Ring Theory

Jason Sass

June 22, 2023

Rings

Proposition 1. alternate definition of a ring

Let R be a set with two binary operations + and \cdot defined on R.
Then $(R,+, \cdot)$ is a ring iff

1. $(R,+)$ is an abelian group.
2. Multiplication is associative.
3. Multiplication is distributive over addition.

Proof. We prove if $(R,+)$ is an abelian group and multiplication is associative and multiplication is distributive over addition, then $(R,+, \cdot)$ is a ring.

Suppose $(R,+)$ is an abelian group and multiplication is associative and multiplication is distributive over addition.

Since $(R,+)$ is an abelian group, then addition is associative and commutative.

Hence, $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$ and $a+b=b+a$ for all $a, b \in R$.

Since $(R,+)$ is a group, then there is an additive identity in R.
Therefore, there exists $0 \in R$ such that $0+a=a+0=a$ for all $a \in R$.
Hence, there exists $0 \in R$ such that $a+0=a$ for all $a \in R$.
Therefore, 0 is a right additive identity in R.
Since $(R,+)$ is a group, then each element has an additive inverse.
Thus, for each $a \in R$ there exists $b \in R$ such that $a+b=b+a=0$.
Hence, for each $a \in R$ there exists $b \in R$ such that $a+b=0$.
Therefore, each element of R has a right additive inverse in R.
Since multiplication is associative, then $(a b) c=a(b c)$ for all $a, b, c \in R$.
Since multiplication is distributive over addition, then $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$ for all $a, b, c \in R$.

Therefore, $(R,+, \cdot)$ is a ring.

Conversely, we prove if $(R,+, \cdot)$ is a ring, then $(R,+)$ is an abelian group and multiplication is associative and multiplication is distributive over addition.

Suppose $(R,+, \cdot)$ is a ring.
Since R is a ring, then $(a b) c=a(b c)$ for all $a, b, c \in R$, so multiplication is associative.

Since R is a ring, then $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$ for all $a, b, c \in R$.

Hence, multiplication is left and right distributive over addition, so multiplication is distributive over addition.

We prove $(R,+)$ is an abelian group.
Since R is a ring, then addition is a binary operation defined on R.
Therefore, $(R,+)$ is a binary algebraic structure.
Since R is a ring, then addition is associative and there is a right additive identity and each element of R has a right additive inverse in R.

Therefore, $(R,+)$ is an associative binary algebraic structure with a right additive identity such that every element has a right additive inverse.

Any associative binary structure with a right identity such that each element has a right inverse is a group.

Therefore, $(R,+)$ is a group.
Since R is a ring, then addition is commutative.
Therefore, $(R,+)$ is an abelian group.
Proposition 2. The additive identity of a ring is unique.
Proof. Let $(R,+, \cdot)$ be a ring.
We must prove there is an additive identity in R and the additive identity is unique.

Existence:

Since R is a ring, then there exists $0 \in R$ such that $a+0=a$ for all $a \in R$.
Let $a \in R$.
Then $a+0=a$.
Since addition is commutative in R, then $0+a=a$.
Hence, $a+0=a=0+a$, so 0 is an additive identity of R.
Therefore, at least one additive identity element exists in R.

Uniqueness:

Since R is a ring, then addition is a binary operation defined over R.
Therefore, $(R,+)$ is a binary structure.
Since 0 is an additive identity of R, then $(R,+)$ is a binary structure with identity.

If a binary structure has an identity element, then the identity element is unique.

Therefore, 0 is unique.
Proof. Let $(R,+, \cdot)$ be a ring.

Existence:

Let $a \in R$.
Since there is a right additive identity in R, then there exists $0 \in R$ such that $a+0=a$ for all $a \in R$.

In particular, $a+0=a$ and $0+0=0$.
Since $a \in R$ and each element has a right additive inverse, then there exists $b \in R$ such that $a+b=0$.

We prove $0+a=a$.

Observe that

$$
\begin{aligned}
a+b & =0 \\
& =0+0 \\
& =0+(a+b) \\
& =(0+a)+b .
\end{aligned}
$$

Thus, $a+b=(0+a)+b$.
Since addition is a binary operation on R, then $(R,+)$ is a binary algebraic structure.

Since R is a ring, then addition is associative and there is a right additive identity in R and each element in R has a right additive inverse in R.

Therefore, $(R,+)$ is an associative binary structure with a right identity such that each element of R has a right inverse.

Hence, the right cancellation law holds.
Thus, $a=0+a$, so $a+0=a=0+a$.
Therefore, 0 is an additive identity in R.

Uniqueness:

Since $(R,+)$ is a binary structure with identity, then the identity is unique.
Therefore, 0 is unique.
Proposition 3. The additive inverse of each element of a ring is unique.
Proof. Let $(R,+, \cdot)$ be a ring.
Let $a \in R$.
We must prove a has an additive inverse and the additive inverse of a is unique.

Existence:

Let $0 \in R$ be the additive identity of R.
Since each element of R has a right additive inverse and $a \in R$, then there exists $b \in R$ such that $a+b=0$.

Since addition is commutative in R, then $b+a=0$.
Hence, $a+b=0=b+a$, so b is an additive inverse of a.
Therefore, at least one additive inverse of a exists in R.

Uniqueness:

Since $(R,+, \cdot)$ is a ring, then + is a binary operation on R and addition is associative and there is an additive identity in R.

Therefore, $(R,+)$ is an associative binary structure with identity.
Hence, the inverse of each invertible element is unique.
Since b is an additive inverse of a, then a is invertible, so the inverse of a is unique.

Therefore, b is unique.
Proposition 4. The multiplicative identity of a ring with unity is unique.

Proof. Let $(R,+, \cdot)$ be a ring with unity $1 \in R$.
Since $(R,+, \cdot)$ is a ring, then multiplication is a binary operation on R, so (R, \cdot) is a binary structure.

Since $1 \in R$ is unity, then $1 a=a 1=a$ for all $a \in R$, so there exists $1 \in R$ such that $1 a=a 1=a$ for all $a \in R$.

Hence, 1 is a multiplicative identity in R.
Thus, (R, \cdot) is a binary structure with identity.
If a binary structure has an identity, then the identity is unique.
Therefore, 1 is unique.
Proposition 5. Let $(R,+, \cdot)$ be a ring.
Then for all $a, b, c \in R$

1. if $a=b$, then $a+c=b+c$.
2. if $a=b$, then $a c=b c$.

Proof. We prove 1.
Suppose $a=b$.
By reflexivity of equality, $a+c=a+c$.
Since $a=b$, then by substitution we have $a+c=b+c$, as desired.
Proof. We prove 2.
Suppose $a=b$.
By reflexivity of equality, $a c=a c$.
Since $a=b$, then by substitution we have $a c=b c$, as desired.

Theorem 6. basic properties of a ring

Let $(R,+, \cdot)$ be a ring.
Then for all $a, b, c \in R$

1. if $c+a=c+b$ then $a=b$ and if $a+c=b+c$ then $a=b$.
(left and right additive cancellation laws)
2. $a 0=0 a=0$.
3. $-(-a)=a$.
4. $-(a+b)=(-a)+(-b)$.
5. $a(-b)=(-a) b=-(a b)$.
6. $(-a)(-b)=a b$.
7. If R has a unity, then $(-1) a=-a$.

Proof. We prove 1.
Let $a, b, c \in R$.
Suppose $c+a=c+b$.

Then

$$
\begin{aligned}
a & =0+a \\
& =((-c)+c)+a \\
& =-c+(c+a) \\
& =-c+(c+b) \\
& =((-c)+c)+b \\
& =0+b \\
& =b .
\end{aligned}
$$

Therefore, $a=b$, as desired.
Suppose $a+c=b+c$.
Then

$$
\begin{aligned}
a & =a+0 \\
& =a+(c+(-c)) \\
& =(a+c)+(-c) \\
& =(b+c)+(-c) \\
& =b+(c+(-c)) \\
& =b+0 \\
& =b .
\end{aligned}
$$

Therefore, $a=b$, as desired.
Proof. We prove 2.
Let $a \in R$.
Observe that

$$
\begin{aligned}
a 0+0 & =a 0 \\
& =a(0+0) \\
& =a 0+a 0
\end{aligned}
$$

Therefore, $a 0+0=a 0+a 0$, so by the left cancellation law for addition, $0=a 0$. Observe that

$$
\begin{aligned}
0 a+0 & =0 a \\
& =(0+0) a \\
& =0 a+0 a
\end{aligned}
$$

Therefore, $0 a+0=0 a+0 a$, so by the left cancellation law for addition, $0=0 a$.
Hence, $a 0=0=0 a$.
Proof. We prove 3.
Let $a \in R$.

Then $-a \in R$, so $a+(-a)=-a+a=0$.
Hence, $-a+a=a+(-a)=0$, so a is the additive inverse of $-a$.
Therefore, $-(-a)=a$.
Proof. We prove 4.
Let $a, b \in R$.
Then $-a,-b \in R$.
Observe that

$$
\begin{aligned}
(a+b)+(-(a+b)) & =0 \\
& =0+0 \\
& =(-a+a)+(b+(-b)) \\
& =-a+(a+b)+(-b) \\
& =(a+b)+((-a)+(-b))
\end{aligned}
$$

Therefore, $(a+b)+(-(a+b))=(a+b)+((-a)+(-b))$, so by the left cancellation law for addition, $-(a+b)=(-a)+(-b)$.

