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Rings

Proposition 1. alternate definition of a ring
Let R be a set with two binary operations + and · defined on R.
Then (R,+, ·) is a ring iff
1. (R,+) is an abelian group.
2. Multiplication is associative.
3. Multiplication is distributive over addition.

Proof. We prove if (R,+) is an abelian group and multiplication is associative
and multiplication is distributive over addition, then (R,+, ·) is a ring.

Suppose (R,+) is an abelian group and multiplication is associative and
multiplication is distributive over addition.

Since (R,+) is an abelian group, then addition is associative and commuta-
tive.

Hence, (a + b) + c = a + (b + c) for all a, b, c ∈ R and a + b = b + a for all
a, b ∈ R.

Since (R,+) is a group, then there is an additive identity in R.
Therefore, there exists 0 ∈ R such that 0 + a = a+ 0 = a for all a ∈ R.
Hence, there exists 0 ∈ R such that a+ 0 = a for all a ∈ R.
Therefore, 0 is a right additive identity in R.
Since (R,+) is a group, then each element has an additive inverse.
Thus, for each a ∈ R there exists b ∈ R such that a+ b = b+ a = 0.
Hence, for each a ∈ R there exists b ∈ R such that a+ b = 0.
Therefore, each element of R has a right additive inverse in R.
Since multiplication is associative, then (ab)c = a(bc) for all a, b, c ∈ R.
Since multiplication is distributive over addition, then a(b+c) = ab+ac and

(b+ c)a = ba+ ca for all a, b, c ∈ R.
Therefore, (R,+, ·) is a ring.

Conversely, we prove if (R,+, ·) is a ring, then (R,+) is an abelian group and
multiplication is associative and multiplication is distributive over addition.

Suppose (R,+, ·) is a ring.
Since R is a ring, then (ab)c = a(bc) for all a, b, c ∈ R, so multiplication is

associative.



Since R is a ring, then a(b + c) = ab + ac and (b + c)a = ba + ca for all
a, b, c ∈ R.

Hence, multiplication is left and right distributive over addition, so multi-
plication is distributive over addition.

We prove (R,+) is an abelian group.
Since R is a ring, then addition is a binary operation defined on R.
Therefore, (R,+) is a binary algebraic structure.
Since R is a ring, then addition is associative and there is a right additive

identity and each element of R has a right additive inverse in R.
Therefore, (R,+) is an associative binary algebraic structure with a right

additive identity such that every element has a right additive inverse.
Any associative binary structure with a right identity such that each element

has a right inverse is a group.
Therefore, (R,+) is a group.
Since R is a ring, then addition is commutative.
Therefore, (R,+) is an abelian group.

Proposition 2. The additive identity of a ring is unique.

Proof. Let (R,+, ·) be a ring.
We must prove there is an additive identity in R and the additive identity

is unique.
Existence:
Since R is a ring, then there exists 0 ∈ R such that a+ 0 = a for all a ∈ R.
Let a ∈ R.
Then a+ 0 = a.
Since addition is commutative in R, then 0 + a = a.
Hence, a+ 0 = a = 0 + a, so 0 is an additive identity of R.
Therefore, at least one additive identity element exists in R.
Uniqueness:
Since R is a ring, then addition is a binary operation defined over R.
Therefore, (R,+) is a binary structure.
Since 0 is an additive identity of R, then (R,+) is a binary structure with

identity.
If a binary structure has an identity element, then the identity element is

unique.
Therefore, 0 is unique.

Proof. Let (R,+, ·) be a ring.
Existence:
Let a ∈ R.
Since there is a right additive identity in R, then there exists 0 ∈ R such

that a+ 0 = a for all a ∈ R.
In particular, a+ 0 = a and 0 + 0 = 0.
Since a ∈ R and each element has a right additive inverse, then there exists

b ∈ R such that a+ b = 0.
We prove 0 + a = a.
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Observe that

a+ b = 0

= 0 + 0

= 0 + (a+ b)

= (0 + a) + b.

Thus, a+ b = (0 + a) + b.
Since addition is a binary operation on R, then (R,+) is a binary algebraic

structure.
Since R is a ring, then addition is associative and there is a right additive

identity in R and each element in R has a right additive inverse in R.
Therefore, (R,+) is an associative binary structure with a right identity such

that each element of R has a right inverse.
Hence, the right cancellation law holds.
Thus, a = 0 + a, so a+ 0 = a = 0 + a.
Therefore, 0 is an additive identity in R.
Uniqueness:
Since (R,+) is a binary structure with identity, then the identity is unique.
Therefore, 0 is unique.

Proposition 3. The additive inverse of each element of a ring is unique.

Proof. Let (R,+, ·) be a ring.
Let a ∈ R.
We must prove a has an additive inverse and the additive inverse of a is

unique.
Existence:
Let 0 ∈ R be the additive identity of R.
Since each element of R has a right additive inverse and a ∈ R, then there

exists b ∈ R such that a+ b = 0.
Since addition is commutative in R, then b+ a = 0.
Hence, a+ b = 0 = b+ a, so b is an additive inverse of a.
Therefore, at least one additive inverse of a exists in R.
Uniqueness:
Since (R,+, ·) is a ring, then + is a binary operation on R and addition is

associative and there is an additive identity in R.
Therefore, (R,+) is an associative binary structure with identity.
Hence, the inverse of each invertible element is unique.
Since b is an additive inverse of a, then a is invertible, so the inverse of a is

unique.
Therefore, b is unique.

Proposition 4. The multiplicative identity of a ring with unity is unique.
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Proof. Let (R,+, ·) be a ring with unity 1 ∈ R.
Since (R,+, ·) is a ring, then multiplication is a binary operation on R, so

(R, ·) is a binary structure.
Since 1 ∈ R is unity, then 1a = a1 = a for all a ∈ R, so there exists 1 ∈ R

such that 1a = a1 = a for all a ∈ R.
Hence, 1 is a multiplicative identity in R.
Thus, (R, ·) is a binary structure with identity.
If a binary structure has an identity, then the identity is unique.
Therefore, 1 is unique.

Proposition 5. Let (R,+, ·) be a ring.
Then for all a, b, c ∈ R
1. if a = b, then a+ c = b+ c.
2. if a = b, then ac = bc.

Proof. We prove 1.
Suppose a = b.
By reflexivity of equality, a+ c = a+ c.
Since a = b, then by substitution we have a+ c = b+ c, as desired.

Proof. We prove 2.
Suppose a = b.
By reflexivity of equality, ac = ac.
Since a = b, then by substitution we have ac = bc, as desired.

Theorem 6. basic properties of a ring
Let (R,+, ·) be a ring.
Then for all a, b, c ∈ R
1. if c+ a = c+ b then a = b and if a+ c = b+ c then a = b.
(left and right additive cancellation laws)
2. a0 = 0a = 0.
3. −(−a) = a.
4. −(a+ b) = (−a) + (−b).
5. a(−b) = (−a)b = −(ab).
6. (−a)(−b) = ab.
7. If R has a unity, then (−1)a = −a.

Proof. We prove 1.
Let a, b, c ∈ R.
Suppose c+ a = c+ b.
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Then

a = 0 + a

= ((−c) + c) + a

= −c+ (c+ a)

= −c+ (c+ b)

= ((−c) + c) + b

= 0 + b

= b.

Therefore, a = b, as desired.
Suppose a+ c = b+ c.
Then

a = a+ 0

= a+ (c+ (−c))
= (a+ c) + (−c)
= (b+ c) + (−c)
= b+ (c+ (−c))
= b+ 0

= b.

Therefore, a = b, as desired.

