Group Theory Notes

Jason Sass

July 24, 2023

Binary Operations

Definition 1. binary operation on a set

A binary operation on a set S is a function from $S \times S$ to S.
Therefore $*$ is a binary operation on S iff $*: S \times S \rightarrow S$ is a function.
Let S be a set.
Let $*$ be a binary operation on S.
Then $*: S \times S \rightarrow S$ is a function.
Let $(a, b) \in S \times S$.
The image of (a, b) under $*$ is denoted $a * b$.
Therefore $(a, b) \mapsto a * b$ for each $(a, b) \in S \times S$.
Thus, $*$ assigns the unique element $a * b \in S$ to each ordered pair of elements $(a, b) \in S \times S$.

Hence, $*$ assigns the unique element $a * b \in S$ for every $a, b \in S$.
Therefore, a binary operation on a set S is a rule for combining two elements of S to produce a third element of S.

Definition 2. closure of a set
Let $*$ be a binary operation defined on a set S.
Then S is closed under $* \operatorname{iff}(\forall a, b \in S)(a * b \in S)$.
Therefore, S is not closed under $* \operatorname{iff}(\exists a, b \in S)(a * b \notin S)$.
Theorem 3. Properties of binary operations
Let * be a binary operation on a set S. Then

1. Closure: S is closed under *.
2. Well defined: $(\forall a, b, c, d \in S)(a=c \wedge b=d \rightarrow a * b=c * d)$. Law of Substitution.
3. Left multiply $(\forall a, b, c \in S)(a=b \rightarrow c * a=c * b)$.
4. Right multiply $(\forall a, b, c \in S)(a=b \rightarrow a * c=b * c)$.

Let $*: S \times S \rightarrow S$ be a binary relation from $S \times S$ to S defined by $a * b$ for all $(a, b) \in S \times S$.

Then $*$ is a binary operation on S iff $*: S \times S \rightarrow S$ is well defined.

Therefore, $*$ is a binary operation on S iff

1. Existence: $a * b \in S$ for every $(a, b) \in S \times S$.

This is the same as:
Closure: $(\forall a, b \in S)(a * b \in S)$.
2. Uniqueness: $a * b$ is unique for every $(a, b) \in S \times S$.

This is the same as: $(\forall a, b \in S)(a * b$ is unique $)$.
If $(a, b),(c, d) \in S \times S$ such that $(a, b)=(c, d)$, then $a=c$ and $b=d$, so $a * b=c * d$.

Definition 4. binary algebraic structure

A binary structure $(S, *)$ is a nonempty set S with a binary operation $*$ defined on S.

Let $(S, *)$ be a binary structure.
Since $*$ is a binary operation on set S, then S is closed under $*$.
Therefore, a binary structure is closed under its binary operation.
Definition 5. Atttributes of binary operations
Let $*$ be a binary operation defined over a set S.

1. $*$ is associative iff $(a * b) * c=a *(b * c)$ for all $a, b, c \in S$.

2 . $*$ is commutative iff $a * b=b * a$ for all $a, b \in S$.
Let $*$ be a binary operation defined over a set S.
The binary operation $*$ is not associative iff $(\exists, a, b, c \in S)$ such that $(a * b) c \neq$ $a *(b * c)$.

The binary operation $*$ is not commutative iff $(\exists a, b \in S)$ such that $a * b \neq$ $b * a$.

Let S be finite, $|S|=n, n \in \mathbb{Z}^{+}$.
Since $\exists n^{n^{2}}$ binary operations on S, then $\exists n^{n^{2}}$ finite binary structures.
Since $\exists n^{n(n+1) / 2}$ commutative binary operations on S, then $\exists n^{n(n+1) / 2}$ finite commutative binary structures.

Let S be a finite set with $|S|=n, n \in \mathbb{Z}^{+}$.
Then there are $n^{\left(n^{2}\right)}$ binary operations on S.
There are $n^{n(n+1) / 2}$ commutative binary operations on S.
How many associative binary operations exist?

Definition 6. left and right identity elements

Let $(S, *)$ be a binary structure.
An element $e \in S$ is a left identity with respect to $* \operatorname{iff}(\forall a \in S)(e * a=a)$.
An element $e \in S$ is a right identity with respect to $* \operatorname{iff}(\forall a \in S)(a * e=a)$.

Definition 7. identity element

Let $(S, *)$ be a binary structure.
An element $e \in S$ is an identity with respect to $* \operatorname{iff}(\forall a \in S)(e * a=a * e=$ $a)$.

Proposition 8. If a binary structure has an identity element, then the identity element is unique.

Let $(S, *)$ be a binary structure with identity $e \in S$.
Then e is unique.

Definition 9. left and right inverse elements

Let $(S, *)$ be a binary structure with identity $e \in S$.
Let $a \in S$.
An element $b \in S$ is a left inverse of a iff $b * a=e$.
An element $b \in S$ is a right inverse of a iff $a * b=e$.

Definition 10. inverse element

Let $(S, *)$ be a binary structure with identity $e \in S$.
Let $a \in S$.
Then a is invertible iff there exists $b \in S$ such that $a * b=b * a=e$.
Therefore a is invertible iff $(\exists b \in S)(a * b=b * a=e)$.
Let $(S, *)$ be a binary structure with identity $e \in S$.
Let $a \in S$.
We say that a is invertible iff a has an inverse in S.
Therefore, a is invertible iff $(\exists b \in S)(a * b=b * a=e)$ and we say that b is an inverse of a.

Proposition 11. Let $(S, *)$ be an associative binary structure with identity.
Then

1. The inverse of every invertible element of S is unique.
2. Let $a \in S$.

If a is invertible, then $\left(a^{-1}\right)^{-1}=a$. inverse of an inverse
3. Let $a, b \in S$.

If a and b are invertible, then $(a * b)^{-1}=b^{-1} * a^{-1}$. inverse of a product
Let $(S, *)$ be an associative binary structure with identity e.
Let a be an invertible element of S.
Then $a \in S$ and the inverse of a is unique.
The inverse of a is denoted a^{-1}.
Therefore, $a^{-1} \in S$ and $a * a^{-1}=a^{-1} * a=e$.

Definition 12. left and right cancellation laws

Let $(S, *)$ be a binary structure.
The left cancellation law holds iff $c * a=c * b$ implies $a=b$ for all $a, b, c \in S$.

The right cancellation law holds iff $a * c=b * c$ implies $a=b$ for all $a, b, c \in S$.

Proposition 13. Let $(S, *)$ be an associative binary structure with a left identity such that each element has a left inverse.

Then the left cancellation law holds.

Let $(S, *)$ be an associative binary structure with a left identity such that each element has a left inverse.

Then the left cancellation law holds, so $c * a=c * b$ implies $a=b$ for all $a, b, c \in S$.

Proposition 14. Let $(S, *)$ be an associative binary structure with a right identity such that each element has a right inverse.

Then the right cancellation law holds.
Let $(S, *)$ be an associative binary structure with a right identity such that each element has a right inverse.

Then the right cancellation law holds, so $a * c=b * c$ implies $a=b$ for all $a, b, c \in S$.

Definition 15. idempotent element

Let $(S, *)$ be a binary structure.
An element $a \in S$ is an idempotent with respect to $*$ iff $a * a=a$.
Definition 16. zero element
Let $(S, *)$ be a binary structure.
An element $z \in S$ is a zero with respect to $* \operatorname{iff}(\forall x \in S)(z * x=x * z=z)$.
Proposition 17. If a binary structure has a zero element, then the zero element is unique.

Let $(S, *)$ be a binary structure with a zero element $z \in S$.
Then z is unique, so there is exactly one element of S that is a zero.

Groups

A group is an algebraic structure upon which a single binary operation is defined.
Groups describe symmetries of objects.
A symmetry is an undetectable motion.
An object is symmetric if it has symmetries.

Definition 18. Group

Let G be a set.
Define binary operation $*: G \times G \rightarrow G$ by $a * b \in G$ for all $a, b \in G$.
A group $(G, *)$ is a set G with a binary operation $*$ defined on G such that the following axioms hold:

G1. $*$ is associative.
$(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
G2. There is an identity element for $*$.
$(\exists e \in G)(\forall a \in G)(e * a=a * e=a)$.
G3. Each element has an inverse for $*$. $(\forall a \in G)(\exists b \in G)(a * b=b * a=e)$.

Let $(G, *)$ be a group.
Since $*$ is a binary operation on G, then G is closed under $*$.
Since $(G, *)$ is a group and G is closed under $*$, then G satisfies the following axioms:

G1 Closure $a * b \in G$ for all $a, b \in G$.
G2. Associative $(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
G3. Identity $(\exists e \in G)(\forall a \in G)(e * a=a * e=a)$.
G4. Inverses $(\forall a \in G)(\exists b \in G)(a * b=b * a=e)$.

Since there exists an identity element in a group, then G contains at least one element.

Therefore, any group contains at least one element.

By axiom $G 4$, every element of a group has an inverse, so every element of a group is invertible.

Theorem 19. Uniqueness of group identity
The identity element of a group is unique.
Let $(G, *)$ be a group with identity $e \in G$.
Then e is unique, so there is exactly one element of G that is identity.

Let (G, \cdot) be a multiplicative group with identity $e \in G$.
Then e is unique and $e a=a e=a$ for all $a \in G$.

Let $(G,+)$ be an additive group with identity $0 \in G$.
Then 0 is unique and $0+a=a+0=a$ for all $a \in G$.

Theorem 20. Uniqueness of group inverses

The inverse of each element in a group is unique.
Let $(G, *)$ be a group with identity $e \in G$.
Let $a \in G$.
The inverse of a is unique and is denoted a^{-1}.
Hence, $a * a^{-1}=a^{-1} * a=e$.
Therefore, $a * a^{-1}=a^{-1} * a=e$ for all $a \in G$.

Let (G, \cdot) be a multiplicative group with identity $e \in G$.
The inverse of element $a \in G$ is $a^{-1} \in G$ and a^{-1} is unique and $a a^{-1}=$ $a^{-1} a=e$ for all $a \in G$.

Let $(G,+)$ be an additive group with identity $0 \in G$.
The inverse of element $a \in G$ is $-a \in G$ and $-a$ is unique and $a+(-a)=$ $(-a)+a=0$ for all $a \in G$.

Proposition 21. The identity element in a group is its own inverse.

Let $(G, *)$ be a group with identity $e \in G$.
Since the identity element is its own inverse, then $e^{-1}=e$.
Theorem 22. Group inverse properties
Let $(G, *)$ be a group. Then

1) $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$. inverse of an inverse
2) $(a * b)^{-1}=b^{-1} * a^{-1}$ for all $a, b \in G$. inverse of a product

Let (G, \cdot) be a multiplicative group.
Then $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$ and $(a b)^{-1}=b^{-1} a^{-1}$ for all $a, b \in G$.
Let $(G,+)$ be an additive group.
Then $-(-a)=a$ for all $a \in G$ and $-(a+b)=(-b)+(-a)$ for all $a, b \in G$.
Proposition 23. inverse of a finite product
Let $g_{1}, g_{2}, \ldots, g_{n}$ be elements of a group $(G, *)$.
Then $\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} g_{n-1}^{-1} \ldots g_{2}^{-1} g_{1}^{-1}$ for all $n \in \mathbb{Z}^{+}$.
Let (G, \cdot) be a multiplicative group.
Let $g_{1}, g_{2}, \ldots, g_{n}$ be elements of G.
Then $\left(g_{1} \cdot g_{2} \cdot \ldots \cdot g_{n}\right)^{-1}=g_{n}^{-1} \cdot g_{n-1}^{-1} \cdot \ldots \cdot g_{2}^{-1} \cdot g_{1}^{-1}$.

Let $(G,+)$ be an additive group.
Let $g_{1}, g_{2}, \ldots, g_{n}$ be elements of G.
Then $-\left(g_{1}+g_{2}+\ldots+g_{n}\right)=\left(-g_{n}\right)+\left(-g_{n-1}\right)+\ldots+\left(-g_{2}\right)+\left(-g_{1}\right)$.
Theorem 24. Group Cancellation Laws
Let $(G, *)$ be a group.
For all $a, b, c \in G$

1. if $c * a=c * b$ then $a=b$. (left cancellation law)
2. if $a * c=b * c$ then $a=b$. (right cancellation law)

Corollary 25. Unique solutions to linear equations
Let $(G, *)$ be a group.
Let $a, b \in G$.

1. The linear equation $a * x=b$ has a unique solution in G.
2. The linear equation $x * a=b$ has a unique solution in G.

Proposition 26. A group has exactly one idempotent element, the identity element.

Therefore, if $(G, *)$ is a group with identity $e \in G$, then $e * e=e$.
Proposition 27. left sided definition of a group
A group $(G, *)$ is a set G with a binary operation * defined on G such that the following axioms hold:

G1. * is associative.
$(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
G2. There is a left identity element for $*$.

$$
(\exists e \in G)(\forall a \in G)(e * a=a)
$$

G3. Each element has a left inverse for *.
$(\forall a \in G)(\exists b \in G)(b * a=e)$.
Let $(G, *)$ be an associative binary structure with a left identity such that each element has a left inverse.

Then $(G, *)$ is a group.
Proposition 28. right sided definition of a group
A group $(G, *)$ is a set G with a binary operation $*$ defined on G such that the following axioms hold:

G1. * is associative.
$(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
G2. There is a right identity element for $*$.
$(\exists e \in G)(\forall a \in G)(a * e=a)$.
G3. Each element has a right inverse for *.
$(\forall a \in G)(\exists b \in G)(a * b=e)$.
Let $(G, *)$ be an associative binary structure with a right identity such that each element has a right inverse.

Then $(G, *)$ is a group.

Definition 29. abelian group

A group $(G, *)$ is abelian iff $*$ is commutative.

multiplicative group notation

Let (G, \cdot) be a multiplicative group.
G1. Multiplication - is associative.
Therefore, $(a b) c=a(b c)$ for all $a, b, c \in G$.
G2. Let $e \in G$ be the multiplicative identity element.
Then $(\forall a \in G)(e a=a e=a)$.
G3. Each element a has a multiplicative inverse a^{-1}.
Therefore, $(\forall a \in G)\left(\exists a^{-1} \in G\right)\left(a a^{-1}=a^{-1} a=e\right)$.
Definition 30. powers of an element in a multiplicative group
Let (G, \cdot) be a multiplicative group with multiplicative identity $e \in G$.
Let $a \in G, n \in \mathbb{Z}$.
Define $a^{0}=e$.
Define $a^{n}=a^{n-1} \cdot a$ if $n>0$.
Define $a^{-n}=\left(a^{-1}\right)^{n}$ if $n>0$.
Let (G, \cdot) be a multiplicative group with multiplicative identity $e \in G$.
Let $a \in G$.

Observe that
$a^{1}=a^{1-1} \cdot a=a^{0} \cdot a=e \cdot a=a$.
Hence, $a^{1}=a$.
Therefore, $a^{1}=a$ for all $a \in G$.
This means a raised to the first power is a for all $a \in G$.
In particular, $e^{1}=e$ for multiplicative identity $e \in G$.

Observe that
$a^{-1}=\left(a^{-1}\right)^{1}=a^{-1}$.
Therefore, $a^{-1}=a^{-1}$.
This means a raised to the negative 1 power is the multiplicative inverse of a for all $a \in G$.

Observe that a^{n} is the product of a with itself n times when $n>0$.
Observe that a^{-n} is the product of a^{-1} with itself n times when $n>0$.
Lemma 31. Let (G, \cdot) be a multiplicative group.
Let $a \in G$.
Then $a^{n} \cdot a=a \cdot a^{n}$ for all $n \in \mathbb{Z}^{+}$.
Theorem 32. Laws of Exponents for a multiplicative group
Let (G, \cdot) be a multiplicative group.

