Ring Theory Examples

Jason Sass

April 23, 2023

Examples

Example 1. $(\mathbb{Q},+, \cdot)=$ field
$(\mathbb{R},+, \cdot)=$ field
$(\mathbb{C},+, \cdot)=$ field
$\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}=$ field
Proof.
Exercise 2. Let $S=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Then $(S,+, *)$ is not a field.
Proof. Observe that $(S,+, *)$ is a commutative ring with unity $1 \neq 0$. Thus, S is a field iff every nonzero element of S is a unit. Hence, S is not a field iff there exists a nonzero element of S that is not a unit.

Let $x=\sqrt{2}$. Then $x=0+1 * \sqrt{2}$, so $x \in S$ and $x \neq 0$. The element x is a unit iff there exists $y \in S$ such that $x y=1$. Hence, x is not a unit iff there does not exist $y \in S$ such that $x y=1$.

Suppose there exists $y \in S$ such that $x y=1$. Then there exist integers a, b such that $y=a+b \sqrt{2}$. Thus,

$$
\begin{aligned}
1 & =x y \\
& =\sqrt{2}(a+b \sqrt{2}) \\
& =a \sqrt{2}+2 b
\end{aligned}
$$

Hence, $1+0 \sqrt{2}=1=2 b+a \sqrt{2}$, so $1=2 b$ and $0=a$. Thus, $b=\frac{1}{2}$, so $b \notin \mathbb{Z}$. But, we have $b \in \mathbb{Z}$ and $b \notin \mathbb{Z}$, a contradiction. Therefore, does not exist $y \in S$ such that $x y=1$. Thus, x is not a unit. Hence, there exists a nonzero element of S that is not a unit. Therefore, S is not a field.

Exercise 3. The algebraic structure $(\mathbb{Z} \times \mathbb{Z},+, *)$ is a commutative ring with unity $(1,1)$ and is not a field.

Solution. The direct product of n copies of a commutative ring is a commutative ring. Hence, the direct product of 2 copies of a commutative ring is a commutative ring. Observe that $(\mathbb{Z},+, *)$ is a commutative ring and $(\mathbb{Z} \times \mathbb{Z},+, *)$
is the direct product of 2 copies of $(\mathbb{Z},+, *)$. Therefore, $\left(\mathbb{Z}^{2},+, *\right)$ is a commutative ring. Observe that the unity of \mathbb{Z}^{2} is $(1,1)$ and the zero of \mathbb{Z}^{2} is $(0,0)$ and $(1,1) \neq(0,0)$.

The ring \mathbb{Z}^{2} is a field iff \mathbb{Z}^{2} is a commutative ring and the unity is distinct from the zero element and every nonzero element of \mathbb{Z}^{2} is a unit. Since \mathbb{Z}^{2} is a commutative ring with unity $(1,1) \neq(0,0)$, then \mathbb{Z}^{2} is a field iff every nonzero element of \mathbb{Z}^{2} is a unit. Hence, \mathbb{Z}^{2} is not a field iff there exists a nonzero element of \mathbb{Z}^{2} that is not a unit.

Let $x=(1,2) \in \mathbb{Z}^{2}$. Then $(1,2) \neq(0,0)$, so $(1,2)$ is a nonzero element of \mathbb{Z}^{2}.

Suppose $(1,2)$ is a unit of \mathbb{Z}^{2}. Then there exists an element $y \in \mathbb{Z}^{2}$ such that $x y=(1,1)$. Since $y \in \mathbb{Z}^{2}$, then there exist integers a, b such that $y=(a, b)$.

Observe that

$$
\begin{aligned}
(1,1) & =x y \\
& =(1,2)(a, b) \\
& =(a, 2 b)
\end{aligned}
$$

Thus, $1=a$ and $1=2 b$, so $b=\frac{1}{2}$. Hence, $b \notin \mathbb{Z}$. Thus, we have $b \in \mathbb{Z}$ and $b \notin \mathbb{Z}$, a contradiction. Therefore, $(1,2)$ is not a unit of \mathbb{Z}^{2}.

Hence, there exists a nonzero element of \mathbb{Z}^{2} that is not a unit of \mathbb{Z}^{2}. Therefore, $\left(\mathbb{Z}^{2},+, *\right)$ is not a field.

Exercise 4. What are all of the units in the ring $\mathbb{Z} \times \mathbb{Z}$?
Solution. We know that the ring $\mathbb{Z} \times \mathbb{Z}$ is not a field, so not every nonzero element is a unit. Hence, there are some nonzero elements of $\mathbb{Z} \times \mathbb{Z}$ which do not have multiplicative inverses in $\mathbb{Z} \times \mathbb{Z}$.

Let S be the set of all units of $\mathbb{Z} \times \mathbb{Z}$. Then $S=\left\{a \in \mathbb{Z} \times \mathbb{Z}:\left(\exists a^{-1} \in\right.\right.$ $\left.\mathbb{Z}^{2}\right)\left(a a^{-1}=(1,1)\right\}$. Let $x \in S$. Then $x \in \mathbb{Z}^{2}$ and there exists $x^{-1} \in \mathbb{Z}^{2}$ such that $x x^{-1}=(1,1)$. Thus, there exist integers a, b, c, d such that $x=(a, b)$ and $x^{-1}=(c, d)$. Hence,

$$
\begin{aligned}
(1,1) & =x x^{-1} \\
& =(a, b)(c, d) \\
& =(a c, b d)
\end{aligned}
$$

Thus, $1=a c$ and $1=b d$. Since a, b, c, d are integers, then this implies either $a=c=1$ or $a=c=-1$ and either $b=d=1$ or $b=d=-1$. Hence, $a=c$ and $b=d$, so $x=x^{-1}$ and 4 possibilities exist. Thus, x is either $(1,1)$ or $(1,-1)$ or $(-1,1)$ or $(-1,-1)$. Therefore, $S=\{(1,1),(1,-1),(-1,1),(-1,-1)\}$.

Exercise 5. In any ring $R,(a+b)^{2}=a^{2}+2 a b+b^{2}$ iff R is commutative.
Proof. Let R be an arbitrary ring. Let $a, b \in R$.
We prove if $(a+b)^{2}=a^{2}+2 a b+b^{2}$, then R is commutative.
Suppose $(a+b)^{2}=a^{2}+2 a b+b^{2}$.

Observe that

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =\left(a^{2}+a b\right)+\left(b a+b^{2}\right) \\
& =\left(a^{2}+a b\right)+\left(b^{2}+b a\right) \\
& =\left(\left(a^{2}+a b\right)+b^{2}\right)+b a
\end{aligned}
$$

Observe that

$$
\begin{aligned}
a^{2}+2 a b+b^{2} & =a^{2}+(a b+a b)+b^{2} \\
& =\left(a^{2}+a b\right)+\left(a b+b^{2}\right) \\
& =\left(a^{2}+a b\right)+\left(b^{2}+a b\right) \\
& =\left(\left(a^{2}+a b\right)+b^{2}\right)+a b
\end{aligned}
$$

Thus, $\left(\left(a^{2}+a b\right)+b^{2}\right)+b a=(a+b)^{2}=a^{2}+2 a b+b^{2}=\left(\left(a^{2}+a b\right)+b^{2}\right)+a b$. Hence, $\left(\left(a^{2}+a b\right)+b^{2}\right)+b a=\left(\left(a^{2}+a b\right)+b^{2}\right)+a b$. By the cancellation law for addition we obtain $b a=a b$.

Therefore, $a b=b a$ for all $a, b \in R$, so R is commutative.
We prove if R is commutative, then $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
Suppose R is commutative. Then $a b=b a$.
Observe that

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =(a+b) a+(a+b) b \\
& =\left(a^{2}+b a\right)+\left(a b+b^{2}\right) \\
& =a^{2}+(b a+a b)+b^{2} \\
& =a^{2}+(a b+a b)+b^{2} \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

Exercise 6. Let R be a ring such that $a^{2}=a$ for all $a \in R$. Then R is commutative and $a+a=0$ for all $a \in R$.

We note that R is a boolean ring.
Proof. We prove $(\forall a \in R)(a+a=0)$.
Let $a \in R$. Then

$$
\begin{aligned}
a+a & =(a+a)^{2} \\
& =(a+a)(a+a) \\
& =(a+a) a+(a+a) a \\
& =\left(a^{2}+a^{2}\right)+\left(a^{2}+a^{2}\right) \\
& =(a+a)+(a+a)
\end{aligned}
$$

Thus, $a+a=(a+a)+(a+a)$, so $(a+a)+0=(a+a)+(a+a)$. By the cancellation law for addition we obtain $0=a+a$.

We prove R is commutative.
Let $a, b \in R$. Then

$$
\begin{aligned}
a+b & =(a+b)^{2} \\
& =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =\left(a^{2}+a b\right)+\left(b a+b^{2}\right) \\
& =(a+a b)+(b a+b) \\
& =a+(a b+b a)+b \\
& =a+b+(a b+b a) \\
& =(a+b)+(a b+b a) .
\end{aligned}
$$

Thus, $a+b=(a+b)+(a b+b a)$, so $(a+b)+0=(a+b)+(a b+b a)$. By the cancellation law for addition we obtain $0=a b+b a$.

Since $x+x=0$ for all $x \in R$, then in particular, $a b+a b=0$. Thus, $a b+a b=0=a b+b a$. By the cancellation law for addition we obtain $a b=b a$. Therefore, $a b=b a$ for all $a, b \in R$, so $*$ is commutative.

Exercise 7. Let R be a commutative ring. For each $a \in R$ let $H_{a}=\{x \in R$: $a x=0\}$. Then for every $x, y \in H_{a}, x y \in H_{a}$.

Proof. Let $x, y \in H_{a}$. Then $x, y \in R$ and $a x=0$ and $a y=0$. Observe that

$$
\begin{aligned}
0 & =0 y \\
& =(a x) y \\
& =a(x y) .
\end{aligned}
$$

Since R is closed under multiplication, then $x y \in R$. Thus, $x y \in R$ and $a(x y)=$ 0 , so $x y \in H_{a}$.

Exercise 8. Let $n \in \mathbb{N}, n>1$ and $x^{n}=x$ for all x in a ring R. If $a, b \in R$ such that $a b=0$, then $b a=0$.

Proof. Let $a, b \in R$ such that $a b=0$. Then

$$
\begin{aligned}
b a & =(b a)^{n} \\
& =(b a)(b a) \ldots(b a)(b a) \\
& =b(a b)(a b) \ldots(a b) a \\
& =b * 0 * 0 * \ldots * 0 * a \\
& =0
\end{aligned}
$$

Hence, $b a=0$.

