Ring Theory Propositions

Jason Sass

May 21, 2023

Propositions/Basic Facts

Proposition 1. $(\mathbb{Z},+, *)$ is a commutative ring with unity $1 \neq 0$.
Proof. Observe that $(\mathbb{Z},+)$ is an abelian group with additive identity zero. Multiplication of integers is a binary operation on \mathbb{Z} that is associative and commutative. Multiplication is left and right distributive over addition. The multiplicative identity is 1 and $1 \neq 0$. Therefore, \mathbb{Z} is a commutative ring with unity $1 \neq 0$.

Proposition 2. The product of two nonzero integers is nonzero.
Solution. The statement means if a and b are nonzero integers, then $a b \neq 0$.
Thus, we must prove:
$(\forall a, b \in \mathbb{Z})(a \neq 0 \wedge b \neq 0 \rightarrow a b \neq 0)$.
Proof. Let a and b be arbitrary integers such that $a \neq 0$ and $b \neq 0$. Then either $a>0$ or $a<0$, and either $b>0$ or $b<0$. Thus, there are 4 cases to consider.

We consider these cases separately.
Case 1: Suppose $a>0$ and $b>0$.
The product of two positive integers is positive. Therefore, $a b>0$. Hence, $a b \neq 0$.

Case 2: Suppose $a>0$ and $b<0$.
The product of a positive and negative integer is negative. Therefore, $a b<0$. Hence, $a b \neq 0$.

Case 3: Suppose $a<0$ and $b>0$.
The product of a positive and negative integer is negative. Therefore, $b a<0$. Since $b a=a b$, then $a b<0$. Hence, $a b \neq 0$.

Case 4: Suppose $a<0$ and $b<0$.
The product of two negative integers is positive. Therefore, $a b>0$. Hence, $a b \neq 0$.

Thus, in all cases, $a b \neq 0$.
Proposition 3. $(\mathbb{R},+, *)$ is a commutative ring with unity $1 \neq 0$.

Proof. Observe that $(\mathbb{R},+)$ is an abelian group with additive identity zero.
We must prove multiplication is a binary operation on \mathbb{R} and that it is associative and commutative.

Multiplication is left and right distributive over addition. The multiplicative identity is 1 and $1 \neq 0$. Therefore, \mathbb{Z} is a commutative ring with unity $1 \neq 0$.

Proposition 4. Let $\mathbb{R}[x]$ be the set of all real polynomials in variable x.
Then $(\mathbb{R}[x],+, *)$ is a ring.
Solution. To prove $\mathbb{R}[x]$ is a ring, we must prove:

1. $(\mathbb{R}[x],+)$ is an abelian group.
2. $(\mathbb{R}[x], *)$ is an associative binary structure.
3. Multiplication distributes over addition.

Thus, we must prove:

1. Addition of polynomials is a binary operation on $\mathbb{R}[x]$.
2. Addition of polynomials is associative and commutative.
3. There exists an additive identity in $\mathbb{R}[x]$.
4. Each polynomial has an additive inverse in $\mathbb{R}[x]$.
5. Multiplication of polynomials is a binary operation on $\mathbb{R}[x]$.
6. Multiplication of polynomials is associative.
7. Multiplication is left distributive over addition.
8. Multiplication is right distributive over addition.

Proof. We prove addition of polynomials is a binary operation on $\mathbb{R}[x]$.
Let $p(x), q(x) \in \mathbb{R}[x]$.
Since $p(x) \in \mathbb{R}[x]$, then there exists $m \in \mathbb{Z}^{+}$such that $a_{0}, a_{1}, \ldots, a_{m} \in \mathbb{R}$ and $p(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}$. Since $q(x) \in \mathbb{R}[x]$, then there exists $n \in \mathbb{Z}^{+}$such that $b_{0}, b_{1}, \ldots, b_{n} \in \mathbb{R}$ and $q(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}$. Either $m=n$ or $m \neq n$.

We consider these cases separately.
Case 1: Suppose $m=n$.
Then $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ Observe that

$$
\begin{aligned}
p(x)+q(x) & =\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\right)+\left(b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}\right) \\
& =\left(a_{n}+b_{n}\right) x^{n}+\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\ldots+\left(\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)\right.
\end{aligned}
$$

The sum of two real numbers is a real number. Therefore, $a_{k}+b_{k}$ is a real number for each $k=0,1, \ldots, n$. Hence, $p(x)+q(x) \in \mathbb{R}[x]$, so $\mathbb{R}[x]$ is closed under addition. Since $p(x)+q(x)$ is a unique real polynomial, then addition is a binary operation on $\mathbb{R}[x]$.

