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Permutation Groups

Exercise 1. Find the inverse of each permutation in Ss.

Solution.

Let S ={1,2,3}.

The symmetric group of 3 symbols, denoted Ss, contains |S3| = 3!
permutations of S.

The permutations are:

I.(123)
a1 1 2 3
id =1id < 1 2 3
IT. (132)
1 1 2 3 i
a=a = 13 92)7 keep position 1 fixed, and swap 2 and 3
III. (21 3)

p=p""t= ( 123 ) = keep position 3 fixed, and swap 1 and 2

2 1 3
IV. (231)
1 2 3 .
o= 93 1 )% rotate each position once to the left
V. (312)
1 1 2 3 - .
o= 31 9 )7 rotate each position once to the right



r=7"1= ( é ; i’ ) = keep position 2 fixed, and swap 1 and 3

O
Exercise 2. Verify that (ab)™! #a~'b~! in S3.
1 2 3
Let a = ( 3 1 9 >
1 2 3
Let b = ( 1 3 2
Solution. Observe that
1 2 3
ab= (3 2 1)
4 (12 3
(ab)™" = (3 2 1)
4 (12 3
@ =231
4 (1 2 3
b= 1 3 2
1 (123
@b <2 13
Therefore, (ab)™! # a=1b71. O
Exercise 3. Analyze the order of the group (S5, o).
Solution. Observe that Ss is the symmetric group of order 3! = 6 under

function composition.

The Cayley table for (Ss,0) is shown below.

o (1 | @2 | @3 | (23) | (123 ] (132
(1) (1) | (12) | 13) | (23) | (123) | (132)
12) | (12) | (1) | @32 ] @23 ] (23 | 13
13) | 13 | @23 @ | @32 a2 | 23
23) | (23) [ (@32 | @23 | @M | 13 | (12
123) [ (123)] 13) | 23 | 12 | (132 1)
(132) [ (132) ] (23) | 12 | @3 | @O | (123




The cyclic subgroups generated by each element are shown below.

(1) ={(D)} and |(1)] = 1

((12)) ={(1),(12)} and [(12)] =2
((13))={(1),(13)} and (1 3)] =2
((23))={(1),(23)} and I(2 3)| =2
(123))={(1),(123),(132)} and [(123)] =3
((132)) = {(1) (132),(123)}and |(132)]=3
There are no generators of S3, so S3 is not cyclic.

The order of the inverse of an element is the same as the order of the element.

(D] =[O~ =[1)]=1
(12)]=12)7 ] =(12)=2
(13)] = |(13)7=|(13)] =2
(23)] =(23)7=(23)] =2
[(123)]=[(123)7}=|(132)]=3
(132)=](132)7 " =[(123)]=3

O

Exercise 4. Show that the solution to the linear equation ax = b may not be
the same as the solution to the equation ya = b for given elements a and b of a
group.

Solution. Consider the symmetric group (S5, o).

Let
_ 1
=11

1
b(213

The equation axz = b has solution

(1 2 3
=131 2

The equation ya = b has solution

(1
¥=1\ 2

Observe that = # y. O
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Exercise 5. Let G = {id, 0,7, u} be a subset of the symmetric group (S5, 0)

where
(11319)

N DN
w w
=~
(@2 B



(1 23 45
7= \1 2 3 5 4
(12 3 45
™ \321 45

(1 2 3 4
F=1\3 2 1 5

Show that (G, o) is a subgroup of Ss.

= ot
N————

Solution. Each element of G is a permutation of the set X = {1,2, 3,4, 5}, so
G is a subset of Sy, the symmetric group on 5 symbols.
The Cayley table is below.

o lid|o | 7| w

idlid|o |7 ]| p

c|lo|id|u| T

T |7t |p|lid|o

gl p| 17| o |id

We prove G is a subgroup of Ss.

Since id € G, then G # 0.

Since |G| = 4, then G is a finite set.

Since G # () and G is finite and G is a subset of S5, then G is a nonempty
finite subset of Sjx.

The Cayley multiplication table shows that G is closed under function com-
position.

Since G is a nonempty finite subset of S5 and G is closed under function
composition, then by the finite subgroup test, G is a subgroup of S5, so G < S5.

Therefore, G is a permutation group on X.

Observe that G is abelian even though Sy is non-abelian. O

Cycle notation for permutations

Exercise 6. Write the permutation below using cycle notation.

Solution. Observe that 0 =(162354)(7) =(162354).

We see that o is a cycle of length 6.

In cycle notation a loop(1l cycle = a single element that maps to itself)
doesn’t change the permutation, so there is no need to write it explicitly.

Therefore, we omit the loop when writing a permutation using cycle notation.
O



Exercise 7. Write the permutation below using cycle notation.