Integral domains

Exercise 9. Let D be an integral domain. If $a^{2}=e$, then $a= \pm e$.
Proof. Let $a \in D$ such that $a^{2}=e$.
Observe that $e^{2}=e=a^{2}$. Thus, $e^{2}-a^{2}=0$, so $(e+a)(e-a)=0$. Since D is an integral domain, then either $e+a=0$ or $e-a=0$. Hence, either $a=-e$ or $a=e$, so $a= \pm e$.

Ideals

Exercise 10. The set $\{[0],[2],[4]\}$ is an ideal of \mathbb{Z}_{6}.
Solution. Let $R=\mathbb{Z}_{6}$ and $I=\{[0],[2],[4]\}$.
Observe that I is a cyclic subgroup of $\left(\mathbb{Z}_{6},+\right)$ and $I=\left\{k[2]_{6}: k \in \mathbb{Z}\right\}=$ $\left.[2 k]_{6}: k \in \mathbb{Z}\right\}$.

Let $x \in I$. Then $x=[2 k]$ for some $k \in \mathbb{Z}$.
Let $a \in R x$. Then $a=[r]_{6} x$ for some $r \in \mathbb{Z}$. Thus, $a=[r]([2 k])=[(2 k) r]=$ $[2(k r)]$. Since \mathbb{Z} is closed under multiplication and $k, r \in \mathbb{Z}$, then $k r \in \mathbb{Z}$. Hence, $a \in I$, by definition of I. Thus, $a \in R x$ implies $a \in I$, so $R x \subset I$.

Let $b \in x R$. Then $b=x[r]_{6}$ for some $r \in \mathbb{Z}$. Thus, $b=[2 k][r]=[(2 k) r]=$ $[2(k r)]$. Since \mathbb{Z} is closed under multiplication and $k, r \in \mathbb{Z}$, then $k r \in \mathbb{Z}$. Hence, $a \in I$, by definition of I. Thus, $a \in x R$ implies $a \in I$, so $x R \subset I$.

Therefore, $R I \subset I$ and $I R \subset I$.
Since $(I,+)$ is an abelian subgroup of $(R,+)$ and $R I \subset I$ and $I R \subset I$, then I is an ideal of R. Thus, the set $\{[0],[2],[4]\}$ is an ideal of \mathbb{Z}_{6}.

Exercise 11. If R is a field, then the only ideals of R are the zero ring and R itself.

Proof. Let R be a field. Let I be an ideal in R. Then either I is the zero ring or I is not the zero ring.

Suppose I is not the zero ring. Since I is an ideal, then $(I,+)$ is an abelian subgroup of $(R,+)$. Since I is not the zero group, then I must contain a nonzero element.

Let a be some nonzero element of I. Then $a \in I$ and $a \neq 0$. Since R is a field, then every nonzero element of R is a unit of R. Hence, in particular, a is a unit of R. Therefore, there exists $a^{-1} \in R$ such that $a a^{-1}=e$, where e is the unity of R. Since I is an ideal, then for every $x \in I, I R \subset I$. Thus, $a R \subset I$, where $a R=\{a r: r \in R\}$. Since $a^{-1} \in R$, then $a a^{-1} \in a R$. Hence, $e \in a R$. Thus, $e \in a R$ and $a R \subset I$, so $e \in I$. Therefore, $e R \subset I$, where $e R=\{e r: r \in R\}=\{r: r \in R\}=R$. Hence, $R \subset I$. Since I is an ideal, then $I \subset R$. Thus, $I \subset R$ and $R \subset I$, so $I=R$.

Therefore, either I is the zero ring or I is the field R itself.
Exercise 12. Let G be a group such that $g^{2}=e$ for all $g \in G$. Then G is abelian.

Solution. Given $(\forall g \in G)\left(g^{2}=e\right)$.
To prove G is abelian, we must prove $(\forall a, b \in G)(a b=b a)$.
Proof. Let $a, b \in G$. Then $a b \in G$. Since $g^{2}=e$ for all $g \in G$, then $a^{2}=e$ and $b^{2}=e$ and $(a b)^{2}=e$.

Observe that $(a b)^{2}=e=e * e=a^{2} b^{2}$. Thus, $(a b)(a b)=a a b b$, so $a b a b=a a b b$. We apply the right cancellation law to obtain $a b a=a a b$. We apply the left cancellation law to obtain $b a=a b$. Hence, $a b=b a$ for all $a, b \in G$, so $*$ is commutative. Therefore, G is abelian.

Proof. Let $a, b \in G$. Since G is closed under $*$, then $a b \in G$. Since $x x=e$ for all $x \in G$, then $x^{-1}=x$ by definition of inverse element. Thus, $a^{-1}=a$ and $b^{-1}=b$ and $(a b)^{-1}=a b$.

Observe that $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$. Thus, $a b=b a$. Since a, b are arbitrary then $a b=b a$ for all $a, b \in G$. Hence, $*$ is commutative, so $(G, *)$ is abelian.

Exercise 13. Let G be a group. Let $g_{1}, g_{2}, \ldots, g_{n}$ be elements of G. Then $\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} g_{n-1}^{-1} \ldots g_{2} g_{1}$.

Solution. Let $n \in \mathbb{Z}^{+}$. We must prove for all $n,\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} g_{n-1}^{-1} \ldots g_{2} g_{1}$. Thus, we define predicate $p(n):\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} g_{n-1}^{-1} \ldots g_{2} g_{1}$. We prove by induction on n.

Proof. Let n be a positive integer.
Let $p(n)$ be the predicate $\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} g_{n-1}^{-1} \ldots g_{2} g_{1}$ defined over \mathbb{Z}^{+}.
We prove $\left(\forall n \in \mathbb{Z}^{+}\right)(p(n))$ by induction on n.
Basis: Since $\left(g_{1}\right)^{-1}=g_{1}^{-1}$, then $p(1)$ is true.
Induction: We must prove $\left(\forall m \in \mathbb{Z}^{+}\right)(p(m) \rightarrow p(m+1))$.
Suppose m is an arbitrary positive integer such that $p(m)$ is true. Then $\left(g_{1} g_{2} \ldots g_{m}\right)^{-1}=g_{m}^{-1} g_{m-1}^{-1} \ldots g_{2} g_{1}$.

Observe that

$$
\begin{aligned}
\left(g_{1} g_{2} \ldots g_{m} g_{m+1}\right)^{-1} & =\left[\left(g_{1} g_{2} \ldots g_{m}\right) g_{m+1}\right]^{-1} \\
& =g_{m+1}^{-1} *\left(g_{1} g_{2} \ldots g_{m}\right)^{-1} \\
& =g_{m+1}^{-1} *\left(g_{m}^{-1} g_{m-1}^{-1} \ldots g_{2} g_{1}\right) \\
& =g_{m+1}^{-1} g_{m}^{-1} g_{m-1}^{-1} \ldots g_{2} g_{1}
\end{aligned}
$$

Thus, $p(m+1)$ is true.
Therefore, by induction, $\left(g_{1} g_{2} \ldots g_{n}\right)^{-1}=g_{n}^{-1} g_{n-1}^{-1} \ldots g_{2} g_{1}$ for all positive integers n.

Exercise 14. Let $G=\{x \in \mathbb{R}: x>1\}$. Define $x * y=x y-x-y+2$ for all $x, y \in G$. Then $(G, *)$ is a group.

Solution. To prove G is a group, we must prove:

1. $*$ is a binary operation on G.
2. $*$ is associative.
3. There exists an identity element in G.
4. Each element of G has an inverse in G.

Proof. Clearly, G is a nonempty set. To prove $*$ is a binary operation, we must prove G is closed under *.

Let x and y be arbitrary elements of G. Then x and y are real numbers such that $x>1$ and $y>1$. To prove G is closed under $*$, we must prove $x * y \in G$.

Note that $x * y=x y-x-y+2$ is a real number. Since $y>1$, then $y-1>0$.
Observe that

$$
\begin{aligned}
x & >1 \\
x(y-1) & >y-1 \\
x y-x & >y-1 \\
x y-x-y+1 & >0 \\
x y-x-y+2 & >1 \\
x * y & >1 .
\end{aligned}
$$

Hence, $x * y \in G$, as desired.
To prove $*$ is associative, let $x, y, z \in G$. We must prove $x *(y * z)=(x * y) * z$.
Observe that

$$
\begin{aligned}
(x * y) * z & =(x y-x-y+2) * z \\
& =(x y-x-y+2) z-(x y-x-y+2)-z+2 \\
& =x y z-x z-y z+2 z-x y+x+y-2-z+2 \\
& =x y z-x z-y z+z-x y+x+y \\
& =x y z-x y-x z+x-y z+y+z \\
& =x y z-x y-x z+2 x-x-y z+y+z-2+2 \\
& =x(y z-y-z+2)-x-(y z-y-z+2)+2 \\
& =x(y * z)-x-(y * z)+2 \\
& =x *(y * z) .
\end{aligned}
$$

Hence, $*$ is associative.
We prove 2 is the identity of G. Observe that $2 \in G$. Let a be an arbitrary element of G. Then $a * 2=a(2)-a-2+2=2 a-a=a$ and $2 * a=2 a-2-a+2=$ a. Hence, 2 is an identity of G.

We prove each element of G has an inverse. Let $a \in G$. Then $a \in \mathbb{R}$ and $a>1$. Let $b=\frac{a}{a-1}$. Since $a-1>0$, then $a-1 \neq 0$. Hence, $b \in \mathbb{R}$. Since $0>-1$, then $a>a-1$. Since $a-1>0$, we divide by $a-1$ to get $\frac{a}{a-1}>1$. Thus, $b>1$, so $b \in G$.

Observe that

$$
\begin{aligned}
a * b & =a b-a-b+2 \\
& =(a-1) b-a+2 \\
& =(a-1) \frac{a}{a-1}-a+2 \\
& =a-a+2 \\
& =2
\end{aligned}
$$

and

$$
\begin{aligned}
a * b & =a b-a-b+2 \\
& =b a-b-a+2 \\
& =b * a
\end{aligned}
$$

Therefore, $a * b=b * a=2$, so b is an inverse of a. Hence, each element of G has an inverse in G.

Therefore, $(G, *)$ is a group.
Exercise 15. Let $\left(\mathbb{Z}_{n}^{*}, *\right)$ be the group of units of \mathbb{Z}_{n}. If $n \geq 3$, then there is an element $[a] \in \mathbb{Z}_{n}^{*}$ such that $[a]^{2}=[1]$ and $[a] \neq[1]$.

