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Exercise 1. Is the algebraic structure(7Z, +, -) a ring?

Solution. The set 7Z = {7k : k € Z} is the set of all multiples of 7.
The structure (7Z,+) is a cyclic group, so 7Z is abelian.
We also can determine that multiplication is associative.

However, there is no multiplicative identity, so (7Z, + -) is not a ring.

Exercise 2. Let (R, +,-) be a ring.
Then (a + b)(c + d) = ac + ad + bc + bd for all a,b,c,d € R.

Proof. Let a,b,c,d € R.
Then

(a+b)(c+d) = (a+b)c+ (a+b)d
ac + be + ad + bd
= ac+ ad+ bc+ bd.

Exercise 3. Let (R, +,) be a commutative ring with unity 1 # 0.
Then (z +1)? =22 +2x + 1 for all z € R.

Proof. Let xz € R.
Let 1 be the unity of R.
Define2=1+1and 2z =(1+1) -z and 22> =z -z for all z € R.
Sincex € Rand 1 € R, then x +1 € R.
Hence,

(z+1)? (x+1)-(z+1)

= (z+1)-z+(z+1)-1
(x-z+1-2)+(x-1+1-1)

= z-z+(1-z+x-1)+1-1

= z-z+(1-z+1-2)+1-1

= z-z+(1+1)-z+1-1
22+ 2 + 1.

O



Exercise 4. In any ring R, (a + b)? = a® + 2ab + b? iff R is commutative.

Proof. Let R be an arbitrary ring.
Let a,b € R.
We prove if (a + b)?2 = a? + 2ab + b?, then R is commutative.
Suppose (a + b)? = a? + 2ab + b
Observe that

(a+b)? = (a+b)(a+D)
a(a+0b)+bla+0b)
a® + ab) + (ba + b?)
a® + ab) + (b* + ba)
(a® + ab) 4 b*) + ba.

(
(
(
Observe that

a4+ 2ab+b* = a®+ (ab+ ab) + b
= (a*® +ab) + (ab+b?)
= (a® +ab) + (b* + ab)
= ((a® 4 ab) + b*) + ab.

Thus, ((a? +ab) +b?) +ba = (a+b)? = a® +2ab+b? = ((a® + ab) + b*) + ab.
Hence, ((a? + ab) + b?) + ba = ((a® + ab) + b*) + ab.

By the cancellation law for addition we obtain ba = ab.

Therefore, ab = ba for all a,b € R, so R is commutative.

We prove if R is commutative, then (a + b)? = a? + 2ab + b>.

Suppose R is commutative.

Then ab = ba.

Observe that

(a+b)? = (a+b)(a+b)
(a+b)a+ (a+b)b
(a® + ba) + (ab + b?)
= %+ (ba + ab) + b
a® + (ab + ab) +b*
= a® 4 2ab+ b2

Exercise 5. Let R be a ring such that a? = a for all a € R.
Then R is commutative and a + a = 0 for all a € R.
We note that R is a boolean ring.

Proof. We prove (Va € R)(a +a = 0).
Let a € R.



Then

a-+a

Thus, a+a = (a+a) + (a + a), so

a+ a)?

(

(a+a)(a+a)
(a+a)a+ (a+a)a
(a —|—a) (a2—|—a2)
(a+a)+ (a+a).

(a+a)+0=(a+a)+ (a+a)

By the cancellation law for addition we obtain 0 = a + a.

We prove R is commutative.
Let a,b € R.
Then

a+b

Thus, a+b= (a+b) +

(ab + ba), so

(a+ b)?
(a+b)(a+Db)
ala+b) +bla+d)
(a® + ab) + (ba + b?)
(a + ab) + (ba + b)
a+ (ab+ba) +b
a+ b+ (ab+ ba)

(a +b) + (ab+ ba).

(a+0b)+0=(a+b)+ (ab+ ba).

By the cancellation law for addition we obtain 0 = ab + ba.
Since z 4+ x = 0 for all z € R, then in particular, ab 4+ ab = 0.

Thus, ab + ab =0 = ab + ba.

By the cancellation law for addition we obtain ab = ba.
Therefore, ab = ba for all a,b € R, so * is commutative.

Exercise 6. Let R be a commutative ring.
For each a € Rlet H, = {z € R: ax = 0}.
Then for every x,y € Hy,xy € H,.

Proof. Let x,y € H,.

Then z,y € R and ax = 0 and ay = 0.