1. If $a \in G$, then $a^{-n}=\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}$ for all $n \in \mathbb{Z}^{+}$.
2. If $a \in G$, then $a^{n} \in G$ for all $n \in \mathbb{Z}$.
3. If $a \in G$, then $a^{m} \cdot a^{n}=a^{m+n}$ for all $m, n \in \mathbb{Z}$.
4. If $a \in G$, then $\left(a^{m}\right)^{n}=a^{m n}$ for all $m, n \in \mathbb{Z}$.
5. If $a, b \in G$ and G is abelian, then $(a b)^{n}=a^{n} \cdot b^{n}$ for all $n \in \mathbb{Z}$.

Proposition 33. Let (G, \cdot) be a multiplicative group with multiplicative identity $e \in G$.
$(\forall n \in \mathbb{Z})\left(e^{n}=e\right)$.
Therefore, if (G, \cdot) is a multiplicative group with identity $e \in G$, then $e^{-1}=$ e.

additive group notation

Let $(G,+)$ be an additive group.
G1. Addition + is associative.
Therefore, $(a+b)+c=a+(b+c)$ for all $a, b, c \in G$.
G2. Let $0 \in G$ be the additive identity element.
Then $(\forall a \in G)(0+a=a+0=a)$.
G3. Each element a has an additive inverse $-a$.
Therefore, $(\forall a \in G)(\exists-a \in G)(a+(-a)=-a+a=0)$.

Definition 34. multiples of an element in an additive group
Let $(G,+)$ be an additive group with additive identity $0 \in G$.
Let $a \in G, n \in \mathbb{Z}$.
Define $0 a=0$.
Define $n a=(n-1) a+a$ if $n>0$.
Define $(-n) a=n(-a)$ if $n>0$.
Let $(G,+)$ be an additive group with additive identity $0 \in G$.
Let $a \in G$.

Observe that
$1 a=(1-1) a+a=0 a+a=0+a=a$.
Hence, $1 a=a$.
Therefore, $1 a=a$ for all $a \in G$.
This means positive 1 times a is a for all $a \in G$.
In particular, $1 \cdot 0=0$ for additive identity $0 \in G$.

Observe that
$(-1) a=1(-a)=-a$.
Therefore, $(-1) a=-a$.
This means negative 1 times a is the additive inverse of a for all $a \in G$.

Observe that $n a$ is the sum of a with itself n times when $n>0$.
Observe that $(-n) a$ is the sum of $-a$ with itself n times when $n>0$.
Lemma 35. Let $(G,+)$ be an additive group.
Let $a \in G$.
Then $n a+a=a+n a$ for all $n \in \mathbb{Z}^{+}$.
Theorem 36. Laws of Exponents for an additive group
Let $(G,+)$ be an additive group.

1. If $a \in G$, then $(-n) a=n(-a)=-(n a)$ for all $n \in \mathbb{Z}^{+}$.
2. If $a \in G$, then $n a \in G$ for all $n \in \mathbb{Z}$.
3. If $a \in G$, then $m a+n a=(m+n) a$.
4. If $a \in G$, then $n(m a)=(m n)$ a for all $m, n \in \mathbb{Z}$.
5. If $a, b \in G$ and G is abelian, then $n(a+b)=n a+n b$ for all $n \in \mathbb{Z}$.

Proposition 37. Let $(G,+)$ be an additive group with additive identity $0 \in G$.
$(\forall n \in \mathbb{Z})(n 0=0)$.
Therefore, if $(G,+)$ is an additive group with identity $0 \in G$, then $-0=0$.
Definition 38. Order of a Group
Let $(G, *)$ be a group.
The order of G, denoted $|G|$, is the cardinality of the set G.
If G is finite, then $|G|$ is the number of elements in G.
If G is not finite, then the group is of infinite order.
A finite group is a group whose order is finite.
An infinite group is a group whose order is infinite.

Finite Groups of small order

Let $(G, *)$ be a group.
Each $g \in G$ appears exactly once in each row and exactly once in each column of the group's Cayley table.

The order of a finite group with n elements is n.

Group of order 1 (trivial group) | $*$ | e |
| :--- | :--- |
| e | e |

A group of order 1 is abelian.
The trivial group is cyclic.
$G_{1}=\langle e\rangle$
subgroup of G_{1} is $\{e\}$

Group of order 2 | $*$ | e | a |
| :---: | :---: | :---: |
| | e | e |
| a | | |
| a | a | e |

A group of order 2 is abelian and cyclic and each element is its own inverse. $G_{2}=\langle a\rangle \cong\left(\mathbb{Z}_{2},+\right)$
subgroups of G_{2} are $G_{2},\{e\}$

Group of order 3 | $*$ | e | a | b |
| :---: | :---: | :---: | :---: |
| e | e | a | b |
| a | a | b | e |
| b | b | e | a |

A group of order 3 is abelian and cyclic and a and b are inverses of each other.
$G_{3}=\langle a\rangle=\langle b\rangle \cong\left(\mathbb{Z}_{3},+\right)$
subgroups of G_{3} are $G_{3},\{e\}$

Group of Order 4

A group of order 4 is abelian.

Klein 4-group $\left(V_{4}, *\right)$| $*$ | e | a | b | c |
| :---: | :---: | :---: | :---: | :---: |
| e | e | a | b | c |
| a | a | e | c | b |
| b | b | c | e | a |
| c | c | b | a | e |

Klein 4-group has property $\forall x \in V . x * x=e$.
The product of any two distinct elements other than e is the third such element.

Klein 4-group has exactly 3 nontrivial proper subgroups: $\{e, a\},\{e, b\},\{e, c\}$
Klein 4-group is not cyclic.
Klein 4-group is isomorphic to the group of symmetries of a rectangle.

$\left(\mathbb{Z}_{4},+\right)$| $*$ | e | a | b | c |
| :---: | :---: | :---: | :---: | :---: |
| e | e | a | b | c |
| a | a | b | c | e |
| b | b | c | e | a |
| c | c | e | a | b |

$\{0,2\}$ is the only nontrivial proper subgroup of $\left(\mathbb{Z}_{4},+\right)$.
$\left(\mathbb{Z}_{4},+\right)$ is cyclic.
$\mathbb{Z}_{4}=\langle 1\rangle=\langle 3\rangle$.

Subgroups

Definition 39. Subgroup

Let $(G, *)$ be a group.
A subgroup of G is a subset of G that is a group under the binary operation of G.

Therefore H is a subgroup of $(G, *)$ iff

1. $H \subset G$
2. $(H, *)$ is a group under the operation induced by G.
$H<G$ denotes that H is a subgroup of G.

Let $(G, *)$ be an arbitrary group with identity $e \in G$.
Since $G \subset G$ and $(G, *)$ is a group, then $G<G$.
Therefore every group is a subgroup of itself.

Since $e \in G$, then $\{e\} \subset G$, so $\{e\}<G$.
Therefore the trivial group is a subgroup of every group.

Let H be a subgroup of a group $(G, *)$ with identity $e \in G$.
Since $\{e\}$ is a subgroup of every group and H is a group, then $\{e\}$ is a subgroup of H.

Therefore, $\{e\} \subset H$, so $e \in H$.

A proper subgroup is a subgroup of G other than G.
Let $H<G$.
Then H is a proper subgroup of G iff $H \neq G$.
Theorem 40. Two-Step Subgroup Test
Let H be a nonempty subset of a group $(G, *)$.
Then $H<G$ iff

1. Closed under $*:(\forall a, b \in H)(a * b \in H)$.
2. Closed under inverses: $(\forall a \in H)\left(a^{-1} \in H\right)$.

Theorem 41. One-Step Subgroup Test
Let H be a nonempty subset of a group $(G, *)$.
Then $H<G$ iff

1. $(\forall a, b \in H)\left(a * b^{-1} \in H\right)$.

Theorem 42. Subgroup relation is transitive.
Let $(G, *)$ be a group.
If $H<K$ and $K<G$, then $H<G$.
Since every group is a subgroup of itself, then $G<G$, so the subgroup relation is reflexive.

Suppose $G<H$ and $H<G$.
Then $G \subset H$ and $H \subset G$, so $G=H$.
Therefore, the subgroup relation is anti-symmetric.

Since $<$ is reflexive, anti-symmetric, and transitive, then the subgroup relation is a partial order.

Therefore, we can create subgroup lattice diagrams of a given group.
Theorem 43. The intersection of subgroups is a subgroup.
The intersection of a family of subgroups is a subgroup.
Let $(G, *)$ be a group.
Let $\left\{H_{i}: i \in I\right\}$ be a collection of subgroups of G for some index set I.
Each H_{i} is a subgroup of G.
Let $H=\cap_{i \in I} H_{i}$.
Then $H<G$.

In particular, the intersection of any two subgroups is a subgroup.
Therefore, if $H<G$ and $K<G$, then $H \cap K<G$.

The union of subgroups is not necessarily a subgroup.

Cyclic Groups

Order of a group element

Definition 44. Order of an element

Let $(G, *)$ be a group with identity $e \in G$.
An element $a \in G$ has finite order iff $\left(\exists n \in \mathbb{Z}^{+}\right)\left(a^{n}=e\right)$.
The order of a, denoted $|a|$, is the smallest positive integer k such that $a^{k}=e$.

An element $a \in G$ has infinite order iff $\neg\left(\exists n \in \mathbb{Z}^{+}\right)\left(a^{n}=e\right)$.

Let G be a group with identity $e \in G$.
Let $a \in G$.
Either there exists a positive integer n such that $a^{n}=e$ or there does not exist a positive integer n such that $a^{n}=e$.

Hence, either a has finite order or a has infinite order.
Therefore, every element of a group has either finite order or infinite order.
Since $e^{1}=e$, then the order of the identity element of a group is 1 .

Let G be a group with identity $e \in G$.
Suppose $a \neq e$ has finite order n.
Then n is the least positive integer such that $a^{n}=e$.
If $n=1$, then $e=a^{n}=a^{1}=a$, so $a=e$.
But, $a \neq e$, so $n \neq 1$.
Hence, $n>1$.
Therefore, if $a \neq e$ has finite order n, then $n>1$.

If $(G,+)$ is an additive group with identity $0 \in G$, then
An element $a \in G$ has finite order iff $\left(\exists n \in \mathbb{Z}^{+}\right)(n a=0)$.
The order of a, denoted $|a|$, is the smallest positive integer k such that $k a=0$.

An element $a \in G$ has infinite order iff $\neg\left(\exists n \in \mathbb{Z}^{+}\right)(n a=0)$.
Theorem 45. Let $(G, *)$ be a group.
Let $a \in G$.
If $a^{s}=a^{t}$ and $s \neq t$ for some $s, t \in \mathbb{Z}$, then a has finite order.
Suppose a has infinite order.
Then a does not have finite order.
Hence, there does not exist distinct $s, t \in \mathbb{Z}$ such that $a^{s}=a^{t}$.
Therefore, $a^{s} \neq a^{t}$ for every distinct $s, t \in \mathbb{Z}$.
Consequently, all elements a^{k} are distinct, so every power of a is distinct.
Therefore, if a has infinite order, then every power of a is distinct.

Let $(G,+)$ be an additive group.
Let $a \in G$.
If $s a=t a$ and $s \neq t$ for some $s, t \in \mathbb{Z}$, then a has finite order.

Therefore, if a has infinite order, then every multiple of a is distinct.
Theorem 46. Let $(G, *)$ be a group with identity $e \in G$.
If $a \in G$ has finite order n, then $a^{k}=e$ iff $n \mid k$ for all $k \in \mathbb{Z}$.
Let $(G,+)$ be an additive group with identity $0 \in G$.
If $a \in G$ has finite order n, then $k a=0$ iff $n \mid k$ for all $k \in \mathbb{Z}$.
Corollary 47. Let $(G, *)$ be a group with identity $e \in G$.
If $a \in G$ has finite order n, then $a^{s}=a^{t}$ iff $s \equiv t(\bmod n)$ for all $s, t \in \mathbb{Z}$.

Let $(G,+)$ be an additive group with identity $0 \in G$.
If $a \in G$ has finite order n, then $s a=t a$ iff $s \equiv t(\bmod n)$ for all $s, t \in \mathbb{Z}$.
Theorem 48. Let $(G, *)$ be a group with identity $e \in G$.
If $a \in G$ has finite order n, then the order of a^{s} is $\frac{n}{\operatorname{gcd}(s, n)}$ for all $s \in \mathbb{Z}$.
Let $(G,+)$ be an additive group with identity $0 \in G$.
If $a \in G$ has finite order n, then the order of $s a$ is $\frac{n}{\operatorname{gcd}(s, n)}$ for all $s \in \mathbb{Z}$.
Corollary 49. Let $(G, *)$ be a group.
Let $a \in G$ have order n.
Let $s \in \mathbb{Z}$.
If s and n are relatively prime, then a^{s} has order n.
Corollary 50. Let $(G, *)$ be a group.
Let $a \in G$ have order n.
Let $s \in \mathbb{Z}$.
If s divides n, then a^{s} has order $\frac{n}{s}$.
Proposition 51. The order of a is the same as the order of a^{-1}.
Let $(G, *)$ be a group.
Let $a \in G$.
Then $|a|=\left|a^{-1}\right|$.
Therefore, the order of an element is the order of its inverse.
Proposition 52. The order of $a b$ is the same as the order of $b a$.
Let $(G, *)$ be a group.
Let $a, b \in G$.
Then $|a b|=|b a|$.
Therefore, if $a b$ has finite order n, then $b a$ has finite order n.
Proposition 53. Every element of a finite group has finite order.
Let $(G, *)$ be a finite group with identity $e \in G$.
Then $(\forall a \in G)\left(\exists k \in \mathbb{Z}^{+}\right)\left(a^{k}=e\right)$.
Let $(G, *)$ be a finite group with identity $e \in G$.
Let $a \in G$.
Then there exists $k \in \mathbb{Z}^{+}$such that $a^{k}=e$, so a has finite order.
Hence, every element of G has finite order.
Therefore, every element of a finite group has finite order.
Theorem 54. Finite Subgroup Test
Let H be a nonempty finite subset of a group ($G, *$).
Then $H<G$ iff H is closed under $*$ of G.

Cyclic subgroups

Definition 55. Cyclic subgroup of G

Let $(G, *)$ be a group.
Let $g \in G$.
Let $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$.
Then $\langle g\rangle$ is called the cyclic subgroup of G generated by g.
Every element of a group G generates a cyclic subgroup of G.
If $(G,+)$ is an additive group, then $\langle g\rangle=\{n g: n \in \mathbb{Z}\}$.
Theorem 56. The cyclic subgroup of a group G generated by $g \in G$ is the smallest subgroup of G that contains g.

Let $(G, *)$ be a group.
Let $g \in G$.
Then $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$ is a subgroup of G.
Moreover, $\langle g\rangle$ is the smallest subgroup of G that contains g.
Let $(G, *)$ be a group with identity $e \in G$.
The cyclic subgroup generated by $g \in G$ is $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}$.
The identity of $\langle g\rangle$ is $g^{0}=e$.
The inverse of g^{k} is g^{-k} for $k \in \mathbb{Z}$, since $g^{k} * g^{-k}=g^{k-k}=g^{0}$.
$\langle g\rangle$ is the smallest subgroup of G that contains g.
Therefore any subgroup of G that contains g must contain $\langle g\rangle$.
Hence, $\langle g\rangle$ must be a subgroup of any group that contains g.
Therefore, for every $K<G$ such that $g \in K$, then $\langle g\rangle<K$.
Therefore, if $K<G$ and $g \in K$, then $\langle g\rangle<K$.
Definition 57. cyclic group
A group $(G, *)$ is cyclic iff $(\exists g \in G)(G=\langle g\rangle)$.
The element g is a generator of G.
Theorem 58. Every cyclic group is abelian.
Let $(G, *)$ be a group.
If G is cyclic, then G is abelian.
Example 59. abelian group is not necessarily cyclic

1. The Klein-4 group $\left(V_{4},+\right)$ is abelian, but it is not cyclic.
2. The circle group ($\mathbb{T}, \cdot)$ is abelian, but it is not cyclic.

