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Binary Operations

Definition 1. binary operation on a set
A binary operation on a set S is a function from S × S to S.
Therefore ∗ is a binary operation on S iff ∗ : S × S → S is a function.

Let S be a set.
Let ∗ be a binary operation on S.
Then ∗ : S × S → S is a function.
Let (a, b) ∈ S × S.
The image of (a, b) under ∗ is denoted a ∗ b.
Therefore (a, b) 7→ a ∗ b for each (a, b) ∈ S × S.
Thus, ∗ assigns the unique element a∗b ∈ S to each ordered pair of elements

(a, b) ∈ S × S.
Hence, ∗ assigns the unique element a ∗ b ∈ S for every a, b ∈ S.
Therefore, a binary operation on a set S is a rule for combining two elements

of S to produce a third element of S.

Definition 2. closure of a set
Let ∗ be a binary operation defined on a set S.
Then S is closed under ∗ iff (∀a, b ∈ S)(a ∗ b ∈ S).

Therefore, S is not closed under ∗ iff (∃a, b ∈ S)(a ∗ b 6∈ S).

Theorem 3. Properties of binary operations
Let ∗ be a binary operation on a set S. Then
1. Closure: S is closed under ∗.
2. Well defined: (∀a, b, c, d ∈ S)(a = c ∧ b = d → a ∗ b = c ∗ d). Law of

Substitution.
3. Left multiply (∀a, b, c ∈ S)(a = b→ c ∗ a = c ∗ b).
4. Right multiply (∀a, b, c ∈ S)(a = b→ a ∗ c = b ∗ c).

Let ∗ : S × S → S be a binary relation from S × S to S defined by a ∗ b for
all (a, b) ∈ S × S.

Then ∗ is a binary operation on S iff ∗ : S × S → S is well defined.



Therefore, ∗ is a binary operation on S iff
1. Existence: a ∗ b ∈ S for every (a, b) ∈ S × S.
This is the same as:
Closure: (∀a, b ∈ S)(a ∗ b ∈ S).
2. Uniqueness: a ∗ b is unique for every (a, b) ∈ S × S.
This is the same as: (∀a, b ∈ S)(a ∗ b is unique).
If (a, b), (c, d) ∈ S × S such that (a, b) = (c, d), then a = c and b = d, so

a ∗ b = c ∗ d.

Definition 4. binary algebraic structure
A binary structure (S, ∗) is a nonempty set S with a binary operation ∗

defined on S.

Let (S, ∗) be a binary structure.
Since ∗ is a binary operation on set S, then S is closed under ∗.
Therefore, a binary structure is closed under its binary operation.

Definition 5. Atttributes of binary operations
Let ∗ be a binary operation defined over a set S.
1. ∗ is associative iff (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S.
2. ∗ is commutative iff a ∗ b = b ∗ a for all a, b ∈ S.

Let ∗ be a binary operation defined over a set S.
The binary operation ∗ is not associative iff (∃, a, b, c ∈ S) such that (a∗b)c 6=

a ∗ (b ∗ c).
The binary operation ∗ is not commutative iff (∃a, b ∈ S) such that a ∗ b 6=

b ∗ a.

Let S be finite, |S| = n, n ∈ Z+.

Since ∃nn2

binary operations on S, then ∃nn2

finite binary structures.
Since ∃nn(n+1)/2 commutative binary operations on S, then ∃nn(n+1)/2 finite

commutative binary structures.

Let S be a finite set with |S| = n, n ∈ Z+.

Then there are n(n2) binary operations on S.
There are nn(n+1)/2 commutative binary operations on S.
How many associative binary operations exist?

Definition 6. left and right identity elements
Let (S, ∗) be a binary structure.
An element e ∈ S is a left identity with respect to ∗ iff (∀a ∈ S)(e∗a = a).
An element e ∈ S is a right identity with respect to ∗ iff (∀a ∈ S)(a∗e = a).

Definition 7. identity element
Let (S, ∗) be a binary structure.
An element e ∈ S is an identity with respect to ∗ iff (∀a ∈ S)(e∗a = a∗e =

a).
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Proposition 8. If a binary structure has an identity element, then the identity
element is unique.

Let (S, ∗) be a binary structure with identity e ∈ S.
Then e is unique.

Definition 9. left and right inverse elements
Let (S, ∗) be a binary structure with identity e ∈ S.
Let a ∈ S.
An element b ∈ S is a left inverse of a iff b ∗ a = e.
An element b ∈ S is a right inverse of a iff a ∗ b = e.

Definition 10. inverse element
Let (S, ∗) be a binary structure with identity e ∈ S.
Let a ∈ S.
Then a is invertible iff there exists b ∈ S such that a ∗ b = b ∗ a = e.
Therefore a is invertible iff (∃b ∈ S)(a ∗ b = b ∗ a = e).

Let (S, ∗) be a binary structure with identity e ∈ S.
Let a ∈ S.
We say that a is invertible iff a has an inverse in S.
Therefore, a is invertible iff (∃b ∈ S)(a ∗ b = b ∗ a = e) and we say that b is

an inverse of a.

Proposition 11. Let (S, ∗) be an associative binary structure with identity.
Then
1. The inverse of every invertible element of S is unique.
2. Let a ∈ S.
If a is invertible, then (a−1)−1 = a. inverse of an inverse
3. Let a, b ∈ S.
If a and b are invertible, then (a ∗ b)−1 = b−1 ∗ a−1. inverse of a product

Let (S, ∗) be an associative binary structure with identity e.
Let a be an invertible element of S.
Then a ∈ S and the inverse of a is unique.
The inverse of a is denoted a−1.
Therefore, a−1 ∈ S and a ∗ a−1 = a−1 ∗ a = e.

Definition 12. left and right cancellation laws
Let (S, ∗) be a binary structure.
The left cancellation law holds iff c ∗ a = c ∗ b implies a = b for all

a, b, c ∈ S.
The right cancellation law holds iff a ∗ c = b ∗ c implies a = b for all

a, b, c ∈ S.

Proposition 13. Let (S, ∗) be an associative binary structure with a left identity
such that each element has a left inverse.

Then the left cancellation law holds.
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Let (S, ∗) be an associative binary structure with a left identity such that
each element has a left inverse.

Then the left cancellation law holds, so c ∗ a = c ∗ b implies a = b for all
a, b, c ∈ S.

Proposition 14. Let (S, ∗) be an associative binary structure with a right iden-
tity such that each element has a right inverse.

Then the right cancellation law holds.

Let (S, ∗) be an associative binary structure with a right identity such that
each element has a right inverse.

Then the right cancellation law holds, so a ∗ c = b ∗ c implies a = b for all
a, b, c ∈ S.

Definition 15. idempotent element
Let (S, ∗) be a binary structure.
An element a ∈ S is an idempotent with respect to ∗ iff a ∗ a = a.

Definition 16. zero element
Let (S, ∗) be a binary structure.
An element z ∈ S is a zero with respect to ∗ iff (∀x ∈ S)(z ∗ x = x ∗ z = z).

Proposition 17. If a binary structure has a zero element, then the zero element
is unique.

Let (S, ∗) be a binary structure with a zero element z ∈ S.
Then z is unique, so there is exactly one element of S that is a zero.

Groups

A group is an algebraic structure upon which a single binary operation is defined.
Groups describe symmetries of objects.
A symmetry is an undetectable motion.
An object is symmetric if it has symmetries.

Definition 18. Group
Let G be a set.
Define binary operation ∗ : G×G→ G by a ∗ b ∈ G for all a, b ∈ G.
A group (G, ∗) is a set G with a binary operation ∗ defined on G such that

the following axioms hold:
G1. ∗ is associative.
(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
G2. There is an identity element for ∗.
(∃e ∈ G)(∀a ∈ G)(e ∗ a = a ∗ e = a).
G3. Each element has an inverse for ∗.
(∀a ∈ G)(∃b ∈ G)(a ∗ b = b ∗ a = e).
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Let (G, ∗) be a group.
Since ∗ is a binary operation on G, then G is closed under ∗.
Since (G, ∗) is a group and G is closed under ∗, then G satisfies the following

axioms:
G1 Closure a ∗ b ∈ G for all a, b ∈ G.
G2. Associative (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
G3. Identity (∃e ∈ G)(∀a ∈ G)(e ∗ a = a ∗ e = a).
G4. Inverses (∀a ∈ G)(∃b ∈ G)(a ∗ b = b ∗ a = e).

Since there exists an identity element in a group, then G contains at least one
element.

Therefore, any group contains at least one element.

By axiom G4, every element of a group has an inverse, so every element of a
group is invertible.

Theorem 19. Uniqueness of group identity
The identity element of a group is unique.

Let (G, ∗) be a group with identity e ∈ G.
Then e is unique, so there is exactly one element of G that is identity.

Let (G, ·) be a multiplicative group with identity e ∈ G.
Then e is unique and ea = ae = a for all a ∈ G.

Let (G,+) be an additive group with identity 0 ∈ G.
Then 0 is unique and 0 + a = a+ 0 = a for all a ∈ G.

Theorem 20. Uniqueness of group inverses
The inverse of each element in a group is unique.

Let (G, ∗) be a group with identity e ∈ G.
Let a ∈ G.
The inverse of a is unique and is denoted a−1.
Hence, a ∗ a−1 = a−1 ∗ a = e.
Therefore, a ∗ a−1 = a−1 ∗ a = e for all a ∈ G.

Let (G, ·) be a multiplicative group with identity e ∈ G.
The inverse of element a ∈ G is a−1 ∈ G and a−1 is unique and aa−1 =

a−1a = e for all a ∈ G.

Let (G,+) be an additive group with identity 0 ∈ G.
The inverse of element a ∈ G is −a ∈ G and −a is unique and a + (−a) =

(−a) + a = 0 for all a ∈ G.

Proposition 21. The identity element in a group is its own inverse.

5



Let (G, ∗) be a group with identity e ∈ G.
Since the identity element is its own inverse, then e−1 = e.

Theorem 22. Group inverse properties
Let (G, ∗) be a group. Then
1) (a−1)−1 = a for all a ∈ G. inverse of an inverse
2) (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G. inverse of a product

Let (G, ·) be a multiplicative group.
Then (a−1)−1 = a for all a ∈ G and (ab)−1 = b−1a−1 for all a, b ∈ G.

Let (G,+) be an additive group.
Then −(−a) = a for all a ∈ G and −(a+ b) = (−b) + (−a) for all a, b ∈ G.

Proposition 23. inverse of a finite product
Let g1, g2, ..., gn be elements of a group (G, ∗).
Then (g1g2...gn)−1 = g−1

n g−1
n−1...g

−1
2 g−1

1 for all n ∈ Z+.

Let (G, ·) be a multiplicative group.
Let g1, g2, ..., gn be elements of G.
Then (g1 · g2 · ... · gn)−1 = g−1

n · g−1
n−1 · ... · g

−1
2 · g−1

1 .

Let (G,+) be an additive group.
Let g1, g2, ..., gn be elements of G.
Then −(g1 + g2 + ...+ gn) = (−gn) + (−gn−1) + ...+ (−g2) + (−g1).

Theorem 24. Group Cancellation Laws
Let (G, ∗) be a group.
For all a, b, c ∈ G
1. if c ∗ a = c ∗ b then a = b. (left cancellation law)
2. if a ∗ c = b ∗ c then a = b. (right cancellation law)

Corollary 25. Unique solutions to linear equations
Let (G, ∗) be a group.
Let a, b ∈ G.
1. The linear equation a ∗ x = b has a unique solution in G.
2. The linear equation x ∗ a = b has a unique solution in G.

Proposition 26. A group has exactly one idempotent element, the identity
element.

Therefore, if (G, ∗) is a group with identity e ∈ G, then e ∗ e = e.

Proposition 27. left sided definition of a group
A group (G, ∗) is a set G with a binary operation ∗ defined on G such that

the following axioms hold:
G1. ∗ is associative.
(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
G2. There is a left identity element for ∗.
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(∃e ∈ G)(∀a ∈ G)(e ∗ a = a).
G3. Each element has a left inverse for ∗.
(∀a ∈ G)(∃b ∈ G)(b ∗ a = e).

Let (G, ∗) be an associative binary structure with a left identity such that
each element has a left inverse.

Then (G, ∗) is a group.

Proposition 28. right sided definition of a group
A group (G, ∗) is a set G with a binary operation ∗ defined on G such that

the following axioms hold:
G1. ∗ is associative.
(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
G2. There is a right identity element for ∗.
(∃e ∈ G)(∀a ∈ G)(a ∗ e = a).
G3. Each element has a right inverse for ∗.
(∀a ∈ G)(∃b ∈ G)(a ∗ b = e).