Proof. We prove 5.
Let $a, b \in R$.
Observe that

$$
\begin{aligned}
a b+a(-b) & =a(b+(-b)) \\
& =a 0 \\
& =0 \\
& =a b+(-(a b))
\end{aligned}
$$

Therefore, $a b+a(-b)=a b+(-(a b))$, so by the left cancellation law for addition, $a(-b)=-(a b)$.

Observe that

$$
\begin{aligned}
a b+(-a) b & =(a+(-a)) b \\
& =0 b \\
& =0 \\
& =a b+(-(a b))
\end{aligned}
$$

Therefore, $a b+(-a) b=a b+(-(a b))$, so by the left cancellation law for addition, $(-a) b=-(a b)$.

Hence, $a(-b)=-(a b)=(-a) b$.
Proof. We prove 6.
Let $a, b \in R$.
Observe that

$$
\begin{aligned}
(-a)(-b) & =-(a(-b)) \\
& =-(-(a b)) \\
& =a b .
\end{aligned}
$$

Proof. We prove 7.
Suppose R has a unity.
Then R has a multiplicative identity, so let 1 be the multiplicative identity of R.

Then $1 a=a 1=a$ for all $a \in R$.
Let $a \in R$.
Then $1 a=a$.
Since $(R,+)$ is an additive group, then $(-1) a=-(1 a)$, by the laws of exponents for an additive group.

Observe that $(-1) a=-(1 a)=-a$.
Proposition 7. addition and subtraction are inverse operations
Let R be a ring.
Then $(\forall a, b \in R)(\exists!x \in R)(a+x=b)$.
Proof. Let $a, b \in R$.
We prove a solution to the equation $a+x=b$ is unique.

Existence:

Since R is closed under subtraction, then $b-a \in R$.
Let $x=b-a$.
Then

$$
\begin{aligned}
a+x & =a+(b-a) \\
& =a+(-a+b) \\
& =(a+(-a))+b \\
& =0+b \\
& =b
\end{aligned}
$$

Hence, $a+x=b$.
Therefore, at least one solution exists.
Uniqueness:
Suppose $x_{1}, x_{2} \in R$ are solutions to $a+x=b$.
Then $a+x_{1}=b$ and $a+x_{2}=b$.
Thus $a+x_{1}=a+x_{2}$.
By the left additive cancellation law for rings, we obtain $x_{1}=x_{2}$.
Therefore, at most one solution exists.
Since at least one solution exists and at most one solution exists, then exactly one solution exists.

Therefore, a solution to $a+x=b$ is unique.
Proposition 8. properties of subtraction in a ring
Let $(R,+, \cdot)$ be a ring.
For all $a, b, c \in R$

1. $-a=0-a$.
2. Multiplication is distributive over subtraction.
$a(b-c)=a b-a c$ and $(b-c) a=b a-c a$.
3. $a=b$ iff $a-b=0$.
4. $-a-b=-(a+b)$.
5. $a-(b-c)=(a-b)+c$.

Proof. We prove 1.
Let $a \in R$.
Since $a \in R$, then $-a \in R$.
Therefore, $-a=0+(-a)=0-a$, as desired.
Proof. We prove 2.
Let $a, b, c \in R$.
Then

$$
\begin{aligned}
a(b-c) & =a(b+(-c)) \\
& =a b+a(-c) \\
& =a b+(-(a c)) \\
& =a b-a c
\end{aligned}
$$

and

$$
\begin{aligned}
(b-c) a & =(b+(-c)) a \\
& =b a+(-c) a \\
& =b a+(-(c a)) \\
& =b a-c a
\end{aligned}
$$

We prove 3 .
Let $a, b \in R$.
Suppose $a=b$.
Then $a-b=a+(-b)=b+(-b)=0$. Therefore, $a-b=0$.
Conversely, suppose $a-b=0$.
Then

$$
\begin{aligned}
a+(-a) & =0 \\
& =a-b \\
& =a+(-b)
\end{aligned}
$$

Hence, $a+(-a)=a+(-b)$. By the left additive cancellation law, we have $-a=-b$. Thus,

$$
\begin{aligned}
a & =-(-a) \\
& =-(-b) \\
& =b .
\end{aligned}
$$

Therefore, $a=b$.

We prove 4.
Let $a, b \in R$.
Observe that

$$
\begin{aligned}
-(a+b) & =(-1)(a+b) \\
& =(-1) a+(-1) b \\
& =-a-b
\end{aligned}
$$

We prove 5 .
Observe that

$$
\begin{aligned}
a-(b-c) & =a+(-(b-c)) \\
& =a+(-(b+(-c))) \\
& =a+(-b-(-c)) \\
& =a+((-b)+c) \\
& =(a+(-b))+c \\
& =(a-b)+c .
\end{aligned}
$$

Proposition 9. The multiplicative inverse of each unit of a ring is unique.
Proof. Let $(R,+, \cdot)$ be a ring with multiplicative identity $1 \neq 0$.
Suppose a is a unit of R.
We must prove a has a multiplicative inverse and the multiplicative inverse of a is unique.

Existence:
Since a is a unit, then there exists $b \in R$ such that $a b=b a=1$. Hence, b is a multiplicative inverse of a. Therefore, at least one multiplicative inverse of a exists in R.

Uniqueness:

Since $(R,+, \cdot)$ is a ring with unity, then \cdot is a binary operation on R and multiplication is associative and there is a multiplicative identity in R. Therefore, (R, \cdot) is an associative binary structure with identity. Hence, the inverse of each invertible element is unique.

Since b is a multiplicative inverse of a, then a is invertible. Thus, the inverse of a is unique. Therefore, b is unique.

Proposition 10. The zero element of a ring is not a unit.
Proof. Let 0 be the zero of a ring $(R,+, \cdot)$ with unity $1 \neq 0$. To prove 0 is not a unit, suppose 0 is a unit. Then there exists $b \in R$ such that $0 b=1$. Since $0 a=0$ for all $a \in R$, then in particular, $0 b=0$. Thus, $1=0 b=0$, so $1=0$. Therefore, we have $1 \neq 0$ and $1=0$, a contradiction. Hence, 0 is not a unit.

Proposition 11. In any ring the additive inverse of the additive identity element equals itself.

Proof. Let R be a ring. Let 0 be the additive identity of R.
We must prove $-0=0$.
Since 0 is the additive identity of R and $0 \in R$, then $0+0=0$. Hence, 0 is the additive inverse of 0 . Therefore, $-0=0$.

Proposition 12. In any nonzero ring the multiplicative inverse of the multiplicative identity element equals itself.

Proof. Let R be a nonzero ring. Let 1 be the multiplicative identity of R.
We must prove $1^{-1}=1$.
Since 1 is the multiplicative identity of R and $1 \in R$, then $1 \cdot 1=1$. Hence, 1 is the multiplicative inverse of 1 . Therefore, $1^{-1}=1$.

Proposition 13. In any ring $-x=0$ iff $x=0$.
Proof. Let R be a ring. Let $x \in R$.
We must prove $-x=0$ iff $x=0$.
We prove if $-x=0$, then $x=0$.
Suppose $-x=0$. Then

$$
\begin{aligned}
x & =x+0 \\
& =x+(-x) \\
& =0 .
\end{aligned}
$$

Therefore, $x=0$.
Conversely, we prove if $x=0$, then $-x=0$.
Suppose $x=0$. Then $-x=-0=0$. Therefore, $-x=0$.
Theorem 14. The set of all units of a ring is a multiplicative group.
Proof. Let $(R,+, \cdot)$ be a ring with unity $1 \neq 0$. Let S be the set of all units of R.

Then $S=\{x \in R: x$ is a unit $\}$, so $S \subset R$.
We prove S is closed under \cdot of R.
Let $a, b \in S$. Then $a \in R$ and $b \in R$ and a and b are units. Hence, there exist elements $a^{-1} \in R$ and $b^{-1} \in R$ such that $a a^{-1}=a^{-1} a=1$ and $b b^{-1}=b^{-1} b=1$. Since R is closed under multiplication, then $a b \in R$ and $b^{-1} a^{-1} \in R$. Observe that

$$
\begin{aligned}
(a b)\left(b^{-1} a^{-1}\right) & =a\left(b b^{-1}\right) a^{-1} \\
& =a 1 a^{-1} \\
& =a a^{-1} \\
& =1 \\
& =b^{-1} b \\
& =b^{-1} 1 b \\
& =b^{-1}\left(a^{-1} a\right) b \\
& =\left(b^{-1} a^{-1}\right)(a b)
\end{aligned}
$$

Since $b^{-1} a^{-1} \in R$ and $(a b)\left(b^{-1} a^{-1}\right)=1=\left(b^{-1} a^{-1}\right)(a b)$, then $a b$ is a unit. Since $a b \in R$ and $a b$ is a unit, then $a b \in S$. Therefore, S is closed under multiplication in R. Since multiplication is a binary operation on R and $a, b \in R$, then $a b$ is unique. Hence, multiplication is a binary operation on S.

