Group Theory Exercises 6

Jason Sass

June 26, 2023

Homomorphisms

Exercise 1. Let $(G, *)$ be an abelian group.
Let $n \in \mathbb{Z}$ be fixed.
Let $f_{n}: G \rightarrow G$ be defined by $f(g)=g^{n}$ for all $g \in G$.
Then f_{n} is a group homomorphism.
Proof. Clearly, f_{n} is a function.
Let $a, b \in G$.
Then

$$
\begin{aligned}
f(a b) & =(a b)^{n} \\
& =a^{n} b^{n} \\
& =f(a) f(b) .
\end{aligned}
$$

Therefore, $f(a b)=f(a) f(b)$, so f is a group homomorphism.
Exercise 2. Let $(G, *)$ be an abelian group.
Let $h: G \rightarrow G$ be defined by $h(g)=g^{-1}$ for all $g \in G$.
Then h is a group homomorphism.
Proof. Clearly, h is a function.
Let $a, b \in G$.
Observe that

$$
\begin{aligned}
h(a b) & =(a b)^{-1} \\
& =b^{-1} a^{-1} \\
& =a^{-1} b^{-1} \\
& =h(a) h(b) .
\end{aligned}
$$

Therefore, $h(a b)=h(a) h(b)$, so h is a group homomorphism.
Exercise 3. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. If G^{\prime} is finite, then $\phi(G)$ is finite and $|\phi(G)|$ divides $\left|G^{\prime}\right|$.

Solution. We should realize that to each element $\phi(g)$ of $\phi(G)$ there corresponds a set, the left coset $g H$ with representative g, where $H=\operatorname{ker}(\phi)$.

Proof. Suppose G is finite.
Let $\phi(g) \in \phi(G)$.
Then $g \in G$.
Let $K=\operatorname{ker}(\phi)$.
Then $K<G$.
The preimage of $\phi(g)$ is the left coset of K in G with representative g.
Thus, $\phi^{-1}(\phi(g))=\{x \in G: \phi(x)=\phi(g)\}=g K$.
Hence, for each element of $\phi(G)$ there corresponds exactly one left coset.
Therefore, the number of elements in $\phi(G)$ is the number of left cosets of K in G.

Since G is finite, then there exist a finite number of subsets of G.
In particular, there exist a finite number of left cosets of K in G, so $[G: K]$ is finite.

Thus, $[G: K]=|\phi(G)|$, so $\phi(G)$ is finite.
Since G is a finite group, by LaGrange's theorem, $|G|=|K| *[G: K]$.
Therefore, $[G: K]$ divides $|G|$, so $|\phi(G)|$ divides $|G|$.
Proof. Suppose G^{\prime} is finite.
The image of a homomorphism is a subgroup of G^{\prime}, so $\phi(G)<G^{\prime}$.
Thus, $\phi(G) \subset G^{\prime}$.
Since every subset of a finite set is finite and G^{\prime} is finite, then $\phi(G)$ is finite.
Since G^{\prime} is a finite group and $\phi(G)$ is a subgroup of G^{\prime}, then by LaGrange's theorem, the order of $\phi(G)$ divides the order of G^{\prime}.

Therefore, $|\phi(G)|$ divides $\left|G^{\prime}\right|$.
Exercise 4. Let G be an abelian group and $n \in \mathbb{N}$.
Then $\phi: G \rightarrow G$ defined by $g \rightarrow g^{n}$ is a group homomorphism.
Proof. Clearly, ϕ is a function.
Let $a, b \in G$.
Then

$$
\begin{aligned}
\phi(a b) & =(a b)^{n} \\
& =a^{n} b^{n} \\
& =\phi(a) \phi(b) .
\end{aligned}
$$

Hence, ϕ is a group homomorphism.
The kernel is $\operatorname{ker}(\phi)=\left\{g \in G: g^{n}=e\right\}<G$ and the image of ϕ is $\operatorname{Im}(\phi)=\left\{g^{n}: g \in G\right\}<G$.

Exercise 5. Let G be a group of prime order.
If $\phi: G \rightarrow G^{\prime}$ is a group homomorphism, then either ϕ is the trivial homomorphism or ϕ is injective.

Proof. Suppose $\phi: G \rightarrow G^{\prime}$ is a group homomorphism.
Since G is a group of prime order, then G is cyclic, so the only subgroups of G are G itself and the trivial group.