Let (G, ∗) be an associative binary structure with a right identity such that
each element has a right inverse.

Then (G, ∗) is a group.

Definition 29. abelian group
A group (G, ∗) is abelian iff ∗ is commutative.

multiplicative group notation

Let (G, ·) be a multiplicative group.
G1. Multiplication · is associative.
Therefore, (ab)c = a(bc) for all a, b, c ∈ G.
G2. Let e ∈ G be the multiplicative identity element.
Then (∀a ∈ G)(ea = ae = a).
G3. Each element a has a multiplicative inverse a−1.
Therefore, (∀a ∈ G)(∃a−1 ∈ G)(aa−1 = a−1a = e).

Definition 30. powers of an element in a multiplicative group
Let (G, ·) be a multiplicative group with multiplicative identity e ∈ G.
Let a ∈ G,n ∈ Z.
Define a0 = e.
Define an = an−1 · a if n > 0.
Define a−n = (a−1)n if n > 0.

Let (G, ·) be a multiplicative group with multiplicative identity e ∈ G.
Let a ∈ G.
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Observe that
a1 = a1−1 · a = a0 · a = e · a = a.
Hence, a1 = a.
Therefore, a1 = a for all a ∈ G.
This means a raised to the first power is a for all a ∈ G.
In particular, e1 = e for multiplicative identity e ∈ G.

Observe that
a−1 = (a−1)1 = a−1.
Therefore, a−1 = a−1.
This means a raised to the negative 1 power is the multiplicative inverse of

a for all a ∈ G.

Observe that an is the product of a with itself n times when n > 0.
Observe that a−n is the product of a−1 with itself n times when n > 0.

Lemma 31. Let (G, ·) be a multiplicative group.
Let a ∈ G.
Then an · a = a · an for all n ∈ Z+.

Theorem 32. Laws of Exponents for a multiplicative group
Let (G, ·) be a multiplicative group.
1. If a ∈ G, then a−n = (a−1)n = (an)−1 for all n ∈ Z+.
2. If a ∈ G, then an ∈ G for all n ∈ Z.
3. If a ∈ G, then am · an = am+n for all m,n ∈ Z.
4. If a ∈ G, then (am)n = amn for all m,n ∈ Z.
5. If a, b ∈ G and G is abelian, then (ab)n = an · bn for all n ∈ Z.

Proposition 33. Let (G, ·) be a multiplicative group with multiplicative identity
e ∈ G.

(∀n ∈ Z)(en = e).

Therefore, if (G, ·) is a multiplicative group with identity e ∈ G, then e−1 =
e.

additive group notation

Let (G,+) be an additive group.
G1. Addition + is associative.
Therefore, (a+ b) + c = a+ (b+ c) for all a, b, c ∈ G.
G2. Let 0 ∈ G be the additive identity element.
Then (∀a ∈ G)(0 + a = a+ 0 = a).
G3. Each element a has an additive inverse −a.
Therefore, (∀a ∈ G)(∃ − a ∈ G)(a+ (−a) = −a+ a = 0).
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Definition 34. multiples of an element in an additive group
Let (G,+) be an additive group with additive identity 0 ∈ G.
Let a ∈ G,n ∈ Z.
Define 0a = 0.
Define na = (n− 1)a+ a if n > 0.
Define (−n)a = n(−a) if n > 0.

Let (G,+) be an additive group with additive identity 0 ∈ G.
Let a ∈ G.

Observe that
1a = (1− 1)a+ a = 0a+ a = 0 + a = a.
Hence, 1a = a.
Therefore, 1a = a for all a ∈ G.
This means positive 1 times a is a for all a ∈ G.
In particular, 1 · 0 = 0 for additive identity 0 ∈ G.

Observe that
(−1)a = 1(−a) = −a.
Therefore, (−1)a = −a.
This means negative 1 times a is the additive inverse of a for all a ∈ G.

Observe that na is the sum of a with itself n times when n > 0.
Observe that (−n)a is the sum of −a with itself n times when n > 0.

Lemma 35. Let (G,+) be an additive group.
Let a ∈ G.
Then na+ a = a+ na for all n ∈ Z+.

Theorem 36. Laws of Exponents for an additive group
Let (G,+) be an additive group.
1. If a ∈ G, then (−n)a = n(−a) = −(na) for all n ∈ Z+.
2. If a ∈ G, then na ∈ G for all n ∈ Z.
3. If a ∈ G, then ma+ na = (m+ n)a.
4. If a ∈ G, then n(ma) = (mn)a for all m,n ∈ Z.
5. If a, b ∈ G and G is abelian, then n(a+ b) = na+ nb for all n ∈ Z.

Proposition 37. Let (G,+) be an additive group with additive identity 0 ∈ G.
(∀n ∈ Z)(n0 = 0).

Therefore, if (G,+) is an additive group with identity 0 ∈ G, then −0 = 0.

Definition 38. Order of a Group
Let (G, ∗) be a group.
The order of G, denoted |G|, is the cardinality of the set G.
If G is finite, then |G| is the number of elements in G.
If G is not finite, then the group is of infinite order.
A finite group is a group whose order is finite.
An infinite group is a group whose order is infinite.
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Finite Groups of small order

Let (G, ∗) be a group.
Each g ∈ G appears exactly once in each row and exactly once in each

column of the group’s Cayley table.
The order of a finite group with n elements is n.

Group of order 1 (trivial group)
* e
e e

A group of order 1 is abelian.
The trivial group is cyclic.
G1 = 〈e〉
subgroup of G1 is {e}

Group of order 2

* e a
e e a
a a e

A group of order 2 is abelian and cyclic and each element is its own inverse.
G2 = 〈a〉 ∼= (Z2,+)
subgroups of G2 are G2, {e}

Group of order 3

* e a b
e e a b
a a b e
b b e a

A group of order 3 is abelian and cyclic and a and b are inverses of each
other.

G3 = 〈a〉 = 〈b〉 ∼= (Z3,+)
subgroups of G3 are G3, {e}

Group of Order 4

A group of order 4 is abelian.

Klein 4-group (V4, ∗)

* e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Klein 4-group has property ∀x ∈ V .x ∗ x = e.
The product of any two distinct elements other than e is the third such

element.
Klein 4-group has exactly 3 nontrivial proper subgroups: {e, a}, {e, b}, {e, c}
Klein 4-group is not cyclic.
Klein 4-group is isomorphic to the group of symmetries of a rectangle.
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(Z4,+)

* e a b c
e e a b c
a a b c e
b b c e a
c c e a b

{0, 2} is the only nontrivial proper subgroup of (Z4,+).
(Z4,+) is cyclic.
Z4 = 〈1〉 = 〈3〉.

Subgroups

Definition 39. Subgroup
Let (G, ∗) be a group.
A subgroup of G is a subset of G that is a group under the binary operation

of G.

Therefore H is a subgroup of (G, ∗) iff
1. H ⊂ G
2. (H, ∗) is a group under the operation induced by G.
H < G denotes that H is a subgroup of G.

Let (G, ∗) be an arbitrary group with identity e ∈ G.
Since G ⊂ G and (G, ∗) is a group, then G < G.
Therefore every group is a subgroup of itself.

Since e ∈ G, then {e} ⊂ G, so {e} < G.
Therefore the trivial group is a subgroup of every group.

Let H be a subgroup of a group (G, ∗) with identity e ∈ G.
Since {e} is a subgroup of every group and H is a group, then {e} is a

subgroup of H.
Therefore, {e} ⊂ H, so e ∈ H.

A proper subgroup is a subgroup of G other than G.
Let H < G.
Then H is a proper subgroup of G iff H 6= G.

Theorem 40. Two-Step Subgroup Test
Let H be a nonempty subset of a group (G, ∗).
Then H < G iff
1. Closed under ∗: (∀a, b ∈ H)(a ∗ b ∈ H).
2. Closed under inverses: (∀a ∈ H)(a−1 ∈ H).
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Theorem 41. One-Step Subgroup Test
Let H be a nonempty subset of a group (G, ∗).
Then H < G iff
1. (∀a, b ∈ H)(a ∗ b−1 ∈ H).

Theorem 42. Subgroup relation is transitive.
Let (G, ∗) be a group.
If H < K and K < G, then H < G.

Since every group is a subgroup of itself, then G < G, so the subgroup
relation is reflexive.

Suppose G < H and H < G.
Then G ⊂ H and H ⊂ G, so G = H.
Therefore, the subgroup relation is anti-symmetric.

Since< is reflexive, anti-symmetric, and transitive, then the subgroup relation
is a partial order.

Therefore, we can create subgroup lattice diagrams of a given group.

Theorem 43. The intersection of subgroups is a subgroup.
The intersection of a family of subgroups is a subgroup.

Let (G, ∗) be a group.
Let {Hi : i ∈ I} be a collection of subgroups of G for some index set I.
Each Hi is a subgroup of G.
Let H = ∩i∈IHi.
Then H < G.

In particular, the intersection of any two subgroups is a subgroup.
Therefore, if H < G and K < G, then H ∩K < G.

The union of subgroups is not necessarily a subgroup.

Cyclic Groups

Order of a group element

Definition 44. Order of an element
Let (G, ∗) be a group with identity e ∈ G.
An element a ∈ G has finite order iff (∃n ∈ Z+)(an = e).
The order of a, denoted |a|, is the smallest positive integer k such that

ak = e.
An element a ∈ G has infinite order iff ¬(∃n ∈ Z+)(an = e).

12



Let G be a group with identity e ∈ G.
Let a ∈ G.
Either there exists a positive integer n such that an = e or there does not

exist a positive integer n such that an = e.
Hence, either a has finite order or a has infinite order.
Therefore, every element of a group has either finite order or infinite order.
Since e1 = e, then the order of the identity element of a group is 1.

Let G be a group with identity e ∈ G.
Suppose a 6= e has finite order n.
Then n is the least positive integer such that an = e.
If n = 1, then e = an = a1 = a, so a = e.
But, a 6= e, so n 6= 1.
Hence, n > 1.
Therefore, if a 6= e has finite order n, then n > 1.

If (G,+) is an additive group with identity 0 ∈ G, then
An element a ∈ G has finite order iff (∃n ∈ Z+)(na = 0).
The order of a, denoted |a|, is the smallest positive integer k such that

ka = 0.
An element a ∈ G has infinite order iff ¬(∃n ∈ Z+)(na = 0).

Theorem 45. Let (G, ∗) be a group.
Let a ∈ G.
If as = at and s 6= t for some s, t ∈ Z, then a has finite order.

Suppose a has infinite order.
Then a does not have finite order.
Hence, there does not exist distinct s, t ∈ Z such that as = at.
Therefore, as 6= at for every distinct s, t ∈ Z.
Consequently, all elements ak are distinct, so every power of a is distinct.
Therefore, if a has infinite order, then every power of a is distinct.

Let (G,+) be an additive group.
Let a ∈ G.
If sa = ta and s 6= t for some s, t ∈ Z, then a has finite order.

Therefore, if a has infinite order, then every multiple of a is distinct.

Theorem 46. Let (G, ∗) be a group with identity e ∈ G.
If a ∈ G has finite order n, then ak = e iff n|k for all k ∈ Z.

Let (G,+) be an additive group with identity 0 ∈ G.
If a ∈ G has finite order n, then ka = 0 iff n|k for all k ∈ Z.

Corollary 47. Let (G, ∗) be a group with identity e ∈ G.
If a ∈ G has finite order n, then as = at iff s ≡ t (mod n) for all s, t ∈ Z.
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Let (G,+) be an additive group with identity 0 ∈ G.
If a ∈ G has finite order n, then sa = ta iff s ≡ t (mod n) for all s, t ∈ Z.

Theorem 48. Let (G, ∗) be a group with identity e ∈ G.
If a ∈ G has finite order n, then the order of as is n

gcd(s,n) for all s ∈ Z.

Let (G,+) be an additive group with identity 0 ∈ G.
If a ∈ G has finite order n, then the order of sa is n

gcd(s,n) for all s ∈ Z.

Corollary 49. Let (G, ∗) be a group.
Let a ∈ G have order n.
Let s ∈ Z.
If s and n are relatively prime, then as has order n.

Corollary 50. Let (G, ∗) be a group.
Let a ∈ G have order n.
Let s ∈ Z.
If s divides n, then as has order n

s .

Proposition 51. The order of a is the same as the order of a−1.
Let (G, ∗) be a group.
Let a ∈ G.
Then |a| = |a−1|.

Therefore, the order of an element is the order of its inverse.

Proposition 52. The order of ab is the same as the order of ba.
Let (G, ∗) be a group.
Let a, b ∈ G.
Then |ab| = |ba|.