(123456
T \14 2356
3

Solution. Observe that 7= (1)(2 4 3)(5)(6) = (24 3).

We see that 7 is a 3 cycle. O
Exercise 8. A cycle can be written in multiple ways.

Let a = (125)
Solution. Observe that a = (125)=(512)=(251). O

Exercise 9. Compute the inverse of the cycle below.
Let 7= (135)

Solution. Observe that 77! = (153)=(315)=(531).
Note that if we visualize 7 as a cycle with elements in order clockwise, then
77! is the same elements of 7 listed counter-clockwise. O

Exercise 10. Write the permutation below using cycle notation.

_ 1 2 3 4 5 6
241365
Solution. There are many ways to decompose this permutation.
Observe that

The conventional way is to write the smallest number first, so we can write
a=(1243)(56).
We see that « is a product of a 4 cycle and a 2 cycle. O

Exercise 11. Write the permutation below using cycle notation.

(123 45
“=\l2 415 3

ot



Solution. Observe that
a = (12453)
We see that a is a 5 cycle.
Exercise 12. Write the permutation below using cycle notation.
b— 1 2 3 45
“\4 2 5 1 3
Solution. There are many ways to write this permutation.
Observe that
b = (14)(2)(35)=(14)(35)
We see that b is a product of 2 cycles.
Exercise 13. Write the permutation below using cycle notation.
(1 2 3 45
T\ 35142
Solution. There are many ways to write this permutation.
Observe that
c = (13)(25)(4)=(13)(25)
We see that c is a product of 2 cycles.
Exercise 14. Write the permutation below using cycle notation.
d— 1 2 3 45
“\1 43 2 5
Solution.
Observe that
d = (1)(24)3)(5) =(24)
We see that d is a 2 cycle(transposition).

Exercise 15. Multiply the below permutations.

(12 3
“= 131 2

1 2 3
b_(321>

Solution. Observe that ab = (1 3 2)(1 3) = (1 2)(3) = (1 2) and b

(13)(132)=(1)(23)=(23).
We see that ab # ba.



Exercise 16. Multiply the below permutations.
a=(1352)
b=(256).

Solution. Observe that

1 3 5 2 2 5 6 1 356 2
ab = (1352)(256) = -
35 2 1 5 6 2 356 1 2

Therefore, ab = (1 35 6). O
Exercise 17. Multiply the below permutations.

a=(1352)

b=(1634).
Solution. We compute ab=(1352)(1634) =(1652)(34). O
Exercise 18. Multiply the below permutations.

a=(1345)

b=(234).
Solution. We compute ab=(1345)(234) =(135)(24). O

Exercise 19. Let a = (135) and b= (2 7).
Then a and b are disjoint cycles.

Solution. Since cycles a and b have no elements in common, then a and b are
disjoint cycles.
Observe that ab=(135)(27) and ba = (27)(135) = (135)(27).
Therefore, ab = ba, so a and b commute. O

Exercise 20. Let a = (135) and b= (347).
Then a and b are not disjoint cycles.

Solution. Since 3 is a common element in cycles a and b, then a and b are not
disjoint cycles.

Observe that ab=(135)(347) =(13475)and ba =(347)(135) =
(14735).

Therefore, ab # ba, so a and b do not commute. O

Exercise 21. Compute the products and write as a decomposition of disjoint
cycles.

B 23 45 6
77\ 6 431 5 2
(123 45 6
Tm\3 215 6 4

>:(1356)(2):(1356)



Solution. Observe that
=(1624)(3)(5)=(1624) is a 4 cycle
and
=(13)(2)(456) =(13)(456) is a product of 2 disjoint cycles
and
or = (136)(245) is a product of 2 disjoint cycles
and
7o =(143)(256) is a product of 2 disjoint cycles. O

Exercise 22. Compute (1 6)(2 5 3) in different ways.

Solution. Since (1 6)(2 5 3) = (1 6)(2 3)(2 5) = (1 6)(4 5)(2 3)(4 5)(2 5),
then there is no unique representation of a permutation as a product of trans-
positions. Hence, there are many ways to write a permutation as a product of
transpositions. O

Exercise 23. Compute the product of the cycles below in Sg.
(145)(78)(257).

Solution. Let 0 = (14 5)(78)(257).
Then o = (14587 2). O

Exercise 24. Compute the product of the cycles below in Sg.
(1327)(486).

Solution. Let 0 = (132 7)(4 8 6).
Then o is a product of disjoint cycles. O

Exercise 25. Compute the product of the cycles below in Sg.
(12)(478)(21)(72815).

Solution. Let 0 =(12)(478)(21)(72815).
Then

o = (12)478)21)(72815)
= (12)(21)(478)(72815)
= (12(29UTH)(T2815)
= id(478)(72815)

= (478)(72815)

= (158)(247).