Associativity of multiplication holds in S since $S \subset R$.
We prove 1 is a multiplicative identity of S under • of R.
Let $a \in S$. Since $S \subset R$, then $a \in R$. Since 1 is the multiplicative identity of R, then $1 a=a 1=a$. Hence, $1 a=a 1=a$ for all $a \in S$.

Since $1 \in R$ and $1 \cdot 1=1$, then 1 is a unit, so $1 \in S$. Therefore, there exists $1 \in S$ such that $1 a=a 1=a$ for all $a \in S$.

Hence, 1 is an identity for \cdot in S.
We prove each element of S has a multiplicative inverse in S.
Let $a \in S$. To prove a has a multiplicative inverse in S, we must prove there exists $b \in S$ such that $a b=b a=1$.

Since $a \in S$, then a is a unit. Hence, there exists $a^{-1} \in R$ such that $a a^{-1}=a^{-1} a=1$. Since $a \in S$ and $S \subset R$, then $a \in R$. Thus, $a \in R$ and $a^{-1} a=a a^{-1}=1$, so a^{-1} is a unit. Since $a^{-1} \in R$ and a^{-1} is a unit, then $a^{-1} \in S$.

Let $b=a^{-1}$. Then $b \in S$ and $a b=b a=1$. Hence, a has a multiplicative inverse in S. Thus, every element of S has a multiplicative inverse in S.

Therefore, (S, \cdot) is a multiplicative group.

Division Rings

Proposition 15. properties of a division ring

Let $(R,+, \cdot)$ be a division ring. Then for all $a, b, c \in R$

1. if $a \neq 0$, then $a^{-1}=\frac{1}{a}$.
2. if $a \neq 0$, then $\left(a^{-1}\right)^{-1}=a$.
3. $\frac{a}{b}=1$ iff $a=b$ and $b \neq 0$.
4. if $a \neq 0$ and $b \neq 0$, then $\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}$.
5. if $c \neq 0$, then $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$.
6. if $c \neq 0$, then $\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$.

Proof. We prove 1.
Suppose $a \neq 0$.
Then the multiplicative inverse a^{-1} exists in R.
Observe that $a^{-1}=1 \cdot a^{-1}=\frac{1}{a}$.
We prove 2.
Suppose $a \neq 0$.
Since R is a division ring, then every nonzero element of R is a unit. Hence, a is a unit, so a has a multiplicative inverse in R. Thus, there exists $a^{-1} \in R$ such that $a a^{-1}=a^{-1} a=1$. Hence, $a^{-1} a=a a^{-1}=1$. Thus, a is a multiplicative inverse of a^{-1}, so a^{-1} is a unit. Since the multiplicative inverse of each unit of a ring is unique, then the multiplicative inverse of a^{-1} is unique. Therefore, $\left(a^{-1}\right)^{-1}=a$.

We prove 3 .
Suppose $a=b$ and $b \neq 0$. Then $\frac{a}{b}=a b^{-1}=b b^{-1}=1$. Therefore, $\frac{a}{b}=1$.
Conversely, suppose $\frac{a}{b}=1$.
Then $1=\frac{a}{b}=a b^{-1}$, so $b \neq 0$. Observe that

$$
\begin{aligned}
a & =a \cdot 1 \\
& =a\left(b^{-1} b\right) \\
& =\left(a b^{-1}\right) b \\
& =\frac{a}{b} \cdot b \\
& =1 \cdot b \\
& =b .
\end{aligned}
$$

Therefore, $a=b$.
We prove 4.
Suppose $a \neq 0$ and $b \neq 0$.
Then

$$
\begin{aligned}
1 & =a a^{-1} \\
& =a \cdot 1 \cdot a^{-1} \\
& =a\left(b^{-1} b\right) a^{-1} \\
& =\left(a b^{-1}\right)\left(b a^{-1}\right) \\
& =\frac{a}{b} \cdot \frac{b}{a} .
\end{aligned}
$$

and

$$
\begin{aligned}
1 & =b b^{-1} \\
& =b \cdot 1 \cdot b^{-1} \\
& =b\left(a^{-1} a\right) b^{-1} \\
& =\left(b a^{-1}\right)\left(a b^{-1}\right) \\
& =\frac{b}{a} \cdot \frac{a}{b} .
\end{aligned}
$$

Hence, $\frac{a}{b} \cdot \frac{b}{a}=1=\frac{b}{a} \cdot \frac{a}{b}$, so $\frac{b}{a}$ is the multiplicative inverse of $\frac{a}{b}$. Therefore, $\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}$.

We prove 5 .
Suppose $c \neq 0$.
Then

$$
\begin{aligned}
\frac{a}{c}+\frac{b}{c} & =a c^{-1}+b c^{-1} \\
& =(a+b) c^{-1} \\
& =\frac{a+b}{c}
\end{aligned}
$$

Therefore, $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$.
We prove 6 .
Suppose $c \neq 0$.
Then

$$
\begin{aligned}
\frac{a}{c}-\frac{b}{c} & =a c^{-1}-b c^{-1} \\
& =(a-b) c^{-1} \\
& =\frac{a-b}{c}
\end{aligned}
$$

Therefore, $\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$.

Subrings

Theorem 16. Let $(R,+, *)$ be a ring.
Let $S \subset R$.
Then S is a subring of R iff

1. $S \neq \emptyset$.
2. $(\forall a, b \in S)(a-b \in S)$.
3. $(\forall a, b \in S)(a b \in S)$.
4. S has the same multiplicative identity as R.

Proof. Suppose S is a subring of R. Then S is a subset of R and $(S,+, *)$ is a ring under the induced operations of addition and multiplication in R and S has the same multiplicative identity as R. Since S is a ring, then S must contain the zero element of R. Hence, $S \neq \emptyset$.

Let $a, b \in S$. Since S is an additive group, then $-b \in S$. Since S is a group, then S is closed under addition. Hence, $a+(-b) \in S$, so $a-b \in S$.

Since S is a ring, then multiplication is a binary operation on S. Hence, S is closed under multiplication, so $a b \in S$.

Conversely, suppose all of the criteria are satisfied by S. By assumption, $S \neq \emptyset$ and for every $a, b \in S, a-b \in S$. Hence, by the subgroup test, $(S,+)$ is a subgroup of $(R,+)$. Since addition is commutative in R and S is closed under addition, then addition is commutative when restricted to S. Thus, S is abelian, so $(S,+)$ is an abelian group.

By assumption, for every $a, b \in S, a b \in S$. Therefore, S is closed under multiplication. Let $a, b \in S$. Then $a b \in S$. Since $a, b \in S$ and $S \subset R$, then $a, b \in R$. Since multiplication is a binary operation on R, then $a b$ is unique. Thus, multiplication is a binary operation on S, since $a b \in S$ and $a b$ is unique.

Since multiplication is associative in R and S is closed under multiplication, then multiplication is associative when restricted to S. Since multiplication is left and right distributive over addition in R and S is closed under multiplication and addition, then multiplication is left and right distributive over addition when restricted to S.

Therefore, $(S,+, *)$ is a ring.

Since S is a subset of R, and S is a ring under the induced operations of addition and multiplication of R, and S has the same multiplicative identity as R, then S is a subring of R.

Integral Domains

Proposition 17. A unit of a ring cannot be a zero divisor.
Proof. Let R be a ring.
Let a be a unit of R.
Then R is a ring with unity and a has a multiplicative inverse.
Let e be the unity element of R.
Let b be the multiplicative inverse of a.
Then $b \in R$ and $a b=b a=e$.

We must prove a cannot be a zero divisor.
Suppose for the sake of contradiction that a is a zero divisor of R.
Then R is a commutative ring and there exists $c \in R$ such that $c \neq 0$ and $a c=0$.

Observe that

$$
\begin{aligned}
(b+c) a & =a(b+c) \\
& =a b+a c \\
& =e+0 \\
& =e
\end{aligned}
$$

Thus, $a(b+c)=(b+c) a=e$, so $b+c$ is a multiplicative inverse of a. The multiplicative inverse of each unit in a ring is unique.
Hence, $b+c=b=b+0$.
By additive cancellation for rings, $c=0$.
Thus, we have $c \neq 0$ and $c=0$, a contradiction.
Therefore, a cannot be a zero divisor.
Proposition 18. A zero divisor of a ring cannot be a unit.
Proof. Let R be a ring.
Let a be a zero divisor of R.
Then R is a commutative ring and $a \neq 0$ and there exists $b \in R$ such that $b \neq 0$ and $a b=0$.

We must prove a cannot be a unit.
Suppose for the sake of contradiction that a is a unit.
Then R is a ring with unity and a has a multiplicative inverse.
Let e be the unity of R and let c be the multiplicative inverse of a.
Then $c \in R$ and $a c=c a=e$.

