Ring Theory Exercises

Jason Sass

April 24, 2023

Exercise 1. Is the algebraic structure $(7\mathbb{Z}, +, \cdot)$ a ring?

Solution. The set $7\mathbb{Z} = \{7k : k \in \mathbb{Z}\}$ is the set of all multiples of 7. The structure $(7\mathbb{Z}, +)$ is a cyclic group, so $7\mathbb{Z}$ is abelian. We also can determine that multiplication is associative. However, there is no multiplicative identity, so $(7\mathbb{Z}, + \cdot)$ is not a ring.

Exercise 2. Let $(R, +, \cdot)$ be a ring. Then (a+b)(c+d) = ac + ad + bc + bd for all $a, b, c, d \in R$.

Proof. Let $a, b, c, d \in R$. Then

$$(a+b)(c+d) = (a+b)c + (a+b)d$$

= $ac+bc+ad+bd$
= $ac+ad+bc+bd$.

Exercise 3. Let $(R, +, \cdot)$ be a commutative ring with unity $1 \neq 0$. Then $(x + 1)^2 = x^2 + 2x + 1$ for all $x \in R$.

Proof. Let $x \in R$.

Let 1 be the unity of R. Define 2 = 1 + 1 and $2x = (1 + 1) \cdot x$ and $x^2 = x \cdot x$ for all $x \in R$. Since $x \in R$ and $1 \in R$, then $x + 1 \in R$. Hence,

$$\begin{aligned} (x+1)^2 &= (x+1) \cdot (x+1) \\ &= (x+1) \cdot x + (x+1) \cdot 1 \\ &= (x \cdot x + 1 \cdot x) + (x \cdot 1 + 1 \cdot 1) \\ &= x \cdot x + (1 \cdot x + x \cdot 1) + 1 \cdot 1 \\ &= x \cdot x + (1 \cdot x + 1 \cdot x) + 1 \cdot 1 \\ &= x \cdot x + (1+1) \cdot x + 1 \cdot 1 \\ &= x^2 + 2x + 1. \end{aligned}$$

Exercise 4. In any ring R, $(a + b)^2 = a^2 + 2ab + b^2$ iff R is commutative.

Proof. Let R be an arbitrary ring.

Let $a, b \in R$. We prove if $(a + b)^2 = a^2 + 2ab + b^2$, then R is commutative. Suppose $(a + b)^2 = a^2 + 2ab + b^2$. Observe that

$$\begin{array}{rcl} (a+b)^2 &=& (a+b)(a+b) \\ &=& a(a+b)+b(a+b) \\ &=& (a^2+ab)+(ba+b^2) \\ &=& (a^2+ab)+(b^2+ba) \\ &=& ((a^2+ab)+b^2)+ba. \end{array}$$

Observe that

$$a^{2} + 2ab + b^{2} = a^{2} + (ab + ab) + b^{2}$$

= $(a^{2} + ab) + (ab + b^{2})$
= $(a^{2} + ab) + (b^{2} + ab)$
= $((a^{2} + ab) + b^{2}) + ab.$

Thus, $((a^2 + ab) + b^2) + ba = (a + b)^2 = a^2 + 2ab + b^2 = ((a^2 + ab) + b^2) + ab$. Hence, $((a^2 + ab) + b^2) + ba = ((a^2 + ab) + b^2) + ab$. By the cancellation law for addition we obtain ba = ab. Therefore, ab = ba for all $a, b \in R$, so R is commutative. We prove if R is commutative, then $(a + b)^2 = a^2 + 2ab + b^2$. Suppose R is commutative. Then ab = ba. Observe that

$$(a+b)^{2} = (a+b)(a+b)$$

= $(a+b)a + (a+b)b$
= $(a^{2}+ba) + (ab+b^{2})$
= $a^{2} + (ba+ab) + b^{2}$
= $a^{2} + (ab+ab) + b^{2}$
= $a^{2} + 2ab + b^{2}$.

Exercise 5. Let R be a ring such that $a^2 = a$ for all $a \in R$. Then R is commutative and a + a = 0 for all $a \in R$. We note that R is a **boolean ring**.