Exercise 26. Compute the order of the cycle below in Sg.
(1457).

Solution. Let c = (1457).
Then 02 = (15)(4 7) and
03=(1754)=(15)(17)(45) and



ot = (1) =id.
Thus, |o| = 4.
Since the length of o is 4, then the order of ¢ is 4. O

Exercise 27. Compute the order of the permutation below in Sg.
(45)(237).

Solution. Let c=(45)(237)=(23T7)(45).
Then 0? =(273) and

= (45) and
=(237) and
=(273)(45) and
= (1) =id.
Thus lo| = 6.
The order of ¢ is the least common multiple of the orders of its disjoint
cycles.
Therefore, |o| = lem(3,2) = 6. O

Exercise 28. Compute the order of the permutation below in Sg.
(14)(3578).

Solution. Let T=(14)(3 5 738).
Then 72 = (3 7)(5 8) an
= (14)(3875) nd

7'4 = (1) =1d.

Thus, |7| = 4.

The order of 7 is the least common multiple of the orders of its disjoint
cycles.

Therefore, |7] = lem(2,4) = 4. O

Exercise 29. Compute the order of the permutation below in Sg.

A 45 6 7 8
7=\ 8 37 45 1
Solution. Since o = (1 8)(364) then
=(346) and

(18)(57) and
=(364) and
=(1
=(1

N DN

57

—~
— O W

)

a
0‘
0 8)(346)(57) and

ab ) = id.

Thus, |o| = 6.

The order of ¢ is the least common multiple of the orders of its disjoint
cycles.

Therefore, |o| = lem(2,3,2) = 6. O

Exercise 30. Compute the order of the permutation below in Ss.

(123456 78
=36 418257



Solution. Since 0 = (13 4)(26)(5 8 7), then
=(143)(578) and

o3 =( 6) and

ot =(134)(587) and

a =(143)(26)(578) and
0% = (1) =id.

Thus, |o| = 6.

The order of ¢ is the least common multiple of the orders of its disjoint
cycles.
Therefore, |o| = lem(3,2,3) = 6. O

Exercise 31. Compute the order of the permutation below in Sg.
_ 1 2 3 45 6 7 8
7“3 1472586
Solution. Since 0 = (1347865 2), then
=(1485)(2376) and

03:(17538246) and

ot =(18)(27)(36)(45) and

0°=(16428357) and

0% =(1584)(2673) and

07:(12568743) and

o® = (1) =id.

Thus, |o| = 8.

Since o is a cycle of length 8, then the order of ¢ is 8.

Therefore, |o| = 8. O

Exercise 32. Compute the permutation product below and analyze results.
(1345)(234).

Solution. Let 0 = (1345)(234).

Then o = (1345)(234) = (135)(24) = (24)(1 3 5).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so |o| =lem(2,3) = 6. O

Exercise 33. Compute the permutation product below in S5 and analyze re-
sults.
(12)(1253).

Solution. Let o = (12)(125 3).
Then o = (25 3).
Since o is a cycle of length 3, then the order of o is |o| = 3. O

Exercise 34. Compute the permutation product below in S5 and analyze re-
sults.
(143)(23)(24).

10



Solution. Let o = (14 3)(2 3)(24).

Then o = (1 4)(2 3).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so |o] = lem(2,2) = 2. O

Exercise 35. Compute the permutation product below in Sg and analyze re-
sults.
(1423)(34)(56)(1324).

Solution. Let o = (14 3)(2 3)(2 4).

Then o = (1 2)(5 6).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so o] = lem(2,2) = 2. O

Exercise 36. Compute the permutation product below in S5 and analyze re-
sults.
(1254)(13)(25).

Solution. Let o = (12 54)(1 3)(2 5).
Then o = (1324).
Since o is a cycle of length 4, then the order of ¢ is |o| = 4. O

Exercise 37. Compute the permutation product below in S5 and analyze re-
sults.
(1254)(13)(25)%

Solution. Let o = (125 4)(1 3)(2 5)%
Then o =(13254).
Since o is a cycle of length 5, then the order of ¢ is |o]| = 5. O

Exercise 38. Compute the permutation product below in S5 and analyze re-
sults.
(1254)7%(123)(45)(1254).

Solution. Let o = (1254)"1(123)(45)(125 4).

Then o = (13 4)(2 5).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so |o| = lem(3,2) = 6. O

Exercise 39. Compute the permutation product below in S5 and analyze re-
sults.
(1254)%(123)(45).

Solution. Let 0 = (125 4)%(123)(45).

Then o = (14)(2 3 5).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so |o| =lem(2,3) = 6. O

Exercise 40. Compute the permutation product below in S5 and analyze re-
sults.
(123)(45)(1254)72.