Theorem 60. Every subgroup of a cyclic group is cyclic.
Let G be a cyclic group.
If $H<G$, then H is cyclic.
Corollary 61. The only subgroups of $(\mathbb{Z},+)$ are $(n \mathbb{Z},+)$ for all $n \in \mathbb{Z}$.

Let $n \in \mathbb{Z}$.
Then $(n \mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$.
Since \mathbb{Z} is cyclic and $n \mathbb{Z}<\mathbb{Z}$, then $n \mathbb{Z}$ is cyclic.
Example 62. The set of all linear combinations of positive integers a and b under addition is a cyclic group with generator $\operatorname{gcd}(a, b)$

Let $a, b \in \mathbb{Z}^{+}$.
Let $G=\{m a+n b: m, n \in \mathbb{Z}\}$.
Then $(G,+)$ is a cyclic group with generator $\operatorname{gcd}(a, b)$.
Let $a, b \in \mathbb{Z}^{+}$be fixed.
Let $G=\{m a+n b: m, n \in \mathbb{Z}\}$.
Then $(G,+)$ is a cyclic group with generator $\operatorname{gcd}(a, b)$ and $G=\{k d: k \in \mathbb{Z}\}$.
additive identity is $0=0 a+0 b$.
additive inverse of $m a+n b$ is $-m a-n b$.
Theorem 63. Characterization of cyclic subgroup
Let $(G, *)$ be a group.
Let $a \in G$.
The order of a is the order of the cyclic subgroup of G generated by a.

1. If a has finite order n, then $\langle a\rangle$ is finite and $\langle a\rangle=\left\{e, a^{1}, a^{2}, \ldots, a^{n-1}\right\}$.
2. If a has infinite order, then $\langle a\rangle$ is infinite and $\langle a\rangle=\left\{\ldots, a^{-2}, a^{-1}, e, a^{1}, a^{2}, \ldots\right\}$
and each power of a is distinct.
Let $(G,+)$ be an additive group.
Let $a \in G$.
The order of a is the order of the cyclic subgroup of G generated by a.
3. If a has finite order n, then $\langle a\rangle$ is finite and $\langle a\rangle=\{0,1 a, 2 a, \ldots,(n-1) a\}$.
4. If a has infinite order, then $\langle a\rangle$ is infinite and $\langle a\rangle=\{\ldots,-2 a,-1 a, 0,1 a, 2 a, \ldots\}$.

Proposition 64. Generators of a finite cyclic group

Let $n \in \mathbb{Z}^{+}$.
Let G be a cyclic group of order n.
If $g \in G$ is a generator of G, then the generators of G are elements g^{k} such that $\operatorname{gcd}(k, n)=1$.

Corollary 65. The generators of $\left(\mathbb{Z}_{n},+\right)$ are congruence classes $[k]$ such that $k \in \mathbb{Z}^{+}$and $1 \leq k \leq n$ and $\operatorname{gcd}(k, n)=1$.

Therefore there are $\phi(n)$ generators of $\left(\mathbb{Z}_{n},+\right)$ where ϕ is Euler's totient function.

The generators of $\left(\mathbb{Z}_{n},+\right)$ are positive integers that are relatively prime to the modulus n.

Definition 66. Subgroup of G generated by a_{1}, \ldots, a_{n}

Let $(G, *)$ be a group with identity e and $a_{1}, a_{2}, \ldots, a_{n} \in G$.
Let $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ be the set of all finite products of integer powers of a_{1}, \ldots, a_{n}.

Let $N_{0}=\{0,1,2,3, \ldots\}$.

Then $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\left\{b_{1}^{\epsilon_{1}} \cdot b_{2}^{\epsilon_{2}} \cdots b_{k}^{\epsilon_{k}}: k \in N_{0}, b_{i} \in\left\{a_{1}, \ldots, a_{n}\right\}, \epsilon_{i} \in \mathbb{Z}\right\}$
Whenever $k=0$ then $b_{1}^{\epsilon_{1}} \cdot b_{2}^{\epsilon_{2}} \cdots b_{k}^{\epsilon_{k}}$ is the empty product and is defined to be e.

Therefore, $b_{1}^{\epsilon_{1}} \cdot b_{2}^{\epsilon_{2}} \cdots b_{k}^{\epsilon_{k}}=e$ iff $k=0$.
$\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ is called the subgroup of G generated by the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Theorem 67. Let $(G, *)$ be a group.
Let $a_{1}, a_{2}, \ldots, a_{n} \in G$.
Then $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ is a subgroup of G.
Moreover, $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ is the smallest subgroup of G that contains $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
Therefore any subgroup of G that contains $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ must contain $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

Theorem 68. Let $(G, *)$ be a group.
Let $S \subset G$.
The smallest subgroup that contains S is the intersection of all subgroups that contain S.

Definition 69. Subgroup Generated by a subset of a group

Let $(G, *)$ be a group.
Let $X \subset G$.
Let H_{i} be a subgroup of G such that $X \subset H_{i}$.
Let I be some index set.
Let $\left\{H_{i}: i \in I\right\}$ be the collection of all subgroups of G that contain X.
Let $\langle X\rangle=\cap_{i \in I} H_{i}$.
Then $\langle X\rangle$ is called the subgroup of G generated by X.
$\langle X\rangle$ is the smallest subgroup of G containing X.
We say that X generates $\langle X\rangle$.
If $\langle X\rangle=G$, then X generates G.
If X is finite, we say that G is finitely generated.
Let $\langle X\rangle$ be the subgroup of G generated by $X \subset G$.
$\langle X\rangle$ is the smallest subgroup of G containing X means:
For every $K<G$ such that $X \subset K,\langle X\rangle<K$.
If X consists of a single element $a \in G$, then $\langle X\rangle=\langle a\rangle$, the cyclic subgroup of G generated by a.

If X is a finite set, then there exist $a_{1}, a_{2}, \ldots, a_{n} \in G$ such that $X=$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $\langle X\rangle=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

Additive Number Groups

Integers under addition ($\mathbb{Z},+$)

$(\mathbb{Z},+)$ is an abelian group.
Additive identity is 0 .
Additive inverse of a is $-a$.
$(\mathbb{Z},+)$ is cyclic.
$\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$ with generators 1 and -1 .
Since $n \mathbb{Z}<\mathbb{Z}$ and \mathbb{Z} is abelian, then $n \mathbb{Z} \triangleleft \mathbb{Z}$, so $n \mathbb{Z}$ is normal in \mathbb{Z}.

Multiples of integer n under addition ($n \mathbb{Z},+$)

Let $n \in \mathbb{Z}$.
$(n \mathbb{Z},+)$ is an abelian group.
Additive identity is 0 .
Additive inverse of $n k$ is $-n k$.
$(n \mathbb{Z},+)$ is cyclic.
$n \mathbb{Z}=\{n k: k \in \mathbb{Z}\}=\langle n\rangle=\langle-n\rangle$ with generators n and $-n$.

Integers modulo n under addition $\left(\mathbb{Z}_{n},+\right)$ of order n

Let $n \in \mathbb{Z}^{+}$.
$\left(\mathbb{Z}_{n},+\right)$ is an abelian group and $\left|\mathbb{Z}_{n}\right|=n$.
Additive identity is [0].
Additive inverse of $[a]$ is $-[a]=[n-a]$.
$\left(\mathbb{Z}_{n},+\right)$ is cyclic.
$\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}=\langle[1]\rangle=\{a[1]: a \in \mathbb{Z}\}=\{[a]: a \in \mathbb{Z}\}$ with generators [k] such that $1 \leq k \leq n$ and $\operatorname{gcd}(k, n)=1$.

Let $p \in \mathbb{Z}^{+}$be prime.
Then ($\mathbb{Z}_{p},+$) has no proper nontrivial subgroups.

Rational numbers under addition $(\mathbb{Q},+)$

$(\mathbb{Q},+)$ is an abelian group.
Additive identity is $0=\frac{0}{1}$.
Additive inverse of $\frac{a}{b}$ is $-\frac{a}{b}=\frac{-a}{b}$.
$(\mathbb{Q},+)$ is not cyclic.

Real numbers under addition $(\mathbb{R},+)$

$(\mathbb{R},+)$ is an abelian group.
Additive identity is 0 .
Additive inverse of a is $-a$.
$(\mathbb{R},+)$ is not cyclic.

Complex numbers under addition $(\mathbb{C},+$)

$(\mathbb{C},+)$ is an abelian group.
Additive identity is $0=0+0 i$.
Let $x, y \in \mathbb{R}$.
Additive inverse of $z=x+y i$ is $-z=-x-y i$.

Example 70. Gaussian integers $(\mathbb{Z}[i],+)$ Let $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$.
Then $(\mathbb{Z}[i],+)$ is an abelian group under complex addition.

Multiplicative Number Groups

Nonzero rational numbers under multiplication ($\left.\mathbb{Q}^{*}, \cdot\right)$
$\left(\mathbb{Q}^{*}, \cdot\right)$ is an abelian group.
Multiplicative identity is $1=\frac{1}{1}$.
Multiplicative inverse of $\frac{a}{b}$ is $\frac{b}{a}$.
Nonzero real numbers under multiplication $\left(\mathbb{R}^{*}, \cdot\right)$
$\left(\mathbb{R}^{*}, \cdot\right)$ is an abelian group.
Multiplicative identity is 1 .
Multiplicative inverse of a is $\frac{1}{a}$.

Nonzero complex numbers under multiplication (\mathbb{C}^{*}, \cdot)

$\left(\mathbb{C}^{*}, \cdot\right)$ is an abelian group.
Multiplicative identity is $1=1+0 i$.
Multiplicative inverse of $z \in \mathbb{C}^{*}$ is $\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$, where \bar{z} is the complex conjugate of z and $|z|$ is the modulus of z.

Positive rational numbers under multiplication $\left(\mathbb{Q}^{+}, \cdot\right)$

$\left(\mathbb{Q}^{+}, \cdot\right)$ is an abelian group.
Multiplicative identity is $1=\frac{1}{1}$.
Multiplicative inverse of $\frac{a}{b}$ is $\frac{b}{a}$.
Positive real numbers under multiplication $\left(\mathbb{R}^{+}, \cdot\right)$
$\left(\mathbb{R}^{+}, \cdot\right)$ is an abelian group.
Multiplicative identity is 1 .
Multiplicative inverse of a is $\frac{1}{a}$.

Subgroup Relationships of number groups

```
(n\mathbb{Z},+)<(\mathbb{Z},+)<(\mathbb{Q},+)<(\mathbb{R},+)<(\mathbb{C},+)
    (\mathbb{Z}[i],+)< (\mathbb{C},+)
    (\mathbb{Q},\cdot)<(\mp@subsup{\mathbb{R}}{}{*},\cdot)<(\mp@subsup{\mathbb{C}}{}{*},\cdot)
    (\mp@subsup{\mathbb{Q}}{}{+},\cdot)<(\mp@subsup{\mathbb{R}}{}{+},\cdot)<(\mp@subsup{\mathbb{R}}{}{*},\cdot)
    (Un,\cdot)<(\mathbb{T},\cdot)<(\mathbb{C}
```


Group of Units of Integers modulo n

Definition 71. Group of Units of \mathbb{Z}_{n} of order $\phi(n)$
Let $n \in \mathbb{Z}^{+}$.
Let \mathbb{Z}_{n}^{*} be the set of all units of \mathbb{Z}_{n}.
Then \mathbb{Z}_{n}^{*} is the set of all congruence classes of \mathbb{Z}_{n} which have multiplicative inverses in \mathbb{Z}_{n}.

$$
\begin{aligned}
\mathbb{Z}_{n}^{*} & =\left\{[a] \in \mathbb{Z}_{n}:[a] \text { is a unit }\right\} \\
& =\left\{[a] \in \mathbb{Z}_{n}:[a] \text { has a multiplicative inverse }\right\} \\
& =\left\{[a] \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\} \\
& =\{[a]: a \in \mathbb{Z}, 1 \leq a<n \wedge \operatorname{gcd}(a, n)=1\}
\end{aligned}
$$

Lemma 72. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
If $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$, then $\operatorname{gcd}(a b, n)=1$.
Proposition 73. Group of units of \mathbb{Z}_{n} under multiplication is abelian.
Let $n \in \mathbb{Z}^{+}$.
Let \mathbb{Z}_{n}^{*} be the set of all congruence classes of \mathbb{Z}_{n} that have multiplicative inverses.

Then $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ is an abelian group under multiplication modulo n.
$\left(\mathbb{Z}_{n}^{*}, \cdot\right)$ is an abelian group under multiplication modulo n.
Multiplicative identity is [1].
Multiplicative inverse of $[x]$ is $[y]$ such that $[x][y]=[y][x]=[1]$.
Multiplicative inverse of [1] is [1] since $[1][1]=[1 \cdot 1]=[1]$.
Multiplicative inverse of $[n-1]$ is $[n-1]$ since $[n-1][n-1]=[(n-1)(n-1)]=$ $\left[n^{2}-2 n+1\right]=[n(n-2)+1]=[n(n-2)]+[1]=[n][n-2]+[1]=[0][n-2]+[1]=$ $[0]+[1]=[1]$.

If $n>1$, then $[0]$ has no multiplicative inverse, so $[0] \notin \mathbb{Z}_{n}^{*}$.
$[1] \in \mathbb{Z}_{n}^{*}$ and $[n-1] \in \mathbb{Z}_{n}^{*}$ for all $n \in \mathbb{Z}^{+}$.
Proposition 74. Let $n \in \mathbb{Z}^{+}$.
Let \mathbb{Z}_{n}^{*} be the group of units of \mathbb{Z}_{n}.
Then $\left|\mathbb{Z}_{n}^{*}\right|=\phi(n)$.

Complex Number Groups

Example 75. Circle Group (\mathbb{T}, \cdot)
Let \mathbb{T} be the unit circle in the complex plane.
Then $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.
(\mathbb{T}, \cdot) is an abelian group.

Multiplicative identity is $1=1+0 i$.
Multiplicative inverse of $z \in \mathbb{T}$ is $\frac{1}{z}=\bar{z}$, where \bar{z} is the complex conjugate of z.

Hence, if $z \in \mathbb{T}$ and $z=\operatorname{cis}(\theta)$, then $z^{-1}=\frac{1}{z}=\operatorname{cis}(-\theta)$ for some $\theta \in \mathbb{R}$.
Therefore, if $z \in \mathbb{T}$ and $z=e^{i \theta}$, then $z^{-1}=\frac{1}{z}=e^{-i \theta}$ for some $\theta \in \mathbb{R}$.
(\mathbb{T}, \cdot) is a subgroup of the group $\left(\mathbb{C}^{*}, \cdot\right)$.
(\mathbb{T}, \cdot) is not cyclic.
Example 76. $n^{\text {th }}$ Roots of Unity of order n is $\left(U_{n}, \cdot\right)$
Let $n \in \mathbb{Z}^{+}$.
Let $U_{n}=\left\{z \in \mathbb{C}: z^{n}=1\right\}$.
Then $\left(U_{n}, \cdot\right)$ is an abelian group and $\left|U_{n}\right|=n$.
Multiplicative identity is $1=1+0 i$.
$\left(U_{n}, \cdot\right)$ is a subgroup of the circle group (\mathbb{T}, \cdot).
$\left(U_{n}, \cdot\right)$ is cyclic with generator $g \in U_{n}$ and $g=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)=e^{i \frac{2 \pi}{n}}$.
Observe that

$$
\begin{aligned}
U_{n} & =\left\{z \in \mathbb{C}: z^{n}=1\right\} \\
& =\langle g\rangle \\
& =\left\langle\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)\right\rangle \\
& =\left\langle e^{i \frac{2 \pi}{n}}\right\rangle \\
& =\left\{\left(e^{i \frac{2 \pi}{n}}\right)^{k}: k \in \mathbb{Z}\right\} \\
& =\left\{e^{i \frac{2 k \pi}{n}}: k \in \mathbb{Z}\right\} .
\end{aligned}
$$

Examples of roots of unity.

$$
\begin{aligned}
& U_{1}=\{1\} \\
& U_{2}=\{1,-1\} \\
& U_{3}=\left\{1, e^{i 2 \pi / 3}, e^{i 4 \pi / 3}\right\}=\left\{1, \frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}\right\} \\
& U_{4}=\{1, i,-1,-i\} \\
& U_{6}=\left\{1, e^{i \pi / 3}, e^{i 2 \pi / 3}, e^{i \pi}, e^{i 4 \pi / 3}, e^{i 5 \pi / 3}\right\}=\left\{1, \frac{1+i \sqrt{3}}{2}, \frac{-1+i \sqrt{3}}{2},-1, \frac{-1-i \sqrt{3}}{2}, \frac{1-i \sqrt{3}}{2}\right\}
\end{aligned}
$$

Example 77. Quaternion Group of Order $8\left(Q_{8}, \cdot\right)$
Let $i^{2}=-1$ and define

$$
\begin{aligned}
& 1=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& i=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
j & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
k & =\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
\end{aligned}
$$

Then $i^{2}=j^{2}=k^{2}=-1$ and
$i j=k$ and $j k=i$ and $k i=j$ and
$i k=-j$ and $k j=-i$ and $j i=-k$.
Let $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$.
Then $\left(Q_{8}, \cdot\right)$ is a non-abelian group where \cdot is matrix multiplication over \mathbb{C}.
$\left|Q_{8}\right|=8$
$\left(Q_{8}, \cdot\right)$ is not cyclic.

