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Homomorphisms

Exercise 1. Let (G, ) be an abelian group.
Let n € Z be fixed.
Let f, : G — G be defined by f(g) = g™ for all g € G.
Then f, is a group homomorphism.

Proof. Clearly, f, is a function.
Let a,b € G.
Then

fab) = (ab)"
= f(a)f(b).
Therefore, f(ab) = f(a)f(b), so f is a group homomorphism.

Exercise 2. Let (G, ) be an abelian group.
Let h : G — G be defined by h(g) = g~! for all g € G.
Then A is a group homomorphism.

Proof. Clearly, h is a function.
Let a,b € G.
Observe that

h(ab) = (ab)™!
— b—la—l
_ a—lb—l
= h(a)h(b).
Therefore, h(ab) = h(a)h(b), so h is a group homomorphism.

Exercise 3. Let ¢ : G — G’ be a group homomorphism.
If G’ is finite, then ¢(G) is finite and |¢(G)| divides |G’



Solution. We should realize that to each element ¢(g) of ¢(G) there corre-
sponds a set, the left coset gH with representative g, where H = ker(¢). O

Proof. Suppose G is finite.

Let ¢(g) € (G).

Then g € G.

Let K = ker(¢).

Then K < G.

The preimage of ¢(g) is the left coset of K in G with representative g.

Thus, ¢~ (¢(g)) = {x € G : ¢(z) = ¢(9)} = gK.

Hence, for each element of ¢(G) there corresponds exactly one left coset.

Therefore, the number of elements in ¢(G) is the number of left cosets of K
in G.

Since G is finite, then there exist a finite number of subsets of G.

In particular, there exist a finite number of left cosets of K in G, so [G : K]
is finite.

Thus, [G : K| = |¢(G)], so ¢(G) is finite.

Since G is a finite group, by LaGrange’s theorem, |G| = | K| * [G : K].

Therefore, [G : K] divides |G|, so |¢(G)| divides |G]. O

Proof. Suppose G’ is finite.
The image of a homomorphism is a subgroup of G', so ¢(G) < G'.
Thus, ¢(G) C G'.
Since every subset of a finite set is finite and G’ is finite, then ¢(G) is finite.
Since G’ is a finite group and ¢(G) is a subgroup of G’, then by LaGrange’s
theorem, the order of ¢(G) divides the order of G’.
Therefore, |¢(G)| divides |G'|. O

Exercise 4. Let G be an abelian group and n € N.
Then ¢ : G — G defined by g — g™ is a group homomorphism.

Proof. Clearly, ¢ is a function.
Let a,b € G.
Then

¢(ab) = (ab)"
anbn

= o(a)e(b).

Hence, ¢ is a group homomorphism.
The kernel is ker(¢) = {g € G : ¢" = e} < G and the image of ¢ is
Im(¢) ={g" : g€ G} <G. O

Exercise 5. Let G be a group of prime order.
If  : G — G’ is a group homomorphism, then either ¢ is the trivial homo-
morphism or ¢ is injective.



Proof. Suppose ¢ : G — G’ is a group homomorphism.

Since G is a group of prime order, then G is cyclic, so the only subgroups of
G are G itself and the trivial group.

Let K = ker(¢).

Since ¢ is a homomorphism, then K < G.

Hence, either K = G or K = {e}, where e is the identity of G.

We consider these cases separately.

Case 1: Suppose K = G.

Then ¢ maps every element of G to the identity of G'.

Hence, ¢ is the trivial homomorphism.

Case 2: Suppose K = {e}.

Since ¢ is injective iff K = {e} and K = {e}, then ¢ is injective.

Hence, in all cases either ¢ is the trivial homomorphism or ¢ is injective. [

Exercise 6. For groups (R*,-) and (R, +), the function ¢ : R™ — R defined
by ¢(z) = logx for all z € RT is a group homomorphism.

Solution. Let z,y € RT.