Case 2: Suppose $m \neq n$.
Then either $m<n$ or $m>n$. Without loss of generality, we may assume $m>n$. Let $k=m-n$. Then k is a positive integer. Let $p^{\prime}(x)$ be a polynomial of degree m with k terms such that $p^{\prime}(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+$ $a_{m-(k-2)} x^{m-(k-2)}+a_{m-(k-1)} x^{m-(k-1)}$.

Let $q^{\prime}(x)$ be a zero polynomial of degree m with k terms such that $q^{\prime}(x)=$ $0 x^{m}+0 x^{m-1}+0 x^{m-2}+\ldots+0 x^{m-(k-1)}$.

Observe that

$$
\begin{aligned}
x^{m} & =x^{n+k} \\
x^{m-1} & =x^{n+k-1} \\
x^{m-(k-2)} & =x^{n+k-(k-2)}=x^{n+2} \\
x^{m-(k-1)} & =x^{n+k-(k-1)}=x^{n+1}
\end{aligned}
$$

Thus, $q^{\prime}(x)+p^{\prime}(x)=$.
Then $q(x)=q^{\prime}(x)+q(x)=$.
The polynomial $q(x)=q^{\prime}(x)+q(x)$, where $q^{\prime}(x)$ is the sum of k terms each with zero coefficient. Since

Observe that

$$
\begin{aligned}
p(x)+q(x) & =\left(a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}\right)+\left(b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}\right) \\
& =\left(a_{n}+b_{n}\right) x^{n}+\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\ldots+\left(\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)\right.
\end{aligned}
$$

To prove $p(x)+q(x) \in \mathbb{R}[x$, we must prove there exist a positive integer k such that

Proposition 5. The only subring of \mathbb{Z} is \mathbb{Z} itself.
Proof. We prove the only subring of \mathbb{Z} is \mathbb{Z} itself.
Let H be an arbitrary subring of \mathbb{Z}. Then $H \subset \mathbb{Z}$, by definition of subring. By definition of subring, H must contain the multiplicative identity of \mathbb{Z}. Thus, $1 \in H$.

By definition of subring, $(H,+)$ must be an abelian subgroup of $(\mathbb{Z},+)$. The smallest subgroup containing 1 is the cyclic group generated by 1 under addition. The cyclic group generated by 1 under addition is $\{k * 1: k \in \mathbb{Z}\}=$ $\{k: k \in \mathbb{Z}\}=\mathbb{Z}$. Hence, the smallest additive subgroup of \mathbb{Z} containing 1 is \mathbb{Z} itself. Thus, every integer must be contained in H, so $\mathbb{Z} \subset H$.

Since $H \subset \mathbb{Z}$ and $\mathbb{Z} \subset H$, then $H=\mathbb{Z}$. Since \mathbb{Z} is a ring, then this implies the only subring of \mathbb{Z} is \mathbb{Z} itself.

Proposition 6. The only subring of \mathbb{Z}_{n} is \mathbb{Z}_{n}.
Proof. We prove the only subring of \mathbb{Z}_{n} is \mathbb{Z}_{n} itself.
Let $n \in \mathbb{Z}^{+}$. Let $(H,+, *)$ be an arbitrary subring of $\left(\mathbb{Z}_{n},+, *\right)$. Then $H \subset \mathbb{Z}_{n}$, by definition of subring. By definition of subring, H must contain the same multiplicative identity as \mathbb{Z}_{n}. Thus, $[1] \in H$.

By definition of subring, $(H,+)$ must be an abelian subgroup of $\left(\mathbb{Z}_{n},+\right)$. The smallest subgroup containing [1] is the cyclic group generated by [1] under addition modulo n. The cyclic group generated by [1] under addition modulo n is \mathbb{Z}_{n}. Thus, the smallest subgroup of \mathbb{Z}_{n} containing [1] is \mathbb{Z}_{n} itself. Hence, every element of \mathbb{Z}_{n} must be contained in H. Thus, $\mathbb{Z}_{n} \subset H$.

Since $H \subset \mathbb{Z}_{n}$ and $\mathbb{Z}_{n} \subset H$, then $H=\mathbb{Z}_{n}$. Since \mathbb{Z}_{n} is a ring, then the only subring of \mathbb{Z}_{n} is \mathbb{Z}_{n} itself.

