Ring Theory Exercises

Jason Sass

April 24, 2023

Exercise 1. Is the algebraic structure $(7 \mathbb{Z},+, \cdot)$ a ring?
Solution. The set $7 \mathbb{Z}=\{7 k: k \in \mathbb{Z}\}$ is the set of all multiples of 7 .
The structure $(7 \mathbb{Z},+)$ is a cyclic group, so $7 \mathbb{Z}$ is abelian.
We also can determine that multiplication is associative.
However, there is no multiplicative identity, so $(7 \mathbb{Z},+\cdot)$ is not a ring.
Exercise 2. Let $(R,+, \cdot)$ be a ring.
Then $(a+b)(c+d)=a c+a d+b c+b d$ for all $a, b, c, d \in R$.
Proof. Let $a, b, c, d \in R$.
Then

$$
\begin{aligned}
(a+b)(c+d) & =(a+b) c+(a+b) d \\
& =a c+b c+a d+b d \\
& =a c+a d+b c+b d
\end{aligned}
$$

Exercise 3. Let $(R,+, \cdot)$ be a commutative ring with unity $1 \neq 0$.
Then $(x+1)^{2}=x^{2}+2 x+1$ for all $x \in R$.
Proof. Let $x \in R$.
Let 1 be the unity of R.
Define $2=1+1$ and $2 x=(1+1) \cdot x$ and $x^{2}=x \cdot x$ for all $x \in R$.
Since $x \in R$ and $1 \in R$, then $x+1 \in R$.
Hence,

$$
\begin{aligned}
(x+1)^{2} & =(x+1) \cdot(x+1) \\
& =(x+1) \cdot x+(x+1) \cdot 1 \\
& =(x \cdot x+1 \cdot x)+(x \cdot 1+1 \cdot 1) \\
& =x \cdot x+(1 \cdot x+x \cdot 1)+1 \cdot 1 \\
& =x \cdot x+(1 \cdot x+1 \cdot x)+1 \cdot 1 \\
& =x \cdot x+(1+1) \cdot x+1 \cdot 1 \\
& =x^{2}+2 x+1
\end{aligned}
$$

Exercise 4. In any ring $R,(a+b)^{2}=a^{2}+2 a b+b^{2}$ iff R is commutative.
Proof. Let R be an arbitrary ring.
Let $a, b \in R$.
We prove if $(a+b)^{2}=a^{2}+2 a b+b^{2}$, then R is commutative.
Suppose $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
Observe that

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =\left(a^{2}+a b\right)+\left(b a+b^{2}\right) \\
& =\left(a^{2}+a b\right)+\left(b^{2}+b a\right) \\
& =\left(\left(a^{2}+a b\right)+b^{2}\right)+b a .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
a^{2}+2 a b+b^{2} & =a^{2}+(a b+a b)+b^{2} \\
& =\left(a^{2}+a b\right)+\left(a b+b^{2}\right) \\
& =\left(a^{2}+a b\right)+\left(b^{2}+a b\right) \\
& =\left(\left(a^{2}+a b\right)+b^{2}\right)+a b
\end{aligned}
$$

Thus, $\left(\left(a^{2}+a b\right)+b^{2}\right)+b a=(a+b)^{2}=a^{2}+2 a b+b^{2}=\left(\left(a^{2}+a b\right)+b^{2}\right)+a b$.
Hence, $\left(\left(a^{2}+a b\right)+b^{2}\right)+b a=\left(\left(a^{2}+a b\right)+b^{2}\right)+a b$.
By the cancellation law for addition we obtain $b a=a b$.
Therefore, $a b=b a$ for all $a, b \in R$, so R is commutative.
We prove if R is commutative, then $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
Suppose R is commutative.
Then $a b=b a$.
Observe that

$$
\begin{aligned}
(a+b)^{2} & =(a+b)(a+b) \\
& =(a+b) a+(a+b) b \\
& =\left(a^{2}+b a\right)+\left(a b+b^{2}\right) \\
& =a^{2}+(b a+a b)+b^{2} \\
& =a^{2}+(a b+a b)+b^{2} \\
& =a^{2}+2 a b+b^{2}
\end{aligned}
$$

Exercise 5. Let R be a ring such that $a^{2}=a$ for all $a \in R$.
Then R is commutative and $a+a=0$ for all $a \in R$.
We note that R is a boolean ring.
Proof. We prove $(\forall a \in R)(a+a=0)$.
Let $a \in R$.