Then ¢(zy) = log(zy) = log(z) +log(y) = ¢(z) + ¢(y).
Therefore, ¢ is a group homomorphism.

Observe that ¢(1) = logl = 0, so ¢ preserves the group identity. In other
words, the multiplicative identity 1 € R maps to the additive identity 0 € R.

Let a € RT.
Then ¢(a~') = log(a™!) = log(%) = log1 —loga = 0 —loga = —loga =
—¢(a), so ¢ preserves inverses. In other words, the multiplicative inverse of
a € RT maps to the additive inverse of the image of a.

Let a € RT and k € Z.
Then ¢(a*) = log(a*) = kloga = k¢(a), so ¢ preserves powers of a € R*.
In other words, powers of a € RT map to multiples of the image of a.

The image of ¢ is the set ¢(RT) = {p(z) e R:z e Rt} ={logz e R: x €
R+} = R.

The kernel of ¢ is the set ker(¢) = {z € RT : ¢(z) = 0} = {x € Rt : logz =
0} ={1}.

Since log is one to one and onto, then log is bijective, so ¢ is bijective.
Therefore, ¢ is a group isomorphism. O

Exercise 7. Let (Z,+) be the additive group of integers.
Let ¢ : Z — Z be defined by ¢(n) = n.
Is ¢ a homomorphism?



Solution. Clearly, ¢ is a function.

Let a,b € Z.

Then ¢(a+b) = T(a+b) = Ta+7b = ¢(a) + ¢(b), so ¢ is a group homomor-
phism.

Thus, ¢ maps the identity 0 to 0, so ¢(0) = 0.

Hence, 0 € ker(¢).

Suppose g € ker(¢).

Then g € Z and ¢(g) =0, so 7g = 0.

Thus, g = 0, so g € ker(¢) implies g € {0}.

Therefore, ker(¢) C {0}.

Since ker(¢) C {0} and 0 € ker(¢), then ker(¢) = {0}.

Hence, ¢ is injective.

Observe that Im(¢) = ¢(Z) ={¢p(g) : g€ Z} ={T79: g€ L} =TZ = (T).

Since ¢ is injective, then Z = ¢(Z), so Z = TZ. O
Exercise 8. Let f: GLy(R) — R be defined by
a b
f { e d } =a+d.

Is f a homomorphism?

Solution. Clearly, f is a function.

Suppose f is a homomorphism.

Then f maps the multiplicative identity of GLy(R) to the additive identity
of R.

Hemce,f{1 0}20.

0 1
But,
10
f{ 0 1 } =1+1=2#0.
Hence, f cannot be a homomorphism. O

Exercise 9. Find all possible homomorphisms ¢ from (Z7,+) to (Z12,+).

Solution. Suppose ¢ : Z7 — Z12 is a group homomorphism. Let K = ker(¢).
Then K < Z7. Since Zr is a group of prime order, then Z7 is cyclic, so the only
subgroups of Z; are Z; itself and the trivial group {0}. Hence, either K = Z;,
or K ={0}.

Suppose ¢ is injective. Then Z; = ¢(Z7). Thus, |Z;| = |6(Z7)|, so 7 =
|p(Z7)| = |Im(¢)|. Since ¢ is a homomorphism, then I'm(¢) < Zi2. By La-
grange, |[Im(¢)| divides |Zj2|, so 7|12, a contradiction. Hence, ¢ cannot be
injective.

Since ¢ is injective iff ker(¢) = {0}, then ¢ is not injective iff ker(¢) # {0}.
Since ¢ is not injective, then ker(¢) # {0}, so K # {0}.

Suppose K = Z7. Then ¢ is the trivial homomorphism.

Thus, there is only one homomorphism from Z; to Zis3, the trivial homo-
morphism. O

Exercise 10. Find all possible homomorphisms from (Zag, +) to (Z1s,+).



Solution. Let ¢ : Zoys — Z1s be a group homomorphism. Let K = ker(¢).
Since ¢ is a homomorphism, then K < Zgy and Im(¢) < Zs.