Therefore, if ab has finite order n, then ba has finite order n.

Proposition 53. Every element of a finite group has finite order.
Let (G, ∗) be a finite group with identity e ∈ G.
Then (∀a ∈ G)(∃k ∈ Z+)(ak = e).

Let (G, ∗) be a finite group with identity e ∈ G.
Let a ∈ G.
Then there exists k ∈ Z+ such that ak = e, so a has finite order.
Hence, every element of G has finite order.
Therefore, every element of a finite group has finite order.

Theorem 54. Finite Subgroup Test
Let H be a nonempty finite subset of a group (G, ∗).
Then H < G iff H is closed under ∗ of G.

14



Cyclic subgroups

Definition 55. Cyclic subgroup of G
Let (G, ∗) be a group.
Let g ∈ G.
Let 〈g〉 = {gn : n ∈ Z}.
Then 〈g〉 is called the cyclic subgroup of G generated by g.

Every element of a group G generates a cyclic subgroup of G.
If (G,+) is an additive group, then 〈g〉 = {ng : n ∈ Z}.

Theorem 56. The cyclic subgroup of a group G generated by g ∈ G is
the smallest subgroup of G that contains g.

Let (G, ∗) be a group.
Let g ∈ G.
Then 〈g〉 = {gn : n ∈ Z} is a subgroup of G.
Moreover, 〈g〉 is the smallest subgroup of G that contains g.

Let (G, ∗) be a group with identity e ∈ G.
The cyclic subgroup generated by g ∈ G is 〈g〉 = {gn : n ∈ Z}.
The identity of 〈g〉 is g0 = e.
The inverse of gk is g−k for k ∈ Z, since gk ∗ g−k = gk−k = g0.

〈g〉 is the smallest subgroup of G that contains g.
Therefore any subgroup of G that contains g must contain 〈g〉.
Hence, 〈g〉 must be a subgroup of any group that contains g.
Therefore, for every K < G such that g ∈ K, then 〈g〉 < K.
Therefore, if K < G and g ∈ K, then 〈g〉 < K.

Definition 57. cyclic group
A group (G, ∗) is cyclic iff (∃g ∈ G)(G = 〈g〉).
The element g is a generator of G.

Theorem 58. Every cyclic group is abelian.

Let (G, ∗) be a group.
If G is cyclic, then G is abelian.

Example 59. abelian group is not necessarily cyclic
1. The Klein-4 group (V4,+) is abelian, but it is not cyclic.
2. The circle group (T, ·) is abelian, but it is not cyclic.

Theorem 60. Every subgroup of a cyclic group is cyclic.

Let G be a cyclic group.
If H < G, then H is cyclic.

Corollary 61. The only subgroups of (Z,+) are (nZ,+) for all n ∈ Z.
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Let n ∈ Z.
Then (nZ,+) is a subgroup of (Z,+).
Since Z is cyclic and nZ < Z, then nZ is cyclic.

Example 62. The set of all linear combinations of positive integers a
and b under addition is a cyclic group with generator gcd(a, b)

Let a, b ∈ Z+.
Let G = {ma+ nb : m,n ∈ Z}.
Then (G,+) is a cyclic group with generator gcd(a, b).

Let a, b ∈ Z+ be fixed.
Let G = {ma+ nb : m,n ∈ Z}.
Then (G,+) is a cyclic group with generator gcd(a, b) and G = {kd : k ∈ Z}.
additive identity is 0 = 0a+ 0b.
additive inverse of ma+ nb is −ma− nb.

Theorem 63. Characterization of cyclic subgroup
Let (G, ∗) be a group.
Let a ∈ G.
The order of a is the order of the cyclic subgroup of G generated by a.
1. If a has finite order n, then 〈a〉 is finite and 〈a〉 = {e, a1, a2, ..., an−1}.
2. If a has infinite order, then 〈a〉 is infinite and 〈a〉 = {..., a−2, a−1, e, a1, a2, ...}

and each power of a is distinct.

Let (G,+) be an additive group.
Let a ∈ G.
The order of a is the order of the cyclic subgroup of G generated by a.
1. If a has finite order n, then 〈a〉 is finite and 〈a〉 = {0, 1a, 2a, ..., (n− 1)a}.
2. If a has infinite order, then 〈a〉 is infinite and 〈a〉 = {...,−2a,−1a, 0, 1a, 2a, ...}.

Proposition 64. Generators of a finite cyclic group
Let n ∈ Z+.
Let G be a cyclic group of order n.
If g ∈ G is a generator of G, then the generators of G are elements gk such

that gcd(k, n) = 1.

Corollary 65. The generators of (Zn,+) are congruence classes [k] such that
k ∈ Z+ and 1 ≤ k ≤ n and gcd(k, n) = 1.

Therefore there are φ(n) generators of (Zn,+) where φ is Euler’s totient
function.

The generators of (Zn,+) are positive integers that are relatively prime to
the modulus n.

Definition 66. Subgroup of G generated by a1, ..., an
Let (G, ∗) be a group with identity e and a1, a2, ..., an ∈ G.
Let 〈a1, a2, ..., an〉 be the set of all finite products of integer powers of

a1, ..., an.
Let N0 = {0, 1, 2, 3, ...}.
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Then 〈a1, a2, ..., an〉 = {bε11 · b
ε2
2 · · · b

εk
k : k ∈ N0, bi ∈ {a1, ..., an}, εi ∈ Z}

Whenever k = 0 then bε11 · b
ε2
2 · · · b

εk
k is the empty product and is defined to

be e.
Therefore, bε11 · b

ε2
2 · · · b

εk
k = e iff k = 0.

〈a1, a2, ..., an〉 is called the subgroup of G generated by the set {a1, a2, ..., an}.

Theorem 67. Let (G, ∗) be a group.
Let a1, a2, ..., an ∈ G.
Then 〈a1, a2, ..., an〉 is a subgroup of G.
Moreover, 〈a1, a2, ..., an〉 is the smallest subgroup of G that contains {a1, a2, ..., an}.

Therefore any subgroup of G that contains {a1, a2, ..., an} must contain
〈a1, a2, ..., an〉.

Theorem 68. Let (G, ∗) be a group.
Let S ⊂ G.
The smallest subgroup that contains S is the intersection of all subgroups

that contain S.

Definition 69. Subgroup Generated by a subset of a group
Let (G, ∗) be a group.
Let X ⊂ G.
Let Hi be a subgroup of G such that X ⊂ Hi.
Let I be some index set.
Let {Hi : i ∈ I} be the collection of all subgroups of G that contain X.
Let 〈X〉 = ∩i∈IHi.
Then 〈X〉 is called the subgroup of G generated by X.
〈X〉 is the smallest subgroup of G containing X.
We say that X generates 〈X〉.
If 〈X〉 = G, then X generates G.
If X is finite, we say that G is finitely generated.

Let 〈X〉 be the subgroup of G generated by X ⊂ G.
〈X〉 is the smallest subgroup of G containing X means:
For every K < G such that X ⊂ K, 〈X〉 < K.
If X consists of a single element a ∈ G, then 〈X〉 = 〈a〉, the cyclic subgroup

of G generated by a.
If X is a finite set, then there exist a1, a2, ..., an ∈ G such that X =

{a1, a2, ..., an} and 〈X〉 = 〈a1, a2, ..., an〉.

Additive Number Groups

Integers under addition (Z,+)

(Z,+) is an abelian group.
Additive identity is 0.
Additive inverse of a is −a.
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(Z,+) is cyclic.
Z = 〈1〉 = 〈−1〉 with generators 1 and −1.
Since nZ < Z and Z is abelian, then nZC Z, so nZ is normal in Z.

Multiples of integer n under addition (nZ,+)

Let n ∈ Z.
(nZ,+) is an abelian group.
Additive identity is 0.
Additive inverse of nk is −nk.
(nZ,+) is cyclic.
nZ = {nk : k ∈ Z} = 〈n〉 = 〈−n〉 with generators n and −n.

Integers modulo n under addition (Zn,+) of order n

Let n ∈ Z+.
(Zn,+) is an abelian group and |Zn| = n.
Additive identity is [0].
Additive inverse of [a] is −[a] = [n− a].
(Zn,+) is cyclic.
Zn = {[0], [1], ..., [n − 1]} = 〈[1]〉 = {a[1] : a ∈ Z} = {[a] : a ∈ Z} with

generators [k] such that 1 ≤ k ≤ n and gcd(k, n) = 1.

Let p ∈ Z+ be prime.
Then (Zp,+) has no proper nontrivial subgroups.

Rational numbers under addition (Q,+)

(Q,+) is an abelian group.
Additive identity is 0 = 0

1 .
Additive inverse of a

b is −ab = −a
b .

(Q,+) is not cyclic.

Real numbers under addition (R,+)

(R,+) is an abelian group.
Additive identity is 0.
Additive inverse of a is −a.
(R,+) is not cyclic.

Complex numbers under addition (C,+)

(C,+) is an abelian group.
Additive identity is 0 = 0 + 0i.
Let x, y ∈ R.
Additive inverse of z = x+ yi is −z = −x− yi.
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Example 70. Gaussian integers (Z[i],+)
Let Z[i] = {a+ bi : a, b ∈ Z}.
Then (Z[i],+) is an abelian group under complex addition.

Multiplicative Number Groups

Nonzero rational numbers under multiplication (Q∗, ·)
(Q∗, ·) is an abelian group.

Multiplicative identity is 1 = 1
1 .

Multiplicative inverse of a
b is b

a .

Nonzero real numbers under multiplication (R∗, ·)
(R∗, ·) is an abelian group.

Multiplicative identity is 1.
Multiplicative inverse of a is 1

a .

Nonzero complex numbers under multiplication (C∗, ·)
(C∗, ·) is an abelian group.

Multiplicative identity is 1 = 1 + 0i.
Multiplicative inverse of z ∈ C∗ is 1

z = z̄
|z|2 , where z̄ is the complex conjugate

of z and |z| is the modulus of z.

Positive rational numbers under multiplication (Q+, ·)
(Q+, ·) is an abelian group.

Multiplicative identity is 1 = 1
1 .

Multiplicative inverse of a
b is b

a .

Positive real numbers under multiplication (R+, ·)
(R+, ·) is an abelian group.

Multiplicative identity is 1.
Multiplicative inverse of a is 1

a .

Subgroup Relationships of number groups

(nZ,+) < (Z,+) < (Q,+) < (R,+) < (C,+)
(Z[i],+) < (C,+)
(Q∗, ·) < (R∗, ·) < (C∗, ·)
(Q+, ·) < (R+, ·) < (R∗, ·)
(Un, ·) < (T, ·) < (C∗, ·)
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Group of Units of Integers modulo n

Definition 71. Group of Units of Zn of order φ(n)
Let n ∈ Z+.
Let Z∗n be the set of all units of Zn.
Then Z∗n is the set of all congruence classes of Zn which have multiplicative

inverses in Zn.

Z∗n = {[a] ∈ Zn : [a] is a unit}
= {[a] ∈ Zn : [a] has a multiplicative inverse}
= {[a] ∈ Zn : gcd(a, n) = 1}
= {[a] : a ∈ Z, 1 ≤ a < n ∧ gcd(a, n) = 1}

Lemma 72. Let a, b ∈ Z and n ∈ Z+.
If gcd(a, n) = gcd(b, n) = 1, then gcd(ab, n) = 1.

Proposition 73. Group of units of Zn under multiplication is abelian.
Let n ∈ Z+.
Let Z∗n be the set of all congruence classes of Zn that have multiplicative

inverses.
Then (Z∗n, ·) is an abelian group under multiplication modulo n.

(Z∗n, ·) is an abelian group under multiplication modulo n.
Multiplicative identity is [1].
Multiplicative inverse of [x] is [y] such that [x][y] = [y][x] = [1].
Multiplicative inverse of [1] is [1] since [1][1] = [1 · 1] = [1].
Multiplicative inverse of [n−1] is [n−1] since [n−1][n−1] = [(n−1)(n−1)] =

[n2−2n+1] = [n(n−2)+1] = [n(n−2)]+[1] = [n][n−2]+[1] = [0][n−2]+[1] =
[0] + [1] = [1].

If n > 1, then [0] has no multiplicative inverse, so [0] 6∈ Z∗n.
[1] ∈ Z∗n and [n− 1] ∈ Z∗n for all n ∈ Z+.

Proposition 74. Let n ∈ Z+.
Let Z∗n be the group of units of Zn.
Then |Z∗n| = φ(n).