Proof. We prove 2.
Let a ∈ R.
Observe that

a0 + 0 = a0

= a(0 + 0)

= a0 + a0.

Therefore, a0 + 0 = a0 +a0, so by the left cancellation law for addition, 0 = a0.
Observe that

0a+ 0 = 0a

= (0 + 0)a

= 0a+ 0a.

Therefore, 0a+ 0 = 0a+ 0a, so by the left cancellation law for addition, 0 = 0a.
Hence, a0 = 0 = 0a.

Proof. We prove 3.
Let a ∈ R.
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Then −a ∈ R, so a+ (−a) = −a+ a = 0.
Hence, −a+ a = a+ (−a) = 0, so a is the additive inverse of −a.
Therefore, −(−a) = a.

Proof. We prove 4.
Let a, b ∈ R.
Then −a,−b ∈ R.
Observe that

(a+ b) + (−(a+ b)) = 0

= 0 + 0

= (−a+ a) + (b+ (−b))
= −a+ (a+ b) + (−b)
= (a+ b) + ((−a) + (−b)).

Therefore, (a+b)+(−(a+b)) = (a+b)+((−a)+(−b)), so by the left cancellation
law for addition, −(a+ b) = (−a) + (−b).

Proof. We prove 5.
Let a, b ∈ R.
Observe that

ab+ a(−b) = a(b+ (−b))
= a0

= 0

= ab+ (−(ab)).

Therefore, ab+a(−b) = ab+(−(ab)), so by the left cancellation law for addition,
a(−b) = −(ab).

Observe that

ab+ (−a)b = (a+ (−a))b

= 0b

= 0

= ab+ (−(ab)).

Therefore, ab+(−a)b = ab+(−(ab)), so by the left cancellation law for addition,
(−a)b = −(ab).

Hence, a(−b) = −(ab) = (−a)b.

Proof. We prove 6.
Let a, b ∈ R.
Observe that

(−a)(−b) = −(a(−b))
= −(−(ab))

= ab.
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Proof. We prove 7.
Suppose R has a unity.
Then R has a multiplicative identity, so let 1 be the multiplicative identity

of R.
Then 1a = a1 = a for all a ∈ R.
Let a ∈ R.
Then 1a = a.
Since (R,+) is an additive group, then (−1)a = −(1a), by the laws of

exponents for an additive group.
Observe that (−1)a = −(1a) = −a.

Proposition 7. addition and subtraction are inverse operations
Let R be a ring.
Then (∀a, b ∈ R)(∃!x ∈ R)(a+ x = b).

Proof. Let a, b ∈ R.
We prove a solution to the equation a+ x = b is unique.
Existence:
Since R is closed under subtraction, then b− a ∈ R.
Let x = b− a.
Then

a+ x = a+ (b− a)

= a+ (−a+ b)

= (a+ (−a)) + b

= 0 + b

= b.

Hence, a+ x = b.
Therefore, at least one solution exists.
Uniqueness:
Suppose x1, x2 ∈ R are solutions to a+ x = b.
Then a+ x1 = b and a+ x2 = b.
Thus a+ x1 = a+ x2.
By the left additive cancellation law for rings, we obtain x1 = x2.
Therefore, at most one solution exists.
Since at least one solution exists and at most one solution exists, then exactly

one solution exists.
Therefore, a solution to a+ x = b is unique.

Proposition 8. properties of subtraction in a ring
Let (R,+, ·) be a ring.
For all a, b, c ∈ R
1. −a = 0− a.
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2. Multiplication is distributive over subtraction.
a(b− c) = ab− ac and (b− c)a = ba− ca.
3. a = b iff a− b = 0.
4. −a− b = −(a+ b).
5. a− (b− c) = (a− b) + c.

Proof. We prove 1.
Let a ∈ R.
Since a ∈ R, then −a ∈ R.
Therefore, −a = 0 + (−a) = 0− a, as desired.

Proof. We prove 2.
Let a, b, c ∈ R.
Then

a(b− c) = a(b+ (−c))
= ab+ a(−c)
= ab+ (−(ac))

= ab− ac

and

(b− c)a = (b+ (−c))a
= ba+ (−c)a
= ba+ (−(ca))

= ba− ca

We prove 3.
Let a, b ∈ R.
Suppose a = b.
Then a− b = a+ (−b) = b+ (−b) = 0. Therefore, a− b = 0.
Conversely, suppose a− b = 0.
Then

a+ (−a) = 0

= a− b
= a+ (−b).

Hence, a + (−a) = a + (−b). By the left additive cancellation law, we have
−a = −b. Thus,

a = −(−a)

= −(−b)
= b.

Therefore, a = b.
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We prove 4.
Let a, b ∈ R.
Observe that

−(a+ b) = (−1)(a+ b)

= (−1)a+ (−1)b

= −a− b.

We prove 5.
Observe that

a− (b− c) = a+ (−(b− c))
= a+ (−(b+ (−c)))
= a+ (−b− (−c))
= a+ ((−b) + c)

= (a+ (−b)) + c

= (a− b) + c.

Proposition 9. The multiplicative inverse of each unit of a ring is unique.

Proof. Let (R,+, ·) be a ring with multiplicative identity 1 6= 0.
Suppose a is a unit of R.
We must prove a has a multiplicative inverse and the multiplicative inverse

of a is unique.
Existence:
Since a is a unit, then there exists b ∈ R such that ab = ba = 1. Hence, b is

a multiplicative inverse of a. Therefore, at least one multiplicative inverse of a
exists in R.

Uniqueness:
Since (R,+, ·) is a ring with unity, then · is a binary operation on R and

multiplication is associative and there is a multiplicative identity in R. There-
fore, (R, ·) is an associative binary structure with identity. Hence, the inverse
of each invertible element is unique.

Since b is a multiplicative inverse of a, then a is invertible. Thus, the inverse
of a is unique. Therefore, b is unique.

Proposition 10. The zero element of a ring is not a unit.

Proof. Let 0 be the zero of a ring (R,+, ·) with unity 1 6= 0. To prove 0 is not
a unit, suppose 0 is a unit. Then there exists b ∈ R such that 0b = 1. Since
0a = 0 for all a ∈ R, then in particular, 0b = 0. Thus, 1 = 0b = 0, so 1 = 0.
Therefore, we have 1 6= 0 and 1 = 0, a contradiction. Hence, 0 is not a unit.

Proposition 11. In any ring the additive inverse of the additive identity ele-
ment equals itself.
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Proof. Let R be a ring. Let 0 be the additive identity of R.
We must prove −0 = 0.
Since 0 is the additive identity of R and 0 ∈ R, then 0 + 0 = 0. Hence, 0 is

the additive inverse of 0. Therefore, −0 = 0.

Proposition 12. In any nonzero ring the multiplicative inverse of the multi-
plicative identity element equals itself.

Proof. Let R be a nonzero ring. Let 1 be the multiplicative identity of R.
We must prove 1−1 = 1.
Since 1 is the multiplicative identity of R and 1 ∈ R, then 1 · 1 = 1. Hence,

1 is the multiplicative inverse of 1. Therefore, 1−1 = 1.

Proposition 13. In any ring −x = 0 iff x = 0.

Proof. Let R be a ring. Let x ∈ R.
We must prove −x = 0 iff x = 0.
We prove if −x = 0, then x = 0.
Suppose −x = 0. Then

x = x+ 0

= x+ (−x)

= 0.

Therefore, x = 0.
Conversely, we prove if x = 0, then −x = 0.
Suppose x = 0. Then −x = −0 = 0. Therefore, −x = 0.