Solution. Let $n \in \mathbb{N}$.
The statement to prove is $P:$ if $n \geq 3$, then $\left(\exists[a] \in \mathbb{Z}_{n}^{*}\right)\left([a]^{2}=[1] \wedge[a] \neq[a]\right)$.
We try different values of n, like $n=1,2,3,4,5,6, \ldots$. We find that when $n<3$, then $[1]^{2}=[1]$, but $[1]=[1]$. Now, when $n \geq 3$, we find that $[n-1]^{2}=$ [1].

Proof. Let n be a positive integer. Suppose $n \geq 3$. Since $n \in \mathbb{Z}$, then $n-1 \in \mathbb{Z}$, so $[n-1] \in \mathbb{Z}_{n}$. Since $n \mid n$, then $n \mid(n-1+1)$, so $n \mid(n-1)-(-1)$. Hence, $n-1 \equiv-1(\bmod n)$, so $[n-1]=[-1]$. Observe that $[n-1]^{2}=[n-1][n-1]=$ $[-1][-1]=[(-1)(-1)]=[1]$. Since $[n-1] \in \mathbb{Z}_{n}$ and $[n-1][n-1]=[1]$, then $[n-1] \in \mathbb{Z}_{n}^{*}$.

Since $n \geq 3$, then $n-2 \geq 1$. Since $n \geq 3$ and $n-2 \geq 1$, then $n>0$ and $n-2>0$. Hence, n and $n-2$ are positive integers and $n>n-2$. Since $n \mid n-2$ implies $n \leq n-2$, then $n>n-2$ implies $n \nmid n-2$. Thus, since $n>n-2$, then $n \nmid n-2$. Therefore, $n \nmid(n-1)-1$, so $n-1 \not \equiv 1(\bmod n)$. Thus, $[n-1] \neq[1]$.

Let $a=n-1$. Then $[a]=[n-1]$. Since $[n-1] \in \mathbb{Z}_{n}^{*}$ and $[n-1]^{2}=[1]$ and $[n-1] \neq[1]$, then there exists $[a] \in \mathbb{Z}_{n}^{*}$ such that $[a]^{2}=[1]$ and $[a] \neq[1]$.

Exercise 16. Let a, b be any elements of a group $(G, *)$. Then $\left(a b a^{-1}\right)^{n}=$ $a b^{n} a^{-1}$, for any positive integer n .

Solution. We translate this into logical symbols.
Let the open sentence be $S(a, b, n):\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$.
This assertion in logical symbols is:
$\forall(a, b \in G) \forall\left(n \in \mathbb{Z}^{+}\right) S(a, b, n)$.

Let $a, b \in G$. We must prove: $\forall\left(n \in \mathbb{Z}^{+}\right) S(a, b, n)$.
This universally quantified statement can be proven using mathematical induction.

Proof. We prove using induction.
Basis: For $n=1$, the statement $\left(a b a^{-1}\right)^{1}=a b a^{-1}=a b^{1} a^{-1}$ is true.
Induction: We must prove $S_{k} \rightarrow S_{k+1}$ for any $k \geq 1$. That is we must show that if $\left(a b a^{-1}\right)^{k}=a b^{k} a^{-1}$, then $\left(a b a^{-1}\right)^{k+1}=a b^{k+1} a^{-1}$. We use direct proof. Suppose $\left(a b a^{-1}\right)^{k}=a b^{k} a^{-1}$. Observe that:

$$
\begin{aligned}
\left(a b a^{-1}\right)^{k+1} & =\left(a b a^{-1}\right)^{k}\left(a b a^{-1}\right) \\
& =\left(a b^{k} a^{-1}\right)\left(a b a^{-1}\right)(\text { induction hypothesis }) \\
& =\left(a b^{k}\right)\left[a^{-1}\left(a b a^{-1}\right)\right](* \text { is associative in a group }) \\
& =\left(a b^{k}\right)\left[\left(a^{-1} a\right)\left(b a^{-1}\right)\right](* \text { is associative in a group }) \\
& =\left(a b^{k}\right)\left[e\left(b a^{-1}\right)\right](\text { defn of inverse element }) \\
& =\left(a b^{k}\right)\left(b a^{-1}\right)(\text { defn of identity element }) \\
& =a\left(b^{k} b\right) a^{-1}(* \text { is associative in a group }) \\
& =a b^{k+1} a^{-1}
\end{aligned}
$$

Thus we have shown $\left(a b a^{-1}\right)^{k+1}=a b^{k+1} a^{-1}$. This completes the proof that $S_{k} \rightarrow S_{k+1}$ for $k \geq 1$. It follows by induction that $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$ for all $n \in \mathbb{Z}^{+}$.

Since a, b are arbitrary then the statement $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$ for all $n \in \mathbb{Z}^{+}$ is true for all $a, b \in G$.

Exercise 17. Let $(G, *)$ be a group. Define a relation \sim on G for all $x, y \in G$ by $x \sim y$ iff there exists some $a \in G$ such that $y=a x a^{-1}$. Then \sim is an equivalence relation on G.

Solution. We must prove \sim is reflexive, symmetric, and transitive.
Thus, we must prove:

1. reflexive: $(\forall x \in G)(x \sim x)$.
2. symmetric: $(\forall x, y \in G)(x \sim y \rightarrow y \sim x)$.
3. transitive: $(\forall x, y, z \in G)(x \sim y \wedge y \sim z \rightarrow x \sim z)$.

Proof. Let x be an arbitrary element of G. To prove \sim is reflexive, we must find some $a \in G$ such that $x=a x a^{-1}$. Let $a=e$, where e is the identity element in G. Then $a x a^{-1}=e x e^{-1}=x e^{-1}=x e=x$. Hence, \sim is reflexive.

Let x and y be arbitrary elements of G such that $x \sim y$. Then there exists some $a \in G$ such that $y=a x a^{-1}$. Hence, $y a=a x$. To prove $y \sim x$, we must
find some $b \in G$ such that $x=b y b^{-1}$. Let $b=a^{-1}$. Observe that

$$
\begin{aligned}
b y b^{-1} & =a^{-1} y\left(a^{-1}\right)^{-1} \\
& =a^{-1} y a \\
& =a^{-1}(y a) \\
& =a^{-1}(a x) \\
& =\left(a^{-1} a\right) x \\
& =e x \\
& =x
\end{aligned}
$$

Therefore, \sim is symmetric.
Let x, y, and z be arbitrary elements of G such that $x \sim y$ and $y \sim z$. Then there exist elements a and b in G such that $y=a x a^{-1}$ and $z=b y b^{-1}$. To prove $x \sim z$, we must find some $c \in G$ such that $z=c x c^{-1}$. Let $c=b a$. Observe that

$$
\begin{aligned}
c x c^{-1} & =(b a) x(b a)^{-1} \\
& =(b a) x\left(a^{-1} b^{-1}\right) \\
& =b\left(a x a^{-1}\right) b^{-1} \\
& =b y b^{-1} \\
& =z .
\end{aligned}
$$

Therefore, \sim is transitive.
Since \sim is reflexive, symmetric, and transitive, then \sim is an equivalence relation on G.

Exercise 18. Let $(G, *)$ be a group. Let $a, b \in G$. If $(a b)^{2}=a^{2} b^{2}$, then $b a=a b$.
Solution. We must prove if $(a b)^{2}=a^{2} b^{2}$, then $b a=a b$.
Proof. Let a and b be arbitrary elements of group G such that $(a b)^{2}=a^{2} b^{2}$. We must prove $b a=a b$.

Observe that $a a b b=a^{2} b^{2}=(a b)^{2}=(a b)(a b)=a b a b$. Hence, $a a b b=a b a b$. By the left cancellation law, we have $a b b=b a b$. By the right cancellation law, we have $a b=b a$, as desired.

Exercise 19. Let $\langle G, *\rangle$ be an abelian group. Let $H=\left\{a \in G: a^{2}=e\right\}$. Then H is a subgroup of G.

Solution. We must prove H is a subgroup of G. Thus we must prove:

1. $H \subseteq G$.
2. H is closed under $*$.
3. $e \in H$.
4. $\forall a \in H . a^{-1} \in H$.

Proof. Let $e \in G$ be the identity of group G.
Let $x \in H$. Then by definition of $H, x \in G$. Hence, $x \in H$ implies $x \in G$, so $H \subseteq G$.

Let $x, y \in H$. Then $x, y \in G$ and $x^{2}=e$ and $y^{2}=e$. Since G is closed under $*$, then $x y \in G$. Since G is abelian we know $(x y)^{k}=x^{k} y^{k}$ for any $k \in \mathbb{Z}$. Observe that $(x y)^{2}=x^{2} y^{2}=e e=e$. Since $x y \in G$ and $(x y)^{2}=e$, then $x y \in H$. Therefore, H is closed under $*$.

Since $e \in G$ and $e^{2}=e e=e$, then by definition of $H, e \in H$.
Let $x \in H$. Then $x \in G$ and $x^{2}=e$. Since G is a group then $x^{-1} \in G$. Observe that $\left(x^{-1}\right)^{2}=\left(x^{2}\right)^{-1}=e^{-1}=e$. Since $x^{-1} \in G$ and $\left(x^{-1}\right)^{2}=e$, then $x^{-1} \in H$. Therefore, for each $x \in H, x^{-1} \in H$.

Thus, H is a subgroup of G.
Exercise 20. Let $(G, *)$ be a group. Let $a, b \in G$. Then $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$ for every positive integer n.

Solution. Let $p(n):\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$.
We must prove $\left(\forall n \in \mathbb{Z}^{+}\right)(p(n))$.
Thus, we prove by induction on n.
Proof. Let a and b be arbitrary elements of group G.
Let $p(n):\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$.
We prove $\left(\forall n \in \mathbb{Z}^{+}\right)(p(n))$ by induction.

Basis:

Observe that $\left(a b a^{-1}\right)^{1}=a b a^{-1}=a b^{1} a^{-1}$, so $p(1)$ is true.