11



Solution. Let 0 = (123)(45)(1254)~2.

Then o = (14 3)(25).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so |o| =lem(3,2) = 6. O

Exercise 41. Compute the permutation product below in S5 and analyze re-

sults.
(125 4)100,

Solution. Let o = (125 4)100.
Let a = (1254).
Since « is a cycle of length 4, then the order of « is 4, so o = id.
Observe that

(I
Q R

—
Q
i
~—
o
ot

Il
.
ISH

Therefore, o = (1) is the identity permutation. O

Exercise 42. Compute the permutation product below in S5 and analyze re-
sults.
(125 4)2

Solution. Let o = (125 4)%

Then o = (1 5)(2 4).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so |o| =lem(2,2) = 2. O

Exercise 43. Compute the permutation product below in S7; and analyze re-
sults.
(12537)~L

Solution. Let 0 = (1253 7)1
Then o = (7352 1).
Since o is a cycle of length 5, then the order of ¢ is |o| = 5. O

Exercise 44. Compute the permutation product below in S7 and analyze re-
sults.
[(12)34)(12)(4 7)™

Solution. Let o = [(12)(34)(12)(4 7)]7L.
Then o = (37 4).
Since o is a cycle of length 3, then the order of o is |o| = 3. O

12



Exercise 45. Compute the permutation product below in S7 and analyze re-
sults.

[(1235)(467)] "
Solution. Let 0 =[(1235)(46 7)1

Observe that

o = [(1235)467)!

= (467)'(12357!

(764)(5321)
(476)(1532).

The order of ¢ is the least common multiple of the orders of its disjoint
cycles, so |o| = lem(3,4) = 12. O

Parity of a permutation

Exercise 46. Express the below permutation in S5 as a product of transposi-
tions:
(135)(24).

Solution. Let o = (1 3 5)(2 4).
We start with the identity permutation id and swap 2 and 4.
Then swap 3 and 5.
Finally, swap 1 and 3.
Therefore, o = (1 3)(3 5)(2 4).

Another approach is to breakdown the 3 cycle (1 3 5) by letting the first
element 1 swap with each element beginning with 3, 5.
Then (135) = (15)(13).
Hence, 0 = (1 5)(1 3)(2 4). O

Exercise 47. A permutation has no unique representation as a product
of transpositions.

Express the below permutation in Sg as a product of transpositions in several
different ways:

(16)(253).

Solution. Let o = (1 6)(25 3).
We start with the identity permutation id and swap 2 and 5.
Then swap 2 and 3.
Finally, swap 1 and 6.
Therefore, o = (1 6)(2 3)(2 5).

Another approach is:
We start with the identity permutation ¢d and swap 3 and 5.
Then swap 2 and 5.
Finally, swap 1 and 6.
Therefore, o = (1 6)(2 5)(3 5).

13



Another approach is:

We start with the identity permutation id and perform the following actions.

1. Swap 2 and 5.

2. Swap 4 and 5.

3. Swap 2 and 3.

4. Swap 4 and 5.

5. Swap 1 and 6.

Therefore, o = (1 6)(4 5)(2 3)(4 5)(2 5).

Since our convention is to apply function composition in right to left order,
we write the swap actions in reverse order. O

Exercise 48. Write the permutation in S7 below as a product of transpositions
and analyze results:
(1432675).

Solution. Let 0 = (14326 75).

We let the first element 1 cycle all the way through this 7 cycle, so have 6
swaps of 1 with each element of this cycle, beginning with 4,3,2,6,7,5.

Thus, 0 = (1 5)(1 7)(1 6)(1 2)(1 3)(1 4) is a product of 6 transpositions, so
o is an even permutation. O

Exercise 49. Let H = {f € S5 : f(1) =1}.
Then (H, o) is a subgroup of (Ss,0).

Proof. We prove H C S5.
Since H = {f € S5 : f(1) =1}, then H C Ss.

We prove H # {).
The identity function defined by

S (12345
“=\1 2345
is an element of S5 and id(1) = 1, H.
Therefore, H # ().

so id €

We prove H is a finite set.
Since |S5| = 5! = 120, then S5 is a finite set.
Every subset of a finite set is finite.
Since S5 is a finite set and H is a subset of S5, then we conclude H is finite.
Since H C S5 and H # () and H is finite, then H is a non-empty finite subset
of S5.

14



We prove H is closed under function composition.

Let g,h € H.

Since g € H, then g € S5 and ¢(1) = 1.

Since h € H, then h € Sy and h(1) = 1.

Since (S5, 0) is a group, then S5 is closed under function composition.

Since g € S5 and h € Sy, then the function g o h defined by (g o h)(z) =
g(h(z)) for all z € {1,2,3,4,5} is an element of S5, so go h € Ss.