Theorem 14. The set of all units of a ring is a multiplicative group.

Proof. Let (R,+, ·) be a ring with unity 1 6= 0. Let S be the set of all units of
R.

Then S = {x ∈ R : x is a unit }, so S ⊂ R.
We prove S is closed under · of R.
Let a, b ∈ S. Then a ∈ R and b ∈ R and a and b are units. Hence, there exist

elements a−1 ∈ R and b−1 ∈ R such that aa−1 = a−1a = 1 and bb−1 = b−1b = 1.
Since R is closed under multiplication, then ab ∈ R and b−1a−1 ∈ R. Observe
that

(ab)(b−1a−1) = a(bb−1)a−1

= a1a−1

= aa−1

= 1

= b−1b

= b−11b

= b−1(a−1a)b

= (b−1a−1)(ab).
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Since b−1a−1 ∈ R and (ab)(b−1a−1) = 1 = (b−1a−1)(ab), then ab is a unit. Since
ab ∈ R and ab is a unit, then ab ∈ S. Therefore, S is closed under multiplication
in R. Since multiplication is a binary operation on R and a, b ∈ R, then ab is
unique. Hence, multiplication is a binary operation on S.

Associativity of multiplication holds in S since S ⊂ R.
We prove 1 is a multiplicative identity of S under · of R.
Let a ∈ S. Since S ⊂ R, then a ∈ R. Since 1 is the multiplicative identity

of R, then 1a = a1 = a. Hence, 1a = a1 = a for all a ∈ S.
Since 1 ∈ R and 1 · 1 = 1, then 1 is a unit, so 1 ∈ S. Therefore, there exists

1 ∈ S such that 1a = a1 = a for all a ∈ S.
Hence, 1 is an identity for · in S.
We prove each element of S has a multiplicative inverse in S.
Let a ∈ S. To prove a has a multiplicative inverse in S, we must prove there

exists b ∈ S such that ab = ba = 1.
Since a ∈ S, then a is a unit. Hence, there exists a−1 ∈ R such that

aa−1 = a−1a = 1. Since a ∈ S and S ⊂ R, then a ∈ R. Thus, a ∈ R and
a−1a = aa−1 = 1, so a−1 is a unit. Since a−1 ∈ R and a−1 is a unit, then
a−1 ∈ S.

Let b = a−1. Then b ∈ S and ab = ba = 1. Hence, a has a multiplicative
inverse in S. Thus, every element of S has a multiplicative inverse in S.

Therefore, (S, ·) is a multiplicative group.

Division Rings

Proposition 15. properties of a division ring
Let (R,+, ·) be a division ring. Then for all a, b, c ∈ R
1. if a 6= 0, then a−1 = 1

a .
2. if a 6= 0, then (a−1)−1 = a.
3. a

b = 1 iff a = b and b 6= 0.

4. if a 6= 0 and b 6= 0, then (a
b )−1 = b

a .

5. if c 6= 0, then a
c + b

c = a+b
c .

6. if c 6= 0, then a
c −

b
c = a−b

c .

Proof. We prove 1.
Suppose a 6= 0.
Then the multiplicative inverse a−1 exists in R.
Observe that a−1 = 1 · a−1 = 1

a .
We prove 2.
Suppose a 6= 0.
Since R is a division ring, then every nonzero element of R is a unit. Hence, a

is a unit, so a has a multiplicative inverse in R. Thus, there exists a−1 ∈ R such
that aa−1 = a−1a = 1. Hence, a−1a = aa−1 = 1. Thus, a is a multiplicative
inverse of a−1, so a−1 is a unit. Since the multiplicative inverse of each unit
of a ring is unique, then the multiplicative inverse of a−1 is unique. Therefore,
(a−1)−1 = a.
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We prove 3.
Suppose a = b and b 6= 0. Then a

b = ab−1 = bb−1 = 1. Therefore, a
b = 1.

Conversely, suppose a
b = 1.

Then 1 = a
b = ab−1, so b 6= 0. Observe that

a = a · 1
= a(b−1b)

= (ab−1)b

=
a

b
· b

= 1 · b
= b.

Therefore, a = b.
We prove 4.
Suppose a 6= 0 and b 6= 0.
Then

1 = aa−1

= a · 1 · a−1

= a(b−1b)a−1

= (ab−1)(ba−1)

=
a

b
· b
a
.

and

1 = bb−1

= b · 1 · b−1

= b(a−1a)b−1

= (ba−1)(ab−1)

=
b

a
· a
b
.

Hence, a
b ·

b
a = 1 = b

a ·
a
b , so b

a is the multiplicative inverse of a
b . Therefore,

(a
b )−1 = b

a .
We prove 5.
Suppose c 6= 0.
Then

a

c
+
b

c
= ac−1 + bc−1

= (a+ b)c−1

=
a+ b

c
.
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Therefore, a
c + b

c = a+b
c .

We prove 6.
Suppose c 6= 0.
Then

a

c
− b

c
= ac−1 − bc−1

= (a− b)c−1

=
a− b
c

.

Therefore, a
c −

b
c = a−b

c .

Subrings

Theorem 16. Let (R,+, ∗) be a ring.
Let S ⊂ R.
Then S is a subring of R iff
1. S 6= ∅.
2. (∀a, b ∈ S)(a− b ∈ S).
3. (∀a, b ∈ S)(ab ∈ S).
4. S has the same multiplicative identity as R.

Proof. Suppose S is a subring of R. Then S is a subset of R and (S,+, ∗) is a
ring under the induced operations of addition and multiplication in R and S has
the same multiplicative identity as R. Since S is a ring, then S must contain
the zero element of R. Hence, S 6= ∅.

Let a, b ∈ S. Since S is an additive group, then −b ∈ S. Since S is a group,
then S is closed under addition. Hence, a+ (−b) ∈ S, so a− b ∈ S.

Since S is a ring, then multiplication is a binary operation on S. Hence, S
is closed under multiplication, so ab ∈ S.

Conversely, suppose all of the criteria are satisfied by S. By assumption,
S 6= ∅ and for every a, b ∈ S, a − b ∈ S. Hence, by the subgroup test, (S,+)
is a subgroup of (R,+). Since addition is commutative in R and S is closed
under addition, then addition is commutative when restricted to S. Thus, S is
abelian, so (S,+) is an abelian group.

By assumption, for every a, b ∈ S, ab ∈ S. Therefore, S is closed under
multiplication. Let a, b ∈ S. Then ab ∈ S. Since a, b ∈ S and S ⊂ R, then
a, b ∈ R. Since multiplication is a binary operation on R, then ab is unique.
Thus, multiplication is a binary operation on S, since ab ∈ S and ab is unique.

Since multiplication is associative in R and S is closed under multiplication,
then multiplication is associative when restricted to S. Since multiplication is
left and right distributive over addition in R and S is closed under multiplication
and addition, then multiplication is left and right distributive over addition when
restricted to S.

Therefore, (S,+, ∗) is a ring.
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Since S is a subset of R, and S is a ring under the induced operations of
addition and multiplication of R, and S has the same multiplicative identity as
R, then S is a subring of R.

Integral Domains

Proposition 17. A unit of a ring cannot be a zero divisor.

Proof. Let R be a ring.
Let a be a unit of R.
Then R is a ring with unity and a has a multiplicative inverse.
Let e be the unity element of R.
Let b be the multiplicative inverse of a.
Then b ∈ R and ab = ba = e.

We must prove a cannot be a zero divisor.
Suppose for the sake of contradiction that a is a zero divisor of R.
Then R is a commutative ring and there exists c ∈ R such that c 6= 0 and

ac = 0.
Observe that

(b+ c)a = a(b+ c)

= ab+ ac

= e+ 0

= e.

