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Isomorphisms

Exercise 1. Show that f : R∗ → R∗ defined by f(x) = x3 for all x ∈ R∗ is a
group isomorphism.

Proof. Clearly, f is a function.
To prove f is bijective, we prove f is invertible.
Let g : R∗ → R∗ be defined by g(x) = 3

√
x for all x ∈ R∗.

Let x ∈ R∗.
Observe that (g ◦ f)(x) = g(f(x)) = g(x3) =

3
√
x3 = x.

Hence, g ◦ f = id.
Observe that (f ◦ g)(x) = f(g(x)) = f( 3

√
x) = ( 3

√
x)3 = x.

Hence, f ◦ g = id.
Therefore, g is an inverse function of f , so f is invertible.
Since f is invertible iff f is bijective, then f is bijective.

We prove f is a homomorphism.
Let a, b ∈ R∗.
Observe that R∗ is an abelian group and

f(ab) = (ab)3

= a3b3

= f(a)f(b).

Therefore, f is a homomorphism.
Since f is a bijective homomorphism, then f is an isomorphism.

Exercise 2. For n 6= 0, (Z,+) ∼= (nZ,+).

Solution. Let n ∈ Z.
If n = 0, then nZ = 0Z = {0} which is the trivial group, so Z 6∼= nZ if

n = 0. Thus, we restrict n to nonzero integers. We can use the definition of
isomorphism to show there exists an explicit isomorphism. However, we can
also use existing theorems. In fact, we see that nZ < Z. We also observe that
nZ = 〈n〉, the cyclic subgroup of Z generated by n. We know that every cyclic
group of infinite order is isomorphic to Z.



Proof. Let n be a nonzero integer.
Observe that nZ < Z and nZ = 〈n〉.
Hence, nZ is the cyclic subgroup of Z generated by n.
Every cyclic group of infinite order is isomorphic to Z.
Since n 6= 0, then nZ is of infinite order.
Hence, nZ is isomorphic to Z.
Therefore, nZ ∼= Z, so Z ∼= nZ.

Exercise 3. (Z6,+) 6∼= (S3, ◦).

Solution. We know that |Z6| = 6 and |S3| = 3! = 6, but Z6 is abelian group,
while S3 is nonabelian.

Thus, we conjecture that there does not exist an isomorphism.
To prove this, let’s suppose there does exist an isomorphism and derive a

contradiction.

Proof. Suppose Z6 is isomorphic to S3.
Then there exists an isomorphism between Z6 and S3.
Let φ : Z6 7→ S3 be some isomorphism.
Then φ is a bijective homomorphism.
Since φ is a homomorphism, then for every [a], [b] ∈ Z6, φ([a] + [b]) =

φ([a])φ([b]).
Since S3 is non abelian, then ◦ is not commutative.
Therefore, there exist σ, τ ∈ S3 such that στ 6= τσ.
Since Z6 is abelian, then for every [a], [b] ∈ Z6, [a] + [b] = [b] + [a].
Since φ is bijective, then φ is surjective.
Therefore, since σ ∈ S3, then there exists [a] ∈ Z6 such that φ([a]) = σ.
Similarly, since τ ∈ S3, then there exists [b] ∈ Z6 such that φ([b]) = τ .
Observe that στ = φ([a])φ([b]) = φ([a] + [b]) = φ([b] + [a]) = φ([b])φ([a]) =

τσ.
Hence, we have στ = τσ and στ 6= τσ, a contradiction.
Therefore, there is no isomorphism φ.
Since no isomorphism exists between Z6 and S3, then Z6 is not isomorphic

to S3.

Exercise 4. (Z∗
8, ·) 6∼= (Z4,+).

Solution. We know that |Z∗
8| = φ(8) = 4 and |Z4| = 4, but Z∗

8 is not cyclic,
while Z4 is cyclic. Thus, intuitively, it appears these are not isomorphic groups.
To formally prove this observation, we suppose there exists an isomorphism and
derive a contradiction(ie, use proof by contradiction). In fact, since there are
only 2 groups of order 4 up to isomorphism, the cyclic group of order 4 and the
Klein 4 group, then Z∗

8 is isomorphic to the Klein 4 group which is isomorphic
to the symmetries of a rectangle, D2.

Proof. Suppose Z∗
8
∼= Z4. Then Z4

∼= Z∗
8. Thus, if Z4 is cyclic, then Z∗

8 is cyclic.
Since Z4 is cyclic, then Z∗

8 is cyclic. Hence, there exists a generator g ∈ Z∗
8 such

that 〈g〉 = Z∗
8. Thus, |〈g〉| = |Z∗

8| = 4.

2



The order of an element is the order of the cyclic subgroup generated by
that element. Thus, the order of g is 4. Hence, there exists an element of Z∗

8

that has order 4. Each element of Z∗
8 is its own inverse. Thus, x = x−1 for all

x ∈ Z∗
8. Hence, x2 = 1 for all x ∈ Z∗

8. This implies the order of each element is
at most 2. Thus, there is no element in Z∗

8 of order 4. Hence, there is an element
of Z∗

8 of order 4 and there is not an element of Z∗
8 of order 4, a contradiction.

Therefore, Z∗
8 6∼= Z4.

Exercise 5. (Z∗
5, ·) ∼= (Z∗

10, ·), but (Z∗
12, ·) 6∼= (Z∗

10, ·).

Solution. We draw out the Cayley multiplication tables and see that Z∗
5
∼= Z4

because Z∗
5 is cyclic.

Similarly, Z∗
10
∼= Z4 because Z∗

10 is cyclic.
However, Z∗

12
∼= Kelin 4 group which is not cyclic, so Z∗

12 is not cyclic.

Proof. Observe that |Z∗
5| = |Z∗

10| = |Z∗
12| = 4, so each group of units is a group

of order 4. Since 〈2〉 = Z∗
5, then Z∗

5 is cyclic. Every cyclic group of finite order
n is isomorphic to (Zn,+), so Z∗

5 is isomorphic to Z4. Hence, Z∗
5
∼= Z4.

