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Exercise 1. Is the algebraic structure(7Z,+, ·) a ring?

Solution. The set 7Z = {7k : k ∈ Z} is the set of all multiples of 7.
The structure (7Z,+) is a cyclic group, so 7Z is abelian.
We also can determine that multiplication is associative.
However, there is no multiplicative identity, so (7Z,+ ·) is not a ring.

Exercise 2. Let (R,+, ·) be a ring.
Then (a + b)(c + d) = ac + ad + bc + bd for all a, b, c, d ∈ R.

Proof. Let a, b, c, d ∈ R.
Then

(a + b)(c + d) = (a + b)c + (a + b)d

= ac + bc + ad + bd

= ac + ad + bc + bd.

Exercise 3. Let (R,+, ·) be a commutative ring with unity 1 6= 0.
Then (x + 1)2 = x2 + 2x + 1 for all x ∈ R.

Proof. Let x ∈ R.
Let 1 be the unity of R.
Define 2 = 1 + 1 and 2x = (1 + 1) · x and x2 = x · x for all x ∈ R.
Since x ∈ R and 1 ∈ R, then x + 1 ∈ R.
Hence,

(x + 1)2 = (x + 1) · (x + 1)

= (x + 1) · x + (x + 1) · 1
= (x · x + 1 · x) + (x · 1 + 1 · 1)

= x · x + (1 · x + x · 1) + 1 · 1
= x · x + (1 · x + 1 · x) + 1 · 1
= x · x + (1 + 1) · x + 1 · 1
= x2 + 2x + 1.



Exercise 4. In any ring R, (a + b)2 = a2 + 2ab + b2 iff R is commutative.

Proof. Let R be an arbitrary ring.
Let a, b ∈ R.
We prove if (a + b)2 = a2 + 2ab + b2, then R is commutative.
Suppose (a + b)2 = a2 + 2ab + b2.
Observe that

(a + b)2 = (a + b)(a + b)

= a(a + b) + b(a + b)

= (a2 + ab) + (ba + b2)

= (a2 + ab) + (b2 + ba)

= ((a2 + ab) + b2) + ba.

Observe that

a2 + 2ab + b2 = a2 + (ab + ab) + b2

= (a2 + ab) + (ab + b2)

= (a2 + ab) + (b2 + ab)

= ((a2 + ab) + b2) + ab.

Thus, ((a2 +ab) + b2) + ba = (a+ b)2 = a2 + 2ab+ b2 = ((a2 +ab) + b2) +ab.
Hence, ((a2 + ab) + b2) + ba = ((a2 + ab) + b2) + ab.
By the cancellation law for addition we obtain ba = ab.
Therefore, ab = ba for all a, b ∈ R, so R is commutative.
We prove if R is commutative, then (a + b)2 = a2 + 2ab + b2.
Suppose R is commutative.
Then ab = ba.
Observe that

(a + b)2 = (a + b)(a + b)

= (a + b)a + (a + b)b

= (a2 + ba) + (ab + b2)

= a2 + (ba + ab) + b2

= a2 + (ab + ab) + b2

= a2 + 2ab + b2.

Exercise 5. Let R be a ring such that a2 = a for all a ∈ R.
Then R is commutative and a + a = 0 for all a ∈ R.
We note that R is a boolean ring.

Proof. We prove (∀a ∈ R)(a + a = 0).
Let a ∈ R.
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Then

a + a = (a + a)2

= (a + a)(a + a)

= (a + a)a + (a + a)a

= (a2 + a2) + (a2 + a2)

= (a + a) + (a + a).

Thus, a + a = (a + a) + (a + a), so (a + a) + 0 = (a + a) + (a + a).
By the cancellation law for addition we obtain 0 = a + a.
We prove R is commutative.
Let a, b ∈ R.
Then

a + b = (a + b)2

= (a + b)(a + b)

= a(a + b) + b(a + b)

= (a2 + ab) + (ba + b2)

= (a + ab) + (ba + b)

= a + (ab + ba) + b

= a + b + (ab + ba)

= (a + b) + (ab + ba).

Thus, a + b = (a + b) + (ab + ba), so (a + b) + 0 = (a + b) + (ab + ba).
By the cancellation law for addition we obtain 0 = ab + ba.
Since x + x = 0 for all x ∈ R, then in particular, ab + ab = 0.
Thus, ab + ab = 0 = ab + ba.
By the cancellation law for addition we obtain ab = ba.
Therefore, ab = ba for all a, b ∈ R, so ∗ is commutative.

Exercise 6. Let R be a commutative ring.
For each a ∈ R let Ha = {x ∈ R : ax = 0}.
Then for every x, y ∈ Ha, xy ∈ Ha.

Proof. Let x, y ∈ Ha.
Then x, y ∈ R and ax = 0 and ay = 0.
Observe that

0 = 0y

= (ax)y

= a(xy).

Since R is closed under multiplication, then xy ∈ R.
Thus, xy ∈ R and a(xy) = 0, so xy ∈ Ha.
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Exercise 7. Let n ∈ N, n > 1 and xn = x for all x in a ring R.
If a, b ∈ R such that ab = 0, then ba = 0.