Since (go h)(1) = g(h(1)) = g(1) =1, then (go h)(1) = 1.

Since goh € S5 and (g o h)(1) = 1, then go h € H, so H is closed under
function composition.

Since H is a non-empty finite subset of S5 and H is closed under function
composition, then by the finite subgroup test, H is a subgroup of Ss, so (H,0) <
(55, O). ]

Exercise 50. Find a subgroup of S7 that contains 12 elements.

Solution. Let o = (1,2,3,4)(5,6,7).
Then |o| = lem(4,3) = 12, so (o) is a cyclic subgroup of order 12 generated
by o. O

Exercise 51. Let H = {o € S5 : 0(5) = 5}.
Show that H < S5 and compute |H].

Solution. Let 0 € H.

Then ¢ € S5 and o(5) = 5.

Thus, ¢ : X — X is a permutation of 5 letters, where X = {1,2,3,4,5}.

Since o(5) = 5, then there are 4 choices for o(1) and for each choice there
are then 3 choices for o(2) which then leaves 2 choices for o(3) and then leaves
just 1 choice for o(4).

Hence, there are 4! different permutations, so |H| = 4! = 24.

To prove H < Sy, we use the finite subgroup test.
Since S5 is finite and H C S, then H is finite.
Since (1) € H, then H is not empty.

Let o, 8 € H.
Then a, 8 € S5 and a(5) =5 = 4(5).
By closure of S5, af € Ss.
Observe that

(@B)(5) = «a(B(5))
= a(b)

Since aff € Sy and (af)(5) =5, then af € H.
Therefore, H is closed under permutation multiplication.
Hence, H < S5. O

15



Exercise 52. List all subgroups of Sy.

Solution. Let X = {1,2,3,4}.

Let (S4,0) be the symmetric group of degree 4.

Then |S4| = 4! = 24, so there are 24 permutations in Sy.

We first list all 24 permutations of X.

We enumerate each choice as a branching tree to obtain:

1234,1243,1324,1342,1423,1432 and

2134,2143,2314, 2341, 2413, 2431 and

3124, 3142, 3214, 3241, 3412, 3421 and

4123,4132,4213,4231,4312,4321.

Now, we need to write these in cycle notation:

The elements in S4 are:

id, (34),(23), (234), (243), (24),

(12), (12)(34), (123), (1234), (1243), (124),

(132), (1342), (13), (134), (13)(24), (1324),

(1432), (142), (143), (14), (1423), (14)(23).

The element of order 1 is id, so the subgroup of order 1 is the trivial subgroup
{id}.

The elements of order 2 are: (34), (23), (24), (12), (12)(34), (13), (13)(24), (14), (14)(23).

Fach of these elements generates a cyclic subgroup of S4 of order 2 and all
of these subgroups are the same up to isomorphism.

Thus, we have the following subgroups of order 2:

{id, (34)}
{id, (23)}
{id, (24)}
{id, (12)}
{id, (12)(34)}
{id, (13)}
{id, (13)(24)}
{id, (14)}
{id, (14)(23)}

The elements of order 3 are: (234), (243), (123), (124), (132), (134), (142), (143).

Each of these elements generates a cyclic subgroup of Sy of order 3 and all
of these subgroups are the same up to isomorphism.

Thus, we have the following subgroups of order 3:

{id, (234), (243)}

{id, (123), (132)}

{id, (124), (142)}

{id, (134), (143)}

The elements of order 4 are: (1234), (1243), (1342), (1324), (1432), (1423).

Each of these elements generates a cyclic subgroup of S4 of order 4 and all
of these subgroups are the same up to isomorphism.

Thus, we have the following subgroups of order 4:

{id, (1234), (13)(24), (4321)}

{id, (1243), (14)(23), (3421)}

16



{(1324), (12)(34), (1423), id} O

Exercise 53. Let o, 3 € S,,.
Then a~'B~'af is even.

Proof. The permutations o and [ are each either even or odd.
There are 4 cases to consider.
Case 1: Suppose «, 3 are both even.
Then « and S have the same parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, a~! is even and 7! is even, so ! and 37! have the same parity.
The composition of two permutations of the same parity is even.
Hence, af3 is even and o~ 157! is even.
Therefore, a3 and o~ '8! have the same parity.
Thus, o~ '8~ a3 is even.
Case 2: Suppose a, 5 are both odd.
Then a and 8 have the same parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, a~ ! is odd and 7' is odd, so o~ ! and 37! have the same parity.
The composition of two permutations of the same parity is even.
Hence, of3 is even and o~ 1871 is even.
Therefore, a3 and o~1B8~! have the same parity.
Thus, o~ '8~ 'ag is even.
Case 3: Suppose « is even and S is odd.
Then « and S have opposite parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, a~! is even and 57! is odd, so o~ ! and B~! have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, of is odd and a~*8~! is odd.
Therefore, a8 and o~ '8! have the same parity.
The composition of two permutations of the same parity is even.
Hence, o~ 157 1ap is even.
Case 4: Suppose « is odd and [ is even.
Then « and S have opposite parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, a~! is odd and S~ is even, so o~ ! and 8~! have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, of is odd and o137 is odd.
Therefore, a8 and o~ '8! have the same parity.
The composition of two permutations of the same parity is even.
Hence, o~ 15 1ap is even.
Therefore, in all cases a~ 15~ af is even, as desired. O