Since 〈3〉 = Z∗
10, then Z∗

10 is cyclic. Hence, Z∗
10
∼= Z4, so Z4

∼= Z∗
10. Since

Z∗
5
∼= Z4 and Z4

∼= Z∗
10, then Z∗

5
∼= Z∗

10.
Suppose Z∗

12
∼= Z∗

10. Since Z4
∼= Z∗

10, then Z∗
10
∼= Z4. Thus, Z∗

12
∼= Z4, so

Z4
∼= Z∗

12. Since Z4 is cyclic, then Z∗
12 is cyclic. Hence, there exists g ∈ Z∗

12

such that 〈g〉 = Z∗
12. Thus, |〈g〉| = |Z∗

12| = 4. The order of an element is the
order of the cyclic subgroup generated by that element. Hence, the order of g
is 4, so |g| = 4.

Observe that Z∗
12 = {1, 5, 7, 11} and 1∗1 = 1 and 5∗5 = 5 and 7∗7 = 1 and

11 ∗ 11 = 1. Hence, x2 = 1 for each x ∈ Z∗
12. Thus, the order of each x ∈ Z∗

12 is
at most 2. Therefore, |x| ≤ 2 for all x ∈ Z∗

12. In particular, |g| ≤ 2, so |g| 6= 4.
Thus, we have |g| = 4 and |g| 6= 4, a contradiction. Therefore, Z∗

12 6∼= Z∗
10.

Exercise 6. The cyclic subgroup of Z12 generated by [3]12 is isomorphic to Z4.

Solution. Let G be the cyclic subgroup of Z12 generated by [3]12.
Then G = {k[3]12 : k ∈ Z} = {[0], [3], [6], [9]}.
Since Z4 is a cyclic group of order 4, then Z4 = {[0], [1], [2], [3]}.
Let φ : Z4 → G be defined by φ([x]4) = [3x]12 for all [x]4 ∈ Z4.

We prove φ is a group isomorphism.
We must first prove φ is well defined.
Let [a]4, [b]4 ∈ Z4 such that [a]4 = [b]4.
Then a ≡ b (mod 4), so 4|a− b.
Thus, 3 ∗ 4|3(a− b), so 12|3a− 3b.
Hence, 3a ≡ 3b (mod 12), so [3a]12 = [3b]12.
Therefore, φ([a]4) = φ([b]4).
Since [a]4 = [b]4 implies φ([a]4) = φ([b]4), then φ is well defined.
Thus, φ is a function.
We prove φ is a group isomorphism.
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Let [a]4, [b]4 ∈ Z4.
Then

φ([a]4 + [b]4) = φ([a+ b]4)

= [3(a+ b)]12

= [3a+ 3b]12

= [3a]12 + [3b]12

= φ([a]4) + φ([b]4).

Thus, φ is a homomorphism.

We prove φ is injective.
Let [a]4, [b]4 ∈ Z4 such that φ([a]4) = φ([b]4).
Then [3a]12 = [3b]12, so 3a ≡ 3b (mod 12).
Hence, 12|3a− 3b, so 3 ∗ 4|3(a− b).
Thus, 4|a− b, so a ≡ b (mod 4).
Therefore, [a]4 = [b]4.
Hence, φ([a]4) = φ([b]4) implies [a]4 = [b]4, so φ is injective.

We prove φ is surjective.
Let y be an arbitrary element of G.
Then there exists an integer k such that y = k[3]12.
Thus, [k]4 ∈ Z4 and φ([k]4) = [3k]12 = [k ∗ 3]12 = k[3]12 = y.
Hence, there exists [k]4 ∈ Z4 such that φ([k]4) = y, so φ is surjective.
Therefore, φ is bijective, so φ is a bijective homomorphism.
Thus, φ is an isomorphism, so Z4

∼= G.
Hence, G ∼= Z4.

Exercise 7. (Z2 × Z3,+) ∼= (Z6,+).

Solution. We make some observations about each group.
We know that |Z2 × Z3| = |Z2||Z3| = 2 ∗ 3 = 6 and |Z6| = 6, so both groups

are finite of order 6.
We also know that identity of Z6 is 0 and identity of Z2×Z3 is (0, 0) (because

we can draw out the Cayley table for Z2 × Z3.
Also, Z6 is a cyclic group with generators 1 and 5.
Likewise Z2 × Z3 is cyclic with generators (1, 1) and (1, 2).
We know that Z2 × Z3

∼= Z6 since gcd(2, 3) = 1.
Since both groups are cyclic, then we can express each element as a multiple

of its generators.
Thus, Z2 × Z3 = 〈(1, 1)〉 = {k(1, 1) : k ∈ Z} = {(k, k) : k ∈ Z}.
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Hence, one possible isomorphism is f : Z6 → Z2 × Z3 given by f([a]6) =
([a]2, [a]3), so

f(0) = (0, 0)

f(1) = (1, 1)

f(2) = (0, 2)

f(3) = (1, 0)

f(4) = (0, 1)

f(5) = (1, 2).

Also, Z2 × Z3 = 〈(1, 2)〉 = {k(1, 2) : k ∈ Z} = {(k, 2k) : k ∈ Z}.
Hence, another isomorphism is g : Z6 → Z2×Z3 given by g([b]6) = ([b]2, [2b]3),

so

g(0) = (0, 0)

g(1) = (1, 2)

g(2) = (0, 1)

g(3) = (1, 0)

g(4) = (0, 2)

g(5) = (1, 1).

Thus, there are at least 2 isomorphisms.
So, how many actual isomorphisms exist?
Can there exist more than 2 isomorphisms? Suppose there are more than

2 isomorphisms. Then there exist at least 3 isomorphisms. Since f and g are
distinct isomorphisms, let h : Z6 → Z2 × Z3 be a third distinct isomorphism.
Then h 6= f and h 6= g.