Proposition 7. Let p be prime. Then \mathbb{Z}_{p} is a field.

Proof. For any positive integer p, \mathbb{Z}_{p} is a commutative ring with unity [1]. In particular, for prime p, \mathbb{Z}_{p} is a commutative ring with unity [1].

We prove $[1]_{p} \neq[0]_{p}$. Suppose for the sake of contradiction $[1]_{p}=[0]_{p}$. Then $1 \equiv 0(\bmod p)$, so $p \mid 1$. Since p is an integer, then this implies either $p=1$ or $p=-1$. Since $p>0$, then $p \neq-1$, so $p=1$. But p is prime, so $p>1$. Hence, $1>1$, a contradiction. Therefore, $[1]_{p} \neq[0]_{p}$.

Thus, \mathbb{Z}_{p} is a commutative ring with unity $[1] \neq[0]$.
Observe that $\mathbb{Z}_{p}=\{[1],[2], \ldots,[p-1],[p]\}=\left\{[a]_{p}: 1 \leq a \leq p, a \in \mathbb{Z}\right\}$. Let $[a] \in \mathbb{Z}_{p}$ such that $[a]_{p} \neq[0]_{p}$. Observe that $[a]_{p}=[0]_{p}$ iff $a \equiv 0(\bmod p)$ iff $p \mid a$. Since $[a]_{p} \neq[0]_{p}$ and $[a]_{p}=[0]_{p}$ iff $p \mid a$, then $p \nmid a$. Since p is prime, then either $p \mid a$ or $\operatorname{gcd}(p, a)=1$. Since $p \Lambda a$, then we conclude $\operatorname{gcd}(p, a)=1$, so $\operatorname{gcd}(a, p)=1$. Since $[a]_{p}$ has a multiplicative inverse in \mathbb{Z}_{p} iff $\operatorname{gcd}(a, p)=1$, then $[a]_{p}$ has a multiplicative inverse in \mathbb{Z}_{p}. Hence, $[a]$ is a unit. Since $[a]$ is arbitrary, then every nonzero element of \mathbb{Z}_{p} is a unit.

Therefore, \mathbb{Z}_{p} is a field.
Proposition 8. The characteristic of \mathbb{Z}_{p} for prime p is p.
Proof. Let p be prime.
To prove p is the characteristic of the field \mathbb{Z}_{p}, we must prove p is the least positive integer such that $p[a]=[0]$ for all $[a] \in \mathbb{Z}_{p}$.

Since $\left(\mathbb{Z}_{p},+, *\right)$ is a ring, then $\left(\mathbb{Z}_{p},+\right)$ is an abelian group of order p. Every group of prime order is cyclic, so $\left(\mathbb{Z}_{p},+\right)$ is cyclic. Since \mathbb{Z}_{p} is a field, then there exists a nonzero element in \mathbb{Z}_{p}. Let $[a]$ be an arbitrary element of \mathbb{Z}_{p}.

Either $[a]=[0]$ or $[a] \neq[0]$.
We consider these cases separately.
Case 1: Suppose $[a] \neq[0]$.
Then $[a]$ is a generator of \mathbb{Z}_{p}. Hence, the order of $[a]$ is p. Thus, p is the least positive integer such that $p[a]=[0]$.

Case 2: Suppose $[a]=[0]$.
Then $p[a]=p[0]=[p 0]=[0]$.
Thus, in all cases, p is the least positive integer such that $p[a]=[0]$ for every $[a] \in \mathbb{Z}_{p}$. Therefore, p is the characteristic of \mathbb{Z}_{p}.

Lemma 9. The ring of integers has no zero divisors.
Solution. This statement means there does not exist an integer that is a zero divisor.

