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Examples

Example 1. (Q,+, ·) = field
(R,+, ·) = field
(C,+, ·) = field
{a+ b

√
2 : a, b ∈ Q} = field

Proof.

Exercise 2. Let S = {a+ b
√

2 : a, b ∈ Z}. Then (S,+, ∗) is not a field.

Proof. Observe that (S,+, ∗) is a commutative ring with unity 1 6= 0. Thus, S
is a field iff every nonzero element of S is a unit. Hence, S is not a field iff there
exists a nonzero element of S that is not a unit.

Let x =
√

2. Then x = 0 + 1 ∗
√

2, so x ∈ S and x 6= 0. The element x is
a unit iff there exists y ∈ S such that xy = 1. Hence, x is not a unit iff there
does not exist y ∈ S such that xy = 1.

Suppose there exists y ∈ S such that xy = 1. Then there exist integers a, b
such that y = a+ b

√
2. Thus,

1 = xy

=
√

2(a+ b
√

2)

= a
√

2 + 2b.

Hence, 1 + 0
√

2 = 1 = 2b + a
√

2, so 1 = 2b and 0 = a. Thus, b = 1
2 , so b 6∈ Z.

But, we have b ∈ Z and b 6∈ Z, a contradiction. Therefore, does not exist y ∈ S
such that xy = 1. Thus, x is not a unit. Hence, there exists a nonzero element
of S that is not a unit. Therefore, S is not a field.

Exercise 3. The algebraic structure (Z × Z,+, ∗) is a commutative ring with
unity (1, 1) and is not a field.

Solution. The direct product of n copies of a commutative ring is a commu-
tative ring. Hence, the direct product of 2 copies of a commutative ring is a
commutative ring. Observe that (Z,+, ∗) is a commutative ring and (Z×Z,+, ∗)



is the direct product of 2 copies of (Z,+, ∗). Therefore, (Z2,+, ∗) is a commu-
tative ring. Observe that the unity of Z2 is (1, 1) and the zero of Z2 is (0, 0)
and (1, 1) 6= (0, 0).

The ring Z2 is a field iff Z2 is a commutative ring and the unity is distinct
from the zero element and every nonzero element of Z2 is a unit. Since Z2 is a
commutative ring with unity (1, 1) 6= (0, 0), then Z2 is a field iff every nonzero
element of Z2 is a unit. Hence, Z2 is not a field iff there exists a nonzero element
of Z2 that is not a unit.

Let x = (1, 2) ∈ Z2. Then (1, 2) 6= (0, 0), so (1, 2) is a nonzero element of
Z2.

Suppose (1, 2) is a unit of Z2. Then there exists an element y ∈ Z2 such that
xy = (1, 1). Since y ∈ Z2, then there exist integers a, b such that y = (a, b).

Observe that

(1, 1) = xy

= (1, 2)(a, b)

= (a, 2b).

Thus, 1 = a and 1 = 2b, so b = 1
2 . Hence, b 6∈ Z. Thus, we have b ∈ Z and

b 6∈ Z, a contradiction. Therefore, (1, 2) is not a unit of Z2.
Hence, there exists a nonzero element of Z2 that is not a unit of Z2. There-

fore, (Z2,+, ∗) is not a field.

Exercise 4. What are all of the units in the ring Z× Z?

Solution. We know that the ring Z × Z is not a field, so not every nonzero
element is a unit. Hence, there are some nonzero elements of Z × Z which do
not have multiplicative inverses in Z× Z.

Let S be the set of all units of Z × Z. Then S = {a ∈ Z × Z : (∃a−1 ∈
Z2)(aa−1 = (1, 1)}. Let x ∈ S. Then x ∈ Z2 and there exists x−1 ∈ Z2 such
that xx−1 = (1, 1). Thus, there exist integers a, b, c, d such that x = (a, b) and
x−1 = (c, d). Hence,

(1, 1) = xx−1

= (a, b)(c, d)

= (ac, bd).

Thus, 1 = ac and 1 = bd. Since a, b, c, d are integers, then this implies either
a = c = 1 or a = c = −1 and either b = d = 1 or b = d = −1. Hence, a = c and
b = d, so x = x−1 and 4 possibilities exist. Thus, x is either (1, 1) or (1,−1) or
(−1, 1) or (−1,−1). Therefore, S = {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

Exercise 5. In any ring R, (a+ b)2 = a2 + 2ab+ b2 iff R is commutative.

Proof. Let R be an arbitrary ring. Let a, b ∈ R.
We prove if (a+ b)2 = a2 + 2ab+ b2, then R is commutative.
Suppose (a+ b)2 = a2 + 2ab+ b2.
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Observe that

(a+ b)2 = (a+ b)(a+ b)

= a(a+ b) + b(a+ b)

= (a2 + ab) + (ba+ b2)

= (a2 + ab) + (b2 + ba)

= ((a2 + ab) + b2) + ba.

Observe that

a2 + 2ab+ b2 = a2 + (ab+ ab) + b2

= (a2 + ab) + (ab+ b2)

= (a2 + ab) + (b2 + ab)

= ((a2 + ab) + b2) + ab.

Thus, ((a2 +ab) + b2) + ba = (a+ b)2 = a2 + 2ab+ b2 = ((a2 +ab) + b2) +ab.
Hence, ((a2 + ab) + b2) + ba = ((a2 + ab) + b2) + ab. By the cancellation law for
addition we obtain ba = ab.

Therefore, ab = ba for all a, b ∈ R, so R is commutative.
We prove if R is commutative, then (a+ b)2 = a2 + 2ab+ b2.
Suppose R is commutative. Then ab = ba.
Observe that

(a+ b)2 = (a+ b)(a+ b)

= (a+ b)a+ (a+ b)b

= (a2 + ba) + (ab+ b2)

= a2 + (ba+ ab) + b2

= a2 + (ab+ ab) + b2

= a2 + 2ab+ b2.

Exercise 6. Let R be a ring such that a2 = a for all a ∈ R. Then R is
commutative and a+ a = 0 for all a ∈ R.

We note that R is a boolean ring.

Proof. We prove (∀a ∈ R)(a+ a = 0).
Let a ∈ R. Then

a+ a = (a+ a)2

= (a+ a)(a+ a)

= (a+ a)a+ (a+ a)a

= (a2 + a2) + (a2 + a2)

= (a+ a) + (a+ a).
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Thus, a + a = (a + a) + (a + a), so (a + a) + 0 = (a + a) + (a + a). By the
cancellation law for addition we obtain 0 = a+ a.

We prove R is commutative.
Let a, b ∈ R. Then

a+ b = (a+ b)2

= (a+ b)(a+ b)

= a(a+ b) + b(a+ b)

= (a2 + ab) + (ba+ b2)

= (a+ ab) + (ba+ b)

= a+ (ab+ ba) + b

= a+ b+ (ab+ ba)

= (a+ b) + (ab+ ba).

Thus, a + b = (a + b) + (ab + ba), so (a + b) + 0 = (a + b) + (ab + ba). By the
cancellation law for addition we obtain 0 = ab+ ba.

Since x + x = 0 for all x ∈ R, then in particular, ab + ab = 0. Thus,
ab+ ab = 0 = ab+ ba. By the cancellation law for addition we obtain ab = ba.
Therefore, ab = ba for all a, b ∈ R, so ∗ is commutative.

Exercise 7. Let R be a commutative ring. For each a ∈ R let Ha = {x ∈ R :
ax = 0}. Then for every x, y ∈ Ha, xy ∈ Ha.

Proof. Let x, y ∈ Ha. Then x, y ∈ R and ax = 0 and ay = 0. Observe that

0 = 0y

= (ax)y

= a(xy).

Since R is closed under multiplication, then xy ∈ R. Thus, xy ∈ R and a(xy) =
0, so xy ∈ Ha.

Exercise 8. Let n ∈ N, n > 1 and xn = x for all x in a ring R. If a, b ∈ R such
that ab = 0, then ba = 0.

Proof. Let a, b ∈ R such that ab = 0. Then

ba = (ba)n

= (ba)(ba)...(ba)(ba)

= b(ab)(ab)...(ab)a

= b ∗ 0 ∗ 0 ∗ ... ∗ 0 ∗ a
= 0.

Hence, ba = 0.
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Integral domains

Exercise 9. Let D be an integral domain. If a2 = e, then a = ±e.