Complex Number Groups

Example 75. Circle Group (T, ·)
Let T be the unit circle in the complex plane.
Then T = {z ∈ C : |z| = 1}.
(T, ·) is an abelian group.
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Multiplicative identity is 1 = 1 + 0i.
Multiplicative inverse of z ∈ T is 1

z = z̄, where z̄ is the complex conjugate
of z.

Hence, if z ∈ T and z = cis(θ), then z−1 = 1
z = cis(−θ) for some θ ∈ R.

Therefore, if z ∈ T and z = eiθ, then z−1 = 1
z = e−iθ for some θ ∈ R.

(T, ·) is a subgroup of the group (C∗, ·).
(T, ·) is not cyclic.

Example 76. nth Roots of Unity of order n is (Un, ·)
Let n ∈ Z+.
Let Un = {z ∈ C : zn = 1}.
Then (Un, ·) is an abelian group and |Un| = n.

Multiplicative identity is 1 = 1 + 0i.
(Un, ·) is a subgroup of the circle group (T, ·).

(Un, ·) is cyclic with generator g ∈ Un and g = cos( 2π
n ) + i sin( 2π

n ) = ei
2π
n .

Observe that

Un = {z ∈ C : zn = 1}
= 〈g〉

= 〈cos(
2π

n
) + i sin(

2π

n
)〉

= 〈ei 2πn 〉
= {(ei 2πn )k : k ∈ Z}
= {ei 2kπn : k ∈ Z}.

Examples of roots of unity.
U1 = {1}
U2 = {1,−1}
U3 = {1, ei2π/3, ei4π/3} = {1, −1+i

√
3

2 , −1−i
√

3
2 }

U4 = {1, i,−1,−i}
U6 = {1, eiπ/3, ei2π/3, eiπ, ei4π/3, ei5π/3} = {1, 1+i

√
3

2 , −1+i
√

3
2 ,−1, −1−i

√
3

2 , 1−i
√

3
2 }

Example 77. Quaternion Group of Order 8 (Q8, ·)
Let i2 = −1 and define

1 =

[
1 0
0 1

]

i =

[
i 0
0 −i

]
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j =

[
0 1
−1 0

]

k =

[
0 i
i 0

]
Then i2 = j2 = k2 = −1 and

ij = k and jk = i and ki = j and
ik = −j and kj = −i and ji = −k.
Let Q8 = {±1,±i,±j,±k}.
Then (Q8, ·) is a non-abelian group where · is matrix multiplication over C.
|Q8| = 8
(Q8, ·) is not cyclic.
· 1 -1 i -i j -j k -k
1 1 -1 i -i j -j k -k
-1 -1 1 -i i -j j -k k
i i -i -1 1 k -k -j j
-i -i i 1 -1 -k k j -j
j j -j -k k -1 1 i -i
-j -j j k -k 1 -1 -i i
k k -k j -j -i i -1 1
-k -k k -j j i -i 1 -1

Function Groups

Example 78. Let S be a set.
Let F = {f : S → S|f is a function}.
Then (F,+) is an abelian group, additive identity is zero function f(x) = 0,

additive inverse of f(x) is −f(x) = (−f)(x).

Example 79. Let G = {f : R→ R|f is a function}.
Then (G,+) is an abelian group, additive identity is zero function f(x) = 0,
additive inverse of f(x) is −f(x) = (−f)(x).
Let C = {f ∈ G : f is a continuous function}.
Then (C,+) < (G,+).
Let C[0,1] = {f ∈ C : f is a continuous function on unit interval [0, 1]}.
Then (C[0,1],+) < (C,+).
Let D = {f ∈ G : f is a differentiable function}.
Then (D,+) < (C,+).

Additive Matrix Groups

Example 80. Mm×n(R) = m× n real matrices
Then (Mm×n(R),+) = abelian group, additive identity=zero matrix, −A =

additive inverse of matrix A.
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Example 81. Mm×n(C) = m× n complex matrices
Then (Mm×n(C),+) = abelian group, additive identity=zero matrix, −A =

additive inverse of matrix A.

Multiplicative Matrix Groups

Definition 82. Mn(R)
Let n ∈ Z+.
The set of all n× n matrices over R is denoted Mn(R).
Therefore Mn(R) is the set of all n× n matrices with entries in R.

Definition 83. Mn(C)
Let n ∈ Z+.
The set of all n× n matrices over C is denoted Mn(C).
Therefore Mn(C) is the set of all n× n matrices with entries in C.

Definition 84. general linear group
Let F be a field.
Let GLn(F ) be the set of all n× n invertible matrices with entries in F .
Then GLn(F ) = {A : A is an invertible square matrix }.
GLn(F ) is called the general linear group of degree n over F .

Example 85. General linear group is a group under matrix multipli-
cation

Let F be a field.
Then GLn(F ) is a group under matrix multiplication.

Let GLn(F ) be the general linear group over a field F under matrix multi-
plication.

Let A,B ∈ GLn(F ).
Then A and B are invertible square n× n matrices with entries in F .
The product AB is an invertible square matrix and (AB)−1 = B−1A−1.
The identity n× n matrix I is multiplicative identity.
The matrix A−1 is the multiplicative inverse of matrix A and AA−1 = I =

A−1A.
In general matrix multiplication is not commutative, so in general GLn(F )

is non-abelian.

Example 86. (special linear group)
SLn(R) = {A ∈ GLn(R) : det A = 1}

(SLn, ·) < (GLn, ·)
Therefore, the special linear group is a subgroup of the general linear group.

Example 87. (orthogonal group)
On = {A ∈ GLn(R) : A−1 = AT }
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Example 88. (special orthogonal group)
SOn = {A ∈ On : det A = 1}

Example 89. (unitary group)
Un = {A ∈ GLn(C) : A−1 = A−T }

Example 90. (special unitary group)
SUn = {A ∈ Un : det A = 1}
special case:

SO2 = {

[
cos θ − sin θ

sin θ cos θ

]
: θ ∈ R} is abelian

Example 91. GLn(R) ⊂Mn(R)
GLn(R) = n× n real invertible matrices, non-abelian
GLn(C) = n× n complex invertible matrices, non-abelian
GLn(Zp) = n× n invertible matrices with entries in Zp, p prime

if A represents T : Rn 7→ Rn and B represents S : Rn 7→ Rn then AB
represents composition T ◦ S

A+B = B +A, but AB 6= BA
Associative law: A(BC) = (AB)C
I = identity matrix and AI = IA = A
Distributive law: A(B + C) = AB +AC
A is invertible ↔ ∃B s.t. AB = BA = I
I is invertible. Take B = I.
Not all matrices are invertible.
e.g. 0 is not invertible since 0A = 0 = A0 and B = 1

a
1× 1 matrices [a] is invertible ↔ a 6= 0
2× 2 matrices

A =

[
a b

c d

]
invertible ↔ ad− bc 6= 0
Then

A−1 =
1

det(A)
=

1

ad− bc

[
d −b

−c a

]
A is invertible ↔ det(A) 6= 0
If inverse exists, then it is unique.
Suppose AB = AC = I.
Then B(AB) = B(AC) = BI, so (BA)B = (BA)C so IB = IC so B = C.
GLn is closed under ·.
Two proofs: Suppose A,B are invertible.
Then AB is invertible since (B−1A−1)(AB) = B−1(A−1A)B = B−1IB = I.
Alt pf:
det(AB) = det(A)· det(B) and GLn(R) = {A : det(A) 6= 0}
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Permutation Groups

A permutation is a symmetry of a configuration of identical objects.
A permutation of a sequence of symbols is a rearrangement of the order

of the symbols.

Definition 92. permutation map
A permutation of a set S is a bijection σ : S → S.

A permutation is an ordered arrangement of symbols.

Definition 93. Sn is the set of all permutations of a finite set.
Let n ∈ Z+.
Let S = {1, 2, ..., n} be a set.
Let Sn be the set of all permutations of S.
Then Sn = {σ : S → S| σ is a permutation }.

Let σ ∈ Sn.
Then σ : S → S is a permutation, so σ is an ordered arrangement of n

symbols.
Thus, σ is a sequence of n elements.
By the multiplication principle, there are n choices to place a symbol into

the first slot, n − 1 choices to place a symbol into the second slot, ..., 1 choice
to place a symbol in the nth slot.

Hence, there are n! different permutations of S, so there are n! different
permutations in Sn.

Therefore, |Sn| = n!.

Definition 94. symmetric group Sn of degree n
Let n ∈ Z+.
Let {1, 2, ..., n} be a set.
Let Sn be the set of all permutations of {1, 2, ..., n}.
Then Sn = {σ : σ is a permutation of n symbols}.
Sn is called the symmetric group on n symbols.

Let n ∈ Z+.
Let S = {1, 2, ..., n}.
Let Sn be the symmetric group on n symbols.
Then Sn = {σ : S → S| σ is a permutation }.
Let σ : S → S be an element of Sn.
Then σ : S → S is a permutation, so σ : S → S is a bijective function.

Definition 95. symmetric group on a set
Let X be a set.
Let SX be the set of all permutations of X.
SX is called the symmetric group on X.
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Let X be a nonempty set.
Let SX be the symmetric group on X.
Then SX = {σ : X → X| σ is a permutation }.
Let σ : X → X be an element of SX .
Then σ : X → X is a permutation, so σ : X → X is a bijective function.

Theorem 96. (SX , ◦) is a group under function composition
Let X be a nonempty set.
Let SX be the set of all permutations of X.
Define ◦ to be function composition on SX .
Then (SX , ◦) is a group, called the symmetric group on X.

Therefore, (SX , ◦) is the symmetric group on a set X under function com-
position.

The identity of SX is the identity map id : X → X defined by x 7→ x.
The inverse of permutation σ : X → X is the permutation σ−1 : X → X

defined by σ−1(y) = x iff σ(x) = y.
Therefore, σ ◦ σ−1 = σ−1 ◦ σ = id.

Let σ ∈ SX .
Then σ : X → X is a permutation, so σ is a bijective function.
Since function composition is generally not commutative, then (SX , ◦) is a

generally nonabelian group.

Subgroups:
X = vector space : Iso(X) = all isomorphisms of X onto X
X = topological space : Homeo(X) = all homeomorphisms of X onto X

Corollary 97. (Sn, ◦) is a group under function composition
Let n ∈ Z+.
The symmetric group on n symbols is a group under function composition.

Therefore, the symmetric group (Sn, ◦) is the group of all permutations of
n symbols under function composition.

(Sn, ◦) is the group of all permutations on a set of n elements.
The identity map id is the identity of Sn.
The number of permutations of n distinct objects taken n at a time is

P (n, n) = n!.
Therefore, the number of permutations in Sn is |Sn| = n!.
Since the order of Sn is a finite number, then Sn is a finite group.

Let σ ∈ Sn.
Then σ : i 7→ σ(i) for all i ∈ {1, 2, ..., n}.
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Let στ = σ ◦ τ .
Then (σ ◦ τ)(x) = σ(τ(x)) for all x ∈ X.
Hence, στ = σ ◦ τ means do τ first and then do σ second.
Therefore, our convention is to perform permutation multiplication(function

composition) from right to left.

Definition 98. permutation group
Let X be a nonempty set.
Let (SX , ◦) be the symmetric group on X under function composition.
A subgroup of (SX , ◦) is called a permutation group on X.

A permutation group preserves the structure of the set X (“symmetries”).

Let n ∈ Z+.
A subgroup of (Sn, ◦) is called a permutation group.
Therefore, a permutation group is a subgroup of the symmetric group.

Example 99. (S3, ◦) is a non-abelian group.
Let S = {1, 2, 3}.
Then |S3| = 3! = 6, so there are 6 permutations of S.
The permutations are:
I. (1)

(
1 2 3
1 2 3

)
= motion that does nothing (identity permutation)

II. (2 3)(
1 2 3
1 3 2

)
= keep position 1 fixed, and swap 2 and 3

III. (1 2)(
1 2 3
2 1 3

)
= keep position 3 fixed, and swap 1 and 2

IV. (1 2 3)(
1 2 3
2 3 1

)
= rotate each position once to the left

V. (1 3 2)(
1 2 3
3 1 2

)
= rotate each position once to the right

VI. (1 3)(
1 2 3
3 2 1

)
= keep position 2 fixed, and swap 1 and 3
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The Cayley table for (S3, ◦) is shown below.
◦ (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1) (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)
(1 2) (1 2) (1) (1 3 2) (1 2 3) (2 3) (1 3)
(1 3) (1 3) (1 2 3) (1) (1 3 2) (1 2) (2 3)
(2 3) (2 3) (1 3 2) (1 2 3) (1) (1 3) (1 2)
(1 2 3) (1 2 3) (1 3) (2 3) (1 2) (1 3 2) (1)
(1 3 2) (1 3 2) (2 3) (1 2) (1 3) (1) (1 2 3)

Proposition 100. Let n ∈ Z+.
If n ≥ 3, then (Sn, ◦) is non-abelian.