\cdot	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	-j	k	-k
-1	-1	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	-j	j
-i	-i	i	1	-1	-k	k	j	-j
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	-j	j	i	-i	1	-1

Function Groups

Example 78. Let S be a set.
Let $F=\{f: S \rightarrow S \mid f$ is a function $\}$.
Then $(F,+)$ is an abelian group, additive identity is zero function $f(x)=0$, additive inverse of $f(x)$ is $-f(x)=(-f)(x)$.

Example 79. Let $G=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is a function $\}$.
Then $(G,+)$ is an abelian group, additive identity is zero function $f(x)=0$, additive inverse of $f(x)$ is $-f(x)=(-f)(x)$.
Let $C=\{f \in G: f$ is a continuous function $\}$.
Then $(C,+)<(G,+)$.
Let $C_{[0,1]}=\{f \in C: f$ is a continuous function on unit interval $[0,1]\}$.
Then $\left(C_{[0,1]},+\right)<(C,+)$.
Let $D=\{f \in G: f$ is a differentiable function $\}$.
Then $(D,+)<(C,+)$.

Additive Matrix Groups

Example 80. $M_{m \times n}(\mathbb{R})=m \times n$ real matrices
Then $\left(M_{m \times n}(\mathbb{R}),+\right)=$ abelian group, additive identity=zero matrix, $-A=$ additive inverse of matrix A.

Example 81. $M_{m \times n}(\mathbb{C})=m \times n$ complex matrices
Then $\left(M_{m \times n}(\mathbb{C}),+\right)=$ abelian group, additive identity=zero matrix, $-A=$ additive inverse of matrix A.

Multiplicative Matrix Groups

Definition 82. $M_{n}(\mathbb{R})$
Let $n \in \mathbb{Z}^{+}$.
The set of all $n \times n$ matrices over \mathbb{R} is denoted $M_{n}(\mathbb{R})$.
Therefore $M_{n}(\mathbb{R})$ is the set of all $n \times n$ matrices with entries in \mathbb{R}.

Definition 83. $M_{n}(\mathbb{C})$

Let $n \in \mathbb{Z}^{+}$.
The set of all $n \times n$ matrices over \mathbb{C} is denoted $M_{n}(\mathbb{C})$.
Therefore $M_{n}(\mathbb{C})$ is the set of all $n \times n$ matrices with entries in \mathbb{C}.

Definition 84. general linear group

Let F be a field.
Let $G L_{n}(F)$ be the set of all $n \times n$ invertible matrices with entries in F.
Then $G L_{n}(F)=\{A: A$ is an invertible square matrix $\}$.
$G L_{n}(F)$ is called the general linear group of degree n over F.
Example 85. General linear group is a group under matrix multiplication

Let F be a field.
Then $G L_{n}(F)$ is a group under matrix multiplication.
Let $G L_{n}(F)$ be the general linear group over a field F under matrix multiplication.

Let $A, B \in G L_{n}(F)$.
Then A and B are invertible square $n \times n$ matrices with entries in F.
The product $A B$ is an invertible square matrix and $(A B)^{-1}=B^{-1} A^{-1}$.
The identity $n \times n$ matrix I is multiplicative identity.
The matrix A^{-1} is the multiplicative inverse of matrix A and $A A^{-1}=I=$ $A^{-1} A$.

In general matrix multiplication is not commutative, so in general $G L_{n}(F)$ is non-abelian.

Example 86. (special linear group)
$S L_{n}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}): \operatorname{det} \mathrm{A}=1\right\}$
$\left(S L_{n}, \cdot\right)<\left(G L_{n}, \cdot\right)$
Therefore, the special linear group is a subgroup of the general linear group.
Example 87. (orthogonal group)
$O_{n}=\left\{A \in G L_{n}(\mathbb{R}): A^{-1}=A^{T}\right\}$

Example 88. (special orthogonal group) $S O_{n}=\left\{A \in O_{n}: \operatorname{det} \mathrm{A}=1\right\}$
Example 89. (unitary group)

$$
U_{n}=\left\{A \in G L_{n}(\mathbb{C}): A^{-1}=A^{-T}\right\}
$$

Example 90. (special unitary group) $S U_{n}=\left\{A \in U_{n}: \operatorname{det} \mathrm{A}=1\right\}$ special case:

$$
S O_{2}=\left\{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]: \theta \in \mathbb{R}\right\} \text { is abelian }
$$

Example 91. $G L_{n}(\mathbb{R}) \subset M_{n}(\mathbb{R})$
$G L_{n}(\mathbb{R})=n \times n$ real invertible matrices, non-abelian
$G L_{n}(\mathbb{C})=n \times n$ complex invertible matrices, non-abelian
$G L_{n}\left(\mathbb{Z}_{p}\right)=n \times n$ invertible matrices with entries in \mathbb{Z}_{p}, p prime
if A represents $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ and B represents $S: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ then $A B$
represents composition $T \circ S$
$A+B=B+A$, but $A B \neq B A$
Associative law: $A(B C)=(A B) C$
$I=$ identity matrix and $A I=I A=A$
Distributive law: $A(B+C)=A B+A C$
A is invertible $\leftrightarrow \exists B$ s.t. $A B=B A=I$
I is invertible. Take $B=I$.
Not all matrices are invertible.
e.g. 0 is not invertible since $0 A=0=A 0$ and $B=\frac{1}{a}$
1×1 matrices $[a]$ is invertible $\leftrightarrow a \neq 0$
2×2 matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

invertible $\leftrightarrow a d-b c \neq 0$
Then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

A is invertible $\leftrightarrow \operatorname{det}(A) \neq 0$
If inverse exists, then it is unique.
Suppose $A B=A C=I$.
Then $B(A B)=B(A C)=B I$, so $(B A) B=(B A) C$ so $I B=I C$ so $B=C$.
$G L_{n}$ is closed under \cdot.
Two proofs: Suppose A, B are invertible.
Then $A B$ is invertible since $\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=I$.
Alt pf:
$\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$ and $G L_{n}(\mathbb{R})=\{A: \operatorname{det}(\mathrm{A}) \neq 0\}$

Permutation Groups

A permutation is a symmetry of a configuration of identical objects.
A permutation of a sequence of symbols is a rearrangement of the order of the symbols.

Definition 92. permutation map

A permutation of a set S is a bijection $\sigma: S \rightarrow S$.
A permutation is an ordered arrangement of symbols.
Definition 93. S_{n} is the set of all permutations of a finite set.
Let $n \in \mathbb{Z}^{+}$.
Let $S=\{1,2, \ldots, n\}$ be a set.
Let S_{n} be the set of all permutations of S.
Then $S_{n}=\{\sigma: S \rightarrow S \mid \sigma$ is a permutation $\}$.
Let $\sigma \in S_{n}$.
Then $\sigma: S \rightarrow S$ is a permutation, so σ is an ordered arrangement of n symbols.

Thus, σ is a sequence of n elements.
By the multiplication principle, there are n choices to place a symbol into the first slot, $n-1$ choices to place a symbol into the second slot, ..., 1 choice to place a symbol in the $n^{\text {th }}$ slot.

Hence, there are n ! different permutations of S, so there are n ! different permutations in S_{n}.

Therefore, $\left|S_{n}\right|=n!$.
Definition 94. symmetric group S_{n} of degree n
Let $n \in \mathbb{Z}^{+}$.
Let $\{1,2, \ldots, n\}$ be a set.
Let S_{n} be the set of all permutations of $\{1,2, \ldots, n\}$.
Then $S_{n}=\{\sigma: \sigma$ is a permutation of n symbols $\}$.
S_{n} is called the symmetric group on n symbols.
Let $n \in \mathbb{Z}^{+}$.
Let $S=\{1,2, \ldots, n\}$.
Let S_{n} be the symmetric group on n symbols.
Then $S_{n}=\{\sigma: S \rightarrow S \mid \sigma$ is a permutation $\}$.
Let $\sigma: S \rightarrow S$ be an element of S_{n}.
Then $\sigma: S \rightarrow S$ is a permutation, so $\sigma: S \rightarrow S$ is a bijective function.
Definition 95. symmetric group on a set
Let X be a set.
Let S_{X} be the set of all permutations of X.
S_{X} is called the symmetric group on X.

Let X be a nonempty set.
Let S_{X} be the symmetric group on X.
Then $S_{X}=\{\sigma: X \rightarrow X \mid \sigma$ is a permutation $\}$.
Let $\sigma: X \rightarrow X$ be an element of S_{X}.
Then $\sigma: X \rightarrow X$ is a permutation, so $\sigma: X \rightarrow X$ is a bijective function.
Theorem 96. (S_{X}, \circ) is a group under function composition
Let X be a nonempty set.
Let S_{X} be the set of all permutations of X.
Define o to be function composition on S_{X}.
Then $\left(S_{X}, \circ\right)$ is a group, called the symmetric group on X.
Therefore, $\left(S_{X}, \circ\right)$ is the symmetric group on a set X under function composition.

The identity of S_{X} is the identity map $i d: X \rightarrow X$ defined by $x \mapsto x$.
The inverse of permutation $\sigma: X \rightarrow X$ is the permutation $\sigma^{-1}: X \rightarrow X$ defined by $\sigma^{-1}(y)=x$ iff $\sigma(x)=y$.

Therefore, $\sigma \circ \sigma^{-1}=\sigma^{-1} \circ \sigma=i d$.

Let $\sigma \in S_{X}$.
Then $\sigma: X \rightarrow X$ is a permutation, so σ is a bijective function.
Since function composition is generally not commutative, then $\left(S_{X}, \circ\right)$ is a generally nonabelian group.

Subgroups:
$X=$ vector space $: \operatorname{Iso}(\mathrm{X})=$ all isomorphisms of X onto X
$X=$ topological space : $\operatorname{Homeo}(\mathrm{X})=$ all homeomorphisms of X onto X
Corollary 97. (S_{n}, \circ) is a group under function composition
Let $n \in \mathbb{Z}^{+}$.
The symmetric group on n symbols is a group under function composition.
Therefore, the symmetric group $\left(S_{n}, \circ\right)$ is the group of all permutations of n symbols under function composition.
(S_{n}, \circ) is the group of all permutations on a set of n elements.
The identity map $i d$ is the identity of S_{n}.
The number of permutations of n distinct objects taken n at a time is $P(n, n)=n!$.

Therefore, the number of permutations in S_{n} is $\left|S_{n}\right|=n!$.
Since the order of S_{n} is a finite number, then S_{n} is a finite group.

Let $\sigma \in S_{n}$.
Then $\sigma: i \mapsto \sigma(i)$ for all $i \in\{1,2, \ldots, n\}$.

Let $\sigma \tau=\sigma \circ \tau$.
Then $(\sigma \circ \tau)(x)=\sigma(\tau(x))$ for all $x \in X$.
Hence, $\sigma \tau=\sigma \circ \tau$ means do τ first and then do σ second.
Therefore, our convention is to perform permutation multiplication(function composition) from right to left.

Definition 98. permutation group

Let X be a nonempty set.
Let $\left(S_{X}, \circ\right)$ be the symmetric group on X under function composition.
A subgroup of (S_{X}, \circ) is called a permutation group on X.
A permutation group preserves the structure of the set X ("symmetries").

Let $n \in \mathbb{Z}^{+}$.
A subgroup of $\left(S_{n}, \circ\right)$ is called a permutation group.
Therefore, a permutation group is a subgroup of the symmetric group.
Example 99. (S_{3}, \circ) is a non-abelian group.
Let $S=\{1,2,3\}$.
Then $\left|S_{3}\right|=3!=6$, so there are 6 permutations of S.
The permutations are:
I. (1)
$\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)=$ motion that does nothing (identity permutation)
II. (2 3)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\text { keep position } 1 \text { fixed, and swap } 2 \text { and } 3
$$

III. (1 2)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\text { keep position } 3 \text { fixed, and swap } 1 \text { and } 2
$$

IV. (1 2 3)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\text { rotate each position once to the left }
$$

V. (13 2)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\text { rotate each position once to the right }
$$

VI. (13)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\text { keep position } 2 \text { fixed, and swap } 1 \text { and } 3
$$

The Cayley table for $\left(S_{3}, \circ\right)$ is shown below.
$\left.\begin{array}{l|c|c|c|c|c|r}\circ & (1) & \left(\begin{array}{ll}1 & 2\end{array}\right) & \left(\begin{array}{ll}1 & 3\end{array}\right) & \left(\begin{array}{ll}2 & 3\end{array}\right) & \left(\begin{array}{llll}1 & 2 & 3\end{array}\right) & \left(\begin{array}{lll}1 & 3 & 2\end{array}\right) \\ \hline(1) & (1) & (1 & 2\end{array}\right)$

Proposition 100. Let $n \in \mathbb{Z}^{+}$.
If $n \geq 3$, then $\left(S_{n}, \circ\right)$ is non-abelian.
$S_{1}=\{i d\}$ is abelian (trivial group).
$S_{2}=\{i d,(12)\}$ is abelian and $\left(S_{2}, \circ\right) \cong\left(\mathbb{Z}_{2},+\right)$.
$S_{3}=\{(1),(12),(13),(23),(123),(132)\}$ and S_{3} is non-abelian.
Theorem 101. Cayley's Theorem
Every group G is isomorphic to a subgroup of the symmetric group on G.
Therefore, every group is isomorphic to a permutation group.
For each $g \in G$ define the permutation $\lambda_{g}: G \rightarrow G$ by $\lambda_{g}(x)=g x$ for all $x \in G$.

The isomorphism $g \mapsto \lambda_{g}$ is called the left regular representation of G.
For each $g \in G$ define the permutation $\rho_{g}: G \rightarrow G$ by $\rho_{g}(x)=x g$ for all $x \in G$.

The isomorphism $g \mapsto \rho_{g}$ is called the right regular representation of G.

Corollary 102. Every finite group of order n is isomorphic to a subgroup of S_{n}.

Cycle notation for permutations

Cycle notation is a compact way to write permutations.

Definition 103. k cycle

Let X be a nonempty set.
Let $\left(S_{X}, \circ\right)$ be the symmetric group on X.
Let $\sigma \in S_{X}$.
Then $\sigma: X \rightarrow X$ is a permutation of X.
Let k be a positive integer with $k \geq 2$.
Let $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a subset of X such that

1. $\sigma\left(a_{i}\right)=a_{i}(\bmod k)+1$ for all $a_{i} \in S$.

