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Cosets/Lagrange Theorem

Exercise 1. Let H and K be finite subgroups of a group G.
If the orders of H and K are relatively prime, then H N K = {e}.

Proof. Suppose the orders of H and K are relatively prime.
Let m = |H| and n = |K|.
Then ged(m,n) = 1.
The intersection of any two groups is a subgroup, so H N K < G.

Suppose H N K # {e}.

Then there exists g € H N K such that g # e.

Hence, g € H and g € K.

Let s =|g|.

Then by Lagrange, s divides m and s divides n, since H and K are finite
groups.

Hence, s is a common divisor of m and n, so s divides ged(m,n).

Hence, s divides 1, so s = 1.

Thus, e=¢° =g' =g,s0 g =e.

Therefore, we have g = e and g # e, a contradiction.

Hence, H N K = {e}. O

Proposition 2. Let H be a subgroup of G such that [G : H] = 2.
If a and b are not in H, then ab € H.

Solution. We must prove (Va,b € G)(a ¢ HANb¢ H — ab € H). O

Proof. Let a,b € G such that a ¢ H and b ¢ H.

Since [G : H] = 2, then there are two distinct left cosets of H in G.

Since e € GG, then eH = H.

Thus, one of the left cosets is H.

Since a € aH and a ¢ H, then aH # H.

Since aH is a left coset and aH # H and there are exactly two left cosets of
H in G, then aH is the other left coset.



Let Ly be the collection of all left cosets of H in G.
Then Ly is a partition of G and Ly = {H,aH }.
Since a,b € G and G is a group, then ab € G.

Suppose ab & H.
Every element of G exists in exactly one left coset of H in G.
Hence, every element of G is in either H or in aH.
Since ab ¢ H, then this implies ab € aH.
Thus, there exists h € H such that ab = ah.
By the left cancellation law we obtain b = h.
Since b=h and h € H, then b € H.
Thus, we have b ¢ H and b € H, a contradiction.
Therefore, ab € H. O

Exercise 3. Let p,q be prime.
Let G be a group of order pq.
Then every proper subgroup of G is cyclic.

Proof. The smallest prime is 2.

Since p and q are prime, then the smallest value of the product pq is 2%2 = 4.

Hence, pg > 4, so G cannot be the trivial group.

Let H be an arbitrary proper subgroup of G.

Since G is a finite group, then by LaGrange’s theorem, the order of H divides
the order of G.

Let n be the order of H.

Then n € Z™ and nl|pq.

Hence, either n =10orn=porn=gqorn=pq.

Any proper subgroup of G has order that is greater than 1 and less than pq.
Thus, n > 1 and n < pq, so n # 1 and n # pq.
Hence, either n = p or n = q.
Therefore, H is a group of prime order.
Every group of prime order is cyclic, so H must be cyclic. O

Exercise 4. Let G be a group with different subgroups H; and Hs.
If |H1‘ = ‘H2| = 3, then H1 OHQ = {6}
G has an even number of elements of order 3.
The number of elements of order 5 is a multiple of 4.

Proof. Suppose |H;| = |Hz| = 3.
Then H; and H, are groups of order 3.
Since 3 is prime, then H; and H, are cyclic.
Observe that H1 N Hy C Hy and Hy N Hy C Ho.
Since Hy and H, are finite, then Hy N Hy is finite.
Let e be the identity of G.
Since H1 < G, then e € H;.
Since Hy < G, then e € Hs.



Thus, e € Hy N Ha, so {e} C H; N Ho.

Suppose for the sake of contradiction that there exists x € H; N Hs such that
T # e.

Then x € Hy and z € Hs.

Since * € H; and « # e and Hj is a group of prime order, then z is a
generator of Hi.

Let K7 be the cyclic subgroup of H; generated by .

Then Kl = Hl-

Since x € Hs and x # e and Hs is a group of prime order, then z is a
generator of Ho.

Let K5 be the cyclic subgroup of Hs generated by .

Then K2 = HQ.

The cyclic subgroup containing x is the smallest subgroup that contains x,
so any subgroup that contains x must contain the cyclic subgroup generated by
x.

In particular, H; N Hy contains x, so H; N Hs must contain K; and K.

Hence, K1 ¢ Hi N Hy and Ky C Hi N Hs.

Thus, Hy € Hy N Hy and Hy C Hy N Hs.

Since Hy N Hy C Hy and Hy C Hy N Hy, then Hy N Hy = Hy.

Since Hy N Hy C Hy and Hy C H; N Hy, then Hy N Hy = Hs.

Thus, H1 = HQ.

Since H; and Hy are different groups, then Hy # Hs.

Hence, we have Hy = Hs and Hy # Ho, a contradiction.

Therefore, there is no nonidentity element in H; N Hs.

Let x € H; N Hs.

Then x = e.

Thus, x € Hy N Hy implies = € {e}.

Hence, H; N Hy C {e}.

Since Hy N Hy C {e} and {e} C Hy N Hy, then Hy N Hy = {e}.

We prove G has an even number of elements of order 3.

Let a € G be an element of order 3.

Then a generates a cyclic subgroup of G of order 3.

Thus, {a) = {e, a,a?}.

Both a and a?, the inverse of a, are elements of order 3 and a # a?.

Thus, elements of order 3 occur in pairs, the element a and its inverse a~".

Thus, if G has k cyclic subgroups of order 3, then there must be 2k elements
of order 3.

We prove the number of elements of order 5 is a multiple of 4.
Let h € G have order 5.
Then h generates a cyclic subgroup of G of order 5.
Thus, (h) = {e, h, h% h® h}.
Hence, the generators of (h) are elements h* such that ged(k,5) = 1.



Thus the number of such generators is ¢(5) =5 — 1 = 4.
Thus, there are 4 elements in the cyclic group generated by h that have order
5, namely, h, h?, h3, h*.

Hence, |e| = 1 and |h| = 5 and |h?| = m =5 and |h?| = m =5
and |ht| = m = 5. Therefore, (h) contains 4 elements of order 5.

Hence, each cyclic subgroup of order 5 has 4 elements of order 5.
Thus, if G has m cyclic subgroups of order 5, then there must be 4m elements
of order 5. O



