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Homomorphisms

Exercise 1. Let (G, ∗) be an abelian group.
Let n ∈ Z be fixed.
Let fn : G→ G be defined by f(g) = gn for all g ∈ G.
Then fn is a group homomorphism.

Proof. Clearly, fn is a function.
Let a, b ∈ G.
Then

f(ab) = (ab)n

= anbn

= f(a)f(b).

Therefore, f(ab) = f(a)f(b), so f is a group homomorphism.

Exercise 2. Let (G, ∗) be an abelian group.
Let h : G→ G be defined by h(g) = g−1 for all g ∈ G.
Then h is a group homomorphism.

Proof. Clearly, h is a function.
Let a, b ∈ G.
Observe that

h(ab) = (ab)−1

= b−1a−1

= a−1b−1

= h(a)h(b).

Therefore, h(ab) = h(a)h(b), so h is a group homomorphism.

Exercise 3. Let φ : G→ G′ be a group homomorphism.
If G′ is finite, then φ(G) is finite and |φ(G)| divides |G′|.



Solution. We should realize that to each element φ(g) of φ(G) there corre-
sponds a set, the left coset gH with representative g, where H = ker(φ).

Proof. Suppose G is finite.
Let φ(g) ∈ φ(G).
Then g ∈ G.
Let K = ker(φ).
Then K < G.
The preimage of φ(g) is the left coset of K in G with representative g.
Thus, φ−1(φ(g)) = {x ∈ G : φ(x) = φ(g)} = gK.
Hence, for each element of φ(G) there corresponds exactly one left coset.
Therefore, the number of elements in φ(G) is the number of left cosets of K

in G.
Since G is finite, then there exist a finite number of subsets of G.
In particular, there exist a finite number of left cosets of K in G, so [G : K]

is finite.
Thus, [G : K] = |φ(G)|, so φ(G) is finite.
Since G is a finite group, by LaGrange’s theorem, |G| = |K| ∗ [G : K].
Therefore, [G : K] divides |G|, so |φ(G)| divides |G|.

Proof. Suppose G′ is finite.
The image of a homomorphism is a subgroup of G′, so φ(G) < G′.
Thus, φ(G) ⊂ G′.
Since every subset of a finite set is finite and G′ is finite, then φ(G) is finite.
Since G′ is a finite group and φ(G) is a subgroup of G′, then by LaGrange’s

theorem, the order of φ(G) divides the order of G′.
Therefore, |φ(G)| divides |G′|.

Exercise 4. Let G be an abelian group and n ∈ N.
Then φ : G→ G defined by g → gn is a group homomorphism.

Proof. Clearly, φ is a function.
Let a, b ∈ G.
Then

φ(ab) = (ab)n

= anbn

= φ(a)φ(b).

Hence, φ is a group homomorphism.
The kernel is ker(φ) = {g ∈ G : gn = e} < G and the image of φ is

Im(φ) = {gn : g ∈ G} < G.

Exercise 5. Let G be a group of prime order.
If φ : G → G′ is a group homomorphism, then either φ is the trivial homo-

morphism or φ is injective.
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Proof. Suppose φ : G→ G′ is a group homomorphism.
Since G is a group of prime order, then G is cyclic, so the only subgroups of

G are G itself and the trivial group.
Let K = ker(φ).
Since φ is a homomorphism, then K < G.
Hence, either K = G or K = {e}, where e is the identity of G.
We consider these cases separately.
Case 1: Suppose K = G.
Then φ maps every element of G to the identity of G′.
Hence, φ is the trivial homomorphism.
Case 2: Suppose K = {e}.
Since φ is injective iff K = {e} and K = {e}, then φ is injective.
Hence, in all cases either φ is the trivial homomorphism or φ is injective.

Exercise 6. For groups (R+, ·) and (R,+), the function φ : R+ → R defined
by φ(x) = log x for all x ∈ R+ is a group homomorphism.

Solution. Let x, y ∈ R+.
Then φ(xy) = log(xy) = log(x) + log(y) = φ(x) + φ(y).
Therefore, φ is a group homomorphism.