We must prove there does not exist an integer that is a zero divisor.
Our domain of discourse is the ring \mathbb{Z}.
Define over the set of all integers \mathbb{Z} the predicate:
$p(a): a$ is a zero divisor which means
$p(a): a \neq 0 \wedge(\exists b \in \mathbb{Z})(b \neq 0 \wedge a b=0)$.
We must prove $\neg(\exists a \in \mathbb{Z})(p(a))$.
Observe that

$$
\begin{aligned}
\neg(\exists a \in \mathbb{Z})(p(a)) & \Leftrightarrow(\forall a \in \mathbb{Z})(\neg p(a)) \\
& \Leftrightarrow(\forall a \in \mathbb{Z})(a=0 \vee \neg(\exists b \in \mathbb{Z})(b \neq 0 \wedge a b=0)) .
\end{aligned}
$$

Thus, let a be arbitrary. We must prove $a=0 \vee \neg(\exists b \in \mathbb{Z})(b \neq 0 \wedge a b=0)$.
This statement has the form $Q \vee \neg R$, a disjunction, where the statements are
$Q: a=0$ and
$R:(\exists b \in \mathbb{Z})(b \neq 0 \wedge a b=0)$.
From logic we know that

$$
\begin{aligned}
Q \vee \neg R & \Leftrightarrow \neg \neg Q \vee \neg R \\
& \Leftrightarrow \neg Q \rightarrow \neg R .
\end{aligned}
$$

Thus, to prove $Q \vee \neg R$ we may prove $\neg Q \rightarrow \neg R$. Hence, assume $\neg Q$, that is assume $a \neq 0$.

We must prove $\neg R$.
Thus, we must prove $\neg(\exists b \in \mathbb{Z})(b \neq 0 \wedge a b=0)$.
We observe that the product of two nonzero integers is nonzero because we already proved that fact.

Thus, $(\forall x, y \in \mathbb{Z})(x \neq 0 \wedge y \neq 0 \rightarrow x y \neq 0)$.
Thus, assume b is an arbitrary integer such that $b \neq 0$. Then $a \neq 0$ and $b \neq 0$ implies $a b \neq 0$. Since $a \neq 0$ and $b \neq 0$, then $a b \neq 0$. Thus, we have $b \neq 0$ and $a b \neq 0$. Hence, this implies the statement $b \neq 0$ and $a b=0$ is false. Therefore, there does not exist $b \in \mathbb{Z}$ such that $b \neq 0$ and $a b=0$. Thus, a is not a zero divisor, by definition of zero divisor. Since a is arbitrary, then a is not a zero divisor for all $a \in \mathbb{Z}$, by universal generalization. Therefore, every integer is not a zero divisor. Hence, there does not exist an integer that is a zero divisor. Thus, \mathbb{Z} has no zero divisors.

Proof. Observe that \mathbb{Z} is a commutative ring. Let a and b be arbitrary nonzero integers. Then $a \neq 0$ and $b \neq 0$. The product of two nonzero integers is nonzero. Thus, $a b \neq 0$. Since $b \neq 0$ and $a b \neq 0$, then there does not exist an integer b such that $b \neq 0$ and $a b=0$. Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero integer is not a zero divisor. Hence, there does not exist a nonzero integer that is a zero divisor. Therefore, \mathbb{Z} has no zero divisors.

Integral Domains

Proposition 10. The ring of integers is an integral domain.
Proof. Let $(\mathbb{Z},+, *)$ be the ring of integers under addition and multiplication. Observe that multiplication of integers is commutative. Observe that the unity of \mathbb{Z} is $1 \neq 0$. Observe that \mathbb{Z} has no zero divisors. Therefore, \mathbb{Z} is an integral domain.

Lemma 11. The product of two nonzero rational numbers is nonzero.
Proof. Let a and b be arbitrary nonzero rational numbers. Then there exist integers m, n, p, q such that $a=\frac{m}{n}$ and $b=\frac{p}{q}$ and $n \neq 0$ and $q \neq 0$. A rational number is zero if and only if its numerator is zero. Since a and b are
nonzero rational numbers, then this implies $m \neq 0$ and $p \neq 0$. Observe that $a b=\frac{m}{n} \frac{p}{q}=\frac{m p}{n q}$. The product of two nonzero integers is non zero. Hence, $m p \neq 0$. Therefore, $a b \neq 0$.

Proposition 12. The ring of rational numbers is an integral domain.
Proof. Let $(\mathbb{Q},+, *)$ be the ring of rational numbers. Then \mathbb{Q} is a commutative ring with unity $1 \neq 0$.

To prove \mathbb{Q} is an integral domain we need only show that \mathbb{Q} has no zero divisors.

Let a and b be arbitrary nonzero rational numbers. Then $a \neq 0$ and $b \neq 0$. The product of two nonzero rational numbers is nonzero. Thus, $a b \neq 0$. Since $b \neq 0$ and $a b \neq 0$, then there does not exist a rational number b such that $b \neq 0$ and $a b=0$. Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero rational number is not a zero divisor. Hence, there does not exist a nonzero rational number that is a zero divisor. Therefore, \mathbb{Q} has no zero divisors.