This means

$$
\begin{aligned}
\sigma\left(a_{1}\right) & =a_{2} \\
\sigma\left(a_{2}\right) & =a_{3} \\
\vdots & \\
\sigma\left(a_{k}\right) & =a_{1}
\end{aligned}
$$

2. $(\forall x \in X-S)(\sigma(x)=x)$.

Then σ is a cycle of length k.
σ is called a k cycle.
k represents the number of elements moved by σ.
$\left(a_{1} a_{2} \ldots a_{k}\right)$ denotes a cycle of length k.
Let X be a nonempty set.
Let $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a subset of X.
Let $\sigma=\left(a_{1} a_{2} \ldots a_{k}\right)$.
Then σ is a k cycle.
Therefore, $a_{1} \mapsto a_{2} \mapsto a_{3} \ldots \mapsto a_{k} \mapsto a_{1}$ and $\sigma(x)=x$ for all $x \in X-S$.
Denote the identity permutation by $i d=(1)$ in cycle notation.

A cycle is a type of permutation.
A cycle can be written in several different ways.
Proposition 104. inverse of a cycle
Let $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a subset of a nonempty set X.
Let σ be a k cycle in the symmetric group on X.
If $\sigma=\left(a_{1} a_{2} \ldots a_{k}\right)$, then $\sigma^{-1}=\left(a_{k} a_{k-1} \ldots a_{2} a_{1}\right)$.
The inverse of a cycle is the same elements written in reverse order.

Since there are several ways to represent the same cycle, the following is also true.

Observe that

$$
\begin{aligned}
\sigma^{-1} & =\left(a_{k} a_{k-1} \ldots a_{2} a_{1}\right) \\
& =\left(a_{1} a_{k} a_{k-1} \ldots a_{3} a_{2}\right) \\
& =\left(a_{2} a_{1} a_{k} a_{k-1} \ldots a_{4} a_{3}\right) \\
& =\ldots \\
& =\left(a_{k-1} a_{k-2} \ldots a_{2} a_{1} a_{k}\right) .
\end{aligned}
$$

Proposition 105. order of a cycle
Let $k \in \mathbb{Z}^{+}$.
A cycle of length k has order k.
Let $n \in \mathbb{Z}$ with $n \geq 2$.
Let $k \in \mathbb{Z}^{+}$such that $2 \leq k \leq n$.
Let σ be a k cycle in the symmetric group (S_{n}, \circ).
Let $i d \in S_{n}$ be the identity permutation.
Then $|\sigma|=k$, so k is the least positive integer such that $\sigma^{k}=i d$.

Definition 106. Disjoint cycle

Let $\alpha=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{m}\end{array}\right)$ and $\beta=\left(\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right)$ be two cycles in the symmetric group on set X.

Then α and β are disjoint iff $a_{i} \neq b_{j}$ for all i, j.

Let $\alpha=\left(a_{1} a_{2} \ldots a_{m}\right)$ and $\beta=\left(b_{1} b_{2} \ldots b_{n}\right)$ be disjoint cycles.
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$.
Then $A \cap B=\emptyset$.
Therefore, disjoint cycles have no elements in common.
Theorem 107. Disjoint cycles commute.
Let α and β be disjoint cycles in the symmetric group on set X.
Then $\alpha \beta=\beta \alpha$.
Therefore cycles with no elements in common commute with each other.
However, cycles with an element in common do not commute.

Theorem 108. Cycle Decomposition Theorem

Every permutation of a nonempty finite set can be written as a finite product of disjoint cycles.

Let $n \in \mathbb{Z}+$.
Every permutation in $\left(S_{n}, \circ\right)$ can be written as a finite product of disjoint cycles.

Moreover, the decomposition of a permutation into disjoint cycles is unique up to the order and representation of cycles.

Since every permutation on a nonempty finite set can be decomposed into a product of cycles, then cycles are the building blocks of all permutations.

Corollary 109. The order of a permutation is the least common multiple of the orders of its disjoint cycles.

Let $\sigma \in\left(S_{n}, \circ\right)$.
Since every permutation is a finite product of disjoint cycles, then there exist $k \in \mathbb{Z}^{+}$and disjoint cycles $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such that $\sigma=\alpha_{1} \circ \alpha_{2} \circ \ldots \circ \alpha_{k}$.

Let $\left|\alpha_{1}\right|=m_{1}$ and $\left|\alpha_{2}\right|=m_{2}$ and $\ldots\left|\alpha_{k}\right|=m_{k}$.
Then $|\sigma|=\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$.
Proposition 110. Let τ be a k cycle.
If σ is a permutation, then $\sigma \tau \sigma^{-1}$ is a k cycle.

Parity of a permutation

Definition 111. transposition

A transposition is a permutation that swaps two elements and leaves everything else fixed.

A transposition is a 2-cycle.
Let $n \in \mathbb{Z}^{+}$and $n \geq 2$.
Let X be a set of n elements.
Let $i d$ be the identity permutation of S_{n}.
Let $\{a, b\}$ be a subset of X.
Let $\tau \in S_{n}$ be a transposition of X defined by $\tau=(a, b)$.

Since τ is a 2 cycle, then $\tau(a)=b$ and $\tau(b)=a$ and $\tau(x)=x$ for $x \in$ $X-\{a, b\}$.

Therefore $a \mapsto b \mapsto a$ and $b \mapsto a \mapsto b$, so $(b a)=(a b)$.
Since a transposition is a 2 cycle, then a transposition is a cycle of length 2 , so a transposition has order 2.

Since τ has finite order $|\tau|=2$, then 2 is the least positive integer such that $\tau^{2}=i d$.

Since $\tau^{2}=i d$, then $\tau^{-1}=\tau$.
Observe that $\tau^{2}=(a b)(a b)=i d$ and $(a b)=\tau=\tau^{-1}=(a b)^{-1}=(b a)$.
Theorem 112. A permutation is a product of transpositions
Every permutation of a finite set containing at least two elements can be written as a finite product of transpositions.

Therefore, for $n \geq 2$, every permutation in $\left(S_{n}, \circ\right)$ can be written as a finite product of transpositions.

Hence, every permutation of a finite set can be written as a product of transpositions.

However, the decomposition of a permutation as a product of transpositions is not unique.

To decompose a permutation into a product of transpositions

1. Write the permutation as a product of disjoint cycles.
2. Decompose each cycle into a product of transpositions.

Observe that

$$
\begin{aligned}
\left(a_{1} a_{2} \ldots a_{k}\right) & =\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \ldots\left(a_{k-1} a_{k}\right) \\
& =\left(a_{1} a_{k}\right)\left(a_{1} a_{k-1}\right) \ldots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
\end{aligned}
$$

Definition 113. even and odd permutation

Let X be a finite set of at least two elements.
Let σ be a permutation of X.
The permutation σ is even iff σ can be written as a product of an even number of transpositions.

The permutation σ is odd iff σ can be written as a product of an odd number of transpositions.

Lemma 114. Reduction Lemma

If the identity permutation id can be written as a product of k transpositions, then id can be written as a product of $k-2$ transpositions.

Lemma 115. Even Identity Lemma

If the identity permutation is a product of k transpositions, then k is even.

Theorem 116. Parity Theorem

If a permutation is a product of k and m transpositions, then either k and m are both even or k and m are both odd.

Therefore, if a permutation is a product of k and m transpositions, then k and m must have the same parity.

Hence, a permutation cannot be both even and odd.
Thus, a permutation must be either even or odd, but not both.

Let $n \in \mathbb{Z}^{+}$and $n \geq 2$.
Let $X=\{1,2, \ldots, n\}$ be a set of n elements.
Then $\{1,2\}$ is a subset of X.
 identity permutation is an even permutation.

Since $(1,2)(1,2)=i d$, then the identity map is an even permutation.
Theorem 117. A cycle of even length is odd and a cycle of odd length is even.
Since a transposition is a 2 cycle and 2 is even, then a transposition is an odd permutation.

Therefore, every transposition is an odd permutation.
Theorem 118. The parity of a permutation is the same as the parity of its inverse.

Let $n \geq 2$.
Let $\alpha \in S_{n}$.
Then $\alpha^{-1} \in S_{n}$ and the parity of α is the same as the parity of α^{-1}.
Thus, if α is an even permutation, then α^{-1} is an even permutation.
If α is an odd permutation, then α^{-1} is an odd permutation.
Theorem 119. The composition of two permutations of the same parity is even.

Let $n \geq 2$.
Let $\sigma, \tau \in S_{n}$ such that σ and τ have the same parity.
Then $\sigma \tau$ is an even permutation.
Thus, if σ and τ are both even, then $\sigma \tau$ is even.
If σ and τ are both odd, then $\sigma \tau$ is even.
Theorem 120. The composition of two permutations of opposite parity is odd.
Let $n \geq 2$.
Let $\sigma, \tau \in S_{n}$ such that σ and τ have opposite parity.
Then $\sigma \tau$ is an odd permutation.
Thus, if σ is even and τ is odd, then $\sigma \tau$ is an odd.
If σ is odd and τ is even, then $\sigma \tau$ is an odd.

Definition 121. signature of a permutation

The signature of a permutation σ, denoted $\operatorname{sgn}(\sigma)$, is 1 if σ is even and -1 if σ is odd.

Since a permutation is either even or odd, but not both, then its signature is unique.

Proposition 122. The function $S_{n} \rightarrow\{-1,1\}$ that assigns to each permutation of S_{n} its signature is a group homomorphism.

Theorem 123. Let $\left(S_{n}, \circ\right)$ be the symmetric group on n symbols.
Let $A_{n}=\left\{\sigma \in S_{n}: \sigma\right.$ is an even permutation $\}$.
Then $A_{n}<S_{n}$.

Definition 124. Alternating Group A_{n} of order $\frac{n!}{2}$

Let $n \geq 2$.
Let $\left(S_{n}, \circ\right)$ be the symmetric group on n symbols.
Let $A_{n}=\left\{\sigma \in S_{n}: \sigma\right.$ is an even permutation $\}$.
$\left(A_{n}, \circ\right)$ is called the alternating group.
Since $A_{n}<S_{n}$, then the alternating group is a subgroup of the symmetric group.

Theorem 125. For $n \geq 2$, the number of even permutations in S_{n} equals the number of odd permutations.

Moreover, the order of A_{n} is $\frac{n!}{2}$.
Proposition 126. Let H be a subgroup of G such that $[G: H]=2$.
Then $H \triangleleft G$.
Since $\left[S_{n}: A_{n}\right]=\frac{\left|S_{n}\right|}{\left|A_{n}\right|}=\frac{\left|S_{n}\right|}{\left|S_{n}\right| / 2}=2$, then this implies $A_{n} \triangleleft S_{n}$.
Hence, S_{n} is not simple.

Symmetric group S_{4}

$\left(S_{4}, \circ\right)=$ nonabelian group of order $4!=24$
identity $=$ id
The elements in S_{4} are:
$i d,(34),(23),(234),(243),(24)$,
(12), (12)(34), (123), (1234), (1243), (124),
(132), (1342), (13), (134), (13)(24), (1324),
(1432), (142), (143), (14), (1423), (14)(23).

Alternating group A_{4}

$\left(A_{4}, \circ\right)=$ nonabelian group of order $\frac{4!}{2}=12$
identity $=$ id
The elements in A_{4} are: $i d,(234),(243),(12)(34)$,
(123), (124), (132), (134),
$(13)(24),(142),(143),(14)(23)$.

Symmetry Groups

Theorem 127. The set of all geometric transformations of n dimensional space is a group under function composition.

Let $\operatorname{Sym}\left(\mathbb{R}^{n}\right)$ be the set of all geometric transformations of the n dimensional vector space \mathbb{R}^{n}.

Then $\operatorname{Sym}\left(\mathbb{R}^{n}\right)=\left\{T \mid T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right.$ is a bijective map $\}$.
Let \circ be function composition.
Then $\left(\operatorname{Sym}\left(\mathbb{R}^{n}\right), \circ\right)$ is the symmetric group on \mathbb{R}^{n}.
The identity element is the identity map $i d$.
The inverse of the transformation $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the inverse transformation $\alpha^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
$\operatorname{Sym}\left(\mathbb{R}^{2}\right)$ is the group of all transformations of \mathbb{R}^{2}.
$\operatorname{Sym}\left(\mathbb{R}^{3}\right)$ is the group of all transformations of \mathbb{R}^{3}.
Theorem 128. The set of all bijective isometries of 2 dimensional space is a subgroup of $\operatorname{Sym}\left(\mathbb{R}^{2}\right)$.

$$
\operatorname{Iso}\left(\mathbb{R}^{2}\right)<\operatorname{Sym}\left(\mathbb{R}^{2}\right)
$$

Definition 129. The isometry group of \mathbb{R}^{2} is the group of all bijective isometries from \mathbb{R}^{2} onto \mathbb{R}^{2} under function composition.

Let $\left(\operatorname{Iso}\left(\mathbb{R}^{2}\right), \circ\right)$ be the isometry group of \mathbb{R}^{2}.
Then $\operatorname{Iso}\left(\mathbb{R}^{2}\right)=\left\{\sigma \mid \sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\right.$ is a bijective isometry $\}$.
The identity element is the identity map $i d$.
The inverse of the bijective isometry $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the inverse isometry $\alpha^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

Definition 130. A regular n-gon is a closed, convex polygon with n equal sides in the plane.

Definition 131. A rigid motion of the plane is a bijective map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that preserves distance.

Therefore a rigid motion is a bijective isometry.
Definition 132. A symmetry of a figure is an undetectable rigid motion that preserves distance.

Therefore, a symmetry of a figure is a bijective isometry that preserves the figure.

Let $X \subset \mathbb{R}^{2}$.
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an isometry.
Then f is a symmetry of X iff $f(X)=X$.
Therefore a symmetry of X is a distance preserving function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $f(X)=X$.

Theorem 133. The set of all symmetries of a regular n-gon in \mathbb{R}^{2} under function composition is a subgroup of the isometry group of \mathbb{R}^{2}.

Therefore, $D_{n}<\operatorname{Iso}\left(\mathbb{R}^{2}\right)$.
A geometric object is symmetric iff it has symmetries.
Let a, b be symmetries of a geometric object.
Define $a * b$ by do motion b first followed by do motion a.
Definition 134. Dihedral group D_{n} of order $2 n$
The dihedral group, denoted $\left(D_{n}, \circ\right)$, is the set of all symmetries of a regular n sided polygon under function composition.

Therefore, D_{n} is the group of symmetries of a regular n-gon under function composition.

Hence, D_{n} is the group of undetectable rigid motions of a regular n-sided polygon.
$D_{n}=\left\{\rho: \rho(\right.$ is a symmetry of $X\}=\left\{\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \in I \operatorname{so}\left(\mathbb{R}^{2}\right) \mid \rho(X)=X\right\}$.
D_{n} consists of n rotations and n reflections.
There are n vertices to relabel to determine the number of rigid motions of D_{n}.

There are n choices to replace the first vertex.
If we replace the first vertex by k, then the second vertex must be replaced by either vertex $k+1$ or vertex $k-1$.

Hence, there are $2 n$ choices for the given vertex to relabel, so there are $2 n$ possible rigid motions of D_{n}.
$\left|D_{n}\right|=2 n$
Since $D_{n}<\operatorname{Iso}\left(\mathbb{R}^{2}\right)$ and $\operatorname{Iso}\left(\mathbb{R}^{2}\right)<\operatorname{Sym}\left(\mathbb{R}^{2}\right)$, then $D_{n}<\operatorname{Sym}\left(\mathbb{R}^{2}\right)$.
Theorem 135. (D_{n}, \circ) is isomorphic to a subgroup of $\left(S_{n}, \circ\right)$.
Thus, there exists $H<S_{n}$ such that $D_{n} \cong H$, where n is the number of vertices of a regular n-sided polygon.

Definition 136. The Euclidean group, denoted $E(n)$, is the symmetry group of n dimensional Euclidean space.

Symmetries of a rectangle that is not a square $\left(D_{2}\right)$

Define the following symmetries of a non square rectangle with vertices $1,2,3,4$ labeled counterclockwise.