Since isomorphisms preserve identity, then h(0) = (0, 0).
Since isomorphisms preserve finite order of an element and |3| = 2 and (1, 0)

is the only element in Z2 × Z3 that has order 2, then h(3) = (1, 0).
Since |1| = 6 and |(1, 1)| = |(1, 2)| = 6, then either h(1) = (1, 1) or h(1) =

(1, 2).
We consider these cases separately.
Suppose h(1) = (1, 1). Since isomorphisms preserve inverses, then h(−1) =

−(h1) = −(1, 1) = (−1,−1) = (−1 + 2,−1 + 3) = (1, 2). Thus, h(−1) = h(−1 +
6) = h(5) = (1, 2). Since h is a homomorphism, then h(3 + 5) = h(3) + h(5).
Hence, h(8) = (1, 0) + (1, 2) = (2, 2) = (2− 2, 2) = (0, 2). Thus, (0, 2) = h(8) =
h(8 − 6) = h(2), so h(2) = (0, 2). Therefore, h(−2) = −h(2) = −(0, 2) =
(0,−2) = (0,−2 + 3) = (0, 1). Hence, (0, 1) = h(−2) = h(−2 + 6) = h(4), so
h(4) = (0, 1).
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Thus, we have

h(0) = (0, 0)

h(1) = (1, 1)

h(2) = (0, 2)

h(3) = (1, 0)

h(4) = (0, 1)

h(5) = (1, 2).

Therefore, h = f . Hence, h = f and h 6= f , a contradiction. Therefore,
h(1) 6= (1, 1).

Suppose h(1) = (1, 2).
In a similar fashion, we can show that h(1) 6= (1, 2).
Therefore, h does not exist, so there are not more than 2 isomorphisms.

Hence, there are at most 2 isomorphisms. Since there are at least 2 isomorphisms
(namely, f and g) and there are at most 2 isomorphisms, then there are exactly
2 isomorphisms.

Proof. The direct product group (Z2×Z3,+) has finite order 6 since |Z2×Z3| =
|Z2||Z3| = 2 ∗ 3 = 6 The order of 1 in Z2 is 2 since [2][1] = [2] = [0]2. The order
of 1 in Z3 is 3 since [3][1] = [3] = [0]3. Therefore, the order of (1, 1) ∈ Z2 × Z3

is the least common multiple of 2 and 3. Hence, |(1, 1)| = 6. The order of the
element (1, 1) ∈ Z2×Z3 is the order of the cyclic subgroup of Z2×Z3 generated
by (1, 1).

Let G be the cyclic subgroup generated by (1, 1). Then G ⊂ Z2 × Z3 and
|G| = 6 = |Z2 × Z3|.

If S is a finite set and T is a subset of S such that |T | = |S|, then T = S.
Since Z2 × Z3 is a finite set and G ⊂ Z2 × Z3 and |G| = |Z2 × Z3|, then
G = Z2 × Z3. Therefore, the element (1, 1) is a generator of Z2 × Z3, so the
group Z2×Z3 is cyclic. Hence, Z2×Z3 is a cyclic group of order 6. Every cyclic
group of finite order n is isomorphic to (Zn,+). Hence, every cyclic group of
finite order 6 is isomorphic to (Z6,+). Thus, Z2 × Z3 is isomorphic to (Z6,+).

We exhibit an isomorphism explicitly and prove it is an isomorphism.
Let φ : Z6 → Z2 × Z3 be defined by φ([x]6) = ([x]2, [2x]3) for all [x]6 ∈ Z6.
We must prove φ is well defined and then prove φ is a group isomorphism.
Let [a], [b] ∈ Z6 such that [a] = [b]. Then [a]6 = [b]6, so a ≡ b (mod 6). Thus,

6|a− b, so a− b = 6k = 2(3k) = 3(2k) for some integer k. Since 3k is an integer,
then 2|a − b. Since 2k is an integer, then 3|a − b. Thus, a ≡ b (mod 2) and
a ≡ b (mod 3). Hence, [a]2 = [b]2 and [a]3 = [b]3. Thus, [2]3[a]3 = [2]3[b]3, so
[2a]3 = [2b]3. Hence, ([a]2, [2a]3) = ([b]2, [2b]3), so φ([a]3) = φ([b]3). Therefore,
[a]6 = [b]6 implies φ([a]3) = φ([b]3), so φ is well defined. Hence, φ is a function.

Let [a], [b] ∈ Z6.
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Then

φ([a]6 + [b]6) = φ([a+ b]6)

= ([a+ b]2, [2(a+ b)]3)

= ([a+ b]2, [2a+ 2b]3)

= ([a]2 + [b]2, [2a]3 + [2b]3)

= ([a]2, [2a]3) + ([b]2, [2b]3)

= φ([a]6) + φ([b]6).

Hence, φ is a group homomorphism.

We prove φ is injective.
Let [x]6 ∈ ker(φ). Then [x]6 ∈ Z6 and φ([x]6) = ([0]2, [0]3). Hence, 0 ≤ x < 6

and ([x]2, [2x]3) = ([0]2, [0]3). Thus, [x]2 = [0]2 and [2x]3 = [0]3. Hence, x ≡ 0
(mod 2) and 2x ≡ 0 (mod 3). Since x ≡ 0 (mod 2), then either x = 0 or x = 2
or x = 4. Since 2x ≡ 0 (mod 3), then x = 0 or x = 3. Thus, x = 0, so
[x]6 ∈ {[0]6}. Hence, [x]6 ∈ ker(φ) implies [x]6 ∈ {[0]6}, so ker(φ) ⊂ {[0]6}.
Since φ is a group homomorphism, then [0]6 ∈ ker(φ), so {[0]6} ⊂ ker(φ).
Therefore, ker(φ) ⊂ {[0]6} and {[0]6} ⊂ ker(φ), so ker(φ) = {[0]6}. Hence, φ is
injective.

Since Z6 and Z2 × Z3 are finite sets and |Z6| = 6 = |Z2 × Z3| and φ is a
function, then φ is injective iff φ is surjective.