Thus, a(b+ c) = (b+ c)a = e, so b+ c is a multiplicative inverse of a.
The multiplicative inverse of each unit in a ring is unique.
Hence, b+ c = b = b+ 0.
By additive cancellation for rings, c = 0.
Thus, we have c 6= 0 and c = 0, a contradiction.
Therefore, a cannot be a zero divisor.

Proposition 18. A zero divisor of a ring cannot be a unit.

Proof. Let R be a ring.
Let a be a zero divisor of R.
Then R is a commutative ring and a 6= 0 and there exists b ∈ R such that

b 6= 0 and ab = 0.

We must prove a cannot be a unit.
Suppose for the sake of contradiction that a is a unit.
Then R is a ring with unity and a has a multiplicative inverse.
Let e be the unity of R and let c be the multiplicative inverse of a.
Then c ∈ R and ac = ca = e.
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Observe that

(b+ c)a = a(b+ c)

= ab+ ac

= 0 + e

= e.

Thus, a(b+ c) = (b+ c)a = e, so b+ c is a multiplicative inverse of a.
The multiplicative inverse of each unit in a ring is unique.
Hence, b+ c = c.
Thus, c+ b = c+ 0, so by additive cancellation for rings, b = 0.
Hence, b = 0 and b 6= 0, a contradiction.
Therefore, a cannot have a multiplicative inverse.

Proposition 19. (Zp,+, ·) is an integral domain.
Let p be prime and [a], [b] ∈ (Zp,+, ·).
If [a][b] = 0, then [a] = 0 or [b] = 0.

Proof. Suppose [a][b] = [0].
Then [ab] = [0] so ab ≡ 0 (mod p).
Thus, p|ab− 0, so p|ab.
Since p is prime and p|ab then we know by Euclid’s lemma either p|a or p|b

(or both).
We consider these cases separately.
Case 1: Suppose p|a.
Then p|a− 0 so a ≡ 0 (mod p).
Therefore, [a] = [0].
Case 1: Suppose p|b.
Then p|b− 0 so b ≡ 0 (mod p).
Therefore, [b] = [0].
Hence, either [a] = [0] or [b] = [0].

Theorem 20. multiplicative cancellation laws hold in an integral do-
main

Let (D,+, ·) be a commutative ring with nonzero unity.
Then D is an integral domain iff for all a, b, c ∈ D, if ca = cb and c 6= 0,

then a = b.

Proof. We prove if D is an integral domain, then for all a, b, c ∈ D, if ca = cb
and c 6= 0, then a = b.

Suppose D is an integral domain.
Let a, b, c ∈ D such that ca = cb and c 6= 0.
Then

0 = ca+ (−ca)

= ca− ca
= ca− cb
= c(a− b).
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Since c(a−b) = 0 and D is an integral domain, then either c = 0 or a−b = 0.
Since c 6= 0, then a− b = 0.
Therefore, a = b.

Proof. Conversely, we prove if ca = cb and c 6= 0, then a = b for all a, b, c ∈ D,
then D is an integral domain.

Suppose ca = cb and c 6= 0 implies a = b for every a, b, c ∈ D.
To prove D is an integral domain, we need only prove D has no divisors of

zero since D is a commutative ring with nonzero unity.
To prove D has no zero divisors, we prove the product of two nonzero ele-

ments of D is nonzero.

Let x and y be arbitrary nonzero elements of D.
Then x ∈ D and y ∈ D and x 6= 0 and y 6= 0.
To prove xy 6= 0, suppose xy = 0.
Since D is a ring, then x0 = 0 = xy.
Therefore, x0 = xy.
Since x0 = xy and x 6= 0, then by hypothesis, 0 = y.
Therefore, y = 0.
Hence, we have y 6= 0 and y = 0, a contradiction.
Therefore, xy 6= 0, as desired.

Ideals

Proposition 21. Let R be a ring.
The zero ring and R itself are ideals in R.

Proof. We prove the zero ring {0} is an ideal of R.
Observe that {0} is an abelian subgroup of (R,+).
Let I = {0}.
We prove Rx ⊂ I and xR ⊂ I for all x ∈ I. Let x = 0.
Let a ∈ Rx. Then a = rx = r0 = 0 for some r ∈ R. Thus, a ∈ I. Hence,

a ∈ Rx implies a ∈ I, so Rx ⊂ I.
Let b ∈ xR. Then b = xr = 0r = 0 for some r ∈ R. Thus, b ∈ I. Hence,

b ∈ xR implies b ∈ I, so xR ⊂ I.
Since (I,+) is an additive subgroup of (R,+) and Rx ⊂ I and xR ⊂ I, then

I is an ideal of R. Hence, the zero subring of R is an ideal of R.
We prove R is an ideal of R.
By definition of subring, (R,+) is an abelian subgroup of (R,+).
Let I = R.
We prove Rx ⊂ I and xR ⊂ I for all x ∈ I.
Let x ∈ I. Then x ∈ R.
Let a ∈ Rx. Then a = rx for some r ∈ R. Since R is a ring, then R is closed

under multiplication. Sincer, x ∈ R, then this implies a ∈ R. Since R = I, then
a ∈ I. Hence, a ∈ Rx implies a ∈ I, so Rx ⊂ I.
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Let b ∈ xR. Then b = xr for some r ∈ R. Since R is a ring, then R is closed
under multiplication. Since r, x ∈ R, then this implies b ∈ R. Since R = I, then
b ∈ I. Hence, b ∈ xR implies b ∈ I, so xR ⊂ I.

Thus, RI ⊂ I and IR ⊂ I.
Since (I,+) is an abelian subgroup of (R,+) and RI ⊂ I and IR ⊂ I, then

I is an ideal in R.

Theorem 22. Let R be a commutative ring. Let a ∈ R. The set (a) = {ra :
r ∈ R} is an ideal of R.

Proof. Let I = {ra : r ∈ R}. We prove (I,+) is a subgroup of (R,+).
Let b ∈ I. Then b = ra for some r ∈ R. Since R is a ring, then R is closed

under multiplication. Thus, b ∈ R, since a ∈ R and r ∈ R. Hence, b ∈ I implies
b ∈ R, so I ⊂ R.

Let e be the multiplicative identity of R. Since e ∈ R and ea = a, then
a ∈ I, so I is not empty.

Let x, y ∈ I. Then x = ra and y = r′a for some r, r′ ∈ R. Thus, x − y =
ra− r′a = (r − r′)a. Since r − r′ is an element of R, then x− y ∈ I.

Therefore, (I,+) is a subgroup of (R,+).
We prove RI ⊂ I and IR ⊂ I. Let x ∈ I. Then x = ra for some r ∈ R.
Let x′ ∈ Rx. Then x′ = r′x for some r′ ∈ R. Thus, x′ = r′(ra) = (r′r)a.

Since r′r ∈ R, then x′ ∈ I. Hence, x′ ∈ Rx implies x′ ∈ I, so Rx ⊂ I.
Let y′ ∈ xR. Then y′ = xs′ for some s′ ∈ R. Thus, y′ = (ra)s′ = s′(ra) =

(s′r)a. Since r, s′ ∈ R, then y′ ∈ I. Hence, y′ ∈ xR implies y′ ∈ I, so xR ⊂ I.
Thus, we have RI ⊂ I and IR ⊂ I.
Since (I,+) < (R,+) and RI ⊂ I and IR ⊂ I, then I is an ideal of R.
Therefore, (a) is an ideal of R.
The ideal (a) is called the principal ideal generated by a in R.