Induction:

Suppose m is an arbitrary positive integer such that $p(m)$ is true.
To prove $p(m+1)$ is true, we must prove $\left(a b a^{-1}\right)^{m+1}=a b^{m+1} a^{-1}$.
Since $p(m)$ is true, then $\left(a b a^{-1}\right)^{m}=a b^{m} a^{-1}$.
Observe that

$$
\begin{aligned}
\left(a b a^{-1}\right)^{m+1} & =\left(a b a^{-1}\right)^{m}\left(a b a^{-1}\right) \\
& =\left(a b^{m} a^{-1}\right)\left(a b a^{-1}\right) \\
& =\left(a b^{m}\right)\left(a^{-1} a\right)\left(b a^{-1}\right) \\
& =\left(a b^{m}\right)\left(b a^{-1}\right) \\
& =a b^{m+1} a^{-1} .
\end{aligned}
$$

Hence, by induction, $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$ for all positive integers n.
Proposition 21. Let $\langle G, *\rangle$ be a group. Let $g \in G$ be a fixed element. Then the map $i_{g}: G \mapsto G$ defined by $i_{g}(x)=g * x * g^{-1}$ for all $x \in G$ is an isomorphism of G with itself.

Solution. We must prove i_{g} is an isomorphism of G with G. Thus we must prove:

1) i_{g} is one to one. To prove this we must show: $\forall a, b \in G . i_{g}(a)=i_{g}(b) \rightarrow$ $a=b$.
2) i_{g} is onto. To prove this we must show: $\forall b \in G . \exists a \in G . i_{g}(a)=b$.
3) $(\forall a, b \in G)\left(i_{g}(a * b)=i_{g}(a) * i_{g}(b)\right)$.

Proof. Since $g \in G$ and G is a group, then $g^{-1} \in G$.
Let $a, b \in G$. Since G is closed under $*$ then $g a g^{-1} \in G$ and $g b g^{-1} \in G$.
Suppose $i_{g}(a)=i_{g}(b)$. Then $g a g^{-1}=g b g^{-1}$. By left cancellation law of $G, a g^{-1}=b g^{-1}$. By right cancellation law of $G, a=b$. Hence, $i_{g}(a)=i_{g}(b)$ implies $a=b$. Since a, b are arbitrary then $i_{g}(a)=i_{g}(b)$ implies $a=b$ is true for all $a, b \in G$. Therefore, i_{g} is one to one, by definition of injective function.

Suppose $b \in G$. Since $g \in G$ by definition of group $g^{-1} \in G$. Set $a=g^{-1} b g$. Since G is closed under $*$, then $a \in G$.

Observe that

$$
\begin{aligned}
i_{g}(a) & =i_{g}\left(g^{-1} b g\right) \\
& =g\left(g^{-1} b g\right) g^{-1} \\
& =\left(g g^{-1}\right) b\left(g g^{-1}\right) \\
& =e b e \\
& =b
\end{aligned}
$$

Thus, there exists $a \in G$ such that $i_{g}(a)=b$. Since b is arbitrary then there exists $a \in G$ such that $i_{g}(a)=b$ for all $b \in G$. Therefore, by definition of surjective function, i_{g} is onto.

Since i_{g} is one to one and onto, then i_{g} is a bijective map.
Let $a, b \in G$. Observe that

$$
\begin{aligned}
i_{g}(a) * i_{g}(b) & =\left(g * a * g^{-1}\right) *\left(g * b * g^{-1}\right) \\
& =(g * a) *\left(g^{-1} * g\right) *\left(b * g^{-1}\right) \\
& =(g * a) * e *\left(b * g^{-1}\right) \\
& =(g * a) *\left(b * g^{-1}\right) \\
& =g *(a * b) * g^{-1} \\
& =i_{g}(a * b)
\end{aligned}
$$

Thus, $i_{g}(a) * i_{g}(b)=i_{g}(a * b)$. Since a, b are arbitrary then $i_{g}(a) * i_{g}(b)=$ $i_{g}(a * b)$ for all $a, b \in G$. Therefore, by definition of isomorphism, $i_{g}: G \mapsto G$ is an isomorphism.

Proposition 22. Let $\langle G, \cdot\rangle$ be a group. If $\langle H, \cdot\rangle$ is a subgroup of $\langle K, \cdot\rangle$ and $\langle K, \cdot\rangle$ is a subgroup of $\langle G, \cdot\rangle$, then $\langle H, \cdot\rangle$ is a subgroup of $\langle G, \cdot\rangle$.

Solution. Our hypothesis is: $\langle G, \cdot\rangle$ is a group and $\langle H, \cdot\rangle \leq\langle K, \cdot\rangle$ and $\langle K, \cdot\rangle \leq$ $\langle G, \cdot\rangle$.

Our conclusion is: $\langle H, \cdot\rangle \leq\langle G, \cdot\rangle$.
To prove this claim, we can use the definition of subgroup.
Thus we must prove:

1. $H \subseteq G$.
2. $\langle H, \cdot\rangle$ is a group.

Proof. Suppose $\langle G, \cdot\rangle$ is a group and $\langle H, \cdot\rangle \leq\langle K, \cdot\rangle$ and $\langle K, \cdot\rangle \leq\langle G, \cdot\rangle$. Since $\langle H, \cdot\rangle$ is a subgroup of $\langle K, \cdot\rangle$, then $H \subseteq K$. Since $\langle K, \cdot\rangle$ is a subgroup of $\langle G, \cdot\rangle$, then $K \subseteq G$. Thus, by the transitive property of the subset relation, $H \subseteq G$.

Since $\langle H, \cdot\rangle$ is a subgroup of $\langle K, \cdot\rangle$, then $\langle H, \cdot\rangle$ is a group under the binary operation \cdot induced by $\langle K, \cdot\rangle$.

Since $\langle K, \cdot\rangle$ is a subgroup of $\langle G, \cdot\rangle$, then $\langle K, \cdot\rangle$ is a group under the binary operation • induced by $\langle G, \cdot\rangle$.

Hence, $\langle H, \cdot\rangle$ is a group under the binary operation • induced by $\langle G, \cdot\rangle$.
Therefore, $\langle H, \cdot\rangle$ is a subgroup of $\langle G, \cdot\rangle$.
Proposition 23. Let G be a group and a be one fixed element of G. Then $H_{a}=\{x \in G: x a=a x\}$ is a subgroup of G.

Solution. Our hypothesis is: $\langle G, *\rangle$ is a group and $a \in G$ is fixed.
Our conclusion is: $H_{a} \leq G$.
We translate into logical symbols.
Let $H:\langle G, *\rangle$ is a group with $a \in G$ fixed.
Let $C: H_{a} \leq G$.
We must prove: $H \rightarrow C$.
Thus we must prove:

1. H_{a} is closed under $*$.
2. $e \in H_{a}$.
3. $\forall a \in H_{a} . a^{-1} \in H_{a}$.

Proof. Let $\langle G, *\rangle$ be a group with $a \in G$ fixed. Let $H_{a}=\{x \in G: x a=a x\}$. Let $e \in G$ be the identity of G.

Let $g, h \in H_{a}$. Then $g, h \in G$ and $g a=a g$ and $h a=a h$. Since G is group, then G is closed under $*$, so $g h \in G$. Observe that

$$
\begin{aligned}
(g h) a & =g(h a) \\
& =g(a h) \\
& =(g a) h \\
& =(a g) h \\
& =a(g h)
\end{aligned}
$$

Thus, $(g h) a=a(g h)$, so $g h \in H_{a}$. Since g, h are arbitrary then $g h \in H_{a}$ for all $g, h \in H_{a}$. Therefore, H_{a} is closed under $*$.

By definition of identity element, $e a=a e=a$. Thus, by definition of H_{a}, $e \in H_{a}$.

Let $h \in H_{a}$. Then by definition of $H_{a}, h \in G$ and $h a=a h$. Since G is a group, by definition of group, $h^{-1} \in G$. Observe that

$$
\begin{aligned}
h^{-1}(h a) h^{-1} & =h^{-1}(a h) h^{-1} \\
\left(h^{-1} h\right)\left(a h^{-1}\right) & =\left(h^{-1} a\right)\left(h h^{-1}\right) \\
e\left(a h^{-1}\right) & =\left(h^{-1} a\right) e \\
a h^{-1} & =h^{-1} a
\end{aligned}
$$

Hence, $h^{-1} a=a h^{-1}$, so $h^{-1} \in H_{a}$ by definition of H_{a}. Since h is arbitrary then $h^{-1} \in H_{a}$ for all $h \in H_{a}$.

Therefore, $\left\langle H_{a}, *\right\rangle$ is a subgroup of $\langle G, *\rangle$.
Proposition 24. If H and K are subgroups of abelian group G, then $\{h k: h \in$ $H, k \in K\}$ is a subgroup of G.

Solution. Let $M=\{h k: h \in H, k \in K\}$.
The hypothesis is:
G is an abelian group and H is a subgroup of G and K is a subgroup of G.
The conclusion is: $\langle M, *\rangle$ is a subgroup of $\langle G, *\rangle$.
We translate into logical symbols:
Let $H_{1}:\langle G, *\rangle$ is an abelian group.
Let $H_{2}:\langle H, *\rangle \leq\langle G, *\rangle$.
Let $H_{3}:\langle K, *\rangle \leq\langle G, *\rangle$.
Let $C:\langle M, *\rangle \leq\langle G, *\rangle$.
The statement is: $H_{1} \wedge H_{2} \wedge H_{3} \rightarrow C$.
We use direct proof. Thus we assume $H_{1} \wedge H_{2} \wedge H_{3}$ and show that C is true.
To prove C we must prove:

1. $M \subseteq G$.
2. M is closed under $*$.
3. $e \in M$.
4. $\forall a \in M . a^{-1} \in M$.

Proof. Suppose $\langle G, *\rangle$ is an abelian group and $\langle H, *\rangle \leq\langle G, *\rangle$ and $\langle K, *\rangle \leq$ $\langle G, *\rangle$.

Let $M=\{h k: h \in H, k \in K\}$.
Let $a \in M$. Then $a=h k$ and $h \in H$ and $k \in K$. Since $\langle H, *\rangle$ is a subgroup of $\langle G, *\rangle$, then $H \subseteq G$. Since $\langle K, *\rangle$ is a subgroup of $\langle G, *\rangle$, then $K \subseteq G$. Since $h \in H$ and $H \subseteq G$, then $h \in G$. Since $k \in K$ and $K \subseteq G$, then $k \in G$. Since $\langle G, *\rangle$ is a group then $\langle G, *\rangle$ is closed under $*$. Thus, $h k \in G$, so $a \in G$. Hence, $a \in M$ implies $a \in G$. Since a is arbitrary then $a \in M$ implies $a \in G$ for all $a \in M$. Therefore, $M \subseteq G$.