Let $D_{2}=\left\{e, r, s_{h}, s_{v}\right\}$.
Let $e=$ do nothing motion (no rotation)
Let $r=$ rotate by π
Let $s_{h}=$ reflect about the horizontal line through the center of the rectangle
Let $s_{v}=$ reflect about the vertical line through the center of the rectangle

$*$	e	r	s_{h}	s_{v}
e	e	r	s_{h}	s_{v}
r	r	e	s_{v}	s_{h}
s_{h}	s_{h}	s_{v}	e	r
s_{v}	s_{v}	s_{h}	r	e

D_{2} is abelian.

$$
\begin{array}{rll}
e & \mapsto & (1) \\
r & \mapsto & (13)(24) \\
s_{h} & \mapsto & (12)(34) \\
s_{v} & \mapsto & (14)(23) .
\end{array}
$$

$D_{2}<A_{4}$.
D_{2} is isomorphic to the Klein-4 group $V=\{e, a, b, c\}$.
An isomorphism from D_{2} to V is:

$$
\begin{array}{rlll}
e & \mapsto & e \\
r & \mapsto & a \\
s_{h} & \mapsto & b \\
s_{v} & \mapsto & c .
\end{array}
$$

Symmetries of an Equilateral Triangle $\left(D_{3}\right)$

Define the following symmetries of a triangle with vertices $1,2,3$ labeled counterclockwise.

Let $D_{3}=\left\{e, r, r^{2}, a, b, c\right\}$.
Let $e=$ do nothing motion (no rotation)
Let $r=$ rotate by $\frac{2 \pi}{3} \mathrm{ccw}$
Let $r^{2}=$ rotate by $\frac{2 \pi}{3}$ ccw twice
Let $a=$ reflect about the line through the center containing vertex 1
Let $b=$ reflect about the line through the center containing vertex 2
Let $c=$ reflect about the line through the center containing vertex 3

$*$	e	r	r^{2}	a	b	c
e	e	r	r^{2}	a	b	c
r	r	r^{2}	e	c	a	b
r^{2}	r^{2}	e	r	b	c	a
a	a	b	c	e	r	r^{2}
b	b	c	a	r^{2}	e	r
c	c	a	b	r	r^{2}	e

D_{3} is not abelian.
$\left(D_{3}, *\right) \cong\left(S_{3}, \circ\right)$ and $\left|D_{3}\right|=2 * 3=6$ and $\left|S_{3}\right|=3!=6$.
Let $S_{3}=\{(1),(12),(13),(23),(123),(132)\}$.
An isomorphism from D_{3} to S_{3} is:

$$
\begin{array}{rll}
e & \mapsto & (1) \\
r & \mapsto & (123) \\
r^{2} & \mapsto & (132) \\
a & \mapsto & (23) \\
b & \mapsto & (13) \\
c & \mapsto & (12) .
\end{array}
$$

Proper subgroups of D_{3} :
$\langle a\rangle=\{a, e\}$
$\langle b\rangle=\{b, e\}$
$\langle c\rangle=\{c, e\}$
$\langle r\rangle=\left\langle r^{2}\right\rangle=\left\{e, r, r^{2}\right\}$
$\langle a\rangle \cong\langle b\rangle \cong\langle c\rangle$.

Symmetries of a Square (Octic group D_{4})

Define the following symmetries of a square with vertices $1,2,3,4$ labeled counterclockwise.

Let $D_{4}=\left\{e, r, r^{2}, r^{3}, a, b, c, d\right\}$.
$\left|D_{4}\right|=2 * 4=8$
Let $e=$ do nothing motion (no rotation)
Let $r=$ rotate by $\frac{\pi}{2} \mathrm{ccw}$
Let $r^{2}=$ rotate by $\frac{\pi}{2} 2$ times ccw
Let $r^{3}=$ rotate by $\frac{\pi}{2} 3$ times ccw
Let $a=$ reflect about the horizontal line through the center
Let $b=$ reflect about the vertical line through the center
Let $c=$ reflect about the main diagonal (NW to SE)
Let $d=$ reflect about the secondary diagonal (SW to NE)

$*$	e	r	r^{2}	r^{3}	a	b	c	d
e	e	r	r^{2}	r^{3}	a	b	c	d
r	r	r^{2}	r^{3}	e	d	c	a	b
r^{2}	r^{2}	r^{3}	e	r	b	a	d	c
r^{3}	r^{3}	e	r	r^{2}	c	d	b	a
a	a	c	b	d	e	r^{2}	r	r^{3}
b	b	d	a	c	r^{2}	e	r^{3}	r
c	c	b	d	a	r^{3}	r	e	r^{2}
d	d	a	c	b	r	r^{3}	r^{2}	e

D_{4} is not abelian.

$$
\begin{array}{rll}
e & \mapsto & (1) \\
r & \mapsto & (1234) \\
r^{2} & \mapsto & (13)(24) \\
r^{3} & \mapsto & (1432) \\
a & \mapsto & (12)(34) \\
b & \mapsto & (14)(23) \\
c & \mapsto & (24) \\
d & \mapsto & (13) .
\end{array}
$$

Cosets

Definition 137. Coset

Let $(H, *)$ be a subgroup of group $(G, *)$.
Define relation \sim_{L} on G for all $a, b \in G$ by $a \sim_{L} b$ iff $a^{-1} b \in H$.
Then \sim_{L} is an equivalence relation on G.
Define relation \sim_{R} on G for all $a, b \in G$ by $a \sim_{R} b$ iff $a b^{-1} \in H$.
Then \sim_{R} is an equivalence relation on G.
Let $g \in G$.
Then

$$
\begin{aligned}
g H & =\left\{x \in G: x \sim_{L} g\right\} \\
& =\left\{x \in G: g \sim_{L} x\right\} \\
& =\left\{x \in G: g^{-1} x \in H\right\} \\
& =\{g h \in G: h \in H\}
\end{aligned}
$$

$g H$ is defined to be the left coset of H with representative $g \in G$.
Observe that

$$
\begin{aligned}
H g & =\left\{x \in G: x \sim_{R} g\right\} \\
& =\left\{x \in G: x g^{-1} \in H\right\} \\
& =\{h g \in G: h \in H\}
\end{aligned}
$$

$H g$ is defined to be the right coset of H with representative $g \in G$.
Let $(H, *)$ be a subgroup of group $(G, *)$.
Let $g \in G$ be fixed.
The left coset of \mathbf{H} containing g is $g * H=\{g * h: h \in H\}$.
The right coset of \mathbf{H} containing g is $H * g=\{h * g: h \in H\}$.
Let $(H,+)$ be a subgroup of additive group $(G,+)$.
Let $g \in G$ be fixed.
The left coset of H containing g is $g+H=\{g+h: h \in H\}$.
The right coset of \mathbf{H} containing g is $H+g=\{h+g: h \in H\}$.

Let $H<G$.
Let e be the identity of G.
Since $e \in H$ and $g=g e$, then $g \in g H$.
Therefore $(\forall g \in G)(g \in g H)$.
Since $e \in H$ and $g=e g$, then $g \in H g$.
Therefore $(\forall g \in G)(g \in H g)$.
Since $e \in G$, then $e H=\{e h: h \in H\}=\{h: h \in H\}=H$ and $H e=\{h e:$
$h \in H\}=\{h: h \in H\}=H$.
Therefore, $e H=H=H e$.

Since \sim_{L} is an equivalence relation on G, then a left coset is an equivalence class and each element of G lies in exactly one left coset of H in G.

Therefore $a \sim_{L} b$ iff $a H=b H$.
Since \sim_{R} is an equivalence relation on G, then a right coset is an equivalence class and each element of G lies in exactly one right coset of H in G.

Therefore $a \sim_{R} b$ iff $H a=H b$.
Example 138. Consider $(n \mathbb{Z},+)<(\mathbb{Z},+)$.
Let $a \in \mathbb{Z}$.
The left coset of $(n \mathbb{Z},+)$ containing a is $a+n \mathbb{Z}=[a]_{n}$.
The right coset of $(n \mathbb{Z},+)$ containing a is $n \mathbb{Z}+a=[a]_{n}$.
Thus, $a+n \mathbb{Z}=n \mathbb{Z}+a$.
The collection of all left cosets of $n \mathbb{Z}$ in \mathbb{Z} is $\mathbb{Z}_{n}=\{[0],[1],[2], \ldots,[n-1]\}$.
The collection of all right cosets of $n \mathbb{Z}$ in \mathbb{Z} is $\mathbb{Z}_{n}=\{[0],[1],[2], \ldots,[n-1]\}$.
Thus, the collection of all cosets of $n \mathbb{Z}$ in \mathbb{Z} is $\mathbb{Z}_{n}=\{[0],[1],[2], \ldots,[n-1]\}$.
Thus, \mathbb{Z}_{n} is a partition of \mathbb{Z} and $[\mathbb{Z}: n \mathbb{Z}]=n$.
$[a]_{n}$ is an equivalence class of \mathbb{Z}_{n}.
Theorem 139. Let $H<G$.
Let $a, b \in G$.
Then the following are equivalent:

1. $a^{-1} b \in H$.
2. $(\exists h \in H)(a=b h)$.
3. $a \in b H$.
4. $a H=b H$.

Therefore, $a \sim_{L} b$ iff $a^{-1} b \in H$ iff a and b belong to the same left coset of H in G iff any of the 4 conditions above hold true.

Theorem 140. Let $H<G$.
Let $a, b \in G$.
Then the following are equivalent:

1. $a b^{-1} \in H$.
2. $(\exists h \in H)(a=h b)$.
3. $a \in H b$.
4. $H a=H b$.

Therefore, $a \sim_{R} b$ iff $a b^{-1} \in H$ iff a and b belong to the same right coset of H in G iff any of the 4 conditions above hold true.

Lemma 141. Let $H<G$.
Let $a, b \in G$.
Then $a H=b H$ iff $H a^{-1}=H b^{-1}$.
Since \sim_{L} is an equivalence relation defined on G, then the collection of all left cosets of H in G forms a partition of G.

Since \sim_{R} is an equivalence relation defined on G, then the collection of all right cosets of H in G forms a partition of G.

Theorem 142. Let H be a subgroup of a group G.
The number of left cosets of H in G equals the number of right cosets of H in G.

Let $\frac{G}{\sim}=\{g H: g \in G\}$ be the collection of all left cosets of H in G.
Let $\frac{G}{\sim_{R}}=\{H g: g \in G\}$ be the collection of all right cosets of H in G.
$\frac{G}{\sim_{G}}$ is a partition of G under \sim_{L}.
$\frac{G}{\sim_{R}}$ is a partition of G under \sim_{R}.
$\left|\frac{\sim_{R}^{R}}{\stackrel{G}{\sim}}\right|=\left|\frac{G}{\sim_{R}}\right|$.
Theorem 143. Let H be a subgroup of a group G.
Let $g \in G$ be fixed.
Then $|g H|=|H|$ and $|H g|=|H|$.
Let $g \in G$.
Then $|g H|=|H|=|H g|$.
Moreover, if $a, b \in G$, then $|a H|=|b H|=|H a|=|H b|$.
Hence, any two left cosets have the same cardinality and any two right cosets have the same cardinality and the cardinality of a left coset equals the cardinality of a right coset.

Definition 144. Index of \mathbf{H} in G

Let H be a subgroup of group G.
The index of H in G, denoted [$G: H$], is the number of distinct left cosets of H in G.

Let $\frac{G}{\sim_{L}}=\{g H: g \in G\}$ be the collection of all distinct left cosets of H in G.
Let $\frac{G}{\sim_{R}}=\{H g: g \in G\}$ be the collection of all distinct right cosets of H in G.

Then $[G: H]=\left|\frac{G}{\sim_{L}}\right|$.
Since $\left|\frac{G}{\sim_{L}}\right|=\left|\frac{G}{\sim_{R}}\right|$, then $[G: H]$ equals the number of distinct right cosets of H in G.

Therefore $\mid G: H]=\left|\frac{G}{\sim_{R}}\right|$.

Finite Groups

Theorem 145. Lagrange's Theorem
The order of a subgroup of a finite group divides the order of the group.
Let H be a subgroup of a finite group G.
Then $|H|$ divides $|G|$.

Let $[G: H]=$ the number of distinct left cosets of H in G.
Then $|G|=|H| *[G: H]$, so $|H|$ divides $|G|$.
Since H is a left coset of H in G, then $[G: H]>0$, so $[G: H]$ divides $|G|$.
Therefore, the number of elements in $G=$ number of elements per left coset

* number of left cosets.

Corollary 146. The order of an element of a finite group divides the order of the group.

Let G be a finite group.
Let $g \in G$.
Then $|g|$ divides $|G|$.
Corollary 147. Let G be a finite group.
If $H<K<G$, then $[G: H]=[G: K][K: H]$.
Corollary 148. Let G be a finite group of order n.
Then $g^{n}=e$ for all $g \in G$.
Corollary 149. Every group of prime order is cyclic.
Let G be a group of prime order.
Then the only subgroups of G are the trivial subgroup and G itself.
Any $a \in G$ such that $a \neq e$ is a generator of G.

Direct Products

Definition 150. External direct product of groups
Let (A, \cdot) and $(B, *)$ be groups.
Let G be the Cartesian product $A \times B=\{(a, b): a \in A, b \in B\}$.
Define component wise multiplication $\circ: G \times G \rightarrow G$ by $\left(a_{1}, b_{1}\right) \circ\left(a_{2}, b_{2}\right)=$ $\left(a_{1} \cdot a_{2}, b_{1} * b_{2}\right)$ for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B$.

Then $(A \times B, \circ)$ is a group, called the external direct product of A and B.

The identity of $A \times B$ is $\left(e, e^{\prime}\right)$ where e is identity of A and e^{\prime} is identity of B.

The inverse of (a, b) is $\left(a^{-1}, b^{-1}\right)$.
Let $G \times H$ be the direct product of finite groups G, H.
Then $|G \times H|=|G||H|$.
Example 151. Let $(\mathbb{R},+)$. Define addition on $\mathbb{R} \times \mathbb{R}=\mathbb{R}^{2}$ by $(a, b)+(c, d)=$ $(a+c, b+d)$. Then $\left(\mathbb{R}^{2},+\right)$ is an abelian group with identity $(0,0)$ and the additive inverse of (a, b) is $(-a,-b)$.

Example 152. $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$ is an abelian group of order 4 and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=$ $\{(0,0),(0,1),(1,0),(1,1)\}$. Each element of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has order 2, so there is no element of order 4 . Thus, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not cyclic. Since there are only 2 groups of order 4 up to isomorphism, then $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong V$. Hence, $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is isomorphic to the Klein 4 group which is isomorphic to D_{2}. Furthermore, $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \not \not \mathbb{Z}_{4}$.

Definition 153. External direct product of n groups
Let $n \in \mathbb{Z}^{+}, n \geq 2$.
Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups.
Then

$$
\begin{aligned}
\prod_{i=1}^{n} G_{i} & =G_{1} \times G_{2} \times \ldots \times G_{n} \\
& =\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right): g_{1} \in G_{1} \wedge g_{2} \in G_{2} \wedge \ldots \wedge g_{n} \in G_{n}\right\} \\
& =\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right): g_{i} \in G_{i} \text { for each } i \in\{1,2, \ldots, n\}\right\} \\
& =\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right):(\forall i \in\{1,2, \ldots, n\})\left(g_{i} \in G_{i}\right)\right\}
\end{aligned}
$$

Let $G=G_{1} \times G_{2} \times \ldots \times G_{n}$.
Let $a, b \in G$. Then for each $i \in\{1,2, \ldots, n\}$ there exist $a_{i}, b_{i} \in G_{i}$ such that $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.

Define component wise multiplication on G by the n tuple whose $i^{\text {th }}$ component is $a_{i} b_{i}$ for each i.