Theorem 23. Every ideal in the ring Z is a principal ideal.

Proof. Let I be an arbitrary ideal of Z.
Since I is an ideal of Z, then I ⊂ Z and (I,+) is a subgroup of (Z,+) and

ZI ⊂ I and IZ ⊂ I.
Either I is the zero ring or I is not the zero ring.
We consider these cases separately.
Case 1: Suppose I is the zero ring.
Observe that (0) = {k0 : k ∈ Z} = {0} = I. Hence, I is the principal ideal

generated by zero.
Case 2: Suppose I is not the zero ring.
Then (I,+) is a group other than the trivial group. Therefore, I contains

some nonzero element.
Thus, there exists k ∈ I such that k 6= 0. By definition of ideal, for every

x ∈ Z, xk ∈ I. Thus, for x = −1, −k ∈ I. Hence, both k and −k are in I. Since
I ⊂ Z, then k ∈ Z and −k ∈ Z. Since k 6= 0, then either k is positive or −k is
positive, by trichotomy of Z. Therefore, I contains some positive integer.
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Let M be the set of all positive elements of I. Then M = {m ∈ I : m > 0},
so M ⊂ I. Since M ⊂ I and I ⊂ Z, then M ⊂ Z. Since M ⊂ Z and every
element of M is positive, then M ⊂ Z+. By the well ordering principle of Z+,
M contains a least element. Thus, there exists n ∈ M such that n is the least
element of M . Hence, n ∈ I and n > 0.

Let a be an arbitrary element of I. Since a ∈ I and I ⊂ Z, then a ∈ Z.
We divide a by n. By the division algorithm, there exist unique integers q, r
such that a = nq + r and 0 ≤ r < n. Thus, r = a − nq = a + (−nq). Since
n ∈ I, then by definition of ideal, for every x ∈ Z, nx ∈ I. In particular, if we
let x = −q, then we have −nq ∈ I. Since I is an additive group, then I is closed
under addition. Thus, r ∈ I, since a ∈ I and −nq ∈ I.

Either r > 0 or r = 0.
Suppose r > 0. Then r ∈ M , since r ∈ I and r > 0. Since n is the

least element of M , then n ≤ r, so r ≥ n. Thus, we have r < n and r ≥ n,
a contradiction. Therefore, r cannot be greater than zero, so r = 0. Hence,
a = nq. Thus, a ∈ (n), by definition of principal ideal. Consequently, a ∈ I
implies a ∈ (n). Therefore, I ⊂ (n).

Conversely, let b be an arbitrary element of (n). Then b = sn for some
integer s. Since n ∈ I, then by definition of ideal, sn ∈ I. Hence, b ∈ I. Thus,
b ∈ (n) implies b ∈ I, so (n) ⊂ I.

Therefore, I ⊂ (n) and (n) ⊂ I, so I = (n). Consequently, I is the principal
ideal generated by n.

Quotient Rings

Proposition 24. Let I be an ideal in a ring R. Then congruence modulo I is
an equivalence relation on R.

Proof. We prove the relation congruence modulo I is reflexive, symmetric, and
transitive.

Let a ∈ R. Then a− a = 0. Since I is an ideal, then (I,+) is a subgroup of
(R,+). Hence, the additive identity of R is in I, so 0 ∈ I. Thus, a− a ∈ I, so
aRa is true. Therefore, congruence modulo I is reflexive.

Let a, b ∈ R such that a ≡ b (mod I). Then a − b ∈ I. Let 1 be the
multiplicative identity of R. Since R is a ring, then (R,+) is a group, so −1 ∈ R.
By definition of ideal, for every x ∈ R, x(a − b) ∈ I. Hence, in particular, if
we let x = −1, then (−1)(a − b) = −a + b = b − a ∈ I. Thus, b ∼= a (mod I).
Therefore, a ≡ b (mod I) implies b ∼= a (mod I), so congruence modulo I is
symmetric.

Let a, b, c ∈ R such that a ≡ b (mod I) and b ≡ c (mod I). Then a− b ∈ I
and b − c ∈ I. Since I is an additive group, then I is closed under addition.
Hence, (a − b) + (b − c) = a − c ∈ I. Thus, a ∼= c (mod I). Therefore, a ≡ b
(mod I) and b ≡ c (mod I) imply a ∼= c (mod I), so congruence modulo I is
transitive.

Since congruence modulo I is reflexive, symmetric, and transitive, then con-
gruence modulo I is an equivalence relation on R.
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Theorem 25. Let I be an ideal in a ring R. The set R
I is an abelian group

under coset addition.

Proof. Let R
I to be the collection of all cosets of I in R. Then R

I = {a+ I : a ∈
R}.

We prove coset addition is well defined.
Let a+I, b+I, c+I, d+I be arbitrary elements of R

I such that (a+I, b+I) =
(c+ I, d+ I). Then a+ I = c+ I and b+ I = d+ I and a, b, c, d ∈ R.

We prove (a+ I) + (b+ I) = (c+ I) + (d+ I).
Since a+I = c+I, then a ≡ c (mod I), so a−c ∈ I. Since b+I = d+I, then

b ≡ d (mod I), so b− d ∈ I. Since (I,+) is an additive group, then I is closed
under addition. Thus, (a−c)+(b−d) = (a+b)−(c+d) ∈ I. Hence, a+b ≡ c+d
(mod I), so (a+b)+I = (c+d)+I. Therefore, (a+I)+(b+I) = (c+I)+(d+I),
by definition of coset addition. Thus, coset addition is well defined, so coset
addition is a binary operation on R

I .

Let a+ I, b+ I be arbitrary elements of R
I . Then a, b ∈ R and

(a+ I) + (b+ I) = (a+ b) + I

= (b+ a) + I

= (b+ I) + (a+ I).

Therefore, coset addition is commutative.
Let a+ I, b+ I, c+ I be arbitrary elements of R

I . Then a, b, c ∈ R and

[(a+ I) + (b+ I)] + (c+ I) = [(a+ b) + I] + (c+ I)

= [(a+ b) + c] + I

= [a+ (b+ c)] + I

= (a+ I) + [(b+ c) + I]

= (a+ I) + [(b+ I) + (c+ I)].

Therefore, coset addition is associative.
Let a+ I be an arbitrary element of R

I . Then a ∈ R and

(a+ I) + I = (a+ I) + (0 + I)

= (a+ 0) + I

= a+ I

= (0 + a) + I

= (0 + I) + (a+ I)

= I + (a+ I).

Hence, I = 0 + I is an additive identity of R
I .

Observe that

(a+ I) + (−a+ I) = [a+ (−a)] + I

= 0 + I

= (−a+ a) + I

= (−a+ I) + (a+ I).
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Thus, the additive inverse of a+ I is −a+ I.
Hence, R

I is an abelian group under coset addition.

Theorem 26. Let I be an ideal in a ring R. The set R
I is a ring under coset

addition and coset multiplication.

Proof. Let R
I to be the collection of all cosets of I in R. Then R

I = {a+ I : a ∈
R}.

We proved R
I is an abelian group under coset addition.

We now prove coset multiplication is well defined.
Let a+I, b+I, c+I, d+I be arbitrary elements of R

I such that (a+I, b+I) =
(c+ I, d+ I). Then a+ I = c+ I and b+ I = d+ I and a, b, c, d ∈ R.

