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Propositions/Basic Facts

Proposition 1. (Z,+, ∗) is a commutative ring with unity 1 6= 0.

Proof. Observe that (Z,+) is an abelian group with additive identity zero. Mul-
tiplication of integers is a binary operation on Z that is associative and com-
mutative. Multiplication is left and right distributive over addition. The multi-
plicative identity is 1 and 1 6= 0. Therefore, Z is a commutative ring with unity
1 6= 0.

Proposition 2. The product of two nonzero integers is nonzero.

Solution. The statement means if a and b are nonzero integers, then ab 6= 0.
Thus, we must prove:
(∀a, b ∈ Z)(a 6= 0 ∧ b 6= 0→ ab 6= 0).

Proof. Let a and b be arbitrary integers such that a 6= 0 and b 6= 0. Then either
a > 0 or a < 0, and either b > 0 or b < 0. Thus, there are 4 cases to consider.

We consider these cases separately.
Case 1: Suppose a > 0 and b > 0.
The product of two positive integers is positive. Therefore, ab > 0. Hence,

ab 6= 0.
Case 2: Suppose a > 0 and b < 0.
The product of a positive and negative integer is negative. Therefore, ab < 0.

Hence, ab 6= 0.
Case 3: Suppose a < 0 and b > 0.
The product of a positive and negative integer is negative. Therefore, ba < 0.

Since ba = ab, then ab < 0. Hence, ab 6= 0.
Case 4: Suppose a < 0 and b < 0.
The product of two negative integers is positive. Therefore, ab > 0. Hence,

ab 6= 0.
Thus, in all cases, ab 6= 0.

Proposition 3. (R,+, ∗) is a commutative ring with unity 1 6= 0.



Proof. Observe that (R,+) is an abelian group with additive identity zero.
We must prove multiplication is a binary operation on R and that it is

associative and commutative.
Multiplication is left and right distributive over addition. The multiplicative

identity is 1 and 1 6= 0. Therefore, Z is a commutative ring with unity 1 6= 0.

Proposition 4. Let R[x] be the set of all real polynomials in variable x.
Then (R[x],+, ∗) is a ring.

Solution. To prove R[x] is a ring, we must prove:
1. (R[x],+) is an abelian group.
2. (R[x], ∗) is an associative binary structure.
3. Multiplication distributes over addition.
Thus, we must prove:
1. Addition of polynomials is a binary operation on R[x].
2. Addition of polynomials is associative and commutative.
3. There exists an additive identity in R[x].
4. Each polynomial has an additive inverse in R[x].
5. Multiplication of polynomials is a binary operation on R[x].
6. Multiplication of polynomials is associative.
7. Multiplication is left distributive over addition.
8. Multiplication is right distributive over addition.

Proof. We prove addition of polynomials is a binary operation on R[x].
Let p(x), q(x) ∈ R[x].
Since p(x) ∈ R[x], then there exists m ∈ Z+ such that a0, a1, ..., am ∈ R and

p(x) = amxm + am−1x
m−1 + ...+ a1x+ a0. Since q(x) ∈ R[x], then there exists

n ∈ Z+ such that b0, b1, ..., bn ∈ R and q(x) = bnx
n + bn−1x

n−1 + ... + b1x + b0.
Either m = n or m 6= n.

We consider these cases separately.
Case 1: Suppose m = n.
Then p(x) = anx

n + an−1x
n−1 + ... + a1x + a0 Observe that

p(x) + q(x) = (anx
n + an−1x

n−1 + ... + a1x + a0) + (bnx
n + bn−1x

n−1 + ... + b1x + b0)

= (an + bn)xn + (an−1 + bn−1)xn−1 + ... + ((a1 + b1)x + (a0 + b0).

The sum of two real numbers is a real number. Therefore, ak + bk is a real
number for each k = 0, 1, ..., n. Hence, p(x) + q(x) ∈ R[x], so R[x] is closed
under addition. Since p(x) + q(x) is a unique real polynomial, then addition is
a binary operation on R[x].

