elements and the identity 0.

Since Z10 is a cyclic group of order 10, then Z10 is a finite cyclic group, so the
number of generators is φ(10) = 4 and the generators of (Z10,+) are positive
integers that are relatively prime to the modulus 10.

Therefore, the generators are positive integers a such that gcd(a, 10) = 1.
The set of all generators of Z10 is {1, 3, 7, 9}.
Let S = {0, 1, 2, 3, ..., 5} and T = {1, 3}.
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Then S − T = {0, 2, 4, 5} is the set of elements whose cyclic subgroups we
need to consider and |S − T | = 4.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 10).

The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2, 4, 6, 8}.
The order of 2 is |2| = 5 since 5 · 2 ≡ 0 (mod 10).

The cyclic subgroup generated by 4 is
〈4〉 = {4k : k ∈ Z} = {0, 4, 8, 2, 6}.
The order of 4 is |4| = 5 since 5 · 4 ≡ 0 (mod 10).

The cyclic subgroup generated by 5 is
〈5〉 = {5k : k ∈ Z} = {0, 5}.
The order of 5 is |5| = 2 since 2 · 5 ≡ 0 (mod 10).

The subgroups of (Z10,+) are:
Z10

{0, 2, 4, 6, 8}
{0, 5}
{0}

Exercise 17. The group (Z12,+) is a cyclic group.

Solution. The Cayley table is shown below.
+ 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 6 7 8 9 10 11 0
2 2 3 4 5 6 7 8 9 10 11 0 1
3 3 4 5 6 7 8 9 10 11 0 1 2
4 4 5 6 7 8 9 10 11 0 1 2 3
5 5 6 7 8 9 10 11 0 1 2 3 4
6 6 7 8 9 10 11 0 1 2 3 4 5
7 7 8 9 10 11 0 1 2 3 4 5 6
8 8 9 10 11 0 1 2 3 4 5 6 7
9 9 10 11 0 1 2 3 4 5 6 7 8
10 10 11 0 1 2 3 4 5 6 7 8 9
11 11 0 1 2 3 4 5 6 7 8 9 10
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Every element of a group G generates a cyclic subgroup of G, so every element
of Z12 generates a cyclic subgroup of Z12.

The cyclic subgroup generated by a ∈ Z12 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
12/2 = 6 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 11), (2, 10), (3, 9), (4, 8), (5, 7), (6, 6), (7, 5), (8, 4), (9, 3), (10, 2), (11, 1)
So, we consider the first 6 elements and the identity 0.

Since Z12 is a cyclic group of order 12, then Z12 is a finite cyclic group, so the
number of generators is φ(12) = 4 and the generators of (Z12,+) are positive
integers that are relatively prime to the modulus 12.

Therefore, the generators are positive integers a such that gcd(a, 12) = 1.
The set of all generators of Z12 is {1, 5, 7, 11}.
Let S = {0, 1, 2, 3, ..., 6} and T = {1, 5}.
Then S − T = {0, 2, 3, 4, 6} is the set of elements whose cyclic subgroups we

need to consider and |S − T | = 5.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 12).

The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2, 4, 6, 8, 10}.
The order of 2 is |2| = 6 since 6 · 2 ≡ 0 (mod 12).

The cyclic subgroup generated by 3 is
〈3〉 = {3k : k ∈ Z} = {0, 3, 6, 9}.
The order of 3 is |3| = 4 since 4 · 3 ≡ 0 (mod 12).

The cyclic subgroup generated by 4 is
〈4〉 = {4k : k ∈ Z} = {0, 4, 8}.
The order of 4 is |4| = 3 since 3 · 4 ≡ 0 (mod 12).

The cyclic subgroup generated by 6 is
〈6〉 = {6k : k ∈ Z} = {0, 6}.
The order of 6 is |6| = 2 since 2 · 6 ≡ 0 (mod 12).

The subgroups of (Z12,+) are:
Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
{0, 2, 4, 6, 8, 10}
{0, 3, 6, 9}
{0, 4, 8}
{0, 6}

13



{0}

Exercise 18. The group (Z13,+) is a cyclic group.

Solution. The Cayley table is shown below.
+ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 0
1 1 2 3 4 5 6 7 8 9 10 11 0 1
2 2 3 4 5 6 7 8 9 10 11 0 1 2
3 3 4 5 6 7 8 9 10 11 0 1 2 3
4 4 5 6 7 8 9 10 11 0 1 2 3 4
5 5 6 7 8 9 10 11 0 1 2 3 4 5
6 6 7 8 9 10 11 0 1 2 3 4 5 6
7 7 8 9 10 11 0 1 2 3 4 5 6 7
8 8 9 10 11 0 1 2 3 4 5 6 7 8
9 9 10 11 0 1 2 3 4 5 6 7 8 9
10 10 11 0 1 2 3 4 5 6 7 8 9 10
11 11 0 1 2 3 4 5 6 7 8 9 10 11
12 11 0 1 2 3 4 5 6 7 8 9 10 12

Every element of a group G generates a cyclic subgroup of G, so every element
of Z13 generates a cyclic subgroup of Z13.

The cyclic subgroup generated by a ∈ Z13 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
13/2 = 6 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 12), (2, 11), (3, 10), (4, 9), (5, 8), (6, 7), (7, 6), (8, 5), (9, 4), (10, 3), (11, 2), (12, 1)
So, we consider the first 6 elements and the identity 0.

Since Z13 is a cyclic group of order 13, then Z13 is a finite cyclic group, so the
number of generators is φ(13) = 12 and the generators of (Z13,+) are positive
integers that are relatively prime to the modulus 13.

Therefore, the generators are positive integers a such that gcd(a, 13) = 1.
The set of all generators of Z13 is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
Let S = {0, 1, 2, 3, ..., 6} and T = {1, 2, 3, 4, 5, 6}.
Then S − T = {0} is the set of elements whose cyclic subgroups we need to

consider and |S − T | = 1.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 13).
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The subgroups of (Z13,+) are:
Z13

{0}
Observe that Z13 has no nontrivial proper subgroups. The only subgroups

are Z13 itself and the trivial group.

Exercise 19. The group (Z16,+) is a cyclic group.

Solution. The Cayley table is shown below.
+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8
10 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Every element of a group G generates a cyclic subgroup of G, so every element
of Z16 generates a cyclic subgroup of Z16.

The cyclic subgroup generated by a ∈ Z16 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
16/2 = 8 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 15), (2, 14), (3, 13), (4, 12), (5, 11), (6, 10), (7, 9), (8, 8)
(9, 7), (10, 6), (11, 5), (12, 4), (13, 3), (14, 2), (15, 1)
So, we consider the first 8 elements and the identity 0.

Since Z16 is a cyclic group of order 16, then Z16 is a finite cyclic group, so the
number of generators is φ(16) = 8 and the generators of (Z16,+) are positive
integers that are relatively prime to the modulus 16.

Therefore, the generators are positive integers a such that gcd(a, 16) = 1.
The set of all generators of Z16 is {1, 3, 5, 7, 9, 11, 13, 15}.
Let S = {0, 1, 2, 3, ..., 8} and T = {1, 3, 5, 7}.
Then S − T = {0, 2, 4, 6, 8} is the set of elements whose cyclic subgroups we

need to consider and |S − T | = 5.
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The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 16).

The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14}.
The order of 2 is |2| = 8 since 8 · 2 ≡ 0 (mod 16).

The cyclic subgroup generated by 4 is
〈4〉 = {4k : k ∈ Z} = {0, 4, 8, 12}.
The order of 4 is |4| = 4 since 4 · 4 ≡ 0 (mod 16).

The cyclic subgroup generated by 6 is
〈6〉 = {6k : k ∈ Z} = {0, 6, 12, 2, 8, 14, 4, 10}.
The order of 6 is |6| = 8 since 8 · 6 ≡ 0 (mod 16).

The cyclic subgroup generated by 8 is
〈8〉 = {8k : k ∈ Z} = {0, 8}.
The order of 8 is |8| = 2 since 2 · 8 ≡ 0 (mod 16).

The subgroups of (Z16,+) are:
Z16

{0, 2, 4, 6, 8, 10, 12, 14}
{0, 4, 8, 12}
{0, 8}
{0}

Exercise 20. Analyze the group (Z18,+).

Solution. Every element of a group G generates a cyclic subgroup of G, so
every element of Z18 generates a cyclic subgroup of Z18.

The cyclic subgroup generated by a ∈ Z18 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
18/2 = 9 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 17), (2, 16), (3, 15), (4, 14), (5, 13), (6, 12), (7, 11), (8, 10), (9, 9), (10, 8), (11, 7), (12, 6), (13, 5)
(14, 4), (15, 3), (16, 2), (17, 1)
So, we consider the first 9 elements and the identity 0.

Since Z18 is a cyclic group of order 18, then Z18 is a finite cyclic group, so the
number of generators is φ(18) = 6 and the generators of (Z18,+) are positive
integers that are relatively prime to the modulus 18.

Therefore, the generators are positive integers a such that gcd(a, 18) = 1.
The set of all generators of Z18 is {1, 5, 7, 11, 13, 17}.
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Let S = {0, 1, 2, 3, ..., 9} and T = {1, 5, 7}.
Then S−T = {0, 2, 3, 4, 6, 8, 9} is the set of elements whose cyclic subgroups

we need to consider and |S − T | = 7.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 18).

The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16}.
The order of 2 is |2| = 9 since 9 · 2 ≡ 0 (mod 18).

The cyclic subgroup generated by 3 is
〈3〉 = {3k : k ∈ Z} = {0, 3, 6, 9, 12, 15}.
The order of 3 is |3| = 16 since 16 · 3 ≡ 0 (mod 18).

The cyclic subgroup generated by 4 is
〈4〉 = {4k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16}.
The order of 4 is |4| = 9 since 9 · 4 ≡ 0 (mod 18).

The cyclic subgroup generated by 6 is
〈6〉 = {6k : k ∈ Z} = {0, 6, 12}.
The order of 6 is |6| = 3 since 3 · 6 ≡ 0 (mod 18).

The cyclic subgroup generated by 8 is
〈8〉 = {8k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16}.
The order of 8 is |8| = 9 since 9 · 8 ≡ 0 (mod 18).

The cyclic subgroup generated by 9 is
〈9〉 = {9k : k ∈ Z} = {0, 9}.
The order of 9 is |9| = 2 since 2 · 9 ≡ 0 (mod 18).

The subgroups of (Z18,+) are:
Z18

{0, 2, 4, 6, 8, 10, 12, 14, 16}
{0, 3, 6, 9, 12, 15}
{0, 6, 12}
{0, 9}
{0}

Exercise 21. Analyze the group (Z32,+).
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Solution. Every element of a group G generates a cyclic subgroup of G, so
every element of Z32 generates a cyclic subgroup of Z32.

The cyclic subgroup generated by a ∈ Z32 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
32/2 = 16 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 31), (2, 30), (3, 29), (4, 28), (5, 27), (6, 26), (7, 25), (8, 24), (9, 23), (10, 22), (11, 21), (12, 20), (13, 19)
(14, 18), (15, 17), (16, 16), (17, 15), (18, 14), (19, 13), (20, 12)
(21, 11), (22, 10), (23, 9), (24, 8), (25, 7), (26, 6), (27, 5), (28, 4), (29, 3), (30, 2), (31, 1)
So, we consider the first 16 elements and the identity 0.

Since Z32 is a cyclic group of order 32, then Z32 is a finite cyclic group, so the
number of generators is φ(32) = 16 and the generators of (Z32,+) are positive
integers that are relatively prime to the modulus 32.

Therefore, the generators are positive integers a such that gcd(a, 32) = 1.
The set of all generators of Z32 is {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}.
Let S = {0, 1, 2, 3, ..., 16} and T = {1, 3, 5, 7, 9, 11, 13, 15}.
Then S − T = {0, 2, 4, 6, 8, 10, 12, 14, 16} is the set of elements whose cyclic

subgroups we need to consider and |S − T | = 9.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 32).

The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.
The order of 2 is |2| = 16 since 16 · 2 ≡ 0 (mod 32).

The cyclic subgroup generated by 4 is
〈4〉 = {4k : k ∈ Z} = {0, 4, 8, 12, 16, 20, 24, 28}.
The order of 4 is |4| = 8 since 8 · 4 ≡ 0 (mod 32).

The cyclic subgroup generated by 6 is
〈6〉 = {6k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.
The order of 6 is |6| = 16 since 16 · 6 ≡ 0 (mod 32).

The cyclic subgroup generated by 8 is
〈8〉 = {8k : k ∈ Z} = {0, 8, 16, 24}.
The order of 8 is |8| = 4 since 4 · 8 ≡ 0 (mod 32).

The cyclic subgroup generated by 10 is
〈10〉 = {10k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.
The order of 10 is |10| = 16 since 16 · 10 ≡ 0 (mod 32).
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The cyclic subgroup generated by 12 is
〈12〉 = {12k : k ∈ Z} = {0, 4, 8, 12, 16, 20, 24, 28}.
The order of 12 is |12| = 8 since 8 · 12 ≡ 0 (mod 32).

The cyclic subgroup generated by 14 is
〈14〉 = {14k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.
The order of 14 is |14| = 16 since 16 · 14 ≡ 0 (mod 32).

The cyclic subgroup generated by 16 is
〈16〉 = {16k : k ∈ Z} = {0, 16}.
The order of 16 is |16| = 2 since 2 · 16 ≡ 0 (mod 32).

The subgroups of (Z32,+) are:
Z32

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}
{0, 4, 8, 12, 16, 20, 24, 28}
{0, 8, 16, 24}
{0, 16}
{0}

Exercise 22. The group (Z48,+) is a cyclic group.

Solution. Every element of a group G generates a cyclic subgroup of G, so
every element of Z48 generates a cyclic subgroup of Z48.

The cyclic subgroup generated by a ∈ Z48 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
48/2 = 24 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 47), (2, 46), (3, 45), (4, 44), (5, 43), (6, 42), (7, 41), (8, 40), (9, 39), (10, 38), (11, 37), (12, 36), (13, 35)
(14, 34), (15, 33), (16, 32), (17, 31), (18, 30), (19, 29), (20, 28), (21, 27), (22, 26), (23, 25), (24, 24)
So, we consider the first 24 elements and the identity 0.

Since Z48 is a cyclic group of order 48, then Z48 is a finite cyclic group, so the
number of generators is φ(48) = 16 and the generators of (Z48,+) are positive
integers that are relatively prime to the modulus 48.

Therefore, the generators are positive integers a such that gcd(a, 48) = 1.
The set of all generators of Z48 is {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47}.
Let S = {0, 1, 2, 3, ..., 24} and T = {1, 5, 7, 11, 13, 17, 19, 23}.
Then S − T = {0, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24} is the set

of elements whose cyclic subgroups we need to consider and |S − T | = 17.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 48).
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The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46}.
The order of 2 is |2| = 24 since 24 · 2 ≡ 0 (mod 48).

The cyclic subgroup generated by 3 is
〈3〉 = {3k : k ∈ Z} = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}.
The order of 3 is |3| = 16 since 16 · 3 ≡ 0 (mod 48).

The cyclic subgroup generated by 4 is
〈4〉 = {4k : k ∈ Z} = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44}.
The order of 4 is |4| = 12 since 12 · 4 ≡ 0 (mod 48).

The cyclic subgroup generated by 6 is
〈6〉 = {6k : k ∈ Z} = {0, 6, 12, 18, 24, 30, 36, 42}.
The order of 6 is |6| = 8 since 8 · 6 ≡ 0 (mod 48).

The cyclic subgroup generated by 8 is
〈8〉 = {8k : k ∈ Z} = {0, 8, 16, 24, 32, 40}.
The order of 8 is |8| = 6 since 6 · 8 ≡ 0 (mod 48).

The cyclic subgroup generated by 9 is
〈9〉 = {9k : k ∈ Z} = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}.
The order of 9 is |9| = 16 since 16 · 9 ≡ 0 (mod 48).

The cyclic subgroup generated by 10 is
〈10〉 = {10k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46}.
The order of 10 is |10| = 24 since 24 · 10 ≡ 0 (mod 48).

The cyclic subgroup generated by 12 is
〈12〉 = {12k : k ∈ Z} = {0, 12, 24, 36}.
The order of 12 is |12| = 4 since 4 · 12 ≡ 0 (mod 48).

The cyclic subgroup generated by 14 is
〈14〉 = {14k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46}.
The order of 14 is |14| = 24 since 24 · 14 ≡ 0 (mod 48).

The cyclic subgroup generated by 15 is
〈15〉 = {15k : k ∈ Z} = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}.
The order of 15 is |15| = 16 since 16 · 15 ≡ 0 (mod 48).

The cyclic subgroup generated by 16 is
〈16〉 = {16k : k ∈ Z} = {0, 16, 32}.
The order of 16 is |16| = 3 since 3 · 16 ≡ 0 (mod 48).
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The cyclic subgroup generated by 18 is
〈18〉 = {18k : k ∈ Z} = {0, 6, 12, 18, 24, 30, 36, 42}.
The order of 18 is |18| = 8 since 8 · 18 ≡ 0 (mod 48).

The cyclic subgroup generated by 20 is
〈20〉 = {20k : k ∈ Z} = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44}.
The order of 20 is |20| = 12 since 12 · 20 ≡ 0 (mod 48).

The cyclic subgroup generated by 21 is
〈21〉 = {21k : k ∈ Z} = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}.
The order of 21 is |21| = 16 since 16 · 21 ≡ 0 (mod 48).

The cyclic subgroup generated by 22 is
〈22〉 = {22k : k ∈ Z} = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46}.
The order of 22 is |22| = 24 since 24 · 22 ≡ 0 (mod 48).

The cyclic subgroup generated by 24 is
〈24〉 = {24k : k ∈ Z} = {0, 24}.
The order of 24 is |24| = 2 since 2 · 24 ≡ 0 (mod 48).

The subgroups of (Z48,+) are:
Z48

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46}
{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}
{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44}
{0, 6, 12, 18, 24, 30, 36, 42}
{0, 8, 16, 24, 32, 40}
{0, 12, 24, 36}
{0, 16, 32}
{0, 24}
{0}

Exercise 23. The group (Z60,+) is a cyclic group.

Solution. Every element of a group G generates a cyclic subgroup of G, so
every element of Z60 generates a cyclic subgroup of Z60.

The cyclic subgroup generated by a ∈ Z60 is the same as the cyclic subgroup
generated by a−1, so we only need to consider the subgroups generated by
60/2 = 30 elements and the identity 0.

The elements and additive inverses are:
(0, 0), (1, 59), (2, 58), (3, 57), (4, 56), (5, 55), (6, 54), (7, 53), (8, 52), (9, 51), (10, 50), (11, 49), (12, 48), (13, 47)
(14, 46), (15, 45), (16, 44), (17, 43), (18, 42), (19, 41), (20, 40), (21, 39), (22, 38), (23, 37), (24, 36), (25, 35)
(24, 34), (25, 33), (26, 32), (27, 31), (28, 30), (29, 31), (30, 30)
So, we consider the first 30 elements and the identity 0.

21



Since Z60 is a cyclic group of order 60, then Z60 is a finite cyclic group, so the
number of generators is φ(60) = 16 and the generators of (Z60,+) are positive
integers that are relatively prime to the modulus 60.

Therefore, the generators are positive integers a such that gcd(a, 60) = 1.
The set of all generators of Z60 is {1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59}.
Let S = {0, 1, 2, 3, ..., 30} and T = {1, 7, 11, 13, 17, 19, 23, 29}.
Then S−T = {0, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30}

is the set of elements whose cyclic subgroups we need to consider and |S−T | =
23.

The cyclic subgroup generated by 0 is
〈0〉 = {0k : k ∈ Z} = {0}.
The order of 0 is |0| = 1 since 1 · 0 ≡ 0 (mod 60).

The cyclic subgroup generated by 2 is
〈2〉 = {2k : k ∈ Z} =
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}.
The order of 2 is |2| = 30 since 30 · 2 ≡ 0 (mod 60).

The cyclic subgroup generated by 3 is
〈3〉 = {3k : k ∈ Z} = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57}.
The order of 3 is |3| = 20 since 20 · 3 ≡ 0 (mod 60).

The cyclic subgroup generated by 4 is
〈4〉 = {4k : k ∈ Z} = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56}.
The order of 4 is |4| = 15 since 15 · 4 ≡ 0 (mod 60).

The cyclic subgroup generated by 5 is
〈5〉 = {5k : k ∈ Z} = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55}.
The order of 5 is |5| = 12 since 12 · 5 ≡ 0 (mod 60).

The cyclic subgroup generated by 6 is
〈6〉 = {6k : k ∈ Z} = {0, 6, 12, 18, 24, 30, 36, 42, 48, 54}.
The order of 6 is |6| = 10 since 10 · 6 ≡ 0 (mod 60).

The cyclic subgroup generated by 8 is
〈8〉 = {8k : k ∈ Z} = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56}.
The order of 8 is |8| = 15 since 15 · 8 ≡ 0 (mod 60).

The cyclic subgroup generated by 9 is
〈9〉 = {9k : k ∈ Z} = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57}.
The order of 9 is |9| = 20 since 20 · 9 ≡ 0 (mod 60).
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The cyclic subgroup generated by 10 is
〈10〉 = {10k : k ∈ Z} = {0, 10, 20, 30, 40, 50}.
The order of 10 is |10| = 6 since 6 · 10 ≡ 0 (mod 60).

The cyclic subgroup generated by 12 is
〈12〉 = {12k : k ∈ Z} = {0, 12, 24, 36, 48}.
The order of 12 is |12| = 5 since 5 · 12 ≡ 0 (mod 60).

The cyclic subgroup generated by 14 is
〈14〉 = {14k : k ∈ Z} =
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}.
The order of 14 is |14| = 30 since 30 · 14 ≡ 0 (mod 60).

The cyclic subgroup generated by 15 is
〈15〉 = {15k : k ∈ Z} = {0, 15, 30, 45}.
The order of 15 is |15| = 4 since 4 · 15 ≡ 0 (mod 60).

The cyclic subgroup generated by 16 is
〈16〉 = {16k : k ∈ Z} = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56}.
The order of 16 is |16| = 15 since 15 · 16 ≡ 0 (mod 60).

The cyclic subgroup generated by 18 is
〈18〉 = {18k : k ∈ Z} = {0, 6, 12, 18, 24, 30, 36, 42, 48, 54}.
The order of 18 is |18| = 10 since 10 · 18 ≡ 0 (mod 60).

The cyclic subgroup generated by 20 is
〈20〉 = {20k : k ∈ Z} = {0, 20, 40}.
The order of 20 is |20| = 3 since 3 · 20 ≡ 0 (mod 60).

The cyclic subgroup generated by 21 is
〈21〉 = {21k : k ∈ Z} = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57}.
The order of 21 is |21| = 20 since 20 · 21 ≡ 0 (mod 60).

The cyclic subgroup generated by 22 is
〈22〉 = {22k : k ∈ Z} =
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}.
The order of 22 is |22| = 30 since 30 · 22 ≡ 0 (mod 60).

The cyclic subgroup generated by 24 is
〈24〉 = {24k : k ∈ Z} = {0, 12, 24, 36, 48}.
The order of 24 is |24| = 5 since 5 · 24 ≡ 0 (mod 60).

23



The cyclic subgroup generated by 25 is
〈25〉 = {25k : k ∈ Z} = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55}.
The order of 25 is |25| = 12 since 12 · 25 ≡ 0 (mod 60).

The cyclic subgroup generated by 26 is
〈26〉 = {26k : k ∈ Z} =
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}.
The order of 26 is |26| = 30 since 30 · 26 ≡ 0 (mod 60).

The cyclic subgroup generated by 27 is
〈27〉 = {27k : k ∈ Z} =
{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57}.
The order of 27 is |27| = 20 since 20 · 27 ≡ 0 (mod 60).

The cyclic subgroup generated by 28 is
〈28〉 = {28k : k ∈ Z} =
{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56}.
The order of 28 is |28| = 15 since 15 · 28 ≡ 0 (mod 60).

The cyclic subgroup generated by 30 is
〈30〉 = {30k : k ∈ Z} = {0, 30}.
The order of 30 is |30| = 2 since 2 · 30 ≡ 0 (mod 60).

The subgroups of (Z60,+) are:
Z60

{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58}
{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57}
{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56}
{0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55}
{0, 6, 12, 18, 24, 30, 36, 42, 48, 54}
{0, 10, 20, 30, 40, 50}
{0, 12, 24, 36, 48}
{0, 15, 30, 45}
{0, 20, 40}
{0, 30}
{0}

Exercise 24. Analyze the generators of (Z60,+).

Solution. The generators of (Z60,+) are congruence classes [k] such that k ∈
Z+ and gcd(k, 60) = 1.

Hence, there are φ(60) = 16 elements of Z60 that are relatively prime to the
modulus 60.

Therefore, the set of generators of Z60 is {1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59}.
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Exercise 25. Which elements of (Zn,+) are generators of the cyclic group Zn?

Solution. For n ∈ Z+ and n > 1, the additive group Zn = {[0], [1], ..., [n−1]} =
〈[1]〉 is cyclic and the congruence class [1] is a generator of Zn.

For Z1 the generator is 0, so Z1 = 〈0〉 = {0} is a cyclic group.
For Z2 the generator is 1, so Z2 = 〈1〉 = {0, 1} is a cyclic group.
For Z3 the generators are 1, 2 so Z3 = 〈1〉 = 〈2〉 = {0, 1, 2} is a cyclic group.
For Z4 the generators are 1, 3 so Z4 = 〈1〉 = 〈3〉 = {0, 1, 2, 3} is a cyclic

group.
For Z5 the generators are 1, 2, 3, 4, so Z5 = 〈1〉 = 〈2〉 = 〈3〉 = 〈4〉 =

{0, 1, 2, 3, 4} is a cyclic group.
For Z6 the generators are 1, 5 so Z6 = 〈1〉 = 〈5〉 = {0, 1, 2, 3, 4, 5} is a cyclic

group.
For Z7 the generators are 1, 2, 3, 4, 5, 6, so Z7 = 〈1〉 = 〈2〉 = 〈3〉 = 〈4〉 =

〈5〉 = 〈6〉 = {0, 1, 2, 3, 4, 5} is a cyclic group.
The pattern emerges that the generators of (Zn,+) are any congruence

classes [a] such that gcd(a, n) = 1. In other words, [a] is a generator of Zn
whenever a is relatively prime to the modulus n.

Exercise 26. Analyze the group of units of Z8 under multiplication.
The group (Z∗8, ·) is not cyclic.

Solution. Observe that |Z8| = 8.
The binary structure (Z∗8, ·) is the group of units of integers modulo 8 under

multiplication.
Thus, |Z∗8| = φ(8) = 4 and Z∗8 = {[a] : gcd(a, 8) = 1} = {[1], [3], [5], [7]}.
We draw the Cayley table for Z∗8.
· 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

By noting the symmetry along the main diagonal of the table, we see that
the multiplication is commutative, so Z∗8 is an abelian group.

The identity is 1 and each element is its own inverse, so x2 = 1 for all x ∈ Z∗8.
Every element of a group G generates a cyclic subgroup of G, so every

element of Z∗8 generates a cyclic subgroup of Z∗8.
By looking at the table we can easily see the cyclic subgroups generated by

each element.
〈1〉 = {1} and |1| = 1 and {1} is a subgroup of Z∗8.
〈3〉 = {1, 3} and |3| = 2 and {1, 3} is a subgroup of Z∗8.
〈5〉 = {1, 5} and |5| = 2 and {1, 5} is a subgroup of Z∗8.
〈7〉 = {1, 7} and |7| = 2 and {1, 7} is a subgroup of Z∗8.
The order of any element of Z∗8 is either 1 or 2, but not 4.
Hence, no element of Z∗8 is a generator of Z∗8, so Z∗8 cannot be cyclic.
Since none of the orders of the elements are 4, then Z∗8 is not cyclic.
However, Z∗8 is abelian and is finite.

25



The subgroups of (Z∗8, ·) are:
Z∗8 = {1, 3, 5, 7}
{1, 3}
{1, 5}
{1, 7}
{1}

Exercise 27. (Z∗8, ·) is not cyclic.

Proof. Observe that |Z∗8| = 4.
We first prove [a]2 = [1] for every [a] ∈ Z∗8.
Let [a] ∈ Z∗8.
Then gcd(a, 8) = 1.
Hence, a is either 1 or 3 or 5 or 7, so a is odd.
Therefore, there exists an integer k such that a = 2k + 1.
Thus, a−1 = 2k and a+1 = 2k+2, so a2−1 = (a−1)(a+1) = 2k(2k+2) =

4k(k + 1).
The product of two consecutive integers is even.
Hence, k(k+1) is even, so there exists an integer m such that k(k+1) = 2m.
Thus, a2 − 1 = 4k(k + 1) = 4(2m) = 8m, so 8|(a2 − 1).
Therefore, a2 ≡ 1 (mod 8), so [a2] = [1].
Thus, [1] = [a2] = [aa] = [a][a] = [a]2, so [a]2 = [1].
Consequently, [a]2 = [1] for every [a] ∈ Z∗8.

Let [x] ∈ Z∗8.
Then either [x] = [1] or [x] 6= [1].
We consider these cases separately.
Case 1: Suppose [x] = [1].
Since [1]1 = [1], then the order of [1] is 1 6= 4.
Hence, [1] is not a generator of Z∗8.
Case 2: Suppose [x] 6= [1].
Since [x]1 = [x], then [x]1 6= [1].
Since [x]2 = [1], then the order of [x] is 2 6= 4.
Hence, [x] is not a generator of Z∗8.
Therefore, in all cases [x] is not a generator of Z∗8.
Since [x] is arbitrary, then this implies every element of Z∗8 is not a generator

of Z∗8.
Thus, there is no element of Z∗8 that is a generator of Z∗8, so Z∗8 is not

cyclic.

Exercise 28. Analyze the group of units of Z9 under multiplication.
The group (Z∗9, ·) is cyclic.

Solution. Observe that |Z9| = 9.
The binary structure (Z∗9, ∗) is the group of units of integers modulo 9 under

multiplication.
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Thus, |Z∗9| = φ(9) = 6 and Z∗9 = {[a] : gcd(a, 9) = 1} = {[1], [2], [4], [5], [7], [8]}.
We draw the Cayley table for Z∗9.
· 1 2 4 5 7 8
1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

By noting the symmetry along the main diagonal of the table, we see that
the multiplication is commutative, so Z∗9 is an abelian group.

The identity is 1.
The inverses are:
1−1 = 1
2−1 = 5
4−1 = 7
5−1 = 2
7−1 = 4
8−1 = 8
Every element of a group G generates a cyclic subgroup of G, so every

element of Z∗9 generates a cyclic subgroup of Z∗9.
By looking at the table we can easily see the cyclic subgroups generated by

each element.
〈1〉 = {1} and |1| = 1 and {1} is a subgroup of Z∗9.
〈2〉 = {2, 4, 8, 7, 5, 1} and |2| = 6 and {2, 4, 8, 7, 5, 1} is a subgroup of Z∗9.
〈4〉 = {4, 7, 1} and |4| = 3 and {4, 7, 1} is a subgroup of Z∗9.
〈5〉 = {5, 7, 8, 4, 2, 1} and |5| = 6 and {5, 7, 8, 4, 2, 1} is a subgroup of Z∗9.
〈7〉 = {7, 4, 1} and |7| = 3 and {7, 4, 1} is a subgroup of Z∗9.
〈8〉 = {8, 1} and |8| = 2 and {8, 1} is a subgroup of Z∗9.
Since |2| = 6 = |5| = |Z∗9|, then 2 and 5 are generators of Z∗9, so Z∗9 is cyclic.
Also, Z∗9 is finite.

The subgroups of (Z∗9, ·) are:
Z∗9 = {1, 2, 4, 5, 7, 8}
{1, 4, 7}
{1, 8}
{1}

Exercise 29. Analyze the order of the group (Z∗10, ·).

Solution. Observe that Z∗10 is the group of units of Z10 under multiplication
modulo 10.

The integers modulo 10 is {0, 1, 2, ..., 9} and |Z10| = 10.
The group of units Z∗10 is {a ∈ Z : gcd(a, 10) = 1} = {1, 3, 7, 9} and |Z∗10| =

φ(10) = 4, where φ is Euler’s totient function.
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The Cayley table is below.
· 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Every element of a group G generates a cyclic subgroup of G, so every element
of Z∗10 generates a cyclic subgroup of Z∗10.

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
〈3〉 = {1, 3, 7, 9} and |3| = 4
〈7〉 = {1, 3, 7, 9} and |7| = 4
〈9〉 = {1, 9} and |9| = 2
Since |3| = |7| = 4, then 3 and 7 are generators of Z∗10, so Z∗10 is cyclic.

The order of the inverse of an element is the same as the order of the element.
|1| = |1−1| = |1| = 1
|3| = |3−1| = |7| = 4
|7| = |7−1| = |3| = 4
|9| = |9−1| = |9| = 2

The subgroups of (Z∗10, ·) are:
Z∗10 = {1, 3, 7, 9}
{1, 9}
{1}

Exercise 30. Analyze the order of the group (Z∗12, ·).

Solution. Observe that Z∗12 is the group of units of Z12 under multiplication
modulo 12.

The integers modulo 12 is {0, 1, 2, ..., 11} and |Z12| = 12.
The group of units Z∗12 is {a ∈ Z : gcd(a, 12) = 1} = {1, 5, 7, 11} and

|Z∗12| = φ(12) = 4, where φ is Euler’s totient function.

The Cayley table is below.
· 1 5 7 11
1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1
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Every element of a group G generates a cyclic subgroup of G, so every element
of Z∗12 generates a cyclic subgroup of Z∗12.

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
〈5〉 = {1, 5} and |5| = 2
〈7〉 = {1, 7} and |7| = 2
〈11〉 = {1, 11} and |11| = 2
There is no element that generates the entire group, so Z∗12 is not cyclic.

The order of the inverse of an element is the same as the order of the element.
|1| = |1−1| = |1| = 1
|5| = |5−1| = |5| = 2
|7| = |7−1| = |7| = 2
|11| = |11−1| = |11| = 2

The subgroups of (Z∗12, ·) are:
Z∗12 = {1, 5, 7, 11}
{1, 5}
{1, 7}
{1, 11}
{1}

Exercise 31. Analyze the order of the group (Z∗15, ·).

Solution. Observe that Z∗15 is the group of units of Z15 under multiplication
modulo 15.

The integers modulo 15 is {0, 1, 2, ..., 14} and |Z15| = 15.
The group of units Z∗15 is {a ∈ Z : gcd(a, 15) = 1} = {1, 2, 4, 7, 8, 11, 13, 14}

and |Z∗15| = φ(15) = 8, where φ is Euler’s totient function.

The Cayley table is below.
· 1 2 4 7 8 11 13 14
1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

Every element of a group G generates a cyclic subgroup of G, so every element
of Z∗15 generates a cyclic subgroup of Z∗15.

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
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〈2〉 = {1, 2, 4, 8} and |2| = 4
〈4〉 = {1, 4} and |4| = 2
〈7〉 = {1, 7, 4, 13} and |7| = 4
〈8〉 = {1, 8, 4, 2} and |8| = 4
〈11〉 = {1, 11} and |11| = 2
〈13〉 = {1, 13, 4, 7} and |13| = 4
〈14〉 = {1, 14} and |14| = 2
There is no element that generates the entire group, so Z∗15 is not cyclic.

The order of the inverse of an element is the same as the order of the element.
|1| = |1−1| = |1| = 1
|2| = |2−1| = |8| = 4
|4| = |4−1| = |4| = 2
|7| = |7−1| = |13| = 4
|8| = |8−1| = |2| = 4
|11| = |11−1| = |11| = 2
|13| = |13−1| = |7| = 4
|14| = |14−1| = |14| = 2

The subgroups of (Z∗15, ·) are:
Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}
{1, 2, 4, 8}
{1, 4, 7, 13}
{1, 4}
{1, 11}
{1, 14}
{1}

Exercise 32. Analyze the order of the group (Z∗18, ·).

Solution. Observe that Z∗18 is the group of units of Z18 under multiplication
modulo 18.

The integers modulo 18 is {0, 1, 2, ..., 17} and |Z18| = 18.
The group of units Z∗18 is {a ∈ Z : gcd(a, 18) = 1} = {1, 5, 7, 11, 13, 17} and

|Z∗18| = φ(18) = 6, where φ is Euler’s totient function.

The Cayley table is below.
· 1 5 7 11 13 17
1 1 5 7 11 13 17
5 5 7 17 1 11 13
7 7 17 13 5 1 11
11 11 1 5 13 17 7
13 13 11 1 17 7 5
17 17 13 11 7 5 1
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Every element of a group G generates a cyclic subgroup of G, so every element
of Z∗18 generates a cyclic subgroup of Z∗18.

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
〈5〉 = {1, 5, 7, 11, 13, 17} and |5| = 6
〈7〉 = {1, 7, 13} and |7| = 3
〈11〉 = {1, 5, 7, 11, 13, 17} and |11| = 6
〈13〉 = {1, 7, 13} and |13| = 3
〈17〉 = {1, 17} and |17| = 2
The set of generators is {5, 11} so Z∗18 is cyclic.

The order of the inverse of an element is the same as the order of the element.
|1| = |1−1| = |1| = 1
|5| = |5−1| = |11| = 6
|7| = |7−1| = |13| = 3
|11| = |11−1| = |5| = 6
|13| = |13−1| = |7| = 3
|17| = |17−1| = |17| = 2

The subgroups of (Z∗18, ·) are:
Z∗18 = {1, 5, 7, 11, 13, 17}
{1, 7, 13}
{1, 17}
{1}

Exercise 33. Analyze the order of the group (Z∗20, ·).

Solution. Observe that Z∗20 is the group of units of Z20 under multiplication
modulo 20.

The integers modulo 20 is {0, 1, 2, ..., 19} and |Z20| = 20.
The group of units Z∗20 is {a ∈ Z : gcd(a, 20) = 1} = {1, 3, 7, 9, 11, 13, 17, 19}

and |Z∗20| = φ(20) = 8, where φ is Euler’s totient function.

The Cayley table is below.
· 1 3 7 9 11 13 17 19
1 1 3 7 9 11 13 17 19
3 3 9 1 7 13 19 11 17
7 7 1 9 3 17 11 19 13
9 9 7 3 1 19 17 13 11
11 11 13 17 19 1 3 7 9
13 13 19 11 17 3 9 1 7
17 17 11 19 13 7 1 9 3
19 19 17 13 11 9 7 3 1
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Every element of a group G generates a cyclic subgroup of G, so every element
of Z∗20 generates a cyclic subgroup of Z∗20.

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
〈3〉 = {1, 3, 9, 7} and |3| = 4
〈7〉 = {1, 7, 9, 3} and |7| = 4
〈9〉 = {1, 9} and |9| = 2
〈11〉 = {1, 11} and |11| = 2
〈13〉 = {1, 13, 9, 17} and |13| = 4
〈17〉 = {1, 17, 9, 13} and |17| = 4
〈19〉 = {1, 19} and |9| = 2

There is no element that generates Z∗20, so Z∗20 is not cyclic.

The order of the inverse of an element is the same as the order of the element.
|1| = |1−1| = |1| = 1
|3| = |3−1| = |7| = 4
|7| = |7−1| = |3| = 4
|9| = |9−1| = |9| = 2
|11| = |11−1| = |11| = 2
|13| = |13−1| = |17| = 4
|17| = |17−1| = |13| = 4
|19| = |19−1| = |19| = 2

The subgroups are shown below.
Z∗20 = {1, 3, 7, 9, 11, 13, 17, 19}
{1, 9, 13, 17}
{1, 3, 7, 9}
{1, 9}
{1, 11}
{1, 19}
{1}

Exercise 34. Analyze the order of the group (Z∗24, ·).

Solution. Observe that Z∗24 is the group of units of Z24 under multiplication
modulo 24.

The integers modulo 24 is {0, 1, 2, ..., 23} and |Z24| = 24.
The group of units Z∗24 is {a ∈ Z : gcd(a, 24) = 1} = {1, 5, 7, 11, 13, 17, 19, 23}

and |Z∗24| = φ(24) = 8, where φ is Euler’s totient function.
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The Cayley table is below.
· 1 5 7 11 13 17 19 23
1 1 5 7 11 13 17 19 23
5 5 1 11 7 17 13 23 19
7 7 11 1 5 19 23 13 17
11 11 7 5 1 23 19 17 13
13 13 17 19 23 1 5 7 11
17 17 13 23 19 5 1 11 7
19 19 23 13 17 7 11 1 5
23 23 19 17 13 11 7 5 1

Every element of a group G generates a cyclic subgroup of G, so every element
of Z∗24 generates a cyclic subgroup of Z∗24.

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
〈5〉 = {1, 5} and |3| = 2
〈7〉 = {1, 7} and |7| = 2
〈11〉 = {1, 11} and |9| = 2
〈13〉 = {1, 13} and |9| = 2
〈17〉 = {1, 17} and |9| = 2
〈19〉 = {1, 19} and |9| = 2
〈23〉 = {1, 23} and |9| = 2

Observe that x2 = 1 for all x ∈ Z∗24, so each element is its own inverse and
the order of each non identity element is 2.

There is no element that generates Z∗24, so Z∗24 is not cyclic.

The order of the inverse of an element is the same as the order of the element.
|1| = |1−1| = |1| = 1
|5| = |5−1| = |5| = 2
|7| = |7−1| = |7| = 2
|11| = |11−1| = |11| = 2
|13| = |13−1| = |13| = 2
|17| = |17−1| = |17| = 2
|19| = |19−1| = |19| = 2
|23| = |23−1| = |23| = 2

The subgroups are shown below.
Z∗24 = {1, 5, 7, 11, 13, 17, 19, 23}
{1, 5}
{1, 7}
{1, 11}
{1, 13}
{1, 17}
{1, 19}
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{1, 23}
{1}

Exercise 35. Analyze the order of the group (Z∗30, ·).

Solution. Observe that Z∗30 is the group of units of Z30 under multiplication
modulo 30.

The integers modulo 30 is {0, 1, 2, ..., 29} and |Z30| = 30.
The group of units Z∗30 is {a ∈ Z : gcd(a, 30) = 1} = {1, 7, 11, 13, 17, 19, 23, 29}

and |Z∗30| = φ(30) = 8, where φ is Euler’s totient function.

The Cayley table is below.
· 1 7 11 13 17 19 23 29
1 1 7 11 13 17 19 23 29
7 7 19 17 1 29 13 11 23
11 11 17 1 23 7 29 13 19
13 13 1 23 19 11 7 29 17
17 17 29 7 11 19 23 1 13
19 19 13 29 7 23 1 17 11
23 23 11 13 29 1 17 19 7
29 29 23 19 17 13 11 7 1

Every element of a group G generates a cyclic subgroup of G, so every element
of Z∗30 generates a cyclic subgroup of Z∗30.

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
〈7〉 = {1, 7, 13, 19} and |7| = 4
〈11〉 = {1, 11} and |11| = 2
〈13〉 = {1, 7, 13, 19} and |13| = 4
〈17〉 = {1, 17, 19, 23} and |17| = 4
〈19〉 = {1, 19} and |19| = 2
〈23〉 = {1, 17, 19, 23} and |23| = 4
〈29〉 = {1, 29} and |29| = 2

There is no element that generates Z∗30, so Z∗30 is not cyclic.

The order of the inverse of an element is the same as the order of the element.
|1| = |1−1| = |1| = 1
|7| = |7−1| = |13| = 4
|11| = |11−1| = |11| = 2
|13| = |13−1| = |7| = 4
|17| = |17−1| = |23| = 4
|19| = |19−1| = |19| = 2
|23| = |23−1| = |17| = 4
|29| = |29−1| = |29| = 2
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The subgroups are shown below.
Z∗30 = {1, 7, 11, 13, 17, 19, 23, 29}
{1, 7, 13, 19}
{1, 17, 19, 23}
{1, 11}
{1, 17}
{1, 19}
{1, 29}
{1}

Exercise 36. Analyze the subgroup of (Z,+) generated by 7 ∈ Z.

Solution. The cyclic subgroup generated by 7 is 〈7〉 = {7k : k ∈ Z} = 7Z =
{...,−21,−14,−7, 0, 7, 14, 21, 28, 35, ...} the set of all multiples of 7 and the order
of 7 is |7| =∞.

Exercise 37. Analyze the subgroup of (Z24,+) generated by 15 ∈ Z24.

Solution. The cyclic subgroup generated by 15 is 〈15〉 = {15k : k ∈ Z} =
{0, 15, 6, 21, 12, 3, 18, 9} and the order of 15 is |15| = 8.

Exercise 38. Analyze the subgroup generated by 7 in the group (R∗, ·).

Solution. The cyclic subgroup generated by 7 ∈ R∗ is 〈7〉 = {7k : k ∈ Z}.
There is no positive integer n such that 7n = 1, so 7 has infinite order.

To prove there is no n ∈ Z+ such that 7n = 1, we prove 7n > 1 for all n ∈ Z+.
Define predicate p(n) : 7n > 1 over Z.
We prove p(n) is true for all n ≥ 1 by induction on n.
Basis:
Since 71 = 7 > 1, then p(1) is true.
Induction:
Suppose p(k) is true for any k ∈ Z+.
Then 7k > 1.
Since 7 > 1, then 7k+1 = 7k · 7 > 1 · 1 = 1, so 7k+1 > 1.
Hence, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ Z+.
Since p(1) is true and p(k) implies p(k + 1) for all k ∈ Z+, then by PMI,

p(n) is true for all n ∈ Z+.
Thus, 7n > 1 for all n ∈ Z+, so 7n 6= 1 for all n ∈ Z+.
Therefore, there is no n ∈ Z+ such that 7n = 1, so 7 has infinite order.
Thus, 〈7〉 = {..., 7−3, 7−2, 7−1, 1, 7, 72, 73, ...} is infinite and each power of 7

is distinct.

Exercise 39. Analyze the subgroup generated by 2i in (C∗, ·).
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Solution. Every element of a group generates a cyclic subgroup, so 2i ∈ C∗
generates a cyclic subgroup of C∗.

The cyclic subgroup of C∗ generated by 2i is
{(2i)k : k ∈ Z} = {..., 1, 2i,−4,−8i, 16, 32i,−64, ...
of infinite order. The order of 2i is |2i| =∞.

Exercise 40. Analyze the subgroup generated by i in (C∗, ·).

Solution. Every element of a group generates a cyclic subgroup, so i ∈ C∗
generates a cyclic subgroup of C∗.

The cyclic subgroup of C∗ generated by i is {1, i,−1,−i} of order 4.
This finite group is a subgroup of the unit circle T.
This is the 4th roots of unity group U4.

Exercise 41. Analyze the 5th roots of unity group and its generators.

Solution. The 5th roots of unity is the set U5 = {z ∈ C : z5 = 1}.
The group (U5, ·) is a cyclic group of order |U5| = 5 with generator g = ei2π/5.
Therefore, U5 is the set
{1, ei 2π5 , ei 4π5 , ei 6π5 , ei 8π5 } = {g0, g1, g2, g3, g4}.
This is a finite group of order 5 and is a subgroup of the circle group T.

Since U5 is a finite cyclic group of order 5 and g = ei
2π
5 is a generator of U5,

then the generators are elements gk such that gcd(k, 5) = 1.
Hence, k ∈ {1, 2, 3, 4}, so the other generators are:
g2 = (ei2π/5)2 = ei4π/5

g3 = (ei2π/5)3 = ei6π/5

g4 = (ei2π/5)4 = ei8π/5.

The elements of U5 written as powers of g2 are:
(g2)0 = 1
(g2)1 = ei4π/5

(g2)2 = (ei4π/5)2 = ei8π/5

(g2)3 = (ei4π/5)3 = ei12π/5 = ei2π/5

(g2)4 = (ei4π/5)4 = ei16π/5 = ei6π/5

Thus, U5 = {(g2)0, (g2)1, (g2)2, (g2)3, (g2)4}.

The elements of U5 written as powers of g3 are:
(g3)0 = 1
(g3)1 = ei6π/5

(g3)2 = (ei6π/5)2 = ei12π/5 = ei2π/5

(g3)3 = (ei6π/5)3 = ei18π/5 = ei8π/5

(g3)4 = (ei6π/5)4 = ei24π/5 = ei4π/5

Thus, U5 = {(g3)0, (g3)1, (g3)2, (g3)3, (g3)4}.
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The elements of U5 written as powers of g4 are:
(g4)0 = 1
(g4)1 = ei8π/5

(g4)2 = (ei8π/5)2 = ei16π/5 = ei6π/5

(g4)3 = (ei8π/5)3 = ei24π/5 = ei4π/5

(g4)4 = (ei8π/5)4 = ei32π/5 = ei2π/5

Thus, U5 = {(g4)0, (g4)1, (g4)2, (g4)3, (g4)4}.

Exercise 42. Analyze the subgroup generated by 1+i
√
3

2 in (C∗, ·).

Solution. Every element of a group generates a cyclic subgroup, so 1+i
√
3

2 ∈ C∗
generates a cyclic subgroup of C∗.

The cyclic subgroup generated by 1+i
√
3

2 = ei
π
3 is

{1, eiπ3 , ei 2π3 , eiπ, ei 4π3 , ei 5π3 } = {g0, g1, g2, g3, g4, g5}.
This is a finite group of order 6 and is a subgroup of the circle group T.
This is the 6th roots of unity which is a cyclic group.

The generator for Un is g = ei
2π
n .

Since eiπ/3 = g = ei
2π
n , then π

3 = 2π
n .

Hence, πn = 6π, so n = 6.

Since U6 is a finite cyclic group of order 6 and g = eiπ/3 is a generator of U6,
then the generators are elements gk such that gcd(k, 6) = 1.

Hence, k ∈ {1, 5}, so the other generator is g5 = (eiπ/3)5 = ei5π/3.
The elements of U6 written as powers of g5 are:
(g5)0 = 1
(g5)1 = ei5π/3

(g5)2 = (ei5π/3)2 = ei10π/3 = ei4π/3

(g5)3 = (ei5π/3)3 = ei5π = eiπ = −1
(g5)4 = (ei5π/3)4 = ei20π/3 = ei2π/3

(g5)5 = (ei5π/3)5 = ei25π/3 = eiπ/3

Thus, U6 = {(g5)0, (g5)1, (g5)2, (g5)3, (g5)4, (g5)5}.

Exercise 43. Analyze the subgroup generated by 1+i√
2

in (C∗, ·).

Solution. Every element of a group generates a cyclic subgroup, so 1+i√
2
∈ C∗

generates a cyclic subgroup of C∗.
The cyclic subgroup of C∗ generated by 1+i√

2
= ei

π
4 is

{1, eiπ4 , eiπ2 , ei 3π4 , eiπ, ei 5π4 , ei 3π2 , ei 7π4 } a finite group of order 8.
This group is a subgroup of the unit circle T.
This is the 8th roots of unity (U8, ·).
The generator for Un is g = ei

2π
n .

Since eiπ/4 = g = ei
2π
n , then π

4 = 2π
n .

Hence, πn = 8π, so n = 8.

37



Since U8 is a finite cyclic group of order 8 and g = ei
π
4 is a generator of U8,

then the generators are elements gk such that gcd(k, 8) = 1.
Hence, k ∈ {1, 3, 5, 7}, so the other generators are:
g3 = (eiπ/4)3 = ei3π/4

g5 = (eiπ/4)5 = ei5π/4

g7 = (eiπ/4)7 = ei7π/4.

Exercise 44. Analyze the subgroup generated by the below matrix in GL2(R).

A =

[
0 1

−1 0

]

Solution. Since detA = 0 · 0− 1(−1) = 1, then detA 6= 0, so A−1 exists.
Hence, A is invertible, so A ∈ GL2(R).
Every element of a group G generates a cyclic subgroup of G.
Thus, A generates a cyclic subgroup of the general linear group GL2(R).
The cyclic subgroup generated by A is 〈A〉 = {I, A,A2, A3}, where I is the

identity matrix and

A2 =

[
−1 0

0 −1

]

A3 =

[
0 −1

1 0

]

The order of A is |A| = |〈A〉| = 4, so A has finite order and 〈A〉 is a finite
group.

The inverses are:
I−1 = I
A−1 = A3

(A2)−1 = A2

Since 〈A〉 is a cyclic group of order 4, then 〈A〉 is a finite cyclic group.
Since A is a generator, the generators are elements Ak such that gcd(k, 4) =

1.
Therefore, there are φ(4) = 2 generators and k ∈ {1, 3}, so the set of gener-

ators is {A,A3}.

Exercise 45. Analyze the subgroup generated by the below matrix in GL2(R).

A =

[
0 1

3

3 0

]
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Solution. Since detA = 0 · 0− 1
3 (3) = −1, then detA 6= 0, so A−1 exists.

Hence, A is invertible, so A ∈ GL2(R).
Every element of a group G generates a cyclic subgroup of G.
Thus, A generates a cyclic subgroup of the general linear group GL2(R).
The cyclic subgroup generated by A is 〈A〉 = {I, A}, where I is the identity

matrix and

A2 =

[
1 0

0 1

]

The order of A is |A| = |〈A〉| = 2, so A has finite order and 〈A〉 is a finite
group.

The inverses are:
I−1 = I
A−1 = A

Since 〈A〉 is a cyclic group of order 2, then 〈A〉 is a finite cyclic group.
Since A is a generator, the generators are elements Ak such that gcd(k, 2) =

1.
Therefore, there is φ(2) = 1 generator and k ∈ {1}, so the set of generators

is {A}.

Exercise 46. Analyze the subgroup generated by the below matrix in GL2(R).

A =

[
1 −1

1 0

]
Solution. Since detA = 1 · 0− (−1)(1) = 1, then detA 6= 0, so A−1 exists.

Hence, A is invertible, so A ∈ GL2(R).
Every element of a group G generates a cyclic subgroup of G.
Thus, A generates a cyclic subgroup of the general linear group GL2(R).
The cyclic subgroup generated by A is 〈A〉 = {I, A,A2, A3, A4, A5}, where

I is the identity matrix and

A2 =

[
0 −1

1 −1

]

A3 =

[
−1 0

0 −1

]

A4 =

[
−1 1

−1 0

]
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A5 =

[
0 1

−1 1

]

The order of A is |A| = |〈A〉| = 6, so A has finite order and 〈A〉 is a finite
group.

The inverses are:
I−1 = I
A−1 = A5

(A2)−1 = A4

(A3)−1 = A3

(A4)−1 = A2

(A5)−1 = A

Since 〈A〉 is a cyclic group of order 6, then 〈A〉 is a finite cyclic group.
Since A is a generator, the generators are elements Ak such that gcd(k, 6) =

1.
Therefore, there are φ(6) = 2 generators and k ∈ {1, 5}, so the set of gener-

ators is {A,A5}.

Exercise 47. Analyze the subgroup generated by the below matrix in GL2(R).

A =

[
1 −1

0 1

]
Solution. Since detA = 1 · 1− (−1)(0) = 1, then detA 6= 0, so A−1 exists.

Hence, A is invertible, so A ∈ GL2(R).
Every element of a group G generates a cyclic subgroup of G.
Thus, A generates a cyclic subgroup of the general linear group GL2(R).
The cyclic subgroup generated by A is 〈A〉 = {An : n ∈ Z} = {Bn : n ∈ Z},

where I is the identity matrix and

Bn =

[
1 −n

0 1

]

The order of A is |A| = |〈A〉| = ∞, so A has infinite order and 〈A〉 is an
infinite group and each power of A is distinct.

The inverses are:
I−1 = I
A−1 = B−1
(A2)−1 = B−2
(A3)−1 = B−3
(A4)−1 = B−4
(A5)−1 = B−5 etc.
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Since 〈A〉 is a cyclic group of order∞, then 〈A〉 is an infinite cyclic group.

Exercise 48. Analyze the subgroup generated by the below matrix in GL2(R).

A =

[
1 −1

−1 0

]

Solution. Since detA = 1 · 0− (−1)(−1) = −1, then detA 6= 0, so A−1 exists.
Hence, A is invertible, so A ∈ GL2(R).
Every element of a group G generates a cyclic subgroup of G.
Thus, A generates a cyclic subgroup of the general linear group GL2(R).
The cyclic subgroup generated by A is 〈A〉 = {An : n ∈ Z}, where I is the

identity matrix and I = A0 and F1 = 1 and F2 = 1 and Fn = Fn−1 + Fn−2 for
n > 1.

If n > 0, then

An =

[
Fn+1 −Fn
−Fn Fn+1 − Fn

]

If n < 0 and n is even, then let k = −n and

An =

[
Fk+1 − Fk Fk

Fk Fk+1

]

If n < 0 and n is odd, then let k = −n and

An =

[
Fk − Fk+1 −Fk
−Fk −Fk+1

]

The order of A is |A| = |〈A〉| = ∞, so A has infinite order and 〈A〉 is an
infinite group and each power of A is distinct.

The inverses are:
I−1 = I
A−1 = A−1

(A2)−1 = A−2

(A3)−1 = A−3

(A4)−1 = A−4

(A5)−1 = A−5 etc.
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Since 〈A〉 is a cyclic group of order∞, then 〈A〉 is an infinite cyclic group.

Exercise 49. Analyze the subgroup generated by the below matrix in GL2(R).

A =

 √
3
2

1
2

− 1
2

√
3
2


Solution. Since detA =

√
3
2 ·
√
3
2 − ( 1

2 )(− 1
2 ) = 1, then detA 6= 0, so A−1 exists.

Hence, A is invertible, so A ∈ GL2(R).
Every element of a group G generates a cyclic subgroup of G.
Thus, A generates a cyclic subgroup of the general linear group GL2(R).
The cyclic subgroup generated by A is
〈A〉 = {I, A,A2, A3, A4, A5, A6, A7, A8, A9, A10, A11},
where I is the identity matrix and

A2 =

 1
2

√
3
2

−
√
3
2

1
2



A3 =

[
0 1

−1 0

]

A4 =

 − 1
2

√
3
2

−
√
3
2 − 1

2



A5 =

 −√3
2

1
2

− 1
2 −

√
3
2



A6 =

[
−1 0

0 −1

]

A7 =

 −√3
2 − 1

2

1
2 −

√
3
2



A8 =

 − 1
2 −

√
3
2

√
3
2 − 1

2


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A9 =

[
0 −1

1 0

]

A10 =

 1
2 −

√
3
2

√
3
2

1
2



A11 =

 √
3
2 − 1

2

1
2

√
3
2


The order of A is |A| = |〈A〉| = 12, so A has finite order and 〈A〉 is a finite

group.
The inverses are:
I−1 = I
A−1 = A11

(A2)−1 = A10

(A3)−1 = A9

(A4)−1 = A8

(A5)−1 = A7

(A6)−1 = A6

(A7)−1 = A5

(A8)−1 = A4

(A9)−1 = A3

(A10)−1 = A2

(A11)−1 = A

Since 〈A〉 is a cyclic group of order 12, then 〈A〉 is a finite cyclic group.
Since A is a generator, the generators are elements Ak such that gcd(k, 12) =

1.
Therefore, there are φ(12) = 4 generators and k ∈ {1, 5, 7, 11}, so the set of

generators is {A,A5, A7, A11}.

Exercise 50. Compute the cyclic subgroups of the quaternion group Q8.

Solution. Every element of a group G generates a cyclic subgroup of G, so
every element of Q8 generates a cyclic subgroup of Q8.

The cyclic subgroup generated by a ∈ Q8 is the same as the cyclic subgroup
generated by a−1.
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The inverses are:
1−1 = 1
(−1)−1 = −1
i−1 = −i
(−i)−1 = i
j−1 = −j
(−j)−1 = j
k−1 = −k
(−k)−1 = k

The cyclic subgroups generated by each element are shown below.
〈1〉 = {1} and |1| = 1
〈−1〉 = {1,−1} and |1| = 2
〈i〉 = {1, i,−1,−i} and |i| = 4
〈−i〉 = {1,−i,−1, i} and | − i| = 4
〈j〉 = {1, j,−1,−j} and |j| = 4
〈−j〉 = {1,−j,−1, j} and | − j| = 4
〈k〉 = {1, k,−1,−k} and |k| = 4
〈−k〉 = {1,−k,−1, k} and | − k| = 4
Since the order of each element of Q8 is not |Q8| = 8, then Q8 is not cyclic.

The subgroups of Q8 are:
Q8 = {1,−1, i,−i, j,−j, k,−k}
{1}
{1,−1}
{1, i,−1,−i}
{1, j,−1,−j}
{1, k,−1,−k}

Exercise 51. Compute the elements of finite order in the group (Z,+).

Solution. The only subgroups of Z are (nZ,+) for each n ∈ Z.
Each nonzero n ∈ Z generates a cyclic subgroup of Z of infinite order and

〈n〉 = nZ is the set of all multiples of nonzero integer n.
When n = 0, the cyclic subgroup generated by 0 ∈ Z is {0}, a finite group.
Thus, 0 has finite order 1.
Therefore, the only element of Z of finite order is 0.

Exercise 52. Compute the elements of finite order in the group (Q∗, ·).

Solution. The cyclic subgroup generated by 1 ∈ Q∗ is 〈1〉 = {1k : k ∈ Z} = {1},
so 1 has finite order |1| = 1.

The cyclic subgroup generated by −1 ∈ Q∗ is 〈−1〉 = {(−1)k : k ∈ Z} =
{1,−1}, so −1 has finite order | − 1| = 2.

All other elements of Q∗ generate a cyclic subgroup of infinite order, so all
other elements of Q∗ have infinite order.
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Exercise 53. Compute the elements of finite order in the group (R∗, ·).

Solution. The cyclic subgroup generated by 1 ∈ R∗ is 〈1〉 = {1k : k ∈ Z} = {1},
so 1 has finite order |1| = 1.

The cyclic subgroup generated by −1 ∈ R∗ is 〈−1〉 = {(−1)k : k ∈ Z} =
{1,−1}, so −1 has finite order | − 1| = 2.

All other elements of R∗ generate a cyclic subgroup of infinite order, so all
other elements of R∗ have infinite order.

Exercise 54. Find a cyclic group with exactly one generator.

Solution. The trivial group {e} where e is the identity is a cyclic group and
〈e〉 = {ek : k ∈ Z} = {e}.

Hence, e is the only generator of the trivial group, so the trivial group has
exactly one generator.

The group (Z2,+) is a finite cyclic group of order 2, so there is φ(2) = 1
generator of Z2.

The only generator of Z2 is [1] ∈ Z2, since 〈[1]〉 = {k[1] : k ∈ Z} = {[k] : k ∈
Z} = {[0], [1]} = Z2.

Exercise 55. Find a cyclic group with exactly two generators.

Solution. The cyclic group (Z,+) has exactly two generators.
The generators are in the set {1,−1} and Z = 〈1〉 = 〈−1〉.

The cyclic group (nZ,+) has exactly two generators for n ∈ Z, n 6= 0.
The generators are in the set {n,−n} and nZ = 〈n〉 = 〈−n〉.

The cyclic group (Z3,+) has φ(3) = 2 generators.
The generators of Z3 are in the set {[1], [2]}.

The cyclic group (Z4,+) has φ(4) = 2 generators.
The generators of Z4 are in the set {[1], [3]}.

The cyclic group (Z6,+) has φ(6) = 2 generators.
The generators of Z6 are in the set {[1], [5]}.

Exercise 56. Find a cyclic group with exactly four generators.

Solution. The cyclic group (Z5,+) has φ(5) = 4 generators.
The generators of Z5 are in the set {[1], [2], [3], [4]}.

The cyclic group (Z8,+) has φ(8) = 4 generators.
The generators of Z8 are in the set {[1], [3], [5], [7]}.

The cyclic group (Z10,+) has φ(10) = 4 generators.
The generators of Z10 are in the set {[1], [3], [7], [9]}.
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The cyclic group (Z12,+) has φ(12) = 4 generators.
The generators of Z12 are in the set {[1], [5], [7], [11]}.

Exercise 57. Determine which groups (Z∗n, ·) are cyclic for n ≤ 20.

Solution. (Z∗1, ·) is cyclic with generator 0 and Z∗1 = {0}.
(Z∗2, ·) is cyclic with generator 1 and Z∗2 = {1}.
(Z∗3, ·) is cyclic with generator 2 and Z∗3 = {1, 2}.
(Z∗4, ·) is cyclic with generator 3 and Z∗4 = {1, 3}.
(Z∗5, ·) is cyclic with generators 2, 3 and Z∗5 = {1, 2, 3, 4}.
(Z∗6, ·) is cyclic with generator 5 and Z∗6 = {1, 5}.
(Z∗7, ·) is cyclic with generators 3, 5 and Z∗7 = {1, 2, 3, 4, 5, 6}.
(Z∗8, ·) is not cyclic and Z∗8 = {1, 3, 5, 7}.
(Z∗9, ·) is cyclic with generators 2, 5 and Z∗9 = {1, 2, 4, 5, 7, 8}.
(Z∗10, ·) is cyclic with generators 3, 7 and Z∗10 = {1, 3, 7, 9}.
(Z∗11, ·) is cyclic with generators 2, 6, 7, 8 and Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
(Z∗12, ·) is not cyclic and Z∗12 = {1, 5, 7, 11}.
(Z∗13, ·) is cyclic with generators 2, 6, 7, 11 and Z∗13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
(Z∗14, ·) is cyclic with generators 3, 5 and Z∗14 = {1, 3, 5, 9, 11, 13}.
(Z∗15, ·) is not cyclic and Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}.
(Z∗16, ·) is not cyclic and Z∗16 = {1, 3, 5, 7, 9, 11, 13, 15}.
(Z∗17, ·) is cyclic with generators 3, 5, 6, 7, 10, 11, 12, 14 and Z∗1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.
(Z∗18, ·) is cyclic with generators 5, 11 and Z∗18 = {1, 5, 7, 11, 13, 17}.
(Z∗19, ·) is cyclic with generators 2, 3, 10, 13, 14, 15 and
Z∗19 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}.
(Z∗20, ·) is not cyclic and Z∗20 = {1, 3, 7, 9, 11, 13, 17, 19}.

We conjecture that if n > 2 and (Z∗n, ·) is cyclic, then one of the generators
is prime.

Proof. Let n ∈ Z and n > 2.
Suppose (Z∗n, ·) is cyclic.
Then Z∗n has a generator.
Either a generator of Z∗n is prime or a generator of Z∗n is not prime.
We consider these cases separately.
Case 1: Suppose a generator of Z∗n is prime.
Then Z∗n has a prime generator.
Case 2: Suppose a generator of Z∗n is not prime.
Then there exists g ∈ Z∗n such that Z∗n = 〈g〉 and g is not prime.
Thus, g is composite.
Let S be the set of all generators of Z∗n that are composite.
Then S = {g ∈ Z∗n : Z∗n = 〈g〉 and g is composite}.
Thus, g ∈ S, so S 6= ∅.
Since g ∈ S, then g ∈ Z∗n, so 1 ≤ g < n and g ∈ Z.
Hence, g ∈ Z+, so S ⊂ Z+.
Since S ⊂ Z+ and S 6= ∅, then by well ordering principle of Z+, S has a

least element.
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Let a be the least element of S.
Then a ∈ S and a ≤ s for all s ∈ S.
Since a ∈ S, then a ∈ Z∗n and Z∗n = 〈a〉 and a is composite.
Since a ∈ Z∗n and n > 2, then 1 < a < n and gcd(a, n) = 1.
Since a > 1 and a is not prime, then a is composite.
Since a is a generator of Z∗n and |Z∗n| = φ(n), then |a| = φ(n).
Since |Z∗n| = φ(n), then Z∗n is a finite group.
Since Z∗n is a finite cyclic group of order φ(n) and a is a generator of Z∗n, then

the generators of Z∗n are elements ak (mod n) ∈ Z∗n such that gcd(k, φ(n)) = 1.
Can we prove there exists k ∈ Z such that ak (mod n) ∈ Z∗n is prime and

|ak (mod n)| = φ(n)?
Find k ∈ Z+ such that p ≡ ak (mod n) and p is prime and gcd(p, φ(n)) = 1.
Let p be a prime factor of a and we want p to generate all of Z∗n.
Then p is prime and p|a, so a = pb for some integer b.
Since p|a, then p ≤ a.
Since p ≤ a and a < n, then p < n.
Since a is in Z∗n, then 1 < a < n and gcd(a, n) = 1.
Since gcd(a, n) = 1, then there exist integers x, y such that xa+ ny = 1.
Thus, 1 = xg + ny = x(pb) + ny = p(xb) + ny is a linear combination of p

and n.
Hence, gcd(p, n) = 1.
Since 1 < p < n and gcd(p, n) = 1, then p ∈ Z∗n.
Somehow show that there exists k ∈ Z such that gk ≡ p (mod n).
Then we must prove gcd(k, φ(n)) = 1.

Then we can say that |p| = |gk| = φ(n)
gcd(k,φ(n)) .

Choose p to be the prime factor of a tthat also generates all of Z∗n.
How do we know such a p exists??
TODO

Exercise 58. If every subgroup of a group G is cyclic, then G is a cyclic group.

Proof. Let G be a group.
Suppose every subgroup of G is cyclic.
Since G is a subgroup of G, then this implies G is cyclic.
Since G is a group and G is cyclic, then G is a cyclic group.

Exercise 59. Every group with a finite number of subgroups is finite.

Solution. Observations/conjecture
1. If G is of infinite order, then there is at least one subgroup of G that is of

infinite order, namely G itself. It appears there are an infinite number of such
subgroups of G. Some subgroups of an infinite group are infinite while other
subgroups of an infinite group can be finite. For example, the nth roots of unity
is a finite subgroup of the infinite circle group T.

2. If G is of finite order n, then there are a finite number of subgroups of G
and each subgroup has a finite number of elements, so each subgroup is of finite
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order. Furthermore, there are at most n such subgroups of G and the order of
each subgroup seems to divide the order of G.

Proof. Let e ∈ G be the identity of G.
Either G is the trivial group or G is not the trivial group.
We consider these cases separately.
Case 1: Suppose G is the trivial group.
Then G = {e}, so G is finite.
The only subgroup of G is {e}, so G has exactly one subgroup.
Hence, G has a finite number of subgroups.
Thus, G has a finite number of subgroups and G is finite.
Therefore, if G has a finite number of subgroups, then G is finite, as desired.
Case 2: Suppose G is not the trivial group.
Then G 6= {e}, so there exists a ∈ G such that a 6= e.
Suppose G has a finite number of subgroups.
Let n be the number of subgroups of G.
Then there are exactly n subgroups of G.
Since {e} is a subgroup of G, then n ≥ 1.

Since every element of G generates a cyclic subgroup of G and a ∈ G, then a
generates a cyclic subgroup of G.

Let H be the cyclic subgroup generated by a.
Then H = {ak : k ∈ Z}.

Since a 6= e, then a 6∈ {e}.
Since a = a1, then a ∈ H.
Since a ∈ H and a 6∈ {e}, then H 6= {e}, so H is a non-trivial subgroup of

G.

Suppose a has infinite order.
Then H = {..., a−2, a−1, e, a, a2, a3, ...} and each power of a is distinct.

We prove 〈ai〉 6= 〈aj〉 for all i, j ∈ Z+ with i 6= j.
Let i, j ∈ Z+ with i 6= j.
Without loss of generality, assume i < j.
Suppose ai = ajk for some integer k.
Suppose k = 0.
Then ai = ajk = aj0 = a0 = e, so ai = e.
Thus, ai = e for some i ∈ Z+, so a has finite order.
But, this contradicts a has infinite order, so k 6= 0.
Since 1 ≤ i < j, then 0 < i

j < 1, so i
j 6∈ Z.

Since i
j 6∈ Z and k ∈ Z, then i

j 6= k, so i 6= jk.

Since i ∈ Z and jk ∈ Z and ai = ajk and i 6= jk, then a has finite order.
But, this contradicts a has infinite order, so there is no integer k such that

ai = ajk.
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Hence, ai 6∈ 〈aj〉.
Since ai ∈ 〈ai〉 and ai 6∈ 〈aj〉, then 〈ai〉 6= 〈aj〉.
Thus, 〈ai〉 6= 〈aj〉 for all i, j ∈ Z+ with i 6= j.
Hence, each cyclic subgroup 〈ai〉 is a distinct subgroup of G for all integers

i ≥ 1.
Therefore, there are at least n + 1 distinct cyclic subgroups of G, so there

are at least n+ 1 distinct subgroups of G.
But, this contradicts that there are exactly n subgroups of G.
Therefore, a cannot have infinite order, so a must have finite order.
Hence, H is finite.

Since a ∈ G is arbitrary, then this implies every non-trivial subgroup of G is
finite.

Since G is a subgroup of G and G is not the trivial subgroup, then we
conclude G is finite, as desired.

Exercise 60. Let G be a finite group of order n.
Let a ∈ G.
Then |a| ≤ n.

Proof. Every element of a finite group has finite order.
Since G is a finite group and a ∈ G, then a has finite order.
The order of a is the order of the cyclic subgroup of G generated by a.
Hence, |a| = |〈a〉| and 〈a〉 is a subgroup of G.
Since 〈a〉 is a subgroup of G, then 〈a〉 is a subset of G.
Since 〈a〉 is a subset of G and G is finite and |G| = n, then |〈a〉| ≤ n.
Therefore, |a| ≤ n.

Exercise 61. A group of order n does not necessarily contain an element of
order n.

Solution. Let n = 4.
Let G = {e, a, b, c} be the Klein 4 group with identity e.
Then G is a group of order n.
Let x ∈ G
Either x = e or x 6= e.
We consider these cases separately.
Case 1: Suppose x = e.
The order of the identity e is 1, so |x| = 1 6= n.
Case 2: Suppose x 6= e.
The Klein 4 group has the property x2 = e for all x ∈ G.
Hence, |x| = 2, so |x| 6= n.
Therefore, the order of every element of G is not n, so there is no element

of G that has order n.

Proposition 62. Let (G, ∗) be a group with identity e ∈ G.
Let n ∈ Z.
If a ∈ G has infinite order, then an = e iff n = 0.
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Proof. Suppose a ∈ G has infinite order.

We prove if n = 0, then an = e.
Suppose n = 0.
Then an = a0 = e, so an = e.

Proof. Conversely, we prove if an = e, then n = 0.
Suppose an = e.
Since a has infinite order, then there is no positive integer n such that an = e.

Suppose there is a negative integer n such that an = e.
Then e = e−1 = (an)−1 = a−n.
Since n is a negative integer, then −n is a positive integer.
Thus, there exists a positive integer −n such that a−n = e, so a has finite

order.
But, this contradicts the fact that a has infinite order.
Therefore, there is no negative integer n such that an = e.

Since a0 = e, then 0 is a solution to the equation an = e.
Since there is no positive integer n such that an = e and there is no negative

integer n such that an = e, then 0 is the only solution to the equation an = e.
Therefore, n = 0.

Lemma 63. The order of every element in a cyclic group of finite order divides
the order of the group.

Proof. Let (G, ∗) be a cyclic group of finite order n.
Since G is a cyclic group, then there exists a generator g ∈ G such that

G = {gk : k ∈ Z}.
Since G has finite order n, then n ∈ Z+ and |G| = n.
The order of g is the order of the cyclic subgroup generated by g.
Thus, |g| = |G| = n.

Let a ∈ G.
Then a = gk for some integer k.
Since G is a group of finite order, then G is a finite group.
Since every element of a finite group has finite order, then we conclude a has

finite order.
Let |a| be the order of a.
Then |a| = |gk| = n

gcd(k,n) , so |a| · gcd(k, n) = n.

Since gcd(k, n) is an integer, then |a| divides n, so the order of a divides the
order of G.

Since a is arbitrary, then the order of every element of G divides the order
of G.

Therefore, the order of every element of a finite cyclic group divides the
order of the group.
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Exercise 64. If p is prime, then (Zp,+) has no nontrivial proper subgroups.

Proof. Let p be prime.
We prove by contradiction.

Suppose Zp has a nontrivial proper subgroup.
Let G be a nontrivial proper subgroup of Zp.
Then G is not the trivial subgroup and G is a proper subgroup of Zp.
Since G is not the trivial subgroup, then G 6= {[0]}.
Since G is a proper subgroup of Zp, then G 6= Zp.
Since G is a subgroup of Zp, then G ⊂ Zp.
Since G is a subgroup of Zp and G is not the trivial subgroup, then G must

have a non-identity element.
Let [a] be a non-identity element of G.
Then [a] ∈ G and [a] 6= [0].
Since [a] ∈ G and G ⊂ Zp, then [a] ∈ Zp.
Since |Zp| = p, then Zp is a finite group.
Every element of a finite group has finite order.
Since Zp is a finite group and [a] ∈ Zp, then [a] has finite order.
Let k be the order of [a].
Then k is the least positive integer such that ka ≡ 0 (mod p).
By the previous lemma 63, the order of an element in a cyclic group of finite

order divides the order of the group.
Since Zp is a cyclic group of finite order p and [a] ∈ Zp, then the order of [a]

divides p, so k|p.
Since k ∈ Z+ and k|p, then k is a positive divisor of p.
Since p is prime, the only positive divisors of p are 1 and p.
Hence, either k = 1 or k = p.

Suppose k = 1.
Then 1 · a ≡ 0 (mod p), so a ≡ 0 (mod p).
Thus, [a] = [0].
But, this contradicts [a] 6= [0], so k 6= 1.

Hence, k = p.
The order of [a] is the order of the cyclic subgroup of Zp generated by [a].
Let (H,+) be the cyclic subgroup of (Zp,+) generated by [a].
Then |H| = k = p = |Zp|, so |H| = |Zp|.
The cyclic subgroup generated by [a] is the smallest subgroup of Zp that

contains [a].
Thus, H is the smallest subgroup of Zp that contains [a].
Hence, if G is a subgroup of Zp that contains [a], then H is a subgroup of

G.
Since G is a subgroup of Zp and [a] ∈ G, then we conclude H is a subgroup

of G.
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Since H is a subgroup of G, then H ⊂ G.
Since G is a subgroup of Zp, then G ⊂ Zp.
Since H ⊂ G and G ⊂ Zp, then H ⊂ G ⊂ Zp, so H ⊂ Zp.
Since Zp is a finite set and H ⊂ Zp and |H| = |Zp|, then H = Zp.
Since H ⊂ G ⊂ Zp and H = Zp, then we are forced to conclude G = Zp.
But, this contradicts G 6= Zp.
Therefore, G cannot be a nontrivial proper subgroup of Zp, so there is no

nontrivial proper subgroup of Zp.

Exercise 65. A group with no proper nontrivial subgroups is cyclic.

Proof. Let G be a group that has no proper nontrivial subgroups.
Let e ∈ G be the identity of G.
Since the trivial group {e} does not have any proper nontrivial subgroups,

then G cannot be the trivial group, so G 6= {e}.
Since G is a group and G is not the trivial group, then G must contain a

non identity element.
Let g be a non identity element of G.
Then g 6= e, so g 6∈ {e}.

Every element of a group G generates a cyclic subgroup of G.
Since g ∈ G, then g generates a cyclic subgroup of G.
Let H be the cyclic subgroup of G generated by g.
Then H = {gn : n ∈ Z}.
Since g ∈ H and g 6∈ {e}, then H 6= {e}.
Thus, H is a nontrivial subgroup of G.
Since G has no proper nontrivial subgroups and H is a nontrivial subgroup

of G, then H must be a non proper subgroup of G.
Thus, H must be G itself, so H = G.
Since g ∈ G and G = H, then G is cyclic.

Lemma 66. Let k, n ∈ Z.
If gcd(k, n) = 1, then gcd(n− k, n) = 1.

Proof. Suppose gcd(k, n) = 1.
Then there exist integers a and b such that ak + bn = 1.
Observe that

1 = ak + bn

= 0 + (ak + bn)

= (−an+ an) + (ak + bn)

= −an+ (an+ ak) + bn

= −an+ (ak + an) + bn

= (−an+ ak) + (an+ bn)

= (−a)(n− k) + (an+ bn)

= (−a)(n− k) + (a+ b)n.
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Since 1 = (−a)(n−k) + (a+ b)n is a linear combination of n−k and n, then
gcd(n− k, n) = 1.

Exercise 67. Let n ∈ Z+.
If n > 2, then (Zn,+) has an even number of generators.

Proof. Suppose n > 2.
Since (Zn,+) is a cyclic group, then the generators of Zn are congruence

classes [k] such that k ∈ Z+ and 1 ≤ k ≤ n and gcd(k, n) = 1.
Thus, the number of generators is the number of positive integers k such

that 1 ≤ k ≤ n and gcd(k, n) = 1.
By lemma 66, if gcd(k, n) = 1, then gcd(n− k, n) = 1, so (k, n− k) is a pair

of integers relatively prime to n.

Suppose k = n− k.
Then 2k = n, so k = n

2 .
Since n = 2k, then k|n, so gcd(k, n) = k = n

2 .
Since n > 2, then n

2 > 1, so gcd(k, n) > 1.
Hence, gcd(k, n) 6= 1.
Thus, k = n− k implies gcd(k, n) 6= 1.
Since gcd(k, n) must equal 1, then k 6= n− k.
Therefore, (k, n− k) is a pair of distinct integers.

Let t represent the number of k values such that gcd(k, n) = 1 and 1 ≤ k ≤ n.
Then the total number of positive integers relatively prime to n is t ∗ 2 = 2t.
Therefore, Zn has an even number of generators.
Note that 2t = φ(n).

Exercise 68. Let p and q be distinct primes.
Find the number of generators of (Zpq,+).

Solution. Since (Zn,+) is a finite cyclic group of order |Zn| = n, then the
generators of Zn are positive integers that are relatively prime to the modulus
n.

Therefore, the number of generators of Zn is φ(n).

If p and q are distinct primes, then the number of generators of (Zpq,+) is
φ(pq) = (p− 1)(q − 1).

TODO
We should prove this conjecture!

Exercise 69. Let p be prime and r be a positive integer.
Find the number of generators of (Zpr ,+).

Solution. Since (Zn,+) is a finite cyclic group of order |Zn| = n, then the
generators of Zn are positive integers that are relatively prime to the modulus
n.

Therefore, the number of generators of Zn is φ(n).
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If p is prime and r is a positive integer, then the number of generators of
(Zpr ,+) is φ(pr) = (p− 1) · pr−1.

TODO We should prove this conjecture!

Proposition 70. Let p be prime.
Let (Z∗p, ·) be the multiplicative group of nonzero elements of Zp.
If G is a finite subgroup of Z∗p, then G is cyclic.

Proof. TODO DO TIHS PROOF.

Exercise 71. Let H = {[x] ∈ Z∗21 : x ≡ 1 (mod 3)} and K = {[x] ∈ Z∗21 : x ≡ 1
(mod 7)}.

Then H < Z∗21 and K < Z∗21.

Solution. Observe that Z∗21 = {[1], [2], [4], [5], [8], [10], [11], [13], [16], [17], [19], [20]}
and (Z∗21, ·) is an abelian group of order φ(21) = 12.

We compute H and K and find that H = {[1], [4], [10], [13], [16], [19]} and
K = {[1], [8]}.

Observe that H is a subgroup of Z∗21.
Both [10] and [19] are generators of H, so H is a cyclic group and H =<

[10] >=< [19] > and H = {[10]k : k ∈ Z} = {[19]k : k ∈ Z}.
Observe that K is a subgroup of Z∗21.
The element [8] is a generator of K, so K is a cyclic group and K =< [8] >

and K = {[8]k : k ∈ Z}.
To prove H and K are subgroups of Z∗21, we use the finite subgroup test

since H and K are finite sets.

Proof. Observe that Z∗21 = {[1], [2], [4], [5], [8], [10], [11], [13], [16], [17], [19], [20]}
and (Z∗21, ·) is an abelian group of order φ(21) = 12.

Since Z∗21 = {[1], [2], [4], [5], [8], [10], [11], [13], [16], [17], [19], [20]} and H =
{[1], [4], [10], [13], [16], [19]}, then H is a nonempty finite subset of the group
(Z∗21, ·).

Let [a], [b] ∈ H.
Then [a], [b] ∈ Z∗21 and a ≡ 1 (mod 3) and b ≡ 1 (mod 3).
Thus, [a][b] = [ab] and ab ≡ 1 (mod 3).
By closure of Z∗21, [a][b] ∈ Z∗21, so [ab] ∈ Z∗21.
Since [ab] ∈ Z∗21 and ab ≡ 1 (mod 3), then [ab] ∈ H.
Therefore, [a][b] ∈ H, so H is closed under multiplication modulo 21.

Since H is a nonempty finite subset of the group (Z∗21, ·) and H is closed under
multiplication modulo 21, then by the finite subgroup test, H < Z∗21.

Proof. Since Z∗21 = {[1], [2], [4], [5], [8], [10], [11], [13], [16], [17], [19], [20]} andK =
{[1], [8]}, then K is a nonempty finite subset of the group (Z∗21, ·).
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Let [a], [b] ∈ K.
Then [a], [b] ∈ Z∗21 and a ≡ 1 (mod 7) and b ≡ 1 (mod 7).
Thus, [a][b] = [ab] and ab ≡ 1 (mod 7).
By closure of Z∗21, [a][b] ∈ Z∗21, so [ab] ∈ Z∗21.
Since [ab] ∈ Z∗21 and ab ≡ 1 (mod 7), then [ab] ∈ K.
Therefore, [a][b] ∈ K, so K is closed under multiplication modulo 21.

Since K is a nonempty finite subset of the group (Z∗21, ·) and K is closed
under multiplication modulo 21, then by the finite subgroup test, K < Z∗21.

Exercise 72. Let p be a prime number of the form p = 2n + 1 for n ∈ N.
Then the order of [2] in Z∗p is 2n and n is a power of 2.

Proof. Every element of a finite group has finite order.
Hence, [2] ∈ Z∗p has finite order.
Let k be the order of [2].
Then k is the least positive integer such that [2]k = [1]p.
Since p = 2n + 1, then p− 1 = 2n, so (p− 1)2 = 22n.
Hence, p2 − 2p+ 1 = 22n, so p2 − 2p = 22n − 1.
Thus, p(p− 2) = 22n − 1, so p divides 22n − 1.
Hence, 22n ≡ 1 (mod p), so [22n] = [1]p.
Thus, [2]2n = [1]p.
Since [2]2n = [1] iff k|2n, then k|2n.
We must prove k = 2n.
We’re stuck.

Exercise 73. Let G be a group.
Let a ∈ G such that a 6= e.
Prove or disprove:
a. The element a has order 2 iff a2 = e.
b. The element a has order 3 iff a3 = e.
c. The element a has order 4 iff a4 = e.

Proof. Let e be the identity of G.
Let k be the order of a.
Then k is the least positive integer such that ak = e.
We consider the statement |a| = 2 iff a2 = e.

Suppose |a| = 2.
Then 2 is the least positive integer such that a2 = e.
Hence, a2 = e.
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Conversely, suppose a2 = e.
Since the order of a is k, then a2 = e iff k|2.
Thus, k|2.
Hence, either k = 1 or k = 2.
Suppose k = 1.
Then e = a1 = a, so a = e.
Thus, we have a = e and a 6= e, a contradiction.
Therefore, k 6= 1, so k = 2.
Hence, |a| = 2.

We consider the statement |a| = 3 iff a3 = e.
Suppose |a| = 3.
Then 3 is the least positive integer such that a3 = e.
Hence, a3 = e.
Conversely, suppose a3 = e.
Since the order of a is k, then a3 = e iff k|3.
Thus, k|3.
Hence, either k = 1 or k = 3.
Suppose k = 1.
Then e = a1 = a, so a = e.
Thus, we have a = e and a 6= e, a contradiction.
Therefore, k 6= 1, so k = 3.
Hence, |a| = 3.

We consider the statement |a| = 4 iff a4 = e.
Suppose |a| = 4.
Then 4 is the least positive integer such that a4 = e.
Hence, a4 = e.
Conversely, suppose a4 = e.
We disprove that a4 = e implies |a| = 4.
Let G = Z∗5, the group of units of Z5.
Observe that [4]5 ∈ Z∗5 and [4]2 = [1] and [4]4 = [1].
Thus, the order of [4]5 is 2.
Therefore, [4]4 = [1] and |[4]]| 6= 4.

Exercise 74. What is the order of [72] in (Z240,+)?

Solution. Since (Z240,+) is a group of order 240, then (Z240,+) is a finite
group.

Every element of a finite group has finite order.
Hence, [72] ∈ Z240 has finite order.
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Let k be the order of [72].
Then k is the least positive integer such that k[72] = [0].
Observe that [0] = k[72] = [72] + [72] + ...+ [72] = [72k], so [72k] = [0].
Hence, 72k ≡ 0 (mod 240), so 240|72k − 0.
Hence, 240|72k.
Thus, 24 ∗ 3 ∗ 5|23 ∗ 32k, so 2 ∗ 3 ∗ 5|32k.
Hence, 2 ∗ 5|3k, so 10|3k.
Since gcd(10, 3) = 1 and 10|3k, then 10|k.
Thus, k is a multiple of 10.
The least positive multiple of 10 is 10 itself, so k = 10.
Hence, the order of [72] is 10, so [72] generates a cyclic subgroup of Z240 of

order 10.

Exercise 75. Let a12 = e in a group G.
What are the possible orders of a?

Solution. Let G be a group with identity e ∈ G.
Let a ∈ G such that a12 = e.
Then a has finite order.
Let n be the order of a.
Then ak = e iff n|k for all k ∈ Z.
Thus, a12 = e iff n|12.
Since a12 = e, then n|12, so n must be a positive divisor of 12.
The set of positive divisors of 12 is {1, 2, 3, 4, 6, 12}.
Thus, n must be one of the numbers in the set {1, 2, 3, 4, 6, 12}.
Therefore, the set of possible orders of a is {1, 2, 3, 4, 6, 12}.

Exercise 76. Let a24 = e in a group G.
What are the possible orders of a?

Solution. Let G be a group with identity e ∈ G.
Let a ∈ G such that a24 = e.
Then a has finite order.
Let n be the order of a.
Then ak = e iff n|k for all k ∈ Z.
Thus, a24 = e iff n|24.
Since a24 = e, then n|24, so n must be a positive divisor of 24.
The set of positive divisors of 24 is {1, 2, 3, 4, 6, 8, 12, 24}.
Thus, n must be one of the numbers in the set {1, 2, 3, 4, 6, 8, 12, 24}.
Therefore, the set of possible orders of a is {1, 2, 3, 4, 6, 8, 12, 24}.

Exercise 77. Let G be a group with identity e ∈ G.
If b ∈ G and b 6= e and bp = e for some prime p, compute the order of b.

Solution. Suppose b ∈ G and b 6= e and bp = e for some prime p.
Since p is prime, then p ∈ Z+.
Since there exists p ∈ Z+ such that bp = e, then b has finite order.
Let n be the order of b.
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Then bp = e iff n|p.
Since bp = e, then n|p, so n is a positive divisor of p.
Since p is prime, the only positive divisors of p are 1 and p, so either n = 1

or n = p.
Since b 6= e, then the order of b must be greater than 1, so n > 1.
Hence, n 6= 1, so n = p.
Therefore, the order of b is |b| = p.

Exercise 78. Let G be a group.
If a ∈ G and |a| = 12, compute the order of the elements a, a2, a3, ..., a11.

Solution. Suppose a ∈ G and |a| = 12.
Then a has finite order 12, so the order of as is 12

gcd(s,12) for all s ∈ Z.

We compute the order of as for s ∈ {1, 2, 3, ..., 11}.
s as |as|
1 a1 |a1| = 12
2 a2 |a2| = 6
3 a3 |a3| = 4
4 a4 |a4| = 3
5 a5 |a5| = 12
6 a6 |a6| = 2
7 a7 |a7| = 12
8 a8 |a8| = 3
9 a9 |a9| = 4
10 a10 |a10| = 6
11 a11 |a11| = 12

Note that 12 is the order of the cyclic subgroup generated by a and 〈a〉 =
{e, a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11}.

Exercise 79. Let G = {a1, a2, ..., an} be a finite abelian group of order n with
identity e ∈ G.

Let x = a1a2 · · · an.
Then x2 = e.

Proof. Let H be the set of all inverses of all elements in G.
Since G is a group, then every element of G has a unique inverse in G.
Since G is finite and G = {a1, a2, ..., an}, then this implies ai ∈ G has an

inverse (ai)
−1 ∈ H for each i with 1 ≤ i ≤ n.

Thus, H = {(a1)−1, (a2)−1, ..., (an)−1} and H ⊂ G.

We prove G ⊂ H.
Let g ∈ G.
Let h be the inverse of g.
Then h ∈ H and h = g−1.
Either h = g or h 6= g.
We consider these cases separately.
Case 1: Suppose h = g.
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Since g = h and h ∈ H, then g ∈ H.
Case 2: Suppose h 6= g.
Since h ∈ H and H ⊂ G, then h ∈ G.
Hence, h has an inverse in H.
Thus, h−1 ∈ H.
Since h−1 = (g−1)−1 = g, then g ∈ H.
Therefore, in all cases, g ∈ H.
Thus, g ∈ G implies g ∈ H, so G ⊂ H.

Since G ⊂ H and H ⊂ G, then G = H.
Since x = a1a2 · ... · an is a product of all elements of G and H = G, then x

is the product of all elements of H.
Since G is abelian, then the order of factors of x does not matter, so x =

(a1)−1 · (a2)−1 · ... · (an)−1.
Observe that

x2 = x · x
= (a1a2 · ... · an)((a1)−1 · (a2)−1 · ... · (an)−1)

= a1a2 · ... · an · (a1)−1 · (a2)−1 · ... · (an)−1

= (a1 · (a1)−1) · (a2 · (a2)−1) · ... · (an · (an)−1)

= e · e... · e
= en

= e.

Therefore, x2 = e, as desired.

Lemma 80. Let a and b be elements of a group G.
Then (aba−1)n = abna−1 for all n ∈ Z.

Solution. Define predicate p(n) : (aba−1)n = abna−1 over Z.
To prove p(n) is true for all integers, we must prove
1. p(0) is true.
2. p(n) is true for all n ∈ Z+.
3. p(−n) is true for all n ∈ Z+.
Let e ∈ G be the identity of G.

Proof. We prove p(0).
Observe that

(aba−1)0 = e

= aa−1

= aea−1

= ab0a−1.

Therefore, (aba−1)0 = ab0a−1, so p(0) is true.

59



Proof. We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Since (aba−1)1 = aba−1 = ab1a−1, then p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then (aba−1)k = abka−1.
Observe that

(aba−1)k+1 = (aba−1)k(aba−1)

= (abka−1)(aba−1)

= (abk)(a−1a)(ba−1)

= (abk)e(ba−1)

= (abk)(ba−1)

= a(bkb)a−1

= abk+1a−1.

Thus, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ Z+.
Since p(1) is true and p(k) implies p(k+1) for all k ∈ Z+, then by induction,

p(n) is true for all n ∈ Z+.

Proof. To prove p(−n) for all n ∈ Z+, let q(n) = p(−n).
Then q(n) is (aba−1)−n = ab−na−1.
We must prove q(n) is true for all n ∈ Z+.
We prove q(n) for all n ∈ Z+ by induction on n.
Basis:
Since (aba−1)−1 = (a−1)−1b−1a−1 = ab−1a−1, then q(1) is true.
Induction:
Let k ∈ Z+ such that q(k) is true.
Then (aba−1)−k = ab−ka−1.
Observe that

(aba−1)−(k+1) = (aba−1)−k(aba−1)−1

= (ab−ka−1)(aba−1)−1

= (ab−ka−1)(ab−1a−1)

= (ab−k)(a−1a)(b−1a−1)

= (ab−k)e(b−1a−1)

= (ab−k)(b−1a−1)

= a(b−kb−1)a−1

= ab−k−1a−1

= ab−(k+1)a−1.

Thus, q(k + 1) is true, so q(k) implies q(k + 1) for all k ∈ Z+.
Since q(1) is true and q(k) implies q(k+1) for all k ∈ Z+, then by induction,

q(n) is true for all n ∈ Z+.
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Exercise 81. Let G be a group with identity e ∈ G.
Let a, b ∈ G.
Then |bab−1| = |a|.

Proof. Suppose a has finite order n.
Then n is the least positive integer such that an = e and ak = e iff n|k for

all k ∈ Z.
We left multiply by b to obtain ban = be = b, so ban = b.
We right multiply by b−1 to obtain banb−1 = bb−1 = e, so banb−1 = e.
Since we proved previously that (aba−1)n = abna−1 for all n ∈ Z in lemma

80, then we conclude (bab−1)n = banb−1 for all n ∈ Z.
Thus, (bab−1)n = banb−1 = e, so (bab−1)n = e.
Let x = bab−1.
Then xn = e.
Since there exists a positive integer n such that xn = e, then x has finite

order.
Let m be the order of x.
Then m ∈ Z+ and xm = e and xk = e iff m divides k for all k ∈ Z.
In particular, xn = e iff m|n.
Since xn = e, then we conclude m|n.
Since e = xm = (bab−1)m = bamb−1, then we right multiply by b to obtain

b = eb = (bamb−1)b = (bam)(b−1b) = bame = bam, so b = bam.
Hence, be = b = bam, so by the left cancellation law we have e = am.
Since ak = e iff n|k for all k ∈ Z and m ∈ Z, then am = e iff n|m.
Since am = e, then we conclude n|m.
Thus, m|n and n|m, so m = n.
Therefore, |bab−1| = |x| = m = n = |a|, so |bab−1| = |a|.

Exercise 82. Let (G, ∗) be a group.
Let a ∈ G.
For every g ∈ G, |a| = |g−1ag|.

Proof. Let e be the identity of G.
Let g ∈ G.
Since G is a group, then the inverse of g is in G, so g−1 ∈ G.
By closure of G under ∗, we have g−1ag ∈ G.
Every element of a group generates a cyclic subgroup of that group.
Thus, a and g−1ag each generate a cyclic subgroup of G.
Let H be the cyclic subgroup of G generated by a.
Then H = {ak : k ∈ Z}.
Let H ′ be the cyclic subgroup of G generated by g−1ag.
Then H ′ = {(g−1ag)m : m ∈ Z}.
Since (aba−1)n = abna−1 for all n ∈ Z, then (g−1ag)m = (g−1a(g−1)−1)m =

g−1am(g−1)−1 = g−1amg for all m ∈ Z.
Thus, H ′ = {g−1amg : m ∈ Z}.
The order of an element is the order of the cyclic subgroup generated by

that element.
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Hence, |a| = |H| and |g−1ag| = |H ′|.

To prove |a| = |g−1ag|, we must prove |H| = |H ′|.
Either a has finite order or a has infinite order.
We consider these cases separately.
Case 1: Suppose a has finite order.
Let n be the order of a.
Then n is the least positive integer such that an = e andH = {a, a2, a3, ..., an} =

{ak : 1 ≤ k ≤ n}.
Let f : H → H ′ be a relation defined by f(ak) = (g−1ag)k for all integers k.
Since (aba−1)n = abna−1 for all n ∈ Z, then (g−1ag)k = (g−1a(g−1)−1)k =

g−1ak(g−1)−1 = g−1akg for all k ∈ Z.
Thus, (g−1ag)k = g−1akg for all k ∈ Z, so f(ak) = (g−1ag)k = g−1akg for

all integers k.

We prove f is a function.
Let ak ∈ H. Then k is an integer. Observe that f(ak) = g−1akg. Since k is

an integer, then g−1akg ∈ H ′, so f(ak) ∈ H ′.
Let ak, am ∈ H such that ak = am. Then k,m ∈ Z such that 1 ≤ k,m ≤ n.
Since a has finite order n, then ak = am iff k ≡ m (mod n). Thus, k ≡ m

(mod n), so n|(k −m). Thus, k−mn is an integer.
Let s = k −m. Since 1 ≤ k ≤ n and 1 ≤ m ≤ n, then the maximum value

of |s| is n− 1. Hence, 0 ≤ |s| ≤ n− 1, so 0 ≤ |s| < n. Since n > 0, we divide by

n to obtain 0 ≤ |s|n < 1.

Since k−m
n ∈ Z, then s

n ∈ Z, so |s|n ∈ Z. The only integer between zero and

1 and less than 1 is zero. Hence, |s|n = 0, so |s| = 0. Thus, |k − m| = 0, so
k −m = 0. Therefore, k = m, so (g−1ag)k = (g−1ag)m. Thus, f(ak) = f(am).
Consequently, ak = am implies f(ak) = f(am), so f is well defined. Thus, f is
a function.

Observe that an = e = a0. Since f is a function, then an = a0 implies
f(an) = f(a0). Hence, f(an) = f(a0), so (g−1ag)n = (g−1ag)0 = e. Thus,
(g−1ag)n = e, so g−1ag has finite order.

Let n′ be the order of g−1ag. Then n′ is the least positive integer such
that (g−1ag)n

′
= e. Thus, H ′ = {g−1ag, (g−1ag)2, (g−1ag)3, ..., (g−1ag)n

′} =
{(g−1ag)m : 1 ≤ m ≤ n′}.

We prove f is injective.
Let f(ak) = f(am) for ak, am ∈ H. Then (g−1ag)k = (g−1ag)m and k,m ∈

Z. Since (g−1ag)k, (g−1ag)m ∈ H ′, then 1 ≤ k,m ≤ n′.
Since n′ is the order of g−1ag, then (g−1ag)k = (g−1ag)m iff k ≡ m

(mod n′). Hence, k ≡ m (mod n′). Since 1 ≤ k,m ≤ n′ and k ≡ m (mod n′),
then k = m. Thus, ak = am. Therefore, f(ak) = f(am) implies ak = am, so f
is injective.
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We prove f is surjective. Let (g−1ag)m ∈ H ′. Then m is an integer such that
1 ≤ m ≤ n′. Observe that f(am) = (g−1ag)m. Hence, there exists an integer m
such that f(am) = (g−1ag)m, so f is surjective.

Therefore, f : H → H ′ is a bijective function, so |H| = |H ′|. Thus, the
order of a is the order of g−1ag.

Note: We could further prove that f is a homomorphism and therefore f is
an isomorphism of H with H ′, so that H is isomorphic to H ′.

Hence, |H| = |H ′|.
Case 2: Suppose a has infinite order.
Then H is of infinite order and each integer power of a is distinct. Thus, if

k and m are integers such that k 6= m, then ak 6= am. Thus, if ak = am, then
k = m.

Since the order of a is infinite, then (H, ∗) is isomorphic to (Z,+).
Prove |H| = |H ′|.
Let f : H → H ′ be a relation defined by f(ak) = (g−1ag)k for all integers k.
Since (aba−1)n = abna−1 for all n ∈ Z, then (g−1ag)k = (g−1a(g−1)−1)k =

g−1ak(g−1)−1 = g−1akg for all k ∈ Z.
Thus, (g−1ag)k = g−1akg for all k ∈ Z, so f(ak) = (g−1ag)k = g−1akg for

all integers k.
We prove f is a function.
Let ak ∈ H. Then k is an integer. Observe that f(ak) = g−1akg. Since k is

an integer, then g−1akg ∈ H ′, so f(ak) ∈ H ′.
Let ak, am ∈ H such that ak = am. Then k,m ∈ Z such that 1 ≤ k,m ≤ n.
Since a has finite order n, then ak = am iff k ≡ m (mod n). Thus, k ≡ m

(mod n), so n|(k −m). Thus, k−mn is an integer.
Let s = k −m. Since 1 ≤ k ≤ n and 1 ≤ m ≤ n, then the maximum value

of |s| is n− 1. Hence, 0 ≤ |s| ≤ n− 1, so 0 ≤ |s| < n. Since n > 0, we divide by

n to obtain 0 ≤ |s|n < 1.

Since k−m
n ∈ Z, then s

n ∈ Z, so |s|n ∈ Z. The only integer between zero and

1 and less than 1 is zero. Hence, |s|n = 0, so |s| = 0. Thus, |k − m| = 0, so
k −m = 0. Therefore, k = m, so (g−1ag)k = (g−1ag)m. Thus, f(ak) = f(am).
Consequently, ak = am implies f(ak) = f(am), so f is well defined. Thus, f is
a function.

Observe that an = e = a0. Since f is a function, then an = a0 implies
f(an) = f(a0). Hence, f(an) = f(a0), so (g−1ag)n = (g−1ag)0 = e. Thus,
(g−1ag)n = e, so g−1ag has finite order.

Let n′ be the order of g−1ag. Then n′ is the least positive integer such
that (g−1ag)n

′
= e. Thus, H ′ = {g−1ag, (g−1ag)2, (g−1ag)3, ..., (g−1ag)n

′} =
{(g−1ag)m : 1 ≤ m ≤ n′}.

We prove f is injective. Let f(ak) = f(am) for ak, am ∈ H. Then (g−1ag)k =
(g−1ag)m and k,m ∈ Z. Since (g−1ag)k, (g−1ag)m ∈ H ′, then 1 ≤ k,m ≤ n′.

Since n′ is the order of g−1ag, then (g−1ag)k = (g−1ag)m iff k ≡ m
(mod n′). Hence, k ≡ m (mod n′). Since 1 ≤ k,m ≤ n′ and k ≡ m (mod n′),
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then k = m. Thus, ak = am. Therefore, f(ak) = f(am) implies ak = am, so f
is injective.

We prove f is surjective. Let (g−1ag)m ∈ H ′. Then m is an integer such that
1 ≤ m ≤ n′. Observe that f(am) = (g−1ag)m. Hence, there exists an integer m
such that f(am) = (g−1ag)m, so f is surjective.

Exercise 83. Not every element of an infinite group has finite order.
Let

A =

[
0 1

−1 −1

]
and

B =

[
0 −1

1 0

]
be elements of GL2(R).
Show that |A| = 3 and |B| = 4.
Show that AB has infinite order.

Solution. Let I be the identity 2× 2 matrix.
Since

A−1 =

[
−1 −1

1 0

]
and

B−1 =

[
0 1

−1 0

]
and AA−1 = I = A−1A and BB−1 = I = B−1B, then A,B ∈ GL2(R).

We compute the integer powers of A.

A2 =

[
−1 −1

1 0

]

A3 =

[
1 0

0 1

]
Therefore, |A| = 3 and 3 is the order of the cyclic subgroup generated by A.
Thus, 〈A〉 = {I, A,A2}.
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We compute the integer powers of B.

B2 =

[
−1 0

0 −1

]

B3 =

[
0 1

−1 0

]

B4 =

[
1 0

0 1

]

Therefore, |B| = 4 and 4 is the order of the cyclic subgroup generated by B.
Thus, 〈B〉 = {I,B,B2, B3}.

We compute AB.

AB =

[
1 0

−1 1

]

Proof. We prove for all n ∈ Z+,

(AB)n =

[
1 0

−n 1

]
.

Define the predicate p(n) over Z:

(AB)n =

[
1 0

−n 1

]

We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Since

(AB)1 =

[
1 0

−1 1

]

then p(1) is true.
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Induction:
Let k ∈ Z+ such that p(k) is true.
Then

(AB)k =

[
1 0

−k 1

]
.

Observe that

(AB)k+1 = (AB)k(AB) =

[
1 0

−k 1

][
1 0

−1 1

]
=

[
1 0

−k − 1 1

]
=

[
1 0

−(k + 1) 1

]

Therefore, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ Z+.

Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ Z+, then by PMI, p(n)
is true for all n ∈ Z+.

Therefore, for all n ∈ Z+,

(AB)n =

[
1 0

−n 1

]
.

Hence, for all n ∈ Z+,

(AB)n 6=

[
1 0

0 1

]
.

Thus, there is no n ∈ Z+ such that

(AB)n =

[
1 0

0 1

]
.

Therefore, AB has infinite order.

Exercise 84. Let

A =

[
0 1

−1 0

]

and
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B =

[
0 −1

1 −1

]
be elements of GL2(R).
Show that A and B have finite orders, but AB has infinite order.

Solution. Let I be the identity 2× 2 matrix.
Since

A−1 =

[
0 −1

1 0

]
and

B−1 =

[
−1 1

−1 0

]
and AA−1 = I = A−1A and BB−1 = I = B−1B, then A,B ∈ GL2(R).

We compute the integer powers of A.

A2 =

[
−1 −0

0 −1

]

A3 =

[
0 −1

1 0

]

A4 =

[
1 0

0 1

]
Therefore, |A| = 4 and 4 is the order of the cyclic subgroup generated by A.
Thus, 〈A〉 = {I, A,A2, A3}.

We compute the integer powers of B.

B2 =

[
−1 1

−1 0

]

B3 =

[
1 0

0 1

]
Therefore, |B| = 3 and 3 is the order of the cyclic subgroup generated by B.
Thus, 〈B〉 = {I,B,B2}.
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We compute AB.

AB =

[
1 −1

0 1

]

Proof. We prove for all n ∈ Z+,

(AB)n =

[
1 −n

0 1

]

Define the predicate p(n) over Z:

(AB)n =

[
1 −n

0 1

]

We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Since

(AB)1 =

[
1 −1

0 1

]

then p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then

(AB)k =

[
1 −k

0 1

]
.

Observe that

(AB)k+1 = (AB)k(AB) =

[
1 −k

0 1

][
1 −1

0 1

]
=

[
1 −1− k

0 1

]
=

[
1 −(k + 1)

0 1

]

Therefore, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ Z+.
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Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ Z+, then by PMI, p(n)
is true for all n ∈ Z+.

Therefore, for all n ∈ Z+,

(AB)n =

[
1 −n

0 1

]
.

Hence, for all n ∈ Z+,

(AB)n 6=

[
1 0

0 1

]
.

Thus, there is no n ∈ Z+ such that

(AB)n =

[
1 0

0 1

]
.

Therefore, AB has infinite order.

Exercise 85. Compute i45.

Solution. Since the 4th roots of unity (U4, ·) is a group and i ∈ U4 has finite
order 4, then is = it iff s ≡ t (mod 4) for all s, t ∈ Z.

Thus, is = i45 iff s ≡ 45 (mod 4).
Since 45 (mod 4) = 1, then is = i45 iff s ≡ 1 (mod 4).
Let s = 1.
Since 1 ≡ 1 (mod 4), then s ≡ 1 (mod 4), so is = i45.
Therefore, i = i1 = i45, so i45 = i.

Exercise 86. Compute (−i)10.

Solution. Observe that

(−i)10 = i10

= i4∗2+2

= i4∗2 ∗ i2

= (i4)2 ∗ i2

= (1)2 ∗ (−1)

= 1 ∗ (−1)

= −1.

Therefore, (−i)10 = −1.

Exercise 87. Every non-abelian group has order at least 6, so every group of
order 2, 3, 4, or 5 is abelian.
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Proof. TODO

Exercise 88. If every non-identity element of a group G has order 2, then G
is abelian.

Proof. Let G be a group with identity e ∈ G.
Suppose every non-identity element of G has order 2.
Then a2 = e for all a ∈ G with a 6= e.
Let a ∈ G and a 6= e.
Then e = a2 = aa, so a−1 = a.
Hence, a is its own inverse.
Therefore, each non-identity element of G is its own inverse.
Since the identity e is its own inverse, then each element of G is its own

inverse.
Therefore, a−1 = a for all a ∈ G.

Let a, b ∈ G.
Then a−1 = a and b−1 = b and (ab)−1 = ab.
Observe that

ab = (ab)−1

= b−1a−1

= ba.

Therefore, ab = ba for all a, b ∈ G, so G is abelian.

Exercise 89. If a group has even order, then it contains an element of order 2.

Proof. TODO

Exercise 90. Let G be a group of order 4 that contains no element of order 4.
a. No element of G has order 3.
b. Explain why every non-identity element of G has order 2.
c. Denote the elements of G by e, a, b, c and write out the Cayley table for

G.

Proof. TODO

Exercise 91. Let G be a group with identity e ∈ G.
Let a, b ∈ G and |a| = 5 and b 6= e and aba−1 = b2.
Compute |b|.

Solution. Let n be the order of b.
Since b 6= e, then n > 1.
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Suppose n = 2.
Then b2 = e.
Thus e = b2 = aba−1, so e = aba−1.
Thus, ae = a = ea = aba−1(a) = abe = ab, so ae = ab.
By cancellation law, we obtain e = b, so b = e.
But, this contradicts that b 6= e.
Therefore, b2 6= e.
TODO

Exercise 92. Let G be a group.
If (ab)i = ai ∗ bi for three consecutive integers i and all a, b ∈ G, then G is

abelian.

Proof. TODO

Exercise 93. Let G be a nonempty finite set with an associative operation ·
such that for all a, b, c, d ∈ G, if ab = ac, then b = c and if bd = cd, then b = c.

Then (G, ·) is a group.
Show that this may be false if G is an infinite set.

Proof. TODO

Exercise 94. Let G be a nonempty set with an associative operation · such
that for all a, b ∈ G, the equations ax = b and ya = b have solutions.

Then (G, ·) is a group.

Proof. TODO

Exercise 95. Let G be an abelian group in which every element has finite
order.

If c ∈ G is an element of largest order in G (that is, |a| ≤ |c| for all a ∈ G),
then the order of every element of G divides |c|.

Proof. TODO

Exercise 96. The element
√

3 in the multiplicative group (R∗, ∗) has infinite
order.

Proof. We prove
√

3
n
> 1 for every positive integer n by induction.

Let p(n) be the predicate
√

3
n
> 1.

Let n = 1.
Then

√
3
n

=
√

3
1

=
√

3 > 1.
Hence, p(1) is true.
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Suppose m is an arbitrary positive integer such that p(m) is true.

Then
√

3
m
> 1.

Thus,
√

3
m ∗
√

3 > 1 ∗
√

3, so
√

3
m+1

>
√

3.

Since
√

3
m+1

>
√

3 and
√

3 > 1, then
√

3
m+1

> 1.
Hence, p(m+ 1) is true, so p(m) implies p(m+ 1).

Therefore, by induction,
√

3
n
> 1 for all positive integers n.

Thus,
√

3 6= 1 for all positive integers n.
Hence, there does not exist a positive integer such that

√
3 = 1.

Therefore, the order of
√

3 is infinite.

Exercise 97. Compute the order of ([15], [25]) ∈ Z24 × Z30.
What is the largest possible order of an element in Z24 × Z30?
Is Z24 × Z30 cyclic?

Solution. Observe that

|([15], [25])| = lcm(|[15]24|, |[25]30|)

= lcm(
24

gcd(15, 24)
,

30

gcd(25, 30)
)

= lcm(8, 6)

= 24.

Thus, ([15], [25]) generates a cyclic subgroup of Z24 × Z30 of order 24.

Suppose Z24 × Z30 is cyclic.
Then Z24 × Z30 is a cyclic group of order |Z24 × Z30| = 24 ∗ 30 = 720.
Hence, Z24 × Z30 is isomorphic to Z720, so Z24 × Z30

∼= Z720.
Since Z24 × Z30

∼= Z720 iff gcd(24, 30) = 1 and gcd(24, 30) = 6 6= 1, then
Z24 × Z30 6∼= Z720.

Hence, we have a contradiction, so Z24 × Z30 cannot be cyclic.
Therefore, there is no element of Z24 × Z30 of order 720.

Let ([a], [b]) ∈ Z24 × Z30 have maximum order k.
Then k = lcm(|[a]|, |[b]|).
Let k1 = |[a]| and k2 = |[b]|.
Then k = k1k2

gcd(k1,k2)
and k has the maximum value.

The maximum value occurs when the product k1k2 is maximized.
Hence, k1 = 24 and k2 = 30 and gcd(24, 30) = 6.
Therefore, k = 24∗30

6 = 120.

Exercise 98. A cyclic group with only one generator can have at most 2 ele-
ments.
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Solution. The statement means:
Let 〈G, ∗〉 be a cyclic group.
If G has exactly one generator then G has at most 2 elements.
Let P1 : 〈G, ∗〉 is a cyclic group.
Let P2 : G has exactly one generator.
Let P3 : |G| ≤ 2.
The statement to prove is: P1 → (P2 → P3).
We use direct proof.
Thus we assume P1.
We must prove: P2 → P3.
We can use direct proof by assuming P2 and proving P3 or use proof by

contrapositive and prove ¬P3 → ¬P2.

Proof. Let 〈G, ∗〉 be a cyclic group.
Suppose G has exactly one generator.
Let g ∈ G be the unique generator of G.
Since G is cyclic, by definition of cyclic group, G = 〈g〉.
Since G is a group, then the identity element exists.
Let e ∈ G be the identity element.
Thus, g ∈ G and e ∈ G.
Either g = e or g 6= e.
We consider these cases separately.
There are two cases to consider.
Case 1: Suppose g = e.
Then G = 〈g〉 = 〈e〉.
Thus G is the trivial group, so |G| = 1.
Case 2: Suppose g 6= e.
Since G is a group, by definition of group, g−1 ∈ G.
Either g−1 = g or g−1 6= g.
There are two cases to consider.
Case 2a: Suppose g−1 = g.
Then by definition of inverse element, e = gg−1 = gg = g2.
Thus g3 = g2g = eg = g.
Thus g4 = g3g = gg = e.
Thus g5 = g4g = eg = g.
Thus g6 = g5g = gg = e, and so on.
Thus g−2 = g−1g−1 = gg = e.
Thus g−3 = g−2g−1 = eg = g.
Thus g−4 = g−3g−1 = gg = e, and so on.
Hence, if n is even then gn = e and if n is odd then gn = g.
Technically we should use induction to prove that gn = e if n is even and

gn = g if n is odd.
Thus, 〈g〉 contains only two elements, g and e, so |G| = |〈g〉| = 2.
Case 2b: Suppose g−1 6= g.
Then g−1 6= e and g−1 6= g.
Hence, g−1 is some other element in G.
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Thus, e, g, and g−1 are distinct elements of G.
Hence G contains 3 elements, so |G| > 2.
Let h ∈ G such that h = g−1.
Then gh = hg = e and h 6= e and h 6= g.
Thus, G = {e, g, h}.

We must determine g2.
If g2 = e, then gg = e so g−1 = g.
Thus, g−1 = g and g−1 6= g, a contradiction.
Hence g2 6= e.
If g2 = g, then gg = g.
Since eg = g = gg, then by right cancellation law, e = g.
Thus, g = e and g 6= e, a contradiction.
Hence, g2 6= g.
Thus, g2 6= e and g2 6= g, so g2 = h.

We must determine h2.
If h2 = h, then hh = h.
Since eh = h, then hh = eh.
Thus by right cancellation law, h = e.
Since h = g−1, then g−1 = e.
Hence, g−1 = e and g−1 6= e, a contradiction.
Therefore, h2 6= h.
If h2 = e, then hh = e.
Since h and g are inverses, then hg = e.
Thus, hh = hg.
By left cancellation law, h = g, so g−1 = g.
Hence, g−1 = g and g−1 6= g, a contradiction.
Therefore, h2 6= e.
Thus, h2 6= h and h2 6= e, so h2 = g.
Observe that h1 = h, h2 = g, h3 = h2h = gh = e, h4 = h3h = eh = h, h5 =

hh = g, h6 = gh = e, h7 = eh = h, ... and so on.
Also, h0 = e and h−1 = g, h−2 = gg = h, h−3 = hg = e, h−4 = hh =

g, h−5 = gg = h, h−6 = hg = e, ... and so on.
Thus, 〈h〉 = {hn : n ∈ Z} = G, so h is a generator of G.
Similarly, 〈g〉 = {gn : n ∈ Z} = G, so g is a generator of G.
Hence, if |G| > 2, then G does not have a unique generator.

Exercise 99. Let G be a cyclic group of finite order n generated by x.
If y = xk and gcd(k, n) = 1, then y is a generator of G.

Proof. Since G is a cyclic group generated by x ∈ G, then G = 〈x〉 = {xk : k ∈
Z}.

Let y ∈ G.
Then there exists an integer k such that y = xk.
Suppose gcd(k, n) = 1.
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Every element of a finite group has finite order.
Since G is a finite group and x ∈ G, then x has finite order.
The order of x is the order of the cyclic subgroup of G generated by x.
Hence, 〈x〉 = {e, x, x2, x3, ..., xn−1} and |x| = |〈x〉| = |G| = n.
Since x has finite order n, then the order of y is

|y| = |xk|

=
|x|

gcd(k, |x|)

=
n

gcd(k, n)

=
n

1
= n.

Thus, |y| = n.
The order of y is the order of the cyclic subgroup of G generated by y.
Hence, |〈y〉| = |y| = n = |G|, so |〈y〉| = |G|.
Since 〈y〉 is a subgroup of G, then 〈y〉 is a subset of G.
Since G is a finite set and 〈y〉 is a subset of G and |〈y〉| = |G|, then 〈y〉 = G.
Since y ∈ G and G = 〈y〉, then y is a generator of G.

Exercise 100. Let (G, ∗) be a group.
Let g, h ∈ G such that |g| = 15 and |h| = 16.
Then the order of 〈g〉 ∩ 〈h〉 is 1.

Proof. Let A be the cyclic subgroup of G generated by g ∈ G.
Then A = 〈g〉 and |A| = |〈g〉| = |g| = 15.
Let B be the cyclic subgroup of G generated by h ∈ G.
Then B = 〈h〉 and |B| = |〈h〉| = |h| = 16.
The intersection of any two subgroups is a subgroup.
Since A < G and B < G, then A ∩B < G.
Let K = A ∩B.
Then K < G.

Proof. We prove K < A and K < B.
Since K = A ∩ B and A ∩ B is a subset of A and of B, then K ⊂ A and

K ⊂ B.
Let e ∈ G be the identity of G.
Since K < G, then e ∈ K, so K 6= ∅.
Since |A| = 15, then A is a finite group, so A is a finite set.
Every subset of a finite set is finite.
Since A is finite and K ⊂ A, then K is finite.
Since K ⊂ A and K 6= ∅ and K is finite, then K is a nonempty finite subset

of A.
Since K ⊂ B and K 6= ∅ and K is finite, then K is a nonempty finite subset

of B.
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We prove K is closed under ∗.
Let a, b ∈ K.
Since a ∈ K, then a ∈ A and a ∈ B, so a = gp for some integer p and a = hq

for some integer q.
Since b ∈ K, then b ∈ A and b ∈ B, so b = gr for some integer r and b = hs

for some integer s
Thus, ab = gp ∗ gr and ab = hq ∗ hs.
Since ab = gp ∗ gr = gp+r and p+ r is an integer, then ab ∈ A.
Since ab = hq ∗ hs = hq+s and q + s is an integer, then ab ∈ B.
Hence, ab ∈ A and ab ∈ B, so ab ∈ A ∩B.
Therefore, ab ∈ K, so K is closed under ∗.
Since K is closed under ∗ and ∗ is the binary operation of A, then K is

closed under the binary operation of A.
Since K is closed under ∗ and ∗ is the binary operation of B, then K is

closed under the binary operation of B.

Since K is a nonempty finite subset of A and K is closed under the binary
operation of A, then by the finite subgroup test, K < A.

Since K is a nonempty finite subset of B and K is closed under the binary
operation of B, then by the finite subgroup test, K < B.

Proof. Every subgroup of a cyclic group is cyclic.
Since K < A and A is a cyclic group, then we conclude K is cyclic.
Hence, there exists a generator k ∈ K such that K = 〈k〉.
Since k ∈ K and K = A ∩B, then k ∈ A and k ∈ B.
Since K is a finite set and K is a group, then K is a finite group.
Every element of a finite group has finite order.
Since K is a finite group and k ∈ K, then k has finite order.
Let n be the order of k.
Then n ∈ Z+.
By lemma 63, the order of every element of a finite cyclic group divides the

order of the group.
Since A is a finite cyclic group, then the order of every element of A divides

the order of A.
Since k ∈ A, then n divides |A|, so n|15.
Since the order of every element of a finite cyclic group divides the order of

the group and B is a finite cyclic group, then the order of every element of B
divides the order of B.

Since k ∈ B, then n divides |B|, so n|16.
Since n|15 and n|16, then n is a common divisor of 15 and 16.
Any common divisor of 15 and 16 divides gcd(15, 16).
Thus, n divides gcd(15, 16).
Since gcd(15, 16) = 1, then n divides 1.
Since n ∈ Z+ and n|1, then n = 1.
Since |〈g〉 ∩ 〈h〉| = |A ∩ B| = |K| = |〈k〉| = |k| = n = 1, then the order of

〈g〉 ∩ 〈h〉 is 1.
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Lemma 101. Let (G, ∗) be a group with identity e ∈ G.
Let g, h ∈ G such that |g| = m and |h| = n and gcd(m,n) = 1.
Then the order of 〈g〉 ∩ 〈h〉 is 1 and 〈g〉 ∩ 〈h〉 = {e}.

Proof. Let A be the cyclic subgroup of G generated by g ∈ G.
Then A = 〈g〉 and |A| = |〈g〉| = |g| = m.
Let B be the cyclic subgroup of G generated by h ∈ G.
Then B = 〈h〉 and |B| = |〈h〉| = |h| = n.
The intersection of any two subgroups is a subgroup.
Since A < G and B < G, then A ∩B < G.
Let K = A ∩B.
Then K < G.

Proof. We prove K < A and K < B.
Since K = A ∩ B and A ∩ B is a subset of A and of B, then K ⊂ A and

K ⊂ B.
Since K < G, then e ∈ K, so K 6= ∅.
Since |A| = m, then A is a finite group, so A is a finite set.
Every subset of a finite set is finite.
Since A is finite and K ⊂ A, then K is finite.
Since K ⊂ A and K 6= ∅ and K is finite, then K is a nonempty finite subset

of A.
Since K ⊂ B and K 6= ∅ and K is finite, then K is a nonempty finite subset

of B.

We prove K is closed under ∗.
Let a, b ∈ K.
Since a ∈ K, then a ∈ A and a ∈ B, so a = gp for some integer p and a = hq

for some integer q.
Since b ∈ K, then b ∈ A and b ∈ B, so b = gr for some integer r and b = hs

for some integer s
Thus, ab = gp ∗ gr and ab = hq ∗ hs.
Since ab = gp ∗ gr = gp+r and p+ r is an integer, then ab ∈ A.
Since ab = hq ∗ hs = hq+s and q + s is an integer, then ab ∈ B.
Hence, ab ∈ A and ab ∈ B, so ab ∈ A ∩B.
Therefore, ab ∈ K, so K is closed under ∗.
Since K is closed under ∗ and ∗ is the binary operation of A, then K is

closed under the binary operation of A.
Since K is closed under ∗ and ∗ is the binary operation of B, then K is

closed under the binary operation of B.

Since K is a nonempty finite subset of A and K is closed under the binary
operation of A, then by the finite subgroup test, K < A.

Since K is a nonempty finite subset of B and K is closed under the binary
operation of B, then by the finite subgroup test, K < B.
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Proof. Every subgroup of a cyclic group is cyclic.
Since K < A and A is a cyclic group, then we conclude K is cyclic.
Hence, there exists a generator k ∈ K such that K = 〈k〉.
Since k ∈ K and K = A ∩B, then k ∈ A and k ∈ B.
Since K is a finite set and K is a group, then K is a finite group.
Every element of a finite group has finite order.
Since K is a finite group and k ∈ K, then k has finite order.
Let c be the order of k.
Then c ∈ Z+.
By lemma 63, the order of every element of a finite cyclic group divides the

order of the group.
Since A is a finite cyclic group, then the order of every element of A divides

the order of A.
Since k ∈ A, then c divides |A|, so c|m.
Since the order of every element of a finite cyclic group divides the order of

the group and B is a finite cyclic group, then the order of every element of B
divides the order of B.

