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Propositions/Basic Facts
Proposition 1. (Z,+, x) is a commutative ring with unity 1 # 0.

Proof. Observe that (Z,+) is an abelian group with additive identity zero. Mul-
tiplication of integers is a binary operation on Z that is associative and com-
mutative. Multiplication is left and right distributive over addition. The multi-

plicative identity is 1 and 1 # 0. Therefore, Z is a commutative ring with unity
1#£0. O

Proposition 2. The product of two nonzero integers is nonzero.

Solution. The statement means if a and b are nonzero integers, then ab # 0.
Thus, we must prove:
(Va,be Z)(a#£O0ANb#0— ab#0). O

Proof. Let a and b be arbitrary integers such that a # 0 and b # 0. Then either
a > 0or a <0, and either b > 0 or b < 0. Thus, there are 4 cases to consider.

We consider these cases separately.

Case 1: Suppose a > 0 and b > 0.

The product of two positive integers is positive. Therefore, ab > 0. Hence,
ab # 0.

Case 2: Suppose a > 0 and b < 0.

The product of a positive and negative integer is negative. Therefore, ab < 0.
Hence, ab # 0.

Case 3: Suppose a < 0 and b > 0.

The product of a positive and negative integer is negative. Therefore, ba < 0.
Since ba = ab, then ab < 0. Hence, ab # 0.

Case 4: Suppose a < 0 and b < 0.

The product of two negative integers is positive. Therefore, ab > 0. Hence,
ab # 0.

Thus, in all cases, ab # 0. O

Proposition 3. (R, +,x*) is a commutative ring with unity 1 # 0.



Proof. Observe that (R, +) is an abelian group with additive identity zero.

We must prove multiplication is a binary operation on R and that it is
associative and commutative.

Multiplication is left and right distributive over addition. The multiplicative
identity is 1 and 1 # 0. Therefore, Z is a commutative ring with unity 1 # 0. O

Proposition 4. Let R[x] be the set of all real polynomials in variable x.
Then (R[z], 4+, *) is a ring.

Solution. To prove R[z] is a ring, we must prove:
1. (R[z],+) is an abelian group.
2. (R[z], %) is an associative binary structure.
3. Multiplication distributes over addition.
Thus, we must prove:
. Addition of polynomials is a binary operation on R[x].
. Addition of polynomials is associative and commutative.
. There exists an additive identity in R[z].
. Bach polynomial has an additive inverse in Rx].
. Multiplication of polynomials is a binary operation on R[z].
. Multiplication of polynomials is associative.
. Multiplication is left distributive over addition.
. Multiplication is right distributive over addition. O

0 3O U i Wi —

Proof. We prove addition of polynomials is a binary operation on R[x].

Let p(x),q(z) € Rlz].

Since p(x) € R[z], then there exists m € ZT such that ag, ay, ..., a,, € R and
p(z) = apa™ + apm_12™ 1+ ...+ a1x + ag. Since g(z) € R[z], then there exists
n € Z* such that bg, by, ...,b, € R and q(z) = bpa™ + by 12" + ... + byw + by.
Either m =n or m # n.

We consider these cases separately.

Case 1: Suppose m = n.

Then p(z) = apx™ + an_12" 1 + ... + a1z + ag Observe that

p(x) +q@) = (an2™ +an 12"+ .+ a4 ag) + (bpx™ 4+ by 12"+ bz + by)
= (an +b)2" 4 (@n_1 +bp_1)z"F + ...+ ((a1 + b1)x + (ag + bo).

The sum of two real numbers is a real number. Therefore, aj + b is a real
number for each k£ = 0,1,...,n. Hence, p(z) + ¢(z) € R[z], so R[z] is closed
under addition. Since p(z) + ¢(x) is a unique real polynomial, then addition is
a binary operation on R[z].

Case 2: Suppose m # n.

Then either m < n or m > n. Without loss of generality, we may assume
m > n. Let k = m —n. Then k is a positive integer. Let p’(x) be a poly-
nomial of degree m with k terms such that p'(z) = a;pa™ + ap_12™ 1 + ... +
ami(k72)xm—(k—2) +am7(k71)$m_(k_1) )

Let ¢'(x) be a zero polynomial of degree m with k terms such that ¢'(z) =
0™ + 021 4 022 + ... + 0x™— (1),



Observe that

M = x’n+k
xmfl — anrkfl
l,mf(k72) — xn+k7(k72) — In+2
xm—(k—l) — xn—i—k—(k—l) — ‘,L,n+1.

Thus, ¢'(z) + p'(z) =.

Then ¢(z) = ¢'(z) + 4() =.