Let $K=\operatorname{ker}(\phi)$.
Since ϕ is a homomorphism, then $K<G$.
Hence, either $K=G$ or $K=\{e\}$, where e is the identity of G.
We consider these cases separately.
Case 1: Suppose $K=G$.
Then ϕ maps every element of G to the identity of G^{\prime}.
Hence, ϕ is the trivial homomorphism.
Case 2: Suppose $K=\{e\}$.
Since ϕ is injective iff $K=\{e\}$ and $K=\{e\}$, then ϕ is injective.
Hence, in all cases either ϕ is the trivial homomorphism or ϕ is injective.
Exercise 6. For groups $\left(\mathbb{R}^{+}, \cdot\right)$ and $(\mathbb{R},+)$, the function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $\phi(x)=\log x$ for all $x \in \mathbb{R}^{+}$is a group homomorphism.
Solution. Let $x, y \in \mathbb{R}^{+}$.
Then $\phi(x y)=\log (x y)=\log (x)+\log (y)=\phi(x)+\phi(y)$.
Therefore, ϕ is a group homomorphism.

Observe that $\phi(1)=\log 1=0$, so ϕ preserves the group identity. In other words, the multiplicative identity $1 \in \mathbb{R}^{+}$maps to the additive identity $0 \in \mathbb{R}$.

Let $a \in \mathbb{R}^{+}$.
Then $\phi\left(a^{-1}\right)=\log \left(a^{-1}\right)=\log \left(\frac{1}{a}\right)=\log 1-\log a=0-\log a=-\log a=$ $-\phi(a)$, so ϕ preserves inverses. In other words, the multiplicative inverse of $a \in \mathbb{R}^{+}$maps to the additive inverse of the image of a.

Let $a \in \mathbb{R}^{+}$and $k \in \mathbb{Z}$.
Then $\phi\left(a^{k}\right)=\log \left(a^{k}\right)=k \log a=k \phi(a)$, so ϕ preserves powers of $a \in \mathbb{R}^{+}$. In other words, powers of $a \in \mathbb{R}^{+}$map to multiples of the image of a.

The image of ϕ is the set $\phi\left(\mathbb{R}^{+}\right)=\left\{\phi(x) \in \mathbb{R}: x \in \mathbb{R}^{+}\right\}=\{\log x \in \mathbb{R}: x \in$ $\left.\mathbb{R}^{+}\right\}=\mathbb{R}$.

The kernel of ϕ is the set $\operatorname{ker}(\phi)=\left\{x \in \mathbb{R}^{+}: \phi(x)=0\right\}=\left\{x \in \mathbb{R}^{+}: \log x=\right.$ $0\}=\{1\}$.

Since log is one to one and onto, then log is bijective, so ϕ is bijective.
Therefore, ϕ is a group isomorphism.
Exercise 7. Let $(\mathbb{Z},+)$ be the additive group of integers.
Let $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $\phi(n)=7 n$.
Is ϕ a homomorphism?

Solution. Clearly, ϕ is a function.
Let $a, b \in \mathbb{Z}$.
Then $\phi(a+b)=7(a+b)=7 a+7 b=\phi(a)+\phi(b)$, so ϕ is a group homomorphism.

Thus, ϕ maps the identity 0 to 0 , so $\phi(0)=0$.
Hence, $0 \in \operatorname{ker}(\phi)$.
Suppose $g \in \operatorname{ker}(\phi)$.
Then $g \in \mathbb{Z}$ and $\phi(g)=0$, so $7 g=0$.
Thus, $g=0$, so $g \in \operatorname{ker}(\phi)$ implies $g \in\{0\}$.
Therefore, $\operatorname{ker}(\phi) \subset\{0\}$.
Since $\operatorname{ker}(\phi) \subset\{0\}$ and $0 \in \operatorname{ker}(\phi)$, then $\operatorname{ker}(\phi)=\{0\}$.
Hence, ϕ is injective.
Observe that $\operatorname{Im}(\phi)=\phi(\mathbb{Z})=\{\phi(g): g \in \mathbb{Z}\}=\{7 g: g \in \mathbb{Z}\}=7 \mathbb{Z}=\langle 7\rangle$.
Since ϕ is injective, then $\mathbb{Z} \cong \phi(\mathbb{Z})$, so $\mathbb{Z} \cong 7 \mathbb{Z}$.
Exercise 8. Let $f: G L_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ be defined by
$f\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a+d$.
Is f a homomorphism?
Solution. Clearly, f is a function.
Suppose f is a homomorphism.
Then f maps the multiplicative identity of $G L_{2}(\mathbb{R})$ to the additive identity of \mathbb{R}.