Then $a b=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$.
Theorem 154. Let $n \in \mathbb{Z}^{+}, n \geq 2$.
The external direct product of n groups is a group.
Therefore, the direct product of n groups is a group.
Theorem 155. A direct product of abelian groups is an abelian group.
Let $G_{1}, G_{2}, \ldots, G_{n}$ be additive abelian groups. Then the direct product $G=$ $G_{1} \times G_{2} \times \ldots \times G_{n}$ is called the direct sum of n groups and is denoted $\bigoplus_{i=1}^{n}$.

Therefore, $G=\bigoplus_{i=1}^{n} G_{i}=G_{1} \oplus G_{2} \oplus \ldots \oplus G_{n}$.
Hence, the direct sum of abelian groups is an abelian group.

Definition 156. External direct product of a group with itself n times

 Let $n \in \mathbb{Z}^{+}, n \geq 2$.Let G be a group. Then

$$
\begin{aligned}
G^{n} & =G \times G \times \ldots \times G \\
& =\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right): g_{1} \in G \wedge g_{2} \in G \ldots \wedge g_{n} \in G\right\} \\
& =\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right): g_{i} \in G \text { for each } i \in\{1,2, \ldots, n\}\right\} \\
& =\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right):(\forall i \in\{1,2, \ldots, n\})\left(g_{i} \in G\right)\right\}
\end{aligned}
$$

Example 157. Let $\left(\mathbb{Z}_{2},+\right)$ be the cyclic group of integers modulo 2. Let $n \in \mathbb{Z}^{+}$.

Then

$$
\begin{aligned}
\mathbb{Z}_{2}^{n} & =\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \ldots \times \mathbb{Z}_{2} \\
& =\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{1} \in \mathbb{Z}_{2} \wedge a_{2} \in \mathbb{Z}_{2} \ldots \wedge a_{n} \in \mathbb{Z}_{2}\right\} \\
& =\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in \mathbb{Z}_{2} \text { for each } i \in\{1,2, \ldots, n\}\right\} \\
& =\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right):(\forall i \in\{1,2, \ldots, n\})\left(a_{i} \in \mathbb{Z}_{2}\right)\right\}
\end{aligned}
$$

Thus, \mathbb{Z}_{2}^{n} is a group of all n tuples consisting of 0 or 1 (binary n tuples).
Let $\mathbb{Z}_{2}=\{0,1\}$ and $S=\{T, F\}$. Then $(S, \oplus) \cong\left(\mathbb{Z}_{2},+\right)$ since $\phi: S \rightarrow \mathbb{Z}_{2}$ defined by $\phi(F)=0$ and $\phi(T)=1$ is an isomorphism. Therefore, addition modulo 2 corresponds to logical XOR operation (\oplus).

Hence, \mathbb{Z}_{2}^{n} is a group of binary n tuples with binary operation logical XOR.
Let $a=(0,1,0,1,1,1,0,1)$ and $b=(0,1,0,0,1,0,1,1)$ in \mathbb{Z}_{2}^{8}.
Then $a b=(0,1,0,1,1,1,0,1)+(0,1,0,0,1,0,1,1)=(0,0,0,1,0,1,1,0)$.
Theorem 158. Let $G \times H$ be the external direct product of groups G, H. Let $(g, h) \in G \times H$. If g and h have finite order, then the order of (g, h) in $G \times H$ is the least common multiple of the orders of g and h.

Let $(g, h) \in G \times H$.
Then $|(g, h)|=l c m(|g|,|h|)$.
Corollary 159. Let $n \in \mathbb{Z}^{+}, n \geq 2$. Let $\prod_{i=1}^{n} G_{i}$ be the external direct product of n groups. Let $\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \prod_{i=1}^{n} G_{i}$. If each g_{i} has finite order a_{i} in G_{i}, then the order of $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ in $\prod_{i=1}^{n} G_{i}$ is the least common multiple of $a_{1}, a_{2}, \ldots, a_{n}$.
Theorem 160. Let $m, n \in \mathbb{Z}^{+}$.
Then $\left(\mathbb{Z}_{m} \times \mathbb{Z}_{n},+\right) \cong\left(\mathbb{Z}_{m n},+\right)$ iff $\operatorname{gcd}(m, n)=1$.
Corollary 161. Let n_{1}, \ldots, n_{k} be positive integers.
Then $\prod_{i=1}^{k} \mathbb{Z}_{n_{i}} \cong \mathbb{Z}_{n_{1} \ldots n_{k}}$.
Corollary 162. Let p_{1}, \ldots, p_{k} be distinct primes. Let $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$.
Then $\mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}^{e_{1}}} \times \ldots \times \mathbb{Z}_{p_{k}^{e_{k}}}$.

Definition 163. product of sets

Let H and K be subsets in a group G.
The product of H and K is the set $H K=\{h k: h \in H, k \in K\}$.
Let $x \in H K$. Then there exists $h \in H$ and $k \in K$ such that $x=h k$. Since $h \in H$ and $H \subset G$, then $h \in G$. Since $k \in K$ and $K \subset G$, then $k \in G$. Since $h k \in G$, then $x \in G$, so $H K \subset G$.
Proposition 164. If H and K are subgroups of an abelian group G, then $H K<G$.

Proposition 165. Let H and K be subgroups of a group G.
If $h^{-1} k h \in K$ for all $h \in H$ and all $k \in K$, then $H K<G$.
Proposition 166. Let H and K be subgroups of a group G.
Then $H K<G$ iff $K H \subset H K$.

Definition 167. Internal direct product of groups

Let G be a group with subgroups H, K such that

1. $G=H K=\{h k: h \in H, k \in K\}$.
2. $H \cap K=\{e\}$.
3. $h k=k h$ for all $h \in H, k \in K$.

Then G is called the internal direct product of H and K.

Normal Subgroups

Definition 168. Normal subgroup

Let H be a subgroup of a group G.
Then H is normal in G iff $(\forall g \in G)(\forall h \in H)\left(g h g^{-1} \in H\right)$.
$H \triangleleft G$ means H is normal in G.

Let G be a group with identity e.
Since $G<G$ and $g h g^{-1} \in G$ for all $g, h \in G$, then $G \triangleleft G$.
Therefore, every group is a normal subgroup of itself.
Since $g e g^{-1}=g g^{-1}=e \in\{e\}$ for all $g \in G$, then $\{e\} \triangleleft G$.
Therefore, the trivial subgroup is a normal subgroup of every group.
Definition 169. conjugate
Let G be a group.
Let $x \in G$.
Then y is a conjugate to x in G iff $(\exists a \in G)\left(y=a x a^{-1}\right)$.
Definition 170. Set $g H g^{-1}$
Let G be a group.
Let $H<G$.
Let $g \in G$.
Then $g H g^{-1}=\left\{g h g^{-1}: h \in H\right\}$.
Theorem 171. Let $H<G$. Then the following are equivalent:

1. $H \triangleleft G$.
2. $g H^{-1} \subset H$ for all $g \in G$.
3. $g H^{-1}=H$ for all $g \in G$.

Theorem 172. Let $H<G$.
Then $H \triangleleft G$ iff $g H=H g$ for all $g \in G$.
Therefore, a normal group H is a subgroup of G in which the left and right cosets of H in G are equal for each $g \in G$.

Thus, the left and right cosets of H in G are equal for each $g \in G$.
Hence, the partition of G into left cosets of H equals the partition of G into right cosets of H.

Therefore, in any normal subgroup H of $G, L_{H}=R_{H}$ where L_{H} is the collection of all distinct left cosets of H in G and R_{H} is the collection of all distinct right cosets of H in G.
Theorem 173. Every subgroup of an abelian group is normal.
Let H be a subgroup of an abelian group G.
Then $H \triangleleft G$.
Theorem 174. The intersection of two normal subgroups is a normal subgroup.
Let G be a group.
If $H \triangleleft G$ and $K \triangleleft G$, then $H \cap K \triangleleft G$.

Proposition 175. If G is a group and $H<G$, then $g H^{-1}<G$ and $g H^{-1} \cong$ H for all $g \in G$.

Definition 176. Normalizer of a subgroup

Let G be a group.
Let $H<G$.
The normalizer of H in G, denoted $N(H)$, is the set $N(H)=\{g \in G$: $\left.g H g^{-1}=H\right\}$.

Proposition 177. Let H be a subgroup of group G.
Let $N(H)=\{g \in G:(\forall h \in H)(g h=h g)\}$.
Then $N(H)$ is a subgroup of G, called the normalizer of H in G.
Proposition 178. If G is a group and $H<G$, then $N(H)<G$ and $H \subset N(H)$.

Definition 179. Centralizer of an element

Let G be a group.
Let $g \in G$.
The centralizer of g, denoted $C(g)$, is the set of elements of G that commute with g.

Therefore $C(g)=\{x \in G: x g=g x\}$.
Theorem 180. Let G be a group.
Let $g \in G$.
Then $C(g)<G$.
If g generates a normal subgroup of G, then $C(g) \triangleleft G$. We're stuck in this part of the proof!

Definition 181. Center of a group
Let $(G, *)$ be a group.
Let $a, b \in G$.
We say that a and b commute iff $a b=b a$.
The center of G, denoted $Z(G)$, is the set of elements of G that commute with all elements of G.

Therefore, $Z(G)=\{x \in G:(\forall g \in G)(x g=g x)\}$.
Theorem 182. The center of a group G is a normal subgroup of G.
Let G be a group.
Then $Z(G) \triangleleft G$.

Definition 183. Commutator

Let $(G, *)$ be a group.
Let $a, b \in G$.
The commutator of a and b, denoted by $[a, b]$, is $a b a^{-1} b^{-1}$.
Therefore, $[a, b]=a b a^{-1} b^{-1}$.

Definition 184. Commutator subgroup
Let $(G, *)$ be a group.
Let $a, b \in G$.
The commutator subgroup of G, denoted by G^{\prime}, is the subgroup of G generated by all the commutators.

Definition 185. simple group
A group G is simple if its only normal subgroups are $\{e\}$ and G.
A simple group cannot be decomposed any further.
Example 186. Any group of prime order is simple.
If G is a group of prime order, then its only subgroups are $\{e\}$ and G itself.
Hence, these are the only normal subgroups of G.
In particular, $\left(\mathbb{Z}_{p},+\right)$ is simple for prime p.
Definition 187. Quotient Group $\frac{G}{N}$ of order $[G: N]$
Let G be a group and $N \triangleleft G$.
Let $\frac{G}{N}$ be the set of all cosets of N in G.
Then $\frac{G}{N}=\{a N: a \in G\}$.
Define $(a N)(b N)=(a b) N$ for all $a N, b N \in \frac{G}{N}$.
Then $\left(\frac{G}{N}, *\right)$ is a group and $\left|\frac{G}{N}\right|=[G: N]$.
The identity is N and $(a N)^{-1}=a^{-1} N$.
$\left(\frac{G}{N}, *\right)$ is the factor group or quotient group of $G \operatorname{modulo} N$.
Each $a N$ is called a coset modulo N.
If G is finite, then $\left|\frac{G}{N}\right|=[G: N]=\frac{|G|}{|N|}$.
Example 188. $\frac{\mathbb{Z}}{n \mathbb{Z}}=\{n \mathbb{Z}, 1+n \mathbb{Z}, 2+n \mathbb{Z}, 3+n \mathbb{Z}, \ldots,(n-1)+n \mathbb{Z}\}=\left\{[0]_{n},[1]_{n},[2]_{n}, \ldots,[n-\right.$ $\left.1]_{n}\right\}=\mathbb{Z}_{n}$.
$\left|\frac{\mathbb{Z}}{n \mathbb{Z}}\right|=[\mathbb{Z}: n \mathbb{Z}]=n$.
$(k+\mathbb{Z})+(m+\mathbb{Z})=(k+m)+\mathbb{Z}$.
Theorem 189. If N is a subgroup of an abelian group G, then $\frac{G}{N}$ is abelian.
Theorem 190. If N is a subgroup of a cyclic group G, then $\frac{G}{N}$ is cyclic.
If $g \in G$ is a generator of G, then $g N$ is a generator of $\frac{G}{N}$.
Theorem 191. Let G be a group and let $Z(G)$ be the center of G.
If $\frac{G}{Z(G)}$ is cyclic, then G is abelian.

Homomorphisms

Homomorphisms are maps that preserve algebraic structure.

Definition 192. Group Homomorphism
Let $(G, *)$ and (H, \star) be groups.
Let $\phi: G \rightarrow H$ be a function.
Then ϕ is a homomorphism iff $\phi(a * b)=\phi(a) \star \phi(b)$ for all $a, b \in G$.
A homomorphism preserves the binary operation of G.

Example 193. trivial homomorphism

The trivial homomorphism is the group homomorphism $\phi: G \rightarrow G^{\prime}$ such that $\operatorname{ker}(\phi)=G$ and $\operatorname{Im}(\phi)=\left\{e^{\prime}\right\}$.

Thus, ϕ maps every element of G to the identity e^{\prime} of G^{\prime} and $\operatorname{Im}(\phi)=\phi(G)=$ $\left\{e^{\prime}\right\}$.

Example 194. Let $(\mathbb{Z},+)$ and $(G, *)$ be groups.
Let $g \in G$.
Let $\phi: \mathbb{Z} \rightarrow G$ be defined by $\phi(n)=g^{n}$ for all $n \in \mathbb{Z}$.
Let $m, n \in \mathbb{Z}$.
Then

$$
\begin{aligned}
\phi(m+n) & =g^{m+n} \\
& =g^{m} g^{n} \\
& =\phi(m) \phi(n) .
\end{aligned}
$$

Therefore, ϕ is a homomorphism.
Either g has finite order or g has infinite order.

Suppose g has infinite order.
Then $g^{n}=e$ implies $n=0$.
Hence, $\operatorname{ker}(\phi)=\{0\}=\langle 0\rangle$, so ϕ is injective.
The image is $\operatorname{Im}(\phi)=\{\phi(g): g \in \mathbb{Z}\}=\left\{g^{n}: n \in \mathbb{Z}\right\}$.
Since ϕ is injective, then $\mathbb{Z} \cong \operatorname{Im}(\phi)=\left\{\ldots, g^{-2}, g^{-1}, g^{0}, g, g^{2}, \ldots\right\}$.

Suppose g has finite order n.
Then $g^{k}=e$ iff $n \mid k$ for integer k.
Hence, $\operatorname{ker}(\phi)=\{k \in \mathbb{Z}: n \mid k\}=\{n m: m \in \mathbb{Z}\}=n \mathbb{Z}=\langle n\rangle$.
The image is $\operatorname{Im}(\phi)=\{\phi(g): g \in \mathbb{Z}\}=\left\{g^{n}: n \in \mathbb{Z}\right\}=\langle g\rangle$.
Let $\langle g\rangle$ be the cyclic subgroup of G generated by $g \in G$.
Then $\langle g\rangle=\left\{g^{k}: k \in \mathbb{Z}\right\}$ and $\langle g\rangle<G$.

Let $f: \mathbb{Z} \rightarrow\langle g\rangle$ be the restriction of ϕ to $\langle g\rangle$.
Let $g^{k} \in\langle g\rangle$.
Then $k \in \mathbb{Z}$.
Therefore, f is surjective.