The polynomial ¢(x) = ¢'(x) 4+ g(x), where ¢'(x) is the sum of k terms each
with zero coefficient. Since

Observe that

p(x) +q(x) = (ama™ + am12™ 4.+ a1z +ag) + (bpx™ 4+ by 12"+ .4 b+ bg)
= (an +b)2" 4 (@n_1 +bp_1)z"F + ..+ ((a1 + b1)x + (ag + bo).

To prove p(x) + g(z) € Rlz, we must prove there exist a positive integer k
such that O

Proposition 5. The only subring of Z is Z itself.

Proof. We prove the only subring of Z is Z itself.

Let H be an arbitrary subring of Z. Then H C Z, by definition of subring.
By definition of subring, H must contain the multiplicative identity of Z. Thus,
le H.

By definition of subring, (H,+) must be an abelian subgroup of (Z,+).
The smallest subgroup containing 1 is the cyclic group generated by 1 under
addition. The cyclic group generated by 1 under addition is {kx1:k € Z} =
{k : k € Z} = Z. Hence, the smallest additive subgroup of Z containing 1 is Z
itself. Thus, every integer must be contained in H, so Z C H.

Since H C Z and Z C H, then H = Z. Since Z is a ring, then this implies
the only subring of Z is Z itself. O

Proposition 6. The only subring of Z, is Z,.

Proof. We prove the only subring of Z,, is Z,, itself.

Let n € ZT. Let (H,+,%) be an arbitrary subring of (Z,,+,*). Then
H C Z,, by definition of subring. By definition of subring, H must contain the
same multiplicative identity as Z,. Thus, [1] € H.

By definition of subring, (H,+) must be an abelian subgroup of (Z,,+).
The smallest subgroup containing [1] is the cyclic group generated by [1] under
addition modulo n. The cyclic group generated by [1] under addition modulo
n is Z,. Thus, the smallest subgroup of Z,, containing [1] is Z,, itself. Hence,
every element of Z,, must be contained in H. Thus, Z,, C H.

Since H C Z,, and Z,, C H, then H = Z,,. Since Z,, is a ring, then the only
subring of Z,, is Z,, itself. O

Proposition 7. Let p be prime. Then Z, is a field.



Proof. For any positive integer p, Z, is a commutative ring with unity [1]. In
particular, for prime p, Z,, is a commutative ring with unity [1].

We prove [1], # [0],. Suppose for the sake of contradiction [1], = [0],. Then
1 =0 (mod p), so p|1. Since p is an integer, then this implies either p = 1 or
p = —1. Since p > 0, then p # —1, so p = 1. But p is prime, so p > 1. Hence,
1> 1, a contradiction. Therefore, [1], # [0],.

Thus, Z, is a commutative ring with unity [1] # [0].

Observe that Z, = {[1],[2],...,[p — 1],[p]} ={lalp : 1 < a < p,a € Z}. Let
[a] € Z, such that [a], # [0],. Observe that [a], = [0], iff a = 0 (mod p) iff
pla. Since [a], # [0], and [a], = [0], iff p|a, then p fa. Since p is prime, then
either pla or ged(p,a) = 1. Since p /a, then we conclude ged(p,a) = 1, so
ged(a,p) = 1. Since [a], has a multiplicative inverse in Z,, iff ged(a, p) = 1, then
[a], has a multiplicative inverse in Z,. Hence, [a] is a unit. Since [a] is arbitrary,
then every nonzero element of Z,, is a unit.

Therefore, Z,, is a field. O

Proposition 8. The characteristic of Z, for prime p is p.

Proof. Let p be prime.

To prove p is the characteristic of the field Z,, we must prove p is the least
positive integer such that p[a] = [0] for all [a] € Z,,.

Since (Zy, +, *) is a ring, then (Z,, +) is an abelian group of order p. Every
group of prime order is cyclic, so (Z,, +) is cyclic. Since Z,, is a field, then there
exists a nonzero element in Z,. Let [a] be an arbitrary element of Z,.

Either [a] = [0] or [a] # [0].

We consider these cases separately.

Case 1: Suppose [a] # [0].

Then [a] is a generator of Z,. Hence, the order of [a] is p. Thus, p is the
least positive integer such that pla] = [0].

Case 2: Suppose [a] = [0].

Then pla] = p[0] = [p0] = [0].

Thus, in all cases, p is the least positive integer such that p[a] = [0] for every
[a] € Z,,. Therefore, p is the characteristic of Z,,. 0

Lemma 9. The ring of integers has no zero divisors.

Solution. This statement means there does not exist an integer that is a zero
divisor.

We must prove there does not exist an integer that is a zero divisor.

Our domain of discourse is the ring Z.

Define over the set of all integers Z the predicate:

p(a) : a is a zero divisor which means

pla):a#0A(FbeZ)(b#0Aab=0).

We must prove —(3a € Z)(p(a)).

Observe that

=(3a € Z)(p(a)) (Va € Z)(=p(a))

-
& (MaeZ)a=0V~(TbeZ)(b#0Aab=0)).