Case 2: Suppose m 6= n.
Then either m < n or m > n. Without loss of generality, we may assume

m > n. Let k = m − n. Then k is a positive integer. Let p′(x) be a poly-
nomial of degree m with k terms such that p′(x) = amxm + am−1x

m−1 + ... +
am−(k−2)x

m−(k−2) + am−(k−1)x
m−(k−1) .

Let q′(x) be a zero polynomial of degree m with k terms such that q′(x) =
0xm + 0xm−1 + 0xm−2 + ... + 0xm−(k−1).
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Observe that

xm = xn+k

xm−1 = xn+k−1

xm−(k−2) = xn+k−(k−2) = xn+2

xm−(k−1) = xn+k−(k−1) = xn+1.

Thus, q′(x) + p′(x) =.
Then q(x) = q′(x) + q(x) =.
The polynomial q(x) = q′(x) + q(x), where q′(x) is the sum of k terms each

with zero coefficient. Since
Observe that

p(x) + q(x) = (amxm + am−1x
m−1 + ... + a1x + a0) + (bnx

n + bn−1x
n−1 + ... + b1x + b0)

= (an + bn)xn + (an−1 + bn−1)xn−1 + ... + ((a1 + b1)x + (a0 + b0).

To prove p(x) + q(x) ∈ R[x, we must prove there exist a positive integer k
such that

Proposition 5. The only subring of Z is Z itself.

Proof. We prove the only subring of Z is Z itself.
Let H be an arbitrary subring of Z. Then H ⊂ Z, by definition of subring.

By definition of subring, H must contain the multiplicative identity of Z. Thus,
1 ∈ H.

By definition of subring, (H,+) must be an abelian subgroup of (Z,+).
The smallest subgroup containing 1 is the cyclic group generated by 1 under
addition. The cyclic group generated by 1 under addition is {k ∗ 1 : k ∈ Z} =
{k : k ∈ Z} = Z. Hence, the smallest additive subgroup of Z containing 1 is Z
itself. Thus, every integer must be contained in H, so Z ⊂ H.

Since H ⊂ Z and Z ⊂ H, then H = Z. Since Z is a ring, then this implies
the only subring of Z is Z itself.

Proposition 6. The only subring of Zn is Zn.

Proof. We prove the only subring of Zn is Zn itself.
Let n ∈ Z+. Let (H,+, ∗) be an arbitrary subring of (Zn,+, ∗). Then

H ⊂ Zn, by definition of subring. By definition of subring, H must contain the
same multiplicative identity as Zn. Thus, [1] ∈ H.

By definition of subring, (H,+) must be an abelian subgroup of (Zn,+).
The smallest subgroup containing [1] is the cyclic group generated by [1] under
addition modulo n. The cyclic group generated by [1] under addition modulo
n is Zn. Thus, the smallest subgroup of Zn containing [1] is Zn itself. Hence,
every element of Zn must be contained in H. Thus, Zn ⊂ H.

Since H ⊂ Zn and Zn ⊂ H, then H = Zn. Since Zn is a ring, then the only
subring of Zn is Zn itself.

Proposition 7. Let p be prime. Then Zp is a field.
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Proof. For any positive integer p, Zp is a commutative ring with unity [1]. In
particular, for prime p, Zp is a commutative ring with unity [1].

We prove [1]p 6= [0]p. Suppose for the sake of contradiction [1]p = [0]p. Then
1 ≡ 0 (mod p), so p|1. Since p is an integer, then this implies either p = 1 or
p = −1. Since p > 0, then p 6= −1, so p = 1. But p is prime, so p > 1. Hence,
1 > 1, a contradiction. Therefore, [1]p 6= [0]p.