S1 = {id} is abelian (trivial group).
S2 = {id, (1 2)} is abelian and (S2, ◦) ∼= (Z2,+).
S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} and S3 is non-abelian.

Theorem 101. Cayley’s Theorem
Every group G is isomorphic to a subgroup of the symmetric group on G.

Therefore, every group is isomorphic to a permutation group.
For each g ∈ G define the permutation λg : G → G by λg(x) = gx for all

x ∈ G.
The isomorphism g 7→ λg is called the left regular representation of G.
For each g ∈ G define the permutation ρg : G → G by ρg(x) = xg for all

x ∈ G.
The isomorphism g 7→ ρg is called the right regular representation of

G.

Corollary 102. Every finite group of order n is isomorphic to a subgroup of
Sn.

Cycle notation for permutations

Cycle notation is a compact way to write permutations.

Definition 103. k cycle
Let X be a nonempty set.
Let (SX , ◦) be the symmetric group on X.
Let σ ∈ SX .
Then σ : X → X is a permutation of X.
Let k be a positive integer with k ≥ 2.
Let S = {a1, a2, ..., ak} be a subset of X such that
1. σ(ai) = ai (mod k)+1 for all ai ∈ S.
This means

σ(a1) = a2

σ(a2) = a3

...

σ(ak) = a1
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2. (∀x ∈ X − S)(σ(x) = x).
Then σ is a cycle of length k.
σ is called a k cycle.
k represents the number of elements moved by σ.
(a1 a2 ... ak) denotes a cycle of length k.

Let X be a nonempty set.
Let S = {a1, a2, ..., ak} be a subset of X.
Let σ = (a1 a2 ... ak).
Then σ is a k cycle.
Therefore, a1 7→ a2 7→ a3... 7→ ak 7→ a1 and σ(x) = x for all x ∈ X − S.

Denote the identity permutation by id = (1) in cycle notation.

A cycle is a type of permutation.
A cycle can be written in several different ways.

Proposition 104. inverse of a cycle
Let {a1, a2, ..., ak} be a subset of a nonempty set X.
Let σ be a k cycle in the symmetric group on X.
If σ = (a1 a2 ... ak), then σ−1 = (ak ak−1 ... a2 a1).

The inverse of a cycle is the same elements written in reverse order.

Since there are several ways to represent the same cycle, the following is also
true.

Observe that

σ−1 = (ak ak−1 ... a2 a1)

= (a1 ak ak−1 ... a3 a2)

= (a2 a1 ak ak−1 ... a4 a3)

= ...

= (ak−1 ak−2 ... a2 a1 ak).

Proposition 105. order of a cycle
Let k ∈ Z+.
A cycle of length k has order k.

Let n ∈ Z with n ≥ 2.
Let k ∈ Z+ such that 2 ≤ k ≤ n.
Let σ be a k cycle in the symmetric group (Sn, ◦).
Let id ∈ Sn be the identity permutation.
Then |σ| = k, so k is the least positive integer such that σk = id.

Definition 106. Disjoint cycle
Let α = (a1 a2 ... am) and β = (b1 b2 ... bn) be two cycles in the symmetric

group on set X.
Then α and β are disjoint iff ai 6= bj for all i, j.
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Let α = (a1 a2 ... am) and β = (b1 b2 ... bn) be disjoint cycles.
Let A = {a1, a2, ..., am} and B = {b1, b2, ..., bn}.
Then A ∩B = ∅.
Therefore, disjoint cycles have no elements in common.

Theorem 107. Disjoint cycles commute.
Let α and β be disjoint cycles in the symmetric group on set X.
Then αβ = βα.

Therefore cycles with no elements in common commute with each other.
However, cycles with an element in common do not commute.

Theorem 108. Cycle Decomposition Theorem
Every permutation of a nonempty finite set can be written as a finite product

of disjoint cycles.

Let n ∈ Z+.
Every permutation in (Sn, ◦) can be written as a finite product of disjoint

cycles.
Moreover, the decomposition of a permutation into disjoint cycles is unique

up to the order and representation of cycles.

Since every permutation on a nonempty finite set can be decomposed into a
product of cycles, then cycles are the building blocks of all permutations.

Corollary 109. The order of a permutation is the least common multiple of
the orders of its disjoint cycles.

Let σ ∈ (Sn, ◦).
Since every permutation is a finite product of disjoint cycles, then there exist

k ∈ Z+ and disjoint cycles α1, α2, ..., αk such that σ = α1 ◦ α2 ◦ ... ◦ αk.
Let |α1| = m1 and |α2| = m2 and ... |αk| = mk.
Then |σ| = lcm(m1,m2, ...,mk).

Proposition 110. Let τ be a k cycle.
If σ is a permutation, then στσ−1 is a k cycle.

Parity of a permutation

Definition 111. transposition
A transposition is a permutation that swaps two elements and leaves ev-

erything else fixed.
A transposition is a 2-cycle.

Let n ∈ Z+ and n ≥ 2.
Let X be a set of n elements.
Let id be the identity permutation of Sn.
Let {a, b} be a subset of X.
Let τ ∈ Sn be a transposition of X defined by τ = (a, b).
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Since τ is a 2 cycle, then τ(a) = b and τ(b) = a and τ(x) = x for x ∈
X − {a, b}.

Therefore a 7→ b 7→ a and b 7→ a 7→ b, so (b a) = (a b).

Since a transposition is a 2 cycle, then a transposition is a cycle of length 2,
so a transposition has order 2.

Since τ has finite order |τ | = 2, then 2 is the least positive integer such that
τ2 = id.

Since τ2 = id, then τ−1 = τ .
Observe that τ2 = (a b)(a b) = id and (a b) = τ = τ−1 = (a b)−1 = (b a).

Theorem 112. A permutation is a product of transpositions
Every permutation of a finite set containing at least two elements can be

written as a finite product of transpositions.

Therefore, for n ≥ 2, every permutation in (Sn, ◦) can be written as a finite
product of transpositions.

Hence, every permutation of a finite set can be written as a product of
transpositions.

However, the decomposition of a permutation as a product of transpositions
is not unique.

To decompose a permutation into a product of transpositions
1. Write the permutation as a product of disjoint cycles.
2. Decompose each cycle into a product of transpositions.
Observe that

(a1 a2 ... ak) = (a1 a2)(a2 a3)...(ak−1 ak)

= (a1 ak)(a1 ak−1) ...(a1 a3)(a1 a2).

Definition 113. even and odd permutation
Let X be a finite set of at least two elements.
Let σ be a permutation of X.
The permutation σ is even iff σ can be written as a product of an even

number of transpositions.
The permutation σ is odd iff σ can be written as a product of an odd number

of transpositions.

Lemma 114. Reduction Lemma
If the identity permutation id can be written as a product of k transpositions,

then id can be written as a product of k − 2 transpositions.

Lemma 115. Even Identity Lemma
If the identity permutation is a product of k transpositions, then k is even.

Theorem 116. Parity Theorem
If a permutation is a product of k and m transpositions, then either k and

m are both even or k and m are both odd.
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Therefore, if a permutation is a product of k and m transpositions, then k
and m must have the same parity.

Hence, a permutation cannot be both even and odd.
Thus, a permutation must be either even or odd, but not both.

Let n ∈ Z+ and n ≥ 2.
Let X = {1, 2, ..., n} be a set of n elements.
Then {1, 2} is a subset of X.
Since id = (1 2)(1 2) is a product of 2 transpositions and 2 is even, then the

identity permutation is an even permutation.
Since (1, 2)(1, 2) = id, then the identity map is an even permutation.

Theorem 117. A cycle of even length is odd and a cycle of odd length is even.

Since a transposition is a 2 cycle and 2 is even, then a transposition is an
odd permutation.

Therefore, every transposition is an odd permutation.

Theorem 118. The parity of a permutation is the same as the parity of its
inverse.

Let n ≥ 2.
Let α ∈ Sn.
Then α−1 ∈ Sn and the parity of α is the same as the parity of α−1.
Thus, if α is an even permutation, then α−1 is an even permutation.
If α is an odd permutation, then α−1 is an odd permutation.

Theorem 119. The composition of two permutations of the same parity is
even.

Let n ≥ 2.
Let σ, τ ∈ Sn such that σ and τ have the same parity.
Then στ is an even permutation.
Thus, if σ and τ are both even, then στ is even.
If σ and τ are both odd, then στ is even.

Theorem 120. The composition of two permutations of opposite parity is odd.

Let n ≥ 2.
Let σ, τ ∈ Sn such that σ and τ have opposite parity.
Then στ is an odd permutation.
Thus, if σ is even and τ is odd, then στ is an odd.
If σ is odd and τ is even, then στ is an odd.

Definition 121. signature of a permutation
The signature of a permutation σ, denoted sgn(σ), is 1 if σ is even and −1

if σ is odd.

Since a permutation is either even or odd, but not both, then its signature
is unique.
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Proposition 122. The function Sn → {−1, 1} that assigns to each permutation
of Sn its signature is a group homomorphism.

Theorem 123. Let (Sn, ◦) be the symmetric group on n symbols.
Let An = {σ ∈ Sn : σ is an even permutation }.
Then An < Sn.

Definition 124. Alternating Group An of order n!
2

Let n ≥ 2.
Let (Sn, ◦) be the symmetric group on n symbols.
Let An = {σ ∈ Sn : σ is an even permutation }.
(An, ◦) is called the alternating group.

Since An < Sn, then the alternating group is a subgroup of the symmetric
group.

Theorem 125. For n ≥ 2, the number of even permutations in Sn equals the
number of odd permutations.

Moreover, the order of An is n!
2 .

Proposition 126. Let H be a subgroup of G such that [G : H] = 2.
Then H CG.

Since [Sn : An] = |Sn|
|An| = |Sn|

|Sn|/2 = 2, then this implies An C Sn.

Hence, Sn is not simple.

Symmetric group S4

(S4, ◦) = nonabelian group of order 4! = 24
identity = id
The elements in S4 are:
id, (34), (23), (234), (243), (24),
(12), (12)(34), (123), (1234), (1243), (124),
(132), (1342), (13), (134), (13)(24), (1324),
(1432), (142), (143), (14), (1423), (14)(23).

Alternating group A4

(A4, ◦) = nonabelian group of order 4!
2 = 12

identity = id
The elements in A4 are:
id, (234), (243), (12)(34),
(123), (124), (132), (134),
(13)(24), (142), (143), (14)(23).
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Symmetry Groups

Theorem 127. The set of all geometric transformations of n dimensional space
is a group under function composition.

Let Sym(Rn) be the set of all geometric transformations of the n dimensional
vector space Rn.

Then Sym(Rn) = {T |T : Rn → Rn is a bijective map}.
Let ◦ be function composition.
Then (Sym(Rn), ◦) is the symmetric group on Rn.
The identity element is the identity map id.
The inverse of the transformation α : R2 → R2 is the inverse transformation

α−1 : R2 → R2.
Sym(R2) is the group of all transformations of R2.
Sym(R3) is the group of all transformations of R3.

Theorem 128. The set of all bijective isometries of 2 dimensional space is a
subgroup of Sym(R2).

Iso(R2) < Sym(R2).

Definition 129. The isometry group of R2 is the group of all bijective
isometries from R2 onto R2 under function composition.

Let (Iso(R2), ◦) be the isometry group of R2.
Then Iso(R2) = {σ|σ : R2 → R2 is a bijective isometry}.
The identity element is the identity map id.
The inverse of the bijective isometry α : R2 → R2 is the inverse isometry

α−1 : R2 → R2.

Definition 130. A regular n-gon is a closed, convex polygon with n equal
sides in the plane.

Definition 131. A rigid motion of the plane is a bijective map R2 → R2 that
preserves distance.

Therefore a rigid motion is a bijective isometry.

Definition 132. A symmetry of a figure is an undetectable rigid motion that
preserves distance.

Therefore, a symmetry of a figure is a bijective isometry that preserves the
figure.

Let X ⊂ R2.
Let f : R2 → R2 be an isometry.
Then f is a symmetry of X iff f(X) = X.
Therefore a symmetry of X is a distance preserving function f : R2 → R2

such that f(X) = X.

Theorem 133. The set of all symmetries of a regular n-gon in R2 under func-
tion composition is a subgroup of the isometry group of R2.
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Therefore, Dn < Iso(R2).
A geometric object is symmetric iff it has symmetries.
Let a, b be symmetries of a geometric object.
Define a ∗ b by do motion b first followed by do motion a.

