Group Theory Exercises 5

Jason Sass

July 17, 2023

Normal Subgroups

Exercise 1. Let G be a group.
If $H<G$ and $[G: H]=2$, then $H \triangleleft G$.
Proof. Suppose $H<G$ and $[G: H]=2$.
Since $[G: H]=2$, then there are two distinct left cosets of H in G and there are two distinct right cosets of H in G.

One of the cosets must be H and the other coset is $G-H$.
Thus, the set of left cosets is $\{H, G-H\}$ and the set of right cosets is $\{H, G-H\}$.

Let $g \in G$.
Either $g \in H$ or $g \notin H$.
We consider these cases separately.
Case 1: Suppose $g \in H$.
Since $g \in g H$ and $g \in H$, then $g H=H$.
Since $g \in H g$ and $g \in H$, then $H g=H$.
Therefore, $g H=H=H g$, so $g H=H g$.
Case 2: Suppose $g \notin H$.
Since $g \in G$ and $g \notin H$, then $g \in G-H$.
Since $g \in g H$ and $g \in G-H$, then $g H=G-H$.
Since $g \in H g$ and $g \in G-H$, then $H g=G-H$.
Therefore, $g H=G-H=H g$, so $g H=H g$.
Hence, in all cases, $g H=H g$.
Since g is arbitrary, then $g H=H g$ for all $g \in G$,
Therefore, $H \triangleleft G$.
Exercise 2. If G has exactly one subgroup H of order k, then $H \triangleleft G$.
Solution. Let G be a group.
Suppose there exists a unique subgroup H of G of order k.
We must prove $H \triangleleft G$.
Proof. Let G be a group.
Suppose there exists a unique subgroup H of G of order k.

Exercise 3. Let p be prime.
If $H<G$ and $|H|=p$ and $|G|=p^{2}$, then $H \triangleleft G$.
Moreover, G is abelian.
Solution. Suppose $H<G$ and $|H|=p$ and $|G|=p^{2}$.
We must prove $H \triangleleft G$ and G is abelian.
Proof. Suppose $H<G$ and $|H|=p$ and $|G|=p^{2}$. Since $H<G$ and $|H|=p$, then H is a group of prime order. Every group of prime order is cyclic, so H is cyclic. Hence, there exists $h \in H$ such that $H=\left\{h^{k}: k \in \mathbb{Z}\right\}$.

Let $a \in G$. Since $a \in a H$, then $a=a h^{\prime}$ for some $h^{\prime} \in H$. Since H is cyclic, then $h^{\prime}=h^{k}$ for some integer k. Thus, $a=a h^{k}$.

Since $a \in H a$, then $a=h^{\prime \prime} a$ for some $h^{\prime \prime} \in H$. Since H is cyclic, then $h^{\prime \prime}=h^{m}$ for some integer m. Thus, $a=h^{m} a$.

Hence, $a h^{k}=a=h^{m} a$, so $a h^{k}=h^{m} a$. Therefore, $a h^{k} a^{-1}=h^{m}$. Since $h^{m} \in H$, then $a h^{k} a^{-1} \in H$. Therefore, $H \triangleleft G$.

Hence, the quotient group $\frac{G}{H}$ exists and has order $[G: H]=\frac{|G|}{|H|}=\frac{p^{2}}{p}=p$. Thus, $\frac{G}{H}$ is a group of prime order, so $\frac{G}{H}$ is cyclic. Therefore, there exists $g H \in \frac{G}{H}$ such that $\frac{G}{H}=\left\{(g H)^{k}: k \in \mathbb{Z}\right\}$. Hence, there exists $g \in G$ such that $\frac{G}{H}=\left\{g^{k} H: k \in \mathbb{Z}\right\}$.

Let $a H, b H \in \frac{G}{H}$. Then $a, b \in G$ and there exist integers m and n such that $a H=g^{m} H$ and $b H=g^{n} H$.

Every cyclic group is abelian, so $\frac{G}{H}$ is abelian.
Exercise 4. Is $A_{4} \triangleleft S_{4}$?
Solution. Clearly, $A_{4}<S_{4}$.
To prove $A_{4} \triangleleft S_{4}$, we must prove for all $\alpha \in S_{4}$ and all $\beta \in A_{4}, \alpha \beta \alpha^{-1} \in A_{4}$.
Let $\alpha \in S_{4}$ and $\beta \in A_{4}$.
Since $\beta \in A_{4}$, then β is even.
Either α is odd or α is even.
We consider these cases separately.
Case 1: Suppose α is even.
The parity of a permutation is the same as the parity of its inverse, so α^{-1} is even.

The composition of permutations of the same parity is even, so $\alpha \beta$ is even.
Thus, $\alpha \beta \alpha^{-1}$ is even.
Case 2: Suppose α is odd.
The parity of a permutation is the same as the parity of its inverse, so α^{-1} is odd.

The composition of two permutations of opposite parity is odd, so $\alpha \beta$ is odd. The composition of permutations of the same parity is even, so $\alpha \beta \alpha^{-1}$ is even.

Therefore, in all cases, $\alpha \beta \alpha^{-1}$ is even.
Since $\alpha \beta \alpha^{-1} \in S_{4}$ and $\alpha \beta \alpha^{-1}$ is even, then $\alpha \beta \alpha^{-1} \in A_{4}$.
Thus, $A_{4} \triangleleft S_{4}$.

Hence, the quotient group, the group of cosets $\frac{S_{4}}{A_{4}}$ exists and $\left|\frac{S_{4}}{A_{4}}\right|=\left[S_{4}\right.$: $\left.A_{4}\right]=\frac{\left|S_{4}\right|}{\left|A_{4}\right|}=\frac{\left|S_{4}\right|}{\left|S_{4}\right| / 2}=2$.

Therefore, $\frac{S_{4}}{A_{4}}=\left\{A_{4},(12) A_{4}\right\}$.
Exercise 5. Is $D_{4} \triangleleft S_{4}$?
Solution. Since D_{4} is isomorphic to a subgroup of S_{4}, then there exists $H<S_{4}$ such that $D_{4} \cong H$. So, essentially, $D_{4}<S_{4}$. The number of distinct left cosets of D_{4} in S_{4} is $\left[S_{4}: D_{4}\right]=\frac{\left|S_{4}\right|}{\left|D_{4}\right|}=24 / 8=3$. Hence, there are 3 distinct left cosets of D_{4} in S_{4}, each containing 8 permutations. Computations show that the left cosets of D_{4} in S_{4} are:

```
\(D_{4}=\{(1),(1234),(13)(24),(1432),(12)(34),(14)(23),(24),(13)\}\)
\(L_{1}=\{(34),(124),(1423),(132),(12),(1324),(234),(143)\}\)
\(L_{2}=\{(23),(243),(123),(1243),(1342),(134),(142),(14)\}\).
```

Similarly, the right cosets of D_{4} in S_{4} are
$D_{4}=\{(1),(1234),(13)(24),(1432),(12)(34),(14)(23),(24),(13)\}$
$R_{1}=\{(34),(123),(1324),(142),(12),(1423),(243),(134)\}$
$R_{2}=\{(23),(124),(1342),(314),(1243),(14),(234),(132)\}$.
Since $L_{1} \neq R_{1}$, then $(12) D_{4} \neq D_{4}(12)$, so D_{4} is not a normal subgroup of S_{4}.

Exercise 6. Prove or disprove:
If H is a normal subgroup of G such that H and $\frac{G}{H}$ are abelian, then G is abelian.

Solution. We can easily devise a counterexample to this assertion. Ie, this assertion is false.

We disprove this assertion.
Let $G=S_{3}=\{(1),(12),(13),(23),(123),(132)\}$ and $H=A_{3}=\{(1),(123),(132)$.
Clearly, $A_{3} \triangleleft S_{3}$ since $A_{n} \triangleleft S_{n}$.
Thus, the quotient group $\frac{S_{3}}{A_{3}}$ exists and is $\left\{A_{3},\{(12),(13),(23)\}\right\}$.
Hence, $\frac{S_{3}}{A_{3}}$ is a group of order 2.
Any group of order 2 is abelian, so $\frac{S_{3}}{A_{3}}$ is abelian.
Since $\left|A_{3}\right|=\frac{3!}{2}=3$ and any group of order 3 is abelian, then A_{3} is abelian.
However, S_{3} is not abelian.
Exercise 7. Prove or disprove:
If H and $\frac{G}{H}$ are cyclic, then G is cyclic.
Solution. We can easily devise a counterexample to this assertion.
Let $G=S_{3}=\{(1),(12),(13),(23),(123),(132)\}$ and $H=A_{3}=\{(1),(123),(132)$.
Observe that $A_{3} \triangleleft S_{3}$, so the quotient group $\frac{S_{3}}{A_{3}}$ exists and is $\left\{A_{3},\{(12),(13),(23)\}\right\}$.
Since A_{3} is a group of order 3 and $\frac{S_{3}}{A_{3}}$ is a group of order 2 and any group
of prime order is cyclic, then A_{3} and $\frac{S_{3}}{A_{3}}$ are cyclic.
Every cyclic group is abelian, so if a group is cyclic, then it is abelian.
Hence, if a group is not abelian, then it cannot be cyclic.

Since S_{3} is not abelian, then this implies S_{3} is not cyclic.
Therefore, A_{3} and $\frac{S_{3}}{A_{3}}$ are cyclic, but S_{3} is not cyclic, disproving this assertion.

Exercise 8. If G is an abelian group, then the center of the group is G.
Proof. Let G be an abelian group.
Let $Z(G)=\{x \in G:(\forall g \in G)(x g=g x)\}$ be the center of G.
We must prove $Z(G)=G$.
We prove $Z(G) \subset G$.
Since $Z(G)=\{x \in G:(\forall g \in G)(x g=g x)\}$, then $Z(G) \subset G$.
We prove $G \subset Z(G)$.
Let $x \in G$.
Let $g \in G$.
Since G is abelian and $x \in G$ and $g \in G$, then $x g=g x$, so $x g=g x$ for all $g \in G$.

Since $x \in G$ and $x g=g x$ for all $g \in G$, then $x \in Z(G)$.
Therefore, $x \in G$ implies $x \in Z(G)$, so $G \subset Z(G)$.

Since $Z(G) \subset G$ and $G \subset Z(G)$, then $Z(G)=G$, as desired.
Exercise 9. Compute the center of the symmetric group (S_{3}, \circ).
Solution. The center of the group S_{3} is the set $Z\left(S_{3}\right)=\left\{f \in S_{3}:(\forall g \in\right.$ $\left.\left.S_{3}\right)(f g=g f)\right\}$.

Since the identity permutation (1) $\in S_{3}$ satisfies (1) $g=g(1)$ for all $g \in S_{3}$, then $(1) \in Z\left(S_{3}\right)$.

By inspecting the Cayley table for S_{3}, we see that no other permutation of S_{3} is in the center of S_{3}.

Therefore, $Z\left(S_{3}\right)=\{(1)\}$.