Observe that

$$
\begin{aligned}
(b+c) a & =a(b+c) \\
& =a b+a c \\
& =0+e \\
& =e .
\end{aligned}
$$

Thus, $a(b+c)=(b+c) a=e$, so $b+c$ is a multiplicative inverse of a.
The multiplicative inverse of each unit in a ring is unique.
Hence, $b+c=c$.
Thus, $c+b=c+0$, so by additive cancellation for rings, $b=0$.
Hence, $b=0$ and $b \neq 0$, a contradiction.
Therefore, a cannot have a multiplicative inverse.
Proposition 19. $\left(\mathbb{Z}_{p},+, \cdot\right)$ is an integral domain.
Let p be prime and $[a],[b] \in\left(\mathbb{Z}_{p},+, \cdot\right)$.
If $[a][b]=0$, then $[a]=0$ or $[b]=0$.
Proof. Suppose $[a][b]=[0]$.
Then $[a b]=[0]$ so $a b \equiv 0(\bmod p)$.
Thus, $p \mid a b-0$, so $p \mid a b$.
Since p is prime and $p \mid a b$ then we know by Euclid's lemma either $p \mid a$ or $p \mid b$ (or both).

We consider these cases separately.
Case 1: Suppose $p \mid a$.
Then $p \mid a-0$ so $a \equiv 0(\bmod p)$.
Therefore, $[a]=[0]$.
Case 1: Suppose $p \mid b$.
Then $p \mid b-0$ so $b \equiv 0(\bmod p)$.
Therefore, $[b]=[0]$.
Hence, either $[a]=[0]$ or $[b]=[0]$.
Theorem 20. multiplicative cancellation laws hold in an integral domain

Let $(D,+, \cdot)$ be a commutative ring with nonzero unity.
Then D is an integral domain iff for all $a, b, c \in D$, if $c a=c b$ and $c \neq 0$, then $a=b$.

Proof. We prove if D is an integral domain, then for all $a, b, c \in D$, if $c a=c b$ and $c \neq 0$, then $a=b$.

Suppose D is an integral domain.
Let $a, b, c \in D$ such that $c a=c b$ and $c \neq 0$.
Then

$$
\begin{aligned}
0 & =c a+(-c a) \\
& =c a-c a \\
& =c a-c b \\
& =c(a-b) .
\end{aligned}
$$

Since $c(a-b)=0$ and D is an integral domain, then either $c=0$ or $a-b=0$. Since $c \neq 0$, then $a-b=0$.
Therefore, $a=b$.
Proof. Conversely, we prove if $c a=c b$ and $c \neq 0$, then $a=b$ for all $a, b, c \in D$, then D is an integral domain.

Suppose $c a=c b$ and $c \neq 0$ implies $a=b$ for every $a, b, c \in D$.
To prove D is an integral domain, we need only prove D has no divisors of zero since D is a commutative ring with nonzero unity.

To prove D has no zero divisors, we prove the product of two nonzero elements of D is nonzero.

Let x and y be arbitrary nonzero elements of D.
Then $x \in D$ and $y \in D$ and $x \neq 0$ and $y \neq 0$.
To prove $x y \neq 0$, suppose $x y=0$.
Since D is a ring, then $x 0=0=x y$.
Therefore, $x 0=x y$.
Since $x 0=x y$ and $x \neq 0$, then by hypothesis, $0=y$.
Therefore, $y=0$.
Hence, we have $y \neq 0$ and $y=0$, a contradiction.
Therefore, $x y \neq 0$, as desired.

Ideals

Proposition 21. Let R be a ring.
The zero ring and R itself are ideals in R.
Proof. We prove the zero ring $\{0\}$ is an ideal of R.
Observe that $\{0\}$ is an abelian subgroup of $(R,+)$.
Let $I=\{0\}$.
We prove $R x \subset I$ and $x R \subset I$ for all $x \in I$. Let $x=0$.
Let $a \in R x$. Then $a=r x=r 0=0$ for some $r \in R$. Thus, $a \in I$. Hence, $a \in R x$ implies $a \in I$, so $R x \subset I$.

Let $b \in x R$. Then $b=x r=0 r=0$ for some $r \in R$. Thus, $b \in I$. Hence, $b \in x R$ implies $b \in I$, so $x R \subset I$.

Since $(I,+)$ is an additive subgroup of $(R,+)$ and $R x \subset I$ and $x R \subset I$, then I is an ideal of R. Hence, the zero subring of R is an ideal of R.

We prove R is an ideal of R.
By definition of subring, $(R,+)$ is an abelian subgroup of $(R,+)$.
Let $I=R$.
We prove $R x \subset I$ and $x R \subset I$ for all $x \in I$.
Let $x \in I$. Then $x \in R$.
Let $a \in R x$. Then $a=r x$ for some $r \in R$. Since R is a ring, then R is closed under multiplication. Sincer, $x \in R$, then this implies $a \in R$. Since $R=I$, then $a \in I$. Hence, $a \in R x$ implies $a \in I$, so $R x \subset I$.

Let $b \in x R$. Then $b=x r$ for some $r \in R$. Since R is a ring, then R is closed under multiplication. Since $r, x \in R$, then this implies $b \in R$. Since $R=I$, then $b \in I$. Hence, $b \in x R$ implies $b \in I$, so $x R \subset I$.

Thus, $R I \subset I$ and $I R \subset I$.
Since $(I,+)$ is an abelian subgroup of $(R,+)$ and $R I \subset I$ and $I R \subset I$, then I is an ideal in R.

Theorem 22. Let R be a commutative ring. Let $a \in R$. The set $(a)=\{r a$: $r \in R\}$ is an ideal of R.

Proof. Let $I=\{r a: r \in R\}$. We prove $(I,+)$ is a subgroup of $(R,+)$.
Let $b \in I$. Then $b=r a$ for some $r \in R$. Since R is a ring, then R is closed under multiplication. Thus, $b \in R$, since $a \in R$ and $r \in R$. Hence, $b \in I$ implies $b \in R$, so $I \subset R$.

Let e be the multiplicative identity of R. Since $e \in R$ and $e a=a$, then $a \in I$, so I is not empty.

Let $x, y \in I$. Then $x=r a$ and $y=r^{\prime} a$ for some $r, r^{\prime} \in R$. Thus, $x-y=$ $r a-r^{\prime} a=\left(r-r^{\prime}\right) a$. Since $r-r^{\prime}$ is an element of R, then $x-y \in I$.

Therefore, $(I,+)$ is a subgroup of $(R,+)$.
We prove $R I \subset I$ and $I R \subset I$. Let $x \in I$. Then $x=r a$ for some $r \in R$.
Let $x^{\prime} \in R x$. Then $x^{\prime}=r^{\prime} x$ for some $r^{\prime} \in R$. Thus, $x^{\prime}=r^{\prime}(r a)=\left(r^{\prime} r\right) a$. Since $r^{\prime} r \in R$, then $x^{\prime} \in I$. Hence, $x^{\prime} \in R x$ implies $x^{\prime} \in I$, so $R x \subset I$.

Let $y^{\prime} \in x R$. Then $y^{\prime}=x s^{\prime}$ for some $s^{\prime} \in R$. Thus, $y^{\prime}=(r a) s^{\prime}=s^{\prime}(r a)=$ $\left(s^{\prime} r\right) a$. Since $r, s^{\prime} \in R$, then $y^{\prime} \in I$. Hence, $y^{\prime} \in x R$ implies $y^{\prime} \in I$, so $x R \subset I$.

Thus, we have $R I \subset I$ and $I R \subset I$.
Since $(I,+)<(R,+)$ and $R I \subset I$ and $I R \subset I$, then I is an ideal of R.
Therefore, (a) is an ideal of R.
The ideal (a) is called the principal ideal generated by a in R.
Theorem 23. Every ideal in the ring \mathbb{Z} is a principal ideal.
Proof. Let I be an arbitrary ideal of \mathbb{Z}.
Since I is an ideal of \mathbb{Z}, then $I \subset \mathbb{Z}$ and $(I,+)$ is a subgroup of $(\mathbb{Z},+)$ and $\mathbb{Z} I \subset I$ and $I \mathbb{Z} \subset I$.

Either I is the zero ring or I is not the zero ring.
We consider these cases separately.
Case 1: Suppose I is the zero ring.
Observe that $(0)=\{k 0: k \in \mathbb{Z}\}=\{0\}=I$. Hence, I is the principal ideal generated by zero.

Case 2: Suppose I is not the zero ring.
Then $(I,+)$ is a group other than the trivial group. Therefore, I contains some nonzero element.

Thus, there exists $k \in I$ such that $k \neq 0$. By definition of ideal, for every $x \in \mathbb{Z}, x k \in I$. Thus, for $x=-1,-k \in I$. Hence, both k and $-k$ are in I. Since $I \subset \mathbb{Z}$, then $k \in \mathbb{Z}$ and $-k \in \mathbb{Z}$. Since $k \neq 0$, then either k is positive or $-k$ is positive, by trichotomy of \mathbb{Z}. Therefore, I contains some positive integer.

Let M be the set of all positive elements of I. Then $M=\{m \in I: m>0\}$, so $M \subset I$. Since $M \subset I$ and $I \subset \mathbb{Z}$, then $M \subset \mathbb{Z}$. Since $M \subset \mathbb{Z}$ and every element of M is positive, then $M \subset \mathbb{Z}^{+}$. By the well ordering principle of \mathbb{Z}^{+}, M contains a least element. Thus, there exists $n \in M$ such that n is the least element of M. Hence, $n \in I$ and $n>0$.