Proof. Let a ∈ D such that a2 = e.
Observe that e2 = e = a2. Thus, e2− a2 = 0, so (e+ a)(e− a) = 0. Since D

is an integral domain, then either e+ a = 0 or e− a = 0. Hence, either a = −e
or a = e, so a = ±e.

Ideals

Exercise 10. The set {[0], [2], [4]} is an ideal of Z6.

Solution. Let R = Z6 and I = {[0], [2], [4]}.
Observe that I is a cyclic subgroup of (Z6,+) and I = {k[2]6 : k ∈ Z} =

[2k]6 : k ∈ Z}.
Let x ∈ I. Then x = [2k] for some k ∈ Z.
Let a ∈ Rx. Then a = [r]6x for some r ∈ Z. Thus, a = [r]([2k]) = [(2k)r] =

[2(kr)]. Since Z is closed under multiplication and k, r ∈ Z, then kr ∈ Z. Hence,
a ∈ I, by definition of I. Thus, a ∈ Rx implies a ∈ I, so Rx ⊂ I.

Let b ∈ xR. Then b = x[r]6 for some r ∈ Z. Thus, b = [2k][r] = [(2k)r] =
[2(kr)]. Since Z is closed under multiplication and k, r ∈ Z, then kr ∈ Z. Hence,
a ∈ I, by definition of I. Thus, a ∈ xR implies a ∈ I, so xR ⊂ I.

Therefore, RI ⊂ I and IR ⊂ I.
Since (I,+) is an abelian subgroup of (R,+) and RI ⊂ I and IR ⊂ I, then

I is an ideal of R. Thus, the set {[0], [2], [4]} is an ideal of Z6.

Exercise 11. If R is a field, then the only ideals of R are the zero ring and R
itself.

Proof. Let R be a field. Let I be an ideal in R. Then either I is the zero ring
or I is not the zero ring.

Suppose I is not the zero ring. Since I is an ideal, then (I,+) is an abelian
subgroup of (R,+). Since I is not the zero group, then I must contain a nonzero
element.

Let a be some nonzero element of I. Then a ∈ I and a 6= 0. Since R is
a field, then every nonzero element of R is a unit of R. Hence, in particular,
a is a unit of R. Therefore, there exists a−1 ∈ R such that aa−1 = e, where
e is the unity of R. Since I is an ideal, then for every x ∈ I, IR ⊂ I. Thus,
aR ⊂ I, where aR = {ar : r ∈ R}. Since a−1 ∈ R, then aa−1 ∈ aR. Hence,
e ∈ aR. Thus, e ∈ aR and aR ⊂ I, so e ∈ I. Therefore, eR ⊂ I, where
eR = {er : r ∈ R} = {r : r ∈ R} = R. Hence, R ⊂ I. Since I is an ideal, then
I ⊂ R. Thus, I ⊂ R and R ⊂ I, so I = R.

Therefore, either I is the zero ring or I is the field R itself.

Exercise 12. Let G be a group such that g2 = e for all g ∈ G. Then G is
abelian.
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Solution. Given (∀g ∈ G)(g2 = e).
To prove G is abelian, we must prove (∀a, b ∈ G)(ab = ba).

Proof. Let a, b ∈ G. Then ab ∈ G. Since g2 = e for all g ∈ G, then a2 = e and
b2 = e and (ab)2 = e.

Observe that (ab)2 = e = e∗e = a2b2. Thus, (ab)(ab) = aabb, so abab = aabb.
We apply the right cancellation law to obtain aba = aab. We apply the left
cancellation law to obtain ba = ab. Hence, ab = ba for all a, b ∈ G, so ∗ is
commutative. Therefore, G is abelian.

Proof. Let a, b ∈ G. Since G is closed under ∗, then ab ∈ G. Since xx = e for
all x ∈ G, then x−1 = x by definition of inverse element. Thus, a−1 = a and
b−1 = b and (ab)−1 = ab.

Observe that ab = (ab)−1 = b−1a−1 = ba. Thus, ab = ba. Since a, b are
arbitrary then ab = ba for all a, b ∈ G. Hence, ∗ is commutative, so (G, ∗) is
abelian.

Exercise 13. Let G be a group. Let g1, g2, ..., gn be elements of G. Then
(g1g2...gn)−1 = g−1

n g−1
n−1...g2g1.

Solution. Let n ∈ Z+. We must prove for all n, (g1g2...gn)−1 = g−1
n g−1

n−1...g2g1.

Thus, we define predicate p(n) : (g1g2...gn)−1 = g−1
n g−1

n−1...g2g1. We prove by
induction on n.

Proof. Let n be a positive integer.
Let p(n) be the predicate (g1g2...gn)−1 = g−1

n g−1
n−1...g2g1 defined over Z+.

We prove (∀n ∈ Z+)(p(n)) by induction on n.
Basis: Since (g1)−1 = g−1

1 , then p(1) is true.
Induction: We must prove (∀m ∈ Z+)(p(m)→ p(m+ 1)).
Suppose m is an arbitrary positive integer such that p(m) is true. Then

(g1g2...gm)−1 = g−1
m g−1

m−1...g2g1.
Observe that

(g1g2...gmgm+1)−1 = [(g1g2...gm)gm+1]−1

= g−1
m+1 ∗ (g1g2...gm)−1

= g−1
m+1 ∗ (g−1

m g−1
m−1...g2g1)

= g−1
m+1g

−1
m g−1

m−1...g2g1.

Thus, p(m+ 1) is true.
Therefore, by induction, (g1g2...gn)−1 = g−1

n g−1
n−1...g2g1 for all positive inte-

gers n.

Exercise 14. Let G = {x ∈ R : x > 1}. Define x ∗ y = xy − x − y + 2 for all
x, y ∈ G. Then (G, ∗) is a group.
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Solution. To prove G is a group, we must prove:
1. ∗ is a binary operation on G.
2. ∗ is associative.
3. There exists an identity element in G.
4. Each element of G has an inverse in G.

Proof. Clearly, G is a nonempty set. To prove ∗ is a binary operation, we must
prove G is closed under ∗.

Let x and y be arbitrary elements of G. Then x and y are real numbers such
that x > 1 and y > 1. To prove G is closed under ∗, we must prove x ∗ y ∈ G.

Note that x∗y = xy−x−y+2 is a real number. Since y > 1, then y−1 > 0.
Observe that

x > 1

x(y − 1) > y − 1

xy − x > y − 1

xy − x− y + 1 > 0

xy − x− y + 2 > 1

x ∗ y > 1.

Hence, x ∗ y ∈ G, as desired.
To prove ∗ is associative, let x, y, z ∈ G. We must prove x∗(y∗z) = (x∗y)∗z.
Observe that

(x ∗ y) ∗ z = (xy − x− y + 2) ∗ z
= (xy − x− y + 2)z − (xy − x− y + 2)− z + 2

= xyz − xz − yz + 2z − xy + x+ y − 2− z + 2

= xyz − xz − yz + z − xy + x+ y

= xyz − xy − xz + x− yz + y + z

= xyz − xy − xz + 2x− x− yz + y + z − 2 + 2

= x(yz − y − z + 2)− x− (yz − y − z + 2) + 2

= x(y ∗ z)− x− (y ∗ z) + 2

= x ∗ (y ∗ z).

Hence, ∗ is associative.
We prove 2 is the identity of G. Observe that 2 ∈ G. Let a be an arbitrary

element of G. Then a∗2 = a(2)−a−2+2 = 2a−a = a and 2∗a = 2a−2−a+2 =
a. Hence, 2 is an identity of G.

We prove each element of G has an inverse. Let a ∈ G. Then a ∈ R and
a > 1. Let b = a

a−1 . Since a − 1 > 0, then a − 1 6= 0. Hence, b ∈ R. Since
0 > −1, then a > a − 1. Since a − 1 > 0, we divide by a − 1 to get a

a−1 > 1.
Thus, b > 1, so b ∈ G.
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Observe that

a ∗ b = ab− a− b+ 2

= (a− 1)b− a+ 2

= (a− 1)
a

a− 1
− a+ 2

= a− a+ 2

= 2

and

a ∗ b = ab− a− b+ 2

= ba− b− a+ 2

= b ∗ a.

Therefore, a ∗ b = b ∗ a = 2, so b is an inverse of a. Hence, each element of G
has an inverse in G.

Therefore, (G, ∗) is a group.

Exercise 15. Let (Z∗
n, ∗) be the group of units of Zn. If n ≥ 3, then there is

an element [a] ∈ Z∗
n such that [a]2 = [1] and [a] 6= [1].

Solution. Let n ∈ N.
The statement to prove is P : if n ≥ 3, then (∃[a] ∈ Z∗

n)([a]2 = [1]∧[a] 6= [a]).
We try different values of n, like n = 1, 2, 3, 4, 5, 6, .... We find that when

n < 3, then [1]2 = [1], but [1] = [1]. Now, when n ≥ 3, we find that [n− 1]2 =
[1].

Proof. Let n be a positive integer. Suppose n ≥ 3. Since n ∈ Z, then n−1 ∈ Z,
so [n − 1] ∈ Zn. Since n|n, then n|(n − 1 + 1), so n|(n − 1) − (−1). Hence,
n− 1 ≡ −1 (mod n), so [n− 1] = [−1]. Observe that [n− 1]2 = [n− 1][n− 1] =
[−1][−1] = [(−1)(−1)] = [1]. Since [n − 1] ∈ Zn and [n − 1][n − 1] = [1], then
[n− 1] ∈ Z∗

n.
Since n ≥ 3, then n − 2 ≥ 1. Since n ≥ 3 and n − 2 ≥ 1, then n > 0 and

n−2 > 0. Hence, n and n−2 are positive integers and n > n−2. Since n|n−2
implies n ≤ n− 2, then n > n− 2 implies n 6 |n− 2. Thus, since n > n− 2, then
n 6 |n− 2. Therefore, n 6 |(n− 1)− 1, so n− 1 6≡ 1 (mod n). Thus, [n− 1] 6= [1].

Let a = n− 1. Then [a] = [n− 1]. Since [n− 1] ∈ Z∗
n and [n− 1]2 = [1] and

[n− 1] 6= [1], then there exists [a] ∈ Z∗
n such that [a]2 = [1] and [a] 6= [1].

Exercise 16. Let a, b be any elements of a group (G, ∗). Then (aba−1)n =
abna−1, for any positive integer n.

Solution. We translate this into logical symbols.
Let the open sentence be S(a, b, n) : (aba−1)n = abna−1.
This assertion in logical symbols is:

∀(a, b ∈ G)∀(n ∈ Z+)S(a, b, n).
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Let a, b ∈ G. We must prove: ∀(n ∈ Z+)S(a, b, n).
This universally quantified statement can be proven using mathematical in-

duction.

Proof. We prove using induction.
Basis: For n = 1, the statement (aba−1)1 = aba−1 = ab1a−1 is true.
Induction: We must prove Sk → Sk+1 for any k ≥ 1. That is we must

show that if (aba−1)k = abka−1, then (aba−1)k+1 = abk+1a−1. We use direct
proof. Suppose (aba−1)k = abka−1. Observe that:

(aba−1)k+1 = (aba−1)k(aba−1)

= (abka−1)(aba−1) ( induction hypothesis)

= (abk)[a−1(aba−1)] ( * is associative in a group)

= (abk)[(a−1a)(ba−1)] ( * is associative in a group)

= (abk)[e(ba−1)] ( defn of inverse element)

= (abk)(ba−1) ( defn of identity element)

= a(bkb)a−1 ( * is associative in a group)

= abk+1a−1

Thus we have shown (aba−1)k+1 = abk+1a−1. This completes the proof that
Sk → Sk+1 for k ≥ 1. It follows by induction that (aba−1)n = abna−1 for all
n ∈ Z+.

Since a, b are arbitrary then the statement (aba−1)n = abna−1 for all n ∈ Z+

is true for all a, b ∈ G.

Exercise 17. Let (G, ∗) be a group. Define a relation ∼ on G for all x, y ∈ G
by x ∼ y iff there exists some a ∈ G such that y = axa−1. Then ∼ is an
equivalence relation on G.

Solution. We must prove ∼ is reflexive, symmetric, and transitive.
Thus, we must prove:
1. reflexive: (∀x ∈ G)(x ∼ x).
2. symmetric: (∀x, y ∈ G)(x ∼ y → y ∼ x).
3. transitive: (∀x, y, z ∈ G)(x ∼ y ∧ y ∼ z → x ∼ z).

Proof. Let x be an arbitrary element of G. To prove ∼ is reflexive, we must find
some a ∈ G such that x = axa−1. Let a = e, where e is the identity element in
G. Then axa−1 = exe−1 = xe−1 = xe = x. Hence, ∼ is reflexive.

Let x and y be arbitrary elements of G such that x ∼ y. Then there exists
some a ∈ G such that y = axa−1. Hence, ya = ax. To prove y ∼ x, we must
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find some b ∈ G such that x = byb−1. Let b = a−1. Observe that

byb−1 = a−1y(a−1)−1

= a−1ya

= a−1(ya)

= a−1(ax)

= (a−1a)x

= ex

= x.

Therefore, ∼ is symmetric.
Let x, y, and z be arbitrary elements of G such that x ∼ y and y ∼ z. Then

there exist elements a and b in G such that y = axa−1 and z = byb−1. To prove
x ∼ z, we must find some c ∈ G such that z = cxc−1. Let c = ba. Observe that

cxc−1 = (ba)x(ba)−1

= (ba)x(a−1b−1)

= b(axa−1)b−1

= byb−1

= z.

Therefore, ∼ is transitive.
Since ∼ is reflexive, symmetric, and transitive, then ∼ is an equivalence

relation on G.

Exercise 18. Let (G, ∗) be a group. Let a, b ∈ G. If (ab)2 = a2b2, then ba = ab.

Solution. We must prove if (ab)2 = a2b2, then ba = ab.

Proof. Let a and b be arbitrary elements of group G such that (ab)2 = a2b2.
We must prove ba = ab.

Observe that aabb = a2b2 = (ab)2 = (ab)(ab) = abab. Hence, aabb = abab.
By the left cancellation law, we have abb = bab. By the right cancellation law,
we have ab = ba, as desired.

Exercise 19. Let 〈G, ∗〉 be an abelian group. Let H = {a ∈ G : a2 = e}. Then
H is a subgroup of G.

Solution. We must prove H is a subgroup of G. Thus we must prove:
1. H ⊆ G.
2. H is closed under ∗.
3. e ∈ H.
4. ∀a ∈ H.a−1 ∈ H.
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Proof. Let e ∈ G be the identity of group G.
Let x ∈ H. Then by definition of H, x ∈ G. Hence, x ∈ H implies x ∈ G,

so H ⊆ G.
Let x, y ∈ H. Then x, y ∈ G and x2 = e and y2 = e. Since G is closed

under ∗, then xy ∈ G. Since G is abelian we know (xy)k = xkyk for any k ∈ Z.
Observe that (xy)2 = x2y2 = ee = e. Since xy ∈ G and (xy)2 = e, then xy ∈ H.
Therefore, H is closed under ∗.

Since e ∈ G and e2 = ee = e, then by definition of H, e ∈ H.
Let x ∈ H. Then x ∈ G and x2 = e. Since G is a group then x−1 ∈ G.

Observe that (x−1)2 = (x2)−1 = e−1 = e. Since x−1 ∈ G and (x−1)2 = e, then
x−1 ∈ H. Therefore, for each x ∈ H,x−1 ∈ H.

Thus, H is a subgroup of G.

Exercise 20. Let (G, ∗) be a group. Let a, b ∈ G. Then (aba−1)n = abna−1

for every positive integer n.

Solution. Let p(n) : (aba−1)n = abna−1.
We must prove (∀n ∈ Z+)(p(n)).
Thus, we prove by induction on n.

Proof. Let a and b be arbitrary elements of group G.
Let p(n) : (aba−1)n = abna−1.
We prove (∀n ∈ Z+)(p(n)) by induction.
Basis:
Observe that (aba−1)1 = aba−1 = ab1a−1, so p(1) is true.
Induction:
Suppose m is an arbitrary positive integer such that p(m) is true.
To prove p(m+ 1) is true, we must prove (aba−1)m+1 = abm+1a−1.
Since p(m) is true, then (aba−1)m = abma−1.
Observe that

(aba−1)m+1 = (aba−1)m(aba−1)

= (abma−1)(aba−1)

= (abm)(a−1a)(ba−1)

= (abm)(ba−1)

= abm+1a−1.

Hence, by induction, (aba−1)n = abna−1 for all positive integers n.

Proposition 21. Let 〈G, ∗〉 be a group. Let g ∈ G be a fixed element. Then the
map ig : G 7→ G defined by ig(x) = g ∗ x ∗ g−1 for all x ∈ G is an isomorphism
of G with itself.