Since |Zay| = 24 > 18 = |Z1s], then ¢ cannot be injective by the pigeonhole
principle. Since ¢ is injective iff ker(¢) = {0}, then ¢ is not injective iff ker(¢) #
{0}. Since ¢ is not injective, then ker(¢) # {0}. Hence, the kernel of ¢ cannot
be the trivial group.

The subgroups of Zsy4 have orders 1,2,3,4,6,8,12,24 and the subgroups of
Z1g have orders 1,2,3,6,9,18. Since K # {0}, then K cannot have order 1.
Thus, the possible orders of K are 2,3,4,6,8,12, 24.

Since Zo4 is a finite group and ¢ is a homomorphism, then |Zoy| = |K]| *
|[Im(¢)|. Hence, 24 = |K| x [Im(¢)], so |[Im(¢)| divides 24. Since Z;g is finite,
then by LaGrange’s theorem, [Im(¢)| divides |Z1g|, so |[Im(¢)| divides 18. Thus,
[Im(¢)| divides 24 and |[Im(¢)| divides 18, so |Im(¢)| is a common divisor of
24 and 18. Hence, the order of Im(¢) is either 1,2, 3, 6.

Every subgroup of a cyclic group is cyclic, so K < Za4 is cyclic and Im(¢) <
Zys is cyclic. Hence K = (k) for some integer k and Im(¢) = (m) for some
integer m. The order of an element is the order of the cyclic subgroup generated
by that element.

Z:
Let k € Zog. Then [k| = |K| = g2zt = 20

Let m € Zs. Then |m| = |Im(¢)| = sqiotb— = woatirsy

If |[Im(¢)| = 1, then Im(¢) = (0) = {0} and |K| = 24, so K = Zy,. This
corresponds to the trivial homomorphism.

If [Im(¢)] = 2, then Im(¢) = (9) = {0,9} and |K| = 12, so K = (2) =
{0,2,4,6,8,10,12,14, 16, 18, 20, 22}.

If [Im(¢)| = 3, then Im(¢) = (6) = {0,6,12} and |K| =8, s0 K = (3) =
{0,3,6,9,12,15,18,21}.

If |[Im(¢)] = 6, then Im(¢) = (3) = {0,3,6,9,12,15} and |K| = 4, so
K = (6) ={0,6,12,18}.

Thus, the possible homomorphisms ¢ are:

K = Zs4 and Im(¢) = {0} (the trivial homomorphism) or

K =(2)=1{0,2,4,6,8,10,12,14, 16,18, 20,22} and Im(¢) = (9) = {0,9} or

K =(3)=1{0,3,6,9,12,15,18,21} and Im(¢) = (6) = {0,6,12} or

K = (4) ={0,6,12,18} and Im(¢) = (3) = {0,3,6,9,12,15}. O

Exercise 11. Find all possible homomorphisms from (Z,+) to (Z12,+).

Solution. Let ¢ : Z — Z15 be a group homomorphism. Let K = ker(¢) and
Im(¢) = ¢(Z). Then K < Z and Im(¢) < Zi2. The only subgroups of Zio
are the finite cyclic groups of order n such that n|12, by Lagrange. Hence, the
subgroups of Z15 have order 1,2,3,4,6,12. Thus, |[Im(¢)| =n=1,2,3,4,6,12.
Since K < Z, then the number of cosets of K in Z is [Z : K] = n and since
K < Z, then K = (n).

Thus, the possible homomorphisms ¢ are:

K =7 and Im(¢) = {0} or

K = (2) and Im(¢) = (6) = {0,6} or

K = (3) and Im(¢) = (4) = {0,4,8} or



(4) and I'm( (3y ={0,3,6,9} or
(6) and Im(¢) = (2) = {0,2,4,6,8, 10} or
(12) and Im(¢p) = Z12.

K ¢) =
K ) =
K