Exercise 54. If 7 € S,, has order m, then o7o~! has order m for all o € S,,.

Proof. Suppose T € S,, and |7| = m.
Then m is the least positive integer such that 7 = (1).
Hence, for every s € Z* such that 7% = (1), m < s.

17



Let 0 € S,,.
Since S, is a finite group, then the element o7o~! € S,, has finite order.
Let k be the order of oo 1.
Then k is the least positive integer such that (o7o~1)* = (1).
Observe that

m 1

(ore™H™ = or™0~
= o(l)o?

= ().

Since (oro~1)™ = (1) iff k|m, then k|m.
Since k,m € Z*, then this implies k < m.
Observe that

(1) = (oro ")

= orko_l.

Hence, 0 = 07", s0 (1) = o7".
T*.

By cancellation, (1) = 7%

Thus, m < k.

Since k < m and m < k, then m = k.

Therefore, |oTo~| = m. O

Exercise 55. Let n > 1.
Let 0 € S,.
Then ¢ can be written as a product of at most n — 1 transpositions.

Proof. Either o is the identity permutation or it is not.

We consider these cases separately.

Case 1: Suppose o = id.

Since the identity permutation has no 2 cycles, then id can be written as a
product of zero transpositions.

Thus, o can be written as a product of zero transpositions and 0 < n — 1.

Case 2: Suppose o # id.

Any permutation of a nonempty finite set can be written as a finite product
of disjoint cycles.

Since S, is nonempty and finite, then o can be written as a finite product
of disjoint cycles.

Thus, there exist k disjoint cycles cq, ca, ..., cx such that ¢ = cyca--- ¢ and
k> 0.

Let I; be the length of the cycle ¢; for each i = 1,2,...) k.

Since the sum of the cycle lengths of all the disjoint cycles cannot exceed n,
then 0 <Ili 4+l + ...+ <n.

Hence, 0 < Zle l; <n.
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If d is a cycle of length m, then d = (dy, ds, ..., d) = (d1,dm)(d1,dm—1), ...(d1, d2).

Hence d is a product of m — 1 transpositions.

Thus, any cycle of length m is a product of m — 1 transpositions.

The number of transpositions of ¢ is the sum of the number of transpositions
of each disjoint cycle.

Let ¢ be the number of transpositions of o.

Thent = (I1—1)+(la—=1)+...4+ (s —1) = (1 +lo+...4+1k) —kx1 = ZZ 1 li—k.

The maximum value for ¢ occurs when Zle [; is maximum and k is mini-
mum.

Let T' be the maximum of .

Then T is the value when Zle l;=nand k=1.

Thus, T =n — 1.

Hence, the maximum number of transpositions is n — 1. O

Exercise 56. If ¢ is a cycle of odd length, then o2 is a cycle.

Proof. Let o be a k cycle of odd length.
Then k is odd and o = (a1, ag, ..., ag).
Observe that 0%(a1) = o(o(ay)) = o as
Observe that 0%(az) = o(0(az)) = o(as) = a4
Observe that 0%(az) = o(o(az)) = o( as
We continue this process.

Observe that o2(ay_1) = o(o(ar_1)) = o(ax) = a;.

Observe that o%(ay) = o(o(ax)) = o(a1) = as.

Observe that a1 — a3z +— as — ay — ... ¥ ag —> Ao > g > Ag... —> Ap_1 —>
aq.

Therefore, 02 = (a1, a3, as, ..., Ak, A2, A4, A6, -y A—1)-

Hence, o2 is a cycle of length k. O

Exercise 57. If H < 5, then either all members of H are even or exactly half
of the members of H are even.

Solution. We compute some examples.

Let n = 1.

Then S; = {id}.

Since id is an even permutation, then all members of S; are even.

Therefore, all members of Sy are even.

Since there is only 1 group of order 1 up to isomorphism, then in any group
of order 1 all of its members are even.

The only subgroups of Sy is 57 itself since S; is the trivial group.

Let n = 2.
Then Sy = {id, (12)}.
Since id is even and (12) is odd (b/c any transposition is odd), then exactly
1/2 of its members are even.
Therefore, exactly 1/2 of the members of S are even.
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Since there is only 1 group of order 2 up to isomorphism, then in any group
of order 2 exactly 1/2 of its members are even.
The only subgroups of S are the trivial subgroup and S itself.

Let n = 3.
Then Ss = {id, (12), (13), (14), (123), (132)}.
Since id, (123), (132) are all even and the transpositions (12), (13), (14) are
all odd, then exactly 1/2 of its members are even.
Therefore, exactly 1/2 of the members of S3 are even.

What are all the subgroups of S37

They are: {id},{(12),id}, {(13),id}, {(23),id}, {(123), (132),id}, Ss.

The trivial subgroup is a group of order 1, so all of its members are even.

Ss has 3 groups of order 2.

We know that in any subgroup of order 2 exactly 1/2 of its members are
even.

S3 has 1 group of order 3, namely S3 itself.

In S5 the even permutations are id, (123), (132) and the odd permutations
are (12), (13), (23). Hence exactly 1/2 of its members are even and 1/2 are odd.

Therefore, in S3 exactly 1/2 of its members are even.

Since there is only 1 group of order 3 up to isomorphism, then in any group
of order 3 exactly 1/2 of its members are even.

Let n = 4.

Then Sy consists of 4! = 24 permutations.

One example of a permutation of Sy that has order 4 is the cycle (1234).

Every element generates a cyclic subgroup, so the cycle (1234) generates a
cyclic subgroup of Sy of order 4.

This particular group of order 4 is G4 = {id, (1234), (13)(24), (1432)}.

The even permutations are id, (13)(24) and the odd permutations are (1234), (1432).

Hence, the number of even permutations equals the number of odd permu-
tations, so exactly 1/2 of the members of G4 are even.

~

Any group of order 4 that is cyclic is isomorphic to (Z4,4+), so (G4,0) =
(Zy,+).
There is also a subgroup of Sy that is not cyclic by Cayley’s theorem.
Let H < S4 be a noncyclic subgroup of order 4.
Then H is isomorphic to Klein 4 group.
An example is H = {id, (13)(24), (14)(23), (12)(34)}.
Note that H < A, since all elements of H are even permutations.

Hence a group of order 4 is either cyclic or not cyclic.
If a group of order 4 is cyclic, then it is isomorphic to Z4 and exactly 1/2 of
its members are even permutations.
If a group of order 4 is not cyclic, then it is isomorphic to Klein 4 group and
all of its members are even permutations.
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To prove this assertion, let H < S,.

P : All members of H are even permutations.

@ : Exactly 1/2 of the members of H are even permutations.

We must prove PV Q.

Since =P — Q < —(=P)V Q & PV @, we may prove PV @ by proving its
logically equivalent form —P — Q.

Thus, we assume Not all members of H are even permutations.

We must prove exactly 1/2 of the members of H are even. O

Proof. Let n be a positive integer.
Let H < S,,.
Suppose not all members of H are even permutations.
Then there exists at least one member of H that is not even.
Hence, there exists at least one member of H that is odd.

Let o be some odd permutation of H.
Then ¢ € H and o is odd.
Let A be the set of all even permutations of H.
Let B be the set of all odd permutations of H.
Then A={h € H:hiseven} and B={h € H : his odd}.
Let P = {A, B}.
We prove P is a partition of H.
Since H is a group, then there exists an identity in H.
Let id be the identity of H.
Since id is even, then id € A.
Thus, A # (.
Since o0 € H and o is odd, then o € B.
Hence, B # 0.
Since AC H and B C H, then AUB C H.

Let z € H.
Since H C S,,, then z € S,,.
Thus, z is a permutation on n symbols.
By the parity theorem, any permutation is either even or odd, but not both.
Hence, z is either even or odd, but not both.
Thus, either x is even or z is odd and x is not both even and odd.
Hence, either x € Aor x € B and x € AN B.
Therefore, r € AUB and = ¢ AN B.
Thus, x € H implies x € AUB,so H C AUB.
Since AUB C H and H C AU B, then H = AU B.
Since z is arbitrary, then x ¢ AN B for all x € H.
Hence, there does not exist x € H such that x € AN B.
Therefore, AN B = {.
Therefore, P is a partition of H.
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Observe that

|H| = |AUB]|
— |A+|B| - AN B
= A+ B[ - 0|
= [A[+]B|-0
= [A[+]B].
To prove exactly 1/2 of the members of H are even, we prove |A| = |B|.

Hence, we must prove there exists a bijection from A to B.
Let f: A — B be a binary relation defined by f(a) = ao.
Let a € A.

Then a € H and « is even.

Let ao be the composition of a and o.
Since a € H and o € H, then by closure of H under o, aoc € H.
Since o is a binary operation of H, then the product ao is unique.
Since « is even and o is odd, then « and o have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, ao is odd.
Since o € H and ao is odd, then ao € B.
Since f(a) = ao, then f(«) € B and f(«) is unique.
Thus, @ € A implies f(«) € B and f(«) is unique.
Therefore, f is a function.

We prove f is injective.
Suppose there exist ay, s € A such that f(ay) = f(az).
Then o € H and oy € H and a0 = aqo.
Thus, a,as,0 € H.
Since H is a group, we apply the cancellation law for groups to obtain
a1 = (9.
Hence, f(a1) = f(ag) implies ay = ag, so f is injective.

We prove f is surjective.
Let 8 € B.
Then $ € H and g is odd.
Let oo = fo~ L.
Since H is a group and o € H, then 0! € H.
By closure of H, Bo~' € H,so o € H.

The parity of 0! is the same as the parity of its inverse.
Hence, the parity of o~! is the same as the parity of (¢71)"! = 0.
Thus, the parity of o1 is the same as the parity of o.
Since the parity of o is odd, then this implies that o~ is odd.
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Thus, 3 and o~ ! have the same parity.

The composition of two permutations of the same parity is even.
Hence, « is even.

Since o € H and « is even, then o € A. Observe that

fl@) = f(Bo™)
(Bo™ Yo
Bla~ o)
= p(id)
5.

Hence, there exists a € A such that f(«) = 5.
Therefore, f is surjective.

Hence, f is bijective, so |A| = |B].

Thus, |H| = |A| +|B| = |A| +|A] = 2|4], so |4] = 4L
Therefore, the number of even permutations in H is LZII

Hence, exactly 1/2 of the members of H are even. O

Exercise 58. Let o € S, for n > 3.
If af = Ba for all § € S, then a = id.

Solution. We must prove: (V3 € S,,)(af = fa) = (a = id).

To get a complete picture, we try Ss.

When we compute Sz, we find that both id and (12) each commute with all
elements of Sz, so that a could be either id or (12).

When we try S3, we compute and find that id commutes with all elements
of S3 and that all non-identity elements do not.

We find that each non identity element a has at least one [ such that
aB # Ba.

In fact, we also observe that such a [ is not the identity.

The same observation applies when we compute Sy.

Thus, to prove this statement we can consider whether « is identity or not.

This suggests proof by contrapositive because we can then assume « is not
identity and hopefully deduce our result.

The contrapositive is:

(o #id) — (3B € S,)(af # pa).

Thus, we assume « # id.

We must construct a suitable g € S,, such that af # Sa. O

Proof. Let X ={1,2,3,...,n}.

Suppose « # id.

Since o = id iff a(z) = z for all z € X, then a # id iff there exists z € X
such that a(z) # x.

Thus, there exists € X such that a(z) # .

Without loss of generality, we may let x = 1.

Then a(1) # 1.
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Let a = «a(1).

Then a # 1.

Since « is a permutation, then « is a bijective function, so « is surjective.
Hence, there exists b € X such that «(b) = 1.

Suppose b = 1.

Then «(1) = 1.

Thus, a(1) =1 and (1) # 1, so a(1) is not unique.

Since « is a function, then «(z) is unique for all x € X.

Hence, in particular, (1) is unique.

Thus, we have «(1) is not unique and «(1) is unique, a contradiction.
Therefore, b # 1.

Let 5 € S,, such that 3(1) = b and 8(a) = a.

Since $(1) = b and b # 1, then 5(1) # 1.

Hence, 8 # id.

Suppose a = b.
Then S(a) =a=b= (1), so f(a) = f(1).
Since [ is a permutation, then § is a bijective function, so § is injective.
Hence, (a) = B(1) implies a = 1, so a = 1.
Thus, we have a = 1 and a # 1, a contradiction.
Therefore, a # b.
Hence, 1, a,b are distinct elements of X.
Observe that

(@B)(1) = «(B(1))

I
Q
—~
=
~

and

(Ba)(1) = Bla1)
~ B(a)

.

Hence, (aB)(1) # (a)(1), so af # Ba.

Therefore, if « # id, then there exists a 8 € S,, such that af # SBa.
Thus, if a8 = Ba for all g € S, then a = id.

Exercise 59. How many transpositions exist in S,,7

Solution. Let n € Z™.
Let S,, be the symmetric group on n letters.
Let X ={1,...,n} be a set of n letters.
Then S, is the set of all permutations of X.
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Let 7 € S, be a transposition.

Then there exist a,b € X such that 7 = (a, ).

Thus, 7 is a particular combination of n letters taken 2 at a time.
Thus, the number of transpositions is

n(n —1)(n — 2)!
2(n —2)!
n(n — 1).
2
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