Since φ is injective, then this implies φ is surjective.
Therefore, φ is a bijective homomorphism, so φ is an isomorphism.
Hence, Z6

∼= Z2 × Z3, so Z2 × Z3
∼= Z6.

Exercise 8. (Sn, ◦) ∼= (An+2, ◦).

Proof. Let n ∈ Z+.
Let Sn be the symmetric group on n symbols.
Let An+2 be the alternating group on n+ 2 symbols.
Let σ ∈ Sn.
We first exhibit a left representation of σ.
Let (n+ 1, n+ 2) be a transposition in An+2.
Let λσ = σ if σ is even and λσ = σ(n+ 1, n+ 2) if σ is odd.
We prove λσ ∈ An+2.
Either σ is even or odd.
We consider these cases separately.
Case 1: Suppose σ is even.
Then λσ = σ, so λσ is even.
Every even permutation in Sn is contained in Sn+2.
Since λσ ∈ Sn+2 and λσ is even, then λσ ∈ An+2.
Case 2: Suppose σ is odd.
Then λσ = σ(n+ 1, n+ 2).
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Since σ is odd and (n+1, n+2) is odd, then λσ is a product of permutations
of the same parity.

Hence, λσ is even.
Since λσ ∈ Sn+2 and λσ is even, then λσ ∈ An+2.
Thus, in all cases, λσ ∈ An+2.
Hence, λσ ∈ An+2 for all σ ∈ Sn.
Let H = {λσ : σ ∈ Sn}.

We prove H < An+2 by the subgroup test.
Let λσ ∈ H. Then σ ∈ Sn. Thus, λσ ∈ An+2. Hence, λσ ∈ H implies

λσ ∈ An+2, so H ⊂ An+2.
Let (1) be the identity of An+2. Then (1) is the identity permutation and

(1) ∈ Sn. Since (1) is even, then λ(1) = (1). Hence, (1) ∈ H. Therefore, the
identity of An+2 is in H.

We prove H is closed under permutation multiplication.
Let λα, λβ ∈ H.
Then α, β ∈ Sn.
We prove λαλβ ∈ H.
A permutation is either even or odd, so there are 4 cases to consider.
Case 1: Suppose α and β are even.
Then αβ is even and λα = α and λβ = β.
Observe that λαλβ = αβ = λαβ .
Since αβ ∈ Sn, then λαβ ∈ H, so λαλβ ∈ H.
Case 2: Suppose α is even and β is odd.
Then
Let φ : Sn → An+2 be defined by φ(σ) = λσ for all σ ∈ Sn.

We prove φ is an isomorphism.

Exercise 9. Show that Z∗
17
∼= Z16.

Solution. We know that the order of both groups is 16.
Since [3]17 has order 16, then Z∗

17 is cyclic and Z∗
17 = 〈[3]k : k ∈ Z} =

{[3], [3]2, [3]3, ..., [3]16}.
Any cyclic group of order 16 is isomorphic to Z16, so Z∗

17
∼= Z16.

Now, to devise an actual isomorphism, let φ : Z16 → Z∗
17 be defined by

φ([k]16) = [3]k17 for all [k] ∈ Z16.
Clearly, φ is a binary relation from Z16 to Z∗

17.
Let [a], [b] ∈ Z16 such that [a] = [b]. Then a, b ∈ Z and 0 ≤ a, b < 16 and

a ≡ b (mod 16). Since |[3]| = 16 in Z∗
17, then 3a = 3b iff a ≡ b (mod 16). Thus,

3a = 3b, so φ([a]) = φ([b]). Hence, φ is well defined, so φ is a function.

8



Observe that

φ([a]16 + [b]16) = φ([a+ b]16)

= [3]a+b17

= [3]a[3]b

= φ([a])φ([b]).

Therefore, φ is a homomorphism.

Suppose φ([a]) = φ([b].
Then [3]a = [3]b.
Since |[3]| = 16 in Z∗

17, then [3]a = [3]b iff a ≡ b (mod 16).
Thus, a ≡ b (mod 16).
Since 0 ≤ a, b < 16, then this implies a = b.
Therefore, φ is injective.

s To prove φ is surjective, assume [3]a17 ∈ Z∗
17.

Then a ∈ Z, so [a]16 ∈ Z16.
Observe that φ([a]16) = [3]a17.
Hence, there exists [a]16 ∈ Z16 such that φ([a]16) = [3]a17.
Therefore φ is surjective.
Hence, φ is a bijective homomorphism, so φ is an isomorphism.

Exercise 10. (Z∗
5, ∗) ∼= (Z4,+).

Solution. We can write out the multiplication tables for each group.

Proof. Observe that Z∗
5 = {[1], [2], [3], [4]}.

Observe that |Z∗
5| = φ(5) = 5− 1 = 4.

We prove [2] ∈ Z∗
5 has order 4.

Observe that [2]1 = [2] 6= [1]5.
Observe that [2]2 = [4] 6= [1]5.
Observe that [2]3 = [8] = [3] 6= [1]5.
Observe that [2]4 = [16] = [1]5.
Hence, the order of [2] is 4.
The order of [2] is the order of the cyclic subgroup generated by [2].
Let H be the cyclic subgroup of Z∗

5 generated by [2].
Then H < Z∗

5 and |H| = 4.
Since H ⊂ Z∗

5 and |H| = 4 = |Z∗
5| and Z∗

5 is finite, then H = Z∗
5.

Hence, Z∗
5 is cyclic.

Every cyclic group of finite order n is isomorphic to Zn, so every cyclic group
of finite order 4 is isomorphic to Z4.

In particular, Z∗
5 is isomorphic to Z4.

Exercise 11. For prime p, (Z∗
p, ∗) ∼= (Zp−1,+).
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Solution. We can try some examples like the group of units Z∗
5 and verify

computationally via Cayley table or construct an explicit isomorphism to show
that it is isomorphic to the cyclic group Z4.