Hence, $f\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=0$.
But,
$f\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=1+1=2 \neq 0$.
Hence, f cannot be a homomorphism.
Exercise 9. Find all possible homomorphisms ϕ from $\left(\mathbb{Z}_{7},+\right)$ to $\left(\mathbb{Z}_{12},+\right)$.
Solution. Suppose $\phi: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{12}$ is a group homomorphism. Let $K=\operatorname{ker}(\phi)$. Then $K<\mathbb{Z}_{7}$. Since \mathbb{Z}_{7} is a group of prime order, then \mathbb{Z}_{7} is cyclic, so the only subgroups of \mathbb{Z}_{7} are \mathbb{Z}_{7} itself and the trivial group $\{0\}$. Hence, either $K=\mathbb{Z}_{7}$ or $K=\{0\}$.

Suppose ϕ is injective. Then $\mathbb{Z}_{7} \cong \phi\left(\mathbb{Z}_{7}\right)$. Thus, $\left|\mathbb{Z}_{7}\right|=\left|\phi\left(\mathbb{Z}_{7}\right)\right|$, so $7=$ $\left|\phi\left(\mathbb{Z}_{7}\right)\right|=|\operatorname{Im}(\phi)|$. Since ϕ is a homomorphism, then $\operatorname{Im}(\phi)<\mathbb{Z}_{12}$. By Lagrange, $|\operatorname{Im}(\phi)|$ divides $\left|\mathbb{Z}_{12}\right|$, so $7 \mid 12$, a contradiction. Hence, ϕ cannot be injective.

Since ϕ is injective iff $\operatorname{ker}(\phi)=\{0\}$, then ϕ is not injective iff $\operatorname{ker}(\phi) \neq\{0\}$. Since ϕ is not injective, then $\operatorname{ker}(\phi) \neq\{0\}$, so $K \neq\{0\}$.

Suppose $K=\mathbb{Z}_{7}$. Then ϕ is the trivial homomorphism.
Thus, there is only one homomorphism from \mathbb{Z}_{7} to \mathbb{Z}_{12}, the trivial homomorphism.

Exercise 10. Find all possible homomorphisms from $\left(\mathbb{Z}_{24},+\right)$ to $\left(\mathbb{Z}_{18},+\right)$.

Solution. Let $\phi: \mathbb{Z}_{24} \rightarrow \mathbb{Z}_{18}$ be a group homomorphism. Let $K=\operatorname{ker}(\phi)$. Since ϕ is a homomorphism, then $K<\mathbb{Z}_{24}$ and $\operatorname{Im}(\phi)<\mathbb{Z}_{18}$.

Since $\left|\mathbb{Z}_{24}\right|=24>18=\left|\mathbb{Z}_{18}\right|$, then ϕ cannot be injective by the pigeonhole principle. Since ϕ is injective iff $\operatorname{ker}(\phi)=\{0\}$, then ϕ is not injective iff $\operatorname{ker}(\phi) \neq$ $\{0\}$. Since ϕ is not injective, then $\operatorname{ker}(\phi) \neq\{0\}$. Hence, the kernel of ϕ cannot be the trivial group.

The subgroups of \mathbb{Z}_{24} have orders $1,2,3,4,6,8,12,24$ and the subgroups of \mathbb{Z}_{18} have orders $1,2,3,6,9,18$. Since $K \neq\{0\}$, then K cannot have order 1 . Thus, the possible orders of K are $2,3,4,6,8,12,24$.

Since \mathbb{Z}_{24} is a finite group and ϕ is a homomorphism, then $\left|\mathbb{Z}_{24}\right|=|K| *$ $|\operatorname{Im}(\phi)|$. Hence, $24=|K| *|\operatorname{Im}(\phi)|$, so $|\operatorname{Im}(\phi)|$ divides 24. Since \mathbb{Z}_{18} is finite, then by LaGrange's theorem, $|\operatorname{Im}(\phi)|$ divides $\left|\mathbb{Z}_{18}\right|$, so $|\operatorname{Im}(\phi)|$ divides 18. Thus, $|\operatorname{Im}(\phi)|$ divides 24 and $|\operatorname{Im}(\phi)|$ divides 18 , so $|\operatorname{Im}(\phi)|$ is a common divisor of 24 and 18. Hence, the order of $\operatorname{Im}(\phi)$ is either $1,2,3,6$.

Every subgroup of a cyclic group is cyclic, so $K<\mathbb{Z}_{24}$ is cyclic and $\operatorname{Im}(\phi)<$ \mathbb{Z}_{18} is cyclic. Hence $K=\langle k\rangle$ for some integer k and $\operatorname{Im}(\phi)=\langle m\rangle$ for some integer m. The order of an element is the order of the cyclic subgroup generated by that element.

