Group Theory Exercises 4

Jason Sass

July 17, 2023

Cosets/Lagrange Theorem

Exercise 1. Let H and K be finite subgroups of a group G.
If the orders of H and K are relatively prime, then $H \cap K=\{e\}$.
Proof. Suppose the orders of H and K are relatively prime.
Let $m=|H|$ and $n=|K|$.
Then $\operatorname{gcd}(m, n)=1$.
The intersection of any two groups is a subgroup, so $H \cap K<G$.

Suppose $H \cap K \neq\{e\}$.
Then there exists $g \in H \cap K$ such that $g \neq e$.
Hence, $g \in H$ and $g \in K$.
Let $s=|g|$.
Then by Lagrange, s divides m and s divides n, since H and K are finite groups.

Hence, s is a common divisor of m and n, so s divides $\operatorname{gcd}(m, n)$.
Hence, s divides 1, so $s=1$.
Thus, $e=g^{s}=g^{1}=g$, so $g=e$.
Therefore, we have $g=e$ and $g \neq e$, a contradiction.
Hence, $H \cap K=\{e\}$.
Proposition 2. Let H be a subgroup of G such that $[G: H]=2$.
If a and b are not in H, then $a b \in H$.
Solution. We must prove $(\forall a, b \in G)(a \notin H \wedge b \notin H \rightarrow a b \in H)$.
Proof. Let $a, b \in G$ such that $a \notin H$ and $b \notin H$.
Since $[G: H]=2$, then there are two distinct left cosets of H in G.
Since $e \in G$, then $e H=H$.
Thus, one of the left cosets is H.
Since $a \in a H$ and $a \notin H$, then $a H \neq H$.
Since $a H$ is a left coset and $a H \neq H$ and there are exactly two left cosets of H in G, then $a H$ is the other left coset.

Let L_{H} be the collection of all left cosets of H in G.
Then L_{H} is a partition of G and $L_{H}=\{H, a H\}$.
Since $a, b \in G$ and G is a group, then $a b \in G$.

Suppose $a b \notin H$.
Every element of G exists in exactly one left coset of H in G.
Hence, every element of G is in either H or in $a H$.
Since $a b \notin H$, then this implies $a b \in a H$.
Thus, there exists $h \in H$ such that $a b=a h$.
By the left cancellation law we obtain $b=h$.
Since $b=h$ and $h \in H$, then $b \in H$.
Thus, we have $b \notin H$ and $b \in H$, a contradiction.
Therefore, $a b \in H$.
Exercise 3. Let p, q be prime.
Let G be a group of order $p q$.
Then every proper subgroup of G is cyclic.
Proof. The smallest prime is 2 .
Since p and q are prime, then the smallest value of the product $p q$ is $2 * 2=4$.
Hence, $p q \geq 4$, so G cannot be the trivial group.
Let H be an arbitrary proper subgroup of G.
Since G is a finite group, then by LaGrange's theorem, the order of H divides the order of G.

Let n be the order of H.
Then $n \in \mathbb{Z}^{+}$and $n \mid p q$.
Hence, either $n=1$ or $n=p$ or $n=q$ or $n=p q$.
Any proper subgroup of G has order that is greater than 1 and less than $p q$.
Thus, $n>1$ and $n<p q$, so $n \neq 1$ and $n \neq p q$.
Hence, either $n=p$ or $n=q$.
Therefore, H is a group of prime order.
Every group of prime order is cyclic, so H must be cyclic.
Exercise 4. Let G be a group with different subgroups H_{1} and H_{2}.
If $\left|H_{1}\right|=\left|H_{2}\right|=3$, then $H_{1} \cap H_{2}=\{e\}$.
G has an even number of elements of order 3 .
The number of elements of order 5 is a multiple of 4 .
Proof. Suppose $\left|H_{1}\right|=\left|H_{2}\right|=3$.
Then H_{1} and H_{2} are groups of order 3.
Since 3 is prime, then H_{1} and H_{2} are cyclic.
Observe that $H_{1} \cap H_{2} \subset H_{1}$ and $H_{1} \cap H_{2} \subset H_{2}$.
Since H_{1} and H_{2} are finite, then $H_{1} \cap H_{2}$ is finite.
Let e be the identity of G.
Since $H_{1}<G$, then $e \in H_{1}$.
Since $H_{2}<G$, then $e \in H_{2}$.