Thus, Zp is a commutative ring with unity [1] 6= [0].
Observe that Zp = {[1], [2], ..., [p − 1], [p]} = {[a]p : 1 ≤ a ≤ p, a ∈ Z}. Let

[a] ∈ Zp such that [a]p 6= [0]p. Observe that [a]p = [0]p iff a ≡ 0 (mod p) iff
p|a. Since [a]p 6= [0]p and [a]p = [0]p iff p|a, then p 6 |a. Since p is prime, then
either p|a or gcd(p, a) = 1. Since p 6 |a, then we conclude gcd(p, a) = 1, so
gcd(a, p) = 1. Since [a]p has a multiplicative inverse in Zp iff gcd(a, p) = 1, then
[a]p has a multiplicative inverse in Zp. Hence, [a] is a unit. Since [a] is arbitrary,
then every nonzero element of Zp is a unit.

Therefore, Zp is a field.

Proposition 8. The characteristic of Zp for prime p is p.

Proof. Let p be prime.
To prove p is the characteristic of the field Zp, we must prove p is the least

positive integer such that p[a] = [0] for all [a] ∈ Zp.
Since (Zp,+, ∗) is a ring, then (Zp,+) is an abelian group of order p. Every

group of prime order is cyclic, so (Zp,+) is cyclic. Since Zp is a field, then there
exists a nonzero element in Zp. Let [a] be an arbitrary element of Zp.

Either [a] = [0] or [a] 6= [0].
We consider these cases separately.
Case 1: Suppose [a] 6= [0].
Then [a] is a generator of Zp. Hence, the order of [a] is p. Thus, p is the

least positive integer such that p[a] = [0].
Case 2: Suppose [a] = [0].
Then p[a] = p[0] = [p0] = [0].
Thus, in all cases, p is the least positive integer such that p[a] = [0] for every

[a] ∈ Zp. Therefore, p is the characteristic of Zp.

Lemma 9. The ring of integers has no zero divisors.

Solution. This statement means there does not exist an integer that is a zero
divisor.

We must prove there does not exist an integer that is a zero divisor.
Our domain of discourse is the ring Z.
Define over the set of all integers Z the predicate:
p(a) : a is a zero divisor which means
p(a) : a 6= 0 ∧ (∃b ∈ Z)(b 6= 0 ∧ ab = 0).
We must prove ¬(∃a ∈ Z)(p(a)).
Observe that

¬(∃a ∈ Z)(p(a)) ⇔ (∀a ∈ Z)(¬p(a))

⇔ (∀a ∈ Z)(a = 0 ∨ ¬(∃b ∈ Z)(b 6= 0 ∧ ab = 0)).
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Thus, let a be arbitrary. We must prove a = 0 ∨ ¬(∃b ∈ Z)(b 6= 0 ∧ ab = 0).
This statement has the form Q ∨ ¬R, a disjunction, where the statements

are
Q : a = 0 and
R : (∃b ∈ Z)(b 6= 0 ∧ ab = 0).
From logic we know that

Q ∨ ¬R ⇔ ¬¬Q ∨ ¬R
⇔ ¬Q→ ¬R.

Thus, to prove Q ∨ ¬R we may prove ¬Q → ¬R. Hence, assume ¬Q, that
is assume a 6= 0.

We must prove ¬R.
Thus, we must prove ¬(∃b ∈ Z)(b 6= 0 ∧ ab = 0).
We observe that the product of two nonzero integers is nonzero because we

already proved that fact.
Thus, (∀x, y ∈ Z)(x 6= 0 ∧ y 6= 0→ xy 6= 0).
Thus, assume b is an arbitrary integer such that b 6= 0. Then a 6= 0 and

b 6= 0 implies ab 6= 0. Since a 6= 0 and b 6= 0, then ab 6= 0. Thus, we have
b 6= 0 and ab 6= 0. Hence, this implies the statement b 6= 0 and ab = 0 is false.
Therefore, there does not exist b ∈ Z such that b 6= 0 and ab = 0. Thus, a is
not a zero divisor, by definition of zero divisor. Since a is arbitrary, then a is
not a zero divisor for all a ∈ Z, by universal generalization. Therefore, every
integer is not a zero divisor. Hence, there does not exist an integer that is a
zero divisor. Thus, Z has no zero divisors.