Let a be an arbitrary element of I. Since $a \in I$ and $I \subset \mathbb{Z}$, then $a \in \mathbb{Z}$. We divide a by n. By the division algorithm, there exist unique integers q, r such that $a=n q+r$ and $0 \leq r<n$. Thus, $r=a-n q=a+(-n q)$. Since $n \in I$, then by definition of ideal, for every $x \in \mathbb{Z}, n x \in I$. In particular, if we let $x=-q$, then we have $-n q \in I$. Since I is an additive group, then I is closed under addition. Thus, $r \in I$, since $a \in I$ and $-n q \in I$.

Either $r>0$ or $r=0$.
Suppose $r>0$. Then $r \in M$, since $r \in I$ and $r>0$. Since n is the least element of M, then $n \leq r$, so $r \geq n$. Thus, we have $r<n$ and $r \geq n$, a contradiction. Therefore, r cannot be greater than zero, so $r=0$. Hence, $a=n q$. Thus, $a \in(n)$, by definition of principal ideal. Consequently, $a \in I$ implies $a \in(n)$. Therefore, $I \subset(n)$.

Conversely, let b be an arbitrary element of (n). Then $b=s n$ for some integer s. Since $n \in I$, then by definition of ideal, $s n \in I$. Hence, $b \in I$. Thus, $b \in(n)$ implies $b \in I$, so $(n) \subset I$.

Therefore, $I \subset(n)$ and $(n) \subset I$, so $I=(n)$. Consequently, I is the principal ideal generated by n.

Quotient Rings

Proposition 24. Let I be an ideal in a ring R. Then congruence modulo I is an equivalence relation on R.

Proof. We prove the relation congruence modulo I is reflexive, symmetric, and transitive.

Let $a \in R$. Then $a-a=0$. Since I is an ideal, then $(I,+)$ is a subgroup of $(R,+)$. Hence, the additive identity of R is in I, so $0 \in I$. Thus, $a-a \in I$, so $a R a$ is true. Therefore, congruence modulo I is reflexive.

Let $a, b \in R$ such that $a \equiv b(\bmod I)$. Then $a-b \in I$. Let 1 be the multiplicative identity of R. Since R is a ring, then $(R,+)$ is a group, so $-1 \in R$. By definition of ideal, for every $x \in R, x(a-b) \in I$. Hence, in particular, if we let $x=-1$, then $(-1)(a-b)=-a+b=b-a \in I$. Thus, $b \cong a(\bmod I)$. Therefore, $a \equiv b(\bmod I)$ implies $b \cong a(\bmod I)$, so congruence modulo I is symmetric.

Let $a, b, c \in R$ such that $a \equiv b(\bmod I)$ and $b \equiv c(\bmod I)$. Then $a-b \in I$ and $b-c \in I$. Since I is an additive group, then I is closed under addition. Hence, $(a-b)+(b-c)=a-c \in I$. Thus, $a \cong c(\bmod I)$. Therefore, $a \equiv b$ $(\bmod I)$ and $b \equiv c(\bmod I)$ imply $a \cong c(\bmod I)$, so congruence modulo I is transitive.

Since congruence modulo I is reflexive, symmetric, and transitive, then congruence modulo I is an equivalence relation on R.

Theorem 25. Let I be an ideal in a ring R. The set $\frac{R}{I}$ is an abelian group under coset addition.
Proof. Let $\frac{R}{I}$ to be the collection of all cosets of I in R. Then $\frac{R}{I}=\{a+I: a \in$ $R\}$.

We prove coset addition is well defined.
Let $a+I, b+I, c+I, d+I$ be arbitrary elements of $\frac{R}{I}$ such that $(a+I, b+I)=$ $(c+I, d+I)$. Then $a+I=c+I$ and $b+I=d+I$ and $a, b, c, d \in R$.

We prove $(a+I)+(b+I)=(c+I)+(d+I)$.
Since $a+I=c+I$, then $a \equiv c(\bmod I)$, so $a-c \in I$. Since $b+I=d+I$, then $b \equiv d(\bmod I)$, so $b-d \in I$. Since $(I,+)$ is an additive group, then I is closed under addition. Thus, $(a-c)+(b-d)=(a+b)-(c+d) \in I$. Hence, $a+b \equiv c+d$ $(\bmod I)$, so $(a+b)+I=(c+d)+I$. Therefore, $(a+I)+(b+I)=(c+I)+(d+I)$, by definition of coset addition. Thus, coset addition is well defined, so coset addition is a binary operation on $\frac{R}{I}$.

Let $a+I, b+I$ be arbitrary elements of $\frac{R}{I}$. Then $a, b \in R$ and

$$
\begin{aligned}
(a+I)+(b+I) & =(a+b)+I \\
& =(b+a)+I \\
& =(b+I)+(a+I)
\end{aligned}
$$

Therefore, coset addition is commutative.
Let $a+I, b+I, c+I$ be arbitrary elements of $\frac{R}{I}$. Then $a, b, c \in R$ and

$$
\begin{aligned}
{[(a+I)+(b+I)]+(c+I) } & =[(a+b)+I]+(c+I) \\
& =[(a+b)+c]+I \\
& =[a+(b+c)]+I \\
& =(a+I)+[(b+c)+I] \\
& =(a+I)+[(b+I)+(c+I)] .
\end{aligned}
$$

Therefore, coset addition is associative.
Let $a+I$ be an arbitrary element of $\frac{R}{I}$. Then $a \in R$ and

$$
\begin{aligned}
(a+I)+I & =(a+I)+(0+I) \\
& =(a+0)+I \\
& =a+I \\
& =(0+a)+I \\
& =(0+I)+(a+I) \\
& =I+(a+I) .
\end{aligned}
$$

Hence, $I=0+I$ is an additive identity of $\frac{R}{I}$.
Observe that

$$
\begin{aligned}
(a+I)+(-a+I) & =[a+(-a)]+I \\
& =0+I \\
& =(-a+a)+I \\
& =(-a+I)+(a+I)
\end{aligned}
$$

Thus, the additive inverse of $a+I$ is $-a+I$.
Hence, $\frac{R}{I}$ is an abelian group under coset addition.
Theorem 26. Let I be an ideal in a ring R. The set $\frac{R}{I}$ is a ring under coset addition and coset multiplication.

Proof. Let $\frac{R}{I}$ to be the collection of all cosets of I in R. Then $\frac{R}{I}=\{a+I: a \in$ $R\}$.

We proved $\frac{R}{I}$ is an abelian group under coset addition.
We now prove coset multiplication is well defined.
Let $a+I, b+I, c+I, d+I$ be arbitrary elements of $\frac{R}{I}$ such that $(a+I, b+I)=$ $(c+I, d+I)$. Then $a+I=c+I$ and $b+I=d+I$ and $a, b, c, d \in R$.

We prove $(a+I)(b+I)=(c+I)(d+I)$.
Since $a+I=c+I$, then $a \equiv c(\bmod I)$, so $a-c \in I$. Since $b+I=d+I$, then $b \equiv d(\bmod I)$, so $b-d \in I$. Since $(I,+)$ is an additive group, then I is closed under addition. We multiply by b to obtain $(a-c) b=a b-c b$. Since $a-c \in I$ and $b \in R$, then $a b-c b \in I$, by definition of ideal. We multiply by c to obtain $c(b-d)=c b-c d$. Since $b-d \in I$ and $c \in R$, then $c b-c d \in I$, by definition of ideal. Since I is closed under addition, we obtain $(a b-c b)+(c b-c d)=a b-c d \in I$. Hence, $a b \equiv c d(\bmod I)$, so $a b+I=c d+I$. Therefore, $(a+I)(b+I)=(c+I)(d+I)$, by definition of coset multiplication. Thus, coset multiplication is well defined, so coset multiplication is a binary operation on $\frac{R}{I}$.

Let $a+I, b+I, c+I$ be arbitrary elements of $\frac{R}{I}$. Then $a, b, c \in R$ and

$$
\begin{aligned}
{[(a+I)(b+I)](c+I) } & =(a b+I)(c+I) \\
& =(a b) c+I \\
& =a(b c)+I \\
& =(a+I)(b c+I) \\
& =(a+I)[(b+I)(c+I)]
\end{aligned}
$$

Therefore, coset multiplication is associative.
Let e be the multiplicative identity of R. Let $a+I$ be an arbitrary element of $\frac{R}{I}$. Then $a \in R$ and

$$
\begin{aligned}
(a+I)(e+I) & =a e+I \\
& =a+I \\
& =e a+I \\
& =(e+I)(a+I)
\end{aligned}
$$

Hence, $e+I$ is multiplicative identity of $\frac{R}{I}$.