Solution. We must prove ig is an isomorphism of G with G. Thus we must
prove:

1) ig is one to one. To prove this we must show: ∀a, b ∈ G.ig(a) = ig(b) →
a = b.
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2) ig is onto. To prove this we must show: ∀b ∈ G.∃a ∈ G.ig(a) = b.
3) (∀a, b ∈ G)(ig(a ∗ b) = ig(a) ∗ ig(b)).

Proof. Since g ∈ G and G is a group, then g−1 ∈ G.
Let a, b ∈ G. Since G is closed under ∗ then gag−1 ∈ G and gbg−1 ∈ G.
Suppose ig(a) = ig(b). Then gag−1 = gbg−1. By left cancellation law of

G, ag−1 = bg−1. By right cancellation law of G, a = b. Hence, ig(a) = ig(b)
implies a = b. Since a, b are arbitrary then ig(a) = ig(b) implies a = b is true
for all a, b ∈ G. Therefore, ig is one to one, by definition of injective function.

Suppose b ∈ G. Since g ∈ G by definition of group g−1 ∈ G. Set a = g−1bg.
Since G is closed under ∗, then a ∈ G.

Observe that

ig(a) = ig(g−1bg)

= g(g−1bg)g−1

= (gg−1)b(gg−1)

= ebe

= b

Thus, there exists a ∈ G such that ig(a) = b. Since b is arbitrary then there
exists a ∈ G such that ig(a) = b for all b ∈ G. Therefore, by definition of
surjective function, ig is onto.

Since ig is one to one and onto, then ig is a bijective map.
Let a, b ∈ G. Observe that

ig(a) ∗ ig(b) = (g ∗ a ∗ g−1) ∗ (g ∗ b ∗ g−1)

= (g ∗ a) ∗ (g−1 ∗ g) ∗ (b ∗ g−1)

= (g ∗ a) ∗ e ∗ (b ∗ g−1)

= (g ∗ a) ∗ (b ∗ g−1)

= g ∗ (a ∗ b) ∗ g−1

= ig(a ∗ b)

Thus, ig(a) ∗ ig(b) = ig(a ∗ b). Since a, b are arbitrary then ig(a) ∗ ig(b) =
ig(a ∗ b) for all a, b ∈ G. Therefore, by definition of isomorphism, ig : G 7→ G is
an isomorphism.

Proposition 22. Let 〈G, ·〉 be a group. If 〈H, ·〉 is a subgroup of 〈K, ·〉 and
〈K, ·〉 is a subgroup of 〈G, ·〉, then 〈H, ·〉 is a subgroup of 〈G, ·〉.

Solution. Our hypothesis is: 〈G, ·〉 is a group and 〈H, ·〉 ≤ 〈K, ·〉 and 〈K, ·〉 ≤
〈G, ·〉.

Our conclusion is: 〈H, ·〉 ≤ 〈G, ·〉.
To prove this claim, we can use the definition of subgroup.
Thus we must prove:
1. H ⊆ G.
2. 〈H, ·〉 is a group.

12



Proof. Suppose 〈G, ·〉 is a group and 〈H, ·〉 ≤ 〈K, ·〉 and 〈K, ·〉 ≤ 〈G, ·〉. Since
〈H, ·〉 is a subgroup of 〈K, ·〉, then H ⊆ K. Since 〈K, ·〉 is a subgroup of 〈G, ·〉,
then K ⊆ G. Thus, by the transitive property of the subset relation, H ⊆ G.

Since 〈H, ·〉 is a subgroup of 〈K, ·〉, then 〈H, ·〉 is a group under the binary
operation · induced by 〈K, ·〉.

Since 〈K, ·〉 is a subgroup of 〈G, ·〉, then 〈K, ·〉 is a group under the binary
operation · induced by 〈G, ·〉.

Hence, 〈H, ·〉 is a group under the binary operation · induced by 〈G, ·〉.
Therefore, 〈H, ·〉 is a subgroup of 〈G, ·〉.

Proposition 23. Let G be a group and a be one fixed element of G. Then
Ha = {x ∈ G : xa = ax} is a subgroup of G.

Solution. Our hypothesis is: 〈G, ∗〉 is a group and a ∈ G is fixed.
Our conclusion is: Ha ≤ G.
We translate into logical symbols.
Let H : 〈G, ∗〉 is a group with a ∈ G fixed.
Let C : Ha ≤ G.
We must prove: H → C.
Thus we must prove:
1. Ha is closed under ∗.
2. e ∈ Ha.
3. ∀a ∈ Ha.a

−1 ∈ Ha.

Proof. Let 〈G, ∗〉 be a group with a ∈ G fixed. Let Ha = {x ∈ G : xa = ax}.
Let e ∈ G be the identity of G.

Let g, h ∈ Ha. Then g, h ∈ G and ga = ag and ha = ah. Since G is group,
then G is closed under ∗, so gh ∈ G. Observe that

(gh)a = g(ha)

= g(ah)

= (ga)h

= (ag)h

= a(gh)

Thus, (gh)a = a(gh), so gh ∈ Ha. Since g, h are arbitrary then gh ∈ Ha for all
g, h ∈ Ha. Therefore, Ha is closed under ∗.

By definition of identity element, ea = ae = a. Thus, by definition of Ha,
e ∈ Ha.

Let h ∈ Ha. Then by definition of Ha, h ∈ G and ha = ah. Since G is a
group, by definition of group, h−1 ∈ G. Observe that

h−1(ha)h−1 = h−1(ah)h−1

(h−1h)(ah−1) = (h−1a)(hh−1)

e(ah−1) = (h−1a)e

ah−1 = h−1a
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Hence, h−1a = ah−1, so h−1 ∈ Ha by definition of Ha. Since h is arbitrary then
h−1 ∈ Ha for all h ∈ Ha.

Therefore, 〈Ha, ∗〉 is a subgroup of 〈G, ∗〉.

Proposition 24. If H and K are subgroups of abelian group G, then {hk : h ∈
H, k ∈ K} is a subgroup of G.

Solution. Let M = {hk : h ∈ H, k ∈ K}.
The hypothesis is:
G is an abelian group and H is a subgroup of G and K is a subgroup of G.
The conclusion is: 〈M, ∗〉 is a subgroup of 〈G, ∗〉.
We translate into logical symbols:
Let H1 : 〈G, ∗〉 is an abelian group.
Let H2 : 〈H, ∗〉 ≤ 〈G, ∗〉.
Let H3 : 〈K, ∗〉 ≤ 〈G, ∗〉.
Let C : 〈M, ∗〉 ≤ 〈G, ∗〉.
The statement is: H1 ∧H2 ∧H3 → C.
We use direct proof. Thus we assume H1∧H2∧H3 and show that C is true.
To prove C we must prove:
1. M ⊆ G.
2. M is closed under ∗.
3. e ∈M .
4. ∀a ∈M.a−1 ∈M .

Proof. Suppose 〈G, ∗〉 is an abelian group and 〈H, ∗〉 ≤ 〈G, ∗〉 and 〈K, ∗〉 ≤
〈G, ∗〉.

Let M = {hk : h ∈ H, k ∈ K}.
Let a ∈M . Then a = hk and h ∈ H and k ∈ K. Since 〈H, ∗〉 is a subgroup

of 〈G, ∗〉, then H ⊆ G. Since 〈K, ∗〉 is a subgroup of 〈G, ∗〉, then K ⊆ G. Since
h ∈ H and H ⊆ G, then h ∈ G. Since k ∈ K and K ⊆ G, then k ∈ G. Since
〈G, ∗〉 is a group then 〈G, ∗〉 is closed under ∗. Thus, hk ∈ G, so a ∈ G. Hence,
a ∈ M implies a ∈ G. Since a is arbitrary then a ∈ M implies a ∈ G for all
a ∈M . Therefore, M ⊆ G.

Let a, b ∈ M . Then a = h1k1 and b = h2k2 and h1, h2 ∈ H and k1, k2 ∈ K.
Observe that ab = (h1k1)(h2k2) = h1(k1h2)k2 = h1(h2k1)k2 = (h1h2)(k1k2).
Since H and K are groups, then H and K are each closed under ∗. Thus,
h1h2 ∈ H and k1k2 ∈ K. Hence, (h1h2)(k1k2) ∈ M , by definition of M .
Therefore, ab ∈M . Since a, b are arbitrary then ab ∈M for all a, b ∈M . Thus,
M is closed under ∗.

