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Normal Subgroups

Exercise 1. Let G be a group.
If H < G and [G : H] = 2, then H CG.

Proof. Suppose H < G and [G : H] = 2.
Since [G : H] = 2, then there are two distinct left cosets of H in G and there

are two distinct right cosets of H in G.
One of the cosets must be H and the other coset is G−H.
Thus, the set of left cosets is {H,G − H} and the set of right cosets is

{H,G−H}.
Let g ∈ G.
Either g ∈ H or g 6∈ H.
We consider these cases separately.
Case 1: Suppose g ∈ H.
Since g ∈ gH and g ∈ H, then gH = H.
Since g ∈ Hg and g ∈ H, then Hg = H.
Therefore, gH = H = Hg, so gH = Hg.
Case 2: Suppose g 6∈ H.
Since g ∈ G and g 6∈ H, then g ∈ G−H.
Since g ∈ gH and g ∈ G−H, then gH = G−H.
Since g ∈ Hg and g ∈ G−H, then Hg = G−H.
Therefore, gH = G−H = Hg, so gH = Hg.
Hence, in all cases, gH = Hg.
Since g is arbitrary, then gH = Hg for all g ∈ G,
Therefore, H CG.

Exercise 2. If G has exactly one subgroup H of order k, then H CG.

Solution. Let G be a group.
Suppose there exists a unique subgroup H of G of order k.
We must prove H CG.

Proof. Let G be a group.
Suppose there exists a unique subgroup H of G of order k.



Exercise 3. Let p be prime.
If H < G and |H| = p and |G| = p2, then H CG.
Moreover, G is abelian.

Solution. Suppose H < G and |H| = p and |G| = p2.
We must prove H CG and G is abelian.

Proof. Suppose H < G and |H| = p and |G| = p2. Since H < G and |H| = p,
then H is a group of prime order. Every group of prime order is cyclic, so H is
cyclic. Hence, there exists h ∈ H such that H = {hk : k ∈ Z}.

Let a ∈ G. Since a ∈ aH, then a = ah′ for some h′ ∈ H. Since H is cyclic,
then h′ = hk for some integer k. Thus, a = ahk.

Since a ∈ Ha, then a = h′′a for some h′′ ∈ H. Since H is cyclic, then
h′′ = hm for some integer m. Thus, a = hma.

Hence, ahk = a = hma, so ahk = hma. Therefore, ahka−1 = hm. Since
hm ∈ H, then ahka−1 ∈ H. Therefore, H CG.

Hence, the quotient group G
H exists and has order [G : H] = |G|

|H| = p2

p = p.

Thus, G
H is a group of prime order, so G

H is cyclic. Therefore, there exists

gH ∈ G
H such that G

H = {(gH)k : k ∈ Z}. Hence, there exists g ∈ G such that
G
H = {gkH : k ∈ Z}.

Let aH, bH ∈ G
H . Then a, b ∈ G and there exist integers m and n such that

aH = gmH and bH = gnH.
Every cyclic group is abelian, so G

H is abelian.

Exercise 4. Is A4 C S4?

Solution. Clearly, A4 < S4.
To prove A4CS4, we must prove for all α ∈ S4 and all β ∈ A4, αβα−1 ∈ A4.
Let α ∈ S4 and β ∈ A4.
Since β ∈ A4, then β is even.
Either α is odd or α is even.
We consider these cases separately.
Case 1: Suppose α is even.
The parity of a permutation is the same as the parity of its inverse, so α−1

is even.
The composition of permutations of the same parity is even, so αβ is even.
Thus, αβα−1 is even.
Case 2: Suppose α is odd.
The parity of a permutation is the same as the parity of its inverse, so α−1

is odd.
The composition of two permutations of opposite parity is odd, so αβ is odd.
The composition of permutations of the same parity is even, so αβα−1 is

even.
Therefore, in all cases, αβα−1 is even.
Since αβα−1 ∈ S4 and αβα−1 is even, then αβα−1 ∈ A4.
Thus, A4 C S4.
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Hence, the quotient group, the group of cosets S4

A4
exists and | S4

A4
| = [S4 :

A4] = |S4|
|A4| = |S4|

|S4|/2 = 2.