We can then generalize this argument.
To do this, we need to show in general why these groups are isomorphic.
After thinking about this, we can use Euler’s theorem to show that there

exists an element a ∈ Z∗
p such that |a| = p− 1 which shows that there exists a

cyclic subgroup of Z∗
p that is isomorphic to Zp−1.

Since Z∗
p is a finite group and there exists a subgroup that has the same

number of elements, then this subgroup must equal the group itself.
So, we essentially must show that Z∗

p is a cyclic group because every cyclic
group of finite order p− 1 must be isomorphic to Zp−1.

Proof. Let p be prime. Then p > 1. Let (Z∗
p, ∗) be the group of units of Zp. Let

(Zp−1,+) be the cyclic group of integers modulo p− 1.
Observe that Z∗

p = {[1], [2], ..., [p− 1]}.
Observe that |Z∗

p| = φ(p) = p − 1 = |Zp−1|. Hence, both groups have finite
order p− 1.

We prove Z∗
p is cyclic. Thus, we shall prove there exists an element [a] ∈ Z∗

p

such that Z∗
p = 〈[a]〉.

Let [a] be some element of Z∗
p such that |[a]| = k. The order of an element

in a finite group is finite and so 1 ≤ k ≤ p − 1, since the order of Z∗
p is p − 1.

Then k is the least positive integer such that [a]k = [1]p. Since Z∗
p is a finite

group of order p − 1, then by a corollary to Lagrange’s theorem, [x]p−1 = [1]p
for all [x] ∈ Z∗

p. In particular, [a]p−1 = [1]p. Since the order of [a]p is k, then
[a]p−1 = [1]p iff k|p− 1. Hence, k|p− 1.

We prove k = p− 1.
Let H be the cyclic
Either p = 2 or p > 2.

Exercise 12. Let θ1 : G1 → H1 and θ2 : G2 → H2 be group isomorphisms.
Define φ : G1 × G2 → H1 × H2 by φ(x1, x2) = (θ1(x1), θ2(x2)) for all

(x1, x2) ∈ G1 ×G2.
Then φ is a group isomorphism.

Proof. Let (x1, x2) ∈ G1 ×G2.
Then θ1(x1) ∈ H1 and θ2(x2) ∈ H2.
Therefore, (θ1(x1), θ2(x2)) ∈ H1 ×H2.
Hence, φ is a function.
Let (x1, x2) and (x3, x4) be arbitrary elements of G1 ×G2.
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Then

φ((x1, x2)(x3, x4)) = φ(x1x3, x2x4)

= (θ1(x1x3), θ2(x2x4))

= (θ1(x1)θ1(x3), θ2(x2)θ2(x4))

= (θ1(x1), θ2(x2))(θ1(x3), θ2(x4))

= φ(x1, x2)φ(x3, x4).

Therefore, φ is a group homomorphism.

Suppose φ(x1, x2) = φ(x3, x4).
Then (θ1(x1), θ2(x2)) = (θ1(x3), θ2(x4)).
Thus, θ1(x1) = θ1(x3) and θ2(x2) = θ2(x4).
Since θ1 is injective, then x1 = x3.
Since θ2 is injective, then x2 = x4.
Hence, (x1, x2) = (x3, x4).
Therefore, φ is injective.

Let (h1, h2) ∈ H1 ×H2.
Then h1 ∈ H1 and h2 ∈ H2.
Since θ1 is surjective, then there exists g1 ∈ G1 such that θ1(g1) = h1.
Since θ2 is surjective, then there exists g2 ∈ G1 such that θ2(g2) = h2.
Hence, there exists (g1, g2) ∈ G1×G2 such that φ(g1, g2) = (θ1(g1), θ2(g2)) =

(h1, h2).
Therefore, φ is surjective.

Thus, φ is bijective, so φ is a bijective homomorphism.
Therefore, φ is an isomorphism.

Exercise 13. Prove Z6 × Z10
∼= Z∗

7 × Z∗
11.

Solution. Both groups are direct products of order 60 and are not cyclic.
Observe that Z6 is a cyclic group of order 6 with generator [1]6. Hence, Z6

is abelian.
Observe that Z10 is a cyclic group of order 10 with generator [1]10. Hence,

Z10 is abelian.
Thus, the direct product Z6 × Z10 is abelian.
Observe that Z6 × Z10 = {([a], [b]) : [a] ∈ Z6, [b] ∈ Z10} = {([a], [b]) : 0 ≤

a < 6, 0 ≤ b < 10}.
Observe that |Z∗

7| = φ(7) = 6. The group Z∗
7 has element [3]7 of order 6, so

[3] is a generator of Z∗
7. Hence, Z∗

7 is cyclic and Z∗
7 = 〈[3]〉 = {[3]k : k ∈ Z} =

{[3]k : 0 ≤ k < 6}. Thus, Z∗
7 is abelian and Z∗

7
∼= Z6.

Observe that |Z∗
11| = φ(11) = 10. The group Z∗

11 has element [2]11 of order
10, so [2] is a generator of Z∗

11. Hence, Z∗
11 is cyclic and Z∗

11 = 〈[2]〉 = {[2]m :
m ∈ Z} = {[2]m : 0 ≤ m < 10}. Thus, Z∗

11 is abelian and Z∗
11
∼= Z10.
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Since Z∗
7 and Z∗

11 are abelian, then Z∗
7 × Z∗

11 is abelian.
Observe that Z∗

7 × Z∗
11 = {([a], [b]) : [a] ∈ Z∗

7, [b] ∈ Z∗
11} = {([3]k, [2]m) : 0 ≤

k < 6, 0 ≤ m < 10}.

Proof. Define θ1 : Z6 → Z∗
7 by θ1([a]) = [3]a for all [a] ∈ Z6.

Define θ2 : Z10 → Z∗
11 by θ2([b]) = [2]b for all [b] ∈ Z10.

Define φ : Z6 × Z10 → Z∗
7 × Z∗

11 by φ([a], [b]) = ([3]a, [2]b) for all ([a], [b]) ∈
Z6 × Z10.