Let e ∈ G be the identity of G. Since H and K are subgroups of G, then
e ∈ H and e ∈ K. Hence, e ∗ e ∈ M , by definition of M . Since e ∗ e = e, then
e ∈M .

Let a ∈ M . Then a = hk and h ∈ H and k ∈ K, by definition of M . Since
a ∈ M and M ⊆ G, then a ∈ G. Since G is a group then a−1 ∈ G. Observe
that a−1 = (hk)−1 = k−1h−1 = h−1k−1. Since h ∈ H and H is a group then
h−1 ∈ H. Since k ∈ K and K is a group then k−1 ∈ K. Thus, h−1k−1 ∈ M ,
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by definition of M . Hence, a−1 ∈M . Since a is arbitrary then a−1 ∈M for all
a ∈M .

Therefore, 〈M, ∗〉 is a subgroup of 〈G, ∗〉.

Proposition 25. Let 〈G, ∗〉 be an abelian group. Let H = {a ∈ G : an = e, n ∈
Z+}. Then H is a subgroup of G.

Solution. Our hypothesis is: 〈G, ∗〉 is an abelian group.
Our conclusion is: H is a subgroup of G.
We must prove: H is a subgroup of G.
To prove this we must show:
1. H ⊆ G.
2. H is closed under ∗.
3. e ∈ H.
4. ∀x ∈ H.x−1 ∈ H.
Note that H is simply a collection of all elements of G which have finite

order. Thus, we’re proving the set of all elements of an abelian group G which
have finite order is a subgroup of G.

Proof. Let e ∈ G be the identity of group G.
Observe that H ⊆ G.
Let x, y ∈ H. Then x, y ∈ G and xm = e and yn = e for some m,n ∈ Z+.

Since x, y ∈ G and G is closed under ∗, then xy ∈ G. Since G is an abelian
group we know (xy)k = xkyk for any k ∈ Z. Observe that (xy)mn = xmnymn =
(xm)nymn = enymn = eymn = ymn = ynm = (yn)m = em = e. Since xy ∈ G
and (xy)mn = e and mn ∈ Z+, then xy ∈ H. Since x, y are arbitrary then
xy ∈ H for all x, y ∈ H. Therefore, H is closed under ∗.

Since e ∈ G and e1 = e, then e ∈ H.
Let x ∈ H. Then x ∈ G and xk = e for some k ∈ Z+. Since G is a group

and x ∈ G, then x−1 ∈ G. Observe that (x−1)k = (xk)−1 = e−1 = e. Since
x−1 ∈ G and (x−1)k = e, then x−1 ∈ H. Hence, for each x ∈ H, x−1 ∈ H.

Therefore, H is a subgroup of G.

Exercise 26. 1 is a generator of 〈Zn,+〉.

Solution. Observe that Zn = {0, 1, 2, ..., n− 1}. We know that a = a · 1 for all
a ∈ Z. Hence, 0 = 0 · 1, 1 = 1 · 1, 2 = 2 · 1, ...n − 1 = (n − 1) · 1. Thus, each
element of Zn is some integral multiple of 1 ∈ Zn. Therefore, by definition of
generator, 1 is a generator of Zn. Consequently, Zn = 〈1〉 = {n · 1 : n ∈ Z}.
Hence, 〈Zn,+〉 is cyclic.

Exercise 27. 〈Q∗, ·〉 is not a cyclic group.

Solution. We must disprove that Q∗ is cyclic. By definition of cyclic group Q∗

is cyclic iff ∃g ∈ Q∗ such that Q∗ = {gn : n ∈ Z}. We know Q∗ = {ab : a, b ∈
Z∗}.

15



Proof. We use proof by contradiction. Suppose ∃g ∈ Q∗ such that Q∗ = {gn :
n ∈ Z}. Then g = p

q and p, q ∈ Z∗. Let n ∈ Z. Either |(p
q )n| < 1 or |(p

q )n| ≥ 1.
There are two cases to consider.

Case 1: Suppose |(p
q )n| < 1.

Then no rational number greater than or equal to one can be represented by
any power of g. For example, 2 cannot be represented by any power of g.

Case 2: Suppose |(p
q )n| ≥ 1.

Then no positive rational number less than one can be represented by any
power of g. For example, 1

2 cannot be represented by any power of g.
Hence, in either case at least one nonzero rational number cannot be ex-

pressed as a power of g. Therefore, g ∈ Q∗ cannot be a generator of Q∗. Thus,
there is no generator in Q∗ that can generate all of Q∗. Hence, 〈Q∗, ·〉 is not
cyclic.

Exercise 28. A cyclic group with only one generator can have at most 2 ele-
ments.

Solution. The statement means: Let 〈G, ∗〉 be a cyclic group. If G has exactly
one generator then G has at most 2 elements.

Let P1 : 〈G, ∗〉 is a cyclic group.
Let P2 : G has exactly one generator.
Let P3 : |G| ≤ 2.
The statement to prove is: P1 → (P2 → P3).
We use direct proof. Thus we assume P1.
We must prove: P2 → P3.
We can use direct proof by assuming P2 and proving P3 or use proof by

contrapositive and prove ¬P3 → ¬P2.

Proof. Let 〈G, ∗〉 be a cyclic group. Suppose G has exactly one generator. Let
g ∈ G be the unique generator of G. Since G is cyclic, by definition of cyclic
group, G = 〈g〉.

Since G is a group, then the identity element exists. Let e ∈ G be the
identity element.

Thus, g ∈ G and e ∈ G. Either g = e or g 6= e.
We consider these cases separately.
There are two cases to consider.

Case 1: Suppose g = e.
Then G = 〈g〉 = 〈e〉. Thus G is the trivial group, so |G| = 1.
Case 2: Suppose g 6= e.
Since G is a group, by definition of group, g−1 ∈ G. Either g−1 = g or g−1 6= g.

There are two cases to consider.
Case 2a: Suppose g−1 = g.
Then by definition of inverse element, e = gg−1 = gg = g2. Thus g3 = g2g =
eg = g. Thus g4 = g3g = gg = e. Thus g5 = g4g = eg = g. Thus g6 = g5g =
gg = e, and so on.

Thus g−2 = g−1g−1 = gg = e. Thus g−3 = g−2g−1 = eg = g. Thus
g−4 = g−3g−1 = gg = e, and so on.

16



Hence, if n is even then gn = e and if n is odd then gn = g. Technically we
should use induction to prove that gn = e if n is even and gn = g if n is odd.
Thus, 〈g〉 contains only two elements, g and e, so |G| = |〈g〉| = 2.
Case 2b: Suppose g−1 6= g.
Then g−1 6= e and g−1 6= g. Hence, g−1 is some other element in G. Thus, e, g,
and g−1 are distinct elements of G.

Hence G contains 3 elements, so |G| > 2.
Let h ∈ G such that h = g−1. Then gh = hg = e and h 6= e and h 6= g.
Thus, G = {e, g, h}.
We must determine g2.
If g2 = e, then gg = e so g−1 = g. Thus, g−1 = g and g−1 6= g, a

contradiction. Hence g2 6= e.
If g2 = g, then gg = g. Since eg = g = gg, then by right cancellation law,

e = g. Thus, g = e and g 6= e, a contradiction. Hence, g2 6= g.
Thus, g2 6= e and g2 6= g, so g2 = h.
We must determine h2.
If h2 = h, then hh = h. Since eh = h, then hh = eh. Thus by right

cancellation law, h = e. Since h = g−1, then g−1 = e. Hence, g−1 = e and
g−1 6= e, a contradiction. Therefore, h2 6= h.

If h2 = e, then hh = e. Since h and g are inverses, then hg = e. Thus,
hh = hg. By left cancellation law, h = g, so g−1 = g. Hence, g−1 = g and
g−1 6= g, a contradiction. Therefore, h2 6= e.

Thus, h2 6= h and h2 6= e, so h2 = g.
Observe that h1 = h, h2 = g, h3 = h2h = gh = e, h4 = h3h = eh = h, h5 =

hh = g, h6 = gh = e, h7 = eh = h, ... and so on. Also, h0 = e and h−1 =
g, h−2 = gg = h, h−3 = hg = e, h−4 = hh = g, h−5 = gg = h, h−6 = hg = e, ...
and so on.

Thus, 〈h〉 = {hn : n ∈ Z} = G, so h is a generator of G. Similarly,
〈g〉 = {gn : n ∈ Z} = G, so g is a generator of G.

Hence, if |G| > 2, then G does not have a unique generator.

Proposition 29. Let a, b ∈ Z+. The set of all linear combinations of a and b
under addition is a cyclic group.