Let $a+I, b+I, c+I$ be arbitrary elements of $\frac{R}{I}$. Then $a, b, c \in R$ and

$$
\begin{aligned}
(a+I)[(b+I)+(c+I)] & =(a+I)[(b+c)+I] \\
& =a(b+c)+I \\
& =(a b+a c)+I \\
& =(a b+I)+(a c+I) \\
& =(a+I)(b+I)+(a+I)(c+I)
\end{aligned}
$$

Therefore, coset multiplication is left distributive over coset addition.
Observe that

$$
\begin{aligned}
{[(a+I)+(b+I)](c+I) } & =[(a+b)+I](c+I) \\
& =(a+b) c+I \\
& =(a c+b c)+I \\
& =(a c+I)+(b c+I) \\
& =(a+I)(c+I)+(b+I)(c+I)
\end{aligned}
$$

Therefore, coset multiplication is right distributive over coset addition.
Hence, $\frac{R}{I}$ is a ring.

Ring Homomorphisms

Proposition 27. Let $\phi: R \mapsto R^{\prime}$ be a ring homomorphism. Then the following are true:

1. $\phi(0)=0^{\prime}$, where 0 is additive identity of R and 0^{\prime} is additive identity of R^{\prime}.
2. If R is a commutative ring, then $\phi(R)$ is a commutative ring.
3. If R is a field and $\phi(R) \neq\left\{0^{\prime}\right\}$, then $\phi(R)$ is a field.

Proof. We prove 1. Let $a \in R$. Then

$$
\begin{aligned}
\phi(a)+0^{\prime} & =\phi(a) \\
& =\phi(a+0) \\
& =\phi(a)+\phi(0)
\end{aligned}
$$

By cancellation in R, we have $0^{\prime}=\phi(0)$.
We prove 2 . Suppose R is a commutative ring. Then for every $a, b \in R, a b=$ $b a$.

Since ϕ is a ring homomorphism, then ϕ is a function and $\phi(a+b)=\phi(a)+$ $\phi(b)$ for every $a, b \in R$. Since R and R^{\prime} are rings, then $(R,+)$ and $\left(R^{\prime},+\right)$ are abelian groups. Hence, ϕ is a group homomorphism, so ϕ preserves subgroups of R. Thus, if $S<R$, then $\phi(S)<R^{\prime}$. In particular, $R<R$, so $\phi(R)<R^{\prime}$. Therefore, $\phi(R)$ is an additive subgroup of R^{\prime}. Since R^{\prime} is an abelian additive group, then every additive subgroup of R^{\prime} is abelian. In particular, $\phi(R)$ is abelian, so $\phi(R)$ is an additive abelian group.

Let $a^{\prime}, b^{\prime} \in \phi(R)$. Then there exist $a, b \in R$ such that $\phi(a)=a^{\prime}$ and $\phi(b)=b^{\prime}$, by definition of $\phi(R)$. By closure of R^{\prime} under multiplication, $a^{\prime} b^{\prime} \in R^{\prime}$. Let $c=a b$. By closure of R under multiplication, $a b \in R$, so $c \in R$. Observe that

$$
\begin{aligned}
\phi(c) & =\phi(a b) \\
& =\phi(a) \phi(b) \\
& =a^{\prime} b^{\prime}
\end{aligned}
$$

Thus, there exists $c \in R$ such that $\phi(c)=a^{\prime} b^{\prime} \in R^{\prime}$. Hence, $a^{\prime} b^{\prime} \in \phi(R)$, so $\phi(R)$ is closed under multiplication.

Since $a^{\prime} b^{\prime} \in R^{\prime}$ and multiplication is well defined in R^{\prime}, then $a^{\prime} b^{\prime}$ is unique. Therefore, multiplication is a binary operation on $\phi(R)$.

Observe that

$$
\begin{aligned}
a^{\prime} b^{\prime} & =\phi(a) \phi(b) \\
& =\phi(a b) \\
& =\phi(b a) \\
& =\phi(b) \phi(a) \\
& =b^{\prime} a^{\prime}
\end{aligned}
$$

Hence, multiplication is commutative in $\phi(R)$.
Associativity of multiplication in R^{\prime} holds in $\phi(R)$ since $\phi(R)$ is a subset of R^{\prime} and $\phi(R)$ is closed under multiplication.

Distributivity of multiplication over addition (left and right) in R^{\prime} holds in $\phi(R)$ since $\phi(R)$ is a subset of R^{\prime} and $\phi(R)$ is closed under addition and multiplication.

Since ϕ is a ring homomorphism, then $\phi(1)=1^{\prime}$, where 1 is unity of R and 1^{\prime} is unity of R^{\prime}. Thus, there exists $1 \in R$ such that $\phi(1)=1^{\prime}$, so $1^{\prime} \in \phi(R)$.

Therefore, $\phi(R)$ is a commutative ring.
We prove 3 .
Suppose R is a field and $\phi(R) \neq\left\{0^{\prime}\right\}$. Since R is a field, then R is a commutative division ring, so R is a commutative ring. Therefore, $\phi(R)$ is a commutative ring.

Since $\phi(R)$ is a ring and $\phi(R) \neq\left\{0^{\prime}\right\}$, then there exists a nonzero element in $\phi(R)$.

Let $a^{\prime} \in R^{\prime}$ and $a^{\prime} \neq 0^{\prime}$. Then there exists $a \in R$ such that $\phi(a)=a^{\prime}$, by definition of $\phi(R)$.

Suppose $a=0$. Then $a^{\prime}=\phi(a)=\phi(0)=0^{\prime}$, so $a^{\prime}=0^{\prime}$. Thus, we have $a^{\prime} \neq 0^{\prime}$ and $a^{\prime}=0^{\prime}$, a contradiction. Therefore, $a \neq 0$.

Since R is a field, then every nonzero element of R is a unit of R. Hence, in particular, a is a unit of R. Therefore, there exists $a^{-1} \in R$ such that $a a^{-1}=1$, where 1 is unity of R. Let $b^{\prime}=\phi\left(a^{-1}\right)$. Then $b^{\prime} \in R^{\prime}$. Since $a^{-1} \in R$ and $\phi\left(a^{-1}\right) \in R^{\prime}$, then $b^{\prime} \in \phi(R)$, by definition of $\phi(R)$.

Let 1^{\prime} be the unity of R^{\prime}. Observe that

$$
\begin{aligned}
1^{\prime} & =\phi(1) \\
& =\phi\left(a a^{-1}\right) \\
& =\phi(a) \phi\left(a^{-1}\right) \\
& =a^{\prime} b^{\prime} \\
& =b^{\prime} a^{\prime}
\end{aligned}
$$

Hence, there exists $b^{\prime} \in \phi(R)$ such that $a^{\prime} b^{\prime}=b^{\prime} a^{\prime}=1^{\prime}$. Therefore, a^{\prime} is a unit of R^{\prime}. Thus, every nonzero element of R^{\prime} is a unit of R^{\prime}, so R^{\prime} is a field.

Theorem 28. Let $\phi: R \mapsto R^{\prime}$ be a ring homomorphism. Then $\operatorname{ker}(\phi)$ is an ideal in R.

Proof. Let 0^{\prime} be the additive identity of R^{\prime}. Let $I=\operatorname{ker}(\phi)=\{r \in R: \phi(r)=$ $\left.0^{\prime}\right\}$.

Since ϕ is a ring homomorphism, then $\phi: R \mapsto R^{\prime}$ is a function and for all $a, b \in R, \phi(a+b)=\phi(a)+\phi(b)$. Since R and R^{\prime} are rings, then $(R,+)$ and $\left(R^{\prime},+\right)$ are additive groups. Therefore, ϕ is a group homomorphism. Hence, the kernel of ϕ is a subgroup of $(R,+)$.

Let $x \in I$. Then $x \in R$ and $\phi(x)=0^{\prime}$.
Let $x^{\prime} \in R x$. Then $x^{\prime}=r x$ for some $r \in R$. Since R is a ring, then R is closed under multiplication. Thus, $x^{\prime} \in R$, since $r, x \in R$. Observe that

$$
\begin{aligned}
\phi\left(x^{\prime}\right) & =\phi(r x) \\
& =\phi(r) \phi(x) \\
& =\phi(r) 0^{\prime} \\
& =0^{\prime} .
\end{aligned}
$$

Hence, $x^{\prime} \in I$, by definition of I. Thus, $x^{\prime} \in R x$ implies $x^{\prime} \in I$, so $R x \subset I$.
Let $y^{\prime} \in x R$. Then $y^{\prime}=x s$ for some $s \in R$. Since R is a ring, then R is closed under multiplication. Thus, $y^{\prime} \in R$, since $s, x \in R$. Observe that

$$
\begin{aligned}
\phi\left(y^{\prime}\right) & =\phi(x s) \\
& =\phi(x) \phi(s) \\
& =0^{\prime} \phi(r) \\
& =0^{\prime}
\end{aligned}
$$

Hence, $y^{\prime} \in I$, by definition of I. Thus, $y^{\prime} \in x R$ implies $y^{\prime} \in I$, so $x R \subset I$.
Since x is arbitrary, then $R I \subset I$ and $I R \subset I$.
Since $(I,+)$ is a subgroup of $(R,+)$ and $R I \subset I$ and $I R \subset I$, then I is an ideal of R, by definition of ideal.

Therefore, $\operatorname{ker}(\phi)$ is an ideal of R.
Theorem 29. Let I be an ideal of a ring R. Let $\eta: R \mapsto \frac{R}{I}$ be defined by $\eta(a)=a+I$ for all $a \in R$. Then η is a ring homomorphism of R onto $\frac{R}{I}$ with kernel I. We call η the natural homomorphism from R onto $\frac{R}{I}$.

Proof. Since R is a ring, then $(R,+)$ is an abelian group. Since I is an ideal of R, then $(I,+)$ is a subgroup of $(R,+)$. Every subgroup of an abelian group is normal. Since R is abelian, then I is normal in R. Thus, η is the natural group homomorphism from R onto $\frac{R}{I}$. Hence, η is a function and $\eta(a+b)=\eta(a)+\eta(b)$ for every $a, b \in R$ and $\operatorname{ker}(\eta)=I$ and η is surjective.

To prove η is a ring homomorphism, we need only prove multiplication and multiplicative identity are preserved.

Let $a, b \in R$. Then

$$
\begin{aligned}
\eta(a b) & =(a b)+I \\
& =(a+I)(b+I) \\
& =\eta(a) \eta(b)
\end{aligned}
$$

Observe that $\eta(e)=e+I$, which is multiplicative identity of $\frac{R}{I}$.
Therefore, η is a ring homomorphism.

Theorem 30. Fundamental Homomorphism Theorem

Let $\phi: R \mapsto R^{\prime}$ be a ring homomorphism with kernel K. Then there exists a unique ring isomorphism $\phi^{\prime}: \frac{R}{K} \mapsto \phi(R)$ defined by $\phi^{\prime}(r K)=\phi(r)$ for all $r \in R$ such that $\phi^{\prime} \circ \eta=\phi$, where $\eta: R \mapsto \frac{R}{K}$ is the natural homomorphism.

Proof. By assumption, ϕ is a ring homomorphism. If ϕ is a ring homomorphism, then the kernel of ϕ is an ideal of R. Therefore, K is an ideal of R. Hence, the quotient ring $\frac{R}{K}$ exists and there exists a natural homomorphism from R onto $\frac{R}{K}$. Let $\eta: R \mapsto \frac{R}{K}$ be the natural ring homomorphism defined by $\eta(a)=a+K$ for all $a \in R$.

Since R and R^{\prime} are rings, then R and R^{\prime} are additive abelian groups. Since ϕ is a ring homomorphism, then ϕ is a group homomorphism with kernel K. Therefore, by the fundamental group homomorphism theorem, there exists a group isomorphism $\phi^{\prime}: \frac{R}{K} \mapsto \phi(R)$ defined by $\phi^{\prime}(r+K)=\phi(r)$ for all $r \in R$ such that $\phi^{\prime} \circ \eta=\phi$.

Let $x, y \in \frac{R}{K}$. Then there exist $a, b \in R$ such that $x=a+K$ and $y=b+K$. Since ϕ^{\prime} is a group isomorphism, then ϕ^{\prime} is a bijective function and $\phi^{\prime}(x+y)=$ $\phi^{\prime}(x)+\phi^{\prime}(y)$. Observe that

$$
\begin{aligned}
\phi^{\prime}(x y) & =\phi^{\prime}[(a+K)(b+K)] \\
& =\phi^{\prime}[(a b)+K] \\
& =\phi(a b) \\
& =\phi(a) \phi(b) \\
& =\phi^{\prime}(a+K) \phi^{\prime}(b+K) \\
& =\phi^{\prime}(x) \phi^{\prime}(y)
\end{aligned}
$$

Let e be the unity of R and e^{\prime} be the unity of R^{\prime}. Then $\phi^{\prime}(e+K)=\phi(e)=e^{\prime}$.
Therefore, ϕ^{\prime} is a ring homomorphism and $\phi^{\prime} \circ \eta=\phi$.

Ring Isomorphisms

Theorem 31. First Isomorphism Theorem
Let H and K be subgroups of a group G such that $K \triangleleft G$.
Let $H K=\{h k: h \in H \wedge k \in K\}$.
Then $H K$ is a subgroup of G such that $K \triangleleft H K$ and $\frac{H}{H \cap K} \cong \frac{H K}{K}$.
Solution. We must prove:

1. $H K<G$.
2. $K \triangleleft H K$.
3. $\frac{H}{H \cap K} \cong \frac{H K}{K}$.

Proof. We first prove $H K<G$.
Let $x \in H K$. Then there exists $h \in H$ and $k \in K$ such that $x=h k$. Since $H<G$, then $H \subset G$. Since $h \in H$ and $H \subset G$, then $h \in G$. Since $K<G$, then $K \subset G$. Since $k \in K$ and $K \subset G$, then $k \in G$. Since G is a group, then G is closed under its binary operation. Thus, since $h, k \in G$, then $h k=x \in G$. Therefore, $x \in H K$ implies $x \in G$, so $H K \subset G$.

We apply a subgroup test.
Let e be the identity of G. Since $H<G$, then $e \in H$. Since $K<G$, then $e \in K$. Since $e=e e$, then $e \in H K$, by definition of $H K$. Therefore, $H K \neq \emptyset$.

Let $a, b \in H K$. Then there exist $h_{1} \in H$ and $k_{1} \in K$ such that $a=h_{1} k_{1}$ and there exist $h_{2} \in H$ and $k_{2} \in K$ such that $b=h_{2} k_{2}$, by definition of $H K$. Since $a, b \in H K$ and $H K \subset G$, then $a, b \in G$. Thus, $a b^{-1}=\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)^{-1}=$ $\left(h_{1} k_{1}\right)\left(k_{2}^{-1} h_{2}^{-1}\right)=h_{1} k_{1} k_{2}^{-1} h_{2}^{-1}$. Let $k=k_{1} k_{2}^{-1}$. Since K is a group, then $k \in K$ and $a b^{-1}=h_{1} k h_{2}^{-1}$.

Since $h_{2} \in H$ and $H \subset G$, then $h_{2} \in G$. Since $K \triangleleft G$, then for every $g \in G, h \in K, g h g^{-1} \in K$. Thus, in particular, if we let $g=h_{2}$ and $h=k$, then $h_{2} k h_{2}^{-1} \in K$. Let $k_{3}=h_{2} k h_{2}^{-1}$. Then $k_{3} \in K$ and $k h_{2}^{-1}=h_{2}^{-1} k_{3}$, so $a b^{-1}=h_{1}\left(h_{2}^{-1} k_{3}\right)=\left(h_{1} h_{2}^{-1}\right) k_{3}$. Since H is a group, then H is closed under its binary operation. Therefore, since $h_{1} \in H$ and $h_{2}^{-1} \in H$, then $h_{1} h_{2}^{-1} \in H$. Since $h_{1} h_{2}^{-1} \in H$ and $k_{3} \in K$, then $a b^{-1} \in H K$, by definition of $H K$.

Therefore, $H K$ is a subgroup of G.
We prove K is normal in $H K$. We first prove K is a subgroup of $H K$ and then prove for every $g \in H K$ and $k \in K, g k g^{-1} \in K$.

Let $x \in K$. Then $x=e x$. Since $e \in H$ and $x \in K$, then $x \in H K$, by definition of $H K$. Thus, $x \in K$ implies $x \in H K$, so $K \subset H K$.

Since $K<G$, then $e \in K$, so $K \neq \emptyset$.
Let $a, b \in K$. Since K is a group, then $b^{-1} \in K$. Since K is closed under its binary operation, then $a b^{-1} \in K$.

Thus, K is a subgroup of $H K$.
Let $g \in H K$ and $k^{\prime} \in K$. Then $g=h k$ for some $h \in H$ and $k \in K$. Observe that $g k^{\prime} g^{-1}=(h k) k^{\prime}(h k)^{-1}=h k k^{\prime} k^{-1} h^{-1}$. Let $k^{\prime \prime}=k k^{\prime} k^{-1}$. Then $g k^{\prime} g^{-1}=h k^{\prime \prime} h^{-1}$. Since $K \triangleleft G$, then $h k^{\prime \prime} h^{-1} \in K$, so $g k^{\prime} g^{-1} \in K$. Therefore, K is a normal subgroup of $H K$.

Since K is normal in $H K$, then the quotient group $\frac{H K}{K}$ exists.
Let $\frac{H K}{K}$ be the set of all cosets of K in $H K$. Then $\frac{H K}{K}=\{h K: h \in H\}$.
Define binary relation $\phi: H \mapsto \frac{H K}{K}$ by $\phi(h)=h K$ for all $h \in H$.
We prove ϕ is well defined. Let $h_{1}, h_{2} \in H$ such that $h_{1}=h_{2}$. Then $h_{1} K=h_{2} K$. Thus, $\phi\left(h_{1}\right)=h_{1} K=h_{2} K=\phi\left(h_{2}\right)$. Hence, $h_{1}=h_{2}$ implies $\phi\left(h_{1}\right)=\phi\left(h_{2}\right)$, so ϕ is well defined. Therefore, ϕ is a function.

Let $a, b \in H$. Then $\phi(a b)=(a b) K=(a K)(b K)=\phi(a) \phi(b)$. Thus, ϕ is a homomorphism.