We prove (a+ I)(b+ I) = (c+ I)(d+ I).
Since a+ I = c+ I, then a ≡ c (mod I), so a− c ∈ I. Since b+ I = d+ I,

then b ≡ d (mod I), so b − d ∈ I. Since (I,+) is an additive group, then
I is closed under addition. We multiply by b to obtain (a − c)b = ab − cb.
Since a − c ∈ I and b ∈ R, then ab − cb ∈ I, by definition of ideal. We
multiply by c to obtain c(b − d) = cb − cd. Since b − d ∈ I and c ∈ R, then
cb − cd ∈ I, by definition of ideal. Since I is closed under addition, we obtain
(ab− cb) + (cb− cd) = ab− cd ∈ I. Hence, ab ≡ cd (mod I), so ab+ I = cd+ I.
Therefore, (a+ I)(b+ I) = (c+ I)(d+ I), by definition of coset multiplication.
Thus, coset multiplication is well defined, so coset multiplication is a binary
operation on R

I .

Let a+ I, b+ I, c+ I be arbitrary elements of R
I . Then a, b, c ∈ R and

[(a+ I)(b+ I)](c+ I) = (ab+ I)(c+ I)

= (ab)c+ I

= a(bc) + I

= (a+ I)(bc+ I)

= (a+ I)[(b+ I)(c+ I)].

Therefore, coset multiplication is associative.
Let e be the multiplicative identity of R. Let a+ I be an arbitrary element

of R
I . Then a ∈ R and

(a+ I)(e+ I) = ae+ I

= a+ I

= ea+ I

= (e+ I)(a+ I).

Hence, e+ I is multiplicative identity of R
I .
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Let a+ I, b+ I, c+ I be arbitrary elements of R
I . Then a, b, c ∈ R and

(a+ I)[(b+ I) + (c+ I)] = (a+ I)[(b+ c) + I]

= a(b+ c) + I

= (ab+ ac) + I

= (ab+ I) + (ac+ I)

= (a+ I)(b+ I) + (a+ I)(c+ I).

Therefore, coset multiplication is left distributive over coset addition.
Observe that

[(a+ I) + (b+ I)](c+ I) = [(a+ b) + I](c+ I)

= (a+ b)c+ I

= (ac+ bc) + I

= (ac+ I) + (bc+ I)

= (a+ I)(c+ I) + (b+ I)(c+ I).

Therefore, coset multiplication is right distributive over coset addition.
Hence, R

I is a ring.

Ring Homomorphisms

Proposition 27. Let φ : R 7→ R′ be a ring homomorphism. Then the following
are true:

1. φ(0) = 0′, where 0 is additive identity of R and 0′ is additive identity of
R′.

2. If R is a commutative ring, then φ(R) is a commutative ring.
3. If R is a field and φ(R) 6= {0′}, then φ(R) is a field.

Proof. We prove 1. Let a ∈ R. Then

φ(a) + 0′ = φ(a)

= φ(a+ 0)

= φ(a) + φ(0).

By cancellation in R, we have 0′ = φ(0).
We prove 2. Suppose R is a commutative ring. Then for every a, b ∈ R, ab =

ba.
Since φ is a ring homomorphism, then φ is a function and φ(a+ b) = φ(a) +

φ(b) for every a, b ∈ R. Since R and R′ are rings, then (R,+) and (R′,+) are
abelian groups. Hence, φ is a group homomorphism, so φ preserves subgroups
of R. Thus, if S < R, then φ(S) < R′. In particular, R < R, so φ(R) < R′.
Therefore, φ(R) is an additive subgroup of R′. Since R′ is an abelian additive
group, then every additive subgroup of R′ is abelian. In particular, φ(R) is
abelian, so φ(R) is an additive abelian group.
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Let a′, b′ ∈ φ(R). Then there exist a, b ∈ R such that φ(a) = a′ and φ(b) = b′,
by definition of φ(R). By closure of R′ under multiplication, a′b′ ∈ R′. Let
c = ab. By closure of R under multiplication, ab ∈ R, so c ∈ R. Observe that

φ(c) = φ(ab)

= φ(a)φ(b)

= a′b′.

Thus, there exists c ∈ R such that φ(c) = a′b′ ∈ R′. Hence, a′b′ ∈ φ(R), so
φ(R) is closed under multiplication.

Since a′b′ ∈ R′ and multiplication is well defined in R′, then a′b′ is unique.
Therefore, multiplication is a binary operation on φ(R).

Observe that

a′b′ = φ(a)φ(b)

= φ(ab)

= φ(ba)

= φ(b)φ(a)

= b′a′.

Hence, multiplication is commutative in φ(R).
Associativity of multiplication in R′ holds in φ(R) since φ(R) is a subset of

R′ and φ(R) is closed under multiplication.
Distributivity of multiplication over addition (left and right) in R′ holds

in φ(R) since φ(R) is a subset of R′ and φ(R) is closed under addition and
multiplication.

Since φ is a ring homomorphism, then φ(1) = 1′, where 1 is unity of R and
1′ is unity of R′. Thus, there exists 1 ∈ R such that φ(1) = 1′, so 1′ ∈ φ(R).

Therefore, φ(R) is a commutative ring.
We prove 3.
Suppose R is a field and φ(R) 6= {0′}. Since R is a field, then R is a

commutative division ring, so R is a commutative ring. Therefore, φ(R) is a
commutative ring.

Since φ(R) is a ring and φ(R) 6= {0′}, then there exists a nonzero element
in φ(R).

Let a′ ∈ R′ and a′ 6= 0′. Then there exists a ∈ R such that φ(a) = a′, by
definition of φ(R).

Suppose a = 0. Then a′ = φ(a) = φ(0) = 0′, so a′ = 0′. Thus, we have
a′ 6= 0′ and a′ = 0′, a contradiction. Therefore, a 6= 0.

Since R is a field, then every nonzero element of R is a unit of R. Hence, in
particular, a is a unit of R. Therefore, there exists a−1 ∈ R such that aa−1 = 1,
where 1 is unity of R. Let b′ = φ(a−1). Then b′ ∈ R′. Since a−1 ∈ R and
φ(a−1) ∈ R′, then b′ ∈ φ(R), by definition of φ(R).
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Let 1′ be the unity of R′. Observe that

1′ = φ(1)

= φ(aa−1)

= φ(a)φ(a−1)

= a′b′

= b′a′.

Hence, there exists b′ ∈ φ(R) such that a′b′ = b′a′ = 1′. Therefore, a′ is a
unit of R′. Thus, every nonzero element of R′ is a unit of R′, so R′ is a field.

Theorem 28. Let φ : R 7→ R′ be a ring homomorphism. Then ker(φ) is an
ideal in R.

Proof. Let 0′ be the additive identity of R′. Let I = ker(φ) = {r ∈ R : φ(r) =
0′}.

Since φ is a ring homomorphism, then φ : R 7→ R′ is a function and for all
a, b ∈ R,φ(a + b) = φ(a) + φ(b). Since R and R′ are rings, then (R,+) and
(R′,+) are additive groups. Therefore, φ is a group homomorphism. Hence, the
kernel of φ is a subgroup of (R,+).

Let x ∈ I. Then x ∈ R and φ(x) = 0′.
Let x′ ∈ Rx. Then x′ = rx for some r ∈ R. Since R is a ring, then R is

closed under multiplication. Thus, x′ ∈ R, since r, x ∈ R. Observe that

φ(x′) = φ(rx)

= φ(r)φ(x)

= φ(r)0′

= 0′.

Hence, x′ ∈ I, by definition of I. Thus, x′ ∈ Rx implies x′ ∈ I, so Rx ⊂ I.
Let y′ ∈ xR. Then y′ = xs for some s ∈ R. Since R is a ring, then R is

closed under multiplication. Thus, y′ ∈ R, since s, x ∈ R. Observe that

φ(y′) = φ(xs)

= φ(x)φ(s)

= 0′φ(r)

= 0′.

Hence, y′ ∈ I, by definition of I. Thus, y′ ∈ xR implies y′ ∈ I, so xR ⊂ I.
Since x is arbitrary, then RI ⊂ I and IR ⊂ I.
Since (I,+) is a subgroup of (R,+) and RI ⊂ I and IR ⊂ I, then I is an

ideal of R, by definition of ideal.
Therefore, ker(φ) is an ideal of R.

Theorem 29. Let I be an ideal of a ring R. Let η : R 7→ R
I be defined by

η(a) = a+ I for all a ∈ R. Then η is a ring homomorphism of R onto R
I with

kernel I. We call η the natural homomorphism from R onto R
I .
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Proof. Since R is a ring, then (R,+) is an abelian group. Since I is an ideal of
R, then (I,+) is a subgroup of (R,+). Every subgroup of an abelian group is
normal. Since R is abelian, then I is normal in R. Thus, η is the natural group
homomorphism from R onto R

I . Hence, η is a function and η(a+b) = η(a)+η(b)
for every a, b ∈ R and ker(η) = I and η is surjective.

To prove η is a ring homomorphism, we need only prove multiplication and
multiplicative identity are preserved.

Let a, b ∈ R. Then

η(ab) = (ab) + I

= (a+ I)(b+ I)

= η(a)η(b).

Observe that η(e) = e+ I, which is multiplicative identity of R
I .

Therefore, η is a ring homomorphism.

Theorem 30. Fundamental Homomorphism Theorem
Let φ : R 7→ R′ be a ring homomorphism with kernel K. Then there exists a

unique ring isomorphism φ′ : R
K 7→ φ(R) defined by φ′(rK) = φ(r) for all r ∈ R

such that φ′ ◦ η = φ, where η : R 7→ R
K is the natural homomorphism.

Proof. By assumption, φ is a ring homomorphism. If φ is a ring homomorphism,
then the kernel of φ is an ideal of R. Therefore, K is an ideal of R. Hence, the
quotient ring R

K exists and there exists a natural homomorphism from R onto
R
K . Let η : R 7→ R

K be the natural ring homomorphism defined by η(a) = a+K
for all a ∈ R.

Since R and R′ are rings, then R and R′ are additive abelian groups. Since
φ is a ring homomorphism, then φ is a group homomorphism with kernel K.
Therefore, by the fundamental group homomorphism theorem, there exists a
group isomorphism φ′ : R

K 7→ φ(R) defined by φ′(r + K) = φ(r) for all r ∈ R
such that φ′ ◦ η = φ.

Let x, y ∈ R
K . Then there exist a, b ∈ R such that x = a+K and y = b+K.

Since φ′ is a group isomorphism, then φ′ is a bijective function and φ′(x+ y) =
φ′(x) + φ′(y). Observe that

φ′(xy) = φ′[(a+K)(b+K)]

= φ′[(ab) +K]

= φ(ab)

= φ(a)φ(b)

= φ′(a+K)φ′(b+K)

= φ′(x)φ′(y).

Let e be the unity of R and e′ be the unity of R′. Then φ′(e+K) = φ(e) = e′.
Therefore, φ′ is a ring homomorphism and φ′ ◦ η = φ.
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Ring Isomorphisms

Theorem 31. First Isomorphism Theorem
Let H and K be subgroups of a group G such that K CG.
Let HK = {hk : h ∈ H ∧ k ∈ K}.
Then HK is a subgroup of G such that K CHK and H

H∩K
∼= HK

K .

Solution. We must prove:
1. HK < G.
2. K CHK.
3. H

H∩K
∼= HK

K .

Proof. We first prove HK < G.
Let x ∈ HK. Then there exists h ∈ H and k ∈ K such that x = hk. Since

H < G, then H ⊂ G. Since h ∈ H and H ⊂ G, then h ∈ G. Since K < G,
then K ⊂ G. Since k ∈ K and K ⊂ G, then k ∈ G. Since G is a group, then
G is closed under its binary operation. Thus, since h, k ∈ G, then hk = x ∈ G.
Therefore, x ∈ HK implies x ∈ G, so HK ⊂ G.

We apply a subgroup test.
Let e be the identity of G. Since H < G, then e ∈ H. Since K < G, then

e ∈ K. Since e = ee, then e ∈ HK, by definition of HK. Therefore, HK 6= ∅.
Let a, b ∈ HK. Then there exist h1 ∈ H and k1 ∈ K such that a = h1k1

and there exist h2 ∈ H and k2 ∈ K such that b = h2k2, by definition of HK.
Since a, b ∈ HK and HK ⊂ G, then a, b ∈ G. Thus, ab−1 = (h1k1)(h2k2)−1 =
(h1k1)(k−12 h−12 ) = h1k1k

−1
2 h−12 . Let k = k1k

−1
2 . Since K is a group, then k ∈ K

and ab−1 = h1kh
−1
2 .

Since h2 ∈ H and H ⊂ G, then h2 ∈ G. Since K C G, then for every
g ∈ G, h ∈ K, ghg−1 ∈ K. Thus, in particular, if we let g = h2 and h = k,
then h2kh

−1
2 ∈ K. Let k3 = h2kh

−1
2 . Then k3 ∈ K and kh−12 = h−12 k3, so

ab−1 = h1(h−12 k3) = (h1h
−1
2 )k3. Since H is a group, then H is closed under

its binary operation. Therefore, since h1 ∈ H and h−12 ∈ H, then h1h
−1
2 ∈ H.

Since h1h
−1
2 ∈ H and k3 ∈ K, then ab−1 ∈ HK, by definition of HK.

Therefore, HK is a subgroup of G.
We prove K is normal in HK. We first prove K is a subgroup of HK and

then prove for every g ∈ HK and k ∈ K, gkg−1 ∈ K.
Let x ∈ K. Then x = ex. Since e ∈ H and x ∈ K, then x ∈ HK, by

definition of HK. Thus, x ∈ K implies x ∈ HK, so K ⊂ HK.
Since K < G, then e ∈ K, so K 6= ∅.
Let a, b ∈ K. Since K is a group, then b−1 ∈ K. Since K is closed under its

binary operation, then ab−1 ∈ K.
Thus, K is a subgroup of HK.
Let g ∈ HK and k′ ∈ K. Then g = hk for some h ∈ H and k ∈ K.

Observe that gk′g−1 = (hk)k′(hk)−1 = hkk′k−1h−1. Let k′′ = kk′k−1. Then
gk′g−1 = hk′′h−1. Since K CG, then hk′′h−1 ∈ K, so gk′g−1 ∈ K. Therefore,
K is a normal subgroup of HK.
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Since K is normal in HK, then the quotient group HK
K exists.

Let HK
K be the set of all cosets of K in HK. Then HK

K = {hK : h ∈ H}.
Define binary relation φ : H 7→ HK

K by φ(h) = hK for all h ∈ H.
We prove φ is well defined. Let h1, h2 ∈ H such that h1 = h2. Then

h1K = h2K. Thus, φ(h1) = h1K = h2K = φ(h2). Hence, h1 = h2 implies
φ(h1) = φ(h2), so φ is well defined. Therefore, φ is a function.

Let a, b ∈ H. Then φ(ab) = (ab)K = (aK)(bK) = φ(a)φ(b). Thus, φ is a
homomorphism.

