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Cosets/Lagrange Theorem

Exercise 1. Let H and K be finite subgroups of a group G.
If the orders of H and K are relatively prime, then H ∩K = {e}.

Proof. Suppose the orders of H and K are relatively prime.
Let m = |H| and n = |K|.
Then gcd(m,n) = 1.
The intersection of any two groups is a subgroup, so H ∩K < G.

Suppose H ∩K 6= {e}.
Then there exists g ∈ H ∩K such that g 6= e.
Hence, g ∈ H and g ∈ K.
Let s = |g|.
Then by Lagrange, s divides m and s divides n, since H and K are finite

groups.
Hence, s is a common divisor of m and n, so s divides gcd(m,n).
Hence, s divides 1, so s = 1.
Thus, e = gs = g1 = g, so g = e.
Therefore, we have g = e and g 6= e, a contradiction.
Hence, H ∩K = {e}.

Proposition 2. Let H be a subgroup of G such that [G : H] = 2.
If a and b are not in H, then ab ∈ H.

Solution. We must prove (∀a, b ∈ G)(a 6∈ H ∧ b 6∈ H → ab ∈ H).

Proof. Let a, b ∈ G such that a 6∈ H and b 6∈ H.
Since [G : H] = 2, then there are two distinct left cosets of H in G.
Since e ∈ G, then eH = H.
Thus, one of the left cosets is H.
Since a ∈ aH and a 6∈ H, then aH 6= H.
Since aH is a left coset and aH 6= H and there are exactly two left cosets of

H in G, then aH is the other left coset.



Let LH be the collection of all left cosets of H in G.
Then LH is a partition of G and LH = {H, aH}.
Since a, b ∈ G and G is a group, then ab ∈ G.

Suppose ab 6∈ H.
Every element of G exists in exactly one left coset of H in G.
Hence, every element of G is in either H or in aH.
Since ab 6∈ H, then this implies ab ∈ aH.
Thus, there exists h ∈ H such that ab = ah.
By the left cancellation law we obtain b = h.
Since b = h and h ∈ H, then b ∈ H.
Thus, we have b 6∈ H and b ∈ H, a contradiction.
Therefore, ab ∈ H.

Exercise 3. Let p, q be prime.
Let G be a group of order pq.
Then every proper subgroup of G is cyclic.

Proof. The smallest prime is 2.
Since p and q are prime, then the smallest value of the product pq is 2∗2 = 4.
Hence, pq ≥ 4, so G cannot be the trivial group.
Let H be an arbitrary proper subgroup of G.
Since G is a finite group, then by LaGrange’s theorem, the order of H divides

the order of G.
Let n be the order of H.
Then n ∈ Z+ and n|pq.
Hence, either n = 1 or n = p or n = q or n = pq.

Any proper subgroup of G has order that is greater than 1 and less than pq.
Thus, n > 1 and n < pq, so n 6= 1 and n 6= pq.
Hence, either n = p or n = q.
Therefore, H is a group of prime order.
Every group of prime order is cyclic, so H must be cyclic.

Exercise 4. Let G be a group with different subgroups H1 and H2.
If |H1| = |H2| = 3, then H1 ∩H2 = {e}.
G has an even number of elements of order 3.
The number of elements of order 5 is a multiple of 4.

Proof. Suppose |H1| = |H2| = 3.
Then H1 and H2 are groups of order 3.
Since 3 is prime, then H1 and H2 are cyclic.
Observe that H1 ∩H2 ⊂ H1 and H1 ∩H2 ⊂ H2.
Since H1 and H2 are finite, then H1 ∩H2 is finite.
Let e be the identity of G.
Since H1 < G, then e ∈ H1.
Since H2 < G, then e ∈ H2.
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Thus, e ∈ H1 ∩H2, so {e} ⊂ H1 ∩H2.

Suppose for the sake of contradiction that there exists x ∈ H1 ∩H2 such that
x 6= e.

Then x ∈ H1 and x ∈ H2.
Since x ∈ H1 and x 6= e and H1 is a group of prime order, then x is a

generator of H1.
Let K1 be the cyclic subgroup of H1 generated by x.
Then K1 = H1.
Since x ∈ H2 and x 6= e and H2 is a group of prime order, then x is a

generator of H2.
Let K2 be the cyclic subgroup of H2 generated by x.
Then K2 = H2.
The cyclic subgroup containing x is the smallest subgroup that contains x,

so any subgroup that contains x must contain the cyclic subgroup generated by
x.

In particular, H1 ∩H2 contains x, so H1 ∩H2 must contain K1 and K2.
Hence, K1 ⊂ H1 ∩H2 and K2 ⊂ H1 ∩H2.
Thus, H1 ⊂ H1 ∩H2 and H2 ⊂ H1 ∩H2.
Since H1 ∩H2 ⊂ H1 and H1 ⊂ H1 ∩H2, then H1 ∩H2 = H1.
Since H1 ∩H2 ⊂ H2 and H2 ⊂ H1 ∩H2, then H1 ∩H2 = H2.
Thus, H1 = H2.
Since H1 and H2 are different groups, then H1 6= H2.
Hence, we have H1 = H2 and H1 6= H2, a contradiction.
Therefore, there is no nonidentity element in H1 ∩H2.
Let x ∈ H1 ∩H2.
Then x = e.
Thus, x ∈ H1 ∩H2 implies x ∈ {e}.
Hence, H1 ∩H2 ⊂ {e}.
Since H1 ∩H2 ⊂ {e} and {e} ⊂ H1 ∩H2, then H1 ∩H2 = {e}.

We prove G has an even number of elements of order 3.
Let a ∈ G be an element of order 3.
Then a generates a cyclic subgroup of G of order 3.
Thus, 〈a〉 = {e, a, a2}.
Both a and a2, the inverse of a, are elements of order 3 and a 6= a2.
Thus, elements of order 3 occur in pairs, the element a and its inverse a−1.
Thus, if G has k cyclic subgroups of order 3, then there must be 2k elements

of order 3.

We prove the number of elements of order 5 is a multiple of 4.
Let h ∈ G have order 5.
Then h generates a cyclic subgroup of G of order 5.
Thus, 〈h〉 = {e, h, h2, h3, h4}.
Hence, the generators of 〈h〉 are elements hk such that gcd(k, 5) = 1.
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Thus the number of such generators is φ(5) = 5− 1 = 4.
Thus, there are 4 elements in the cyclic group generated by h that have order

5, namely, h, h2, h3, h4.
Hence, |e| = 1 and |h| = 5 and |h2| = 5

gcd(2,5) = 5 and |h3| = 5
gcd(3,5) = 5

and |h4| = 5
gcd(4,5) = 5. Therefore, 〈h〉 contains 4 elements of order 5.

Hence, each cyclic subgroup of order 5 has 4 elements of order 5.
Thus, if G has m cyclic subgroups of order 5, then there must be 4m elements

of order 5.
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