Group Theory Exercises 4

Jason Sass

July 17, 2023

Cosets/Lagrange Theorem

Exercise 1. Let H and K be finite subgroups of a group G. If the orders of H and K are relatively prime, then $H \cap K = \{e\}$. *Proof.* Suppose the orders of H and K are relatively prime. Let m = |H| and n = |K|. Then gcd(m, n) = 1. The intersection of any two groups is a subgroup, so $H \cap K < G$. Suppose $H \cap K \neq \{e\}$. Then there exists $g \in H \cap K$ such that $g \neq e$. Hence, $q \in H$ and $q \in K$. Let s = |q|. Then by Lagrange, s divides m and s divides n, since H and K are finite groups. Hence, s is a common divisor of m and n, so s divides gcd(m, n). Hence, s divides 1, so s = 1. Thus, $e = g^s = g^1 = g$, so g = e. Therefore, we have g = e and $g \neq e$, a contradiction. Hence, $H \cap K = \{e\}$. **Proposition 2.** Let H be a subgroup of G such that [G:H] = 2. If a and b are not in H, then $ab \in H$. **Solution.** We must prove $(\forall a, b \in G)(a \notin H \land b \notin H \rightarrow ab \in H)$. *Proof.* Let $a, b \in G$ such that $a \notin H$ and $b \notin H$. Since [G:H] = 2, then there are two distinct left cosets of H in G. Since $e \in G$, then eH = H. Thus, one of the left cosets is H. Since $a \in aH$ and $a \notin H$, then $aH \neq H$. Since aH is a left coset and $aH \neq H$ and there are exactly two left cosets of H in G, then aH is the other left coset.

Let L_H be the collection of all left cosets of H in G. Then L_H is a partition of G and $L_H = \{H, aH\}$. Since $a, b \in G$ and G is a group, then $ab \in G$.

Suppose $ab \notin H$.

Every element of G exists in exactly one left coset of H in G. Hence, every element of G is in either H or in aH. Since $ab \notin H$, then this implies $ab \in aH$. Thus, there exists $h \in H$ such that ab = ah. By the left cancellation law we obtain b = h. Since b = h and $h \in H$, then $b \in H$. Thus, we have $b \notin H$ and $b \in H$, a contradiction. Therefore, $ab \in H$.

Exercise 3. Let p, q be prime.

Let G be a group of order pq. Then every proper subgroup of G is cyclic.

Proof. The smallest prime is 2.

Since p and q are prime, then the smallest value of the product pq is 2*2 = 4. Hence, $pq \ge 4$, so G cannot be the trivial group. Let H be an arbitrary proper subgroup of G. Since G is a finite group, then by LaGrange's theorem, the order of H divides the order of G.

Let n be the order of H. Then $n \in \mathbb{Z}^+$ and n|pq. Hence, either n = 1 or n = p or n = q or n = pq.

Any proper subgroup of G has order that is greater than 1 and less than pq. Thus, n > 1 and n < pq, so $n \neq 1$ and $n \neq pq$. Hence, either n = p or n = q. Therefore, H is a group of prime order. Every group of prime order is cyclic, so H must be cyclic.

Exercise 4. Let G be a group with different subgroups H_1 and H_2 . If $|H_1| = |H_2| = 3$, then $H_1 \cap H_2 = \{e\}$. G has an even number of elements of order 3. The number of elements of order 5 is a multiple of 4.

Proof. Suppose $|H_1| = |H_2| = 3$. Then H_1 and H_2 are groups of order 3. Since 3 is prime, then H_1 and H_2 are cyclic. Observe that $H_1 \cap H_2 \subset H_1$ and $H_1 \cap H_2 \subset H_2$. Since H_1 and H_2 are finite, then $H_1 \cap H_2$ is finite. Let e be the identity of G. Since $H_1 < G$, then $e \in H_1$. Since $H_2 < G$, then $e \in H_2$. Thus, $e \in H_1 \cap H_2$, so $\{e\} \subset H_1 \cap H_2$.

Suppose for the sake of contradiction that there exists $x \in H_1 \cap H_2$ such that $x \neq e$.

Then $x \in H_1$ and $x \in H_2$.

Since $x \in H_1$ and $x \neq e$ and H_1 is a group of prime order, then x is a generator of H_1 .

Let K_1 be the cyclic subgroup of H_1 generated by x.

Then $K_1 = H_1$.

Since $x \in H_2$ and $x \neq e$ and H_2 is a group of prime order, then x is a generator of H_2 .

Let K_2 be the cyclic subgroup of H_2 generated by x. Then $K_2 = H_2$.

The cyclic subgroup containing x is the smallest subgroup that contains x, so any subgroup that contains x must contain the cyclic subgroup generated by x.

In particular, $H_1 \cap H_2$ contains x, so $H_1 \cap H_2$ must contain K_1 and K_2 . Hence, $K_1 \subset H_1 \cap H_2$ and $K_2 \subset H_1 \cap H_2$. Thus, $H_1 \subset H_1 \cap H_2$ and $H_2 \subset H_1 \cap H_2$. Since $H_1 \cap H_2 \subset H_1$ and $H_1 \subset H_1 \cap H_2$, then $H_1 \cap H_2 = H_1$. Since $H_1 \cap H_2 \subset H_2$ and $H_2 \subset H_1 \cap H_2$, then $H_1 \cap H_2 = H_2$. Thus, $H_1 = H_2$. Since H_1 and H_2 are different groups, then $H_1 \neq H_2$. Hence, we have $H_1 = H_2$ and $H_1 \neq H_2$, a contradiction. Therefore, there is no nonidentity element in $H_1 \cap H_2$. Let $x \in H_1 \cap H_2$. Then x = e. Thus, $x \in H_1 \cap H_2$ implies $x \in \{e\}$. Hence, $H_1 \cap H_2 \subset \{e\}$. Since $H_1 \cap H_2 \subset \{e\}$ and $\{e\} \subset H_1 \cap H_2$, then $H_1 \cap H_2 = \{e\}$.

We prove G has an even number of elements of order 3. Let $a \in G$ be an element of order 3. Then a generates a cyclic subgroup of G of order 3. Thus, $\langle a \rangle = \{e, a, a^2\}$. Both a and a^2 , the inverse of a, are elements of order 3 and $a \neq a^2$. Thus, elements of order 3 occur in pairs, the element a and its inverse a^{-1} . Thus, if G has k cyclic subgroups of order 3, then there must be 2k elements of order 3.

We prove the number of elements of order 5 is a multiple of 4. Let $h \in G$ have order 5. Then h generates a cyclic subgroup of G of order 5. Thus, $\langle h \rangle = \{e, h, h^2, h^3, h^4\}$. Hence, the generators of $\langle h \rangle$ are elements h^k such that gcd(k, 5) = 1. Thus the number of such generators is $\phi(5) = 5 - 1 = 4$.

Thus, there are 4 elements in the cyclic group generated by h that have order 5, namely, h, h^2, h^3, h^4 .

Hence, |e| = 1 and |h| = 5 and $|h^2| = \frac{5}{\gcd(2,5)} = 5$ and $|h^3| = \frac{5}{\gcd(3,5)} = 5$ and $|h^4| = \frac{5}{\gcd(4,5)} = 5$. Therefore, $\langle h \rangle$ contains 4 elements of order 5. Hence, each cyclic subgroup of order 5 has 4 elements of order 5.

Thus, if G has m cyclic subgroups of order 5, then there must be 4m elements of order 5.