Therefore, S4

A4
= {A4, (12)A4}.

Exercise 5. Is D4 C S4?

Solution. Since D4 is isomorphic to a subgroup of S4, then there exists H < S4

such that D4
∼= H. So, essentially, D4 < S4. The number of distinct left cosets

of D4 in S4 is [S4 : D4] = |S4|
|D4| = 24/8 = 3. Hence, there are 3 distinct left

cosets of D4 in S4, each containing 8 permutations. Computations show that
the left cosets of D4 in S4 are:

D4 = {(1), (1234), (13)(24), (1432), (12)(34), (14)(23), (24), (13)}
L1 = {(34), (124), (1423), (132), (12), (1324), (234), (143)}
L2 = {(23), (243), (123), (1243), (1342), (134), (142), (14)}.
Similarly, the right cosets of D4 in S4 are
D4 = {(1), (1234), (13)(24), (1432), (12)(34), (14)(23), (24), (13)}
R1 = {(34), (123), (1324), (142), (12), (1423), (243), (134)}
R2 = {(23), (124), (1342), (314), (1243), (14), (234), (132)}.
Since L1 6= R1, then (12)D4 6= D4(12), so D4 is not a normal subgroup of

S4.

Exercise 6. Prove or disprove:
If H is a normal subgroup of G such that H and G

H are abelian, then G is
abelian.

Solution. We can easily devise a counterexample to this assertion. Ie, this
assertion is false.

We disprove this assertion.
LetG = S3 = {(1), (12), (13), (23), (123), (132)} andH = A3 = {(1), (123), (132).
Clearly, A3 C S3 since An C Sn.
Thus, the quotient group S3

A3
exists and is {A3, {(12), (13), (23)}}.

Hence, S3

A3
is a group of order 2.

Any group of order 2 is abelian, so S3

A3
is abelian.

Since |A3| = 3!
2 = 3 and any group of order 3 is abelian, then A3 is abelian.

However, S3 is not abelian.

Exercise 7. Prove or disprove:
If H and G

H are cyclic, then G is cyclic.

Solution. We can easily devise a counterexample to this assertion.
LetG = S3 = {(1), (12), (13), (23), (123), (132)} andH = A3 = {(1), (123), (132).
Observe thatA3CS3, so the quotient group S3

A3
exists and is {A3, {(12), (13), (23)}}.

Since A3 is a group of order 3 and S3

A3
is a group of order 2 and any group

of prime order is cyclic, then A3 and S3

A3
are cyclic.

Every cyclic group is abelian, so if a group is cyclic, then it is abelian.
Hence, if a group is not abelian, then it cannot be cyclic.
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Since S3 is not abelian, then this implies S3 is not cyclic.
Therefore, A3 and S3

A3
are cyclic, but S3 is not cyclic, disproving this asser-

tion.

Exercise 8. If G is an abelian group, then the center of the group is G.

Proof. Let G be an abelian group.
Let Z(G) = {x ∈ G : (∀g ∈ G)(xg = gx)} be the center of G.
We must prove Z(G) = G.

We prove Z(G) ⊂ G.
Since Z(G) = {x ∈ G : (∀g ∈ G)(xg = gx)}, then Z(G) ⊂ G.

We prove G ⊂ Z(G).
Let x ∈ G.
Let g ∈ G.
Since G is abelian and x ∈ G and g ∈ G, then xg = gx, so xg = gx for all

g ∈ G.
Since x ∈ G and xg = gx for all g ∈ G, then x ∈ Z(G).
Therefore, x ∈ G implies x ∈ Z(G), so G ⊂ Z(G).

Since Z(G) ⊂ G and G ⊂ Z(G), then Z(G) = G, as desired.

Exercise 9. Compute the center of the symmetric group (S3, ◦).

Solution. The center of the group S3 is the set Z(S3) = {f ∈ S3 : (∀g ∈
S3)(fg = gf)}.

Since the identity permutation (1) ∈ S3 satisfies (1)g = g(1) for all g ∈ S3,
then (1) ∈ Z(S3).

By inspecting the Cayley table for S3, we see that no other permutation of
S3 is in the center of S3.

Therefore, Z(S3) = {(1)}.
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