Solution. Let a, b ∈ Z+. Let S = {ma+nb : m,n ∈ Z}. We must prove 〈S,+〉
is a group.

We know that S ⊆ Z since ma+ nb ∈ Z. We know that 〈Z,+〉 is a group.
Thus we can prove S is a subgroup of Z by proving:
1. S ⊆ Z
2. S is closed under +.
3. 0 ∈ S.
4. each s ∈ S has an inverse s−1 ∈ S.
To prove 2) we must prove:
2a. ∀r, s ∈ S.r + s ∈ S.
To prove 4 we must prove:
4a. ∀s ∈ S.− s ∈ S.
We further prove S is cyclic.
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Proof. Let a, b ∈ Z+. Let S = {ma+ nb : m,n ∈ Z}.
Suppose s ∈ S. Then s = ma + nb and m,n ∈ Z. Since a, b ∈ Z+ and

Z+ ⊂ Z then a, b ∈ Z. Since a, b,m, n ∈ Z and Z is closed under addition and
multiplication, then ma + nb ∈ Z. Hence, s ∈ Z. Thus, s ∈ S implies s ∈ Z.
Since s is arbitrary then s ∈ S implies s ∈ Z for all s ∈ S. Therefore, by
definition of subset, S ⊆ Z.

Suppose r, s ∈ S. Then r = m1a+n1b and s = m2a+n2b andm1,m2, n1, n2 ∈
Z. Since m,m2, n1, n2, a, b ∈ Z and 〈Z,+, ·〉 is a ring then r + s = (m1a +
n1b) + (m2a+ n2b) = m1a+ (n1b+m2a) + n2b = m1a+ (m2a+ n1b) + n2b =
(m1a+m2a) + (n1b+ n2b) = (m1 +m2)a+ (n1 + n2)b. Set m3 = m1 +m2 and
n3 = n1 + n2. Since Z is closed under addition then m3, n3 ∈ Z. By definition
of S, m3a + n3b ∈ S. Since r + s = m3a + n3b then r + s ∈ S. Since r, s are
arbitrary then r + s ∈ S for all r, s ∈ S. Hence, S is closed under +.

We know 0 ∈ Z is the additive identity of group 〈Z,+〉. Since 0 = 0(a+ b) =
0a+ 0b, then 0 ∈ S, by definition of S.

Suppose s ∈ S. Then s = ma + nb and m,n ∈ Z. Since S ⊆ Z then s ∈ Z.
Since 〈Z,+〉 is a group we know the additive inverse of s is −s ∈ Z. Set t = −s.
Then t ∈ Z and t = −(ma + nb) = −ma − nb = (−m)a + (−n)b. Since 〈Z,+〉
is a group and m,n ∈ Z, then by definition of group, −m,−n ∈ Z. Hence, by
definition of S, (−m)a+(−n)b ∈ S. Thus, t ∈ S, so −s ∈ S. Since s is arbitrary
then −s ∈ S for all s ∈ S. Therefore, each element of S has an additive inverse
in S.

Therefore 〈S,+〉 is a subgroup of 〈Z,+〉.
Every subgroup of a cyclic group is cyclic. Since 〈Z,+〉 is a cyclic group and

〈S,+〉 is a subgroup of 〈Z,+〉, then 〈S,+〉 is cyclic.
Every cyclic group is abelian and 〈S,+〉 is cyclic. Therefore, 〈S,+〉 is abelian.

Proof. Let a, b ∈ Z+. Let S = {ma + nb : m,n ∈ Z}. Since 〈S,+〉 is a cyclic
group we show that gcd(a, b) is a generator of S.

Let d = gcd(a, b). We prove d ∈ S and S = 〈d〉 = {td : t ∈ Z}.
Since d = gcd(a, b) then we know d is the least positive linear combination

of a and b. Thus, d = k1a+ k2b for some k1, k2 ∈ Z and d ∈ Z+. By definition
of S, d ∈ S.

We prove S ⊆ 〈d〉. Let x ∈ S. Then x = ma + nb and m,n ∈ Z. Since
d = gcd(a, b) then d|a and d|b, by definition of gcd. Hence, by definition of
divisibility, a = dq1 and b = dq2 for some q1, q2 ∈ Z. Observe that x = m(dq1)+
n(dq2) = (md)q1+(nd)q2 = (dm)q1+(dn)q2 = d(mq1)+d(nq2) = d(mq1+nq2).
Set s = mq1 + nq2. Then x = ds = sd. Since m,n, q1, q2 ∈ Z and Z is closed
under + and · then s ∈ Z. Since x = sd and s ∈ Z then x ∈ 〈d〉, by definition of
〈d〉. Thus x ∈ S implies x ∈ 〈d〉. Since x is arbitrary then x ∈ S implies x ∈ 〈d〉
for all x ∈ S. Hence, S ⊆ 〈d〉.

We prove 〈d〉 ⊆ S. Let y ∈ 〈d〉. Then y = td and t ∈ Z. Observe that
y = t(k1a+ k2b) = tk1a+ tk2b = (tk1)a+ (tk2)b. Since tk1, tk2 ∈ Z then y ∈ S,
by definition of S. Thus y ∈ 〈d〉 implies y ∈ S. Since y is arbitrary then y ∈ 〈d〉
implies y ∈ S for all y ∈ 〈d〉. Hence, 〈d〉 ⊆ S.
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Since S ⊆ 〈d〉 and 〈d〉 ⊆ S then S = 〈d〉. Since d ∈ S and S = 〈d〉 = {td :
t ∈ Z}, then d is a generator of S.

Proposition 30. Let 〈G, ∗, ·〉 be a group. Let a ∈ G. If order(a) = n, then
order(a−1) = n.

Proof. Suppose order(a) = n. Then an = e and n ∈ Z+ by definition of finite
order of an element. We know order (a−1) = n if gcd(−1, n) = 1. The only
positive divisor of −1 is 1 since −1 = 1 ∗ (−1). The set of divisors of n includes
1. Hence the set of common divisors of −1 and n is {1}. Therefore, the greatest
common divisor of −1 and n is 1. Hence, gcd(−1, n) = 1. Thus, order(a−1) =
n.

Proposition 31. A cycle of length k in Sn has order k for all integers n > 1.

Solution. We could use induction, but the proof leads nowhere, so we need
to try another approach. Try using the definition of order of an element of a
group.

Let Sn be the symmetric group and let σ ∈ Sn be a cycle of length k. The
longest cycle occurs when k = n and the shortest cycle length is k = 2. Hence,
2 ≤ k ≤ n.

To prove k is the order of σ, we must prove:
1. k satisfies σx = e where x ∈ Z+.
2. ¬(∃m ∈ Z+)(m < k ∧ σm = e).

Proof. Let n be an arbitrary integer greater than 1. Let σ be an arbitrary
permutation of Sn. Let k be a positive integer. Suppose σ is a cycle of length
k. Since the shortest cycle length is 2 and the longest cycle length in Sn is n,
then 2 ≤ k ≤ n.

We must prove k is the order of σ. Since σ is a cycle, then σ = (1, 2, ..., k).
Consider σk. In σk, each number i in σ is mapped k times repeatedly so that i
maps back to itself. Hence, σk(i) = i for each i ∈ {1, 2, ..., k} so σk = id, where
id is the identity permutation of Sn.

Suppose there is some positive integer m less than k such that σm = id.
Then σm(1) = 1.

But m < k, so σm maps 1 to some element other than 1 because 1 never
fully travels the entire cycle back to 1. Hence, σm(1) 6= 1. Thus, we have a
contradiction that σm maps 1 to both 1 and to a number not equal to one.
Therefore, there is no positive integer m < k such that σm = id.

Proposition 32. If n > 2, then Sn is nonabelian.

Solution. We try various approaches and examples. If n = 1, then S1 is
isomorphic to the trivial group which is known to be abelian. If n = 2, then S2

is isomorphic to (Z2,+) which is a cyclic group and is therefore abelian. Hence,
S2 must be abelian. We know S3 is nonabelian.

We must prove (∀n > 2)(Sn is nonabelian). We could try proof by induction,
but that leads into difficulties.
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Proof. Let n be an arbitrary integer greater than 2. Suppose Sn is abelian.
Then στ = τσ for every pair of permutations σ, τ ∈ Sn.

Since n > 2, then each permutation in Sn contains the transpositions (1, 2)
and (1, 3). These transpositions may be regarded as elements of Sn since they
each hold fixed any element in Sn that is greater than 3.