Let $a, b \in M$. Then $a=h_{1} k_{1}$ and $b=h_{2} k_{2}$ and $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Observe that $a b=\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(k_{1} h_{2}\right) k_{2}=h_{1}\left(h_{2} k_{1}\right) k_{2}=\left(h_{1} h_{2}\right)\left(k_{1} k_{2}\right)$. Since H and K are groups, then H and K are each closed under *. Thus, $h_{1} h_{2} \in H$ and $k_{1} k_{2} \in K$. Hence, $\left(h_{1} h_{2}\right)\left(k_{1} k_{2}\right) \in M$, by definition of M. Therefore, $a b \in M$. Since a, b are arbitrary then $a b \in M$ for all $a, b \in M$. Thus, M is closed under *.

Let $e \in G$ be the identity of G. Since H and K are subgroups of G, then $e \in H$ and $e \in K$. Hence, $e * e \in M$, by definition of M. Since $e * e=e$, then $e \in M$.

Let $a \in M$. Then $a=h k$ and $h \in H$ and $k \in K$, by definition of M. Since $a \in M$ and $M \subseteq G$, then $a \in G$. Since G is a group then $a^{-1} \in G$. Observe that $a^{-1}=(h k)^{-1}=k^{-1} h^{-1}=h^{-1} k^{-1}$. Since $h \in H$ and H is a group then $h^{-1} \in H$. Since $k \in K$ and K is a group then $k^{-1} \in K$. Thus, $h^{-1} k^{-1} \in M$,
by definition of M. Hence, $a^{-1} \in M$. Since a is arbitrary then $a^{-1} \in M$ for all $a \in M$.

Therefore, $\langle M, *\rangle$ is a subgroup of $\langle G, *\rangle$.
Proposition 25. Let $\langle G, *\rangle$ be an abelian group. Let $H=\left\{a \in G: a^{n}=e, n \in\right.$ $\left.\mathbb{Z}^{+}\right\}$. Then H is a subgroup of G.

Solution. Our hypothesis is: $\langle G, *\rangle$ is an abelian group.
Our conclusion is: H is a subgroup of G.
We must prove: H is a subgroup of G.
To prove this we must show:

1. $H \subseteq G$.
2. H is closed under $*$.
3. $e \in H$.
4. $\forall x \in H . x^{-1} \in H$.

Note that H is simply a collection of all elements of G which have finite order. Thus, we're proving the set of all elements of an abelian group G which have finite order is a subgroup of G.

Proof. Let $e \in G$ be the identity of group G.
Observe that $H \subseteq G$.
Let $x, y \in H$. Then $x, y \in G$ and $x^{m}=e$ and $y^{n}=e$ for some $m, n \in \mathbb{Z}^{+}$. Since $x, y \in G$ and G is closed under $*$, then $x y \in G$. Since G is an abelian group we know $(x y)^{k}=x^{k} y^{k}$ for any $k \in \mathbb{Z}$. Observe that $(x y)^{m n}=x^{m n} y^{m n}=$ $\left(x^{m}\right)^{n} y^{m n}=e^{n} y^{m n}=e y^{m n}=y^{m n}=y^{n m}=\left(y^{n}\right)^{m}=e^{m}=e$. Since $x y \in G$ and $(x y)^{m n}=e$ and $m n \in \mathbb{Z}^{+}$, then $x y \in H$. Since x, y are arbitrary then $x y \in H$ for all $x, y \in H$. Therefore, H is closed under $*$.

Since $e \in G$ and $e^{1}=e$, then $e \in H$.
Let $x \in H$. Then $x \in G$ and $x^{k}=e$ for some $k \in \mathbb{Z}^{+}$. Since G is a group and $x \in G$, then $x^{-1} \in G$. Observe that $\left(x^{-1}\right)^{k}=\left(x^{k}\right)^{-1}=e^{-1}=e$. Since $x^{-1} \in G$ and $\left(x^{-1}\right)^{k}=e$, then $x^{-1} \in H$. Hence, for each $x \in H, x^{-1} \in H$.

Therefore, H is a subgroup of G.
Exercise 26. 1 is a generator of $\left\langle\mathbb{Z}_{n},+\right\rangle$.
Solution. Observe that $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$. We know that $a=a \cdot 1$ for all $a \in \mathbb{Z}$. Hence, $0=0 \cdot 1,1=1 \cdot 1,2=2 \cdot 1, \ldots n-1=(n-1) \cdot 1$. Thus, each element of \mathbb{Z}_{n} is some integral multiple of $1 \in \mathbb{Z}_{n}$. Therefore, by definition of generator, 1 is a generator of \mathbb{Z}_{n}. Consequently, $\mathbb{Z}_{n}=\langle 1\rangle=\{n \cdot 1: n \in \mathbb{Z}\}$. Hence, $\left\langle\mathbb{Z}_{n},+\right\rangle$ is cyclic.

Exercise 27. $\left\langle\mathbb{Q}^{*}, \cdot\right\rangle$ is not a cyclic group.
Solution. We must disprove that \mathbb{Q}^{*} is cyclic. By definition of cyclic group \mathbb{Q}^{*} is cyclic iff $\exists g \in \mathbb{Q}^{*}$ such that $\mathbb{Q}^{*}=\left\{g^{n}: n \in \mathbb{Z}\right\}$. We know $\mathbb{Q}^{*}=\left\{\frac{a}{b}: a, b \in\right.$ $\left.\mathbb{Z}^{*}\right\}$.

Proof. We use proof by contradiction. Suppose $\exists g \in \mathbb{Q}^{*}$ such that $Q^{*}=\left\{g^{n}\right.$: $n \in \mathbb{Z}\}$. Then $g=\frac{p}{q}$ and $p, q \in \mathbb{Z}^{*}$. Let $n \in \mathbb{Z}$. Either $\left|\left(\frac{p}{q}\right)^{n}\right|<1$ or $\left|\left(\frac{p}{q}\right)^{n}\right| \geq 1$. There are two cases to consider.

Case 1: Suppose $\left|\left(\frac{p}{q}\right)^{n}\right|<1$.
Then no rational number greater than or equal to one can be represented by any power of g. For example, 2 cannot be represented by any power of g.

Case 2: Suppose $\left|\left(\frac{p}{q}\right)^{n}\right| \geq 1$.
Then no positive rational number less than one can be represented by any power of g. For example, $\frac{1}{2}$ cannot be represented by any power of g.

Hence, in either case at least one nonzero rational number cannot be expressed as a power of g. Therefore, $g \in \mathbb{Q}^{*}$ cannot be a generator of \mathbb{Q}^{*}. Thus, there is no generator in \mathbb{Q}^{*} that can generate all of \mathbb{Q}^{*}. Hence, $\left\langle\mathbb{Q}^{*}, \cdot\right\rangle$ is not cyclic.

Exercise 28. A cyclic group with only one generator can have at most 2 elements.

Solution. The statement means: Let $\langle G, *\rangle$ be a cyclic group. If G has exactly one generator then G has at most 2 elements.

Let $P_{1}:\langle G, *\rangle$ is a cyclic group.
Let $P_{2}: G$ has exactly one generator.
Let $P_{3}:|G| \leq 2$.
The statement to prove is: $P_{1} \rightarrow\left(P_{2} \rightarrow P_{3}\right)$.
We use direct proof. Thus we assume P_{1}.
We must prove: $P_{2} \rightarrow P_{3}$.
We can use direct proof by assuming P_{2} and proving P_{3} or use proof by contrapositive and prove $\neg P_{3} \rightarrow \neg P_{2}$.

Proof. Let $\langle G, *\rangle$ be a cyclic group. Suppose G has exactly one generator. Let $g \in G$ be the unique generator of G. Since G is cyclic, by definition of cyclic group, $G=\langle g\rangle$.

Since G is a group, then the identity element exists. Let $e \in G$ be the identity element.

Thus, $g \in G$ and $e \in G$. Either $g=e$ or $g \neq e$.
We consider these cases separately.
There are two cases to consider.
Case 1: Suppose $g=e$.
Then $G=\langle g\rangle=\langle e\rangle$. Thus G is the trivial group, so $|G|=1$.
Case 2: Suppose $g \neq e$.
Since G is a group, by definition of group, $g^{-1} \in G$. Either $g^{-1}=g$ or $g^{-1} \neq g$.
There are two cases to consider.
Case 2a: Suppose $g^{-1}=g$.
Then by definition of inverse element, $e=g g^{-1}=g g=g^{2}$. Thus $g^{3}=g^{2} g=$ $e g=g$. Thus $g^{4}=g^{3} g=g g=e$. Thus $g^{5}=g^{4} g=e g=g$. Thus $g^{6}=g^{5} g=$ $g g=e$, and so on.

Thus $g^{-2}=g^{-1} g^{-1}=g g=e$. Thus $g^{-3}=g^{-2} g^{-1}=e g=g$. Thus $g^{-4}=g^{-3} g^{-1}=g g=e$, and so on.

Hence, if n is even then $g^{n}=e$ and if n is odd then $g^{n}=g$. Technically we should use induction to prove that $g^{n}=e$ if n is even and $g^{n}=g$ if n is odd. Thus, $\langle g\rangle$ contains only two elements, g and e, so $|G|=|\langle g\rangle|=2$.
Case 2b: Suppose $g^{-1} \neq g$.
Then $g^{-1} \neq e$ and $g^{-1} \neq g$. Hence, g^{-1} is some other element in G. Thus, e, g, and g^{-1} are distinct elements of G.

Hence G contains 3 elements, so $|G|>2$.
Let $h \in G$ such that $h=g^{-1}$. Then $g h=h g=e$ and $h \neq e$ and $h \neq g$.
Thus, $G=\{e, g, h\}$.
We must determine g^{2}.
If $g^{2}=e$, then $g g=e$ so $g^{-1}=g$. Thus, $g^{-1}=g$ and $g^{-1} \neq g$, a contradiction. Hence $g^{2} \neq e$.

If $g^{2}=g$, then $g g=g$. Since $e g=g=g g$, then by right cancellation law, $e=g$. Thus, $g=e$ and $g \neq e$, a contradiction. Hence, $g^{2} \neq g$.

Thus, $g^{2} \neq e$ and $g^{2} \neq g$, so $g^{2}=h$.
We must determine h^{2}.
If $h^{2}=h$, then $h h=h$. Since $e h=h$, then $h h=e h$. Thus by right cancellation law, $h=e$. Since $h=g^{-1}$, then $g^{-1}=e$. Hence, $g^{-1}=e$ and $g^{-1} \neq e$, a contradiction. Therefore, $h^{2} \neq h$.

If $h^{2}=e$, then $h h=e$. Since h and g are inverses, then $h g=e$. Thus, $h h=h g$. By left cancellation law, $h=g$, so $g^{-1}=g$. Hence, $g^{-1}=g$ and $g^{-1} \neq g$, a contradiction. Therefore, $h^{2} \neq e$.

Thus, $h^{2} \neq h$ and $h^{2} \neq e$, so $h^{2}=g$.
Observe that $h^{1}=h, h^{2}=g, h^{3}=h^{2} h=g h=e, h^{4}=h^{3} h=e h=h, h^{5}=$ $h h=g, h^{6}=g h=e, h^{7}=e h=h, \ldots$ and so on. Also, $h^{0}=e$ and $h^{-1}=$ $g, h^{-2}=g g=h, h^{-3}=h g=e, h^{-4}=h h=g, h^{-5}=g g=h, h^{-6}=h g=e, \ldots$ and so on.

Thus, $\langle h\rangle=\left\{h^{n}: n \in \mathbb{Z}\right\}=G$, so h is a generator of G. Similarly, $\langle g\rangle=\left\{g^{n}: n \in \mathbb{Z}\right\}=G$, so g is a generator of G.

Hence, if $|G|>2$, then G does not have a unique generator.
Proposition 29. Let $a, b \in \mathbb{Z}^{+}$. The set of all linear combinations of a and b under addition is a cyclic group.
Solution. Let $a, b \in \mathbb{Z}^{+}$. Let $S=\{m a+n b: m, n \in \mathbb{Z}\}$. We must prove $\langle S,+\rangle$ is a group.

We know that $S \subseteq \mathbb{Z}$ since $m a+n b \in \mathbb{Z}$. We know that $\langle\mathbb{Z},+\rangle$ is a group.
Thus we can prove S is a subgroup of \mathbb{Z} by proving:

1. $S \subseteq \mathbb{Z}$
2. S is closed under + .
3. $0 \in S$.
4. each $s \in S$ has an inverse $s^{-1} \in S$.

To prove 2) we must prove:
2a. $\forall r, s \in S . r+s \in S$.
To prove 4 we must prove:
4a. $\forall s \in S .-s \in S$.
We further prove S is cyclic.

Proof. Let $a, b \in \mathbb{Z}^{+}$. Let $S=\{m a+n b: m, n \in \mathbb{Z}\}$.
Suppose $s \in S$. Then $s=m a+n b$ and $m, n \in \mathbb{Z}$. Since $a, b \in \mathbb{Z}^{+}$and $\mathbb{Z}^{+} \subset \mathbb{Z}$ then $a, b \in \mathbb{Z}$. Since $a, b, m, n \in \mathbb{Z}$ and \mathbb{Z} is closed under addition and multiplication, then $m a+n b \in \mathbb{Z}$. Hence, $s \in \mathbb{Z}$. Thus, $s \in S$ implies $s \in \mathbb{Z}$. Since s is arbitrary then $s \in S$ implies $s \in \mathbb{Z}$ for all $s \in S$. Therefore, by definition of subset, $S \subseteq \mathbb{Z}$.

Suppose $r, s \in S$. Then $r=m_{1} a+n_{1} b$ and $s=m_{2} a+n_{2} b$ and $m_{1}, m_{2}, n_{1}, n_{2} \in$ \mathbb{Z}. Since $m, m_{2}, n_{1}, n_{2}, a, b \in \mathbb{Z}$ and $\langle\mathbb{Z},+, \cdot\rangle$ is a ring then $r+s=\left(m_{1} a+\right.$ $\left.n_{1} b\right)+\left(m_{2} a+n_{2} b\right)=m_{1} a+\left(n_{1} b+m_{2} a\right)+n_{2} b=m_{1} a+\left(m_{2} a+n_{1} b\right)+n_{2} b=$ $\left(m_{1} a+m_{2} a\right)+\left(n_{1} b+n_{2} b\right)=\left(m_{1}+m_{2}\right) a+\left(n_{1}+n_{2}\right) b$. Set $m_{3}=m_{1}+m_{2}$ and $n_{3}=n_{1}+n_{2}$. Since \mathbb{Z} is closed under addition then $m_{3}, n_{3} \in \mathbb{Z}$. By definition of $S, m_{3} a+n_{3} b \in S$. Since $r+s=m_{3} a+n_{3} b$ then $r+s \in S$. Since r, s are arbitrary then $r+s \in S$ for all $r, s \in S$. Hence, S is closed under + .

We know $0 \in \mathbb{Z}$ is the additive identity of group $\langle\mathbb{Z},+\rangle$. Since $0=0(a+b)=$ $0 a+0 b$, then $0 \in S$, by definition of S.

Suppose $s \in S$. Then $s=m a+n b$ and $m, n \in \mathbb{Z}$. Since $S \subseteq \mathbb{Z}$ then $s \in \mathbb{Z}$. Since $\langle\mathbb{Z},+\rangle$ is a group we know the additive inverse of s is $-s \in \mathbb{Z}$. Set $t=-s$. Then $t \in \mathbb{Z}$ and $t=-(m a+n b)=-m a-n b=(-m) a+(-n) b$. Since $\langle\mathbb{Z},+\rangle$ is a group and $m, n \in \mathbb{Z}$, then by definition of group, $-m,-n \in \mathbb{Z}$. Hence, by definition of $S,(-m) a+(-n) b \in S$. Thus, $t \in S$, so $-s \in S$. Since s is arbitrary then $-s \in S$ for all $s \in S$. Therefore, each element of S has an additive inverse in S.

Therefore $\langle S,+\rangle$ is a subgroup of $\langle\mathbb{Z},+\rangle$.
Every subgroup of a cyclic group is cyclic. Since $\langle\mathbb{Z},+\rangle$ is a cyclic group and $\langle S,+\rangle$ is a subgroup of $\langle\mathbb{Z},+\rangle$, then $\langle S,+\rangle$ is cyclic.

Every cyclic group is abelian and $\langle S,+\rangle$ is cyclic. Therefore, $\langle S,+\rangle$ is abelian.

Proof. Let $a, b \in \mathbb{Z}^{+}$. Let $S=\{m a+n b: m, n \in \mathbb{Z}\}$. Since $\langle S,+\rangle$ is a cyclic group we show that $\operatorname{gcd}(a, b)$ is a generator of S.

Let $d=\operatorname{gcd}(a, b)$. We prove $d \in S$ and $S=\langle d\rangle=\{t d: t \in \mathbb{Z}\}$.
Since $d=\operatorname{gcd}(a, b)$ then we know d is the least positive linear combination of a and b. Thus, $d=k_{1} a+k_{2} b$ for some $k_{1}, k_{2} \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$. By definition of $S, d \in S$.

We prove $S \subseteq\langle d\rangle$. Let $x \in S$. Then $x=m a+n b$ and $m, n \in \mathbb{Z}$. Since $d=\operatorname{gcd}(a, b)$ then $d \mid a$ and $d \mid b$, by definition of gcd. Hence, by definition of divisibility, $a=d q_{1}$ and $b=d q_{2}$ for some $q_{1}, q_{2} \in \mathbb{Z}$. Observe that $x=m\left(d q_{1}\right)+$ $n\left(d q_{2}\right)=(m d) q_{1}+(n d) q_{2}=(d m) q_{1}+(d n) q_{2}=d\left(m q_{1}\right)+d\left(n q_{2}\right)=d\left(m q_{1}+n q_{2}\right)$. Set $s=m q_{1}+n q_{2}$. Then $x=d s=s d$. Since $m, n, q_{1}, q_{2} \in \mathbb{Z}$ and \mathbb{Z} is closed under + and \cdot then $s \in \mathbb{Z}$. Since $x=s d$ and $s \in \mathbb{Z}$ then $x \in\langle d\rangle$, by definition of $\langle d\rangle$. Thus $x \in S$ implies $x \in\langle d\rangle$. Since x is arbitrary then $x \in S$ implies $x \in\langle d\rangle$ for all $x \in S$. Hence, $S \subseteq\langle d\rangle$.

We prove $\langle d\rangle \subseteq S$. Let $y \in\langle d\rangle$. Then $y=t d$ and $t \in \mathbb{Z}$. Observe that $y=t\left(k_{1} a+k_{2} b\right)=t k_{1} a+t k_{2} b=\left(t k_{1}\right) a+\left(t k_{2}\right) b$. Since $t k_{1}, t k_{2} \in \mathbb{Z}$ then $y \in S$, by definition of S. Thus $y \in\langle d\rangle$ implies $y \in S$. Since y is arbitrary then $y \in\langle d\rangle$ implies $y \in S$ for all $y \in\langle d\rangle$. Hence, $\langle d\rangle \subseteq S$.

Since $S \subseteq\langle d\rangle$ and $\langle d\rangle \subseteq S$ then $S=\langle d\rangle$. Since $d \in S$ and $S=\langle d\rangle=\{t d$: $t \in \mathbb{Z}\}$, then d is a generator of S.

Proposition 30. Let $\langle G, *, \cdot\rangle$ be a group. Let $a \in G$. If $\operatorname{order}(a)=n$, then $\operatorname{order}\left(a^{-1}\right)=n$.

Proof. Suppose order $(\mathrm{a})=n$. Then $a^{n}=e$ and $n \in \mathbb{Z}^{+}$by definition of finite order of an element. We know order $\left(a^{-1}\right)=n$ if $\operatorname{gcd}(-1, n)=1$. The only positive divisor of -1 is 1 since $-1=1 *(-1)$. The set of divisors of n includes 1. Hence the set of common divisors of -1 and n is $\{1\}$. Therefore, the greatest common divisor of -1 and n is 1 . Hence, $\operatorname{gcd}(-1, n)=1$. Thus, $\operatorname{order}\left(a^{-1}\right)=$ n.

Proposition 31. A cycle of length k in S_{n} has order k for all integers $n>1$.
Solution. We could use induction, but the proof leads nowhere, so we need to try another approach. Try using the definition of order of an element of a group.

Let S_{n} be the symmetric group and let $\sigma \in S_{n}$ be a cycle of length k. The longest cycle occurs when $k=n$ and the shortest cycle length is $k=2$. Hence, $2 \leq k \leq n$.

To prove k is the order of σ, we must prove:

1. k satisfies $\sigma^{x}=e$ where $x \in \mathbb{Z}^{+}$.
2. $\neg\left(\exists m \in \mathbb{Z}^{+}\right)\left(m<k \wedge \sigma^{m}=e\right)$.

Proof. Let n be an arbitrary integer greater than 1 . Let σ be an arbitrary permutation of S_{n}. Let k be a positive integer. Suppose σ is a cycle of length k. Since the shortest cycle length is 2 and the longest cycle length in S_{n} is n, then $2 \leq k \leq n$.

We must prove k is the order of σ. Since σ is a cycle, then $\sigma=(1,2, \ldots, k)$. Consider σ^{k}. In σ^{k}, each number i in σ is mapped k times repeatedly so that i maps back to itself. Hence, $\sigma^{k}(i)=i$ for each $i \in\{1,2, \ldots, k\}$ so $\sigma^{k}=i d$, where $i d$ is the identity permutation of S_{n}.

Suppose there is some positive integer m less than k such that $\sigma^{m}=i d$. Then $\sigma^{m}(1)=1$.

But $m<k$, so σ^{m} maps 1 to some element other than 1 because 1 never fully travels the entire cycle back to 1 . Hence, $\sigma^{m}(1) \neq 1$. Thus, we have a contradiction that σ^{m} maps 1 to both 1 and to a number not equal to one. Therefore, there is no positive integer $m<k$ such that $\sigma^{m}=i d$.

Proposition 32. If $n>2$, then S_{n} is nonabelian.
Solution. We try various approaches and examples. If $n=1$, then S_{1} is isomorphic to the trivial group which is known to be abelian. If $n=2$, then S_{2} is isomorphic to $\left(\mathbb{Z}_{2},+\right)$ which is a cyclic group and is therefore abelian. Hence, S_{2} must be abelian. We know S_{3} is nonabelian.

We must prove $(\forall n>2)\left(S_{n}\right.$ is nonabelian). We could try proof by induction, but that leads into difficulties.

Proof. Let n be an arbitrary integer greater than 2. Suppose S_{n} is abelian. Then $\sigma \tau=\tau \sigma$ for every pair of permutations $\sigma, \tau \in S_{n}$.

Since $n>2$, then each permutation in S_{n} contains the transpositions (1,2) and $(1,3)$. These transpositions may be regarded as elements of S_{n} since they each hold fixed any element in S_{n} that is greater than 3 .

So, let $\sigma=(1,2)$ and $\tau=(1,3)$. Then $\sigma \tau=(1,2)(1,3)=(1,3,2) \neq$ $(1,2,3)=(1,3)(1,2)=\tau \sigma$.

Therefore, there exist a pair of elements in S_{n} that do not commute. Hence, S_{n} is not abelian.

Exercise 33. If G is a finite group with an element g of order 5 and an element h of order 7 , then $|G| \geq 35$.

Solution. The hypothesis is:
G is a finite group.
$g, h \in G$ such that $|g|=5$ and $|h|=7$.
We must prove $|G| \geq 35$.
Proof. Since G is a finite group, then the order of G is some positive integer, say n. We must prove $n \geq 35$.

Every element of a finite group has finite order. Moreover, the order of an element of a finite group divides the order of the group. Hence, $|g|$ divides n and $|h|$ divides n. Thus, $5 \mid n$ and $7 \mid n$, so n is a multiple of 5 and 7 . Therefore, n is a multiple of 35 . The least positive multiple of 35 is the least common multiple of 35 , namely 35 . Therefore, $n \geq 35$.

Proposition 34. Let H be a subgroup of G such that $[G: H]=2$. If a and b are not in H, then $a b \in H$.

Solution. We must prove $(\forall a, b \in G)(a \notin H \wedge b \notin H \rightarrow a b \in H)$.

Proof. Let $a, b \in G$ such that $a \notin H$ and $b \notin H$. Since $[G: H]=2$, then there are two distinct left cosets of H in G. Since $e \in G$, then $e H=H$. Thus, one of the left cosets is H. Since $a \in a H$ and $a \notin H$, then $a H \neq H$. Since $a H$ is a left coset and $a H \neq H$ and there are exactly two left cosets of H in G, then $a H$ is the other left coset.

Let L_{H} be the collection of all left cosets of H in G. Then L_{H} is a partition of G and $L_{H}=\{H, a H\}$. Every element of G exists in exactly one left coset of H in G. Hence, every element of G is in either H or in $a H$. Since $a, b \in G$ and G is a group, then $a b \in G$.

Suppose $a b \notin H$. Then $a b \in a H$. Thus, there exists $h \in H$ such that $a b=a h$. By the left cancellation law we obtain $b=h$. Since $b=h$ and $h \in H$, then $b \in H$. Thus, we have $b \notin H$ and $b \in H$, a contradiction. Therefore, $a b \in H$.

Exercise 35. Let H be a subgroup of G such that $[G: H]=2$. Then $g H=H g$ for all $g \in G$.

Solution. We must prove $(\forall g \in G)(g H=H g)$.
Proof. Let $g \in G$. Since $[G: H]=2$, then there are two distinct left cosets of H in G and there are two distinct right cosets of H in G. Since $e \in G$, then $e H=H$ is a left coset and $H e=H$ is a right coset. Since $g \in G$, then $g H$ is a left coset and $H g$ is a right coset.

Either $g \in H$ or $g \notin H$.
We consider these cases separately.
Case 1: Suppose $g \in H$.
Since $g \in g H$ and $g \in e H=H$, then g is in two left cosets. Every element of G lies in exactly one left coset. Thus, $g H=H$.

Since $g \in H g$ and $g \in H e=H$, then g is in two right cosets. Every element of G lies in exactly one right coset. Thus, $H g=H$.

Therefore, $g H=H=H g$, so $g H=H g$.
Case 2: Suppose $g \notin H$.
Since $g \in g H$ and $g \notin H$, then $g H \neq H$. Thus, H and $g H$ are distinct left cosets of H in G, so $L_{H}=\{H, g H\}$ is a partition of G.

Since $g \in H g$ and $g \notin H$, then $H g \neq H$. Thus, H and $H g$ are distinct right cosets of H in G, so $R_{H}=\{H, H g\}$ is a partition of G.

We prove $g H=H g$. Let $x \in g H$. Since $x \in g H$ and $g H \subset G$, then $x \in G$. Every element of G lies in exactly one left coset. Thus, since $x \in g H$, then $x \notin e H=H$. Every element of G lies in exactly one right coset. Thus, since $x \notin H$, then $x \in H g$. Therefore, $x \in g H$ implies $x \in H g$, so $g H \subset H g$.

Let $y \in H g$. Since $y \in H g$ and $H g \subset G$, then $y \in G$. Every element of G lies in exactly one right coset. Thus, since $y \in H g$, then $y \notin H e=H$. Every element of G lies in exactly one left coset. Thus, since $y \notin H$, then $y \in g H$. Therefore, $y \in H g$ implies $y \in g H$, so $H g \subset g H$.

Since $g H \subset H g$ and $H g \subset g H$, then $g H=H g$.
Since $g H=H g$ for all $g \in G$, then H is normal in G, so $H \triangleleft G$.
Proposition 36. If H is a subgroup of a cyclic group G, then $\frac{G}{H}$ is cyclic.
Proof. Suppose H is a subgroup of a cyclic group G. Every cyclic group is abelian. Since G is cyclic, then G is abelian. Every subgroup of an abelian group is normal. Since H is a subgroup of G and G is abelian, then H is normal. Therefore, $\frac{G}{H}$ is a group and $\frac{G}{H}=\{a H: a \in G\}$.

Since G is cyclic, then there exists $g \in G$ such that $G=\left\{g^{n}: n \in \mathbb{Z}\right\}$. Since $g \in G$, then $g H \in \frac{G}{H}$. Let T be the cyclic group generated by $g H$. Then $T=\left\{(g H)^{n}: n \in \mathbb{Z}\right\}$.

Let $x \in \frac{G}{H}$. Then there exists $a \in G$ such that $x=a H$.
Since $a \in G$, then $a=g^{n}$ for some integer n. Therefore, $x=g^{n} H=(g *$ $g * \ldots * g) H=(g H)(g H) \ldots(g H)=(g H)^{n}$. Since n is an integer and $x=(g H)^{n}$, then $x \in T$. Hence, $x \in \frac{G}{H}$ implies $x \in T$, so $\frac{G}{H} \subset T$.

Let $y \in T$. Then there exists an integer m such that $y=(g H)^{m}$. Thus, $y=$ $(g H)(g H) \ldots(g H)=(g g \ldots g) H=\left(g^{m}\right) H$. Since $g^{m} \in G$, then $y=\left(g^{m}\right) H \in \frac{G}{H}$. Thus, $y \in T$ implies $y \in \frac{G}{H}$, so $T \subset \frac{G}{H}$.

Since $\frac{G}{H} \subset T$ and $T \subset \frac{G}{H}$, then $\frac{G}{H}=T$. Thus, $\frac{G}{H}=\left\{(g H)^{n}: n \in \mathbb{Z}\right\}$. Since there exists $g H \in \frac{G}{H}$ such that $\frac{G}{H}=\left\{(g H)^{n}: n \in \mathbb{Z}\right\}$, then $\frac{G}{H}$ is cyclic.
Proposition 37. Let G be a group. Let $g \in G$. Let $C(g)=\{x \in G: x g=g x\}$. Then $C(g)$ is a subgroup of G (called the centralizer of g). If g generates a normal subgroup of G, then $C(g)$ is normal in G.

Proof. Observe that $C(g)$ is a subset of G. Let $a, b \in C(g)$. Then $a \in G$ and $a g=g a$ and $b \in G$ and $b g=g b$. We right multiply $a g=g a$ by b to get $a g b=g a b$. We left multiply $b g=g b$ by a to get $a b g=a g b$. Thus, $g a b=a g b=a b g$, so $a b g=g a b$. Since G is a group and $a, b \in G$, then $a b \in G$. Since $a b \in G$ and $(a b) g=g(a b)$, then $a b \in C(g)$. Therefore, $C(g)$ is closed under the binary operation $*$.

Let e be the identity of G. Then $e \in G$ and $e g=g=g e$. Since $e \in G$ and $e g=g e$, then $e \in C(g)$.

Let $a \in C(g)$. Then $a \in G$ and $a g=g a$. Left multiply by a^{-1} to get $a^{-1} a g=$ $a^{-1} g a$. Thus, $g=a^{-1} g a$. Right multiply by a^{-1} to get $g a^{-1}=a^{-1} g a a^{-1}$. Thus, $g a^{-1}=a^{-1} g$. Since $a^{-1} \in G$ and $a^{-1} g=g a^{-1}$, then $a^{-1} \in C(g)$.

Thus, $C(g)$ is a subgroup of G.
Suppose $\langle g\rangle$ is normal in G. Let $H=\langle g\rangle$. Then for all $g_{1} \in G$ and all $h \in H$, $g_{1} h g_{1}^{-1} \in H$.