Thus, \mathbb{Q} is an integral domain.
Lemma 13. The product of two nonzero real numbers is nonzero.
Solution. This statement means: if a is a nonzero real number and b is a nonzero real number, then $a b$ is nonzero.

A basic fact about real numbers is that the product of two real number is zero iff either real number is zero. Thus, $(\forall a, b \in \mathbb{R})(a b=0 \Leftrightarrow a=0 \vee b=0)$. Observe that

$$
\begin{aligned}
a b=0 \Leftrightarrow a=0 \vee b=0 & \Leftrightarrow \quad a b \neq 0 \Leftrightarrow \neg(a=0 \vee b=0) \\
& \Leftrightarrow \quad a b \neq 0 \Leftrightarrow(a \neq 0 \wedge b \neq 0) .
\end{aligned}
$$

Proof. Observe that the product of two real numbers is zero iff either real number is zero. Therefore, for every real number a and $b, a b=0$ iff either $a=0$ or $b=0$. Hence, for every real number a and $b, a b \neq 0$ iff $a \neq 0$ and $b \neq 0$. Thus, for every real number a and b, if $a \neq 0$ and $b \neq 0$, then $a b \neq 0$. Therefore, the product of two nonzero real numbers is nonzero.

Proposition 14. The ring of real numbers is an integral domain.
Proof. Let $(\mathbb{R},+, *)$ be the ring of rational numbers. Then \mathbb{R} is a commutative ring with unity $1 \neq 0$.

To prove \mathbb{R} is an integral domain we need only show that \mathbb{R} has no zero divisors.

Let a and b be arbitrary nonzero real numbers. Then $a \neq 0$ and $b \neq 0$. The product of two nonzero real numbers is nonzero. Thus, $a b \neq 0$. Since $b \neq 0$ and $a b \neq 0$, then there does not exist a real number b such that $b \neq 0$ and $a b=0$. Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero real
number is not a zero divisor. Hence, there does not exist a nonzero real number that is a zero divisor. Therefore, \mathbb{R} has no zero divisors.

Thus, \mathbb{R} is an integral domain.
Proposition 15. Let $n \in \mathbb{Z}^{+}$. Then $(n \mathbb{Z},+, *)$ has a multiplicative identity iff $n=1$.

Solution. We must prove: 1. if $n=1$, then $n \mathbb{Z}$ has a multiplicative identity 2 . if $n \mathbb{Z}$ has a multiplicative identity, then $n=1$.

Proof. Let $n \in \mathbb{Z}^{+}$.
Suppose $n=1$. Then $n \mathbb{Z}=1 \mathbb{Z}=\{1 k: k \in \mathbb{Z}\}=\{k: k \in \mathbb{Z}\}=\mathbb{Z}$. Since \mathbb{Z} is a ring with unity 1 , then 1 is multiplicative identity of \mathbb{Z}. Therefore, 1 is multiplicative identity of $n \mathbb{Z}$, so $n \mathbb{Z}$ has a multiplicative identity.

Conversely, suppose $n \mathbb{Z}$ has a multiplicative identity. Then there exists $e \in n \mathbb{Z}$ such that $a e=a$ for all $a \in n \mathbb{Z}$.

Let $a \in n \mathbb{Z}$. Then there exists $e \in n \mathbb{Z}$ such that $a e=a$.
Since $n \in \mathbb{Z}^{+}$, then either $n=1$ or $n>1$.
Suppose $n>1$. Then $n \neq 1$. Since $a e=a$, then $0=a e-a=a(e-1)$. Since $e, a \in n \mathbb{Z}$ and $n \mathbb{Z} \subset \mathbb{Z}$, then $e, a \in \mathbb{Z}$.

The product of two nonzero integers is nonzero. Therefore, for every $x, y \in \mathbb{Z}$, if $x \neq 0$ and $y \neq 0$, then $x y \neq 0$. Thus, for every $x, y \in \mathbb{Z}$, if $x y=0$, then either $x=0$ or $y=0$. Hence, in particular, if $a(e-1)=0$, then either $a=0$ or $e-1=0$. Thus, since $a \in \mathbb{Z}$ and $e-1 \in \mathbb{Z}$, then either $a=0$ or $e-1=0$.