Definition 134. Dihedral group Dn of order 2n
The dihedral group, denoted (Dn, ◦), is the set of all symmetries of a

regular n sided polygon under function composition.
Therefore, Dn is the group of symmetries of a regular n-gon under function

composition.
Hence, Dn is the group of undetectable rigid motions of a regular n-sided

polygon.
Dn = {ρ : ρ( is a symmetry of X } = {ρ : R2 → R2 ∈ Iso(R2)|ρ(X) = X}.
Dn consists of n rotations and n reflections.

There are n vertices to relabel to determine the number of rigid motions of
Dn.

There are n choices to replace the first vertex.
If we replace the first vertex by k, then the second vertex must be replaced

by either vertex k + 1 or vertex k − 1.
Hence, there are 2n choices for the given vertex to relabel, so there are 2n

possible rigid motions of Dn.
|Dn| = 2n
Since Dn < Iso(R2) and Iso(R2) < Sym(R2), then Dn < Sym(R2).

Theorem 135. (Dn, ◦) is isomorphic to a subgroup of (Sn, ◦).

Thus, there exists H < Sn such that Dn
∼= H, where n is the number of

vertices of a regular n-sided polygon.

Definition 136. The Euclidean group, denoted E(n), is the symmetry group
of n dimensional Euclidean space.

Symmetries of a rectangle that is not a square (D2)

Define the following symmetries of a non square rectangle with vertices 1, 2, 3, 4
labeled counterclockwise.

Let D2 = {e, r, sh, sv}.
Let e = do nothing motion (no rotation)
Let r = rotate by π
Let sh = reflect about the horizontal line through the center of the rectangle
Let sv = reflect about the vertical line through the center of the rectangle

* e r sh sv
e e r sh sv
r r e sv sh
sh sh sv e r
sv sv sh r e
D2 is abelian.
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e 7→ (1)

r 7→ (13)(24)

sh 7→ (12)(34)

sv 7→ (14)(23).

D2 < A4.
D2 is isomorphic to the Klein-4 group V = {e, a, b, c}.
An isomorphism from D2 to V is:

e 7→ e

r 7→ a

sh 7→ b

sv 7→ c.

Symmetries of an Equilateral Triangle (D3)

Define the following symmetries of a triangle with vertices 1, 2, 3 labeled coun-
terclockwise.

Let D3 = {e, r, r2, a, b, c}.
Let e = do nothing motion (no rotation)
Let r = rotate by 2π

3 ccw
Let r2 = rotate by 2π

3 ccw twice
Let a = reflect about the line through the center containing vertex 1
Let b = reflect about the line through the center containing vertex 2
Let c = reflect about the line through the center containing vertex 3

* e r r2 a b c
e e r r2 a b c
r r r2 e c a b
r2 r2 e r b c a
a a b c e r r2

b b c a r2 e r
c c a b r r2 e
D3 is not abelian.
(D3, ∗) ∼= (S3, ◦) and |D3| = 2 ∗ 3 = 6 and |S3| = 3! = 6.
Let S3 = {(1), (12), (13), (23), (123), (132)}.
An isomorphism from D3 to S3 is:

e 7→ (1)

r 7→ (123)

r2 7→ (132)

a 7→ (23)

b 7→ (13)

c 7→ (12).
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Proper subgroups of D3:
〈a〉 = {a, e}
〈b〉 = {b, e}
〈c〉 = {c, e}
〈r〉 = 〈r2〉 = {e, r, r2}
〈a〉 ∼= 〈b〉 ∼= 〈c〉.

Symmetries of a Square (Octic group D4)

Define the following symmetries of a square with vertices 1, 2, 3, 4 labeled coun-
terclockwise.

Let D4 = {e, r, r2, r3, a, b, c, d}.
|D4| = 2 ∗ 4 = 8
Let e = do nothing motion (no rotation)
Let r = rotate by π

2 ccw
Let r2 = rotate by π

2 2 times ccw
Let r3 = rotate by π

2 3 times ccw
Let a = reflect about the horizontal line through the center
Let b = reflect about the vertical line through the center
Let c = reflect about the main diagonal (NW to SE)
Let d = reflect about the secondary diagonal (SW to NE)

* e r r2 r3 a b c d
e e r r2 r3 a b c d
r r r2 r3 e d c a b
r2 r2 r3 e r b a d c
r3 r3 e r r2 c d b a
a a c b d e r2 r r3

b b d a c r2 e r3 r
c c b d a r3 r e r2

d d a c b r r3 r2 e
D4 is not abelian.

e 7→ (1)

r 7→ (1234)

r2 7→ (13)(24)

r3 7→ (1432)

a 7→ (12)(34)

b 7→ (14)(23)

c 7→ (24)

d 7→ (13).
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Cosets

Definition 137. Coset
Let (H, ∗) be a subgroup of group (G, ∗).
Define relation ∼L on G for all a, b ∈ G by a ∼L b iff a−1b ∈ H.
Then ∼L is an equivalence relation on G.
Define relation ∼R on G for all a, b ∈ G by a ∼R b iff ab−1 ∈ H.
Then ∼R is an equivalence relation on G.
Let g ∈ G.
Then

gH = {x ∈ G : x ∼L g}
= {x ∈ G : g ∼L x}
= {x ∈ G : g−1x ∈ H}
= {gh ∈ G : h ∈ H}

gH is defined to be the left coset of H with representative g ∈ G.
Observe that

Hg = {x ∈ G : x ∼R g}
= {x ∈ G : xg−1 ∈ H}
= {hg ∈ G : h ∈ H}

Hg is defined to be the right coset of H with representative g ∈ G.

Let (H, ∗) be a subgroup of group (G, ∗).
Let g ∈ G be fixed.
The left coset of H containing g is g ∗H = {g ∗ h : h ∈ H}.
The right coset of H containing g is H ∗ g = {h ∗ g : h ∈ H}.

Let (H,+) be a subgroup of additive group (G,+).
Let g ∈ G be fixed.
The left coset of H containing g is g +H = {g + h : h ∈ H}.
The right coset of H containing g is H + g = {h+ g : h ∈ H}.

Let H < G.
Let e be the identity of G.
Since e ∈ H and g = ge, then g ∈ gH.
Therefore (∀g ∈ G)(g ∈ gH).
Since e ∈ H and g = eg, then g ∈ Hg.
Therefore (∀g ∈ G)(g ∈ Hg).
Since e ∈ G, then eH = {eh : h ∈ H} = {h : h ∈ H} = H and He = {he :

h ∈ H} = {h : h ∈ H} = H.
Therefore, eH = H = He.
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Since ∼L is an equivalence relation on G, then a left coset is an equivalence
class and each element of G lies in exactly one left coset of H in G.

Therefore a ∼L b iff aH = bH.
Since ∼R is an equivalence relation on G, then a right coset is an equivalence

class and each element of G lies in exactly one right coset of H in G.
Therefore a ∼R b iff Ha = Hb.

Example 138. Consider (nZ,+) < (Z,+).
Let a ∈ Z.
The left coset of (nZ,+) containing a is a+ nZ = [a]n.
The right coset of (nZ,+) containing a is nZ + a = [a]n.
Thus, a+ nZ = nZ + a.
The collection of all left cosets of nZ in Z is Zn = {[0], [1], [2], ..., [n− 1]}.
The collection of all right cosets of nZ in Z is Zn = {[0], [1], [2], ..., [n− 1]}.
Thus, the collection of all cosets of nZ in Z is Zn = {[0], [1], [2], ..., [n− 1]}.
Thus, Zn is a partition of Z and [Z : nZ] = n .
[a]n is an equivalence class of Zn.

Theorem 139. Let H < G.
Let a, b ∈ G.
Then the following are equivalent:
1. a−1b ∈ H.
2. (∃h ∈ H)(a = bh).
3. a ∈ bH.
4. aH = bH.

Therefore, a ∼L b iff a−1b ∈ H iff a and b belong to the same left coset of
H in G iff any of the 4 conditions above hold true.

Theorem 140. Let H < G.
Let a, b ∈ G.
Then the following are equivalent:
1. ab−1 ∈ H.
2. (∃h ∈ H)(a = hb).
3. a ∈ Hb.
4. Ha = Hb.

Therefore, a ∼R b iff ab−1 ∈ H iff a and b belong to the same right coset of
H in G iff any of the 4 conditions above hold true.

Lemma 141. Let H < G.
Let a, b ∈ G.
Then aH = bH iff Ha−1 = Hb−1.

Since ∼L is an equivalence relation defined on G, then the collection of all
left cosets of H in G forms a partition of G.

Since ∼R is an equivalence relation defined on G, then the collection of all
right cosets of H in G forms a partition of G.
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Theorem 142. Let H be a subgroup of a group G.
The number of left cosets of H in G equals the number of right cosets of H

in G.

Let G
∼L = {gH : g ∈ G} be the collection of all left cosets of H in G.

Let G
∼R = {Hg : g ∈ G} be the collection of all right cosets of H in G.

G
∼L is a partition of G under ∼L.
G
∼R is a partition of G under ∼R.

| G∼L | = |
G
∼R |.

Theorem 143. Let H be a subgroup of a group G.
Let g ∈ G be fixed.
Then |gH| = |H| and |Hg| = |H|.

Let g ∈ G.
Then |gH| = |H| = |Hg|.
Moreover, if a, b ∈ G, then |aH| = |bH| = |Ha| = |Hb|.
Hence, any two left cosets have the same cardinality and any two right cosets

have the same cardinality and the cardinality of a left coset equals the cardinality
of a right coset.

Definition 144. Index of H in G
Let H be a subgroup of group G.
The index of H in G, denoted [G : H], is the number of distinct left cosets

of H in G.

Let G
∼L = {gH : g ∈ G} be the collection of all distinct left cosets of H in G.

Let G
∼R = {Hg : g ∈ G} be the collection of all distinct right cosets of H in

G.
Then [G : H] = | G∼L |.
Since | G∼L | = | G∼R |, then [G : H] equals the number of distinct right cosets

of H in G.
Therefore |G : H] = | G∼R |.

Finite Groups

Theorem 145. Lagrange’s Theorem
The order of a subgroup of a finite group divides the order of the group.

Let H be a subgroup of a finite group G.
Then |H| divides |G|.

40



Let [G : H] = the number of distinct left cosets of H in G.
Then |G| = |H| ∗ [G : H], so |H| divides |G|.
Since H is a left coset of H in G, then [G : H] > 0, so [G : H] divides |G|.
Therefore, the number of elements in G = number of elements per left coset

* number of left cosets.

Corollary 146. The order of an element of a finite group divides the order of
the group.

Let G be a finite group.
Let g ∈ G.
Then |g| divides |G|.

Corollary 147. Let G be a finite group.
If H < K < G, then [G : H] = [G : K][K : H].

Corollary 148. Let G be a finite group of order n.
Then gn = e for all g ∈ G.

Corollary 149. Every group of prime order is cyclic.

Let G be a group of prime order.
Then the only subgroups of G are the trivial subgroup and G itself.
Any a ∈ G such that a 6= e is a generator of G.

Direct Products

Definition 150. External direct product of groups
Let (A, ·) and (B, ∗) be groups.
Let G be the Cartesian product A×B = {(a, b) : a ∈ A, b ∈ B}.
Define component wise multiplication ◦ : G×G→ G by (a1, b1) ◦ (a2, b2) =

(a1 · a2, b1 ∗ b2) for all (a1, b1), (a2, b2) ∈ A×B.
Then (A×B, ◦) is a group, called the external direct product of A and

B.
The identity of A×B is (e, e′) where e is identity of A and e′ is identity of

B.
The inverse of (a, b) is (a−1, b−1).

Let G×H be the direct product of finite groups G,H.
Then |G×H| = |G||H|.

Example 151. Let (R,+). Define addition on R× R = R2 by (a, b) + (c, d) =
(a + c, b + d). Then (R2,+) is an abelian group with identity (0, 0) and the
additive inverse of (a, b) is (−a,−b).

Example 152. (Z2 × Z2,+) is an abelian group of order 4 and Z2 × Z2 =
{(0, 0), (0, 1), (1, 0), (1, 1)}. Each element of Z2 × Z2 has order 2, so there is no
element of order 4. Thus, Z2 × Z2 is not cyclic. Since there are only 2 groups
of order 4 up to isomorphism, then Z2×Z2

∼= V . Hence, Z2×Z2 is isomorphic
to the Klein 4 group which is isomorphic to D2. Furthermore, Z2 × Z2 6∼= Z4.
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Definition 153. External direct product of n groups
Let n ∈ Z+, n ≥ 2.
Let G1, G2, ..., Gn be groups.
Then

n∏
i=1

Gi = G1 ×G2 × ...×Gn

= {(g1, g2, ..., gn) : g1 ∈ G1 ∧ g2 ∈ G2 ∧ ... ∧ gn ∈ Gn}
= {(g1, g2, ..., gn) : gi ∈ Gi for each i ∈ {1, 2, ..., n}}
= {(g1, g2, ..., gn) : (∀i ∈ {1, 2, ..., n})(gi ∈ Gi)}.