Thus, let a be arbitrary. We must prove a =0V —(3b € Z)(b # 0 A ab = 0).
This statement has the form @ V —R, a disjunction, where the statements
are
®@:a=0and
R:(FbeZ)(b#0Aab=0).
From logic we know that

QV-R & -—QV-R
& 2Q — R,

Thus, to prove @ V =R we may prove =) — —R. Hence, assume —(), that
is assume a # 0.

‘We must prove —R.

Thus, we must prove =(3b € Z)(b # 0 A ab = 0).

We observe that the product of two nonzero integers is nonzero because we
already proved that fact.

Thus, (Vz,y € Z)(x #0ANy #0— zy #0).

Thus, assume b is an arbitrary integer such that b # 0. Then a # 0 and
b # 0 implies ab # 0. Since a # 0 and b # 0, then ab # 0. Thus, we have
b # 0 and ab # 0. Hence, this implies the statement b # 0 and ab = 0 is false.
Therefore, there does not exist b € Z such that b # 0 and ab = 0. Thus, a is
not a zero divisor, by definition of zero divisor. Since a is arbitrary, then a is
not a zero divisor for all a € Z, by universal generalization. Therefore, every
integer is not a zero divisor. Hence, there does not exist an integer that is a
zero divisor. Thus, Z has no zero divisors. O

Proof. Observe that Z is a commutative ring. Let a and b be arbitrary nonzero
integers. Then a # 0 and b # 0. The product of two nonzero integers is nonzero.
Thus, ab # 0. Since b # 0 and ab # 0, then there does not exist an integer b such
that b # 0 and ab = 0. Therefore, a is not a zero divisor. Since a is arbitrary,
then every nonzero integer is not a zero divisor. Hence, there does not exist a
nonzero integer that is a zero divisor. Therefore, Z has no zero divisors. O

Integral Domains

Proposition 10. The ring of integers is an integral domain.

Proof. Let (Z,+, «) be the ring of integers under addition and multiplication.
Observe that multiplication of integers is commutative. Observe that the unity
of Z is 1 # 0. Observe that Z has no zero divisors. Therefore, Z is an integral
domain. O

Lemma 11. The product of two nonzero rational numbers is nonzero.

Proof. Let a and b be arbitrary nonzero rational numbers. Then there exist
integers m,n,p,q such that a = ™ and b = % and n # 0 and ¢ # 0. A
rational number is zero if and only if its numerator is zero. Since a and b are



nonzero rational numbers, then this implies m # 0 and p # 0. Observe that

ab = %% = %. The product of two nonzero integers is non zero. Hence,
mp # 0. Therefore, ab # 0. O

Proposition 12. The ring of rational numbers is an integral domain.

Proof. Let (Q,+, *) be the ring of rational numbers. Then Q is a commutative
ring with unity 1 # 0.

To prove Q is an integral domain we need only show that Q has no zero
divisors.

Let a and b be arbitrary nonzero rational numbers. Then a # 0 and b # 0.
The product of two nonzero rational numbers is nonzero. Thus, ab # 0. Since
b # 0 and ab # 0, then there does not exist a rational number b such that
b # 0 and ab = 0. Therefore, a is not a zero divisor. Since a is arbitrary,
then every nonzero rational number is not a zero divisor. Hence, there does not
exist a nonzero rational number that is a zero divisor. Therefore, Q has no zero
divisors.

Thus, Q is an integral domain. U

Lemma 13. The product of two nonzero real numbers is nonzero.

Solution. This statement means: if a is a nonzero real number and b is a
nonzero real number, then ab is nonzero.

A basic fact about real numbers is that the product of two real number is
zero iff either real number is zero. Thus, (Va,b € R)(ab=0<a =0V b =0).
Observe that

ab=0&a=0vb=0 & ab#0& -(a=0Vvb=0)
& ab#£0S (a£0AD#£0).

O

Proof. Observe that the product of two real numbers is zero iff either real num-
ber is zero. Therefore, for every real number a and b, ab = 0 iff either a = 0 or
b = 0. Hence, for every real number a and b, ab # 0 iff a # 0 and b # 0. Thus,
for every real number a and b, if a # 0 and b # 0, then ab # 0. Therefore, the
product of two nonzero real numbers is nonzero. O

Proposition 14. The ring of real numbers is an integral domain.

Proof. Let (R, +, %) be the ring of rational numbers. Then R is a commutative
ring with unity 1 # 0.

To prove R is an integral domain we need only show that R has no zero
divisors.