To prove φ is an isomorphism, we must prove θ1 and θ2 are group isomor-
phisms.

We first prove θ1 is a group isomorphism.
Clearly, θ1 is a binary relation from Z6 to Z∗

7.
Let [a]6, [b]6 ∈ Z6 such that [a] = [b]. Then a ≡ b (mod 6). Since the order of

[3]7 is 6, then [3]a = [3]b iff a ≡ b (mod 6). Thus, [3]a = [3]b, so θ1([a]) = θ1([b]).
Hence, θ1 is well defined, so θ1 is a function.

Let [a]6, [b]6 ∈ Z6.
Then

θ1([a]6 + [b]6) = θ1([a+ b]6)

= [3]a+b7

= [3]a[3]b

= θ1([a]6)θ1([b]6).

Therefore, θ1 is a homomorphism.

Suppose θ1([a]) = θ1([b]).
Then [3]a = [3]b.
Since the order of [3]7 is 6, then [3]a = [3]b iff a ≡ b (mod 6).
Thus, [a] ≡ [b] (mod 6).
Since 0 ≤ a, b < 6, then this implies a = b.
Therefore, θ1 is injective.

Suppose [3]k is an element of Z∗
7.

Then k is an integer, so [k] ∈ Z6.
Observe that θ1([k]) = [3]k.
Therefore, θ1 is surjective.
Hence, θ1 is a bijective homomorphism, so θ1 is an isomorphism.

We next prove θ2 is a group isomorphism.
Clearly, θ2 is a binary relation from Z10 to Z∗

11.
Let [a]10, [b]10 ∈ Z10 such that [a] = [b]. Then a ≡ b (mod 10). Since the

order of [2]11 is 10, then [2]a = [2]b iff a ≡ b (mod 10). Thus, [2]a = [2]b, so
θ2([a]) = θ2([b]). Hence, θ2 is well defined, so θ2 is a function.

Let [a]10, [b]10 ∈ Z10.
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Then

θ2([a]10 + [b]10) = θ2([a+ b]10)

= [2]a+b11

= [2]a[2]b

= θ2([a]10)θ2([b]10).

Therefore, θ2 is a homomorphism.

Suppose θ2([a]) = θ2([b]).
Then [2]a = [2]b.
Since the order of [2]11 is 10, then [2]a = [2]b iff a ≡ b (mod 10).
Thus, a ≡ b (mod 10).
Since 0 ≤ a, b < 10, then this implies a = b.
Therefore, θ2 is injective.

Suppose [2]k is an element of Z∗
11.

Then k is an integer, so [k] ∈ Z10.
Observe that θ2([k]) = [2]k.
Therefore, θ2 is surjective.
Hence, θ2 is a bijective homomorphism, so θ2 is an isomorphism.
Since θ1 and θ2 are isomorphisms, then φ is an isomorphism.

Exercise 14. Define φ : Z30 × Z2 → Z10 × Z6 by φ([x], [y]) = ([x], [4x+ 3y]).
Prove φ is well defined and then prove φ is a group isomorphism.

Proof. Let ([a1], [b1]) and ([a2], [b2]) be arbitrary elements of Z30×Z2 such that
([a1], [b1]) = ([a2], [b2]).

Then [a1]30 = [a2]30 and [b1]2 = [b2]2.
Since [a1]30 = [a2]30, then a1 ≡ a2 (mod 30), so 30|(a1 − a2). Hence, there

exists an integer k such that a1 − a2 = 30k. Since [b1]2 = [b2]2, then b1 ≡ b2
(mod 2), so 2|(b1−b2). Hence, there exists an integer m such that b1−b2 = 2m.

Thus,

(4a1 + 3b1)− (4a2 + 3b2) = (4a1 − 4a2) + (3b1 − 3b2)

= 4(a1 − a2) + 3(b1 − b2)

= 4(30k) + 3(2m)

= 120k + 6m

= 6(20k +m).

Hence, 6 divides (4a1 + 3b1)− (4a2 + 3b2), so 4a1 + 3b1 ≡ 4a2 + 3b2 (mod 6).
Thus, [4a1 + 3b1]6 = [4a2 + 3b2]6.
Since a1 − a2 = 30k = 10(3k), then 10 divides a1 − a2. Hence, a1 ≡ a2

(mod 10), so [a1]10 = [a2]10.
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Thus, ([a1]10, [4a1 + 3b1]6) = ([a2]10, [4a2 + 3b2]6). Hence, φ([a1]30, [b1]2) =
φ([a2]30, [b2]2). Therefore, φ is well defined, so φ is a function.

Let ([a1], [b1]) and ([a2], [b2]]) be arbitrary elements of Z30 × Z2.
Then

φ(([a1], [b1]) + ([a2], [b2])) = φ(([a1] + [a2], [b1] + [b2]))

= φ([a1 + a2], [b1 + b2])

= ([a1 + a2], [4(a1 + a2) + 3(b1 + b2)])

= ([a1 + a2], [(4a1 + 3b1) + (4a2 + 3b2)])

= ([a1] + [a2], [4a1 + 3b1] + [4a2 + 3b2])

= ([a1], [4a1 + 3b1]) + ([a2], [4a2 + 3b2])

= φ([a1], [b1]) + φ([a2], [b2]).

Therefore, φ is a homomorphism.
Suppose φ([a1]30, [b1]2) = φ([a2]30, [b2]2). Then ([a1]10, [4a1+3b1]6) = ([a2]10, [4a2+

3b2]6). Thus, [a1]10 = [a2]10 and [4a1 + 3b1]6 = [4a2 + 3b2]6. Hence, a1 ≡ a2
(mod 10) and 4a1+3b1 ≡ 4a2+3b2 (mod 6). Thus, 10|a1−a2 and (4a1+3b1)−
(4a2 + 3b2) = 6m for some integer m. Therefore, a1−a2 = 10k for some integer
k and 4(a1 − a2) + 3(b1 − b2) = 6m.