Let G = G1 ×G2 × ...×Gn.
Let a, b ∈ G. Then for each i ∈ {1, 2, ..., n} there exist ai, bi ∈ Gi such that

a = (a1, a2, ..., an) and b = (b1, b2, ..., bn).
Define component wise multiplication on G by the n tuple whose ith com-

ponent is aibi for each i.
Then ab = (a1, a2, ..., an)(b1, b2, ..., bn) = (a1b1, a2b2, ..., anbn).

Theorem 154. Let n ∈ Z+, n ≥ 2.
The external direct product of n groups is a group.

Therefore, the direct product of n groups is a group.

Theorem 155. A direct product of abelian groups is an abelian group.

Let G1, G2, ..., Gn be additive abelian groups. Then the direct product G =
G1×G2× ...×Gn is called the direct sum of n groups and is denoted

⊕n
i=1.

Therefore, G =
⊕n

i=1Gi = G1 ⊕G2 ⊕ ...⊕Gn.
Hence, the direct sum of abelian groups is an abelian group.

Definition 156. External direct product of a group with itself n times
Let n ∈ Z+, n ≥ 2.

Let G be a group. Then

Gn = G×G× ...×G
= {(g1, g2, ..., gn) : g1 ∈ G ∧ g2 ∈ G... ∧ gn ∈ G}
= {(g1, g2, ..., gn) : gi ∈ G for each i ∈ {1, 2, ..., n}}
= {(g1, g2, ..., gn) : (∀i ∈ {1, 2, ..., n})(gi ∈ G)}

Example 157. Let (Z2,+) be the cyclic group of integers modulo 2. Let
n ∈ Z+.

Then

Zn2 = Z2 × Z2 × ...× Z2

= {(a1, a2, ..., an) : a1 ∈ Z2 ∧ a2 ∈ Z2... ∧ an ∈ Z2}
= {(a1, a2, ..., an) : ai ∈ Z2 for each i ∈ {1, 2, ..., n}}
= {(a1, a2, ..., an) : (∀i ∈ {1, 2, ..., n})(ai ∈ Z2)}
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Thus, Zn2 is a group of all n tuples consisting of 0 or 1 (binary n tuples).
Let Z2 = {0, 1} and S = {T, F}. Then (S,⊕) ∼= (Z2,+) since φ : S → Z2

defined by φ(F ) = 0 and φ(T ) = 1 is an isomorphism. Therefore, addition
modulo 2 corresponds to logical XOR operation (⊕).

Hence, Zn2 is a group of binary n tuples with binary operation logical XOR.
Let a = (0, 1, 0, 1, 1, 1, 0, 1) and b = (0, 1, 0, 0, 1, 0, 1, 1) in Z8

2.
Then ab = (0, 1, 0, 1, 1, 1, 0, 1) + (0, 1, 0, 0, 1, 0, 1, 1) = (0, 0, 0, 1, 0, 1, 1, 0).

Theorem 158. Let G ×H be the external direct product of groups G,H. Let
(g, h) ∈ G×H. If g and h have finite order, then the order of (g, h) in G×H
is the least common multiple of the orders of g and h.

Let (g, h) ∈ G×H.
Then |(g, h)| = lcm(|g|, |h|).

Corollary 159. Let n ∈ Z+, n ≥ 2. Let
∏n
i=1Gi be the external direct product

of n groups. Let (g1, g2, ..., gn) ∈
∏n
i=1Gi. If each gi has finite order ai in

Gi, then the order of (g1, g2, ..., gn) in
∏n
i=1Gi is the least common multiple of

a1, a2, ..., an.

Theorem 160. Let m,n ∈ Z+.
Then (Zm × Zn,+) ∼= (Zmn,+) iff gcd(m,n) = 1.

Corollary 161. Let n1, ..., nk be positive integers.
Then

∏k
i=1 Zni ∼= Zn1...nk .

Corollary 162. Let p1, ..., pk be distinct primes. Let n = pe11 ...p
ek
k .

Then Zn ∼= Zpe11 × ...× Zpekk .

Definition 163. product of sets
Let H and K be subsets in a group G.
The product of H and K is the set HK = {hk : h ∈ H, k ∈ K}.

Let x ∈ HK. Then there exists h ∈ H and k ∈ K such that x = hk. Since
h ∈ H and H ⊂ G, then h ∈ G. Since k ∈ K and K ⊂ G, then k ∈ G. Since
hk ∈ G, then x ∈ G, so HK ⊂ G.

Proposition 164. If H and K are subgroups of an abelian group G, then
HK < G.

Proposition 165. Let H and K be subgroups of a group G.
If h−1kh ∈ K for all h ∈ H and all k ∈ K, then HK < G.

Proposition 166. Let H and K be subgroups of a group G.
Then HK < G iff KH ⊂ HK.

Definition 167. Internal direct product of groups
Let G be a group with subgroups H,K such that
1. G = HK = {hk : h ∈ H, k ∈ K}.
2. H ∩K = {e}.
3. hk = kh for all h ∈ H, k ∈ K.
Then G is called the internal direct product of H and K .
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Normal Subgroups

Definition 168. Normal subgroup
Let H be a subgroup of a group G.
Then H is normal in G iff (∀g ∈ G)(∀h ∈ H)(ghg−1 ∈ H).
H CG means H is normal in G.

Let G be a group with identity e.
Since G < G and ghg−1 ∈ G for all g, h ∈ G, then GCG.
Therefore, every group is a normal subgroup of itself.
Since geg−1 = gg−1 = e ∈ {e} for all g ∈ G, then {e}CG.
Therefore, the trivial subgroup is a normal subgroup of every group.

Definition 169. conjugate
Let G be a group.
Let x ∈ G.
Then y is a conjugate to x in G iff (∃a ∈ G)(y = axa−1).

Definition 170. Set gHg−1

Let G be a group.
Let H < G.
Let g ∈ G.
Then gHg−1 = {ghg−1 : h ∈ H}.

Theorem 171. Let H < G. Then the following are equivalent:
1. H CG.
2. gHg−1 ⊂ H for all g ∈ G.
3. gHg−1 = H for all g ∈ G.

Theorem 172. Let H < G.
Then H CG iff gH = Hg for all g ∈ G.

Therefore, a normal group H is a subgroup of G in which the left and right
cosets of H in G are equal for each g ∈ G.

Thus, the left and right cosets of H in G are equal for each g ∈ G.
Hence, the partition of G into left cosets of H equals the partition of G into

right cosets of H.
Therefore, in any normal subgroup H of G, LH = RH where LH is the

collection of all distinct left cosets of H in G and RH is the collection of all
distinct right cosets of H in G.

Theorem 173. Every subgroup of an abelian group is normal.

Let H be a subgroup of an abelian group G.
Then H CG.

Theorem 174. The intersection of two normal subgroups is a normal subgroup.

Let G be a group.
If H CG and K CG, then H ∩K CG.
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Proposition 175. If G is a group and H < G, then gHg−1 < G and gHg−1 ∼=
H for all g ∈ G.

Definition 176. Normalizer of a subgroup
Let G be a group.
Let H < G.
The normalizer of H in G, denoted N(H), is the set N(H) = {g ∈ G :

gHg−1 = H}.

Proposition 177. Let H be a subgroup of group G.
Let N(H) = {g ∈ G : (∀h ∈ H)(gh = hg)}.
Then N(H) is a subgroup of G, called the normalizer of H in G.

Proposition 178. If G is a group and H < G, then N(H) < G and H ⊂ N(H).

Definition 179. Centralizer of an element
Let G be a group.
Let g ∈ G.
The centralizer of g, denoted C(g), is the set of elements ofG that commute

with g.
Therefore C(g) = {x ∈ G : xg = gx}.

Theorem 180. Let G be a group.
Let g ∈ G.
Then C(g) < G.
If g generates a normal subgroup of G, then C(g) CG. We’re stuck in this

part of the proof!

Definition 181. Center of a group
Let (G, ∗) be a group.
Let a, b ∈ G.
We say that a and b commute iff ab = ba.
The center of G, denoted Z(G), is the set of elements of G that commute

with all elements of G.
Therefore, Z(G) = {x ∈ G : (∀g ∈ G)(xg = gx)}.

Theorem 182. The center of a group G is a normal subgroup of G.
Let G be a group.
Then Z(G) CG.

Definition 183. Commutator
Let (G, ∗) be a group.
Let a, b ∈ G.
The commutator of a and b, denoted by [a, b], is aba−1b−1.

Therefore, [a, b] = aba−1b−1.
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Definition 184. Commutator subgroup
Let (G, ∗) be a group.
Let a, b ∈ G.
The commutator subgroup of G, denoted by G′, is the subgroup of G

generated by all the commutators.

Definition 185. simple group
A group G is simple if its only normal subgroups are {e} and G.

A simple group cannot be decomposed any further.

Example 186. Any group of prime order is simple.
If G is a group of prime order, then its only subgroups are {e} and G itself.
Hence, these are the only normal subgroups of G.
In particular, (Zp,+) is simple for prime p.

Definition 187. Quotient Group G
N of order [G : N ]

Let G be a group and N CG.
Let G

N be the set of all cosets of N in G.

Then G
N = {aN : a ∈ G}.

Define (aN)(bN) = (ab)N for all aN, bN ∈ G
N .

Then (GN , ∗) is a group and |GN | = [G : N ].
The identity is N and (aN)−1 = a−1N .
(GN , ∗) is the factor group or quotient group of G modulo N .
Each aN is called a coset modulo N .

If G is finite, then |GN | = [G : N ] = |G|
|N | .

Example 188. Z
nZ = {nZ, 1+nZ, 2+nZ, 3+nZ, ..., (n−1)+nZ} = {[0]n, [1]n, [2]n, ..., [n−

1]n} = Zn.
| ZnZ | = [Z : nZ] = n.
(k + Z) + (m+ Z) = (k +m) + Z.

Theorem 189. If N is a subgroup of an abelian group G, then G
N is abelian.

Theorem 190. If N is a subgroup of a cyclic group G, then G
N is cyclic.

If g ∈ G is a generator of G, then gN is a generator of G
N .

Theorem 191. Let G be a group and let Z(G) be the center of G.
If G

Z(G) is cyclic, then G is abelian.

Homomorphisms

Homomorphisms are maps that preserve algebraic structure.
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Definition 192. Group Homomorphism
Let (G, ∗) and (H, ?) be groups.
Let φ : G→ H be a function.
Then φ is a homomorphism iff φ(a ∗ b) = φ(a) ? φ(b) for all a, b ∈ G.

A homomorphism preserves the binary operation of G.

Example 193. trivial homomorphism
The trivial homomorphism is the group homomorphism φ : G→ G′ such

that ker(φ) = G and Im(φ) = {e′}.
Thus, φ maps every element of G to the identity e′of G′ and Im(φ) = φ(G) =

{e′}.

Example 194. Let (Z,+) and (G, ∗) be groups.
Let g ∈ G.
Let φ : Z→ G be defined by φ(n) = gn for all n ∈ Z.
Let m,n ∈ Z.
Then

φ(m+ n) = gm+n

= gmgn

= φ(m)φ(n).

Therefore, φ is a homomorphism.
Either g has finite order or g has infinite order.

Suppose g has infinite order.
Then gn = e implies n = 0.
Hence, ker(φ) = {0} = 〈0〉, so φ is injective.
The image is Im(φ) = {φ(g) : g ∈ Z} = {gn : n ∈ Z}.
Since φ is injective, then Z ∼= Im(φ) = {..., g−2, g−1, g0, g, g2, ...}.

Suppose g has finite order n.
Then gk = e iff n|k for integer k.
Hence, ker(φ) = {k ∈ Z : n|k} = {nm : m ∈ Z} = nZ = 〈n〉.
The image is Im(φ) = {φ(g) : g ∈ Z} = {gn : n ∈ Z} = 〈g〉.
Let 〈g〉 be the cyclic subgroup of G generated by g ∈ G.
Then 〈g〉 = {gk : k ∈ Z} and 〈g〉 < G.