So, let σ = (1, 2) and τ = (1, 3). Then στ = (1, 2)(1, 3) = (1, 3, 2) 6=
(1, 2, 3) = (1, 3)(1, 2) = τσ.

Therefore, there exist a pair of elements in Sn that do not commute. Hence,
Sn is not abelian.

Exercise 33. If G is a finite group with an element g of order 5 and an element
h of order 7, then |G| ≥ 35.

Solution. The hypothesis is:
G is a finite group.
g, h ∈ G such that |g| = 5 and |h| = 7.
We must prove |G| ≥ 35.

Proof. Since G is a finite group, then the order of G is some positive integer,
say n. We must prove n ≥ 35.

Every element of a finite group has finite order. Moreover, the order of an
element of a finite group divides the order of the group. Hence, |g| divides n and
|h| divides n. Thus, 5|n and 7|n, so n is a multiple of 5 and 7. Therefore, n is
a multiple of 35. The least positive multiple of 35 is the least common multiple
of 35, namely 35. Therefore, n ≥ 35.

Proposition 34. Let H be a subgroup of G such that [G : H] = 2. If a and b
are not in H, then ab ∈ H.

Solution. We must prove (∀a, b ∈ G)(a 6∈ H ∧ b 6∈ H → ab ∈ H).

Proof. Let a, b ∈ G such that a 6∈ H and b 6∈ H. Since [G : H] = 2, then there
are two distinct left cosets of H in G. Since e ∈ G, then eH = H. Thus, one of
the left cosets is H. Since a ∈ aH and a 6∈ H, then aH 6= H. Since aH is a left
coset and aH 6= H and there are exactly two left cosets of H in G, then aH is
the other left coset.

Let LH be the collection of all left cosets of H in G. Then LH is a partition
of G and LH = {H, aH}. Every element of G exists in exactly one left coset of
H in G. Hence, every element of G is in either H or in aH. Since a, b ∈ G and
G is a group, then ab ∈ G.

Suppose ab 6∈ H. Then ab ∈ aH. Thus, there exists h ∈ H such that
ab = ah. By the left cancellation law we obtain b = h. Since b = h and h ∈ H,
then b ∈ H. Thus, we have b 6∈ H and b ∈ H, a contradiction. Therefore,
ab ∈ H.

Exercise 35. Let H be a subgroup of G such that [G : H] = 2. Then gH = Hg
for all g ∈ G.
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Solution. We must prove (∀g ∈ G)(gH = Hg).

Proof. Let g ∈ G. Since [G : H] = 2, then there are two distinct left cosets of
H in G and there are two distinct right cosets of H in G. Since e ∈ G, then
eH = H is a left coset and He = H is a right coset. Since g ∈ G, then gH is a
left coset and Hg is a right coset.

Either g ∈ H or g 6∈ H.
We consider these cases separately.
Case 1: Suppose g ∈ H.
Since g ∈ gH and g ∈ eH = H, then g is in two left cosets. Every element

of G lies in exactly one left coset. Thus, gH = H.
Since g ∈ Hg and g ∈ He = H, then g is in two right cosets. Every element

of G lies in exactly one right coset. Thus, Hg = H.
Therefore, gH = H = Hg, so gH = Hg.
Case 2: Suppose g 6∈ H.
Since g ∈ gH and g 6∈ H, then gH 6= H. Thus, H and gH are distinct left

cosets of H in G, so LH = {H, gH} is a partition of G.
Since g ∈ Hg and g 6∈ H, then Hg 6= H. Thus, H and Hg are distinct right

cosets of H in G, so RH = {H,Hg} is a partition of G.
We prove gH = Hg. Let x ∈ gH. Since x ∈ gH and gH ⊂ G, then x ∈ G.

Every element of G lies in exactly one left coset. Thus, since x ∈ gH, then
x 6∈ eH = H. Every element of G lies in exactly one right coset. Thus, since
x 6∈ H, then x ∈ Hg. Therefore, x ∈ gH implies x ∈ Hg, so gH ⊂ Hg.

Let y ∈ Hg. Since y ∈ Hg and Hg ⊂ G, then y ∈ G. Every element of G
lies in exactly one right coset. Thus, since y ∈ Hg, then y 6∈ He = H. Every
element of G lies in exactly one left coset. Thus, since y 6∈ H, then y ∈ gH.
Therefore, y ∈ Hg implies y ∈ gH, so Hg ⊂ gH.

Since gH ⊂ Hg and Hg ⊂ gH, then gH = Hg.
Since gH = Hg for all g ∈ G, then H is normal in G, so H CG.

Proposition 36. If H is a subgroup of a cyclic group G, then G
H is cyclic.

Proof. Suppose H is a subgroup of a cyclic group G. Every cyclic group is
abelian. Since G is cyclic, then G is abelian. Every subgroup of an abelian
group is normal. Since H is a subgroup of G and G is abelian, then H is
normal. Therefore, G

H is a group and G
H = {aH : a ∈ G}.

Since G is cyclic, then there exists g ∈ G such that G = {gn : n ∈ Z}.
Since g ∈ G, then gH ∈ G

H . Let T be the cyclic group generated by gH. Then
T = {(gH)n : n ∈ Z}.

Let x ∈ G
H . Then there exists a ∈ G such that x = aH.

Since a ∈ G, then a = gn for some integer n. Therefore, x = gnH = (g ∗
g ∗ ... ∗ g)H = (gH)(gH)...(gH) = (gH)n. Since n is an integer and x = (gH)n,
then x ∈ T . Hence, x ∈ G

H implies x ∈ T , so G
H ⊂ T .

Let y ∈ T . Then there exists an integer m such that y = (gH)m. Thus, y =
(gH)(gH)...(gH) = (gg...g)H = (gm)H. Since gm ∈ G, then y = (gm)H ∈ G

H .

Thus, y ∈ T implies y ∈ G
H , so T ⊂ G

H .
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Since G
H ⊂ T and T ⊂ G

H , then G
H = T . Thus, G

H = {(gH)n : n ∈ Z}. Since

there exists gH ∈ G
H such that G

H = {(gH)n : n ∈ Z}, then G
H is cyclic.

Proposition 37. Let G be a group. Let g ∈ G. Let C(g) = {x ∈ G : xg = gx}.
Then C(g) is a subgroup of G (called the centralizer of g). If g generates a
normal subgroup of G, then C(g) is normal in G.

Proof. Observe that C(g) is a subset of G. Let a, b ∈ C(g). Then a ∈ G and
ag = ga and b ∈ G and bg = gb. We right multiply ag = ga by b to get agb = gab.
We left multiply bg = gb by a to get abg = agb. Thus, gab = agb = abg, so
abg = gab. Since G is a group and a, b ∈ G, then ab ∈ G. Since ab ∈ G and
(ab)g = g(ab), then ab ∈ C(g). Therefore, C(g) is closed under the binary
operation ∗.

Let e be the identity of G. Then e ∈ G and eg = g = ge. Since e ∈ G and
eg = ge, then e ∈ C(g).

Let a ∈ C(g). Then a ∈ G and ag = ga. Left multiply by a−1 to get a−1ag =
a−1ga. Thus, g = a−1ga. Right multiply by a−1 to get ga−1 = a−1gaa−1. Thus,
ga−1 = a−1g. Since a−1 ∈ G and a−1g = ga−1, then a−1 ∈ C(g).

Thus, C(g) is a subgroup of G.
Suppose 〈g〉 is normal in G. Let H = 〈g〉. Then for all g1 ∈ G and all h ∈ H,

g1hg
−1
1 ∈ H.

To prove C(g) is normal in G, we prove for all g1 ∈ G and all h ∈ C(g),
g1hg

−1
1 ∈ C(g). Let g1 ∈ G and h ∈ C(g). Since h ∈ C(g), then h ∈ G and

hg = gh. Let x = g1hg
−1
1 . To prove x ∈ C(g), we must prove x ∈ G and

xg = gx. Since g1, g
−1
1 , h ∈ G and G is a group, then x ∈ G.

We must prove xg = gx. Since x = g1hg
−1
1 and H is normal in G, then

g1hg
−1
1 ∈ H, so x ∈ H.

Exercise 38. (Z6,+) 6∼= (S3, ◦).

Solution. We know that |Z6| = 6 and |S3| = 3! = 6, but Z6 is abelian
group, while S3 is nonabelian. Thus, we conjecture that there does not exist an
isomorphism. To prove this, let’s suppose there does exist an isomorphism and
derive a contradiction.