Substituting, we obtain 4(10k)+3(b1−b2) = 6m, so 3(b1−b2) = 6m−40k =
2(3m− 20k). Since 3m− 20k is an integer, then this implies 2|3(b1 − b2). Since
gcd(2, 3) = 1, then this implies 2|b1 − b2. Hence, b1 − b2 = 2n for some integer
n. Thus, we have 4(a1−a2)+3(2n) = 6m, so 4(a1−a2) = 6m−6n = 6(m−n).
Hence, 2(a1 − a2) = 3(m − n). Since m − n is an integer, then this implies
3|2(a1 − a2). Since gcd(3, 2) = 1, then 3|a1 − a2.

Since 3|a1−a2 and 10|a1−a2 and gcd(3, 10) = 1, then 3∗10 divides a1−a2.
Therefore, 30|a1 − a2, so a1 ≡ a2 (mod 30). Hence, [a1]30 = [a2]30.

Since 2|b1 − b2, then b1 ≡ b2 (mod 2), so [b1]2 = [b2]2.
Thus, ([a1]30, [b1]2) = ([a2]30, [b2]2).
Hence, φ([a1]30, [b1]2) = φ([a2]30, [b2]2) implies ([a1]30, [b1]2) = ([a2]30, [b2]2),

so φ is injective.
Since Z30×Z2 and Z10×Z6 are finite and |Z30×Z2| = 60 = |Z10×Z6| and

φ is injective, then φ is surjective.
Thus, φ is a bijective homomorphism, so φ is an isomorphism.

Proof. An alternate proof that φ is injective is to prove ker(φ) = {e}.
Since φ is a group homomorphism, let ker(φ) be the kernel of φ.
Suppose ([x], [y]) ∈ ker(φ). Then ([x]30, [y]2) ∈ Z30 × Z2 and φ([x]30, [y]2) =

([0]10, [0]6). Thus, ([x]10, [4x + 3y]6) = ([0]10, [0]6). Hence, [x]10 = [0]10 and
[4x+ 3y]6 = [0]6. Thus, x ≡ 0 (mod 10) and 4x+ 3y ≡ 0 (mod 6). Hence, 10|x
and 6|4x + 3y. Therefore, x = 10k for some integer k and 4x + 3y = 6m for
some integer m.

Substituting, we obtain 4(10k)+3y = 6m, so 3y = 6m−40k = 2(3m−20k).
Since 3m − 20k is an integer, then this implies 2|3y. Since gcd(2, 3) = 1, then
2|y. Hence, y = 2n for some integer n.
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Substituting, we obtain 4x + 3(2n) = 6m, so 4x = 6m − 6n = 6(m − n).
Thus, 2x = 3(m− n). Since m− n is an integer, then 3|2x. Since gcd(3, 2) = 1,
then 3|x.

Since 3|x and 10|x and gcd(3, 10) = 1, then this implies 3 ∗ 10 divides x.
Hence, 30|x, so x ≡ 0 (mod 30). Therefore, [x]30 = [0]30.

Since 2|y, then y ≡ 0 (mod 2), so [y]2 = [0]2. Thus, ([x]30, [y]2) = ([0]30, [0]2).
Hence, ([x], [y]) ∈ ker(φ) implies ([x], [y]) ∈ {([0]30, [0]2)}, so ker(φ) ⊂

{([0]30, [0]2)}. Since φ is a group homomorphism, then ([0]30, [0]2) ∈ ker(φ),
so {([0]30, [0]2)} ⊂ ker(φ).

Therefore, ker(φ) ⊂ {([0]30, [0]2)} and {([0]30, [0]2)} ⊂ ker(φ), so ker(φ) =
{([0]30, [0]2)}. Since ker(φ) = {([0]30, [0]2)} iff φ is injective, then φ is injective.

Exercise 15. Let (Z,+) the additive group of integers.
The function f : Z → Z defined by f(n) = −n for all n ∈ Z is an automor-

phism.

Proof. Let a, b ∈ Z such that f(a) = f(b).
Then −a = f(a) = f(b) = −b, so −a = −b.
Therefore, a = b, so f is injective.

Let n ∈ Z.
Then −n ∈ Z and f(−n) = −(−n) = n.
Since −n ∈ Z and f(−n) = n, then f is surjective.

Since f is injective and surjective, then f is bijective.

Let r, s ∈ Z.
Then f(r+ s) = −(r+ s) = −r− s = f(r)− s = f(r) + (−s) = f(r) + f(s),

so f is a homomorphism.

Since f is bijective and f is a homomorphism, then f is an isomorphism.
Therefore, f : Z→ Z is an automorphism.

Exercise 16. The map (a, b)→ (b, a) on the group (R2,+) is an automorphism.

Proof. Let f : R2 → R2 be defined by f(a, b) = (b, a) for all (a, b) ∈ R2.
Let (a, b) ∈ R2 and (c, d) ∈ R2 such that f(a, b) = f(c, d).
Then (b, a) = f(a, b) = f(c, d) = (d, c), so b = d and a = c.
Therefore, (a, b) = (c, d), so f is injective.

Let (x, y) ∈ R2.
Then x ∈ R and y ∈ R, so (y, x) ∈ R2 and f(y, x) = (x, y).
Since there is some (y, x) ∈ R2 such that f(y, x) = (x, y), then f is surjective.

Since f is injective and surjective, then f is bijective.
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Let (a, b) ∈ R2 and (c, d) ∈ R2.
Observe that

f((a, b) + (c, d)) = f(a+ c, b+ d)

= (b+ d, a+ c)

= (b, a) + (d, c)

= f(a, b) + f(c, d).

Therefore, f is a homomorphism.

Since f is bijective and f is a homomorphism, then f is an isomorphism, so
f : R2 → R2 is an automorphism.

Exercise 17. A 7→ BAB−1 is an automorphism of SL2(R) for all B ∈ GL2(R).

