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Permutation Groups

Exercise 1. Find the inverse of each permutation in S3.

Solution.
Let S = {1, 2, 3}.
The symmetric group of 3 symbols, denoted S3, contains |S3| = 3! = 6

permutations of S.
The permutations are:
I. (1 2 3)

id = id−1
(

1 2 3
1 2 3

)
II. (1 3 2)

α = α−1 =

(
1 2 3
1 3 2

)
= keep position 1 fixed, and swap 2 and 3

III. (2 1 3)

β = β−1 =

(
1 2 3
2 1 3

)
= keep position 3 fixed, and swap 1 and 2

IV. (2 3 1)

σ =

(
1 2 3
2 3 1

)
= rotate each position once to the left

V. (3 1 2)

σ−1 =

(
1 2 3
3 1 2

)
= rotate each position once to the right

VI. (3 2 1)



τ = τ−1 =

(
1 2 3
3 2 1

)
= keep position 2 fixed, and swap 1 and 3

Exercise 2. Verify that (ab)−1 6= a−1b−1 in S3.

Let a =

(
1 2 3
3 1 2

)

Let b =

(
1 2 3
1 3 2

)
Solution. Observe that

ab =

(
1 2 3
3 2 1

)

(ab)−1 =

(
1 2 3
3 2 1

)

a−1 =

(
1 2 3
2 3 1

)

b−1 =

(
1 2 3
1 3 2

)

a−1b−1 =

(
1 2 3
2 1 3

)
Therefore, (ab)−1 6= a−1b−1.

Exercise 3. Analyze the order of the group (S3, ◦).

Solution. Observe that S3 is the symmetric group of order 3! = 6 under
function composition.

The Cayley table for (S3, ◦) is shown below.
◦ (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1) (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1 2) (1 2) (1) (1 3 2) (1 2 3) (2 3) (1 3)
(1 3) (1 3) (1 2 3) (1) (1 3 2) (1 2) (2 3)
(2 3) (2 3) (1 3 2) (1 2 3) (1) (1 3) (1 2)
(1 2 3) (1 2 3) (1 3) (2 3) (1 2) (1 3 2) (1)
(1 3 2) (1 3 2) (2 3) (1 2) (1 3) (1) (1 2 3)
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The cyclic subgroups generated by each element are shown below.
〈(1)〉 = {(1)} and |(1)| = 1
〈(1 2)〉 = {(1), (1 2)} and |(1 2)| = 2
〈(1 3)〉 = {(1), (1 3)} and |(1 3)| = 2
〈(2 3)〉 = {(1), (2 3)} and |(2 3)| = 2
〈(1 2 3)〉 = {(1), (1 2 3), (1 3 2)} and |(1 2 3)| = 3
〈(1 3 2)〉 = {(1), (1 3 2), (1 2 3)} and |(1 3 2)| = 3
There are no generators of S3, so S3 is not cyclic.

The order of the inverse of an element is the same as the order of the element.
|(1)| = |(1)−1| = |(1)| = 1
|(1 2)| = |(1 2)−1| = |(1 2)| = 2
|(1 3)| = |(1 3)−1| = |(1 3)| = 2
|(2 3)| = |(2 3)−1| = |(2 3)| = 2
|(1 2 3)| = |(1 2 3)−1| = |(1 3 2)| = 3
|(1 3 2)| = |(1 3 2)−1| = |(1 2 3)| = 3

Exercise 4. Show that the solution to the linear equation ax = b may not be
the same as the solution to the equation ya = b for given elements a and b of a
group.

Solution. Consider the symmetric group (S3, ◦).
Let

a =

(
1 2 3
1 3 2

)
and

b =

(
1 2 3
2 1 3

)
The equation ax = b has solution

x =

(
1 2 3
3 1 2

)
The equation ya = b has solution

y =

(
1 2 3
2 3 1

)
Observe that x 6= y.

Exercise 5. Let G = {id, σ, τ, µ} be a subset of the symmetric group (S5, ◦)
where

id =

(
1 2 3 4 5
1 2 3 4 5

)
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σ =

(
1 2 3 4 5
1 2 3 5 4

)

τ =

(
1 2 3 4 5
3 2 1 4 5

)

µ =

(
1 2 3 4 5
3 2 1 5 4

)
Show that (G, ◦) is a subgroup of S5.

Solution. Each element of G is a permutation of the set X = {1, 2, 3, 4, 5}, so
G is a subset of S5, the symmetric group on 5 symbols.

The Cayley table is below.
◦ id σ τ µ
id id σ τ µ
σ σ id µ τ
τ τ µ id σ
µ µ τ σ id

We prove G is a subgroup of S5.
Since id ∈ G, then G 6= ∅.
Since |G| = 4, then G is a finite set.
Since G 6= ∅ and G is finite and G is a subset of S5, then G is a nonempty

finite subset of S5.
The Cayley multiplication table shows that G is closed under function com-

position.
Since G is a nonempty finite subset of S5 and G is closed under function

composition, then by the finite subgroup test, G is a subgroup of S5, so G < S5.
Therefore, G is a permutation group on X.

Observe that G is abelian even though S5 is non-abelian.

Cycle notation for permutations

Exercise 6. Write the permutation below using cycle notation.

σ =

(
1 2 3 4 5 6 7
6 3 5 1 4 2 7

)
Solution. Observe that σ = (1 6 2 3 5 4)(7) = (1 6 2 3 5 4).

We see that σ is a cycle of length 6.
In cycle notation a loop(1 cycle = a single element that maps to itself)

doesn’t change the permutation, so there is no need to write it explicitly.
Therefore, we omit the loop when writing a permutation using cycle notation.
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Exercise 7. Write the permutation below using cycle notation.

τ =

(
1 2 3 4 5 6
1 4 2 3 5 6

)
Solution. Observe that τ = (1)(2 4 3)(5)(6) = (2 4 3).

We see that τ is a 3 cycle.

Exercise 8. A cycle can be written in multiple ways.
Let a = (1 2 5)

Solution. Observe that a = (1 2 5) = (5 1 2) = (2 5 1).

Exercise 9. Compute the inverse of the cycle below.
Let τ = (1 3 5)

Solution. Observe that τ−1 = (1 5 3) = (3 1 5) = (5 3 1).
Note that if we visualize τ as a cycle with elements in order clockwise, then

τ−1 is the same elements of τ listed counter-clockwise.

Exercise 10. Write the permutation below using cycle notation.

α =

(
1 2 3 4 5 6
2 4 1 3 6 5

)
Solution. There are many ways to decompose this permutation.

Observe that

α = (1 2 4 3)(5 6)

= (2 4 3 1)(5 6)

= (3 1 2 4)(5 6)

= (4 3 1 2)(5 6)

= (5 6)(1 2 4 3)

= (5 6)(2 4 3 1)

= (5 6)(3 1 2 4)

= (5 6)(4 3 1 2)

= (1 2 4 3)(6 5)

= (2 4 3 1)(6 5)

= (3 1 2 4)(6 5)

= (4 3 1 2)(6 5)

The conventional way is to write the smallest number first, so we can write
α = (1 2 4 3)(5 6).

We see that α is a product of a 4 cycle and a 2 cycle.

Exercise 11. Write the permutation below using cycle notation.

a =

(
1 2 3 4 5
2 4 1 5 3

)
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Solution. Observe that

a = (1 2 4 5 3)

We see that a is a 5 cycle.

Exercise 12. Write the permutation below using cycle notation.

b =

(
1 2 3 4 5
4 2 5 1 3

)
Solution. There are many ways to write this permutation.

Observe that

b = (1 4)(2)(3 5) = (1 4)(3 5)

We see that b is a product of 2 cycles.

Exercise 13. Write the permutation below using cycle notation.

c =

(
1 2 3 4 5
3 5 1 4 2

)
Solution. There are many ways to write this permutation.

Observe that

c = (1 3)(2 5)(4) = (1 3)(2 5)

We see that c is a product of 2 cycles.

Exercise 14. Write the permutation below using cycle notation.

d =

(
1 2 3 4 5
1 4 3 2 5

)
Solution.

Observe that

d = (1)(2 4)(3)(5) = (2 4)

We see that d is a 2 cycle(transposition).

Exercise 15. Multiply the below permutations.

a =

(
1 2 3
3 1 2

)

b =

(
1 2 3
3 2 1

)
Solution. Observe that ab = (1 3 2)(1 3) = (1 2)(3) = (1 2) and b =
(1 3)(1 3 2) = (1)(2 3) = (2 3).

We see that ab 6= ba.
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Exercise 16. Multiply the below permutations.
a = (1 3 5 2)
b = (2 5 6).

Solution. Observe that

ab = (1 3 5 2)(2 5 6) =

(
1 3 5 2

3 5 2 1

)(
2 5 6

5 6 2

)
=

(
1 3 5 6 2

3 5 6 1 2

)
= (1 3 5 6)(2) = (1 3 5 6)

Therefore, ab = (1 3 5 6).

Exercise 17. Multiply the below permutations.
a = (1 3 5 2)
b = (1 6 3 4).

Solution. We compute ab = (1 3 5 2)(1 6 3 4) = (1 6 5 2)(3 4).

Exercise 18. Multiply the below permutations.
a = (1 3 4 5)
b = (2 3 4).

Solution. We compute ab = (1 3 4 5)(2 3 4) = (1 3 5)(2 4).

Exercise 19. Let a = (1 3 5) and b = (2 7).
Then a and b are disjoint cycles.

Solution. Since cycles a and b have no elements in common, then a and b are
disjoint cycles.

Observe that ab = (1 3 5)(2 7) and ba = (2 7)(1 3 5) = (1 3 5)(2 7).
Therefore, ab = ba, so a and b commute.

Exercise 20. Let a = (1 3 5) and b = (3 4 7).
Then a and b are not disjoint cycles.

Solution. Since 3 is a common element in cycles a and b, then a and b are not
disjoint cycles.

Observe that ab = (1 3 5)(3 4 7) = (1 3 4 7 5) and ba = (3 4 7)(1 3 5) =
(1 4 7 3 5).

Therefore, ab 6= ba, so a and b do not commute.

Exercise 21. Compute the products and write as a decomposition of disjoint
cycles.

σ =

(
1 2 3 4 5 6
6 4 3 1 5 2

)

τ =

(
1 2 3 4 5 6
3 2 1 5 6 4

)

7



Solution. Observe that
σ = (1 6 2 4)(3)(5) = (1 6 2 4) is a 4 cycle
and
τ = (1 3)(2)(4 5 6) = (1 3)(4 5 6) is a product of 2 disjoint cycles
and
στ = (1 3 6)(2 4 5) is a product of 2 disjoint cycles
and
τσ = (1 4 3)(2 5 6) is a product of 2 disjoint cycles.

Exercise 22. Compute (1 6)(2 5 3) in different ways.

Solution. Since (1 6)(2 5 3) = (1 6)(2 3)(2 5) = (1 6)(4 5)(2 3)(4 5)(2 5),
then there is no unique representation of a permutation as a product of trans-
positions. Hence, there are many ways to write a permutation as a product of
transpositions.

Exercise 23. Compute the product of the cycles below in S8.
(1 4 5)(7 8)(2 5 7).

Solution. Let σ = (1 4 5)(7 8)(2 5 7).
Then σ = (1 4 5 8 7 2).

Exercise 24. Compute the product of the cycles below in S8.
(1 3 2 7)(4 8 6).

Solution. Let σ = (1 3 2 7)(4 8 6).
Then σ is a product of disjoint cycles.

Exercise 25. Compute the product of the cycles below in S8.
(1 2)(4 7 8)(2 1)(7 2 8 1 5).

Solution. Let σ = (1 2)(4 7 8)(2 1)(7 2 8 1 5).
Then

σ = (1 2)(4 7 8)(2 1)(7 2 8 1 5)

= (1 2)(2 1)(4 7 8)(7 2 8 1 5)

= (1 2)(1 2)(4 7 8)(7 2 8 1 5)

= id(4 7 8)(7 2 8 1 5)

= (4 7 8)(7 2 8 1 5)

= (1 5 8)(2 4 7).

Exercise 26. Compute the order of the cycle below in S8.
(1 4 5 7).

Solution. Let σ = (1 4 5 7).
Then σ2 = (1 5)(4 7) and
σ3 = (1 7 5 4) = (1 5)(1 7)(4 5) and
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σ4 = (1) = id.
Thus, |σ| = 4.
Since the length of σ is 4, then the order of σ is 4.

Exercise 27. Compute the order of the permutation below in S8.
(4 5)(2 3 7).

Solution. Let σ = (4 5)(2 3 7) = (2 3 7)(4 5).
Then σ2 = (2 7 3) and
σ3 = (4 5) and
σ4 = (2 3 7) and
σ5 = (2 7 3)(4 5) and
σ6 = (1) = id.
Thus, |σ| = 6.
The order of σ is the least common multiple of the orders of its disjoint

cycles.
Therefore, |σ| = lcm(3, 2) = 6.

Exercise 28. Compute the order of the permutation below in S8.
(1 4)(3 5 7 8).

Solution. Let τ = (1 4)(3 5 7 8).
Then τ2 = (3 7)(5 8) and
τ3 = (1 4)(3 8 7 5) and
τ4 = (1) = id.
Thus, |τ | = 4.
The order of τ is the least common multiple of the orders of its disjoint

cycles.
Therefore, |τ | = lcm(2, 4) = 4.

Exercise 29. Compute the order of the permutation below in S8.

σ =

(
1 2 3 4 5 6 7 8
8 2 6 3 7 4 5 1

)
Solution. Since σ = (1 8)(3 6 4)(5 7), then

σ2 = (3 4 6) and
σ3 = (1 8)(5 7) and
σ4 = (3 6 4) and
σ5 = (1 8)(3 4 6)(5 7) and
σ6 = (1) = id.
Thus, |σ| = 6.
The order of σ is the least common multiple of the orders of its disjoint

cycles.
Therefore, |σ| = lcm(2, 3, 2) = 6.

Exercise 30. Compute the order of the permutation below in S8.

σ =

(
1 2 3 4 5 6 7 8
3 6 4 1 8 2 5 7

)
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Solution. Since σ = (1 3 4)(2 6)(5 8 7), then
σ2 = (1 4 3)(5 7 8) and
σ3 = (2 6) and
σ4 = (1 3 4)(5 8 7) and
σ5 = (1 4 3)(2 6)(5 7 8) and
σ6 = (1) = id.
Thus, |σ| = 6.
The order of σ is the least common multiple of the orders of its disjoint

cycles.
Therefore, |σ| = lcm(3, 2, 3) = 6.

Exercise 31. Compute the order of the permutation below in S8.

σ =

(
1 2 3 4 5 6 7 8
3 1 4 7 2 5 8 6

)
Solution. Since σ = (1 3 4 7 8 6 5 2), then

σ2 = (1 4 8 5)(2 3 7 6) and
σ3 = (1 7 5 3 8 2 4 6) and
σ4 = (1 8)(2 7)(3 6)(4 5) and
σ5 = (1 6 4 2 8 3 5 7) and
σ6 = (1 5 8 4)(2 6 7 3) and
σ7 = (1 2 5 6 8 7 4 3) and
σ8 = (1) = id.
Thus, |σ| = 8.
Since σ is a cycle of length 8, then the order of σ is 8.
Therefore, |σ| = 8.

Exercise 32. Compute the permutation product below and analyze results.
(1 3 4 5)(2 3 4).

Solution. Let σ = (1 3 4 5)(2 3 4).
Then σ = (1 3 4 5)(2 3 4) = (1 3 5)(2 4) = (2 4)(1 3 5).
The order of σ is the least common multiple of the orders of its disjoint

cycles, so |σ| = lcm(2, 3) = 6.

Exercise 33. Compute the permutation product below in S5 and analyze re-
sults.

(1 2)(1 2 5 3).

Solution. Let σ = (1 2)(1 2 5 3).
Then σ = (2 5 3).
Since σ is a cycle of length 3, then the order of σ is |σ| = 3.

Exercise 34. Compute the permutation product below in S5 and analyze re-
sults.

(1 4 3)(2 3)(2 4).

10



Solution. Let σ = (1 4 3)(2 3)(2 4).
Then σ = (1 4)(2 3).
The order of σ is the least common multiple of the orders of its disjoint

cycles, so |σ| = lcm(2, 2) = 2.

Exercise 35. Compute the permutation product below in S6 and analyze re-
sults.

(1 4 2 3)(3 4)(5 6)(1 3 2 4).

Solution. Let σ = (1 4 3)(2 3)(2 4).
Then σ = (1 2)(5 6).
The order of σ is the least common multiple of the orders of its disjoint

cycles, so |σ| = lcm(2, 2) = 2.

Exercise 36. Compute the permutation product below in S5 and analyze re-
sults.

(1 2 5 4)(1 3)(2 5).

Solution. Let σ = (1 2 5 4)(1 3)(2 5).
Then σ = (1 3 2 4).
Since σ is a cycle of length 4, then the order of σ is |σ| = 4.

Exercise 37. Compute the permutation product below in S5 and analyze re-
sults.

(1 2 5 4)(1 3)(2 5)2.

Solution. Let σ = (1 2 5 4)(1 3)(2 5)2.
Then σ = (1 3 2 5 4).
Since σ is a cycle of length 5, then the order of σ is |σ| = 5.

Exercise 38. Compute the permutation product below in S5 and analyze re-
sults.

(1 2 5 4)−1(1 2 3)(4 5)(1 2 5 4).

Solution. Let σ = (1 2 5 4)−1(1 2 3)(4 5)(1 2 5 4).
Then σ = (1 3 4)(2 5).
The order of σ is the least common multiple of the orders of its disjoint

cycles, so |σ| = lcm(3, 2) = 6.

Exercise 39. Compute the permutation product below in S5 and analyze re-
sults.

(1 2 5 4)2(1 2 3)(4 5).

Solution. Let σ = (1 2 5 4)2(1 2 3)(4 5).
Then σ = (1 4)(2 3 5).
The order of σ is the least common multiple of the orders of its disjoint

cycles, so |σ| = lcm(2, 3) = 6.

Exercise 40. Compute the permutation product below in S5 and analyze re-
sults.

(1 2 3)(4 5)(1 2 5 4)−2.
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Solution. Let σ = (1 2 3)(4 5)(1 2 5 4)−2.
Then σ = (1 4 3)(2 5).
The order of σ is the least common multiple of the orders of its disjoint

cycles, so |σ| = lcm(3, 2) = 6.

Exercise 41. Compute the permutation product below in S5 and analyze re-
sults.

(1 2 5 4)100.

Solution. Let σ = (1 2 5 4)100.
Let α = (1 2 5 4).
Since α is a cycle of length 4, then the order of α is 4, so α4 = id.
Observe that

σ = (1 2 5 4)100

= α100

= α4·25

= (α4)25

= id25

= id

= (1).

Therefore, σ = (1) is the identity permutation.

Exercise 42. Compute the permutation product below in S5 and analyze re-
sults.

(1 2 5 4)2.

Solution. Let σ = (1 2 5 4)2.
Then σ = (1 5)(2 4).
The order of σ is the least common multiple of the orders of its disjoint

cycles, so |σ| = lcm(2, 2) = 2.

Exercise 43. Compute the permutation product below in S7 and analyze re-
sults.

(1 2 5 3 7)−1.

Solution. Let σ = (1 2 5 3 7)−1.
Then σ = (7 3 5 2 1).
Since σ is a cycle of length 5, then the order of σ is |σ| = 5.

Exercise 44. Compute the permutation product below in S7 and analyze re-
sults.

[(1 2)(3 4)(1 2)(4 7)]−1.

Solution. Let σ = [(1 2)(3 4)(1 2)(4 7)]−1.
Then σ = (3 7 4).
Since σ is a cycle of length 3, then the order of σ is |σ| = 3.
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Exercise 45. Compute the permutation product below in S7 and analyze re-
sults.

[(1 2 3 5)(4 6 7)]−1.

Solution. Let σ = [(1 2 3 5)(4 6 7)]−1.
Observe that

σ = [(1 2 3 5)(4 6 7)]−1

= (4 6 7)−1(1 2 3 5)−1

= (7 6 4)(5 3 2 1)

= (4 7 6)(1 5 3 2).

The order of σ is the least common multiple of the orders of its disjoint
cycles, so |σ| = lcm(3, 4) = 12.

Parity of a permutation

Exercise 46. Express the below permutation in S5 as a product of transposi-
tions:

(1 3 5)(2 4).

Solution. Let σ = (1 3 5)(2 4).
We start with the identity permutation id and swap 2 and 4.
Then swap 3 and 5.
Finally, swap 1 and 3.
Therefore, σ = (1 3)(3 5)(2 4).

Another approach is to breakdown the 3 cycle (1 3 5) by letting the first
element 1 swap with each element beginning with 3, 5.

Then (1 3 5) = (1 5)(1 3).
Hence, σ = (1 5)(1 3)(2 4).

Exercise 47. A permutation has no unique representation as a product
of transpositions.

Express the below permutation in S6 as a product of transpositions in several
different ways:

(1 6)(2 5 3).

Solution. Let σ = (1 6)(2 5 3).
We start with the identity permutation id and swap 2 and 5.
Then swap 2 and 3.
Finally, swap 1 and 6.
Therefore, σ = (1 6)(2 3)(2 5).

Another approach is:
We start with the identity permutation id and swap 3 and 5.
Then swap 2 and 5.
Finally, swap 1 and 6.
Therefore, σ = (1 6)(2 5)(3 5).
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Another approach is:
We start with the identity permutation id and perform the following actions.
1. Swap 2 and 5.
2. Swap 4 and 5.
3. Swap 2 and 3.
4. Swap 4 and 5.
5. Swap 1 and 6.
Therefore, σ = (1 6)(4 5)(2 3)(4 5)(2 5).
Since our convention is to apply function composition in right to left order,

we write the swap actions in reverse order.

Exercise 48. Write the permutation in S7 below as a product of transpositions
and analyze results:

(1 4 3 2 6 7 5).

Solution. Let σ = (1 4 3 2 6 7 5).
We let the first element 1 cycle all the way through this 7 cycle, so have 6

swaps of 1 with each element of this cycle, beginning with 4, 3, 2, 6, 7, 5.
Thus, σ = (1 5)(1 7)(1 6)(1 2)(1 3)(1 4) is a product of 6 transpositions, so

σ is an even permutation.

Exercise 49. Let H = {f ∈ S5 : f(1) = 1}.
Then (H, ◦) is a subgroup of (S5, ◦).

Proof. We prove H ⊂ S5.
Since H = {f ∈ S5 : f(1) = 1}, then H ⊂ S5.

We prove H 6= ∅.
The identity function defined by

id =

(
1 2 3 4 5
1 2 3 4 5

)
is an element of S5 and id(1) = 1, so id ∈ H.
Therefore, H 6= ∅.

We prove H is a finite set.
Since |S5| = 5! = 120, then S5 is a finite set.
Every subset of a finite set is finite.
Since S5 is a finite set and H is a subset of S5, then we conclude H is finite.
Since H ⊂ S5 and H 6= ∅ and H is finite, then H is a non-empty finite subset

of S5.
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We prove H is closed under function composition.
Let g, h ∈ H.
Since g ∈ H, then g ∈ S5 and g(1) = 1.
Since h ∈ H, then h ∈ S5 and h(1) = 1.
Since (S5, ◦) is a group, then S5 is closed under function composition.
Since g ∈ S5 and h ∈ S5, then the function g ◦ h defined by (g ◦ h)(x) =

g(h(x)) for all x ∈ {1, 2, 3, 4, 5} is an element of S5, so g ◦ h ∈ S5.
Since (g ◦ h)(1) = g(h(1)) = g(1) = 1, then (g ◦ h)(1) = 1.
Since g ◦ h ∈ S5 and (g ◦ h)(1) = 1, then g ◦ h ∈ H, so H is closed under

function composition.

Since H is a non-empty finite subset of S5 and H is closed under function
composition, then by the finite subgroup test, H is a subgroup of S5, so (H, ◦) <
(S5, ◦).

Exercise 50. Find a subgroup of S7 that contains 12 elements.

Solution. Let σ = (1, 2, 3, 4)(5, 6, 7).
Then |σ| = lcm(4, 3) = 12, so 〈σ〉 is a cyclic subgroup of order 12 generated

by σ.

Exercise 51. Let H = {σ ∈ S5 : σ(5) = 5}.
Show that H < S5 and compute |H|.

Solution. Let σ ∈ H.
Then σ ∈ S5 and σ(5) = 5.
Thus, σ : X → X is a permutation of 5 letters, where X = {1, 2, 3, 4, 5}.
Since σ(5) = 5, then there are 4 choices for σ(1) and for each choice there

are then 3 choices for σ(2) which then leaves 2 choices for σ(3) and then leaves
just 1 choice for σ(4).

Hence, there are 4! different permutations, so |H| = 4! = 24.

To prove H < S5, we use the finite subgroup test.
Since S5 is finite and H ⊂ S, then H is finite.
Since (1) ∈ H, then H is not empty.

Let α, β ∈ H.
Then α, β ∈ S5 and α(5) = 5 = β(5).
By closure of S5, αβ ∈ S5.
Observe that

(αβ)(5) = α(β(5))

= α(5)

= 5.

Since αβ ∈ S5 and (αβ)(5) = 5, then αβ ∈ H.
Therefore, H is closed under permutation multiplication.
Hence, H < S5.
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Exercise 52. List all subgroups of S4.

Solution. Let X = {1, 2, 3, 4}.
Let (S4, ◦) be the symmetric group of degree 4.
Then |S4| = 4! = 24, so there are 24 permutations in S4.
We first list all 24 permutations of X.
We enumerate each choice as a branching tree to obtain:
1234, 1243, 1324, 1342, 1423, 1432 and
2134, 2143, 2314, 2341, 2413, 2431 and
3124, 3142, 3214, 3241, 3412, 3421 and
4123, 4132, 4213, 4231, 4312, 4321.
Now, we need to write these in cycle notation:
The elements in S4 are:
id, (34), (23), (234), (243), (24),
(12), (12)(34), (123), (1234), (1243), (124),
(132), (1342), (13), (134), (13)(24), (1324),
(1432), (142), (143), (14), (1423), (14)(23).
The element of order 1 is id, so the subgroup of order 1 is the trivial subgroup

{id}.
The elements of order 2 are: (34), (23), (24), (12), (12)(34), (13), (13)(24), (14), (14)(23).
Each of these elements generates a cyclic subgroup of S4 of order 2 and all

of these subgroups are the same up to isomorphism.
Thus, we have the following subgroups of order 2:
{id, (34)}
{id, (23)}
{id, (24)}
{id, (12)}
{id, (12)(34)}
{id, (13)}
{id, (13)(24)}
{id, (14)}
{id, (14)(23)}
The elements of order 3 are: (234), (243), (123), (124), (132), (134), (142), (143).
Each of these elements generates a cyclic subgroup of S4 of order 3 and all

of these subgroups are the same up to isomorphism.
Thus, we have the following subgroups of order 3:
{id, (234), (243)}
{id, (123), (132)}
{id, (124), (142)}
{id, (134), (143)}
The elements of order 4 are: (1234), (1243), (1342), (1324), (1432), (1423).
Each of these elements generates a cyclic subgroup of S4 of order 4 and all

of these subgroups are the same up to isomorphism.
Thus, we have the following subgroups of order 4:
{id, (1234), (13)(24), (4321)}
{id, (1243), (14)(23), (3421)}
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{(1324), (12)(34), (1423), id}

Exercise 53. Let α, β ∈ Sn.
Then α−1β−1αβ is even.

Proof. The permutations α and β are each either even or odd.
There are 4 cases to consider.
Case 1: Suppose α, β are both even.
Then α and β have the same parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α−1 is even and β−1 is even, so α−1 and β−1 have the same parity.
The composition of two permutations of the same parity is even.
Hence, αβ is even and α−1β−1 is even.
Therefore, αβ and α−1β−1 have the same parity.
Thus, α−1β−1αβ is even.
Case 2: Suppose α, β are both odd.
Then α and β have the same parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α−1 is odd and β−1 is odd, so α−1 and β−1 have the same parity.
The composition of two permutations of the same parity is even.
Hence, αβ is even and α−1β−1 is even.
Therefore, αβ and α−1β−1 have the same parity.
Thus, α−1β−1αβ is even.
Case 3: Suppose α is even and β is odd.
Then α and β have opposite parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α−1 is even and β−1 is odd, so α−1 and β−1 have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, αβ is odd and α−1β−1 is odd.
Therefore, αβ and α−1β−1 have the same parity.
The composition of two permutations of the same parity is even.
Hence, α−1β−1αβ is even.
Case 4: Suppose α is odd and β is even.
Then α and β have opposite parity.
The parity of a permutation is the same as the parity of its inverse.
Hence, α−1 is odd and β−1 is even, so α−1 and β−1 have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, αβ is odd and α−1β−1 is odd.
Therefore, αβ and α−1β−1 have the same parity.
The composition of two permutations of the same parity is even.
Hence, α−1β−1αβ is even.
Therefore, in all cases α−1β−1αβ is even, as desired.

Exercise 54. If τ ∈ Sn has order m, then στσ−1 has order m for all σ ∈ Sn.

Proof. Suppose τ ∈ Sn and |τ | = m.
Then m is the least positive integer such that τm = (1).
Hence, for every s ∈ Z+ such that τs = (1), m ≤ s.
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Let σ ∈ Sn.
Since Sn is a finite group, then the element στσ−1 ∈ Sn has finite order.
Let k be the order of στσ−1.
Then k is the least positive integer such that (στσ−1)k = (1).
Observe that

(στσ−1)m = στmσ−1

= σ(1)σ−1

= (1).

Since (στσ−1)m = (1) iff k|m, then k|m.
Since k,m ∈ Z+, then this implies k ≤ m.
Observe that

(1) = (στσ−1)k

= στkσ−1.

Hence, σ = στk, so σ(1) = στk.
By cancellation, (1) = τk.
Thus, m ≤ k.
Since k ≤ m and m ≤ k, then m = k.
Therefore, |στσ−1| = m.

Exercise 55. Let n ≥ 1.
Let σ ∈ Sn.
Then σ can be written as a product of at most n− 1 transpositions.

Proof. Either σ is the identity permutation or it is not.
We consider these cases separately.
Case 1: Suppose σ = id.
Since the identity permutation has no 2 cycles, then id can be written as a

product of zero transpositions.
Thus, σ can be written as a product of zero transpositions and 0 ≤ n− 1.
Case 2: Suppose σ 6= id.
Any permutation of a nonempty finite set can be written as a finite product

of disjoint cycles.
Since Sn is nonempty and finite, then σ can be written as a finite product

of disjoint cycles.
Thus, there exist k disjoint cycles c1, c2, ..., ck such that σ = c1c2 · · · ck and

k > 0.
Let li be the length of the cycle ci for each i = 1, 2, ..., k.
Since the sum of the cycle lengths of all the disjoint cycles cannot exceed n,

then 0 ≤ l1 + l2 + ...+ lk ≤ n.
Hence, 0 ≤

∑k
i=1 li ≤ n.
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If d is a cycle of lengthm, then d = (d1, d2, ..., dm) = (d1, dm)(d1, dm−1), ...(d1, d2).
Hence d is a product of m− 1 transpositions.
Thus, any cycle of length m is a product of m− 1 transpositions.
The number of transpositions of σ is the sum of the number of transpositions

of each disjoint cycle.
Let t be the number of transpositions of σ.
Then t = (l1−1)+(l2−1)+...+(lk−1) = (l1+l2+...+lk)−k∗1 =

∑k
i=1 li−k.

The maximum value for t occurs when
∑k

i=1 li is maximum and k is mini-
mum.

Let T be the maximum of t.
Then T is the value when

∑k
i=1 li = n and k = 1.

Thus, T = n− 1.
Hence, the maximum number of transpositions is n− 1.

Exercise 56. If σ is a cycle of odd length, then σ2 is a cycle.

Proof. Let σ be a k cycle of odd length.
Then k is odd and σ = (a1, a2, ..., ak).
Observe that σ2(a1) = σ(σ(a1)) = σ(a2) = a3.
Observe that σ2(a2) = σ(σ(a2)) = σ(a3) = a4.
Observe that σ2(a3) = σ(σ(a3)) = σ(a4) = a5.
We continue this process.
Observe that σ2(ak−1) = σ(σ(ak−1)) = σ(ak) = a1.
Observe that σ2(ak) = σ(σ(ak)) = σ(a1) = a2.
Observe that a1 7→ a3 7→ a5 7→ a7 7→ ... 7→ ak 7→ a2 7→ a4 7→ a6... 7→ ak−1 7→

a1.
Therefore, σ2 = (a1, a3, a5, ..., ak, a2, a4, a6, ..., ak−1).
Hence, σ2 is a cycle of length k.

Exercise 57. If H < Sn, then either all members of H are even or exactly half
of the members of H are even.

Solution. We compute some examples.
Let n = 1.
Then S1 = {id}.
Since id is an even permutation, then all members of S1 are even.
Therefore, all members of S1 are even.
Since there is only 1 group of order 1 up to isomorphism, then in any group

of order 1 all of its members are even.
The only subgroups of S1 is S1 itself since S1 is the trivial group.

Let n = 2.
Then S2 = {id, (12)}.
Since id is even and (12) is odd (b/c any transposition is odd), then exactly

1/2 of its members are even.
Therefore, exactly 1/2 of the members of S2 are even.

19



Since there is only 1 group of order 2 up to isomorphism, then in any group
of order 2 exactly 1/2 of its members are even.

The only subgroups of S2 are the trivial subgroup and S2 itself.

Let n = 3.
Then S3 = {id, (12), (13), (14), (123), (132)}.
Since id, (123), (132) are all even and the transpositions (12), (13), (14) are

all odd, then exactly 1/2 of its members are even.
Therefore, exactly 1/2 of the members of S3 are even.

What are all the subgroups of S3?
They are: {id}, {(12), id}, {(13), id}, {(23), id}, {(123), (132), id}, S3.
The trivial subgroup is a group of order 1, so all of its members are even.
S3 has 3 groups of order 2.
We know that in any subgroup of order 2 exactly 1/2 of its members are

even.
S3 has 1 group of order 3, namely S3 itself.
In S3 the even permutations are id, (123), (132) and the odd permutations

are (12), (13), (23). Hence exactly 1/2 of its members are even and 1/2 are odd.
Therefore, in S3 exactly 1/2 of its members are even.
Since there is only 1 group of order 3 up to isomorphism, then in any group

of order 3 exactly 1/2 of its members are even.
Let n = 4.
Then S4 consists of 4! = 24 permutations.
One example of a permutation of S4 that has order 4 is the cycle (1234).
Every element generates a cyclic subgroup, so the cycle (1234) generates a

cyclic subgroup of S4 of order 4.
This particular group of order 4 is G4 = {id, (1234), (13)(24), (1432)}.
The even permutations are id, (13)(24) and the odd permutations are (1234), (1432).
Hence, the number of even permutations equals the number of odd permu-

tations, so exactly 1/2 of the members of G4 are even.

Any group of order 4 that is cyclic is isomorphic to (Z4,+), so (G4, ◦) ∼=
(Z4,+).

There is also a subgroup of S4 that is not cyclic by Cayley’s theorem.
Let H < S4 be a noncyclic subgroup of order 4.
Then H is isomorphic to Klein 4 group.
An example is H = {id, (13)(24), (14)(23), (12)(34)}.
Note that H < A4 since all elements of H are even permutations.

Hence a group of order 4 is either cyclic or not cyclic.
If a group of order 4 is cyclic, then it is isomorphic to Z4 and exactly 1/2 of

its members are even permutations.
If a group of order 4 is not cyclic, then it is isomorphic to Klein 4 group and

all of its members are even permutations.
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To prove this assertion, let H < Sn.
P : All members of H are even permutations.
Q : Exactly 1/2 of the members of H are even permutations.
We must prove P ∨Q.
Since ¬P → Q⇔ ¬(¬P ) ∨Q⇔ P ∨Q, we may prove P ∨Q by proving its

logically equivalent form ¬P → Q.
Thus, we assume Not all members of H are even permutations.
We must prove exactly 1/2 of the members of H are even.

Proof. Let n be a positive integer.
Let H < Sn.
Suppose not all members of H are even permutations.
Then there exists at least one member of H that is not even.
Hence, there exists at least one member of H that is odd.

Let σ be some odd permutation of H.
Then σ ∈ H and σ is odd.
Let A be the set of all even permutations of H.
Let B be the set of all odd permutations of H.
Then A = {h ∈ H : h is even} and B = {h ∈ H : h is odd}.
Let P = {A,B}.
We prove P is a partition of H.
Since H is a group, then there exists an identity in H.
Let id be the identity of H.
Since id is even, then id ∈ A.
Thus, A 6= ∅.
Since σ ∈ H and σ is odd, then σ ∈ B.
Hence, B 6= ∅.
Since A ⊂ H and B ⊂ H, then A ∪B ⊂ H.

Let x ∈ H.
Since H ⊂ Sn, then x ∈ Sn.
Thus, x is a permutation on n symbols.
By the parity theorem, any permutation is either even or odd, but not both.
Hence, x is either even or odd, but not both.
Thus, either x is even or x is odd and x is not both even and odd.
Hence, either x ∈ A or x ∈ B and x 6∈ A ∩B.
Therefore, x ∈ A ∪B and x 6∈ A ∩B.
Thus, x ∈ H implies x ∈ A ∪B, so H ⊂ A ∪B.
Since A ∪B ⊂ H and H ⊂ A ∪B, then H = A ∪B.
Since x is arbitrary, then x 6∈ A ∩B for all x ∈ H.
Hence, there does not exist x ∈ H such that x ∈ A ∩B.
Therefore, A ∩B = ∅.
Therefore, P is a partition of H.
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Observe that

|H| = |A ∪B|
= |A|+ |B| − |A ∩B|
= |A|+ |B| − |∅|
= |A|+ |B| − 0

= |A|+ |B|.

To prove exactly 1/2 of the members of H are even, we prove |A| = |B|.
Hence, we must prove there exists a bijection from A to B.
Let f : A→ B be a binary relation defined by f(α) = ασ.
Let α ∈ A.
Then α ∈ H and α is even.

Let ασ be the composition of α and σ.
Since α ∈ H and σ ∈ H, then by closure of H under ◦, ασ ∈ H.
Since ◦ is a binary operation of H, then the product ασ is unique.
Since α is even and σ is odd, then α and σ have opposite parity.
The composition of two permutations of opposite parity is odd.
Hence, ασ is odd.
Since ασ ∈ H and ασ is odd, then ασ ∈ B.
Since f(α) = ασ, then f(α) ∈ B and f(α) is unique.
Thus, α ∈ A implies f(α) ∈ B and f(α) is unique.
Therefore, f is a function.

We prove f is injective.
Suppose there exist α1, α2 ∈ A such that f(α1) = f(α2).
Then α1 ∈ H and α2 ∈ H and α1σ = α2σ.
Thus, α1, α2, σ ∈ H.
Since H is a group, we apply the cancellation law for groups to obtain

α1 = α2.
Hence, f(α1) = f(α2) implies α1 = α2, so f is injective.

We prove f is surjective.
Let β ∈ B.
Then β ∈ H and β is odd.
Let α = βσ−1.
Since H is a group and σ ∈ H, then σ−1 ∈ H.
By closure of H, βσ−1 ∈ H, so α ∈ H.

The parity of σ−1 is the same as the parity of its inverse.
Hence, the parity of σ−1 is the same as the parity of (σ−1)−1 = σ.
Thus, the parity of σ−1 is the same as the parity of σ.
Since the parity of σ is odd, then this implies that σ−1 is odd.
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Thus, β and σ−1 have the same parity.
The composition of two permutations of the same parity is even.
Hence, α is even.
Since α ∈ H and α is even, then α ∈ A. Observe that

f(α) = f(βσ−1)

= (βσ−1)σ

= β(σ−1σ)

= β(id)

= β.

Hence, there exists α ∈ A such that f(α) = β.
Therefore, f is surjective.
Hence, f is bijective, so |A| = |B|.
Thus, |H| = |A|+ |B| = |A|+ |A| = 2|A|, so |A| = |H|

2 .

Therefore, the number of even permutations in H is |H|2 .
Hence, exactly 1/2 of the members of H are even.

Exercise 58. Let α ∈ Sn for n ≥ 3.
If αβ = βα for all β ∈ Sn, then α = id.

Solution. We must prove: (∀β ∈ Sn)(αβ = βα)→ (α = id).
To get a complete picture, we try S2.
When we compute S2, we find that both id and (12) each commute with all

elements of S2, so that α could be either id or (12).
When we try S3, we compute and find that id commutes with all elements

of S3 and that all non-identity elements do not.
We find that each non identity element α has at least one β such that

αβ 6= βα.
In fact, we also observe that such a β is not the identity.
The same observation applies when we compute S4.
Thus, to prove this statement we can consider whether α is identity or not.
This suggests proof by contrapositive because we can then assume α is not

identity and hopefully deduce our result.
The contrapositive is:
(α 6= id)→ (∃β ∈ Sn)(αβ 6= βα).
Thus, we assume α 6= id.
We must construct a suitable β ∈ Sn such that αβ 6= βα.

Proof. Let X = {1, 2, 3, ..., n}.
Suppose α 6= id.
Since α = id iff α(x) = x for all x ∈ X, then α 6= id iff there exists x ∈ X

such that α(x) 6= x.
Thus, there exists x ∈ X such that α(x) 6= x.
Without loss of generality, we may let x = 1.
Then α(1) 6= 1.
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Let a = α(1).
Then a 6= 1.
Since α is a permutation, then α is a bijective function, so α is surjective.
Hence, there exists b ∈ X such that α(b) = 1.
Suppose b = 1.
Then α(1) = 1.
Thus, α(1) = 1 and α(1) 6= 1, so α(1) is not unique.
Since α is a function, then α(x) is unique for all x ∈ X.
Hence, in particular, α(1) is unique.
Thus, we have α(1) is not unique and α(1) is unique, a contradiction.
Therefore, b 6= 1.
Let β ∈ Sn such that β(1) = b and β(a) = a.
Since β(1) = b and b 6= 1, then β(1) 6= 1.
Hence, β 6= id.

Suppose a = b.
Then β(a) = a = b = β(1), so β(a) = β(1).
Since β is a permutation, then β is a bijective function, so β is injective.
Hence, β(a) = β(1) implies a = 1, so a = 1.
Thus, we have a = 1 and a 6= 1, a contradiction.
Therefore, a 6= b.
Hence, 1, a, b are distinct elements of X.
Observe that

(αβ)(1) = α(β(1))

= α(b)

= 1

and

(βα)(1) = β(α(1))

= β(a)

= a

6= 1.

Hence, (αβ)(1) 6= (βα)(1), so αβ 6= βα.
Therefore, if α 6= id, then there exists a β ∈ Sn such that αβ 6= βα.
Thus, if αβ = βα for all β ∈ Sn, then α = id.

Exercise 59. How many transpositions exist in Sn?

Solution. Let n ∈ Z+.
Let Sn be the symmetric group on n letters.
Let X = {1, ..., n} be a set of n letters.
Then Sn is the set of all permutations of X.
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Let τ ∈ Sn be a transposition.
Then there exist a, b ∈ X such that τ = (a, b).
Thus, τ is a particular combination of n letters taken 2 at a time.
Thus, the number of transpositions is(

n

2

)
=

n!

(n− 2)!2!

=
n(n− 1)(n− 2)!

2(n− 2)!

=
n(n− 1)

2
.
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