Therefore, either $a=0$ or $e=1$.
We consider these cases separately.
Case 1: Suppose $e=1$.
Since $e \in n \mathbb{Z}$, then there exists $k \in \mathbb{Z}$ such that $e=n k$. Thus, $1=e=n k$. Since there exists $k \in \mathbb{Z}$ such that $1=n k$, then $n \mid 1$. The only integers that divide 1 are 1 and -1 . Since n is a positive integer, then this implies $n=1$. Thus we have $n \neq 1$ and $n=1$, a contradiction.

Case 2: Suppose $a=0$.
Since a is arbitrary, then every $a \in n \mathbb{Z}$ is equal to zero. Since $n=n * 1$, then $n \in n \mathbb{Z}$. Hence, in particular, $n=0$. Since $n>1$, then $0>1$, a contradiction.

Therefore, in all cases a contradiction occurs if $n>1$. Thus, n cannot be greater than 1 .

Hence, $n=1$, as desired.
Proposition 16. Let $n \in \mathbb{Z}^{+}$. Then $(n \mathbb{Z},+, *)$ is an integral domain iff $n=1$.
Solution. We must prove: 1. if $n=1$, then $(n \mathbb{Z},+, *)$ is an integral domain
2. if $(n \mathbb{Z},+, *)$ is an integral domain, then $n=1$.

Proof. Suppose $n=1$. Then $n \mathbb{Z}=1 \mathbb{Z}=\mathbb{Z}$. Since \mathbb{Z} is an integral domain, then $n \mathbb{Z}$ is an integral domain.

Conversely, suppose $n \mathbb{Z}$ is an integral domain. Then $n \mathbb{Z}$ is a commutative ring with unity. Thus, $n \mathbb{Z}$ has a multiplicative identity. The ring $n \mathbb{Z}$ has a multiplicative identity iff $n=1$. Hence, $n=1$.

Ideals

Proposition 17. $(n \mathbb{Z},+, *)$ is an ideal of \mathbb{Z}.
Proof. Let $n \in \mathbb{Z}^{+}$. Observe that $(n \mathbb{Z},+)$ is an abelian subgroup of $(\mathbb{Z},+)$.
Let $I=n \mathbb{Z}$.
Let $x \in I$. Then $x=n k$ for some $k \in \mathbb{Z}$.
Let $a \in \mathbb{Z} x$. Then $a=r x$ for some $r \in \mathbb{Z}$. Thus, $a=r(n k)=(n k) r=n(k r)$. Since $k r \in \mathbb{Z}$, then $a \in I$, by definition of I. Hence, $a \in \mathbb{Z} x$ implies $a \in I$, so $\mathbb{Z} x \subset I$.

Let $b \in x \mathbb{Z}$. Then $b=x r$ for some $r \in \mathbb{Z}$. Thus, $b=(n k) r=n(k r)$. Since $k r \in \mathbb{Z}$, then $b \in I$, by definition of I. Hence, $b \in x \mathbb{Z}$ implies $b \in I$, so $x \mathbb{Z} \subset I$. Thus, $\mathbb{Z} I \subset I$ and $I \mathbb{Z} \subset I$.
Therefore, $(I,+)$ is an abelian subgroup of $(\mathbb{Z},+)$ and $\mathbb{Z} I \subset I$ and $I \mathbb{Z} \subset I$, so I is an ideal of \mathbb{Z}. Hence, $n \mathbb{Z}$ is an ideal of \mathbb{Z}.

Quotient Rings

Proposition 18. Let I be an ideal in a ring R. Let $a, b \in R$. Then $a-b \in I$ iff $a+I=b+I$.

Proof. Suppose $a-b \in I$. Then $a \equiv b(\bmod I)$. Since congruence modulo I is an equivalence relation over R, then every element of R is contained in exactly one congruence class. Observe that $a \in a+I$ and $b \in b+I$. Since a and b are congruent, then a and b are in the same congruence class, by definition of equivalence class. Hence, $a+I=b+I$.

Conversely, suppose $a+I=b+I$. Since $b \in b+I$ and $b+I=a+I$, then $b \in a+I$. Hence, $b=a+i$ for some $i \in I$. Thus, $i=-a+b=b-a$, so $b-a \in I$. Therefore, $b \equiv a(\bmod I)$. Since congruence modulo I is an equivalence relation, then \equiv is symmetric. Hence, $b \equiv a(\bmod I)$ implies $a \equiv b$ $(\bmod I)$, so $a \equiv b(\bmod I)$. Thus, $a-b \in I$.

Fields