We prove ker(φ) = H ∩K. Let x ∈ ker(φ). Then x ∈ H since ker(φ) ⊂ H
and φ(x) = K, by definition of kernel of φ. Thus, K = φ(x) = xK. Since
xK = K, then x ∈ K. Since x ∈ H and x ∈ K, then x ∈ H ∩ K. Hence,
x ∈ ker(φ) implies x ∈ H ∩K, so ker(φ) ⊂ H ∩K.

Let y ∈ H ∩ K. Then y ∈ H and y ∈ K. Since y ∈ H and H ⊂ G, then
y ∈ G. Since y ∈ K, then yK = K. Thus, φ(y) = yK = K. Since y ∈ H
and φ(y) = K, then y ∈ ker(φ). Hence, y ∈ H ∩ K implies y ∈ ker(φ), so
H ∩K ⊂ ker(φ).

Since ker(φ) ⊂ H ∩K and H ∩K ⊂ ker(φ), then ker(φ) = H ∩K.
We prove φ(H) = HK

K . Observe that φ(H) = {φ(h) ∈ HK
K : h ∈ H}.

Let x ∈ φ(H). Then there exists h ∈ H such that x = φ(h) and x ∈ HK
K .

Thus, x = φ(h) = hK. Since there exists h ∈ H such that x = hK, then
x ∈ HK

K , by definition of HK
K . Hence, x ∈ φ(H) implies x ∈ HK

K , so φ(H) ⊂ HK
K .

Let y ∈ HK
K . Then there exists h ∈ H such that y = hK. Thus, φ(h) =

hK = y. Hence, there exists h ∈ H such that y = φ(h), so y ∈ φ(H), by
definition of φ(H). Therefore, y ∈ HK

K implies y ∈ φ(H), so HK
K ⊂ φ(H).

Since φ(H) ⊂ HK
K and HK

K ⊂ φ(H), then φ(H) = HK
K .

Hence, φ : H 7→ HK
K is a homomorphism with kernel H∩K and φ(H) = HK

K .

Thus, by the fundamental homomorphism theorem, H
H∩K

∼= HK
K .

Direct product of Rings

Theorem 32. Let (R,+, ∗) be a ring with unity e. Let n ∈ Z+, n ≥ 2. Then
(Rn,+, ∗) is a ring with unity (e, e, ..., e).

Proof. Observe that Rn = R × R × ... × R = {(a1, a2, ..., an) : ai ∈ R}. Since
(R,+, ∗) is a ring, then (R,+) is an abelian group. Observe that (Rn,+) is the
direct sum of the group (R,+) with itself n times. The direct sum of abelian
groups is an abelian group. Hence, (Rn,+) is an abelian group.

We prove component wise multiplication is a binary operation over Rn. Let
a, b ∈ Rn. Then for each i ∈ {1, 2, ..., n} there exist ai, bi ∈ R such that
a = (a1, a2, ..., an) and b = (b1, b2, ..., bn). Observe that

ab = (a1, a2, ..., an)(b1, b2, ..., bn)

= (a1b1, a2b2, ..., anbn).

Since R is a ring, then R is closed under multiplication, so aibi ∈ R for each i.
Therefore, ab ∈ Rn, so Rn is closed under componentwise multiplication.
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We prove componentwise multiplication is well defined. Let (a, b) and (c, d)
be arbitrary elements of Rn × Rn such that (a, b) = (c, d). Then a, b, c, d ∈ Rn

and a = c and b = d. Hence, for each i = 1, 2, ..., n there exist ai, bi, ci, di ∈ R
such that a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) and c = (c1, c2, ..., cn) and
d = (d1, d2, ..., dn) and ai = ci and bi = di for each i. Thus,

ab = (a1, a2, ..., an)(b1, b2, ..., bn)

= (a1b1, a2b2, ..., anbn)

= (c1b1, c2b2, ..., cnbn)

= (c1d1, c2d2, ..., cndn)

= (c1, c2, ..., cn)(d1, d2, ..., dn)

= cd.

Hence, ab = cd, so componentwise multiplication is well defined over Rn. There-
fore, componentwise multiplication is a binary operation on Rn.

We prove componentwise multiplication is associative. Let a, b, c ∈ Rn.
Then for each i = 1, 2, ..., n there exist ai, bi, ci ∈ R such that a = (a1, a2, ..., an)
and b = (b1, b2, ..., bn) and c = (c1, c2, ..., cn). Observe that

(ab)c = [(a1, a2, ..., an)(b1, b2, ..., bn)](c1, c2, ..., cn)

= (a1b1, a2b2, ..., anbn)(c1, c2)

= ((a1b1)c1, (a2b2)c2, ..., (anbn)cn)

= (a1(b1c1), a2(b2c2), ..., an(bncn))

= (a1, a2, ..., an)(b1c1, b2c2, ..., bncn)

= (a1, a2, ..., an)[(b1, b2, ..., bn)(c1, c2, ..., cn)]

= a(bc).

Therefore, componentwise multiplication is associative.
Observe that

(a1, a2, ..., an)(e, e, ..., e) = (a1e, a2e, ..., ane)

= (a1, a2, ..., an)

= (ea1, ea2, ..., ean)

= (e, e, ...e)(a1, a2, ..., an).

Therefore, (e, e, ..., e) is a multiplicative identity in Rn, so a multiplicative iden-
tity exists in Rn.
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Observe that

a(b+ c) = (a1, a2, ..., an)[(b1, b2, ..., bn) + (c1, c2, ..., cn)]

= (a1, a2, ..., an)(b1 + c1, b2 + c2, ..., bn + cn)

= (a1(b1 + c1), a2(b2 + c2), ..., an(bn + cn))

= (a1b1 + a1c1, a2b2 + a2c2, ..., anbn + ancn)

= (a1b1, a2b2, ..., anbn) + (a1c1, a2c2, ..., ancn)

= (a1, a2, ..., an)(b1, b2, ..., bn) + (a1, a2, ..., an)(c1, c2, ..., cn)

= ab+ ac

and

(a+ b)c = [(a1, a2, ..., an) + (b1, b2, ..., bn)](c1, c2, ..., cn)

= (a1 + b1, a2 + b2, ..., an + bn)(c1, c2, ..., cn)

= ((a1 + b1)c1, (a2 + b2)c2, ..., (an + bn)cn)

= (a1c1 + b1c1, a2c2 + b2c2, ..., ancn + bncn)

= (a1c1, a2c2, ..., ancn) + (b1c1, b2c2, ..., bncn)

= (a1, a2, ..., an)(c1, c2, ..., cn) + (b1, b2, ..., bn)(c1, c2, ..., cn)

= ac+ bc

Therefore, the left and right distributive laws hold in Rn.
Hence, (Rn,+, ∗) is a ring with unity (e, e, ..., e).

Theorem 33. Let (R,+, ∗) be a commutative ring. Then (Rn,+, ∗) is a com-
mutative ring.

Proof. Let n ∈ Z+, n ≥ 2. Let Rn be the direct product of n copies of the ring
R. The direct product of n copies of a ring is a ring. Therefore, (Rn,+, ∗) is a
ring.

Let a, b ∈ Rn. Then for each i ∈ {1, 2, ..., n} there exist ai, bi ∈ Rn such that
a = (a1, a2, ..., an) and b = (b1, b2, ..., bn). Observe that

ab = (a1, a2, ..., an)(b1, b2, ..., bn)

= (a1b1, a2b2, ..., anbn)

= (b1a1, b2a2, ..., bnan)

= (b1, b2, ..., bn)(a1, a2, ..., an)

= ba.

Therefore, component wise multiplication in Rn is commutative. Hence,
(Rn,+, ∗) is a commutative ring.
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