To prove $C(g)$ is normal in G, we prove for all $g_{1} \in G$ and all $h \in C(g)$, $g_{1} h g_{1}^{-1} \in C(g)$. Let $g_{1} \in G$ and $h \in C(g)$. Since $h \in C(g)$, then $h \in G$ and $h g=g h$. Let $x=g_{1} h g_{1}^{-1}$. To prove $x \in C(g)$, we must prove $x \in G$ and $x g=g x$. Since $g_{1}, g_{1}^{-1}, h \in G$ and G is a group, then $x \in G$.

We must prove $x g=g x$. Since $x=g_{1} h g_{1}^{-1}$ and H is normal in G, then $g_{1} h g_{1}^{-1} \in H$, so $x \in H$.

Exercise 38. $\left(\mathbb{Z}_{6},+\right) \not \approx\left(S_{3}, \circ\right)$.
Solution. We know that $\left|\mathbb{Z}_{6}\right|=6$ and $\left|S_{3}\right|=3!=6$, but \mathbb{Z}_{6} is abelian group, while S_{3} is nonabelian. Thus, we conjecture that there does not exist an isomorphism. To prove this, let's suppose there does exist an isomorphism and derive a contradiction.

Proof. Suppose \mathbb{Z}_{6} is isomorphic to S_{3}. Then there exists an isomorphism between \mathbb{Z}_{6} and S_{3}.

Let $\phi: \mathbb{Z}_{6} \mapsto S_{3}$ be some isomorphism. Then ϕ is a bijective homomorphism. Since ϕ is a homomorphism, then for every $[a],[b] \in \mathbb{Z}_{6}, \phi([a]+[b])=\phi([a]) \phi([b])$. Since S_{3} is non abelian, then \circ is not commutative. Therefore, there exist $\sigma, \tau \in S_{3}$ such that $\sigma \tau \neq \tau \sigma$. Since \mathbb{Z}_{6} is abelian, then for every $[a],[b] \in \mathbb{Z}_{6}$, $[a]+[b]=[b]+[a]$.

Since ϕ is bijective, then ϕ is surjective. Therefore, since $\sigma \in S_{3}$, then there exists $[a] \in \mathbb{Z}_{6}$ such that $\phi([a])=\sigma$. Similarly, since $\tau \in S_{3}$, then there exists $[b] \in \mathbb{Z}_{6}$ such that $\phi([b])=\tau$.

Observe that $\sigma \tau=\phi([a]) \phi([b])=\phi([a]+[b])=\phi([b]+[a])=\phi([b]) \phi([a])=$ $\tau \sigma$. Hence, we have $\sigma \tau=\tau \sigma$ and $\sigma \tau \neq \tau \sigma$, a contradiction.

Therefore, there is no isomorphism ϕ. Since no isomorphism exists between \mathbb{Z}_{6} and S_{3}, then \mathbb{Z}_{6} is not isomorphic to S_{3}.

Proposition 39. $\langle\mathbb{Z},+, \cdot\rangle$ is a ring.
Proof. We know $\langle\mathbb{Z},+\rangle$ is an abelian group. We know \mathbb{Z} is closed under multiplication and $a b \in \mathbb{Z}$ is unique for all $a, b \in \mathbb{Z}$. Therefore, multiplication is a binary operation on \mathbb{Z}. Also, multiplication of integers is associative so $a(b c)=(a b) c$ for all $a, b, c \in \mathbb{Z}$. We know multiplication is distributive over addition. Thus, $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in \mathbb{Z}$.

Fields

Exercise 40. Let $S=\{a, b\}$. Define addition on S by $a+a=a$ and $a+b=$ $b=b+a$ and $b+b=b$. Define multiplication on S by $a a=a b=b a=a$ and $b b=b$. Then $(S,+, *)$ is a field.

Solution. To prove S is a field, we must prove S is a commutative division ring. Thus, we must prove $(S,+, *)$ is a ring with $1 \neq 0$ and $*$ is commutative and every nonzero element of S has a multiplicative inverse. Hence, we must prove

1. $(S,+)$ is an abelian group.

1a. addition is a binary operation on S.
1a1. S is closed under addition.
1a2. $x+y$ is unique for all $x, y \in S$.
$1 \mathrm{~b} .+$ is associative.
1c. + is commutative.
1d. there exists an additive identity in S.
1e. each element of S has an additive inverse.
2. multiplication is a binary operation on S.

2a1. S is closed under multiplication.
2a2. $x y$ is unique for all $x, y \in S$.
2. $*$ is associative.
3. there exists a multiplicative identity 1
4. multiplication distributes over addition:

4a. left distributive : $a(b+c)=a b+a c$
4b. right distributive: $(a+b) c=a c+b c$.
5. $1 \neq 0$.
6. $*$ is commutative.
7. every nonzero element of S has a multiplicative inverse.

We can write out the addition and multiplication tables for S. Since $|S|=2$, then $|S \times S|=|S||S|=2 * 2=2^{2}=4$. Thus, there are 4 ordered pairs mapped by addition and mapped by multiplication.

Proof. The sum of any pair of elements of S is a unique element of S. Hence, addition is a binary operation on S.

Since $a+b=b=b+a$, then addition is commutative.
We prove addition is associative.
There are $2^{3}=8$ cases to consider.
Case 1: Observe that $(a+a)+a=a+a=a+(a+a)$.
Case 2: Observe that $(a+a)+b=a+b=a+(a+b)$.
Case 3: Observe that $(a+b)+a=b+a=b=a+b=a+(b+a)$.
Case 4: Observe that $(a+b)+b=b+b=a=a+a=a+(b+b)$.
Case 5: Observe that $(b+a)+a=b+a=b+(a+a)$.
Case 6: Observe that $(b+a)+b=b+b=b+(a+b)$.
Case 7: Observe that $(b+b)+a=a+a=a=b+b=b+(b+a)$.
Case 8: Observe that $(b+b)+b=a+b=b=b+a=b+(b+b)$.
Thus, addition is associative.
Since $a+a=a$ and $a+b=b=b+a$, then a is an additive identity. Thus, a is a zero element of S.

Since $a+a=a$, then a is an additive inverse of a. Since $b+b=a$, then b is an additive inverse of b. Hence, each element of S has an additive inverse.

Therefore, $(S,+)$ is an abelian group.
The product of any pair of elements of S is a unique element of S. Hence, multiplication is a binary operation on S.

Since $a b=a=b a$, then multiplication is commutative.
We prove multiplication is associative.
There are $2^{3}=8$ cases to consider.
Case 1: Observe that $(a a) a=a a=a(a a)$.
Case 2: Observe that $(a a) b=a b=a=a a=a(a b)$.
Case 3: Observe that $(a b) a=a a=a(b a)$.
Case 4: Observe that $(a b) b=a b=a(b b)$.
Case 5: Observe that $(b a) a=a a=a=b a=b(a a)$.
Case 6: Observe that $(b a) b=a b=a=b a=b(a b)$.
Case 7: Observe that $(b b) a=b a=b(b a)$.
Case 8: Observe that $(b b) b=b b=b(b b)$.
Thus, multiplication is associative.
Since $b a=a=a b$ and $b b=b$, then b is a multiplicative identity. Since $a \neq b$, then the multiplicative identity is distinct from the additive identity. The only nonzero element in S is b. Since $b b=b$, then the multiplicative inverse of b is b. Hence, every nonzero element of S has a multiplicative inverse.

We prove the left distributive law holds in S.
There are $2^{3}=8$ cases to consider.
Case 1: Observe that $a(a+a)=a a=a=a+a=a a+a a$.
Case 2: Observe that $a(a+b)=a b=a=a+a=a a+a b$.
Case 3: Observe that $a(b+a)=a b=a=a+a=a b+a a$.
Case 4: Observe that $a(b+b)=a a=a=a+a=a b+a b$.
Case 5: Observe that $b(a+a)=b a=a=a+a=b a+b a$.
Case 6: Observe that $b(a+b)=b b=b=a+b=b a+b b$.
Case 7: Observe that $b(b+a)=b b=b=b+a=b b+b a$.

Case 8: Observe that $b(b+b)=b a=a=b+b=b b+b b$.
Thus, the left distributive law holds in S.
Let $x, y, z \in S$. Then $(x+y) z=z(x+y)=z x+z y=x z+y z$. Thus, the right distributive law holds in S. Hence, multiplication is distributive over addition in S.

Therefore, $(S,+, *)$ is a field.
Proof. Define $\phi: \mathbb{Z}_{2} \rightarrow S$ by $\phi(0)=a$ and $\phi(1)=b$.
Clearly, ϕ is a function and ϕ is injective and surjective. Hence, ϕ is bijective.
We prove ϕ is a ring homomorphism. Observe that $\phi(0+0)=\phi(0)=a=$ $a+a=\phi(0)+\phi(0)$ and $\phi(0+1)=\phi(1)=b=a+b=\phi(0)+\phi(1)$ and $\phi(1+0)=$ $\phi(1)=b=b+a=\phi(1)+\phi(0)$ and $\phi(1+1)=\phi(0)=a=b+b=\phi(1)+\phi(1)$. Thus, ϕ preserves addition.

Observe that $\phi(0 * 0)=\phi(0)=a=a a=\phi(0) \phi(0)$ and $\phi(0 * 1)=\phi(0)=a=$ $a b=\phi(0) \phi(1)$ and $\phi(1 * 0)=\phi(0)=a=b a=\phi(1) \phi(0)$ and $\phi(1 * 1)=\phi(1)=$ $b=b b=\phi(1) \phi(1)$. Thus, ϕ preserves multiplication.

Since $\phi(1)=b$ and 1 is unity of \mathbb{Z}_{2} and b is unity of S, then ϕ preserves the unity element of the rings.

Therefore, ϕ is a ring homomorphism. Since ϕ is bijective, then ϕ is a bijective ring homomorphism, so ϕ is a ring isomorphism. Hence, $\left(\mathbb{Z}_{2},+, *\right) \cong$ $(S,+, *)$. Since 2 is prime, then \mathbb{Z}_{2} is a field. Hence, S is a field.

Exercise 41. Let $(F,+, *)$ be a field. Then $(x+1)^{2}=x^{2}+2 x+1$ for all $x \in F$.
Proof. Let $x \in F$. Let 1 be the unity of F. Define $2=1+1$ and $2 x=x+x$ and $x^{2}=x * x$ for all $x \in F$. Then

$$
\begin{aligned}
(x+1)^{2} & =(x+1)(x+1) \\
& =(x+1) x+(x+1) * 1 \\
& =(x * x+1 * x)+(x+1) \\
& =(x * x+x)+(x+1) \\
& =x * x+(x+x)+1 \\
& =x^{2}+2 x+1
\end{aligned}
$$

