Group Theory Exercises 3

Jason Sass

July 24, 2023

Permutation Groups

Exercise 1. Find the inverse of each permutation in S_{3}.

Solution.

Let $S=\{1,2,3\}$.
The symmetric group of 3 symbols, denoted S_{3}, contains $\left|S_{3}\right|=3!=6$ permutations of S.

The permutations are:
I. (123)

$$
\mathrm{id}=i d^{-1}\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)
$$

II. (13 2)
$\alpha=\alpha^{-1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)=$ keep position 1 fixed, and swap 2 and 3
III. (2 1 3)

$$
\beta=\beta^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\text { keep position } 3 \text { fixed, and swap } 1 \text { and } 2
$$

IV. (2 3 1)

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\text { rotate each position once to the left }
$$

V. (3 1 2 $)$

$$
\sigma^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\text { rotate each position once to the right }
$$

VI. (3 2 1)

$$
\tau=\tau^{-1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\text { keep position } 2 \text { fixed, and swap } 1 \text { and } 3
$$

Exercise 2. Verify that $(a b)^{-1} \neq a^{-1} b^{-1}$ in S_{3}.

$$
\begin{aligned}
& \text { Let } a=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \\
& \text { Let } b=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
\end{aligned}
$$

Solution. Observe that

$$
\begin{aligned}
a b & =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \\
(a b)^{-1} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \\
a^{-1} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
b^{-1} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
a^{-1} b^{-1} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Therefore, $(a b)^{-1} \neq a^{-1} b^{-1}$.
Exercise 3. Analyze the order of the group (S_{3}, \circ).
Solution. Observe that S_{3} is the symmetric group of order $3!=6$ under function composition.

The Cayley table for $\left(S_{3}, \circ\right)$ is shown below.
$\left.\begin{array}{l|c|c|c|c|c|r}\circ & (1) & \left(\begin{array}{ll}1 & 2\end{array}\right) & \left(\begin{array}{ll}1 & 3\end{array}\right) & \left(\begin{array}{ll}2 & 3\end{array}\right) & \left(\begin{array}{llll}1 & 2 & 3\end{array}\right) & \left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \\ \hline(1) & (1) & (1 & 2\end{array}\right)$

The cyclic subgroups generated by each element are shown below.

$$
\begin{aligned}
& \langle(1)\rangle=\{(1)\} \text { and }|(1)|=1 \\
& \langle(12)\rangle=\left\{(1),\left(\begin{array}{ll}
1 & 2)
\end{array}\right\} \text { and } \left\lvert\,\left(\left.\begin{array}{ll}
1 & 2)
\end{array} \right\rvert\,=2\right.\right.\right. \\
& \left\langle\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\rangle=\left\{(1),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\} \text { and }\left|\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right|=2 \\
& \langle(23)\rangle=\left\{(1),\left(\begin{array}{ll}
2 & 3)\} \text { and }|(23)|=2
\end{array}\right.\right. \\
& \left\langle\left(\begin{array}{ll}
1 & 2
\end{array} 3\right)\right\rangle=\left\{(1),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\} \text { and }\left|\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right|=3 \\
& \left\langle\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\rangle=\left\{(1),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\} \text { and }\left|\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right|=3 \\
& \text { There are no generators of } S_{3} \text {, so } S_{3} \text { is not cyclic. }
\end{aligned}
$$

The order of the inverse of an element is the same as the order of the element.

$$
\begin{aligned}
& |(1)|=\left|(1)^{-1}\right|=|(1)|=1 \\
& |(12)|=\left|\left(\begin{array}{ll}
1 & 2
\end{array}\right)^{-1}\right|=\left|\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right|=2 \\
& \left|\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right|=\left|\left(\begin{array}{ll}
1 & 3
\end{array}\right)^{-1}\right|=\left|\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right|=2 \\
& \left|\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right|=\left|\left(\begin{array}{ll}
2 & 3
\end{array}\right)^{-1}\right|=\left|\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right|=2 \\
& \left|\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right|=\left|\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{-1}\right|=\left|\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right|=3 \\
& \left|\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right|=\left|\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)^{-1}\right|=\left|\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right|=3
\end{aligned}
$$

Exercise 4. Show that the solution to the linear equation $a x=b$ may not be the same as the solution to the equation $y a=b$ for given elements a and b of a group.

Solution. Consider the symmetric group (S_{3}, \circ).
Let

$$
a=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

and

$$
b=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

The equation $a x=b$ has solution

$$
x=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

The equation $y a=b$ has solution

$$
y=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Observe that $x \neq y$.
Exercise 5. Let $G=\{i d, \sigma, \tau, \mu\}$ be a subset of the symmetric group (S_{5}, \circ) where

$$
i d=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

$$
\begin{aligned}
& \sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 5 & 4
\end{array}\right) \\
& \tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 4 & 5
\end{array}\right) \\
& \mu=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right)
\end{aligned}
$$

Show that (G, \circ) is a subgroup of S_{5}.
Solution. Each element of G is a permutation of the set $X=\{1,2,3,4,5\}$, so G is a subset of S_{5}, the symmetric group on 5 symbols.

The Cayley table is below.

\circ	id	σ	τ	μ
id	id	σ	τ	μ
σ	σ	id	μ	τ
τ	τ	μ	id	σ
μ	μ	τ	σ	id

We prove G is a subgroup of S_{5}.
Since $i d \in G$, then $G \neq \emptyset$.
Since $|G|=4$, then G is a finite set.
Since $G \neq \emptyset$ and G is finite and G is a subset of S_{5}, then G is a nonempty finite subset of S_{5}.

The Cayley multiplication table shows that G is closed under function composition.

Since G is a nonempty finite subset of S_{5} and G is closed under function composition, then by the finite subgroup test, G is a subgroup of S_{5}, so $G<S_{5}$.

Therefore, G is a permutation group on X.

Observe that G is abelian even though S_{5} is non-abelian.

Cycle notation for permutations

Exercise 6. Write the permutation below using cycle notation.

$$
\sigma=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 3 & 5 & 1 & 4 & 2 & 7
\end{array}\right)
$$

Solution. Observe that $\sigma=\left(\begin{array}{llll}1 & 6 & 2 & 5\end{array}\right)(7)=\left(\begin{array}{llll}1 & 6 & 2 & 3\end{array} 54\right)$.
We see that σ is a cycle of length 6 .
In cycle notation a $\operatorname{loop}(1$ cycle $=$ a single element that maps to itself) doesn't change the permutation, so there is no need to write it explicitly.

Therefore, we omit the loop when writing a permutation using cycle notation.

Exercise 7. Write the permutation below using cycle notation.

$$
\tau=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 4 & 2 & 3 & 5 & 6
\end{array}\right)
$$

Solution. Observe that $\tau=(1)(243)(5)(6)=\left(\begin{array}{ll}2 & 4\end{array}\right)$.
We see that τ is a 3 cycle.
Exercise 8. A cycle can be written in multiple ways.
Let $a=\binom{1}{2}$
Solution. Observe that $a=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)=\left(\begin{array}{lll}5 & 1 & 2\end{array}\right)=\left(\begin{array}{lll}2 & 5 & 1\end{array}\right)$.
Exercise 9. Compute the inverse of the cycle below.
Let $\tau=(135)$
Solution. Observe that $\tau^{-1}=\left(\begin{array}{lll}1 & 5 & 3\end{array}\right)=\left(\begin{array}{lll}3 & 1 & 5\end{array}\right)=\left(\begin{array}{lll}5 & 3 & 1\end{array}\right)$.
Note that if we visualize τ as a cycle with elements in order clockwise, then τ^{-1} is the same elements of τ listed counter-clockwise.

Exercise 10. Write the permutation below using cycle notation.

$$
\alpha=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 1 & 3 & 6 & 5
\end{array}\right)
$$

Solution. There are many ways to decompose this permutation.
Observe that

$$
\begin{aligned}
& \alpha=(1243)(56) \\
& =(2431)(56) \\
& =(3124)(56) \\
& =(4312)(56) \\
& =(56)(1243) \\
& =(56)(2431) \\
& =(56)(3124) \\
& =(56)(4312) \\
& =(1243)(65) \\
& =(2431)(65) \\
& =(3124)(65) \\
& =(4312)(65)
\end{aligned}
$$

The conventional way is to write the smallest number first, so we can write $\alpha=(1243)(56)$.

We see that α is a product of a 4 cycle and a 2 cycle.
Exercise 11. Write the permutation below using cycle notation.

$$
a=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 5 & 3
\end{array}\right)
$$

Solution. Observe that

$$
a=(12453)
$$

We see that a is a 5 cycle.
Exercise 12. Write the permutation below using cycle notation.

$$
b=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 5 & 1 & 3
\end{array}\right)
$$

Solution. There are many ways to write this permutation.
Observe that

$$
b=(14)(2)(35)=(14)(35)
$$

We see that b is a product of 2 cycles.
Exercise 13. Write the permutation below using cycle notation.

$$
c=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 1 & 4 & 2
\end{array}\right)
$$

Solution. There are many ways to write this permutation.
Observe that

$$
c=(13)(25)(4)=(13)(25)
$$

We see that c is a product of 2 cycles.
Exercise 14. Write the permutation below using cycle notation.

$$
d=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 2 & 5
\end{array}\right)
$$

Solution.

Observe that

$$
d=(1)(24)(3)(5)=(24)
$$

We see that d is a 2 cycle(transposition).
Exercise 15. Multiply the below permutations.

$$
\begin{aligned}
& a=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \\
& b=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

Solution. Observe that $a b=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)(3)=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $b=$ $\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)=(1)(23)=(23)$.

We see that $a b \neq b a$.

Exercise 16. Multiply the below permutations.
$a=\left(\begin{array}{llll}1 & 3 & 5 & 2\end{array}\right)$
$b=(256)$.
Solution. Observe that
$a b=\left(\begin{array}{llll}1 & 3 & 5\end{array}\right)(256)=\left(\begin{array}{llll}1 & 3 & 5 & 2 \\ 3 & 5 & 2 & 1\end{array}\right)\left(\begin{array}{lll}2 & 5 & 6 \\ 5 & 6 & 2\end{array}\right)=\left(\begin{array}{lllll}1 & 3 & 5 & 6 & 2 \\ 3 & 5 & 6 & 1 & 2\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)(2)=\left(\begin{array}{ll}1 & 3\end{array} 6\right)$
Therefore, $a b=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)$.
Exercise 17. Multiply the below permutations.
$a=\left(\begin{array}{llll}1 & 3 & 5 & 2\end{array}\right)$
$b=\left(\begin{array}{lll}1 & 6 & 3\end{array}\right)$.
Solution. We compute $a b=\left(\begin{array}{lllll}1 & 3 & 5 & 2\end{array}\right)\left(\begin{array}{lll}1 & 6 & 3\end{array}\right)=\left(\begin{array}{llll}1 & 6 & 5 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$.
Exercise 18. Multiply the below permutations.
$a=\left(\begin{array}{ll}1 & 3\end{array} 4\right)$
$b=\left(\begin{array}{ll}2 & 3\end{array}\right)$.
Solution. We compute $a b=\left(\begin{array}{lll}1 & 4 & 4\end{array}\right)(234)=(135)(24)$.
Exercise 19. Let $a=\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $b=(27)$.
Then a and b are disjoint cycles.
Solution. Since cycles a and b have no elements in common, then a and b are disjoint cycles.

Observe that $a b=(135)(27)$ and $b a=(27)(135)=(135)(27)$.
Therefore, $a b=b a$, so a and b commute.
Exercise 20. Let $a=\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $b=(347)$.
Then a and b are not disjoint cycles.
Solution. Since 3 is a common element in cycles a and b, then a and b are not disjoint cycles.

Observe that $a b=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)\left(\begin{array}{lll}3 & 4 & 7\end{array}\right)=\left(\begin{array}{llll}1 & 3 & 4 & 7\end{array}\right)$ and $b a=\left(\begin{array}{llll}3 & 4 & 7\end{array}\right)\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)=$ (14735).

Therefore, $a b \neq b a$, so a and b do not commute.
Exercise 21. Compute the products and write as a decomposition of disjoint cycles.

$$
\begin{aligned}
\sigma & =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 4 & 3 & 1 & 5 & 2
\end{array}\right) \\
\tau & =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 2 & 1 & 5 & 6 & 4
\end{array}\right)
\end{aligned}
$$

Solution. Observe that

```
    \(\sigma=\left(\begin{array}{lll}1 & 6 & 2\end{array}\right)(3)(5)=\left(\begin{array}{ll}1 & 6\end{array} 24\right)\) is a 4 cycle
    and
    \(\tau=(13)(2)(456)=(13)(456)\) is a product of 2 disjoint cycles
    and
    \(\sigma \tau=(136)(245)\) is a product of 2 disjoint cycles
    and
    \(\tau \sigma=(143)(256)\) is a product of 2 disjoint cycles.
```

Exercise 22. Compute (16)(253) in different ways.
Solution. Since $\left(\begin{array}{llll}1 & 6\end{array}\right)\left(\begin{array}{lll}2 & 5 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 6\end{array}\right)(23)(25)=\left(\begin{array}{lll}1 & 6\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)(23)(45)(25)$, then there is no unique representation of a permutation as a product of transpositions. Hence, there are many ways to write a permutation as a product of transpositions.

Exercise 23. Compute the product of the cycles below in S_{8}.
$(145)(78)(257)$.
Solution. Let $\sigma=(145)(78)(257)$.
Then $\sigma=(145872)$.
Exercise 24. Compute the product of the cycles below in S_{8}.
$(1327)(486)$.
Solution. Let $\sigma=\left(\begin{array}{ll}1 & 2 \\ 7\end{array}\right)(486)$.
Then σ is a product of disjoint cycles.
Exercise 25. Compute the product of the cycles below in S_{8}.
$(12)(478)(21)(72815)$.
Solution. Let $\sigma=(12)(478)(21)(72815)$.
Then

$$
\begin{aligned}
\sigma & =(12)(478)(21)(72815) \\
& =(12)(21)(478)(72815) \\
& =(12)(12)(478)(72815) \\
& =i d(478)(72815) \\
& =(478)(72815) \\
& =(158)(247)
\end{aligned}
$$

Exercise 26. Compute the order of the cycle below in S_{8}. (1457).

Solution. Let $\sigma=(1457)$.
Then $\sigma^{2}=(15)(47)$ and
$\sigma^{3}=(1754)=(15)(17)(45)$ and

$$
\sigma^{4}=(1)=i d
$$

Thus, $|\sigma|=4$.
Since the length of σ is 4 , then the order of σ is 4 .
Exercise 27. Compute the order of the permutation below in S_{8}.
(45)(237).

Solution. Let $\sigma=(45)(237)=(237)(45)$.
Then $\sigma^{2}=(273)$ and
$\sigma^{3}=(45)$ and
$\sigma^{4}=\left(\begin{array}{ll}23 & 7\end{array}\right)$ and
$\sigma^{5}=(273)(45)$ and
$\sigma^{6}=(1)=i d$.
Thus, $|\sigma|=6$.
The order of σ is the least common multiple of the orders of its disjoint cycles.

Therefore, $|\sigma|=\operatorname{lcm}(3,2)=6$.
Exercise 28. Compute the order of the permutation below in S_{8}.
(14)(3578).

Solution. Let $\tau=(14)(3578)$.
Then $\tau^{2}=(37)(58)$ and
$\tau^{3}=(14)(3875)$ and
$\tau^{4}=(1)=i d$.
Thus, $|\tau|=4$.
The order of τ is the least common multiple of the orders of its disjoint cycles.

Therefore, $|\tau|=\operatorname{lcm}(2,4)=4$.
Exercise 29. Compute the order of the permutation below in S_{8}.

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 6 & 3 & 7 & 4 & 5 & 1
\end{array}\right)
$$

Solution. Since $\sigma=(18)(364)(57)$, then
$\sigma^{2}=(346)$ and
$\sigma^{3}=\left(\begin{array}{ll}1 & 8\end{array}\right)(57)$ and
$\sigma^{4}=\left(\begin{array}{ll}3 & 6\end{array}\right)$ and
$\sigma^{5}=(18)(346)(57)$ and
$\sigma^{6}=(1)=i d$.
Thus, $|\sigma|=6$.
The order of σ is the least common multiple of the orders of its disjoint cycles.

Therefore, $|\sigma|=\operatorname{lcm}(2,3,2)=6$.
Exercise 30. Compute the order of the permutation below in S_{8}.

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 6 & 4 & 1 & 8 & 2 & 5 & 7
\end{array}\right)
$$

Solution. Since $\sigma=(134)(26)(587)$, then
$\sigma^{2}=(143)(578)$ and
$\sigma^{3}=(26)$ and
$\sigma^{4}=(134)(587)$ and
$\sigma^{5}=(143)(26)(578)$ and
$\sigma^{6}=(1)=i d$.
Thus, $|\sigma|=6$.
The order of σ is the least common multiple of the orders of its disjoint cycles.

Therefore, $|\sigma|=\operatorname{lcm}(3,2,3)=6$.
Exercise 31. Compute the order of the permutation below in S_{8}.

$$
\sigma=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 1 & 4 & 7 & 2 & 5 & 8 & 6
\end{array}\right)
$$

Solution. Since $\sigma=(13478652)$, then
$\sigma^{2}=(1485)(2376)$ and
$\sigma^{3}=(17538246)$ and
$\sigma^{4}=(18)(27)(36)(45)$ and
$\sigma^{5}=(16428357)$ and
$\sigma^{6}=(1584)(2673)$ and
$\sigma^{7}=(12568743)$ and
$\sigma^{8}=(1)=i d$.
Thus, $|\sigma|=8$.
Since σ is a cycle of length 8 , then the order of σ is 8 .
Therefore, $|\sigma|=8$.
Exercise 32. Compute the permutation product below and analyze results.
$(1345)(234)$.
Solution. Let $\sigma=(1345)(234)$.
Then $\sigma=(1345)(234)=(135)(24)=(24)(135)$.
The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(2,3)=6$.

Exercise 33. Compute the permutation product below in S_{5} and analyze results.
$(12)(1253)$.
Solution. Let $\sigma=\left(\begin{array}{l}1\end{array}\right)\left(\begin{array}{l}1 \\ 2\end{array} 53\right)$.
Then $\sigma=(253)$.
Since σ is a cycle of length 3 , then the order of σ is $|\sigma|=3$.
Exercise 34. Compute the permutation product below in S_{5} and analyze results.
$(143)(23)(24)$.

Solution. Let $\sigma=(143)(23)(24)$.
Then $\sigma=(14)(23)$.
The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(2,2)=2$.

Exercise 35. Compute the permutation product below in S_{6} and analyze results.
$(1423)(34)(56)(1324)$.
Solution. Let $\sigma=\left(\begin{array}{ll}143)(23)(24)\end{array}\right.$.
Then $\sigma=(12)(56)$.
The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(2,2)=2$.

Exercise 36. Compute the permutation product below in S_{5} and analyze results.
$(1254)(13)(25)$.
Solution. Let $\sigma=(1254)(13)(25)$.
Then $\sigma=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$.
Since σ is a cycle of length 4 , then the order of σ is $|\sigma|=4$.
Exercise 37. Compute the permutation product below in S_{5} and analyze results.
$(1254)(13)(25)^{2}$.
Solution. Let $\sigma=(1254)(13)(25)^{2}$.
Then $\sigma=\left(\begin{array}{llll}1 & 3 & 2 & 5\end{array}\right)$.
Since σ is a cycle of length 5 , then the order of σ is $|\sigma|=5$.
Exercise 38. Compute the permutation product below in S_{5} and analyze results.
$(1254)^{-1}(123)(45)(1254)$.
Solution. Let $\sigma=\left(\begin{array}{ll}1 & 2\end{array} 4^{-1}\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(1254)\right.$.
Then $\sigma=\left(\begin{array}{ll}1 & 3\end{array}\right)(25)$.
The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(3,2)=6$.

Exercise 39. Compute the permutation product below in S_{5} and analyze results.
$(1254)^{2}(123)(45)$.
Solution. Let $\sigma=\left(\begin{array}{ll}1 & 5\end{array}\right)^{2}(123)(45)$.
Then $\sigma=(14)(235)$.
The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(2,3)=6$.
Exercise 40. Compute the permutation product below in S_{5} and analyze results.
$(123)(45)(1254)^{-2}$.

Solution. Let $\sigma=(123)(45)(1254)^{-2}$.
Then $\sigma=(143)(25)$.
The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(3,2)=6$.

Exercise 41. Compute the permutation product below in S_{5} and analyze results.
$(1254)^{100}$.
Solution. Let $\sigma=\left(\begin{array}{llll}1 & 2 & 5\end{array}\right)^{100}$.
Let $\alpha=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)$.
Since α is a cycle of length 4 , then the order of α is 4 , so $\alpha^{4}=i d$.
Observe that

$$
\begin{aligned}
\sigma & =(1254)^{100} \\
& =\alpha^{100} \\
& =\alpha^{4 \cdot 25} \\
& =\left(\alpha^{4}\right)^{25} \\
& =i d^{25} \\
& =i d \\
& =(1)
\end{aligned}
$$

Therefore, $\sigma=(1)$ is the identity permutation.
Exercise 42. Compute the permutation product below in S_{5} and analyze results.
$(1254)^{2}$.
Solution. Let $\sigma=\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)^{2}$.
Then $\sigma=(15)(24)$.
The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(2,2)=2$.

Exercise 43. Compute the permutation product below in S_{7} and analyze results.
$(12537)^{-1}$.
Solution. Let $\sigma=(12537)^{-1}$.
Then $\sigma=\left(\begin{array}{ll}7 & 5\end{array} 21\right)$.
Since σ is a cycle of length 5 , then the order of σ is $|\sigma|=5$.
Exercise 44. Compute the permutation product below in S_{7} and analyze results.
$[(12)(34)(12)(47)]^{-1}$.
Solution. Let $\sigma=\left[\left(\begin{array}{ll}1 & 2)(34)(12)(47)\end{array}\right]^{-1}\right.$.
Then $\sigma=(374)$.
Since σ is a cycle of length 3 , then the order of σ is $|\sigma|=3$.

Exercise 45. Compute the permutation product below in S_{7} and analyze results.
$[(1235)(467)]^{-1}$.
Solution. Let $\sigma=\left[\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 6\end{array}\right)\right]^{-1}$.
Observe that

$$
\begin{aligned}
\sigma & =\left[\left(\begin{array}{lllll}
1 & 2 & 3 & 5
\end{array}\right)\left(\begin{array}{lll}
4 & 6 & 7
\end{array}\right)\right]^{-1} \\
& =\left(\begin{array}{llll}
4 & 6 & 7
\end{array}\right)^{-1}\left(\begin{array}{lllll}
1 & 2 & 3 & 5
\end{array}\right)^{-1} \\
& =\left(\begin{array}{lllll}
7 & 6 & 4
\end{array}\right)\left(\begin{array}{lllll}
5 & 2 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
4 & 7 & 6
\end{array}\right)\left(\begin{array}{lllll}
1 & 5 & 3 & 2
\end{array}\right)
\end{aligned}
$$

The order of σ is the least common multiple of the orders of its disjoint cycles, so $|\sigma|=\operatorname{lcm}(3,4)=12$.

Parity of a permutation

Exercise 46. Express the below permutation in S_{5} as a product of transpositions:
$(135)(24)$.
Solution. Let $\sigma=(135)(24)$.
We start with the identity permutation $i d$ and swap 2 and 4.
Then swap 3 and 5.
Finally, swap 1 and 3.
Therefore, $\sigma=(13)(35)(24)$.
Another approach is to breakdown the 3 cycle ($\begin{aligned} & 1 \\ & 3\end{aligned} 5$) by letting the first element 1 swap with each element beginning with 3,5 .

Then $\left(\begin{array}{ll}1 & 3\end{array}\right)=(15)(13)$.
Hence, $\sigma=(15)(13)(24)$.

Exercise 47. A permutation has no unique representation as a product of transpositions.

Express the below permutation in S_{6} as a product of transpositions in several different ways:
$(16)(253)$.
Solution. Let $\sigma=(16)(253)$.
We start with the identity permutation $i d$ and swap 2 and 5 .
Then swap 2 and 3.
Finally, swap 1 and 6.
Therefore, $\sigma=(16)(23)(25)$.
Another approach is:
We start with the identity permutation $i d$ and swap 3 and 5 .
Then swap 2 and 5.
Finally, swap 1 and 6.
Therefore, $\sigma=(16)(25)(35)$.

Another approach is:
We start with the identity permutation $i d$ and perform the following actions.

1. Swap 2 and 5.
2. Swap 4 and 5 .
3. Swap 2 and 3.
4. Swap 4 and 5 .
5. Swap 1 and 6.

Therefore, $\sigma=(16)(45)(23)(45)(25)$.
Since our convention is to apply function composition in right to left order, we write the swap actions in reverse order.

Exercise 48. Write the permutation in S_{7} below as a product of transpositions and analyze results:
(1432675).

Solution. Let $\sigma=(1432675)$.
We let the first element 1 cycle all the way through this 7 cycle, so have 6 swaps of 1 with each element of this cycle, beginning with $4,3,2,6,7,5$.

Thus, $\sigma=(15)(17)(16)(12)(13)(14)$ is a product of 6 transpositions, so σ is an even permutation.

Exercise 49. Let $H=\left\{f \in S_{5}: f(1)=1\right\}$.
Then (H, \circ) is a subgroup of $\left(S_{5}, \circ\right)$.
Proof. We prove $H \subset S_{5}$.
Since $H=\left\{f \in S_{5}: f(1)=1\right\}$, then $H \subset S_{5}$.
We prove $H \neq \emptyset$.
The identity function defined by

$$
i d=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

is an element of S_{5} and $i d(1)=1$, so $i d \in H$.
Therefore, $H \neq \emptyset$.

We prove H is a finite set.
Since $\left|S_{5}\right|=5!=120$, then S_{5} is a finite set.
Every subset of a finite set is finite.
Since S_{5} is a finite set and H is a subset of S_{5}, then we conclude H is finite.
Since $H \subset S_{5}$ and $H \neq \emptyset$ and H is finite, then H is a non-empty finite subset of S_{5}.

We prove H is closed under function composition.
Let $g, h \in H$.
Since $g \in H$, then $g \in S_{5}$ and $g(1)=1$.
Since $h \in H$, then $h \in S_{5}$ and $h(1)=1$.
Since $\left(S_{5}, \circ\right)$ is a group, then S_{5} is closed under function composition.
Since $g \in S_{5}$ and $h \in S_{5}$, then the function $g \circ h$ defined by $(g \circ h)(x)=$ $g(h(x))$ for all $x \in\{1,2,3,4,5\}$ is an element of S_{5}, so $g \circ h \in S_{5}$.

Since $(g \circ h)(1)=g(h(1))=g(1)=1$, then $(g \circ h)(1)=1$.
Since $g \circ h \in S_{5}$ and $(g \circ h)(1)=1$, then $g \circ h \in H$, so H is closed under function composition.

Since H is a non-empty finite subset of S_{5} and H is closed under function composition, then by the finite subgroup test, H is a subgroup of S_{5}, so $(H, \circ)<$ $\left(S_{5}, \circ\right)$.

Exercise 50. Find a subgroup of S_{7} that contains 12 elements.
Solution. Let $\sigma=(1,2,3,4)(5,6,7)$.
Then $|\sigma|=\operatorname{lcm}(4,3)=12$, so $\langle\sigma\rangle$ is a cyclic subgroup of order 12 generated by σ.

Exercise 51. Let $H=\left\{\sigma \in S_{5}: \sigma(5)=5\right\}$.
Show that $H<S_{5}$ and compute $|H|$.
Solution. Let $\sigma \in H$.
Then $\sigma \in S_{5}$ and $\sigma(5)=5$.
Thus, $\sigma: X \rightarrow X$ is a permutation of 5 letters, where $X=\{1,2,3,4,5\}$.
Since $\sigma(5)=5$, then there are 4 choices for $\sigma(1)$ and for each choice there are then 3 choices for $\sigma(2)$ which then leaves 2 choices for $\sigma(3)$ and then leaves just 1 choice for $\sigma(4)$.

Hence, there are 4 ! different permutations, so $|H|=4!=24$.
To prove $H<S_{5}$, we use the finite subgroup test.
Since S_{5} is finite and $H \subset S$, then H is finite.
Since $(1) \in H$, then H is not empty.

Let $\alpha, \beta \in H$.
Then $\alpha, \beta \in S_{5}$ and $\alpha(5)=5=\beta(5)$.
By closure of $S_{5}, \alpha \beta \in S_{5}$.
Observe that

$$
\begin{aligned}
(\alpha \beta)(5) & =\alpha(\beta(5)) \\
& =\alpha(5) \\
& =5
\end{aligned}
$$

Since $\alpha \beta \in S_{5}$ and $(\alpha \beta)(5)=5$, then $\alpha \beta \in H$.
Therefore, H is closed under permutation multiplication.
Hence, $H<S_{5}$.

Exercise 52. List all subgroups of S_{4}.
Solution. Let $X=\{1,2,3,4\}$.
Let $\left(S_{4}, \circ\right)$ be the symmetric group of degree 4 .
Then $\left|S_{4}\right|=4!=24$, so there are 24 permutations in S_{4}.
We first list all 24 permutations of X.
We enumerate each choice as a branching tree to obtain:
$1234,1243,1324,1342,1423,1432$ and
2134, 2143, 2314, 2341, 2413, 2431 and
$3124,3142,3214,3241,3412,3421$ and
$4123,4132,4213,4231,4312,4321$.
Now, we need to write these in cycle notation:
The elements in S_{4} are:
$i d,(34),(23),(234),(243),(24)$,
(12), (12)(34), (123), (1234), (1243), (124),
(132), (1342), (13), (134), (13)(24), (1324),
(1432), (142), (143), (14), (1423), (14)(23).

The element of order 1 is $i d$, so the subgroup of order 1 is the trivial subgroup $\{i d\}$.

The elements of order 2 are: $(34),(23),(24),(12),(12)(34),(13),(13)(24),(14),(14)(23)$.
Each of these elements generates a cyclic subgroup of S_{4} of order 2 and all of these subgroups are the same up to isomorphism.

Thus, we have the following subgroups of order 2 :
$\{i d,(34)\}$
$\{i d,(23)\}$
$\{i d,(24)\}$
$\{i d,(12)\}$
$\{i d,(12)(34)\}$
$\{i d,(13)\}$
$\{i d,(13)(24)\}$
$\{i d,(14)\}$
$\{i d,(14)(23)\}$
The elements of order 3 are: (234), (243), (123), (124), (132), (134), (142), (143).
Each of these elements generates a cyclic subgroup of S_{4} of order 3 and all of these subgroups are the same up to isomorphism.

Thus, we have the following subgroups of order 3 :
$\{i d,(234),(243)\}$
$\{i d,(123),(132)\}$
$\{i d,(124),(142)\}$
$\{i d,(134),(143)\}$
The elements of order 4 are: (1234), (1243), (1342), (1324), (1432), (1423).
Each of these elements generates a cyclic subgroup of S_{4} of order 4 and all of these subgroups are the same up to isomorphism.

Thus, we have the following subgroups of order 4:
$\{i d,(1234),(13)(24),(4321)\}$
$\{i d,(1243),(14)(23),(3421)\}$
$\{(1324),(12)(34),(1423), i d\}$
Exercise 53. Let $\alpha, \beta \in S_{n}$.
Then $\alpha^{-1} \beta^{-1} \alpha \beta$ is even.
Proof. The permutations α and β are each either even or odd.
There are 4 cases to consider.
Case 1: Suppose α, β are both even.
Then α and β have the same parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α^{-1} is even and β^{-1} is even, so α^{-1} and β^{-1} have the same parity.
The composition of two permutations of the same parity is even.
Hence, $\alpha \beta$ is even and $\alpha^{-1} \beta^{-1}$ is even.
Therefore, $\alpha \beta$ and $\alpha^{-1} \beta^{-1}$ have the same parity.
Thus, $\alpha^{-1} \beta^{-1} \alpha \beta$ is even.
Case 2: Suppose α, β are both odd.
Then α and β have the same parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α^{-1} is odd and β^{-1} is odd, so α^{-1} and β^{-1} have the same parity.
The composition of two permutations of the same parity is even.
Hence, $\alpha \beta$ is even and $\alpha^{-1} \beta^{-1}$ is even.
Therefore, $\alpha \beta$ and $\alpha^{-1} \beta^{-1}$ have the same parity.
Thus, $\alpha^{-1} \beta^{-1} \alpha \beta$ is even.
Case 3: Suppose α is even and β is odd.
Then α and β have opposite parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α^{-1} is even and β^{-1} is odd, so α^{-1} and β^{-1} have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, $\alpha \beta$ is odd and $\alpha^{-1} \beta^{-1}$ is odd.
Therefore, $\alpha \beta$ and $\alpha^{-1} \beta^{-1}$ have the same parity.
The composition of two permutations of the same parity is even.
Hence, $\alpha^{-1} \beta^{-1} \alpha \beta$ is even.
Case 4: Suppose α is odd and β is even.
Then α and β have opposite parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α^{-1} is odd and β^{-1} is even, so α^{-1} and β^{-1} have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, $\alpha \beta$ is odd and $\alpha^{-1} \beta^{-1}$ is odd.
Therefore, $\alpha \beta$ and $\alpha^{-1} \beta^{-1}$ have the same parity.
The composition of two permutations of the same parity is even.
Hence, $\alpha^{-1} \beta^{-1} \alpha \beta$ is even.
Therefore, in all cases $\alpha^{-1} \beta^{-1} \alpha \beta$ is even, as desired.
Exercise 54. If $\tau \in S_{n}$ has order m, then $\sigma \tau \sigma^{-1}$ has order m for all $\sigma \in S_{n}$.
Proof. Suppose $\tau \in S_{n}$ and $|\tau|=m$.
Then m is the least positive integer such that $\tau^{m}=(1)$.
Hence, for every $s \in \mathbb{Z}^{+}$such that $\tau^{s}=(1), m \leq s$.