Proof. Suppose Z6 is isomorphic to S3. Then there exists an isomorphism be-
tween Z6 and S3.

Let φ : Z6 7→ S3 be some isomorphism. Then φ is a bijective homomorphism.
Since φ is a homomorphism, then for every [a], [b] ∈ Z6, φ([a]+[b]) = φ([a])φ([b]).
Since S3 is non abelian, then ◦ is not commutative. Therefore, there exist
σ, τ ∈ S3 such that στ 6= τσ. Since Z6 is abelian, then for every [a], [b] ∈ Z6,
[a] + [b] = [b] + [a].

Since φ is bijective, then φ is surjective. Therefore, since σ ∈ S3, then there
exists [a] ∈ Z6 such that φ([a]) = σ. Similarly, since τ ∈ S3, then there exists
[b] ∈ Z6 such that φ([b]) = τ .

Observe that στ = φ([a])φ([b]) = φ([a] + [b]) = φ([b] + [a]) = φ([b])φ([a]) =
τσ. Hence, we have στ = τσ and στ 6= τσ, a contradiction.
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Therefore, there is no isomorphism φ. Since no isomorphism exists between
Z6 and S3, then Z6 is not isomorphic to S3.

Proposition 39. 〈Z,+, ·〉 is a ring.

Proof. We know 〈Z,+〉 is an abelian group. We know Z is closed under multipli-
cation and ab ∈ Z is unique for all a, b ∈ Z. Therefore, multiplication is a binary
operation on Z. Also, multiplication of integers is associative so a(bc) = (ab)c
for all a, b, c ∈ Z. We know multiplication is distributive over addition. Thus,
a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ Z.

Fields

Exercise 40. Let S = {a, b}. Define addition on S by a + a = a and a + b =
b = b + a and b + b = b. Define multiplication on S by aa = ab = ba = a and
bb = b. Then (S,+, ∗) is a field.

Solution. To prove S is a field, we must prove S is a commutative division
ring. Thus, we must prove (S,+, ∗) is a ring with 1 6= 0 and ∗ is commutative
and every nonzero element of S has a multiplicative inverse. Hence, we must
prove

1. (S,+) is an abelian group.
1a. addition is a binary operation on S.
1a1. S is closed under addition.
1a2. x+ y is unique for all x, y ∈ S.
1b. + is associative.
1c. + is commutative.
1d. there exists an additive identity in S.
1e. each element of S has an additive inverse.
2. multiplication is a binary operation on S.
2a1. S is closed under multiplication.
2a2. xy is unique for all x, y ∈ S.
2. ∗ is associative.
3. there exists a multiplicative identity 1
4. multiplication distributes over addition:
4a. left distributive : a(b+ c) = ab+ ac
4b. right distributive: (a+ b)c = ac+ bc.
5. 1 6= 0.
6. ∗ is commutative.
7. every nonzero element of S has a multiplicative inverse.
We can write out the addition and multiplication tables for S. Since |S| = 2,

then |S × S| = |S||S| = 2 ∗ 2 = 22 = 4. Thus, there are 4 ordered pairs mapped
by addition and mapped by multiplication.
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Proof. The sum of any pair of elements of S is a unique element of S. Hence,
addition is a binary operation on S.

Since a+ b = b = b+ a, then addition is commutative.
We prove addition is associative.
There are 23 = 8 cases to consider.
Case 1: Observe that (a+ a) + a = a+ a = a+ (a+ a).
Case 2: Observe that (a+ a) + b = a+ b = a+ (a+ b).
Case 3: Observe that (a+ b) + a = b+ a = b = a+ b = a+ (b+ a).
Case 4: Observe that (a+ b) + b = b+ b = a = a+ a = a+ (b+ b).
Case 5: Observe that (b+ a) + a = b+ a = b+ (a+ a).
Case 6: Observe that (b+ a) + b = b+ b = b+ (a+ b).
Case 7: Observe that (b+ b) + a = a+ a = a = b+ b = b+ (b+ a).
Case 8: Observe that (b+ b) + b = a+ b = b = b+ a = b+ (b+ b).
Thus, addition is associative.
Since a+ a = a and a+ b = b = b+ a, then a is an additive identity. Thus,

a is a zero element of S.
Since a+ a = a, then a is an additive inverse of a. Since b+ b = a, then b is

an additive inverse of b. Hence, each element of S has an additive inverse.
Therefore, (S,+) is an abelian group.
The product of any pair of elements of S is a unique element of S. Hence,

multiplication is a binary operation on S.
Since ab = a = ba, then multiplication is commutative.
We prove multiplication is associative.
There are 23 = 8 cases to consider.
Case 1: Observe that (aa)a = aa = a(aa).
Case 2: Observe that (aa)b = ab = a = aa = a(ab).
Case 3: Observe that (ab)a = aa = a(ba).
Case 4: Observe that (ab)b = ab = a(bb).
Case 5: Observe that (ba)a = aa = a = ba = b(aa).
Case 6: Observe that (ba)b = ab = a = ba = b(ab).
Case 7: Observe that (bb)a = ba = b(ba).
Case 8: Observe that (bb)b = bb = b(bb).
Thus, multiplication is associative.
Since ba = a = ab and bb = b, then b is a multiplicative identity. Since a 6= b,

then the multiplicative identity is distinct from the additive identity. The only
nonzero element in S is b. Since bb = b, then the multiplicative inverse of b is b.
Hence, every nonzero element of S has a multiplicative inverse.

We prove the left distributive law holds in S.
There are 23 = 8 cases to consider.
Case 1: Observe that a(a+ a) = aa = a = a+ a = aa+ aa.
Case 2: Observe that a(a+ b) = ab = a = a+ a = aa+ ab.
Case 3: Observe that a(b+ a) = ab = a = a+ a = ab+ aa.
Case 4: Observe that a(b+ b) = aa = a = a+ a = ab+ ab.
Case 5: Observe that b(a+ a) = ba = a = a+ a = ba+ ba.
Case 6: Observe that b(a+ b) = bb = b = a+ b = ba+ bb.
Case 7: Observe that b(b+ a) = bb = b = b+ a = bb+ ba.
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Case 8: Observe that b(b+ b) = ba = a = b+ b = bb+ bb.
Thus, the left distributive law holds in S.
Let x, y, z ∈ S. Then (x + y)z = z(x + y) = zx + zy = xz + yz. Thus,

the right distributive law holds in S. Hence, multiplication is distributive over
addition in S.

Therefore, (S,+, ∗) is a field.

Proof. Define φ : Z2 → S by φ(0) = a and φ(1) = b.
Clearly, φ is a function and φ is injective and surjective. Hence, φ is bijective.
We prove φ is a ring homomorphism. Observe that φ(0 + 0) = φ(0) = a =

a+a = φ(0)+φ(0) and φ(0+1) = φ(1) = b = a+b = φ(0)+φ(1) and φ(1+0) =
φ(1) = b = b+ a = φ(1) + φ(0) and φ(1 + 1) = φ(0) = a = b+ b = φ(1) + φ(1).
Thus, φ preserves addition.

Observe that φ(0∗0) = φ(0) = a = aa = φ(0)φ(0) and φ(0∗1) = φ(0) = a =
ab = φ(0)φ(1) and φ(1 ∗ 0) = φ(0) = a = ba = φ(1)φ(0) and φ(1 ∗ 1) = φ(1) =
b = bb = φ(1)φ(1). Thus, φ preserves multiplication.

Since φ(1) = b and 1 is unity of Z2 and b is unity of S, then φ preserves the
unity element of the rings.

Therefore, φ is a ring homomorphism. Since φ is bijective, then φ is a
bijective ring homomorphism, so φ is a ring isomorphism. Hence, (Z2,+, ∗) ∼=
(S,+, ∗). Since 2 is prime, then Z2 is a field. Hence, S is a field.

Exercise 41. Let (F,+, ∗) be a field. Then (x+1)2 = x2 +2x+1 for all x ∈ F .

Proof. Let x ∈ F . Let 1 be the unity of F . Define 2 = 1 + 1 and 2x = x + x
and x2 = x ∗ x for all x ∈ F . Then

(x+ 1)2 = (x+ 1)(x+ 1)

= (x+ 1)x+ (x+ 1) ∗ 1

= (x ∗ x+ 1 ∗ x) + (x+ 1)

= (x ∗ x+ x) + (x+ 1)

= x ∗ x+ (x+ x) + 1

= x2 + 2x+ 1.
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