Proof. We prove $(\forall a \in R)(a + a = 0)$. Let $a \in R$.

Then

$$a + a = (a + a)^{2}$$

= (a + a)(a + a)
= (a + a)a + (a + a)a
= (a^{2} + a^{2}) + (a^{2} + a^{2})
= (a + a) + (a + a).

Thus, a + a = (a + a) + (a + a), so (a + a) + 0 = (a + a) + (a + a). By the cancellation law for addition we obtain 0 = a + a.

 $a+b = (a+b)^2$

We prove R is commutative.

Let $a, b \in R$. Then

$$= (a + b)(a + b)$$

= $(a + b)(a + b)$
= $a(a + b) + b(a + b)$
= $(a^{2} + ab) + (ba + b^{2})$
= $(a + ab) + (ba + b)$
= $a + (ab + ba) + b$
= $a + b + (ab + ba)$
= $(a + b) + (ab + ba)$.

Thus, a + b = (a + b) + (ab + ba), so (a + b) + 0 = (a + b) + (ab + ba). By the cancellation law for addition we obtain 0 = ab + ba. Since x + x = 0 for all $x \in R$, then in particular, ab + ab = 0. Thus, ab + ab = 0 = ab + ba. By the cancellation law for addition we obtain ab = ba. Therefore, ab = ba for all $a, b \in R$, so * is commutative.

Exercise 6. Let R be a commutative ring. For each $a \in R$ let $H_a = \{x \in R : ax = 0\}$. Then for every $x, y \in H_a, xy \in H_a$.

Proof. Let $x, y \in H_a$. Then $x, y \in R$ and ax = 0 and ay = 0. Observe that

$$\begin{array}{rcl} 0 & = & 0y \\ & = & (ax)y \\ & = & a(xy). \end{array}$$

Since R is closed under multiplication, then $xy \in R$. Thus, $xy \in R$ and a(xy) = 0, so $xy \in H_a$.

Exercise 7. Let $n \in \mathbb{N}$, n > 1 and $x^n = x$ for all x in a ring R. If $a, b \in R$ such that ab = 0, then ba = 0.

Proof. Let $a, b \in R$ such that ab = 0. Then $ab \in R$ and

$$ba = (ba)^n$$

= (ba)(ba)...(ba)(ba)
= b(ab)(ab)...(ab)a
= b * 0 * 0 * ... * 0 * a
= 0.

Hence, ba = 0.

Exercise 8. Let $(R, +, \cdot)$ be a division ring.

Let $a \in R$. If $a \neq 0$, then $-\frac{1}{a} = \frac{1}{-a}$.

Proof. Suppose $a \neq 0$. Since a = 0 implies -a = 0 for all a in a ring, then -a = 0 implies -(-a) = 0. Hence, -a = 0 implies a = 0, so $a \neq 0$ implies $-a \neq 0$. Since $a \neq 0$, then $-a \neq 0$. Thus, $(-a)^{-1} \in R$, so $(-a)^{-1} = \frac{1}{-a}$. Consequently, $(-a)(\frac{1}{-a}) = 1$. Since $a \neq 0$, then $\frac{1}{a} \in R$, so $-\frac{1}{a} \in R$. Observe that

$$\begin{aligned} -\frac{1}{a} &= -\frac{1}{a} \cdot 1 \\ &= (-\frac{1}{a})[(-a)(\frac{1}{-a})] \\ &= [(-\frac{1}{a})(-a)](\frac{1}{-a}) \\ &= [(\frac{1}{a})(a)](\frac{1}{-a}) \\ &= 1 \cdot \frac{1}{-a} \\ &= \frac{1}{-a}. \end{aligned}$$

Therefore, $-\frac{1}{a} = \frac{1}{-a}$.

Exercise 9. Let $(R, +, \cdot)$ be a division ring.

Let $a, b \in R$.

If $b \neq 0$, then $-\frac{a}{b} = \frac{-a}{b}$.