Let $\sigma \in S_{n}$.
Since S_{n} is a finite group, then the element $\sigma \tau \sigma^{-1} \in S_{n}$ has finite order. Let k be the order of $\sigma \tau \sigma^{-1}$.
Then k is the least positive integer such that $\left(\sigma \tau \sigma^{-1}\right)^{k}=(1)$.
Observe that

$$
\begin{aligned}
\left(\sigma \tau \sigma^{-1}\right)^{m} & =\sigma \tau^{m} \sigma^{-1} \\
& =\sigma(1) \sigma^{-1} \\
& =(1)
\end{aligned}
$$

Since $\left(\sigma \tau \sigma^{-1}\right)^{m}=(1)$ iff $k \mid m$, then $k \mid m$.
Since $k, m \in \mathbb{Z}^{+}$, then this implies $k \leq m$.
Observe that

$$
\begin{aligned}
(1) & =\left(\sigma \tau \sigma^{-1}\right)^{k} \\
& =\sigma \tau^{k} \sigma^{-1}
\end{aligned}
$$

Hence, $\sigma=\sigma \tau^{k}$, so $\sigma(1)=\sigma \tau^{k}$.
By cancellation, (1) $=\tau^{k}$.
Thus, $m \leq k$.
Since $k \leq m$ and $m \leq k$, then $m=k$.
Therefore, $\left|\sigma \tau \sigma^{-1}\right|=m$.
Exercise 55. Let $n \geq 1$.
Let $\sigma \in S_{n}$.
Then σ can be written as a product of at most $n-1$ transpositions.
Proof. Either σ is the identity permutation or it is not.
We consider these cases separately.
Case 1: Suppose $\sigma=i d$.
Since the identity permutation has no 2 cycles, then $i d$ can be written as a product of zero transpositions.

Thus, σ can be written as a product of zero transpositions and $0 \leq n-1$.
Case 2: Suppose $\sigma \neq i d$.
Any permutation of a nonempty finite set can be written as a finite product of disjoint cycles.

Since S_{n} is nonempty and finite, then σ can be written as a finite product of disjoint cycles.

Thus, there exist k disjoint cycles $c_{1}, c_{2}, \ldots, c_{k}$ such that $\sigma=c_{1} c_{2} \cdots c_{k}$ and $k>0$.

Let l_{i} be the length of the cycle c_{i} for each $i=1,2, \ldots, k$.
Since the sum of the cycle lengths of all the disjoint cycles cannot exceed n, then $0 \leq l_{1}+l_{2}+\ldots+l_{k} \leq n$.

Hence, $0 \leq \sum_{i=1}^{k} l_{i} \leq n$.

If d is a cycle of length m, then $d=\left(d_{1}, d_{2}, \ldots, d_{m}\right)=\left(d_{1}, d_{m}\right)\left(d_{1}, d_{m-1}\right), \ldots\left(d_{1}, d_{2}\right)$. Hence d is a product of $m-1$ transpositions.
Thus, any cycle of length m is a product of $m-1$ transpositions.
The number of transpositions of σ is the sum of the number of transpositions of each disjoint cycle.

Let t be the number of transpositions of σ.
Then $t=\left(l_{1}-1\right)+\left(l_{2}-1\right)+\ldots+\left(l_{k}-1\right)=\left(l_{1}+l_{2}+\ldots+l_{k}\right)-k * 1=\sum_{i=1}^{k} l_{i}-k$.
The maximum value for t occurs when $\sum_{i=1}^{k} l_{i}$ is maximum and k is minimum.

Let T be the maximum of t.
Then T is the value when $\sum_{i=1}^{k} l_{i}=n$ and $k=1$.
Thus, $T=n-1$.
Hence, the maximum number of transpositions is $n-1$.
Exercise 56. If σ is a cycle of odd length, then σ^{2} is a cycle.
Proof. Let σ be a k cycle of odd length.
Then k is odd and $\sigma=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$.
Observe that $\sigma^{2}\left(a_{1}\right)=\sigma\left(\sigma\left(a_{1}\right)\right)=\sigma\left(a_{2}\right)=a_{3}$.
Observe that $\sigma^{2}\left(a_{2}\right)=\sigma\left(\sigma\left(a_{2}\right)\right)=\sigma\left(a_{3}\right)=a_{4}$.
Observe that $\sigma^{2}\left(a_{3}\right)=\sigma\left(\sigma\left(a_{3}\right)\right)=\sigma\left(a_{4}\right)=a_{5}$.
We continue this process.
Observe that $\sigma^{2}\left(a_{k-1}\right)=\sigma\left(\sigma\left(a_{k-1}\right)\right)=\sigma\left(a_{k}\right)=a_{1}$.
Observe that $\sigma^{2}\left(a_{k}\right)=\sigma\left(\sigma\left(a_{k}\right)\right)=\sigma\left(a_{1}\right)=a_{2}$.
Observe that $a_{1} \mapsto a_{3} \mapsto a_{5} \mapsto a_{7} \mapsto \ldots \mapsto a_{k} \mapsto a_{2} \mapsto a_{4} \mapsto a_{6} \ldots \mapsto a_{k-1} \mapsto$ a_{1}.

Therefore, $\sigma^{2}=\left(a_{1}, a_{3}, a_{5}, \ldots, a_{k}, a_{2}, a_{4}, a_{6}, \ldots, a_{k-1}\right)$.
Hence, σ^{2} is a cycle of length k.
Exercise 57. If $H<S_{n}$, then either all members of H are even or exactly half of the members of H are even.

Solution. We compute some examples.
Let $n=1$.
Then $S_{1}=\{i d\}$.
Since $i d$ is an even permutation, then all members of S_{1} are even.
Therefore, all members of S_{1} are even.
Since there is only 1 group of order 1 up to isomorphism, then in any group of order 1 all of its members are even.