Observe that φ(1) = log 1 = 0, so φ preserves the group identity. In other
words, the multiplicative identity 1 ∈ R+ maps to the additive identity 0 ∈ R.

Let a ∈ R+.
Then φ(a−1) = log(a−1) = log( 1

a ) = log 1 − log a = 0 − log a = − log a =
−φ(a), so φ preserves inverses. In other words, the multiplicative inverse of
a ∈ R+ maps to the additive inverse of the image of a.

Let a ∈ R+ and k ∈ Z.
Then φ(ak) = log(ak) = k log a = kφ(a), so φ preserves powers of a ∈ R+.

In other words, powers of a ∈ R+ map to multiples of the image of a.

The image of φ is the set φ(R+) = {φ(x) ∈ R : x ∈ R+} = {log x ∈ R : x ∈
R+} = R.

The kernel of φ is the set ker(φ) = {x ∈ R+ : φ(x) = 0} = {x ∈ R+ : log x =
0} = {1}.

Since log is one to one and onto, then log is bijective, so φ is bijective.
Therefore, φ is a group isomorphism.

Exercise 7. Let (Z,+) be the additive group of integers.
Let φ : Z→ Z be defined by φ(n) = 7n.
Is φ a homomorphism?
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Solution. Clearly, φ is a function.
Let a, b ∈ Z.
Then φ(a+ b) = 7(a+ b) = 7a+ 7b = φ(a) +φ(b), so φ is a group homomor-

phism.
Thus, φ maps the identity 0 to 0, so φ(0) = 0.
Hence, 0 ∈ ker(φ).
Suppose g ∈ ker(φ).
Then g ∈ Z and φ(g) = 0, so 7g = 0.
Thus, g = 0, so g ∈ ker(φ) implies g ∈ {0}.
Therefore, ker(φ) ⊂ {0}.
Since ker(φ) ⊂ {0} and 0 ∈ ker(φ), then ker(φ) = {0}.
Hence, φ is injective.
Observe that Im(φ) = φ(Z) = {φ(g) : g ∈ Z} = {7g : g ∈ Z} = 7Z = 〈7〉.
Since φ is injective, then Z ∼= φ(Z), so Z ∼= 7Z.

Exercise 8. Let f : GL2(R)→ R be defined by

f

[
a b
c d

]
= a+ d.

Is f a homomorphism?

Solution. Clearly, f is a function.
Suppose f is a homomorphism.
Then f maps the multiplicative identity of GL2(R) to the additive identity

of R.

Hence, f

[
1 0
0 1

]
= 0.

But,

f

[
1 0
0 1

]
= 1 + 1 = 2 6= 0.

Hence, f cannot be a homomorphism.

Exercise 9. Find all possible homomorphisms φ from (Z7,+) to (Z12,+).

Solution. Suppose φ : Z7 → Z12 is a group homomorphism. Let K = ker(φ).
Then K < Z7. Since Z7 is a group of prime order, then Z7 is cyclic, so the only
subgroups of Z7 are Z7 itself and the trivial group {0}. Hence, either K = Z7

or K = {0}.
Suppose φ is injective. Then Z7

∼= φ(Z7). Thus, |Z7| = |φ(Z7)|, so 7 =
|φ(Z7)| = |Im(φ)|. Since φ is a homomorphism, then Im(φ) < Z12. By La-
grange, |Im(φ)| divides |Z12|, so 7|12, a contradiction. Hence, φ cannot be
injective.

Since φ is injective iff ker(φ) = {0}, then φ is not injective iff ker(φ) 6= {0}.
Since φ is not injective, then ker(φ) 6= {0}, so K 6= {0}.

Suppose K = Z7. Then φ is the trivial homomorphism.
Thus, there is only one homomorphism from Z7 to Z12, the trivial homo-

morphism.

Exercise 10. Find all possible homomorphisms from (Z24,+) to (Z18,+).
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Solution. Let φ : Z24 → Z18 be a group homomorphism. Let K = ker(φ).
Since φ is a homomorphism, then K < Z24 and Im(φ) < Z18.