Since k ∈ B, then c divides |B|, so c|n.
Since c|m and c|n, then c is a common divisor of m and n.
Any common divisor of m and n divides gcd(m,n).
Thus, c divides gcd(m,n).
Since gcd(m,n) = 1, then c divides 1.
Since c ∈ Z+ and c|1, then c = 1.
Since |〈g〉 ∩ 〈h〉| = |A ∩ B| = |K| = |〈k〉| = |k| = c = 1, then the order of

〈g〉 ∩ 〈h〉 is 1.
The only group of order 1 is the trivial group.
Therefore, 〈g〉 ∩ 〈h〉 = {e}.

Exercise 102. Let a be an element of a group G with identity e ∈ G.
Let m,n ∈ Z.
Find a generator for the subgroup 〈am〉 ∩ 〈an〉.

Solution. Let’s try experimentation.
Let A = 〈am〉 be the cyclic subgroup generated by am.
Let B = 〈an〉 be the cyclic subgroup generated by an.
The intersection of any two subgroups is a subgroup.
Since A is a subgroup and B is a subgroup, the A ∩B is a subgroup of G.
Let K = A ∩B.
We must find a generator for K.
If m = 0, then A = 〈a0〉 = 〈e〉 = {e}, so K = A ∩B = {e} ∩B = {e}.
Assume the order is finite and m ≤ n.
If m = 1 = n, then A = 〈a1〉 = 〈a〉 = B, so K = A ∩B = A ∩A = A = 〈a〉.
If m = 1 and n = 2, then A = 〈a1〉 = 〈a〉 and B = 〈a2〉.
Now, let’s assume order of A is some fixed value, say 12, so |a| = 12.
TODO
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Theorem 103. Order of ab is the least common multiple of the orders
of a and b.

Let G be a group and a, b ∈ G.
If ab = ba and a has finite order m and b has finite order n, then ab has

finite order lcm(m,n).

Proof. Suppose ab = ba and a has finite order m and b has finite order n.
Since a has finite order m, then m is the least positive integer such that

am = e.
Since b has finite order n, then n is the least positive integer such that bn = e.
Observe that

(ab)mn = amn · bmn

= amn · bnm

= (am)n · (bn)m

= en · em

= e · e
= e.

Since mn is a positive integer and (ab)mn = e, then ab has finite order.

Proof. Let t be the order of ab.
Then t is the least positive integer such that (ab)t = e.
Since ab = ba, then e = (ab)t = atbt.
Since e = atbt, then we conclude at = e and bt = e.
Since a has finite order m, then at = e iff m|t.
Since at = e, then we conclude m|t.
Since b has finite order n, then bt = e iff n|t.
Since bt = e, then we conclude n|t.
Since m|t and n|t, then t is a multiple of m and n.
Since t is the least positive integer such that (ab)t = e, then t must be the

least common multiple of m and n.
Therefore, t = lcm(m,n), so the order of ab is lcm(m,n), as desired.

Corollary 104. Let G be a group a, b ∈ G
If ab = ba and a has finite order m and b has finite order n and gcd(m,n) =

1, then ab has finite order mn.

Proof. Suppose ab = ba and a has finite order m and b has finite order n and
gcd(m,n) = 1.

Since ab = ba and a has finite order m and b has finite order n, then by the
previous theorem 103, ab has finite order lcm(m,n).

Observe that

lcm(m,n) =
mn

gcd(m,n)

=
mn

1
= mn.
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Since lcm(m,n) = mn, then ab has finite order mn.

Exercise 105. torsion subgroup of an abelian group
The set of all elements of finite order in an abelian group G is a subgroup of

G.
This is the torsion subgroup of G.

Proof. Let (G, ∗) be an abelian group with identity e ∈ G.
Let S be the set of all elements of G that have finite order.
Then S = {a ∈ G : a has finite order}.
Thus, S ⊂ G.

We prove S 6= ∅.
Since e1 = e, then the order of e is 1, so e has finite order.
Since e ∈ G and e has finite order, then e ∈ S, so S 6= ∅.
Since S ⊂ G and S 6= ∅, then S is a nonempty subset of G.

Proof. We prove S is closed under ∗ of G.
Let a, b ∈ S.
Since a ∈ S, then a ∈ G and a has finite order.
Since b ∈ S, then b ∈ G and b has finite order.
Since G is a group, then G is closed under ∗.
Since a ∈ G and b ∈ G, then we conclude ab ∈ G.

We prove ab has finite order.
Since a has finite order, let m be the order of a.
Then a has finite order m.
Since b has finite order, let n be the order of b.
Then b has finite order n.
Since G is abelian and ab ∈ G, then ab = ba.
Since ab = ba and a has finite order m and b has finite order n, then by the

previous theorem 103, ab has finite order lcm(m,n), so ab has finite order.

Since ab ∈ G and ab has finite order, then ab ∈ S.
Therefore, ab ∈ S for all a, b ∈ S.

Proof. We prove S is closed under inverses.
Let s ∈ S.
Then s ∈ G and s has finite order.
Let t be the order of s.
Then t is the least positive integer such that st = e.
Since G is a group and s ∈ G, then s−1 ∈ G and ss−1 = s−1s = e.
Since the order of an element is the order of its inverse, then the order of s

is the order of s−1.
Hence, t is the order of s−1, so t is the least positive integer such that

(s−1)t = e.
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Therefore, s−1 has finite order.
Since s−1 ∈ G and s−1 has finite order, then s−1 ∈ S.
Therefore, s−1 ∈ S for all s ∈ S.

Proof. Since S is a nonempty subset of G and ab ∈ S for all a, b ∈ S and
s−1 ∈ S for all s ∈ S, then by the two-step subgroup test, S is a subgroup of
G, so S < G.

Exercise 106. Let G be an abelian group that contains a pair of cyclic sub-
groups of order 2.

Then G must contain a subgroup of order 4.

Proof. Let C1 and C2 be a pair of cyclic subgroups of G of order 2.
Let e ∈ G be the identity of G.
Since C1 is a cyclic subgroup of G of order 2, then C1 = 〈a〉 for some

generator a ∈ G.
Thus, C1 = {e, a} and a 6= e.
The order of an element is the order of the cyclic subgroup generated by the

element.
Thus, |a| = |C1| = 2, so 2 is the least positive integer such that a2 = e.

Since C2 is a cyclic subgroup of G of order 2, then C2 = 〈b〉 for some generator
b ∈ G.

Thus, C2 = {e, b} and b 6= e and |b| = 2.
The order of an element is the order of the cyclic subgroup generated by the

element.
Thus, |b| = |C2| = 2, so 2 is the least positive integer such that b2 = e.
Since C1 and C2 are distinct cyclic subgroups of order 2, then C1 6= C2.
Hence, {e, a} 6= {e, b}, so a 6= b.

Suppose ab = a.
Then ab = a = ae, so by cancellation we obtain b = e.
But, this contradicts b 6= e, so ab 6= a.

Suppose ab = b.
Then ab = b = eb, so by cancellation we obtain a = e.
But, this contradicts a 6= e, so ab 6= b.

Assume ab 6= e and let H = {e, a, b, ab}.
Then H ⊂ G and |H| = 4.
Observe that a(ab) = (aa)b = a2b = eb = b.
Since G is abelian, then
(ab)a = a(ab) = (aa)b = a2b = eb = b and
ba = ab and
(ab)b = b(ab) = b(ba) = (bb)a = b2a = ea = a and
(ab)(ab) = (ab)(ba) = a(b2)a = aea = aa = a2 = e.
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We construct the Cayley table for H.
* e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

Since H is a nonempty finite subset of G and H is closed under ∗ of G, then
by the finite subgroup test, H is a subgroup of G.

Therefore, H is a subgroup of order 4.
Observe that H is not cyclic and H is the Klein-4 group.

Exercise 107. Let G be an abelian group of order mn.
If a ∈ G has order m and b ∈ G has order n and gcd(m,n) = 1, then G is

cyclic.

Proof. Suppose a ∈ G has order m and b ∈ G has order n and gcd(m,n) = 1.
Since G is abelian and a ∈ G and b ∈ G, then ab = ba.
Since ab = ba and a has finite order m and b has finite order n and

gcd(m,n) = 1, then by the previous corollary 104, ab has finite order mn.
Hence, |ab| = mn.
The order of ab is the order of the cyclic subgroup of G generated by ab.
Let 〈ab〉 be the cyclic subgroup of G generated by ab.
Then |ab| = |〈ab〉|.
Since G has order mn, then |G| = mn.
Thus, |G| = mn = |ab| = |〈ab〉|, so |G| = |〈ab〉|.
Since 〈ab〉 is a subgroup of G, then 〈ab〉 is a subset of G.
Since 〈ab〉 is a subset of G and G is finite and |〈ab〉| = |G|, then 〈ab〉 = G.
Since ab ∈ G and G = 〈ab〉, then G is cyclic, as desired.

Exercise 108. For all positive integers n, −1 is an nth root of unity if and only
if n is even.

Proof. Let n ∈ Z+.
Suppose n is even.
Then n = 2k for some integer k.
The number z ∈ C is an nth root of unity if zn = 1.
Since (−1)n = (−1)2k = [(−1)2]k = 1k = 1, then −1 is an nth root of unity.

Conversely, suppose −1 is an nth root of unity.
Then (−1)n = 1.
Either n is even or n is odd.
Suppose n is odd.
Then n = 2m+ 1 for some integer m.
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Observe that

1 = (−1)n

= (−1)2m+1

= (−1)2m · (−1)1

= [(−1)2]m · (−1)

= (1m)(−1)

= 1(−1)

= −1.

Hence, 1 = −1, a contradiction.
Therefore, n cannot be odd, so n must be even.

Exercise 109. Let m,n ∈ Z+.
Let d = gcd(m,n).
Let a ∈ C∗.
Then am = an = 1 iff ad = 1.

Proof. Suppose ad = 1.
Since d = gcd(m,n) then d is a positive integer and d|m and d|n.
Hence, there exist integers k1 and k2 such that m = dk1 and n = dk2.
Observe that

am = adk1

= (ad)k1

= 1k1

= 1.

and

an = adk2

= (ad)k2

= 1k2

= 1.

Therefore, am = 1 = an, as desired.

Conversely, suppose am = 1 and an = 1.
Let 〈a〉 be the cyclic group subgroup of (C∗, ·) generated by a with identity

1.
Since m ∈ Z+ and am = 1, then a has finite order.
Let t be the order of a.
Then t is the least positive integer such that at = 1.
Since a has finite order t, then ak = 1 iff t|k for all integers k.
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Since am = 1 and m ∈ Z, then t|m.
Since an = 1 and n ∈ Z, then t|n.
Since t|m and t|n, then t is a common divisor of m and n.
Any common divisor of m and n divides gcd(m,n), so t divides gcd(m,n).
Hence, t|d.
Since t|d and d ∈ Z, then we conclude ad = 1, as desired.

Exercise 110. Let z ∈ C∗.
If |z| 6= 1, then z has infinite order.

Proof. Suppose |z| 6= 1.
We prove z has infinite order by contradiction.
Suppose z does not have infinite order.
Then z has finite order, so there exists a positive integer n such that zn = 1.
Observe that

0 = 1− 1

= |1| − 1

= |zn| − 1

= |z|n − 1.

Hence, |z|n − 1 = 0.

Since |z| ∈ R and n ∈ Z+ and |z|n − 1 = (|z| − 1)
∑n−1
k=0 |z|k for all n ∈ Z+,

then |z|n − 1 = (|z| − 1)
∑n−1
k=0 |z|k.

Thus, 0 = |z|n − 1 = (|z| − 1)
∑n−1
k=0 |z|k, so |z| − 1 = 0.

Consequently, |z| = 1.
But, this contradicts the assumption |z| 6= 1.
Therefore, z has infinite order.

Exercise 111. Let z ∈ T such that z = cos θ + i sin θ and θ ∈ Q∗.
Then z has infinite order.

Proof. We prove by contradiction.
Suppose z does not have infinite order.
Then z has finite order, so there exists a positive integer n such that zn = 1.
Since θ ∈ Q∗, then there exist nonzero integers a and b such that θ = a

b .
Since a 6= 0 and b 6= 0, then θ 6= 0.
Observe that

ei0 = 1

= zn

= (cisθ)n

= (eiθ)n

= einθ

= ein
a
b .
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Thus, ei0 = ei
na
b , so 0 = na

b .
Since b 6= 0, the multiply both sides to obtain 0 = na.
Since a 6= 0, then divide to obtain 0 = n.
Since n ∈ Z+, then n > 0, so n 6= 0.
Hence, we have n = 0 and n 6= 0, a contradiction.
Therefore, z has infinite order.

Exercise 112. Let (G, ∗) be an abelian group.
Let H be a finite cyclic subgroup of order p.
Let K be a finite cyclic subgroup of order q.
Then G contains a cyclic subgroup of order lcm(p, q).
If gcd(p, q) = 1, then G contains a cyclic subgroup of order pq.

Proof. Every element of G generates a cyclic subgroup of G.
Let H be the finite cyclic subgroup of G generated by a ∈ G. Then H =

{ak : k ∈ Z} and |a| = p. Let K be the finite cyclic subgroup of G generated by
b ∈ G. Then H = {bk : k ∈ Z} and |b| = q.

Let g = ab. Since G is closed under its binary operation, then g ∈ G. Let
M be the cyclic subgroup of G generated by g. Then M = {(ab)k : k ∈ Z} and
|M | = |ab|.

We prove ab has finite order. Since |a| = p and |b| = q, then p and q are the
least positive integers such that ap = e and bq = e. Since p and q are positive
integers, then so is pq. Observe that

(ab)pq = apqbpq

= (ap)qbqp

= eq(bq)p

= eep

= ep

= e.

Hence, there exists a positive integer pq such that (ab)pq = e.
Thus, ab has finite order.
Let k be the order of ab.
Then k is the least positive integer such that (ab)k = e.
Let c be a multiple of q such that c ≡ 1 (mod p).
This is NOT CORRECT because c may not exist, so the subsequent logic

of this proof will not work.
Then c = qm for some integer m.
Since a has finite order p and c ≡ 1 (mod p), then ac = a1.
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Thus,

(ab)c = acbc

= acbqm

= ac(bq)m

= ac(e)m

= ace

= ac

= a1

= a.

Therefore,

p = |a|
= |(ab)c|

=
|ab|

gcd(c, |ab|)

=
k

gcd(c, k)
.

Hence, p ∗ gcd(c, k) = k.
Since gcd(c, k) is an integer, then p|k.
Let d be a multiple of p such that d ≡ 1 (mod q).
Then d = pn for some integer n and bd = b1 since |b| = q.
Thus,

(ab)d = adbd

= apnbd

= (ap)nbd

= (e)nbd

= ebd

= bd

= b1

= b.

Therefore,

q = |b|
= |(ab)d|

=
|ab|

gcd(d, |ab|)

=
k

gcd(d, k)
.
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Hence, q ∗ gcd(d, k) = k.
Since gcd(d, k) is an integer, then q|k.
Thus, we have p|k and q|k, so k is a multiple of p and q.
The least positive multiple of p and q is the least common multiple of p and

q.
Hence, k = lcm(p, q).
Suppose gcd(p, q) = 1.
Then

k = lcm(p, q)

=
pq

gcd(p, q)

=
pq

1
= pq.

Exercise 113. If G is a finite group with an element g of order 5 and an element
h of order 7, then |G| ≥ 35.

Solution. The hypothesis is:
G is a finite group.
g, h ∈ G such that |g| = 5 and |h| = 7.
We must prove |G| ≥ 35.

Proof. Since G is a finite group, then the order of G is some positive integer,
say n.

We must prove n ≥ 35.
Every element of a finite group has finite order.
Moreover, the order of an element of a finite group divides the order of the

group.
Hence, |g| divides n and |h| divides n.
Thus, 5|n and 7|n, so n is a multiple of 5 and 7.
Therefore, n is a multiple of 35.
The least positive multiple of 35 is the least common multiple of 35, namely

35.
Therefore, n ≥ 35.

Exercise 114. Let G be a group.
Let a, b ∈ G such that |b| = 2 and ba = a2b.
What is the order of a?

Solution. Let e be the identity of G.
Either a = e or a 6= e.
We consider these cases separately.
Case 1: Suppose a = e.
Then a1 = e, so |a| = 1.

87



Case 2: Suppose a 6= e.
Suppose a2 = e.
Then ba = a2b = eb = b = be.
By left cancellation, we have a = e.
Thus, we have a = e and a 6= e, a contradiction.
Therefore, a2 6= e.
Since |b| = 2, then b2 = e.
Since ba = a2b, then b = a−2ba.
Thus, e = b2 = (a−2ba)(a−2ba) = a−2ba−1ba = (a−2ba−1)(ba).
Hence, (ba)−1 = a−2ba−1, so a−1b−1 = a−2ba−1.
Therefore, ab−1 = ba−1.
Observe that

a3 = a(a2)

= a(bab−1)

= (ab)(ab−1)

= (ab)(ba−1)

= a(bb)a−1

= aea−1

= aa−1

= e.

Since a 6= e and a2 6= e and a3 = e, then |a| = 3.
Therefore, either |a| = 1 or |a| = 3.

Exercise 115. In Zn, if gcd(a, n) = d, then 〈[a]〉 = 〈[d]〉.

Proof. Let n ∈ Z+ and a ∈ Z.
Suppose gcd(a, n) = d.
Then d ∈ Z+ and d|a and d|n.
Since d|a, then a = dk for some integer k.
Thus, [a]n = [dk]n = [kd]n = [k][d] = k[d].
Hence, [a] ∈ 〈[d]〉.
Since 〈[a]〉 is the smallest subgroup that contains [a], then any subgroup

of Zn that contains [a] must contain 〈[a]〉. Thus, 〈d〉 must contain 〈[a]〉, so
〈[a]〉 ⊂ 〈[d]〉.

We prove [d] ∈ 〈[a]〉.
Since d is the least positive linear combination of a and n, then there exist

integers s and t such that d = sa + nt. Thus, d − sa = nt. Since n > 0, then
n|(d − sa), so d ≡ sa (mod n). Hence, [d] = [sa] = [s][a] = s[a], so [d] ∈ 〈[a]〉.
Therefore, 〈[a]〉 must contain 〈[d]〉, so 〈[d]〉 ⊂ 〈[a]〉.

Since 〈[a]〉 ⊂ 〈[d]〉 and 〈[d]〉 ⊂ 〈[a]〉, then 〈[a]〉 = 〈[d]〉.
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