Proof. Suppose $b \neq 0$. Then $b^{-1} \in R$ and $\frac{a}{b} \in R$, so $-\frac{a}{b} \in R$. Observe that

$$\begin{aligned} -\frac{a}{b} &= (-1) \cdot \frac{a}{b} \\ &= (-1) \cdot (a \cdot b^{-1}) \\ &= [(-1)(a)](b^{-1}) \\ &= (-a)(b^{-1}) \\ &= \frac{-a}{b}. \end{aligned}$$

Therefore, $-\frac{a}{b} = \frac{-a}{b}$.

Integral domains

Exercise 10. Let D be an integral domain. Let $x \in D$ such that $x^2 = x$. Then either x = 0 or x = 1. *Proof.* Since $x^2 = x$, then $0 = x^2 - x = x(x - 1)$. Hence, either x = 0 or x - 1 = 0. Therefore, either x = 0 or x = 1. **Exercise 11.** Let D be an integral domain. If $a^2 = 1$, then $a = \pm 1$. *Proof.* Let $a \in D$ such that $a^2 = 1$. Observe that $1^2 = 1 \cdot 1 = 1 = a^2$. Thus, $a^2 - 1^2 = 0$, so (a + 1)(a - 1) = 0. Since D is an integral domain, then either a + 1 = 0 or a - 1 = 0. Hence, either a = -1 or a = 1, so $a = \pm 1$. **Exercise 12.** Let D be an integral domain. Let $a, b \in D$. Then $a^2 = b^2$ iff a = b or a = -b. *Proof.* We prove if $a^2 = b^2$ then a = b or a = -b. Suppose $a^2 = b^2$. Then $0 = a^2 - b^2 = (a - b)(a + b)$. Since D is an integral domain, then either a - b = 0 or a + b = 0. Therefore, either a = b or a = -b. Conversely, we prove if a = b or a = -b, then $a^2 = b^2$. Suppose a = b or a = -b. If a = b, then $a^2 = aa = bb = b^2$. If a = -b, then $a^2 = aa = (-b)(-b) = bb = b^2$.

Ideals

Exercise 13. The set $\{[0], [2], [4]\}$ is an ideal of \mathbb{Z}_6 .

Solution. Let $R = \mathbb{Z}_6$ and $I = \{[0], [2], [4]\}.$ Observe that I is a cyclic subgroup of $(\mathbb{Z}_6, +)$ and $I = \{k[2]_6 : k \in \mathbb{Z}\} =$ $[2k]_6: k \in \mathbb{Z}\}.$ Let $x \in I$. Then x = [2k] for some $k \in \mathbb{Z}$. Let $a \in Rx$. Then $a = [r]_6 x$ for some $r \in \mathbb{Z}$. Thus, a = [r]([2k]) = [(2k)r] = [2(kr)].Since \mathbb{Z} is closed under multiplication and $k, r \in \mathbb{Z}$, then $kr \in \mathbb{Z}$. Hence, $a \in I$, by definition of I. Thus, $a \in Rx$ implies $a \in I$, so $Rx \subset I$. Let $b \in xR$. Then $b = x[r]_6$ for some $r \in \mathbb{Z}$. Thus, b = [2k][r] = [(2k)r] = [2(kr)].Since \mathbb{Z} is closed under multiplication and $k, r \in \mathbb{Z}$, then $kr \in \mathbb{Z}$. Hence, $a \in I$, by definition of I. Thus, $a \in xR$ implies $a \in I$, so $xR \subset I$. Therefore, $RI \subset I$ and $IR \subset I$. Since (I, +) is an abelian subgroup of (R, +) and $RI \subset I$ and $IR \subset I$, then I is an ideal of R. Thus, the set $\{[0], [2], [4]\}$ is an ideal of \mathbb{Z}_6 .

Proposition 14. $\langle \mathbb{Z}, +, \cdot \rangle$ is a ring.

Proof. We know $\langle \mathbb{Z}, + \rangle$ is an abelian group.

We know \mathbb{Z} is closed under multiplication and $ab \in \mathbb{Z}$ is unique for all $a, b \in \mathbb{Z}$. Therefore, multiplication is a binary operation on \mathbb{Z} .

Also, multiplication of integers is associative so a(bc) = (ab)c for all $a, b, c \in \mathbb{Z}$.

We know multiplication is distributive over addition.

Thus, a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in \mathbb{Z}$.