Let $k \in \mathbb{Z}_{24}$. Then $|k|=|K|=\frac{\left|\mathbb{Z}_{24}\right|}{\operatorname{gcd}\left(m,\left|\mathbb{Z}_{24}\right|\right)}=\frac{24}{\operatorname{gcd}(m, 24)}$.
Let $m \in \mathbb{Z}_{18}$. Then $|m|=|\operatorname{Im}(\phi)|=\frac{\left|\mathbb{Z}_{18}\right|}{\operatorname{gcd}\left(m,\left|\mathbb{Z}_{18}\right|\right)}=\frac{18}{\operatorname{gcd}(m, 18)}$.
If $|\operatorname{Im}(\phi)|=1$, then $\operatorname{Im}(\phi)=\langle 0\rangle=\{0\}$ and $|K|=24$, so $K=\mathbb{Z}_{24}$. This corresponds to the trivial homomorphism.

If $|\operatorname{Im}(\phi)|=2$, then $\operatorname{Im}(\phi)=\langle 9\rangle=\{0,9\}$ and $|K|=12$, so $K=\langle 2\rangle=$ $\{0,2,4,6,8,10,12,14,16,18,20,22\}$.

If $|\operatorname{Im}(\phi)|=3$, then $\operatorname{Im}(\phi)=\langle 6\rangle=\{0,6,12\}$ and $|K|=8$, so $K=\langle 3\rangle=$ $\{0,3,6,9,12,15,18,21\}$.

If $|\operatorname{Im}(\phi)|=6$, then $\operatorname{Im}(\phi)=\langle 3\rangle=\{0,3,6,9,12,15\}$ and $|K|=4$, so $K=\langle 6\rangle=\{0,6,12,18\}$.

Thus, the possible homomorphisms ϕ are:
$K=\mathbb{Z}_{24}$ and $\operatorname{Im}(\phi)=\{0\}$ (the trivial homomorphism) or
$K=\langle 2\rangle=\{0,2,4,6,8,10,12,14,16,18,20,22\}$ and $\operatorname{Im}(\phi)=\langle 9\rangle=\{0,9\}$ or
$K=\langle 3\rangle=\{0,3,6,9,12,15,18,21\}$ and $\operatorname{Im}(\phi)=\langle 6\rangle=\{0,6,12\}$ or
$K=\langle 4\rangle=\{0,6,12,18\}$ and $\operatorname{Im}(\phi)=\langle 3\rangle=\{0,3,6,9,12,15\}$.
Exercise 11. Find all possible homomorphisms from $(\mathbb{Z},+)$ to $\left(\mathbb{Z}_{12},+\right)$.
Solution. Let $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{12}$ be a group homomorphism. Let $K=\operatorname{ker}(\phi)$ and $\operatorname{Im}(\phi)=\phi(\mathbb{Z})$. Then $K<\mathbb{Z}$ and $\operatorname{Im}(\phi)<\mathbb{Z}_{12}$. The only subgroups of \mathbb{Z}_{12} are the finite cyclic groups of order n such that $n \mid 12$, by Lagrange. Hence, the subgroups of \mathbb{Z}_{12} have order $1,2,3,4,6,12$. Thus, $|\operatorname{Im}(\phi)|=n=1,2,3,4,6,12$. Since $K \triangleleft \mathbb{Z}$, then the number of cosets of K in \mathbb{Z} is $[\mathbb{Z}: K]=n$ and since $K<\mathbb{Z}$, then $K=\langle n\rangle$.

Thus, the possible homomorphisms ϕ are:
$K=\mathbb{Z}$ and $\operatorname{Im}(\phi)=\{0\}$ or
$K=\langle 2\rangle$ and $\operatorname{Im}(\phi)=\langle 6\rangle=\{0,6\}$ or
$K=\langle 3\rangle$ and $\operatorname{Im}(\phi)=\langle 4\rangle=\{0,4,8\}$ or

$$
\begin{aligned}
& K=\langle 4\rangle \text { and } \operatorname{Im}(\phi)=\langle 3\rangle=\{0,3,6,9\} \text { or } \\
& K=\langle 6\rangle \text { and } \operatorname{Im}(\phi)=\langle 2\rangle=\{0,2,4,6,8,10\} \text { or } \\
& K=\langle 12\rangle \text { and } \operatorname{Im}(\phi)=\mathbb{Z}_{12} .
\end{aligned}
$$