Solution. Let B be an arbitrary element of GL2(R).
Let φ : SL2(R)→ SL2(R) be defined by φ(A) = BAB−1 for all A ∈ SL2(R).
To prove φ is an automorphism of SL2(R), we must prove φ is an isomor-

phism.
Thus, we must prove:
1. φ is a bijective.
2. φ is a homomorphism.

Proof. Let B be an arbitrary element of GL2(R).
Let φ : SL2(R)→ SL2(R) be defined by φ(A) = BAB−1 for all A ∈ SL2(R).
Let A ∈ SL2(R).
Then A ∈ GL2(R) and det(A) = 1 and φ(A) = BAB−1.
Since matrix multiplication is a binary operation on GL2(R), then BAB−1 ∈

GL2(R) and is unique.
Observe that

det(BAB−1) = det(B) det(A) det(B−1)

= det(B) ∗ 1 ∗ det(B−1)

= det(B) ∗ det(B−1)

= det(BB−1)

= det(I)

= 1.

Since BAB−1 ∈ GL2(R) and det(BAB−1) = 1, then BAB−1 ∈ SL2(R).
Since BAB−1 ∈ SL2(R) and is unique, then φ is a function.
Let X,Y ∈ SL2(R).
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Then

φ(XY ) = B(XY )B−1

= (BX)(Y B−1)

= (BX)(B−1B)(Y B−1)

= (BXB−1)(BY B−1)

= φ(X)φ(Y ).

Thus, φ is a homomorphism.

Suppose φ(X) = φ(Y ).
Then BXB−1 = BY B−1.
By the right cancellation law, we have BX = BY .
By the left cancellation law, we have X = Y .
Therefore, φ(X) = φ(Y ) implies X = Y , so φ is injective.

Let Y be an arbitrary element of SL2(R).
Then Y ∈ GL2(R) and det(Y ) = 1.
Let X = B−1Y B.
By closure of GL2(R), X ∈ GL2(R).
Observe that

det(X) = det(B−1Y B)

= det(B−1) det(Y ) det(B)

= det(B−1) ∗ 1 ∗ det(B)

= det(B−1) det(B)

= det(B−1B)

= det(I)

= 1.

Since X ∈ GL2(R) and det(X) = 1, then X ∈ SL2(R)
Observe that

φ(X) = φ(B−1Y B)

= B(B−1Y B)B−1

= (BB−1)Y (BB−1)

= Y.

Thus, there exists X ∈ SL2(R) such that φ(X) = Y .
Hence, φ is surjective.
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Thus, φ is a bijective homomorphism, so φ : SL2(R)→ SL2(R) is an isomor-
phism.

Therefore, φ is an automorphism of SL2(R).

Exercise 18. Let α be a fixed element of Sn.
Let φα : Sn → Sn be defined by φα(σ) = ασα−1 for all σ ∈ Sn.
Then φ is an automorphism of Sn.

Proof. Clearly, φα is a function.
Let σ, τ ∈ Sn such that φα(σ) = φα(τ).
Then ασα−1 = ατα−1.
By left cancellation law, σα−1 = τα−1.
By right cancellation law, σ = τ .
Hence, φα(σ) = φα(τ) implies σ = τ , so φα is injective.

Let γ ∈ Sn.
Let σ = α−1γα.
Then by closure of Sn, σ ∈ Sn.
Observe that

φα(σ) = ασα−1

= α(α−1γα)α−1

= (αα−1)γ(αα−1)

= γ.

Hence, there exists σ ∈ Sn such that φα(σ) = γ, so φα is surjective.
Thus, φα is bijective.

Let σ, τ ∈ Sn.
Observe that

φα(στ) = α(στ)α−1

= (ασ)(τα−1)

= (ασ)(α−1α)(τα−1)

= (ασα−1)(ατα−1)

= φα(σ)φα(τ).

Hence, φα is a homomorphism.
Thus, φα is a bijective homomorphism, so φα is an isomorphism.
Hence, φα is an automorphism of Sn.

Exercise 19. Let φ : Z17∗ → Z17∗ be defined by φ(x) = x−1.
Then φ is an automorphism of Z17∗ .
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Proof. Since Z17∗ is an abelian group, then φ is a group homomorphism.
Observe that φ(φ(x)) = φ(x−1) = (x−1)−1 = x for all x ∈ Z17∗ .
Thus, φφ = id, where id is the identity function.
Hence, φ−1 = φ, so φ is bijective.
Therefore, φ is a bijective homomorphism, so φ : Z17∗ → Z17∗ is an isomor-

phism.
Thus, φ is an automorphism of Z17∗ .

Direct Products

Exercise 20. Show that Z5×Z3 is a cyclic group and list all of its generators.

Solution. A direct product of groups is a group. Since Z5 and Z3 are groups,
then Z5 × Z3 is a group. The order of Z5 × Z3 is |Z5 × Z3| = |Z5| ∗ |Z3| =
5 ∗ 3 = 15. Since gcd(5, 3) = 1 and Z5 × Z3

∼= Z15 iff gcd(5, 3) = 1, then
Z5×Z3

∼= Z15. Hence, Z5×Z3 is isomorphic to Z15. Since Z15 is a cyclic group
and isomorphisms preserve cyclic property of groups, then Z5 × Z3 is cyclic.
Hence, Z5 × Z3 has at least one generator.

Let (a, b) ∈ Z5×Z3 be a generator of Z5×Z3. Then a ∈ Z5 and b ∈ Z3 and
15 = |(a, b)| = lcm(|a|, |b|). Since Z5 is a group of prime order, then any non
identity element of Z5 is a generator of Z5 and has order 5. Thus, a ∈ {1, 2, 3, 4}.

Since Z3 is a group of prime order, then any non identity element of Z3 is a
generator of Z3 and has order 3.

Thus, b ∈ {1, 2}.
Therefore, the generators of Z5 × Z3 are :
{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}.
Hence, there are 4 ∗ 2 = 8 generators of Z5 × Z3.
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