Proof. Observe that Z is a commutative ring. Let a and b be arbitrary nonzero
integers. Then a 6= 0 and b 6= 0. The product of two nonzero integers is nonzero.
Thus, ab 6= 0. Since b 6= 0 and ab 6= 0, then there does not exist an integer b such
that b 6= 0 and ab = 0. Therefore, a is not a zero divisor. Since a is arbitrary,
then every nonzero integer is not a zero divisor. Hence, there does not exist a
nonzero integer that is a zero divisor. Therefore, Z has no zero divisors.

Integral Domains

Proposition 10. The ring of integers is an integral domain.

Proof. Let (Z,+, ∗) be the ring of integers under addition and multiplication.
Observe that multiplication of integers is commutative. Observe that the unity
of Z is 1 6= 0. Observe that Z has no zero divisors. Therefore, Z is an integral
domain.

Lemma 11. The product of two nonzero rational numbers is nonzero.

Proof. Let a and b be arbitrary nonzero rational numbers. Then there exist
integers m,n, p, q such that a = m

n and b = p
q and n 6= 0 and q 6= 0. A

rational number is zero if and only if its numerator is zero. Since a and b are
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nonzero rational numbers, then this implies m 6= 0 and p 6= 0. Observe that
ab = m

n
p
q = mp

nq . The product of two nonzero integers is non zero. Hence,
mp 6= 0. Therefore, ab 6= 0.

Proposition 12. The ring of rational numbers is an integral domain.

Proof. Let (Q,+, ∗) be the ring of rational numbers. Then Q is a commutative
ring with unity 1 6= 0.

To prove Q is an integral domain we need only show that Q has no zero
divisors.

Let a and b be arbitrary nonzero rational numbers. Then a 6= 0 and b 6= 0.
The product of two nonzero rational numbers is nonzero. Thus, ab 6= 0. Since
b 6= 0 and ab 6= 0, then there does not exist a rational number b such that
b 6= 0 and ab = 0. Therefore, a is not a zero divisor. Since a is arbitrary,
then every nonzero rational number is not a zero divisor. Hence, there does not
exist a nonzero rational number that is a zero divisor. Therefore, Q has no zero
divisors.

Thus, Q is an integral domain.

Lemma 13. The product of two nonzero real numbers is nonzero.

Solution. This statement means: if a is a nonzero real number and b is a
nonzero real number, then ab is nonzero.

A basic fact about real numbers is that the product of two real number is
zero iff either real number is zero. Thus, (∀a, b ∈ R)(ab = 0 ⇔ a = 0 ∨ b = 0).
Observe that

ab = 0⇔ a = 0 ∨ b = 0 ⇔ ab 6= 0⇔ ¬(a = 0 ∨ b = 0)

⇔ ab 6= 0⇔ (a 6= 0 ∧ b 6= 0).

Proof. Observe that the product of two real numbers is zero iff either real num-
ber is zero. Therefore, for every real number a and b, ab = 0 iff either a = 0 or
b = 0. Hence, for every real number a and b, ab 6= 0 iff a 6= 0 and b 6= 0. Thus,
for every real number a and b, if a 6= 0 and b 6= 0, then ab 6= 0. Therefore, the
product of two nonzero real numbers is nonzero.

Proposition 14. The ring of real numbers is an integral domain.

Proof. Let (R,+, ∗) be the ring of rational numbers. Then R is a commutative
ring with unity 1 6= 0.

To prove R is an integral domain we need only show that R has no zero
divisors.

Let a and b be arbitrary nonzero real numbers. Then a 6= 0 and b 6= 0. The
product of two nonzero real numbers is nonzero. Thus, ab 6= 0. Since b 6= 0 and
ab 6= 0, then there does not exist a real number b such that b 6= 0 and ab = 0.
Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero real
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number is not a zero divisor. Hence, there does not exist a nonzero real number
that is a zero divisor. Therefore, R has no zero divisors.

Thus, R is an integral domain.

Proposition 15. Let n ∈ Z+. Then (nZ,+, ∗) has a multiplicative identity iff
n = 1.

Solution. We must prove: 1. if n = 1, then nZ has a multiplicative identity 2.
if nZ has a multiplicative identity, then n = 1.

Proof. Let n ