Ring Theory

Jason Sass

June 22, 2023

Rings

Proposition 1. alternate definition of a ring

Let R be a set with two binary operations + and \cdot defined on R.

Then $(R, +, \cdot)$ is a ring iff

1. (R, +) is an abelian group.

2. Multiplication is associative.

3. Multiplication is distributive over addition.

Proof. We prove if (R, +) is an abelian group and multiplication is associative and multiplication is distributive over addition, then $(R, +, \cdot)$ is a ring.

Suppose (R, +) is an abelian group and multiplication is associative and multiplication is distributive over addition.

Since (R, +) is an abelian group, then addition is associative and commutative.

Hence, (a + b) + c = a + (b + c) for all $a, b, c \in R$ and a + b = b + a for all $a, b \in R$.

Since (R, +) is a group, then there is an additive identity in R.

Therefore, there exists $0 \in R$ such that 0 + a = a + 0 = a for all $a \in R$. Hence, there exists $0 \in R$ such that a + 0 = a for all $a \in R$.

Therefore, 0 is a right additive identity in R.

Since (R, +) is a group, then each element has an additive inverse.

Thus, for each $a \in R$ there exists $b \in R$ such that a + b = b + a = 0.

Hence, for each $a \in R$ there exists $b \in R$ such that a + b = 0.

Therefore, each element of R has a right additive inverse in R.

Since multiplication is associative, then (ab)c = a(bc) for all $a, b, c \in R$. Since multiplication is distributive over addition, then a(b+c) = ab+ac and

(b+c)a = ba + ca for all $a, b, c \in R$.

Therefore, $(R, +, \cdot)$ is a ring.

Conversely, we prove if $(R, +, \cdot)$ is a ring, then (R, +) is an abelian group and multiplication is associative and multiplication is distributive over addition.

Suppose $(R, +, \cdot)$ is a ring.

Since R is a ring, then (ab)c = a(bc) for all $a, b, c \in R$, so multiplication is associative.

Since R is a ring, then a(b+c) = ab + ac and (b+c)a = ba + ca for all $a, b, c \in R$.

Hence, multiplication is left and right distributive over addition, so multiplication is distributive over addition.

We prove (R, +) is an abelian group.

Since R is a ring, then addition is a binary operation defined on R.

Therefore, (R, +) is a binary algebraic structure.

Since R is a ring, then addition is associative and there is a right additive identity and each element of R has a right additive inverse in R.

Therefore, (R, +) is an associative binary algebraic structure with a right additive identity such that every element has a right additive inverse.

Any associative binary structure with a right identity such that each element has a right inverse is a group.

Therefore, (R, +) is a group.

Since R is a ring, then addition is commutative.

Therefore, (R, +) is an abelian group.

Proposition 2. The additive identity of a ring is unique.

Proof. Let $(R, +, \cdot)$ be a ring.

We must prove there is an additive identity in R and the additive identity is unique.

Existence:

Since R is a ring, then there exists $0 \in R$ such that a + 0 = a for all $a \in R$. Let $a \in R$.

Then a + 0 = a.

Since addition is commutative in R, then 0 + a = a.

Hence, a + 0 = a = 0 + a, so 0 is an additive identity of R.

Therefore, at least one additive identity element exists in R.

Uniqueness:

Since R is a ring, then addition is a binary operation defined over R. Therefore, (R, +) is a binary structure.

Since 0 is an additive identity of R, then (R, +) is a binary structure with identity.

If a binary structure has an identity element, then the identity element is unique.

Therefore, 0 is unique.

Proof. Let $(R, +, \cdot)$ be a ring.

Existence:

Let $a \in R$.

Since there is a right additive identity in R, then there exists $0 \in R$ such that a + 0 = a for all $a \in R$.

In particular, a + 0 = a and 0 + 0 = 0.

Since $a \in R$ and each element has a right additive inverse, then there exists $b \in R$ such that a + b = 0.

We prove 0 + a = a.

Observe that

$$a + b = 0$$

= 0 + 0
= 0 + (a + b)
= (0 + a) + b.

Thus, a + b = (0 + a) + b.

Since addition is a binary operation on R, then (R, +) is a binary algebraic structure.

Since R is a ring, then addition is associative and there is a right additive identity in R and each element in R has a right additive inverse in R.

Therefore, (R, +) is an associative binary structure with a right identity such that each element of R has a right inverse.

Hence, the right cancellation law holds.

Thus, a = 0 + a, so a + 0 = a = 0 + a.

Therefore, 0 is an additive identity in R.

Uniqueness:

Since (R, +) is a binary structure with identity, then the identity is unique. Therefore, 0 is unique.

Proposition 3. The additive inverse of each element of a ring is unique.

Proof. Let $(R, +, \cdot)$ be a ring.

Let $a \in R$.

We must prove a has an additive inverse and the additive inverse of a is unique.

Existence:

Let $0 \in R$ be the additive identity of R.

Since each element of R has a right additive inverse and $a \in R$, then there exists $b \in R$ such that a + b = 0.

Since addition is commutative in R, then b + a = 0.

Hence, a + b = 0 = b + a, so b is an additive inverse of a.

Therefore, at least one additive inverse of a exists in R.

Uniqueness:

Since $(R, +, \cdot)$ is a ring, then + is a binary operation on R and addition is associative and there is an additive identity in R.

Therefore, (R, +) is an associative binary structure with identity.

Hence, the inverse of each invertible element is unique.

Since b is an additive inverse of a, then a is invertible, so the inverse of a is unique.

Therefore, b is unique.

Proposition 4. The multiplicative identity of a ring with unity is unique.

Proof. Let $(R, +, \cdot)$ be a ring with unity $1 \in R$.

Since $(R, +, \cdot)$ is a ring, then multiplication is a binary operation on R, so (R, \cdot) is a binary structure. Since $1 \in R$ is unity, then 1a = a1 = a for all $a \in R$, so there exists $1 \in R$ such that 1a = a1 = a for all $a \in R$. Hence, 1 is a multiplicative identity in R. Thus, (R, \cdot) is a binary structure with identity. If a binary structure has an identity, then the identity is unique. Therefore, 1 is unique. **Proposition 5.** Let $(R, +, \cdot)$ be a ring. Then for all $a, b, c \in R$ 1. if a = b, then a + c = b + c. 2. if a = b, then ac = bc. Proof. We prove 1. Suppose a = b. By reflexivity of equality, a + c = a + c. Since a = b, then by substitution we have a + c = b + c, as desired. Proof. We prove 2. Suppose a = b. By reflexivity of equality, ac = ac. Since a = b, then by substitution we have ac = bc, as desired. Theorem 6. basic properties of a ring Let $(R, +, \cdot)$ be a ring.

Then for all $a, b, c \in \mathbb{R}$ 1. if c + a = c + b then a = b and if a + c = b + c then a = b. (left and right additive cancellation laws) 2. a0 = 0a = 0. 3. -(-a) = a. 4. -(a + b) = (-a) + (-b). 5. a(-b) = (-a)b = -(ab). 6. (-a)(-b) = ab. 7. If R has a unity, then (-1)a = -a.

Proof. We prove 1. Let $a, b, c \in R$. Suppose c + a = c + b. Then

$$a = 0 + a$$

= ((-c) + c) + a
= -c + (c + a)
= -c + (c + b)
= ((-c) + c) + b
= 0 + b
= b.

Therefore, a = b, as desired. Suppose a + c = b + c. Then

$$a = a + 0$$

= $a + (c + (-c))$
= $(a + c) + (-c)$
= $(b + c) + (-c)$
= $b + (c + (-c))$
= $b + 0$
= b .

Therefore, a = b, as desired.

Proof. We prove 2. Let $a \in R$. Observe that

$$a0 + 0 = a0$$

= $a(0 + 0)$
= $a0 + a0.$

Therefore, a0 + 0 = a0 + a0, so by the left cancellation law for addition, 0 = a0. Observe that

$$0a + 0 = 0a$$

= $(0 + 0)a$
= $0a + 0a$.

Therefore, 0a + 0 = 0a + 0a, so by the left cancellation law for addition, 0 = 0a. Hence, a0 = 0 = 0a.

Proof. We prove 3. Let $a \in R$.

Then $-a \in R$, so a + (-a) = -a + a = 0. Hence, -a + a = a + (-a) = 0, so a is the additive inverse of -a. Therefore, -(-a) = a.

Proof. We prove 4. Let $a, b \in R$. Then $-a, -b \in R$. Observe that

$$(a+b) + (-(a+b)) = 0$$

= 0+0
= (-a+a) + (b + (-b))
= -a + (a+b) + (-b)
= (a+b) + ((-a) + (-b)).

Therefore, (a+b)+(-(a+b)) = (a+b)+((-a)+(-b)), so by the left cancellation law for addition, -(a+b) = (-a) + (-b).

Proof. We prove 5. Let $a, b \in R$. Observe that

$$ab + a(-b) = a(b + (-b))$$

= a0
= 0
= $ab + (-(ab)).$

Therefore, ab + a(-b) = ab + (-(ab)), so by the left cancellation law for addition, a(-b) = -(ab).

Observe that

$$ab + (-a)b = (a + (-a))b$$

= 0b
= 0
= $ab + (-(ab)).$

Therefore, ab + (-a)b = ab + (-(ab)), so by the left cancellation law for addition, (-a)b = -(ab).

Hence,
$$a(-b) = -(ab) = (-a)b$$
.

Proof. We prove 6. Let $a, b \in R$. Observe that

$$(-a)(-b) = -(a(-b))$$

= $-(-(ab))$
= $ab.$

Proof. We prove 7.

Suppose R has a unity.

Then R has a multiplicative identity, so let 1 be the multiplicative identity of R.

Then 1a = a1 = a for all $a \in R$. Let $a \in R$. Then 1a = a. Since (R, +) is an additive group, then (-1)a = -(1a), by the laws of exponents for an additive group.

Observe that (-1)a = -(1a) = -a.

Proposition 7. addition and subtraction are inverse operations

Let R be a ring. Then $(\forall a, b \in R)(\exists ! x \in R)(a + x = b)$.

Proof. Let $a, b \in R$.

We prove a solution to the equation a + x = b is unique. Existence:

Since R is closed under subtraction, then $b - a \in R$. Let x = b - a.

Then

$$a + x = a + (b - a)$$

= $a + (-a + b)$
= $(a + (-a)) + b$
= $0 + b$
= b .

Hence, a + x = b.

Therefore, at least one solution exists.

Uniqueness:

Suppose $x_1, x_2 \in R$ are solutions to a + x = b.

Then $a + x_1 = b$ and $a + x_2 = b$.

Thus $a + x_1 = a + x_2$.

By the left additive cancellation law for rings, we obtain $x_1 = x_2$.

Therefore, at most one solution exists.

Since at least one solution exists and at most one solution exists, then exactly one solution exists.

Therefore, a solution to a + x = b is unique.

Proposition 8. properties of subtraction in a ring

Let $(R, +, \cdot)$ be a ring. For all $a, b, c \in R$ 1. -a = 0 - a. 2. Multiplication is distributive over subtraction.
 a(b-c) = ab - ac and (b-c)a = ba - ca.
 3. a = b iff a - b = 0.
 4. -a - b = -(a + b).
 5. a - (b - c) = (a - b) + c.

Proof. We prove 1. Let $a \in R$. Since $a \in R$, then $-a \in R$. Therefore, -a = 0 + (-a) = 0 - a, as desired.

Proof. We prove 2. Let $a, b, c \in R$. Then

$$a(b-c) = a(b + (-c))$$

= $ab + a(-c)$
= $ab + (-(ac))$
= $ab - ac$

and

$$(b-c)a = (b+(-c))a$$
$$= ba+(-c)a$$
$$= ba+(-(ca))$$
$$= ba-ca$$

We prove 3. Let $a, b \in R$. Suppose a = b. Then a - b = a + (-b) = b + (-b) = 0. Therefore, a - b = 0. Conversely, suppose a - b = 0. Then

$$a + (-a) = 0$$

= $a - b$
= $a + (-b)$.

Hence, a + (-a) = a + (-b). By the left additive cancellation law, we have -a = -b. Thus,

$$a = -(-a)$$

= -(-b)
= b.

Therefore, a = b.

We prove 4. Let $a, b \in R$. Observe that

$$-(a+b) = (-1)(a+b)$$

= $(-1)a + (-1)b$
= $-a - b$.

We prove 5. Observe that

$$a - (b - c) = a + (-(b - c))$$

= $a + (-(b + (-c)))$
= $a + (-b - (-c))$
= $a + ((-b) + c)$
= $(a + (-b)) + c$
= $(a - b) + c$.

Proposition 9. The multiplicative inverse of each unit of a ring is unique.

Proof. Let $(R, +, \cdot)$ be a ring with multiplicative identity $1 \neq 0$.

Suppose a is a unit of R.

We must prove a has a multiplicative inverse and the multiplicative inverse of a is unique.

Existence:

Since a is a unit, then there exists $b \in R$ such that ab = ba = 1. Hence, b is a multiplicative inverse of a. Therefore, at least one multiplicative inverse of a exists in R.

Uniqueness:

Since $(R, +, \cdot)$ is a ring with unity, then \cdot is a binary operation on R and multiplication is associative and there is a multiplicative identity in R. Therefore, (R, \cdot) is an associative binary structure with identity. Hence, the inverse of each invertible element is unique.

Since b is a multiplicative inverse of a, then a is invertible. Thus, the inverse of a is unique. Therefore, b is unique. \Box

Proposition 10. The zero element of a ring is not a unit.

Proof. Let 0 be the zero of a ring $(R, +, \cdot)$ with unity $1 \neq 0$. To prove 0 is not a unit, suppose 0 is a unit. Then there exists $b \in R$ such that 0b = 1. Since 0a = 0 for all $a \in R$, then in particular, 0b = 0. Thus, 1 = 0b = 0, so 1 = 0. Therefore, we have $1 \neq 0$ and 1 = 0, a contradiction. Hence, 0 is not a unit. \Box

Proposition 11. In any ring the additive inverse of the additive identity element equals itself. *Proof.* Let R be a ring. Let 0 be the additive identity of R. We must prove -0 = 0.

Since 0 is the additive identity of R and $0 \in R$, then 0 + 0 = 0. Hence, 0 is the additive inverse of 0. Therefore, -0 = 0.

Proposition 12. In any nonzero ring the multiplicative inverse of the multiplicative identity element equals itself.

Proof. Let R be a nonzero ring. Let 1 be the multiplicative identity of R. We must prove $1^{-1} = 1$.

Since 1 is the multiplicative identity of R and $1 \in R$, then $1 \cdot 1 = 1$. Hence, 1 is the multiplicative inverse of 1. Therefore, $1^{-1} = 1$.

Proposition 13. In any ring -x = 0 iff x = 0.

Proof. Let R be a ring. Let $x \in R$. We must prove -x = 0 iff x = 0. We prove if -x = 0, then x = 0. Suppose -x = 0. Then

$$\begin{aligned} x &= x+0 \\ &= x+(-x) \\ &= 0. \end{aligned}$$

Therefore, x = 0.

Conversely, we prove if x = 0, then -x = 0. Suppose x = 0. Then -x = -0 = 0. Therefore, -x = 0.

Theorem 14. The set of all units of a ring is a multiplicative group.

Proof. Let $(R, +, \cdot)$ be a ring with unity $1 \neq 0$. Let S be the set of all units of R.

Then $S = \{x \in R : x \text{ is a unit }\}, \text{ so } S \subset R.$

We prove S is closed under \cdot of R.

Let $a, b \in S$. Then $a \in R$ and $b \in R$ and a and b are units. Hence, there exist elements $a^{-1} \in R$ and $b^{-1} \in R$ such that $aa^{-1} = a^{-1}a = 1$ and $bb^{-1} = b^{-1}b = 1$. Since R is closed under multiplication, then $ab \in R$ and $b^{-1}a^{-1} \in R$. Observe that

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1}$$

= $a1a^{-1}$
= aa^{-1}
= 1
= $b^{-1}b$
= $b^{-1}1b$
= $b^{-1}(a^{-1}a)b$
= $(b^{-1}a^{-1})(ab)$.

Since $b^{-1}a^{-1} \in R$ and $(ab)(b^{-1}a^{-1}) = 1 = (b^{-1}a^{-1})(ab)$, then ab is a unit. Since $ab \in R$ and ab is a unit, then $ab \in S$. Therefore, S is closed under multiplication in R. Since multiplication is a binary operation on R and $a, b \in R$, then ab is unique. Hence, multiplication is a binary operation on S.

Associativity of multiplication holds in S since $S \subset R$.

We prove 1 is a multiplicative identity of S under \cdot of R.

Let $a \in S$. Since $S \subset R$, then $a \in R$. Since 1 is the multiplicative identity of R, then 1a = a1 = a. Hence, 1a = a1 = a for all $a \in S$.

Since $1 \in R$ and $1 \cdot 1 = 1$, then 1 is a unit, so $1 \in S$. Therefore, there exists $1 \in S$ such that 1a = a1 = a for all $a \in S$.

Hence, 1 is an identity for \cdot in S.

We prove each element of S has a multiplicative inverse in S.

Let $a \in S$. To prove a has a multiplicative inverse in S, we must prove there exists $b \in S$ such that ab = ba = 1.

Since $a \in S$, then a is a unit. Hence, there exists $a^{-1} \in R$ such that $aa^{-1} = a^{-1}a = 1$. Since $a \in S$ and $S \subset R$, then $a \in R$. Thus, $a \in R$ and $a^{-1}a = aa^{-1} = 1$, so a^{-1} is a unit. Since $a^{-1} \in R$ and a^{-1} is a unit, then $a^{-1} \in S$.

Let $b = a^{-1}$. Then $b \in S$ and ab = ba = 1. Hence, a has a multiplicative inverse in S. Thus, every element of S has a multiplicative inverse in S.

Therefore, (S, \cdot) is a multiplicative group.

Division Rings

Proposition 15. properties of a division ring

Let $(R, +, \cdot)$ be a division ring. Then for all $a, b, c \in R$ 1. if $a \neq 0$, then $a^{-1} = \frac{1}{a}$. 2. if $a \neq 0$, then $(a^{-1})^{-1} = a$. 3. $\frac{a}{b} = 1$ iff a = b and $b \neq 0$. 4. if $a \neq 0$ and $b \neq 0$, then $(\frac{a}{b})^{-1} = \frac{b}{a}$. 5. if $c \neq 0$, then $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$. 6. if $c \neq 0$, then $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$.

Proof. We prove 1.

Suppose $a \neq 0$. Then the multiplicative inverse a^{-1} exists in R. Observe that $a^{-1} = 1 \cdot a^{-1} = \frac{1}{a}$. We prove 2. Suppose $a \neq 0$.

Since R is a division ring, then every nonzero element of R is a unit. Hence, a is a unit, so a has a multiplicative inverse in R. Thus, there exists $a^{-1} \in R$ such that $aa^{-1} = a^{-1}a = 1$. Hence, $a^{-1}a = aa^{-1} = 1$. Thus, a is a multiplicative inverse of a^{-1} , so a^{-1} is a unit. Since the multiplicative inverse of each unit of a ring is unique, then the multiplicative inverse of a^{-1} is unique. Therefore, $(a^{-1})^{-1} = a$.

We prove 3. Suppose a = b and $b \neq 0$. Then $\frac{a}{b} = ab^{-1} = bb^{-1} = 1$. Therefore, $\frac{a}{b} = 1$. Conversely, suppose $\frac{a}{b} = 1$. Then $1 = \frac{a}{b} = ab^{-1}$, so $b \neq 0$. Observe that $a = a \cdot 1$

$$a = a \cdot 1$$

$$= a(b^{-1}b)$$

$$= (ab^{-1})b$$

$$= \frac{a}{b} \cdot b$$

$$= 1 \cdot b$$

$$= b.$$

Therefore, a = b.

We prove 4. Suppose $a \neq 0$ and $b \neq 0$. Then

$$1 = aa^{-1} \\ = a \cdot 1 \cdot a^{-1} \\ = a(b^{-1}b)a^{-1} \\ = (ab^{-1})(ba^{-1}) \\ = \frac{a}{b} \cdot \frac{b}{a}.$$

and

$$1 = bb^{-1} = b \cdot 1 \cdot b^{-1} = b(a^{-1}a)b^{-1} = (ba^{-1})(ab^{-1}) = \frac{b}{a} \cdot \frac{a}{b}.$$

Hence, $\frac{a}{b} \cdot \frac{b}{a} = 1 = \frac{b}{a} \cdot \frac{a}{b}$, so $\frac{b}{a}$ is the multiplicative inverse of $\frac{a}{b}$. Therefore, $(\frac{a}{b})^{-1} = \frac{b}{a}$. We prove 5.

We prove 5. Suppose $c \neq 0$. Then

$$\frac{a}{c} + \frac{b}{c} = ac^{-1} + bc^{-1}$$
$$= (a+b)c^{-1}$$
$$= \frac{a+b}{c}.$$

Therefore, $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$. We prove 6. Suppose $c \neq 0$. Then

$$\frac{a}{c} - \frac{b}{c} = ac^{-1} - bc^{-1}$$
$$= (a - b)c^{-1}$$
$$= \frac{a - b}{c}.$$

Therefore, $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$.

Subrings

Theorem 16. Let (R, +, *) be a ring.

Let $S \subset R$. Then S is a subring of R iff 1. $S \neq \emptyset$. 2. $(\forall a, b \in S)(a - b \in S)$. 3. $(\forall a, b \in S)(ab \in S)$. 4. S has the same multiplicative identity as R.

Proof. Suppose S is a subring of R. Then S is a subset of R and (S, +, *) is a ring under the induced operations of addition and multiplication in R and S has the same multiplicative identity as R. Since S is a ring, then S must contain the zero element of R. Hence, $S \neq \emptyset$.

Let $a, b \in S$. Since S is an additive group, then $-b \in S$. Since S is a group, then S is closed under addition. Hence, $a + (-b) \in S$, so $a - b \in S$.

Since S is a ring, then multiplication is a binary operation on S. Hence, S is closed under multiplication, so $ab \in S$.

Conversely, suppose all of the criteria are satisfied by S. By assumption, $S \neq \emptyset$ and for every $a, b \in S, a - b \in S$. Hence, by the subgroup test, (S, +) is a subgroup of (R, +). Since addition is commutative in R and S is closed under addition, then addition is commutative when restricted to S. Thus, S is abelian, so (S, +) is an abelian group.

By assumption, for every $a, b \in S$, $ab \in S$. Therefore, S is closed under multiplication. Let $a, b \in S$. Then $ab \in S$. Since $a, b \in S$ and $S \subset R$, then $a, b \in R$. Since multiplication is a binary operation on R, then ab is unique. Thus, multiplication is a binary operation on S, since $ab \in S$ and ab is unique.

Since multiplication is associative in R and S is closed under multiplication, then multiplication is associative when restricted to S. Since multiplication is left and right distributive over addition in R and S is closed under multiplication and addition, then multiplication is left and right distributive over addition when restricted to S.

Therefore, (S, +, *) is a ring.

Since S is a subset of R, and S is a ring under the induced operations of addition and multiplication of R, and S has the same multiplicative identity as R, then S is a subring of R.

Integral Domains

Proposition 17. A unit of a ring cannot be a zero divisor.

Proof. Let R be a ring. Let a be a unit of R. Then R is a ring with unity and a has a multiplicative inverse. Let e be the unity element of R. Let b be the multiplicative inverse of a. Then $b \in R$ and ab = ba = e.

We must prove a cannot be a zero divisor.

Suppose for the sake of contradiction that a is a zero divisor of R.

Then R is a commutative ring and there exists $c \in R$ such that $c \neq 0$ and ac = 0.

Observe that

$$(b+c)a = a(b+c)$$

= $ab + ac$
= $e + 0$
= e .

Thus, a(b+c) = (b+c)a = e, so b+c is a multiplicative inverse of a. The multiplicative inverse of each unit in a ring is unique. Hence, b+c = b = b+0. By additive cancellation for rings, c = 0. Thus, we have $c \neq 0$ and c = 0, a contradiction. Therefore, a cannot be a zero divisor.

Proposition 18. A zero divisor of a ring cannot be a unit.

Proof. Let R be a ring. Let a be a zero divisor of R. Then R is a commutative ring and $a \neq 0$ and there exists $b \in R$ such that $b \neq 0$ and ab = 0.

We must prove a cannot be a unit. Suppose for the sake of contradiction that a is a unit. Then R is a ring with unity and a has a multiplicative inverse. Let e be the unity of R and let c be the multiplicative inverse of a. Then $c \in R$ and ac = ca = e. Observe that

$$(b+c)a = a(b+c)$$

$$= ab+ac$$

$$= 0+e$$

$$= e.$$

Thus, a(b+c) = (b+c)a = e, so b+c is a multiplicative inverse of a. The multiplicative inverse of each unit in a ring is unique. Hence, b + c = c. Thus, c + b = c + 0, so by additive cancellation for rings, b = 0. Hence, b = 0 and $b \neq 0$, a contradiction. Therefore, a cannot have a multiplicative inverse. **Proposition 19.** $(\mathbb{Z}_p, +, \cdot)$ is an integral domain. Let p be prime and $[a], [b] \in (\mathbb{Z}_p, +, \cdot).$ If [a][b] = 0, then [a] = 0 or [b] = 0. *Proof.* Suppose [a][b] = [0]. Then [ab] = [0] so $ab \equiv 0 \pmod{p}$. Thus, p|ab - 0, so p|ab. Since p is prime and p|ab then we know by Euclid's lemma either p|a or p|b(or both). We consider these cases separately. **Case 1:** Suppose p|a. Then p|a - 0 so $a \equiv 0 \pmod{p}$. Therefore, [a] = [0]. Case 1: Suppose p|b. Then p|b-0 so $b \equiv 0 \pmod{p}$. Therefore, [b] = [0]. Hence, either [a] = [0] or [b] = [0].

Theorem 20. multiplicative cancellation laws hold in an integral domain

Let $(D, +, \cdot)$ be a commutative ring with nonzero unity.

Then D is an integral domain iff for all $a, b, c \in D$, if ca = cb and $c \neq 0$, then a = b.

Proof. We prove if D is an integral domain, then for all $a, b, c \in D$, if ca = cb and $c \neq 0$, then a = b.

Suppose D is an integral domain. Let $a, b, c \in D$ such that ca = cb and $c \neq 0$. Then

$$0 = ca + (-ca)$$
$$= ca - ca$$
$$= ca - cb$$
$$= c(a - b).$$

Since c(a-b) = 0 and D is an integral domain, then either c = 0 or a-b = 0. Since $c \neq 0$, then a - b = 0.

Proof. Conversely, we prove if ca = cb and $c \neq 0$, then a = b for all $a, b, c \in D$, then D is an integral domain.

Suppose ca = cb and $c \neq 0$ implies a = b for every $a, b, c \in D$.

To prove D is an integral domain, we need only prove D has no divisors of zero since D is a commutative ring with nonzero unity.

To prove D has no zero divisors, we prove the product of two nonzero elements of D is nonzero.

Let x and y be arbitrary nonzero elements of D. Then $x \in D$ and $y \in D$ and $x \neq 0$ and $y \neq 0$. To prove $xy \neq 0$, suppose xy = 0. Since D is a ring, then x0 = 0 = xy. Therefore, x0 = xy. Since x0 = xy and $x \neq 0$, then by hypothesis, 0 = y. Therefore, y = 0. Hence, we have $y \neq 0$ and y = 0, a contradiction. Therefore, $xy \neq 0$, as desired.

Ideals

Proposition 21. Let R be a ring.

The zero ring and R itself are ideals in R. *Proof.* We prove the zero ring $\{0\}$ is an ideal of R. Observe that $\{0\}$ is an abelian subgroup of (R, +). Let $I = \{0\}.$ We prove $Rx \subset I$ and $xR \subset I$ for all $x \in I$. Let x = 0. Let $a \in Rx$. Then a = rx = r0 = 0 for some $r \in R$. Thus, $a \in I$. Hence, $a \in Rx$ implies $a \in I$, so $Rx \subset I$. Let $b \in xR$. Then b = xr = 0r = 0 for some $r \in R$. Thus, $b \in I$. Hence, $b \in xR$ implies $b \in I$, so $xR \subset I$. Since (I, +) is an additive subgroup of (R, +) and $Rx \subset I$ and $xR \subset I$, then I is an ideal of R. Hence, the zero subring of R is an ideal of R. We prove R is an ideal of R. By definition of subring, (R, +) is an abelian subgroup of (R, +). Let I = R. We prove $Rx \subset I$ and $xR \subset I$ for all $x \in I$. Let $x \in I$. Then $x \in R$. Let $a \in Rx$. Then a = rx for some $r \in R$. Since R is a ring, then R is closed under multiplication. Since $r, x \in R$, then this implies $a \in R$. Since R = I, then $a \in I$. Hence, $a \in Rx$ implies $a \in I$, so $Rx \subset I$.

Let $b \in xR$. Then b = xr for some $r \in R$. Since R is a ring, then R is closed under multiplication. Since $r, x \in R$, then this implies $b \in R$. Since R = I, then $b \in I$. Hence, $b \in xR$ implies $b \in I$, so $xR \subset I$.

Thus, $RI \subset I$ and $IR \subset I$.

Since (I, +) is an abelian subgroup of (R, +) and $RI \subset I$ and $IR \subset I$, then I is an ideal in R.

Theorem 22. Let R be a commutative ring. Let $a \in R$. The set $(a) = \{ra : r \in R\}$ is an ideal of R.

Proof. Let $I = \{ra : r \in R\}$. We prove (I, +) is a subgroup of (R, +).

Let $b \in I$. Then b = ra for some $r \in R$. Since R is a ring, then R is closed under multiplication. Thus, $b \in R$, since $a \in R$ and $r \in R$. Hence, $b \in I$ implies $b \in R$, so $I \subset R$.

Let e be the multiplicative identity of R. Since $e \in R$ and ea = a, then $a \in I$, so I is not empty.

Let $x, y \in I$. Then x = ra and y = r'a for some $r, r' \in R$. Thus, x - y = ra - r'a = (r - r')a. Since r - r' is an element of R, then $x - y \in I$. Therefore, (I + i) is a subgroup of (R + i).

Therefore, (I, +) is a subgroup of (R, +).

We prove $RI \subset I$ and $IR \subset I$. Let $x \in I$. Then x = ra for some $r \in R$.

Let $x' \in Rx$. Then x' = r'x for some $r' \in R$. Thus, x' = r'(ra) = (r'r)a. Since $r'r \in R$, then $x' \in I$. Hence, $x' \in Rx$ implies $x' \in I$, so $Rx \subset I$.

Let $y' \in xR$. Then y' = xs' for some $s' \in R$. Thus, y' = (ra)s' = s'(ra) = (s'r)a. Since $r, s' \in R$, then $y' \in I$. Hence, $y' \in xR$ implies $y' \in I$, so $xR \subset I$.

Thus, we have $RI \subset I$ and $IR \subset I$.

Since (I, +) < (R, +) and $RI \subset I$ and $IR \subset I$, then I is an ideal of R. Therefore, (a) is an ideal of R.

The ideal (a) is called the **principal ideal generated by** a in R.

Theorem 23. Every ideal in the ring \mathbb{Z} is a principal ideal.

Proof. Let I be an arbitrary ideal of \mathbb{Z} .

Since I is an ideal of \mathbb{Z} , then $I \subset \mathbb{Z}$ and (I, +) is a subgroup of $(\mathbb{Z}, +)$ and $\mathbb{Z}I \subset I$ and $I\mathbb{Z} \subset I$.

Either I is the zero ring or I is not the zero ring.

We consider these cases separately.

Case 1: Suppose *I* is the zero ring.

Observe that $(0) = \{k0 : k \in \mathbb{Z}\} = \{0\} = I$. Hence, I is the principal ideal generated by zero.

Case 2: Suppose *I* is not the zero ring.

Then (I, +) is a group other than the trivial group. Therefore, I contains some nonzero element.

Thus, there exists $k \in I$ such that $k \neq 0$. By definition of ideal, for every $x \in \mathbb{Z}, xk \in I$. Thus, for $x = -1, -k \in I$. Hence, both k and -k are in I. Since $I \subset \mathbb{Z}$, then $k \in \mathbb{Z}$ and $-k \in \mathbb{Z}$. Since $k \neq 0$, then either k is positive or -k is positive, by trichotomy of \mathbb{Z} . Therefore, I contains some positive integer.

Let M be the set of all positive elements of I. Then $M = \{m \in I : m > 0\}$, so $M \subset I$. Since $M \subset I$ and $I \subset \mathbb{Z}$, then $M \subset \mathbb{Z}$. Since $M \subset \mathbb{Z}$ and every element of M is positive, then $M \subset \mathbb{Z}^+$. By the well ordering principle of \mathbb{Z}^+ , M contains a least element. Thus, there exists $n \in M$ such that n is the least element of M. Hence, $n \in I$ and n > 0.

Let a be an arbitrary element of I. Since $a \in I$ and $I \subset \mathbb{Z}$, then $a \in \mathbb{Z}$. We divide a by n. By the division algorithm, there exist unique integers q, r such that a = nq + r and $0 \leq r < n$. Thus, r = a - nq = a + (-nq). Since $n \in I$, then by definition of ideal, for every $x \in \mathbb{Z}, nx \in I$. In particular, if we let x = -q, then we have $-nq \in I$. Since I is an additive group, then I is closed under addition. Thus, $r \in I$, since $a \in I$ and $-nq \in I$.

Either r > 0 or r = 0.

Suppose r > 0. Then $r \in M$, since $r \in I$ and r > 0. Since n is the least element of M, then $n \leq r$, so $r \geq n$. Thus, we have r < n and $r \geq n$, a contradiction. Therefore, r cannot be greater than zero, so r = 0. Hence, a = nq. Thus, $a \in (n)$, by definition of principal ideal. Consequently, $a \in I$ implies $a \in (n)$. Therefore, $I \subset (n)$.

Conversely, let b be an arbitrary element of (n). Then b = sn for some integer s. Since $n \in I$, then by definition of ideal, $sn \in I$. Hence, $b \in I$. Thus, $b \in (n)$ implies $b \in I$, so $(n) \subset I$.

Therefore, $I \subset (n)$ and $(n) \subset I$, so I = (n). Consequently, I is the principal ideal generated by n.

Quotient Rings

Proposition 24. Let I be an ideal in a ring R. Then congruence modulo I is an equivalence relation on R.

Proof. We prove the relation congruence modulo I is reflexive, symmetric, and transitive.

Let $a \in R$. Then a - a = 0. Since I is an ideal, then (I, +) is a subgroup of (R, +). Hence, the additive identity of R is in I, so $0 \in I$. Thus, $a - a \in I$, so aRa is true. Therefore, congruence modulo I is reflexive.

Let $a, b \in R$ such that $a \equiv b \pmod{I}$. Then $a - b \in I$. Let 1 be the multiplicative identity of R. Since R is a ring, then (R, +) is a group, so $-1 \in R$. By definition of ideal, for every $x \in R, x(a - b) \in I$. Hence, in particular, if we let x = -1, then $(-1)(a - b) = -a + b = b - a \in I$. Thus, $b \cong a \pmod{I}$. Therefore, $a \equiv b \pmod{I}$ implies $b \cong a \pmod{I}$, so congruence modulo I is symmetric.

Let $a, b, c \in R$ such that $a \equiv b \pmod{I}$ and $b \equiv c \pmod{I}$. Then $a - b \in I$ and $b - c \in I$. Since I is an additive group, then I is closed under addition. Hence, $(a - b) + (b - c) = a - c \in I$. Thus, $a \cong c \pmod{I}$. Therefore, $a \equiv b \pmod{I}$ and $b \equiv c \pmod{I}$ imply $a \cong c \pmod{I}$, so congruence modulo I is transitive.

Since congruence modulo I is reflexive, symmetric, and transitive, then congruence modulo I is an equivalence relation on R.

Theorem 25. Let I be an ideal in a ring R. The set $\frac{R}{I}$ is an abelian group under coset addition.

Proof. Let $\frac{R}{I}$ to be the collection of all cosets of I in R. Then $\frac{R}{I} = \{a + I : a \in R\}$.

We prove coset addition is well defined.

Let a+I, b+I, c+I, d+I be arbitrary elements of $\frac{R}{I}$ such that (a+I, b+I) = (c+I, d+I). Then a+I = c+I and b+I = d+I and $a, b, c, d \in R$.

We prove (a + I) + (b + I) = (c + I) + (d + I).

Since a+I = c+I, then $a \equiv c \pmod{I}$, so $a-c \in I$. Since b+I = d+I, then $b \equiv d \pmod{I}$, so $b-d \in I$. Since (I, +) is an additive group, then I is closed under addition. Thus, $(a-c)+(b-d) = (a+b)-(c+d) \in I$. Hence, $a+b \equiv c+d \pmod{I}$, so (a+b)+I = (c+d)+I. Therefore, (a+I)+(b+I) = (c+I)+(d+I), by definition of coset addition. Thus, coset addition is well defined, so coset addition is a binary operation on $\frac{R}{I}$.

Let a + I, b + I be arbitrary elements of $\frac{R}{I}$. Then $a, b \in R$ and

$$(a + I) + (b + I) = (a + b) + I$$

= $(b + a) + I$
= $(b + I) + (a + I)$

Therefore, coset addition is commutative.

Let a + I, b + I, c + I be arbitrary elements of $\frac{R}{I}$. Then $a, b, c \in R$ and

$$\begin{aligned} [(a+I)+(b+I)]+(c+I) &= [(a+b)+I]+(c+I) \\ &= [(a+b)+c]+I \\ &= [a+(b+c)]+I \\ &= (a+I)+[(b+c)+I] \\ &= (a+I)+[(b+I)+(c+I)]. \end{aligned}$$

Therefore, coset addition is associative.

Let a + I be an arbitrary element of $\frac{R}{I}$. Then $a \in R$ and

$$(a + I) + I = (a + I) + (0 + I)$$

= (a + 0) + I
= a + I
= (0 + a) + I
= (0 + I) + (a + I)
= I + (a + I).

Hence, I = 0 + I is an additive identity of $\frac{R}{I}$.

Observe that

$$(a + I) + (-a + I) = [a + (-a)] + I$$

= 0 + I
= (-a + a) + I
= (-a + I) + (a + I).

Thus, the additive inverse of a + I is -a + I.

Hence, $\frac{R}{I}$ is an abelian group under coset addition.

Theorem 26. Let I be an ideal in a ring R. The set $\frac{R}{I}$ is a ring under coset addition and coset multiplication.

Proof. Let $\frac{R}{I}$ to be the collection of all cosets of I in R. Then $\frac{R}{I} = \{a + I : a \in R\}$.

We proved $\frac{R}{I}$ is an abelian group under coset addition.

We now prove coset multiplication is well defined.

Let a+I, b+I, c+I, d+I be arbitrary elements of $\frac{R}{I}$ such that (a+I, b+I) = (c+I, d+I). Then a+I = c+I and b+I = d+I and $a, b, c, d \in R$.

We prove (a + I)(b + I) = (c + I)(d + I).

Since a + I = c + I, then $a \equiv c \pmod{I}$, so $a - c \in I$. Since b + I = d + I, then $b \equiv d \pmod{I}$, so $b - d \in I$. Since (I, +) is an additive group, then I is closed under addition. We multiply by b to obtain (a - c)b = ab - cb. Since $a - c \in I$ and $b \in R$, then $ab - cb \in I$, by definition of ideal. We multiply by c to obtain c(b - d) = cb - cd. Since $b - d \in I$ and $c \in R$, then $cb - cd \in I$, by definition of ideal. Since I is closed under addition, we obtain $(ab - cb) + (cb - cd) = ab - cd \in I$. Hence, $ab \equiv cd \pmod{I}$, so ab + I = cd + I. Therefore, (a + I)(b + I) = (c + I)(d + I), by definition of coset multiplication. Thus, coset multiplication is well defined, so coset multiplication is a binary operation on $\frac{R}{I}$.

Let a + I, b + I, c + I be arbitrary elements of $\frac{R}{I}$. Then $a, b, c \in R$ and

$$\begin{aligned} [(a+I)(b+I)](c+I) &= (ab+I)(c+I) \\ &= (ab)c+I \\ &= a(bc)+I \\ &= (a+I)(bc+I) \\ &= (a+I)[(b+I)(c+I)]. \end{aligned}$$

Therefore, coset multiplication is associative.

Let e be the multiplicative identity of R. Let a + I be an arbitrary element of $\frac{R}{I}$. Then $a \in R$ and

$$(a+I)(e+I) = ae+I$$

$$= a+I$$

$$= ea+I$$

$$= (e+I)(a+I).$$

Hence, e + I is multiplicative identity of $\frac{R}{I}$.

Let a + I, b + I, c + I be arbitrary elements of $\frac{R}{I}$. Then $a, b, c \in R$ and

Therefore, coset multiplication is left distributive over coset addition. Observe that

$$\begin{split} [(a+I)+(b+I)](c+I) &= [(a+b)+I](c+I) \\ &= (a+b)c+I \\ &= (ac+bc)+I \\ &= (ac+I)+(bc+I) \\ &= (a+I)(c+I)+(b+I)(c+I). \end{split}$$

Therefore, coset multiplication is right distributive over coset addition. Hence, $\frac{R}{I}$ is a ring.

Ring Homomorphisms

Proposition 27. Let $\phi : R \mapsto R'$ be a ring homomorphism. Then the following are true:

1. $\phi(0) = 0'$, where 0 is additive identity of R and 0' is additive identity of R'.

2. If R is a commutative ring, then $\phi(R)$ is a commutative ring.

3. If R is a field and $\phi(R) \neq \{0'\}$, then $\phi(R)$ is a field.

Proof. We prove 1. Let $a \in R$. Then

$$\phi(a) + 0' = \phi(a)$$

= $\phi(a + 0)$
= $\phi(a) + \phi(0).$

By cancellation in R, we have $0' = \phi(0)$.

We prove 2. Suppose R is a commutative ring. Then for every $a, b \in R, ab = ba$.

Since ϕ is a ring homomorphism, then ϕ is a function and $\phi(a+b) = \phi(a) + \phi(b)$ for every $a, b \in R$. Since R and R' are rings, then (R, +) and (R', +) are abelian groups. Hence, ϕ is a group homomorphism, so ϕ preserves subgroups of R. Thus, if S < R, then $\phi(S) < R'$. In particular, R < R, so $\phi(R) < R'$. Therefore, $\phi(R)$ is an additive subgroup of R'. Since R' is an abelian additive group, then every additive subgroup of R' is abelian. In particular, $\phi(R)$ is abelian, so $\phi(R)$ is an additive abelian group.

Let $a', b' \in \phi(R)$. Then there exist $a, b \in R$ such that $\phi(a) = a'$ and $\phi(b) = b'$, by definition of $\phi(R)$. By closure of R' under multiplication, $a'b' \in R'$. Let c = ab. By closure of R under multiplication, $ab \in R$, so $c \in R$. Observe that

$$\phi(c) = \phi(ab)$$

= $\phi(a)\phi(b)$
= $a'b'.$

Thus, there exists $c \in R$ such that $\phi(c) = a'b' \in R'$. Hence, $a'b' \in \phi(R)$, so $\phi(R)$ is closed under multiplication.

Since $a'b' \in R'$ and multiplication is well defined in R', then a'b' is unique. Therefore, multiplication is a binary operation on $\phi(R)$.

Observe that

$$a'b' = \phi(a)\phi(b)$$

= $\phi(ab)$
= $\phi(ba)$
= $\phi(b)\phi(a)$
= $b'a'.$

Hence, multiplication is commutative in $\phi(R)$.

Associativity of multiplication in R' holds in $\phi(R)$ since $\phi(R)$ is a subset of R' and $\phi(R)$ is closed under multiplication.

Distributivity of multiplication over addition (left and right) in R' holds in $\phi(R)$ since $\phi(R)$ is a subset of R' and $\phi(R)$ is closed under addition and multiplication.

Since ϕ is a ring homomorphism, then $\phi(1) = 1'$, where 1 is unity of R and 1' is unity of R'. Thus, there exists $1 \in R$ such that $\phi(1) = 1'$, so $1' \in \phi(R)$.

Therefore, $\phi(R)$ is a commutative ring.

We prove 3.

Suppose R is a field and $\phi(R) \neq \{0'\}$. Since R is a field, then R is a commutative division ring, so R is a commutative ring. Therefore, $\phi(R)$ is a commutative ring.

Since $\phi(R)$ is a ring and $\phi(R) \neq \{0'\}$, then there exists a nonzero element in $\phi(R)$.

Let $a' \in R'$ and $a' \neq 0'$. Then there exists $a \in R$ such that $\phi(a) = a'$, by definition of $\phi(R)$.

Suppose a = 0. Then $a' = \phi(a) = \phi(0) = 0'$, so a' = 0'. Thus, we have $a' \neq 0'$ and a' = 0', a contradiction. Therefore, $a \neq 0$.

Since R is a field, then every nonzero element of R is a unit of R. Hence, in particular, a is a unit of R. Therefore, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$, where 1 is unity of R. Let $b' = \phi(a^{-1})$. Then $b' \in R'$. Since $a^{-1} \in R$ and $\phi(a^{-1}) \in R'$, then $b' \in \phi(R)$, by definition of $\phi(R)$.

Let 1' be the unity of R'. Observe that

$$\begin{aligned} \mathbf{a}' &= \phi(1) \\ &= \phi(aa^{-1}) \\ &= \phi(a)\phi(a^{-1}) \\ &= a'b' \\ &= b'a'. \end{aligned}$$

Hence, there exists $b' \in \phi(R)$ such that a'b' = b'a' = 1'. Therefore, a' is a unit of R'. Thus, every nonzero element of R' is a unit of R', so R' is a field. \Box

Theorem 28. Let $\phi : R \mapsto R'$ be a ring homomorphism. Then ker (ϕ) is an ideal in R.

Proof. Let 0' be the additive identity of R'. Let $I = \ker(\phi) = \{r \in R : \phi(r) = 0'\}$.

Since ϕ is a ring homomorphism, then $\phi : R \mapsto R'$ is a function and for all $a, b \in R, \phi(a + b) = \phi(a) + \phi(b)$. Since R and R' are rings, then (R, +) and (R', +) are additive groups. Therefore, ϕ is a group homomorphism. Hence, the kernel of ϕ is a subgroup of (R, +).

Let $x \in I$. Then $x \in R$ and $\phi(x) = 0'$.

Let $x' \in Rx$. Then x' = rx for some $r \in R$. Since R is a ring, then R is closed under multiplication. Thus, $x' \in R$, since $r, x \in R$. Observe that

$$\phi(x') = \phi(rx)$$

= $\phi(r)\phi(x)$
= $\phi(r)0'$
= $0'$.

Hence, $x' \in I$, by definition of I. Thus, $x' \in Rx$ implies $x' \in I$, so $Rx \subset I$.

Let $y' \in xR$. Then y' = xs for some $s \in R$. Since R is a ring, then R is closed under multiplication. Thus, $y' \in R$, since $s, x \in R$. Observe that

$$\phi(y') = \phi(xs)$$

= $\phi(x)\phi(s)$
= $0'\phi(r)$
= $0'$.

Hence, $y' \in I$, by definition of I. Thus, $y' \in xR$ implies $y' \in I$, so $xR \subset I$. Since x is arbitrary, then $RI \subset I$ and $IR \subset I$.

Since (I, +) is a subgroup of (R, +) and $RI \subset I$ and $IR \subset I$, then I is an ideal of R, by definition of ideal.

Therefore, $\ker(\phi)$ is an ideal of R.

Theorem 29. Let I be an ideal of a ring R. Let $\eta : R \mapsto \frac{R}{I}$ be defined by $\eta(a) = a + I$ for all $a \in R$. Then η is a ring homomorphism of R onto $\frac{R}{I}$ with kernel I. We call η the **natural homomorphism** from R onto $\frac{R}{I}$.

Proof. Since R is a ring, then (R, +) is an abelian group. Since I is an ideal of R, then (I, +) is a subgroup of (R, +). Every subgroup of an abelian group is normal. Since R is abelian, then I is normal in R. Thus, η is the natural group homomorphism from R onto $\frac{R}{I}$. Hence, η is a function and $\eta(a+b) = \eta(a) + \eta(b)$ for every $a, b \in R$ and ker $(\eta) = I$ and η is surjective.

To prove η is a ring homomorphism, we need only prove multiplication and multiplicative identity are preserved.

Let $a, b \in R$. Then

$$\eta(ab) = (ab) + I$$

= $(a+I)(b+I)$
= $\eta(a)\eta(b).$

Observe that $\eta(e) = e + I$, which is multiplicative identity of $\frac{R}{I}$.

Therefore, η is a ring homomorphism.