The only subgroups of S_{1} is S_{1} itself since S_{1} is the trivial group.
Let $n=2$.
Then $S_{2}=\{i d,(12)\}$.
Since $i d$ is even and (12) is odd (b/c any transposition is odd), then exactly $1 / 2$ of its members are even.

Therefore, exactly $1 / 2$ of the members of S_{2} are even.

Since there is only 1 group of order 2 up to isomorphism, then in any group of order 2 exactly $1 / 2$ of its members are even.

The only subgroups of S_{2} are the trivial subgroup and S_{2} itself.

Let $n=3$.
Then $S_{3}=\{i d,(12),(13),(14),(123),(132)\}$.
Since $i d,(123),(132)$ are all even and the transpositions (12), (13), (14) are all odd, then exactly $1 / 2$ of its members are even.

Therefore, exactly $1 / 2$ of the members of S_{3} are even.

What are all the subgroups of S_{3} ?
They are: $\{i d\},\{(12), i d\},\{(13), i d\},\{(23), i d\},\{(123),(132), i d\}, S_{3}$.
The trivial subgroup is a group of order 1 , so all of its members are even.
S_{3} has 3 groups of order 2.
We know that in any subgroup of order 2 exactly $1 / 2$ of its members are even.
S_{3} has 1 group of order 3 , namely S_{3} itself.
In S_{3} the even permutations are $i d,(123),(132)$ and the odd permutations are (12), (13), (23). Hence exactly $1 / 2$ of its members are even and $1 / 2$ are odd. Therefore, in S_{3} exactly $1 / 2$ of its members are even.
Since there is only 1 group of order 3 up to isomorphism, then in any group of order 3 exactly $1 / 2$ of its members are even.

Let $n=4$.
Then S_{4} consists of $4!=24$ permutations.
One example of a permutation of S_{4} that has order 4 is the cycle (1234).
Every element generates a cyclic subgroup, so the cycle (1234) generates a cyclic subgroup of S_{4} of order 4 .

This particular group of order 4 is $G_{4}=\{i d,(1234),(13)(24),(1432)\}$.
The even permutations are $i d,(13)(24)$ and the odd permutations are (1234), (1432).
Hence, the number of even permutations equals the number of odd permutations, so exactly $1 / 2$ of the members of G_{4} are even.

Any group of order 4 that is cyclic is isomorphic to $\left(\mathbb{Z}_{4},+\right)$, so $\left(G_{4}, \circ\right) \cong$ $\left(\mathbb{Z}_{4},+\right)$.

There is also a subgroup of S_{4} that is not cyclic by Cayley's theorem.
Let $H<S_{4}$ be a noncyclic subgroup of order 4 .
Then H is isomorphic to Klein 4 group.
An example is $H=\{i d,(13)(24),(14)(23),(12)(34)\}$.
Note that $H<A_{4}$ since all elements of H are even permutations.

Hence a group of order 4 is either cyclic or not cyclic.
If a group of order 4 is cyclic, then it is isomorphic to \mathbb{Z}_{4} and exactly $1 / 2$ of its members are even permutations.

If a group of order 4 is not cyclic, then it is isomorphic to Klein 4 group and all of its members are even permutations.

To prove this assertion, let $H<S_{n}$.
P : All members of H are even permutations.
Q : Exactly $1 / 2$ of the members of H are even permutations.
We must prove $P \vee Q$.
Since $\neg P \rightarrow Q \Leftrightarrow \neg(\neg P) \vee Q \Leftrightarrow P \vee Q$, we may prove $P \vee Q$ by proving its logically equivalent form $\neg P \rightarrow Q$.

Thus, we assume Not all members of H are even permutations.
We must prove exactly $1 / 2$ of the members of H are even.
Proof. Let n be a positive integer.
Let $H<S_{n}$.
Suppose not all members of H are even permutations.
Then there exists at least one member of H that is not even.
Hence, there exists at least one member of H that is odd.

Let σ be some odd permutation of H.
Then $\sigma \in H$ and σ is odd.
Let A be the set of all even permutations of H.
Let B be the set of all odd permutations of H.
Then $A=\{h \in H: h$ is even $\}$ and $B=\{h \in H: h$ is odd $\}$.
Let $P=\{A, B\}$.
We prove P is a partition of H.
Since H is a group, then there exists an identity in H.
Let $i d$ be the identity of H.
Since $i d$ is even, then $i d \in A$.
Thus, $A \neq \emptyset$.
Since $\sigma \in H$ and σ is odd, then $\sigma \in B$.
Hence, $B \neq \emptyset$.
Since $A \subset H$ and $B \subset H$, then $A \cup B \subset H$.
Let $x \in H$.
Since $H \subset S_{n}$, then $x \in S_{n}$.
Thus, x is a permutation on n symbols.
By the parity theorem, any permutation is either even or odd, but not both.
Hence, x is either even or odd, but not both.
Thus, either x is even or x is odd and x is not both even and odd.
Hence, either $x \in A$ or $x \in B$ and $x \notin A \cap B$.
Therefore, $x \in A \cup B$ and $x \notin A \cap B$.
Thus, $x \in H$ implies $x \in A \cup B$, so $H \subset A \cup B$.
Since $A \cup B \subset H$ and $H \subset A \cup B$, then $H=A \cup B$.
Since x is arbitrary, then $x \notin A \cap B$ for all $x \in H$.
Hence, there does not exist $x \in H$ such that $x \in A \cap B$.
Therefore, $A \cap B=\emptyset$.
Therefore, P is a partition of H.

Observe that

$$
\begin{aligned}
|H| & =|A \cup B| \\
& =|A|+|B|-|A \cap B| \\
& =|A|+|B|-|\emptyset| \\
& =|A|+|B|-0 \\
& =|A|+|B| .
\end{aligned}
$$

To prove exactly $1 / 2$ of the members of H are even, we prove $|A|=|B|$.
Hence, we must prove there exists a bijection from A to B.
Let $f: A \rightarrow B$ be a binary relation defined by $f(\alpha)=\alpha \sigma$.
Let $\alpha \in A$.
Then $\alpha \in H$ and α is even.

Let $\alpha \sigma$ be the composition of α and σ.
Since $\alpha \in H$ and $\sigma \in H$, then by closure of H under $\circ, \alpha \sigma \in H$.
Since \circ is a binary operation of H, then the product $\alpha \sigma$ is unique.
Since α is even and σ is odd, then α and σ have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, $\alpha \sigma$ is odd.
Since $\alpha \sigma \in H$ and $\alpha \sigma$ is odd, then $\alpha \sigma \in B$.
Since $f(\alpha)=\alpha \sigma$, then $f(\alpha) \in B$ and $f(\alpha)$ is unique.
Thus, $\alpha \in A$ implies $f(\alpha) \in B$ and $f(\alpha)$ is unique.
Therefore, f is a function.