Proof. Let a, b ∈ R such that ab = 0.
Then ab ∈ R and

ba = (ba)n

= (ba)(ba)...(ba)(ba)

= b(ab)(ab)...(ab)a

= b ∗ 0 ∗ 0 ∗ ... ∗ 0 ∗ a
= 0.

Hence, ba = 0.

Exercise 8. Let (R,+, ·) be a division ring.
Let a ∈ R.
If a 6= 0, then − 1

a = 1
−a .

Proof. Suppose a 6= 0.
Since a = 0 implies−a = 0 for all a in a ring, then−a = 0 implies−(−a) = 0.
Hence, −a = 0 implies a = 0, so a 6= 0 implies −a 6= 0.
Since a 6= 0, then −a 6= 0.
Thus, (−a)−1 ∈ R, so (−a)−1 = 1

−a .

Consequently, (−a)( 1
−a ) = 1.

Since a 6= 0, then 1
a ∈ R, so − 1

a ∈ R.
Observe that

−1

a
= −1

a
· 1

= (−1

a
)[(−a)(

1

−a
)]

= [(−1

a
)(−a)](

1

−a
)

= [(
1

a
)(a)](

1

−a
)

= 1 · 1

−a

=
1

−a
.

Therefore, − 1
a = 1

−a .

Exercise 9. Let (R,+, ·) be a division ring.
Let a, b ∈ R.
If b 6= 0, then −a

b = −a
b .
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Proof. Suppose b 6= 0.
Then b−1 ∈ R and a

b ∈ R, so −a
b ∈ R.

Observe that

−a

b
= (−1) · a

b

= (−1) · (a · b−1)

= [(−1)(a)](b−1)

= (−a)(b−1)

=
−a
b
.

Therefore, −a
b = −a

b .

Integral domains

Exercise 10. Let D be an integral domain.
Let x ∈ D such that x2 = x.
Then either x = 0 or x = 1.

Proof. Since x2 = x, then 0 = x2 − x = x(x− 1).
Hence, either x = 0 or x− 1 = 0.
Therefore, either x = 0 or x = 1.

Exercise 11. Let D be an integral domain.
If a2 = 1, then a = ±1.

Proof. Let a ∈ D such that a2 = 1.
Observe that 12 = 1 · 1 = 1 = a2.
Thus, a2 − 12 = 0, so (a + 1)(a− 1) = 0.
Since D is an integral domain, then either a + 1 = 0 or a− 1 = 0.
Hence, either a = −1 or a = 1, so a = ±1.

Exercise 12. Let D be an integral domain.
Let a, b ∈ D.
Then a2 = b2 iff a = b or a = −b.

Proof. We prove if a2 = b2 then a = b or a = −b.
Suppose a2 = b2.
Then 0 = a2 − b2 = (a− b)(a + b).
Since D is an integral domain, then either a− b = 0 or a + b = 0.
Therefore, either a = b or a = −b.
Conversely, we prove if a = b or a = −b, then a2 = b2.
Suppose a = b or a = −b.
If a = b, then a2 = aa = bb = b2.
If a = −b, then a2 = aa = (−b)(−b) = bb = b2.
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Ideals

Exercise 13. The set {[0], [2], [4]} is an ideal of Z6.

Solution. Let R = Z6 and I = {[0], [2], [4]}.
Observe that I is a cyclic subgroup of (Z6,+) and I = {k[2]6 : k ∈ Z} =

[2k]6 : k ∈ Z}.
Let x ∈ I.
Then x = [2k] for some k ∈ Z.
Let a ∈ Rx.
Then a = [r]6x for some r ∈ Z.
Thus, a = [r]([2k]) = [(2k)r] = [2(kr)].
Since Z is closed under multiplication and k, r ∈ Z, then kr ∈ Z.
Hence, a ∈ I, by definition of I.
Thus, a ∈ Rx implies a ∈ I, so Rx ⊂ I.
Let b ∈ xR.
Then b = x[r]6 for some r ∈ Z.
Thus, b = [2k][r] = [(2k)r] = [2(kr)].
Since Z is closed under multiplication and k, r ∈ Z, then kr ∈ Z.
Hence, a ∈ I, by definition of I.
Thus, a ∈ xR implies a ∈ I, so xR ⊂ I.
Therefore, RI ⊂ I and IR ⊂ I.
Since (I,+) is an abelian subgroup of (R,+) and RI ⊂ I and IR ⊂ I, then

I is an ideal of R.
Thus, the set {[0], [2], [4]} is an ideal of Z6.

Proposition 14. 〈Z,+, ·〉 is a ring.

Proof. We know 〈Z,+〉 is an abelian group.
We know Z is closed under multiplication and ab ∈ Z is unique for all a, b ∈ Z.
Therefore, multiplication is a binary operation on Z.
Also, multiplication of integers is associative so a(bc) = (ab)c for all a, b, c ∈

Z.
We know multiplication is distributive over addition.
Thus, a(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ Z.
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