Thus, $e \in H_{1} \cap H_{2}$, so $\{e\} \subset H_{1} \cap H_{2}$.
Suppose for the sake of contradiction that there exists $x \in H_{1} \cap H_{2}$ such that $x \neq e$.

Then $x \in H_{1}$ and $x \in H_{2}$.
Since $x \in H_{1}$ and $x \neq e$ and H_{1} is a group of prime order, then x is a generator of H_{1}.

Let K_{1} be the cyclic subgroup of H_{1} generated by x.
Then $K_{1}=H_{1}$.
Since $x \in H_{2}$ and $x \neq e$ and H_{2} is a group of prime order, then x is a generator of H_{2}.

Let K_{2} be the cyclic subgroup of H_{2} generated by x.
Then $K_{2}=H_{2}$.
The cyclic subgroup containing x is the smallest subgroup that contains x, so any subgroup that contains x must contain the cyclic subgroup generated by x.

In particular, $H_{1} \cap H_{2}$ contains x, so $H_{1} \cap H_{2}$ must contain K_{1} and K_{2}.
Hence, $K_{1} \subset H_{1} \cap H_{2}$ and $K_{2} \subset H_{1} \cap H_{2}$.
Thus, $H_{1} \subset H_{1} \cap H_{2}$ and $H_{2} \subset H_{1} \cap H_{2}$.
Since $H_{1} \cap H_{2} \subset H_{1}$ and $H_{1} \subset H_{1} \cap H_{2}$, then $H_{1} \cap H_{2}=H_{1}$.
Since $H_{1} \cap H_{2} \subset H_{2}$ and $H_{2} \subset H_{1} \cap H_{2}$, then $H_{1} \cap H_{2}=H_{2}$.
Thus, $H_{1}=H_{2}$.
Since H_{1} and H_{2} are different groups, then $H_{1} \neq H_{2}$.
Hence, we have $H_{1}=H_{2}$ and $H_{1} \neq H_{2}$, a contradiction.
Therefore, there is no nonidentity element in $H_{1} \cap H_{2}$.
Let $x \in H_{1} \cap H_{2}$.
Then $x=e$.
Thus, $x \in H_{1} \cap H_{2}$ implies $x \in\{e\}$.
Hence, $H_{1} \cap H_{2} \subset\{e\}$.
Since $H_{1} \cap H_{2} \subset\{e\}$ and $\{e\} \subset H_{1} \cap H_{2}$, then $H_{1} \cap H_{2}=\{e\}$.
We prove G has an even number of elements of order 3 .
Let $a \in G$ be an element of order 3 .
Then a generates a cyclic subgroup of G of order 3 .
Thus, $\langle a\rangle=\left\{e, a, a^{2}\right\}$.
Both a and a^{2}, the inverse of a, are elements of order 3 and $a \neq a^{2}$.
Thus, elements of order 3 occur in pairs, the element a and its inverse a^{-1}.
Thus, if G has k cyclic subgroups of order 3 , then there must be $2 k$ elements of order 3 .

We prove the number of elements of order 5 is a multiple of 4 .
Let $h \in G$ have order 5 .
Then h generates a cyclic subgroup of G of order 5 .
Thus, $\langle h\rangle=\left\{e, h, h^{2}, h^{3}, h^{4}\right\}$.
Hence, the generators of $\langle h\rangle$ are elements $h^{k} \operatorname{such}$ that $\operatorname{gcd}(k, 5)=1$.

Thus the number of such generators is $\phi(5)=5-1=4$.
Thus, there are 4 elements in the cyclic group generated by h that have order 5, namely, h, h^{2}, h^{3}, h^{4}.

Hence, $|e|=1$ and $|h|=5$ and $\left|h^{2}\right|=\frac{5}{\operatorname{gcd}(2,5)}=5$ and $\left|h^{3}\right|=\frac{5}{\operatorname{gcd}(3,5)}=5$ and $\left|h^{4}\right|=\frac{5}{\operatorname{gcd}(4,5)}=5$. Therefore, $\langle h\rangle$ contains 4 elements of order 5 .

Hence, each cyclic subgroup of order 5 has 4 elements of order 5.
Thus, if G has m cyclic subgroups of order 5 , then there must be $4 m$ elements of order 5 .