We prove $\operatorname{ker}(\phi)=H \cap K$. Let $x \in \operatorname{ker}(\phi)$. Then $x \in H$ since $\operatorname{ker}(\phi) \subset H$ and $\phi(x)=K$, by definition of kernel of ϕ. Thus, $K=\phi(x)=x K$. Since $x K=K$, then $x \in K$. Since $x \in H$ and $x \in K$, then $x \in H \cap K$. Hence, $x \in \operatorname{ker}(\phi)$ implies $x \in H \cap K$, so $\operatorname{ker}(\phi) \subset H \cap K$.

Let $y \in H \cap K$. Then $y \in H$ and $y \in K$. Since $y \in H$ and $H \subset G$, then $y \in G$. Since $y \in K$, then $y K=K$. Thus, $\phi(y)=y K=K$. Since $y \in H$ and $\phi(y)=K$, then $y \in \operatorname{ker}(\phi)$. Hence, $y \in H \cap K$ implies $y \in \operatorname{ker}(\phi)$, so $H \cap K \subset \operatorname{ker}(\phi)$.

Since $\operatorname{ker}(\phi) \subset H \cap K$ and $H \cap K \subset \operatorname{ker}(\phi)$, then $\operatorname{ker}(\phi)=H \cap K$.
We prove $\phi(H)=\frac{H K}{K}$. Observe that $\phi(H)=\left\{\phi(h) \in \frac{H K}{K}: h \in H\right\}$.
Let $x \in \phi(H)$. Then there exists $h \in H$ such that $x=\phi(h)$ and $x \in \frac{H K}{K}$. Thus, $x=\phi(h)=h K$. Since there exists $h \in H$ such that $x=h K$, then $x \in \frac{H K}{K}$, by definition of $\frac{H K}{K}$. Hence, $x \in \phi(H)$ implies $x \in \frac{H K}{K}$, so $\phi(H) \subset \frac{H K}{K}$.

Let $y \in \frac{H K}{K}$. Then there exists $h \in H$ such that $y=h K$. Thus, $\phi(h)=$ $h K=y$. Hence, there exists $h \in H$ such that $y=\phi(h)$, so $y \in \phi(H)$, by definition of $\phi(H)$. Therefore, $y \in \frac{H K}{K}$ implies $y \in \phi(H)$, so $\frac{H K}{K} \subset \phi(H)$.

Since $\phi(H) \subset \frac{H K}{K}$ and $\frac{H K}{K} \subset \phi(H)$, then $\phi(H)=\frac{H K}{K}$.
Hence, $\phi: H \mapsto \frac{H K}{K}$ is a homomorphism with kernel $H \cap K$ and $\phi(H)=\frac{H K}{K}$. Thus, by the fundamental homomorphism theorem, $\frac{H}{H \cap K} \cong \frac{H K}{K}$.

Direct product of Rings

Theorem 32. Let $(R,+, *)$ be a ring with unity e. Let $n \in \mathbb{Z}^{+}, n \geq 2$. Then $\left(R^{n},+, *\right)$ is a ring with unity (e, e, \ldots, e).

Proof. Observe that $R^{n}=R \times R \times \ldots \times R=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in R\right\}$. Since $(R,+, *)$ is a ring, then $(R,+)$ is an abelian group. Observe that $\left(R^{n},+\right)$ is the direct sum of the group $(R,+)$ with itself n times. The direct sum of abelian groups is an abelian group. Hence, $\left(R^{n},+\right)$ is an abelian group.

We prove component wise multiplication is a binary operation over R^{n}. Let $a, b \in R^{n}$. Then for each $i \in\{1,2, \ldots, n\}$ there exist $a_{i}, b_{i} \in R$ such that $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Observe that

$$
\begin{aligned}
a b & =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& =\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right) .
\end{aligned}
$$

Since R is a ring, then R is closed under multiplication, so $a_{i} b_{i} \in R$ for each i. Therefore, $a b \in R^{n}$, so R^{n} is closed under componentwise multiplication.

We prove componentwise multiplication is well defined. Let (a, b) and (c, d) be arbitrary elements of $R^{n} \times R^{n}$ such that $(a, b)=(c, d)$. Then $a, b, c, d \in R^{n}$ and $a=c$ and $b=d$. Hence, for each $i=1,2, \ldots, n$ there exist $a_{i}, b_{i}, c_{i}, d_{i} \in R$ such that $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ and $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and $a_{i}=c_{i}$ and $b_{i}=d_{i}$ for each i. Thus,

$$
\begin{aligned}
a b & =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& =\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right) \\
& =\left(c_{1} b_{1}, c_{2} b_{2}, \ldots, c_{n} b_{n}\right) \\
& =\left(c_{1} d_{1}, c_{2} d_{2}, \ldots, c_{n} d_{n}\right) \\
& =\left(c_{1}, c_{2}, \ldots, c_{n}\right)\left(d_{1}, d_{2}, \ldots, d_{n}\right) \\
& =c d .
\end{aligned}
$$

Hence, $a b=c d$, so componentwise multiplication is well defined over R^{n}. Therefore, componentwise multiplication is a binary operation on R^{n}.

We prove componentwise multiplication is associative. Let $a, b, c \in R^{n}$. Then for each $i=1,2, \ldots, n$ there exist $a_{i}, b_{i}, c_{i} \in R$ such that $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Observe that

$$
\begin{aligned}
(a b) c & =\left[\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right]\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)\left(c_{1}, c_{2}\right) \\
& =\left(\left(a_{1} b_{1}\right) c_{1},\left(a_{2} b_{2}\right) c_{2}, \ldots,\left(a_{n} b_{n}\right) c_{n}\right) \\
& =\left(a_{1}\left(b_{1} c_{1}\right), a_{2}\left(b_{2} c_{2}\right), \ldots, a_{n}\left(b_{n} c_{n}\right)\right) \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1} c_{1}, b_{2} c_{2}, \ldots, b_{n} c_{n}\right) \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left[\left(b_{1}, b_{2}, \ldots, b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right] \\
& =a(b c) .
\end{aligned}
$$

Therefore, componentwise multiplication is associative.
Observe that

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right)(e, e, \ldots, e) & =\left(a_{1} e, a_{2} e, \ldots, a_{n} e\right) \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\left(e a_{1}, e a_{2}, \ldots, e a_{n}\right) \\
& =(e, e, \ldots e)\left(a_{1}, a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

Therefore, (e, e, \ldots, e) is a multiplicative identity in R^{n}, so a multiplicative identity exists in R^{n}.

Observe that

$$
\begin{aligned}
a(b+c) & =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left[\left(b_{1}, b_{2}, \ldots, b_{n}\right)+\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right] \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}+c_{1}, b_{2}+c_{2}, \ldots, b_{n}+c_{n}\right) \\
& =\left(a_{1}\left(b_{1}+c_{1}\right), a_{2}\left(b_{2}+c_{2}\right), \ldots, a_{n}\left(b_{n}+c_{n}\right)\right) \\
& =\left(a_{1} b_{1}+a_{1} c_{1}, a_{2} b_{2}+a_{2} c_{2}, \ldots, a_{n} b_{n}+a_{n} c_{n}\right) \\
& =\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)+\left(a_{1} c_{1}, a_{2} c_{2}, \ldots, a_{n} c_{n}\right) \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)+\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =a b+a c
\end{aligned}
$$

and

$$
\begin{aligned}
(a+b) c & =\left[\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right]\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =\left(\left(a_{1}+b_{1}\right) c_{1},\left(a_{2}+b_{2}\right) c_{2}, \ldots,\left(a_{n}+b_{n}\right) c_{n}\right) \\
& =\left(a_{1} c_{1}+b_{1} c_{1}, a_{2} c_{2}+b_{2} c_{2}, \ldots, a_{n} c_{n}+b_{n} c_{n}\right) \\
& =\left(a_{1} c_{1}, a_{2} c_{2}, \ldots, a_{n} c_{n}\right)+\left(b_{1} c_{1}, b_{2} c_{2}, \ldots, b_{n} c_{n}\right) \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =a c+b c
\end{aligned}
$$

Therefore, the left and right distributive laws hold in R^{n}.
Hence, $\left(R^{n},+, *\right)$ is a ring with unity (e, e, \ldots, e).
Theorem 33. Let $(R,+, *)$ be a commutative ring. Then $\left(R^{n},+, *\right)$ is a commutative ring.

Proof. Let $n \in \mathbb{Z}^{+}, n \geq 2$. Let R^{n} be the direct product of n copies of the ring R. The direct product of n copies of a ring is a ring. Therefore, $\left(R^{n},+, *\right)$ is a ring.

Let $a, b \in R^{n}$. Then for each $i \in\{1,2, \ldots, n\}$ there exist $a_{i}, b_{i} \in R^{n}$ such that $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Observe that

$$
\begin{aligned}
a b & =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& =\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right) \\
& =\left(b_{1} a_{1}, b_{2} a_{2}, \ldots, b_{n} a_{n}\right) \\
& =\left(b_{1}, b_{2}, \ldots, b_{n}\right)\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =b a .
\end{aligned}
$$

Therefore, component wise multiplication in R^{n} is commutative. Hence, $\left(R^{n},+, *\right)$ is a commutative ring.