We prove f is injective.
Suppose there exist $\alpha_{1}, \alpha_{2} \in A$ such that $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)$.
Then $\alpha_{1} \in H$ and $\alpha_{2} \in H$ and $\alpha_{1} \sigma=\alpha_{2} \sigma$.
Thus, $\alpha_{1}, \alpha_{2}, \sigma \in H$.
Since H is a group, we apply the cancellation law for groups to obtain $\alpha_{1}=\alpha_{2}$.

Hence, $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)$ implies $\alpha_{1}=\alpha_{2}$, so f is injective.

We prove f is surjective.
Let $\beta \in B$.
Then $\beta \in H$ and β is odd.
Let $\alpha=\beta \sigma^{-1}$.
Since H is a group and $\sigma \in H$, then $\sigma^{-1} \in H$.
By closure of $H, \beta \sigma^{-1} \in H$, so $\alpha \in H$.

The parity of σ^{-1} is the same as the parity of its inverse.
Hence, the parity of σ^{-1} is the same as the parity of $\left(\sigma^{-1}\right)^{-1}=\sigma$.
Thus, the parity of σ^{-1} is the same as the parity of σ.
Since the parity of σ is odd, then this implies that σ^{-1} is odd.

Thus, β and σ^{-1} have the same parity.
The composition of two permutations of the same parity is even.
Hence, α is even.
Since $\alpha \in H$ and α is even, then $\alpha \in A$. Observe that

$$
\begin{aligned}
f(\alpha) & =f\left(\beta \sigma^{-1}\right) \\
& =\left(\beta \sigma^{-1}\right) \sigma \\
& =\beta\left(\sigma^{-1} \sigma\right) \\
& =\beta(i d) \\
& =\beta .
\end{aligned}
$$

Hence, there exists $\alpha \in A$ such that $f(\alpha)=\beta$.
Therefore, f is surjective.
Hence, f is bijective, so $|A|=|B|$.
Thus, $|H|=|A|+|B|=|A|+|A|=2|A|$, so $|A|=\frac{|H|}{2}$.
Therefore, the number of even permutations in H is $\frac{|H|}{2}$.
Hence, exactly $1 / 2$ of the members of H are even.
Exercise 58. Let $\alpha \in S_{n}$ for $n \geq 3$.
If $\alpha \beta=\beta \alpha$ for all $\beta \in S_{n}$, then $\alpha=i d$.
Solution. We must prove: $\left(\forall \beta \in S_{n}\right)(\alpha \beta=\beta \alpha) \rightarrow(\alpha=i d)$.
To get a complete picture, we try S_{2}.
When we compute S_{2}, we find that both $i d$ and (12) each commute with all elements of S_{2}, so that α could be either $i d$ or (12).

When we try S_{3}, we compute and find that $i d$ commutes with all elements of S_{3} and that all non-identity elements do not.

We find that each non identity element α has at least one β such that $\alpha \beta \neq \beta \alpha$.

In fact, we also observe that such a β is not the identity.
The same observation applies when we compute S_{4}.
Thus, to prove this statement we can consider whether α is identity or not.
This suggests proof by contrapositive because we can then assume α is not identity and hopefully deduce our result.

The contrapositive is:
$(\alpha \neq i d) \rightarrow\left(\exists \beta \in S_{n}\right)(\alpha \beta \neq \beta \alpha)$.
Thus, we assume $\alpha \neq i d$.
We must construct a suitable $\beta \in S_{n}$ such that $\alpha \beta \neq \beta \alpha$.
Proof. Let $X=\{1,2,3, \ldots, n\}$.
Suppose $\alpha \neq i d$.
Since $\alpha=i d$ iff $\alpha(x)=x$ for all $x \in X$, then $\alpha \neq i d$ iff there exists $x \in X$ such that $\alpha(x) \neq x$.

Thus, there exists $x \in X$ such that $\alpha(x) \neq x$.
Without loss of generality, we may let $x=1$.
Then $\alpha(1) \neq 1$.

Let $a=\alpha(1)$.
Then $a \neq 1$.
Since α is a permutation, then α is a bijective function, so α is surjective.
Hence, there exists $b \in X$ such that $\alpha(b)=1$.
Suppose $b=1$.
Then $\alpha(1)=1$.
Thus, $\alpha(1)=1$ and $\alpha(1) \neq 1$, so $\alpha(1)$ is not unique.
Since α is a function, then $\alpha(x)$ is unique for all $x \in X$.
Hence, in particular, $\alpha(1)$ is unique.
Thus, we have $\alpha(1)$ is not unique and $\alpha(1)$ is unique, a contradiction.
Therefore, $b \neq 1$.
Let $\beta \in S_{n}$ such that $\beta(1)=b$ and $\beta(a)=a$.
Since $\beta(1)=b$ and $b \neq 1$, then $\beta(1) \neq 1$.
Hence, $\beta \neq i d$.
Suppose $a=b$.
Then $\beta(a)=a=b=\beta(1)$, so $\beta(a)=\beta(1)$.
Since β is a permutation, then β is a bijective function, so β is injective.
Hence, $\beta(a)=\beta(1)$ implies $a=1$, so $a=1$.
Thus, we have $a=1$ and $a \neq 1$, a contradiction.
Therefore, $a \neq b$.
Hence, $1, a, b$ are distinct elements of X.
Observe that

$$
\begin{aligned}
(\alpha \beta)(1) & =\alpha(\beta(1)) \\
& =\alpha(b) \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
(\beta \alpha)(1) & =\beta(\alpha(1)) \\
& =\beta(a) \\
& =a \\
& \neq 1
\end{aligned}
$$

Hence, $(\alpha \beta)(1) \neq(\beta \alpha)(1)$, so $\alpha \beta \neq \beta \alpha$.
Therefore, if $\alpha \neq i d$, then there exists a $\beta \in S_{n}$ such that $\alpha \beta \neq \beta \alpha$.
Thus, if $\alpha \beta=\beta \alpha$ for all $\beta \in S_{n}$, then $\alpha=i d$.
Exercise 59. How many transpositions exist in S_{n} ?
Solution. Let $n \in \mathbb{Z}^{+}$.
Let S_{n} be the symmetric group on n letters.
Let $X=\{1, \ldots, n\}$ be a set of n letters.
Then S_{n} is the set of all permutations of X.

Let $\tau \in S_{n}$ be a transposition.
Then there exist $a, b \in X$ such that $\tau=(a, b)$.
Thus, τ is a particular combination of n letters taken 2 at a time.
Thus, the number of transpositions is

$$
\begin{aligned}
\binom{n}{2} & =\frac{n!}{(n-2)!2!} \\
& =\frac{n(n-1)(n-2)!}{2(n-2)!} \\
& =\frac{n(n-1)}{2}
\end{aligned}
$$