Let a and b be arbitrary nonzero real numbers. Then a # 0 and b # 0. The
product of two nonzero real numbers is nonzero. Thus, ab # 0. Since b # 0 and
ab # 0, then there does not exist a real number b such that b # 0 and ab = 0.
Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero real



number is not a zero divisor. Hence, there does not exist a nonzero real number
that is a zero divisor. Therefore, R has no zero divisors.
Thus, R is an integral domain. U

Proposition 15. Let n € Zt. Then (nZ,+,*) has a multiplicative identity iff
n=1.

Solution. We must prove: 1. if n = 1, then nZ has a multiplicative identity 2.
if nZ has a multiplicative identity, then n = 1. O

Proof. Let n € Z7T.

Suppose n = 1. Then nZ = 1Z = {1k : k € Z} = {k : k € Z} = Z. Since
Z is a ring with unity 1, then 1 is multiplicative identity of Z. Therefore, 1 is
multiplicative identity of nZ, so nZ has a multiplicative identity.

Conversely, suppose nZ has a multiplicative identity. Then there exists
e € nZ such that ae = a for all a € nZ.

Let a € nZ. Then there exists e € nZ such that ae = a.

Since n € Z™, then either n =1 or n > 1.

Suppose n > 1. Then n # 1. Since ae = a, then 0 = ae —a = a(e—1). Since
e,a € nZ and nZ C 7Z, then e, a € Z.

The product of two nonzero integers is nonzero. Therefore, for every =,y € Z,
if x #2 0 and y # 0, then zy # 0. Thus, for every z,y € Z, if zy = 0, then
either z = 0 or y = 0. Hence, in particular, if a(e — 1) = 0, then either a = 0 or
e —1=0. Thus, since a € Z and e — 1 € Z, then either a =0 or e — 1 = 0.

Therefore, either a =0 or e = 1.

We consider these cases separately.

Case 1: Suppose e = 1.

Since e € nZ, then there exists k € Z such that e = nk. Thus, 1 = e = nk.
Since there exists k € Z such that 1 = nk, then n|l. The only integers that
divide 1 are 1 and —1. Since n is a positive integer, then this implies n = 1.
Thus we have n # 1 and n = 1, a contradiction.

Case 2: Suppose a = 0.

Since a is arbitrary, then every a € nZ is equal to zero. Since n = nx 1, then
n € nZ. Hence, in particular, n = 0. Since n > 1, then 0 > 1, a contradiction.

Therefore, in all cases a contradiction occurs if n > 1. Thus, n cannot be
greater than 1.

Hence, n = 1, as desired. O

Proposition 16. Let n € Z*. Then (nZ,+, *) is an integral domain iff n = 1.

Solution. We must prove: 1. if n =1, then (nZ, +, *) is an integral domain
2. if (nZ,+, *) is an integral domain, then n = 1. O

Proof. Suppose n = 1. Then nZ = 1Z = 7Z. Since Z is an integral domain, then
nZ is an integral domain.

Conversely, suppose nZ is an integral domain. Then nZ is a commutative
ring with unity. Thus, nZ has a multiplicative identity. The ring nZ has a
multiplicative identity iff n = 1. Hence, n = 1. U



Ideals
Proposition 17. (nZ,+,*) is an ideal of Z.

Proof. Let n € Z*. Observe that (nZ,+) is an abelian subgroup of (Z, +).

Let I =nZ.

Let x € I. Then x = nk for some k € Z.

Let a € Zz. Then a = rz for some r € Z. Thus, a = r(nk) = (nk)r = n(kr).
Since kr € Z, then a € I, by definition of I. Hence, a € Zx implies a € I, so
Zx C 1.

Let b € 2Z. Then b = ar for some r € Z. Thus, b = (nk)r = n(kr). Since
kr € Z, then b € I, by definition of I. Hence, b € xZ implies b € I, so xZ C I.

Thus, ZI C I and IZ C I.

Therefore, (I,+) is an abelian subgroup of (Z,+) and ZI C I and IZ C I,
so I is an ideal of Z. Hence, nZ is an ideal of Z. O

Quotient Rings

Proposition 18. Let I be an ideal in a ring R. Let a,b € R. Thena—b € I
iffa+I=0b+1.

Proof. Suppose a —b € I. Then a = b (mod I). Since congruence modulo I is
an equivalence relation over R, then every element of R is contained in exactly
one congruence class. Observe that a € a+ I and b € b+ I. Since a and b
are congruent, then a and b are in the same congruence class, by definition of
equivalence class. Hence, a +1 =0b+ 1.

Conversely, suppose a + 1 = b+ 1. Sinceb e b+ T and b+ 1 = a + I,
then b € a + I. Hence, b = a + ¢ for some ¢ € I. Thus, i = —a+b =0b— a,
so b—a € I. Therefore, b = a (mod I). Since congruence modulo I is an
equivalence relation, then = is symmetric. Hence, b = a (mod I) implies a = b
(mod I),s0 a=b (mod I). Thus,a—b € I. O
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