Since |Z24| = 24 > 18 = |Z18|, then φ cannot be injective by the pigeonhole
principle. Since φ is injective iff ker(φ) = {0}, then φ is not injective iff ker(φ) 6=
{0}. Since φ is not injective, then ker(φ) 6= {0}. Hence, the kernel of φ cannot
be the trivial group.

The subgroups of Z24 have orders 1, 2, 3, 4, 6, 8, 12, 24 and the subgroups of
Z18 have orders 1, 2, 3, 6, 9, 18. Since K 6= {0}, then K cannot have order 1.
Thus, the possible orders of K are 2, 3, 4, 6, 8, 12, 24.

Since Z24 is a finite group and φ is a homomorphism, then |Z24| = |K| ∗
|Im(φ)|. Hence, 24 = |K| ∗ |Im(φ)|, so |Im(φ)| divides 24. Since Z18 is finite,
then by LaGrange’s theorem, |Im(φ)| divides |Z18|, so |Im(φ)| divides 18. Thus,
|Im(φ)| divides 24 and |Im(φ)| divides 18, so |Im(φ)| is a common divisor of
24 and 18. Hence, the order of Im(φ) is either 1, 2, 3, 6.

Every subgroup of a cyclic group is cyclic, so K < Z24 is cyclic and Im(φ) <
Z18 is cyclic. Hence K = 〈k〉 for some integer k and Im(φ) = 〈m〉 for some
integer m. The order of an element is the order of the cyclic subgroup generated
by that element.

Let k ∈ Z24. Then |k| = |K| = |Z24|
gcd(m,|Z24|) = 24

gcd(m,24) .

Let m ∈ Z18. Then |m| = |Im(φ)| = |Z18|
gcd(m,|Z18|) = 18

gcd(m,18) .

If |Im(φ)| = 1, then Im(φ) = 〈0〉 = {0} and |K| = 24, so K = Z24. This
corresponds to the trivial homomorphism.

If |Im(φ)| = 2, then Im(φ) = 〈9〉 = {0, 9} and |K| = 12, so K = 〈2〉 =
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}.

If |Im(φ)| = 3, then Im(φ) = 〈6〉 = {0, 6, 12} and |K| = 8, so K = 〈3〉 =
{0, 3, 6, 9, 12, 15, 18, 21}.

If |Im(φ)| = 6, then Im(φ) = 〈3〉 = {0, 3, 6, 9, 12, 15} and |K| = 4, so
K = 〈6〉 = {0, 6, 12, 18}.

Thus, the possible homomorphisms φ are:
K = Z24 and Im(φ) = {0} (the trivial homomorphism) or
K = 〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} and Im(φ) = 〈9〉 = {0, 9} or
K = 〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21} and Im(φ) = 〈6〉 = {0, 6, 12} or
K = 〈4〉 = {0, 6, 12, 18} and Im(φ) = 〈3〉 = {0, 3, 6, 9, 12, 15}.

Exercise 11. Find all possible homomorphisms from (Z,+) to (Z12,+).

Solution. Let φ : Z → Z12 be a group homomorphism. Let K = ker(φ) and
Im(φ) = φ(Z). Then K < Z and Im(φ) < Z12. The only subgroups of Z12

are the finite cyclic groups of order n such that n|12, by Lagrange. Hence, the
subgroups of Z12 have order 1, 2, 3, 4, 6, 12. Thus, |Im(φ)| = n = 1, 2, 3, 4, 6, 12.
Since K C Z, then the number of cosets of K in Z is [Z : K] = n and since
K < Z, then K = 〈n〉.

Thus, the possible homomorphisms φ are:
K = Z and Im(φ) = {0} or
K = 〈2〉 and Im(φ) = 〈6〉 = {0, 6} or
K = 〈3〉 and Im(φ) = 〈4〉 = {0, 4, 8} or
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K = 〈4〉 and Im(φ) = 〈3〉 = {0, 3, 6, 9} or
K = 〈6〉 and Im(φ) = 〈2〉 = {0, 2, 4, 6, 8, 10} or
K = 〈12〉 and Im(φ) = Z12.
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