Observe that

0

Oy
(az)y
a(zy).

Since R is closed under multiplication, then zy € R.
Thus, 2y € R and a(zy) =0, so xy € H,.



Exercise 7. Let n € N;n > 1 and 2™ = z for all = in a ring R.
If a,b € R such that ab = 0, then ba = 0.

Proof. Let a,b € R such that ab = 0.
Then ab € R and

ba = (ba)"
= (ba)(ba)...(ba)(ba)
= b(ab)(ab)...(ab)a
= bx0x0x*x...%x0x%a
0.

Hence, ba = 0. O

Exercise 8. Let (R, +,-) be a division ring.
Let a € R.
If a # 0, then —% =1,

a

Proof. Suppose a # 0.
Since @ = 0 implies —a = 0 for all a in aring, then —a = 0 implies —(—a) = 0.
Hence, —a = 0 implies a = 0, so a # 0 implies —a # 0.
Since a # 0, then —a # 0.
Thus, (—a)™' € R, so (—a)™' = L.
Consequently, (—a)(-L) = 1.
Since a # 0, then % € R, so f% € R.
Observe that

1o
= (Dl-a)()
= (D))
= () @l=)
T
_ L
Therefore, -+ = L. O

Exercise 9. Let (R, +,-) be a division ring.
Let a,b € R.
If b # 0, then —% = 3%,



Proof. Suppose b # 0.
Then b~ ! € R and T E€R,s0 -7 €R.
Observe that

4
b

Therefore, —¢ = 3*. O

Integral domains

Exercise 10. Let D be an integral domain.
Let € D such that z2 = z.
Then either =0 or z = 1.

Proof. Since 22 = x, then 0 = 22 — z = z(z — 1).

Hence, either x =0 or x — 1 =0.
Therefore, either x =0 or x = 1. O

Exercise 11. Let D be an integral domain.
If a®> = 1, then a = +1.

Proof. Let a € D such that a? = 1.
Observe that 12 =1-1=1 = a?.
Thus, a> —12=0,s0 (a+1)(a —1) = 0.
Since D is an integral domain, then either a+1=0o0r a—1=0.
Hence, either a = —1 or a =1, so a = £1. O

Exercise 12. Let D be an integral domain.
Let a,b € D.
Then a? = b? iff a = b or a = —b.

Proof. We prove if a? = b then a = b or a = —b.
Suppose a? = b?.
Then 0 = a® — b? = (a — b)(a + b).
Since D is an integral domain, then either a —b=0or a +b = 0.

Therefore, either a = b or a = —b.

Conversely, we prove if a = b or a = —b, then a? = b?.

Suppose a = b or a = —b.

If @ = b, then a® = aa = bb = V2.

If @ = —b, then a® = aa = (—b)(—b) = bb = b. O



Ideals

Exercise 13. The set {[0],[2],[4]} is an ideal of Zg.

Solution. Let R = Zg and I = {[0], [2], [4]}.

Observe that I is a cyclic subgroup of (Zg,+) and I = {k[2]¢ : k € Z} =
[2kl : k € Z}.

Let x € I.

Then x = [2k] for some k € Z.

Let a € Rx.

Then a = [r|gx for some r € Z.

Thus, a = [r]([2k]) = [(2k)r] = [2(kr)].

Since Z is closed under multiplication and k,r € Z, then kr € Z.

Hence, a € I, by definition of I.

Thus, a € Rx implies a € I, so Rx C 1.

Let b € zR.

Then b = z[r]¢ for some r € Z.

Thus, b = [2k|[r] = [(2k)r] = [2(kr)].

Since Z is closed under multiplication and k,r € Z, then kr € Z.

Hence, a € I, by definition of I.

Thus, a € xR implies a € I, so xR C I.

Therefore, RI C I and IR C I.

Since (I, +) is an abelian subgroup of (R,+) and RI C I and IR C I, then
I is an ideal of R.

Thus, the set {[0], [2], [4]} is an ideal of Zg. O

Proposition 14. (Z,+,-) is a ring.

Proof. We know (Z,+) is an abelian group.
We know Z is closed under multiplication and ab € Z is unique for all a, b € Z.
Therefore, multiplication is a binary operation on Z.
Also, multiplication of integers is associative so a(bc) = (ab)c for all a,b,c €

We know multiplication is distributive over addition.
Thus, a(b+ ¢) = ab+ ac and (a + b)c = ac + be for all a, b, c € Z. O