Example 195. Let $\left(G L_{2}(\mathbb{R}), \cdot\right)$ and $\left(\mathbb{R}^{*}, \cdot\right)$ be groups.
Let $f: G L_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ be defined by $f(A)=\operatorname{det} A$ for all $A \in G L_{2}(\mathbb{R})$. Let $A \in G L_{2}(\mathbb{R})$. Then there exist $a, b, c, d \in \mathbb{R}$ such that

$$
\mathrm{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

and A is invertible. Thus, $\operatorname{det}(A)=a d-b c \neq 0$. Hence, $f(A) \in \mathbb{R}^{*}$.
Let $A, B \in G L_{2}(\mathbb{R})$.
Then

$$
\begin{aligned}
f(A B) & =\operatorname{det}(A B) \\
& =\operatorname{det}(A) \operatorname{det}(B) \\
& =f(A) f(B)
\end{aligned}
$$

Hence, f is a homomorphism.
Observe that

$$
\begin{aligned}
\operatorname{ker}(f) & =\left\{A \in G L_{2}(\mathbb{R}): f(A)=1\right\} \\
& =\left\{A \in G L_{2}(\mathbb{R}): \operatorname{det}(A)=1\right\} \\
& =S L_{2}(\mathbb{R})
\end{aligned}
$$

Example 196. Let $(\mathbb{R},+)$ and $\left(\mathbb{C}^{*}, \cdot\right)$ be groups.
Let $f: \mathbb{R} \rightarrow \mathbb{C}^{*}$ be defined by $f(\theta)=\operatorname{cis}(\theta)$ for all $\theta \in \mathbb{R}$.
Let $a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
f(a+b) & =\operatorname{cis}(a+b) \\
& =\cos (a+b)+i \sin (a+b) \\
& =\cos (a) \cos (b)-\sin (a) \sin (b)+i(\sin (a) \cos (b)+\cos (a) \sin (b)) \\
& =\cos (b)(\cos (a)+i \sin (a))-\sin (a) \sin (b)+i \cos (a) \sin (b) \\
& =\cos (b) \operatorname{cis}(a)+i \sin (b)(i \sin (a)+\cos (a)) \\
& =\cos (b) \operatorname{cis}(a)+i \sin (b) \operatorname{cis}(a) \\
& =\operatorname{cis}(a)(\cos (b)+i \sin (b)) \\
& =\operatorname{cis}(a) \operatorname{cis}(b) \\
& =f(a) f(b) .
\end{aligned}
$$

Hence, f is a homomorphism.
Let $T=\{z \in \mathbb{C}:|z|=1\}$ be the circle group.
Observe that

$$
\begin{aligned}
\operatorname{Im}(f) & =f(\mathbb{R}) \\
& =\left\{f(\theta) \in \mathbb{C}^{*}: \theta \in \mathbb{R}\right\} \\
& =\left\{\operatorname{cis}(\theta) \in \mathbb{C}^{*}: \theta \in \mathbb{R}\right\} \\
& =\left\{z \in \mathbb{C}^{*}:|z|=1\right\} \\
& =T
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\operatorname{ker}(f) & =\{\theta \in \mathbb{R}: f(\theta)=1\} \\
& =\{\theta \in \mathbb{R}: \operatorname{cis}(\theta)=1\} \\
& =\{2 \pi k: k \in \mathbb{Z}\} \\
& =\langle 2 \pi\rangle
\end{aligned}
$$

Note that $\langle 2 \pi\rangle \cong(\mathbb{Z},+)$.
Definition 197. Types of homomorphisms
An injective homomorphism is called a monomorphism.
A surjective homomorphism is called an epimorphism.
A bijective homomorphism is called an isomorphism.
An endomorphism is a homomorphism of a group with itself.
Therefore, the homomorphism $\phi: G \rightarrow G$ is called an endomorphism.
An automorphism is an isomorphism of a group with itself.
Therefore, the isomorphism $\phi: G \rightarrow G$ is called an automorphism.

Definition 198. Image of a Homomorphism

Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism.
The image of ϕ, denoted $\operatorname{Im}(\phi)$, is the set $\phi(G)=\left\{\phi(g) \in G^{\prime}: g \in G\right\}$.
Theorem 199. preservation properties of a group homomorphism
Let $(G, *)$ be a group with identity e.
Let $\left(G^{\prime}, \star\right)$ be a group with identity e^{\prime}.
Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism.
Then

1. $\phi(e)=e^{\prime}$. preserves identity
2. $(\forall a \in G)\left[\phi\left(a^{-1}\right)=(\phi(a))^{-1}\right]$. preserves inverses
3. $(\forall k \in \mathbb{Z})\left[\phi\left(a^{k}\right)=(\phi(a))^{k}\right]$. preserves powers of a
4. If $H<G$, then $\phi(H)<G^{\prime}$. preserves subgroups of G

In particular, since $G<G$, then $\phi(G)<G^{\prime}$.
This means the image of a homomorphism is a subgroup of G^{\prime}.
5. If $K^{\prime}<G^{\prime}$, then $\phi^{-1}\left(K^{\prime}\right)<G$. preserves subgroups of G^{\prime}

Moreover, if $K^{\prime} \triangleleft G^{\prime}$, then $\phi^{-1}\left(K^{\prime}\right) \triangleleft G$.

Definition 200. Kernel of a Homomorphism

Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism.
Let e be the identity of G.
Let e^{\prime} be the identity of G^{\prime}.
The kernel of ϕ, denoted $\operatorname{ker}(\phi)$, is the set $\left\{g \in G: \phi(g)=e^{\prime}\right\}$.
Therefore, $\operatorname{ker}(\phi)=\left\{g \in G: \phi(g)=e^{\prime}\right\}$.
Since $e \in G$ and $\phi(e)=e^{\prime}$, then $e \in \operatorname{ker}(\phi)$.
The group $\left\{e^{\prime}\right\}$ is the trivial subgroup of G^{\prime}.
Hence, the kernel of ϕ is the preimage of the trivial subgroup of G^{\prime}.
Therefore, $\operatorname{ker}(\phi)=\phi^{-1}\left\{e^{\prime}\right\}$.

Theorem 201. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism.
Then $\operatorname{ker}(\phi) \triangleleft G$.
Therefore the kernel of a group homomorphism $\phi: G \rightarrow G^{\prime}$ is a normal subgroup of G.

Theorem 202. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism.
Let e be the identity of G. Then

1. If ϕ is injective, then $G \cong \phi(G)$.
2. ϕ is injective iff $\operatorname{ker}(\phi)=\{e\}$.

Theorem 203. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism.
Let e be the identity of G. Then

1. ϕ is an epimorphism iff $\operatorname{Im}(\phi)=G^{\prime}$.
2. ϕ is a monomorphism iff $\operatorname{ker}(\phi)=\{e\}$.
3. ϕ is an isomorphism iff $\operatorname{ker}(\phi)=\{e\}$ and $\operatorname{Im}(\phi)=G^{\prime}$.

Theorem 204. The composition of group homomorphisms is a group homomorphism.

Let $f_{1}: G \rightarrow G^{\prime}$ be a group homomorphism.
Let $f_{2}: G^{\prime} \rightarrow G^{\prime \prime}$ be a group homomorphism.
Let $f_{2} \circ f_{1}: G \rightarrow G^{\prime \prime}$ be the composition of f_{1} and f_{2}.
Then $f_{2} \circ f_{1}$ is a group homomorphism.
Theorem 205. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel K.
Then $x K=K x=\phi^{-1}(\phi(x))$ for all $x \in G$.
The coset of the kernel with representative $x \in G$ is the preimage of x under ϕ.

Therefore, $x K=\phi^{-1}(\phi(x))=\{a \in G: \phi(a)=\phi(x)\}$.
Corollary 206. If G is a finite group and $\phi: G \rightarrow G^{\prime}$ is a group homomorphism, then $|G|=|\operatorname{ker}(\phi)||\operatorname{Im}(\phi)|$.
$|\operatorname{Im}(\phi)|$ is the number of distinct cosets of $\operatorname{ker}(\phi)$ in G.
Theorem 207. Let G be a group.
If $N \triangleleft G$, then $\eta: G \rightarrow \frac{G}{N}$ defined by $\eta(a)=a N$ for all $a \in G$ is a homomorphism such that $\operatorname{ker}(\eta)=N$.

We call η the natural surjective homomorphism from G onto $\frac{G}{N}$ with kernel N.
$\eta: G \rightarrow \frac{G}{N}$ is surjective.

Isomorphisms

Definition 208. Isomorphism

Let $(G, *)$ and (H, \star) be groups.
Let $\phi: G \rightarrow H$ be a function.
Then ϕ is an isomorphism of G with H iff

1. ϕ is a homomorphism
2. ϕ is bijective.

Therefore, an isomorphism is a bijective homomorphism.
$(G, *)$ is isomorphic to (H, \star) iff there exists an isomorphism $\phi: G \rightarrow H$.
$(G, *) \cong(H, \star)$ means $(G, *)$ is isomorphic to (H, \star)
Isomorphic algebraic structures are structurally identical.
If $(G, *) \cong(H, \star)$ then any algebraic property that is preserved by isomorphism and which is true of $(G, *)$ is also true of (H, \star).

Algebraic properties preserved by isomorphism:

1. closure is preserved.
2. associativity of $*$ is preserved.
3. commutativity of $*$ is preserved.
4. identity element is preserved.
5. invertible elements are preserved.

6 . subgroups are preserved.
Example 209. Let $\left(U_{4}, \cdot\right)$ be the fourth roots of unity with complex multiplication and $\left(\mathbb{Z}_{4},+\right)$ be the group of integers modulo 4 under addition.

Then $\left(\mathbb{Z}_{4},+\right) \cong\left(U_{4}, \cdot\right)$.
Example 210. $(\mathbb{R},+) \cong\left(\mathbb{R}^{+}, \cdot\right)$ since $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $\phi(x)=e^{x}$ for all $x \in \mathbb{R}$ is an isomorphism.

Example 211. For $n \neq 0,(\mathbb{Z},+) \cong(n \mathbb{Z},+)$ since $\phi: \mathbb{Z} \rightarrow n \mathbb{Z}$ defined by $\phi(k)=n k$ for all $k \in \mathbb{Z}$ is an isomorphism.
Example 212. Let $S=\left\{2^{k}: k \in \mathbb{Z}\right\}$.
Then $(S, \cdot)<\left(\mathbb{Q}^{+}, \cdot\right)$.
$(\mathbb{Z},+) \cong(S, *)$ since $\phi: \mathbb{Z} \rightarrow S$ defined by $\phi(n)=2^{n}$ for all $n \in \mathbb{Z}$ is an isomorphism.

Example 213. Let $M_{2}(\mathbb{R})=$ the set of all 2 x 2 matrices with real entries.
Let $H=$ the set of all matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ where $a, b \in \mathbb{R}$
Then $H \subset M_{2}(\mathbb{R})$ and $(H,+)$ and (H, \cdot) are binary structures.

Let $\phi: \mathbb{C} \mapsto H$ such that $\phi(a+b i)=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ where $a, b \in \mathbb{R}$.
Then $(\mathbb{C},+) \cong(H,+)$ and $(\mathbb{C}, \cdot) \cong(H, \cdot)$.
H is a matrix representation of the complex numbers.
Lemma 214. The isomorphism relation on groups is reflexive.
Let $(G, *)$ be a group.
Then $G \cong G$.
Therefore, every group is isomorphic to itself.
The identity map $\phi: G \rightarrow G$ be defined by $\phi(x)=x$ for all $x \in G$ is an isomorphism.

Lemma 215. The isomorphism relation on groups is symmetric.
Let $(G, *)$ and (H, \cdot) be groups.
If $G \cong H$, then $H \cong G$.
Therefore, if $\phi: G \rightarrow H$ is an isomorphism, then the inverse map $\phi^{-1}: H \rightarrow$ G is an isomorphism.

Lemma 216. The isomorphism relation on groups is transitive.
Let $(G, *),(H, \cdot),(K, \diamond)$ be groups.
If $G \cong H$ and $H \cong K$, then $G \cong K$.
Therefore, if $\phi: G \rightarrow H$ and $\psi: H \rightarrow K$ are isomorphisms, then $\psi \circ \phi: G \rightarrow$ K is an isomorphism.

Theorem 217. The isomorphism relation on groups is an equivalence relation on the class of all groups.

Let \cong be the isomorphism relation on the class of all groups.
Then \cong is reflexive, symmetric, and transitive.
Theorem 218. preservation properties of a group isomorphism
Let $\phi: G \rightarrow G^{\prime}$ be a group isomorphism. Then

1. $|G|=\left|G^{\prime}\right|$. preserves cardinality
2. If G is abelian, then G^{\prime} is abelian. preserves commutativity
3. If G is cyclic, then G^{\prime} is cyclic. preserves cyclic property
4. If H is a subgroup of G of order n, then $\phi(H)$ is a subgroup of G^{\prime} of order n. preserves finite subgroups
5. $\left(\forall a \in G, n \in \mathbb{Z}^{+}\right)(|a|=n \rightarrow|\phi(a)|=n)$. preserves finite order of an element

In particular, if G is finite, then if $|a|=|G|$, then $|\phi(a)|=|G|$.
Therefore, if G is a finite group and if a is a generator, then $\phi(a)$ is a generator.

Isomorphic cyclic groups

Theorem 219. Every cyclic group of infinite order is isomorphic to $(\mathbb{Z},+)$.
Theorem 220. Every cyclic group of finite order n is isomorphic to $\left(\mathbb{Z}_{n},+\right)$.
Since a cyclic group is either finite or infinite, then every cyclic group is isomorphic to either \mathbb{Z}_{n} or \mathbb{Z}.

Thus, up to isomorphism, the only cyclic groups are \mathbb{Z} and \mathbb{Z}_{n}.
Corollary 221. Every group of prime order p is isomorphic to $\left(\mathbb{Z}_{p},+\right)$.
Proposition 222. Let G be an abelian group with subgroups H and K.
If $H K=G$ and $H \cap K=\{e\}$, then $G \cong H \times K$.
Proposition 223. The identity map is an automorphism in any group.
Let $(G, *)$ be a group.
The identity map $I_{G}: G \rightarrow G$ defined by $I_{G}(x)=x$ for all $x \in G$ is an automorphism.

Example 224. Complex conjugation is an automorphism of the additive group of complex numbers.

Let $(\mathbb{C},+)$ be the additive group of complex numbers.
Then $\phi: \mathbb{C} \rightarrow \mathbb{C}$ defined by $\phi(a+b i)=a-b i$ is an automorphism of \mathbb{C}.
Example 225. Complex conjugation is an automorphism of the multiplicative group of nonzero complex numbers.

Let $\left(\mathbb{C}^{*}, \cdot\right)$ be the multiplicative group of nonzero complex numbers.
Then $\phi: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ defined by $\phi(a+b i)=a-b i$ is an automorphism of \mathbb{C}^{*}.
Theorem 226. Let $\operatorname{Aut}(G)$ be the set of all automorphisms of a group G.
Then $(\operatorname{Aut}(G), \circ)$ is a subgroup of $\left(S_{G}, \circ\right)$.
Definition 227. Group of Automorphisms $\operatorname{Aut}(G)$
Let $\operatorname{Aut}(G)$ be the set of all automorphisms of a group G.
Then $\operatorname{Aut}(G)=\{\alpha: G \rightarrow G \mid \alpha$ is an isomorphism $\}$.
$(A u t(G), \circ)$ is called the group of automorphisms of G.

- is function composition
$\operatorname{Aut}(G)<S_{G}$.
identity is the identity map $I_{G}: G \rightarrow G$ defined by $I_{G}(x)=x$ for all $x \in G$.
Proposition 228. inner automorphism
Let $\langle G, *\rangle$ be a group.
Let $g \in G$ be a fixed element.
Then the map $i_{g}: G \rightarrow G$ defined by $i_{g}(x)=g * x * g^{-1}$ for all $x \in G$ is an isomorphism of G with itself.
Theorem 229. First Isomorphism Theorem
Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel K.
Then there exists a group isomorphism $\psi: \frac{G}{K} \rightarrow \phi(G)$ defined by $\psi(g K)=$ $\phi(g)$ for all $g \in G$ such that $\psi \circ \eta=\phi$, where $\eta: G \rightarrow \frac{G}{K}$ is the natural homomorphism.

Therefore, the image of any group G under a homomorphism with kernel K is isomorphic to the quotient group $\frac{G}{K}$.

Thus, $\frac{G}{\operatorname{ker}(\phi)} \cong \operatorname{Im}(\phi)$.
Theorem 230. Second Isomorphism Theorem
Let H be a subgroup of G and let N be a normal subgroup of G. Let $H N=\{h k: h \in H \wedge k \in N\}$.
Then $H N<G$ and $N \triangleleft H N$ and $H \cap N \triangleleft H$ and $\frac{H}{H \cap N} \cong \frac{H N}{N}$.