Theorem 30. Fundamental Homomorphism Theorem

Let $\phi: R \mapsto R'$ be a ring homomorphism with kernel K. Then there exists a unique ring isomorphism $\phi': \frac{R}{K} \mapsto \phi(R)$ defined by $\phi'(rK) = \phi(r)$ for all $r \in R$ such that $\phi' \circ \eta = \phi$, where $\eta: R \mapsto \frac{R}{K}$ is the natural homomorphism.

Proof. By assumption, ϕ is a ring homomorphism. If ϕ is a ring homomorphism, then the kernel of ϕ is an ideal of R. Therefore, K is an ideal of R. Hence, the quotient ring $\frac{R}{K}$ exists and there exists a natural homomorphism from R onto $\frac{R}{K}$. Let $\eta: R \mapsto \frac{R}{K}$ be the natural ring homomorphism defined by $\eta(a) = a + K$ for all $a \in R$.

Since R and R' are rings, then R and R' are additive abelian groups. Since ϕ is a ring homomorphism, then ϕ is a group homomorphism with kernel K. Therefore, by the fundamental group homomorphism theorem, there exists a group isomorphism $\phi': \frac{R}{K} \mapsto \phi(R)$ defined by $\phi'(r+K) = \phi(r)$ for all $r \in R$ such that $\phi' \circ \eta = \phi$.

Let $x, y \in \frac{R}{K}$. Then there exist $a, b \in R$ such that x = a + K and y = b + K. Since ϕ' is a group isomorphism, then ϕ' is a bijective function and $\phi'(x+y) = \phi'(x) + \phi'(y)$. Observe that

$$\phi'(xy) = \phi'[(a+K)(b+K)]$$

= $\phi'[(ab) + K]$
= $\phi(ab)$
= $\phi(a)\phi(b)$
= $\phi'(a+K)\phi'(b+K)$
= $\phi'(x)\phi'(y).$

Let e be the unity of R and e' be the unity of R'. Then $\phi'(e+K) = \phi(e) = e'$. Therefore, ϕ' is a ring homomorphism and $\phi' \circ \eta = \phi$.

Ring Isomorphisms

Theorem 31. First Isomorphism Theorem

Let H and K be subgroups of a group G such that $K \triangleleft G$. Let $HK = \{hk : h \in H \land k \in K\}$. Then HK is a subgroup of G such that $K \triangleleft HK$ and $\frac{H}{H \cap K} \cong \frac{HK}{K}$.

Solution. We must prove:

 $\begin{array}{ll} 1. \hspace{0.2cm} HK < G. \\ 2. \hspace{0.2cm} K \lhd HK. \\ 3. \hspace{0.2cm} \frac{H}{H \cap K} \cong \frac{HK}{K}. \end{array}$

Proof. We first prove HK < G.

Let $x \in HK$. Then there exists $h \in H$ and $k \in K$ such that x = hk. Since H < G, then $H \subset G$. Since $h \in H$ and $H \subset G$, then $h \in G$. Since K < G, then $K \subset G$. Since $k \in K$ and $K \subset G$, then $k \in G$. Since G is a group, then G is closed under its binary operation. Thus, since $h, k \in G$, then $hk = x \in G$. Therefore, $x \in HK$ implies $x \in G$, so $HK \subset G$.

We apply a subgroup test.

Let e be the identity of G. Since H < G, then $e \in H$. Since K < G, then $e \in K$. Since e = ee, then $e \in HK$, by definition of HK. Therefore, $HK \neq \emptyset$.

Let $a, b \in HK$. Then there exist $h_1 \in H$ and $k_1 \in K$ such that $a = h_1k_1$ and there exist $h_2 \in H$ and $k_2 \in K$ such that $b = h_2k_2$, by definition of HK. Since $a, b \in HK$ and $HK \subset G$, then $a, b \in G$. Thus, $ab^{-1} = (h_1k_1)(h_2k_2)^{-1} = (h_1k_1)(k_2^{-1}h_2^{-1}) = h_1k_1k_2^{-1}h_2^{-1}$. Let $k = k_1k_2^{-1}$. Since K is a group, then $k \in K$ and $ab^{-1} = h_1kh_2^{-1}$.

Since $h_2 \in H$ and $H \subset G$, then $h_2 \in G$. Since $K \triangleleft G$, then for every $g \in G, h \in K, ghg^{-1} \in K$. Thus, in particular, if we let $g = h_2$ and h = k, then $h_2kh_2^{-1} \in K$. Let $k_3 = h_2kh_2^{-1}$. Then $k_3 \in K$ and $kh_2^{-1} = h_2^{-1}k_3$, so $ab^{-1} = h_1(h_2^{-1}k_3) = (h_1h_2^{-1})k_3$. Since H is a group, then H is closed under its binary operation. Therefore, since $h_1 \in H$ and $h_2^{-1} \in H$, then $h_1h_2^{-1} \in H$. Since $h_1h_2^{-1} \in H$ and $k_3 \in K$, then $ab^{-1} \in HK$, by definition of HK.

Therefore, HK is a subgroup of G.

We prove K is normal in HK. We first prove K is a subgroup of HK and then prove for every $g \in HK$ and $k \in K$, $gkg^{-1} \in K$.

Let $x \in K$. Then x = ex. Since $e \in H$ and $x \in K$, then $x \in HK$, by definition of HK. Thus, $x \in K$ implies $x \in HK$, so $K \subset HK$.

Since K < G, then $e \in K$, so $K \neq \emptyset$.

Let $a, b \in K$. Since K is a group, then $b^{-1} \in K$. Since K is closed under its binary operation, then $ab^{-1} \in K$.

Thus, K is a subgroup of HK.

Let $g \in HK$ and $k' \in K$. Then g = hk for some $h \in H$ and $k \in K$. Observe that $gk'g^{-1} = (hk)k'(hk)^{-1} = hkk'k^{-1}h^{-1}$. Let $k'' = kk'k^{-1}$. Then $gk'g^{-1} = hk''h^{-1}$. Since $K \triangleleft G$, then $hk''h^{-1} \in K$, so $gk'g^{-1} \in K$. Therefore, K is a normal subgroup of HK.

Since K is normal in HK, then the quotient group $\frac{HK}{K}$ exists. Let $\frac{HK}{K}$ be the set of all cosets of K in HK. Then $\frac{HK}{K} = \{hK : h \in H\}$. Define binary relation $\phi : H \mapsto \frac{HK}{K}$ by $\phi(h) = hK$ for all $h \in H$. We prove ϕ is well defined. Let $h_1, h_2 \in H$ such that $h_1 = h_2$. Then

 $h_1K = h_2K$. Thus, $\phi(h_1) = h_1K = h_2K = \phi(h_2)$. Hence, $h_1 = h_2$ implies $\phi(h_1) = \phi(h_2)$, so ϕ is well defined. Therefore, ϕ is a function.

Let $a, b \in H$. Then $\phi(ab) = (ab)K = (aK)(bK) = \phi(a)\phi(b)$. Thus, ϕ is a homomorphism.

We prove $\ker(\phi) = H \cap K$. Let $x \in \ker(\phi)$. Then $x \in H$ since $\ker(\phi) \subset H$ and $\phi(x) = K$, by definition of kernel of ϕ . Thus, $K = \phi(x) = xK$. Since xK = K, then $x \in K$. Since $x \in H$ and $x \in K$, then $x \in H \cap K$. Hence, $x \in \ker(\phi)$ implies $x \in H \cap K$, so $\ker(\phi) \subset H \cap K$.

Let $y \in H \cap K$. Then $y \in H$ and $y \in K$. Since $y \in H$ and $H \subset G$, then $y \in G$. Since $y \in K$, then yK = K. Thus, $\phi(y) = yK = K$. Since $y \in H$ and $\phi(y) = K$, then $y \in \ker(\phi)$. Hence, $y \in H \cap K$ implies $y \in \ker(\phi)$, so $H \cap K \subset \ker(\phi).$

Since $\ker(\phi) \subset H \cap K$ and $H \cap K \subset \ker(\phi)$, then $\ker(\phi) = H \cap K$.

We prove $\phi(H) = \frac{HK}{K}$. Observe that $\phi(H) = \{\phi(h) \in \frac{HK}{K} : h \in H\}$. Let $x \in \phi(H)$. Then there exists $h \in H$ such that $x = \phi(h)$ and $x \in \frac{HK}{K}$. Thus, $x = \phi(h) = hK$. Since there exists $h \in H$ such that x = hK, then $x \in \frac{HK}{K}$, by definition of $\frac{HK}{K}$. Hence, $x \in \phi(H)$ implies $x \in \frac{HK}{K}$, so $\phi(H) \subset \frac{HK}{K}$. Let $y \in \frac{HK}{K}$. Then there exists $h \in H$ such that y = hK. Thus, $\phi(h) =$

hK = y. Hence, there exists $h \in H$ such that $y = \phi(h)$, so $y \in \phi(H)$, by definition of $\phi(H)$. Therefore, $y \in \frac{HK}{K}$ implies $y \in \phi(H)$, so $\frac{HK}{K} \subset \phi(H)$.

Since $\phi(H) \subset \frac{HK}{K}$ and $\frac{HK}{K} \subset \phi(H)$, then $\phi(H) = \frac{HK}{K}$. Hence, $\phi: H \mapsto \frac{HK}{K}$ is a homomorphism with kernel $H \cap K$ and $\phi(H) = \frac{HK}{K}$. Thus, by the fundamental homomorphism theorem, $\frac{H}{H \cap K} \cong \frac{HK}{K}$.

Direct product of Rings

Theorem 32. Let (R, +, *) be a ring with unity e. Let $n \in \mathbb{Z}^+, n \geq 2$. Then $(R^n, +, *)$ is a ring with unity (e, e, ..., e).

Proof. Observe that $R^n = R \times R \times ... \times R = \{(a_1, a_2, ..., a_n) : a_i \in R\}$. Since (R, +, *) is a ring, then (R, +) is an abelian group. Observe that $(R^n, +)$ is the direct sum of the group (R, +) with itself n times. The direct sum of abelian groups is an abelian group. Hence, $(\mathbb{R}^n, +)$ is an abelian group.

We prove component wise multiplication is a binary operation over \mathbb{R}^n . Let $a, b \in \mathbb{R}^n$. Then for each $i \in \{1, 2, ..., n\}$ there exist $a_i, b_i \in \mathbb{R}$ such that $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$. Observe that

$$ab = (a_1, a_2, ..., a_n)(b_1, b_2, ..., b_n)$$

= $(a_1b_1, a_2b_2, ..., a_nb_n).$

Since R is a ring, then R is closed under multiplication, so $a_i b_i \in R$ for each i. Therefore, $ab \in \mathbb{R}^n$, so \mathbb{R}^n is closed under componentwise multiplication.

We prove componentwise multiplication is well defined. Let (a, b) and (c, d) be arbitrary elements of $\mathbb{R}^n \times \mathbb{R}^n$ such that (a, b) = (c, d). Then $a, b, c, d \in \mathbb{R}^n$ and a = c and b = d. Hence, for each i = 1, 2, ..., n there exist $a_i, b_i, c_i, d_i \in \mathbb{R}$ such that $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$ and $c = (c_1, c_2, ..., c_n)$ and $d = (d_1, d_2, ..., d_n)$ and $a_i = c_i$ and $b_i = d_i$ for each i. Thus,

$$ab = (a_1, a_2, ..., a_n)(b_1, b_2, ..., b_n)$$

= $(a_1b_1, a_2b_2, ..., a_nb_n)$
= $(c_1b_1, c_2b_2, ..., c_nb_n)$
= $(c_1d_1, c_2d_2, ..., c_nd_n)$
= $(c_1, c_2, ..., c_n)(d_1, d_2, ..., d_n)$
= $cd.$

Hence, ab = cd, so componentwise multiplication is well defined over \mathbb{R}^n . Therefore, componentwise multiplication is a binary operation on \mathbb{R}^n .

We prove componentwise multiplication is associative. Let $a, b, c \in \mathbb{R}^n$. Then for each i = 1, 2, ..., n there exist $a_i, b_i, c_i \in \mathbb{R}$ such that $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$ and $c = (c_1, c_2, ..., c_n)$. Observe that

$$\begin{aligned} (ab)c &= [(a_1, a_2, ..., a_n)(b_1, b_2, ..., b_n)](c_1, c_2, ..., c_n) \\ &= (a_1b_1, a_2b_2, ..., a_nb_n)(c_1, c_2) \\ &= ((a_1b_1)c_1, (a_2b_2)c_2, ..., (a_nb_n)c_n) \\ &= (a_1(b_1c_1), a_2(b_2c_2), ..., a_n(b_nc_n)) \\ &= (a_1, a_2, ..., a_n)(b_1c_1, b_2c_2, ..., b_nc_n) \\ &= (a_1, a_2, ..., a_n)[(b_1, b_2, ..., b_n)(c_1, c_2, ..., c_n)] \\ &= a(bc). \end{aligned}$$

Therefore, componentwise multiplication is associative.

Observe that

$$\begin{aligned} (a_1, a_2, ..., a_n)(e, e, ..., e) &= (a_1 e, a_2 e, ..., a_n e) \\ &= (a_1, a_2, ..., a_n) \\ &= (ea_1, ea_2, ..., ea_n) \\ &= (e, e, ...e)(a_1, a_2, ..., a_n). \end{aligned}$$

Therefore, (e, e, ..., e) is a multiplicative identity in \mathbb{R}^n , so a multiplicative identity exists in \mathbb{R}^n .

Observe that

$$\begin{aligned} a(b+c) &= (a_1, a_2, ..., a_n)[(b_1, b_2, ..., b_n) + (c_1, c_2, ..., c_n)] \\ &= (a_1, a_2, ..., a_n)(b_1 + c_1, b_2 + c_2, ..., b_n + c_n) \\ &= (a_1(b_1 + c_1), a_2(b_2 + c_2), ..., a_n(b_n + c_n)) \\ &= (a_1b_1 + a_1c_1, a_2b_2 + a_2c_2, ..., a_nb_n + a_nc_n) \\ &= (a_1b_1, a_2b_2, ..., a_nb_n) + (a_1c_1, a_2c_2, ..., a_nc_n) \\ &= (a_1, a_2, ..., a_n)(b_1, b_2, ..., b_n) + (a_1, a_2, ..., a_n)(c_1, c_2, ..., c_n) \\ &= ab + ac \end{aligned}$$

and

$$\begin{array}{lll} (a+b)c &=& [(a_1,a_2,...,a_n)+(b_1,b_2,...,b_n)](c_1,c_2,...,c_n) \\ &=& (a_1+b_1,a_2+b_2,...,a_n+b_n)(c_1,c_2,...,c_n) \\ &=& ((a_1+b_1)c_1,(a_2+b_2)c_2,...,(a_n+b_n)c_n) \\ &=& (a_1c_1+b_1c_1,a_2c_2+b_2c_2,...,a_nc_n+b_nc_n) \\ &=& (a_1c_1,a_2c_2,...,a_nc_n)+(b_1c_1,b_2c_2,...,b_nc_n) \\ &=& (a_1,a_2,...,a_n)(c_1,c_2,...,c_n)+(b_1,b_2,...,b_n)(c_1,c_2,...,c_n) \\ &=& ac+bc \end{array}$$

Therefore, the left and right distributive laws hold in \mathbb{R}^n . Hence, $(\mathbb{R}^n, +, *)$ is a ring with unity (e, e, \dots, e) .

Theorem 33. Let (R, +, *) be a commutative ring. Then $(R^n, +, *)$ is a commutative ring.

Proof. Let $n \in \mathbb{Z}^+$, $n \ge 2$. Let \mathbb{R}^n be the direct product of n copies of the ring \mathbb{R} . The direct product of n copies of a ring is a ring. Therefore, $(\mathbb{R}^n, +, *)$ is a ring.

Let $a, b \in \mathbb{R}^n$. Then for each $i \in \{1, 2, ..., n\}$ there exist $a_i, b_i \in \mathbb{R}^n$ such that $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$. Observe that

$$ab = (a_1, a_2, ..., a_n)(b_1, b_2, ..., b_n)$$

= $(a_1b_1, a_2b_2, ..., a_nb_n)$
= $(b_1a_1, b_2a_2, ..., b_na_n)$
= $(b_1, b_2, ..., b_n)(a_1, a_2, ..., a_n)$
= $ba.$

Therefore, component wise multiplication in \mathbb{R}^n is commutative. Hence, $(\mathbb{R}^n, +, *)$ is a commutative ring.