Then

$$
\begin{aligned}
a+a & =(a+a)^{2} \\
& =(a+a)(a+a) \\
& =(a+a) a+(a+a) a \\
& =\left(a^{2}+a^{2}\right)+\left(a^{2}+a^{2}\right) \\
& =(a+a)+(a+a)
\end{aligned}
$$

Thus, $a+a=(a+a)+(a+a)$, so $(a+a)+0=(a+a)+(a+a)$.
By the cancellation law for addition we obtain $0=a+a$.
We prove R is commutative.
Let $a, b \in R$.
Then

$$
\begin{aligned}
a+b & =(a+b)^{2} \\
& =(a+b)(a+b) \\
& =a(a+b)+b(a+b) \\
& =\left(a^{2}+a b\right)+\left(b a+b^{2}\right) \\
& =(a+a b)+(b a+b) \\
& =a+(a b+b a)+b \\
& =a+b+(a b+b a) \\
& =(a+b)+(a b+b a) .
\end{aligned}
$$

Thus, $a+b=(a+b)+(a b+b a)$, so $(a+b)+0=(a+b)+(a b+b a)$.
By the cancellation law for addition we obtain $0=a b+b a$.
Since $x+x=0$ for all $x \in R$, then in particular, $a b+a b=0$.
Thus, $a b+a b=0=a b+b a$.
By the cancellation law for addition we obtain $a b=b a$.
Therefore, $a b=b a$ for all $a, b \in R$, so $*$ is commutative.
Exercise 6. Let R be a commutative ring.
For each $a \in R$ let $H_{a}=\{x \in R: a x=0\}$.
Then for every $x, y \in H_{a}, x y \in H_{a}$.
Proof. Let $x, y \in H_{a}$.
Then $x, y \in R$ and $a x=0$ and $a y=0$.
Observe that

$$
\begin{aligned}
0 & =0 y \\
& =(a x) y \\
& =a(x y)
\end{aligned}
$$

Since R is closed under multiplication, then $x y \in R$.
Thus, $x y \in R$ and $a(x y)=0$, so $x y \in H_{a}$.

Exercise 7. Let $n \in \mathbb{N}, n>1$ and $x^{n}=x$ for all x in a ring R.
If $a, b \in R$ such that $a b=0$, then $b a=0$.
Proof. Let $a, b \in R$ such that $a b=0$.
Then $a b \in R$ and

$$
\begin{aligned}
b a & =(b a)^{n} \\
& =(b a)(b a) \ldots(b a)(b a) \\
& =b(a b)(a b) \ldots(a b) a \\
& =b * 0 * 0 * \ldots * 0 * a \\
& =0
\end{aligned}
$$

Hence, $b a=0$.
Exercise 8. Let $(R,+, \cdot)$ be a division ring.
Let $a \in R$.
If $a \neq 0$, then $-\frac{1}{a}=\frac{1}{-a}$.
Proof. Suppose $a \neq 0$.
Since $a=0$ implies $-a=0$ for all a in a ring, then $-a=0$ implies $-(-a)=0$.
Hence, $-a=0$ implies $a=0$, so $a \neq 0$ implies $-a \neq 0$.
Since $a \neq 0$, then $-a \neq 0$.
Thus, $(-a)^{-1} \in R$, so $(-a)^{-1}=\frac{1}{-a}$.
Consequently, $(-a)\left(\frac{1}{-a}\right)=1$.
Since $a \neq 0$, then $\frac{1}{a} \in R$, so $-\frac{1}{a} \in R$.
Observe that

$$
\begin{aligned}
-\frac{1}{a} & =-\frac{1}{a} \cdot 1 \\
& =\left(-\frac{1}{a}\right)\left[(-a)\left(\frac{1}{-a}\right)\right] \\
& =\left[\left(-\frac{1}{a}\right)(-a)\right]\left(\frac{1}{-a}\right) \\
& =\left[\left(\frac{1}{a}\right)(a)\right]\left(\frac{1}{-a}\right) \\
& =1 \cdot \frac{1}{-a} \\
& =\frac{1}{-a} .
\end{aligned}
$$

Therefore, $-\frac{1}{a}=\frac{1}{-a}$.
Exercise 9. Let $(R,+, \cdot)$ be a division ring.
Let $a, b \in R$.
If $b \neq 0$, then $-\frac{a}{b}=\frac{-a}{b}$.