Let f : Z→ 〈g〉 be the restriction of φ to 〈g〉.
Let gk ∈ 〈g〉.
Then k ∈ Z.
Therefore, f is surjective.
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Example 195. Let (GL2(R), ·) and (R∗, ·) be groups.
Let f : GL2(R) → R∗ be defined by f(A) = detA for all A ∈ GL2(R). Let

A ∈ GL2(R). Then there exist a, b, c, d ∈ R such that

A =

[
a b
c d

]
and A is invertible. Thus, det(A) = ad− bc 6= 0. Hence, f(A) ∈ R∗.

Let A,B ∈ GL2(R).
Then

f(AB) = det(AB)

= det(A) det(B)

= f(A)f(B).

Hence, f is a homomorphism.
Observe that

ker(f) = {A ∈ GL2(R) : f(A) = 1}
= {A ∈ GL2(R) : det(A) = 1}
= SL2(R).

Example 196. Let (R,+) and (C∗, ·) be groups.
Let f : R→ C∗ be defined by f(θ) = cis(θ) for all θ ∈ R.
Let a, b ∈ R. Then

f(a+ b) = cis(a+ b)

= cos(a+ b) + i sin(a+ b)

= cos(a) cos(b)− sin(a) sin(b) + i(sin(a) cos(b) + cos(a) sin(b))

= cos(b)(cos(a) + i sin(a))− sin(a) sin(b) + i cos(a) sin(b)

= cos(b)cis(a) + i sin(b)(i sin(a) + cos(a))

= cos(b)cis(a) + i sin(b)cis(a)

= cis(a)(cos(b) + i sin(b))

= cis(a)cis(b)

= f(a)f(b).

Hence, f is a homomorphism.
Let T = {z ∈ C : |z| = 1} be the circle group.
Observe that

Im(f) = f(R)

= {f(θ) ∈ C∗ : θ ∈ R}
= {cis(θ) ∈ C∗ : θ ∈ R}
= {z ∈ C∗ : |z| = 1}
= T.
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Observe that

ker(f) = {θ ∈ R : f(θ) = 1}
= {θ ∈ R : cis(θ) = 1}
= {2πk : k ∈ Z}
= 〈2π〉.

Note that 〈2π〉 ∼= (Z,+).

Definition 197. Types of homomorphisms
An injective homomorphism is called a monomorphism.
A surjective homomorphism is called an epimorphism.
A bijective homomorphism is called an isomorphism.
An endomorphism is a homomorphism of a group with itself.
Therefore, the homomorphism φ : G→ G is called an endomorphism.
An automorphism is an isomorphism of a group with itself.
Therefore, the isomorphism φ : G→ G is called an automorphism.

Definition 198. Image of a Homomorphism
Let φ : G→ G′ be a group homomorphism.
The image of φ, denoted Im(φ), is the set φ(G) = {φ(g) ∈ G′ : g ∈ G}.

Theorem 199. preservation properties of a group homomorphism
Let (G, ∗) be a group with identity e.
Let (G′, ?) be a group with identity e′.
Let φ : G→ G′ be a homomorphism.
Then
1. φ(e) = e′. preserves identity
2. (∀a ∈ G)[φ(a−1) = (φ(a))−1]. preserves inverses
3. (∀k ∈ Z)[φ(ak) = (φ(a))k]. preserves powers of a
4. If H < G, then φ(H) < G′. preserves subgroups of G
In particular, since G < G, then φ(G) < G′.
This means the image of a homomorphism is a subgroup of G′.
5. If K ′ < G′, then φ−1(K ′) < G. preserves subgroups of G′

Moreover, if K ′ CG′, then φ−1(K ′) CG.

Definition 200. Kernel of a Homomorphism
Let φ : G→ G′ be a group homomorphism.
Let e be the identity of G.
Let e′ be the identity of G′.
The kernel of φ, denoted ker(φ), is the set {g ∈ G : φ(g) = e′}.
Therefore, ker(φ) = {g ∈ G : φ(g) = e′}.

Since e ∈ G and φ(e) = e′, then e ∈ ker(φ).
The group {e′} is the trivial subgroup of G′.
Hence, the kernel of φ is the preimage of the trivial subgroup of G′.
Therefore, ker(φ) = φ−1{e′}.
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Theorem 201. Let φ : G→ G′ be a group homomorphism.
Then ker(φ) CG.

Therefore the kernel of a group homomorphism φ : G → G′ is a normal
subgroup of G.

Theorem 202. Let φ : G→ G′ be a group homomorphism.
Let e be the identity of G. Then
1. If φ is injective, then G ∼= φ(G).
2. φ is injective iff ker(φ) = {e}.

Theorem 203. Let φ : G→ G′ be a group homomorphism.
Let e be the identity of G. Then
1. φ is an epimorphism iff Im(φ) = G′.
2. φ is a monomorphism iff ker(φ) = {e}.
3. φ is an isomorphism iff ker(φ) = {e} and Im(φ) = G′.

Theorem 204. The composition of group homomorphisms is a group homo-
morphism.

Let f1 : G→ G′ be a group homomorphism.
Let f2 : G′ → G′′ be a group homomorphism.
Let f2 ◦ f1 : G→ G′′ be the composition of f1 and f2.
Then f2 ◦ f1 is a group homomorphism.

Theorem 205. Let φ : G→ G′ be a group homomorphism with kernel K.
Then xK = Kx = φ−1(φ(x)) for all x ∈ G.

The coset of the kernel with representative x ∈ G is the preimage of x under
φ.

Therefore, xK = φ−1(φ(x)) = {a ∈ G : φ(a) = φ(x)}.

Corollary 206. If G is a finite group and φ : G → G′ is a group homomor-
phism, then |G| = | ker(φ)||Im(φ)|.

|Im(φ)| is the number of distinct cosets of ker(φ) in G.

Theorem 207. Let G be a group.
If N C G, then η : G → G

N defined by η(a) = aN for all a ∈ G is a
homomorphism such that ker(η) = N .

We call η the natural surjective homomorphism from G onto G
N with

kernel N .
η : G→ G

N is surjective.
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Isomorphisms

Definition 208. Isomorphism
Let (G, ∗) and (H, ?) be groups.
Let φ : G→ H be a function.
Then φ is an isomorphism of G with H iff
1. φ is a homomorphism
2. φ is bijective.

Therefore, an isomorphism is a bijective homomorphism.

(G, ∗) is isomorphic to (H, ?) iff there exists an isomorphism φ : G→ H.
(G, ∗) ∼= (H, ?) means (G, ∗) is isomorphic to (H, ?)

Isomorphic algebraic structures are structurally identical.

If (G, ∗) ∼= (H, ?) then any algebraic property that is preserved by isomor-
phism and which is true of (G, ∗) is also true of (H, ?).

Algebraic properties preserved by isomorphism:
1. closure is preserved.
2. associativity of ∗ is preserved.
3. commutativity of ∗ is preserved.
4. identity element is preserved.
5. invertible elements are preserved.
6. subgroups are preserved.

Example 209. Let (U4, ·) be the fourth roots of unity with complex multipli-
cation and (Z4,+) be the group of integers modulo 4 under addition.

Then (Z4,+) ∼= (U4, ·).

Example 210. (R,+) ∼= (R+, ·) since φ : R→ R+ defined by φ(x) = ex for all
x ∈ R is an isomorphism.

Example 211. For n 6= 0, (Z,+) ∼= (nZ,+) since φ : Z → nZ defined by
φ(k) = nk for all k ∈ Z is an isomorphism.

Example 212. Let S = {2k : k ∈ Z}.
Then (S, ·) < (Q+, ·).
(Z,+) ∼= (S, ∗) since φ : Z → S defined by φ(n) = 2n for all n ∈ Z is an

isomorphism.

Example 213. Let M2(R) = the set of all 2x2 matrices with real entries.

Let H = the set of all matrices of the form

[
a −b
b a

]
where a, b ∈ R

Then H ⊂M2(R) and (H,+) and (H, ·) are binary structures.
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Let φ : C 7→ H such that φ(a+ bi) =

[
a −b
b a

]
where a, b ∈ R.

Then (C,+) ∼= (H,+) and (C, ·) ∼= (H, ·).
H is a matrix representation of the complex numbers.

Lemma 214. The isomorphism relation on groups is reflexive.

Let (G, ∗) be a group.
Then G ∼= G.
Therefore, every group is isomorphic to itself.
The identity map φ : G → G be defined by φ(x) = x for all x ∈ G is an

isomorphism.

Lemma 215. The isomorphism relation on groups is symmetric.

Let (G, ∗) and (H, ·) be groups.
If G ∼= H, then H ∼= G.
Therefore, if φ : G→ H is an isomorphism, then the inverse map φ−1 : H →

G is an isomorphism.

Lemma 216. The isomorphism relation on groups is transitive.

Let (G, ∗), (H, ·), (K, �) be groups.
If G ∼= H and H ∼= K, then G ∼= K.
Therefore, if φ : G→ H and ψ : H → K are isomorphisms, then ψ ◦φ : G→

K is an isomorphism.

Theorem 217. The isomorphism relation on groups is an equivalence relation
on the class of all groups.

Let ∼= be the isomorphism relation on the class of all groups.
Then ∼= is reflexive, symmetric, and transitive.

Theorem 218. preservation properties of a group isomorphism
Let φ : G→ G′ be a group isomorphism. Then
1. |G| = |G′|. preserves cardinality
2. If G is abelian, then G′ is abelian. preserves commutativity
3. If G is cyclic, then G′ is cyclic. preserves cyclic property
4. If H is a subgroup of G of order n, then φ(H) is a subgroup of G′ of

order n. preserves finite subgroups
5. (∀a ∈ G,n ∈ Z+)(|a| = n → |φ(a)| = n). preserves finite order of an

element

In particular, if G is finite, then if |a| = |G|, then |φ(a)| = |G|.
Therefore, if G is a finite group and if a is a generator, then φ(a) is a

generator.
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Isomorphic cyclic groups

Theorem 219. Every cyclic group of infinite order is isomorphic to (Z,+).

Theorem 220. Every cyclic group of finite order n is isomorphic to (Zn,+).

Since a cyclic group is either finite or infinite, then every cyclic group is
isomorphic to either Zn or Z.

Thus, up to isomorphism, the only cyclic groups are Z and Zn.

Corollary 221. Every group of prime order p is isomorphic to (Zp,+).

Proposition 222. Let G be an abelian group with subgroups H and K.
If HK = G and H ∩K = {e}, then G ∼= H ×K.

Proposition 223. The identity map is an automorphism in any group.

Let (G, ∗) be a group.
The identity map IG : G → G defined by IG(x) = x for all x ∈ G is an

automorphism.

Example 224. Complex conjugation is an automorphism of the addi-
tive group of complex numbers.

Let (C,+) be the additive group of complex numbers.
Then φ : C→ C defined by φ(a+ bi) = a− bi is an automorphism of C.

Example 225. Complex conjugation is an automorphism of the mul-
tiplicative group of nonzero complex numbers.

Let (C∗, ·) be the multiplicative group of nonzero complex numbers.
Then φ : C∗ → C∗ defined by φ(a+ bi) = a− bi is an automorphism of C∗.

Theorem 226. Let Aut(G) be the set of all automorphisms of a group G.
Then (Aut(G), ◦) is a subgroup of (SG, ◦).

Definition 227. Group of Automorphisms Aut(G)
Let Aut(G) be the set of all automorphisms of a group G.
Then Aut(G) = {α : G→ G|α is an isomorphism}.
(Aut(G), ◦) is called the group of automorphisms of G.
◦ is function composition
Aut(G) < SG.
identity is the identity map IG : G→ G defined by IG(x) = x for all x ∈ G.

Proposition 228. inner automorphism
Let 〈G, ∗〉 be a group.
Let g ∈ G be a fixed element.
Then the map ig : G→ G defined by ig(x) = g ∗ x ∗ g−1 for all x ∈ G is an

isomorphism of G with itself.

Theorem 229. First Isomorphism Theorem
Let φ : G→ G′ be a group homomorphism with kernel K.
Then there exists a group isomorphism ψ : G

K → φ(G) defined by ψ(gK) =

φ(g) for all g ∈ G such that ψ ◦ η = φ, where η : G → G
K is the natural

homomorphism.
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Therefore, the image of any group G under a homomorphism with kernel K
is isomorphic to the quotient group G

K .

Thus, G
ker(φ)

∼= Im(φ).

Theorem 230. Second Isomorphism Theorem
Let H be a subgroup of G and let N be a normal subgroup of G.
Let HN = {hk : h ∈ H ∧ k ∈ N}.
Then HN < G and N CHN and H ∩N CH and H

H∩N
∼= HN

N .
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