Proof. Suppose $b \neq 0$.
Then $b^{-1} \in R$ and $\frac{a}{b} \in R$, so $-\frac{a}{b} \in R$.
Observe that

$$
\begin{aligned}
-\frac{a}{b} & =(-1) \cdot \frac{a}{b} \\
& =(-1) \cdot\left(a \cdot b^{-1}\right) \\
& =[(-1)(a)]\left(b^{-1}\right) \\
& =(-a)\left(b^{-1}\right) \\
& =\frac{-a}{b} .
\end{aligned}
$$

Therefore, $-\frac{a}{b}=\frac{-a}{b}$.

Integral domains

Exercise 10. Let D be an integral domain.
Let $x \in D$ such that $x^{2}=x$.
Then either $x=0$ or $x=1$.
Proof. Since $x^{2}=x$, then $0=x^{2}-x=x(x-1)$.
Hence, either $x=0$ or $x-1=0$.
Therefore, either $x=0$ or $x=1$.
Exercise 11. Let D be an integral domain.
If $a^{2}=1$, then $a= \pm 1$.
Proof. Let $a \in D$ such that $a^{2}=1$.
Observe that $1^{2}=1 \cdot 1=1=a^{2}$.
Thus, $a^{2}-1^{2}=0$, so $(a+1)(a-1)=0$.
Since D is an integral domain, then either $a+1=0$ or $a-1=0$.
Hence, either $a=-1$ or $a=1$, so $a= \pm 1$.
Exercise 12. Let D be an integral domain.
Let $a, b \in D$.
Then $a^{2}=b^{2}$ iff $a=b$ or $a=-b$.
Proof. We prove if $a^{2}=b^{2}$ then $a=b$ or $a=-b$.
Suppose $a^{2}=b^{2}$.
Then $0=a^{2}-b^{2}=(a-b)(a+b)$.
Since D is an integral domain, then either $a-b=0$ or $a+b=0$.
Therefore, either $a=b$ or $a=-b$.
Conversely, we prove if $a=b$ or $a=-b$, then $a^{2}=b^{2}$.
Suppose $a=b$ or $a=-b$.
If $a=b$, then $a^{2}=a a=b b=b^{2}$.
If $a=-b$, then $a^{2}=a a=(-b)(-b)=b b=b^{2}$.

Ideals

Exercise 13. The set $\{[0],[2],[4]\}$ is an ideal of \mathbb{Z}_{6}.
Solution. Let $R=\mathbb{Z}_{6}$ and $I=\{[0],[2],[4]\}$.
Observe that I is a cyclic subgroup of $\left(\mathbb{Z}_{6},+\right)$ and $I=\left\{k[2]_{6}: k \in \mathbb{Z}\right\}=$ $\left.[2 k]_{6}: k \in \mathbb{Z}\right\}$.

Let $x \in I$.
Then $x=[2 k]$ for some $k \in \mathbb{Z}$.
Let $a \in R x$.
Then $a=[r]_{6} x$ for some $r \in \mathbb{Z}$.
Thus, $a=[r]([2 k])=[(2 k) r]=[2(k r)]$.
Since \mathbb{Z} is closed under multiplication and $k, r \in \mathbb{Z}$, then $k r \in \mathbb{Z}$.
Hence, $a \in I$, by definition of I.
Thus, $a \in R x$ implies $a \in I$, so $R x \subset I$.
Let $b \in x R$.
Then $b=x[r]_{6}$ for some $r \in \mathbb{Z}$.
Thus, $b=[2 k][r]=[(2 k) r]=[2(k r)]$.
Since \mathbb{Z} is closed under multiplication and $k, r \in \mathbb{Z}$, then $k r \in \mathbb{Z}$.
Hence, $a \in I$, by definition of I.
Thus, $a \in x R$ implies $a \in I$, so $x R \subset I$.
Therefore, $R I \subset I$ and $I R \subset I$.
Since $(I,+)$ is an abelian subgroup of $(R,+)$ and $R I \subset I$ and $I R \subset I$, then I is an ideal of R.

Thus, the set $\{[0],[2],[4]\}$ is an ideal of \mathbb{Z}_{6}.
Proposition 14. $\langle\mathbb{Z},+, \cdot\rangle$ is a ring.
Proof. We know $\langle\mathbb{Z},+\rangle$ is an abelian group.
We know \mathbb{Z} is closed under multiplication and $a b \in \mathbb{Z}$ is unique for all $a, b \in \mathbb{Z}$. Therefore, multiplication is a binary operation on \mathbb{Z}.
Also, multiplication of integers is associative so $a(b c)=(a b) c$ for all $a, b, c \in$ \mathbb{Z}.

We know multiplication is distributive over addition.
Thus, $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in \mathbb{Z}$.

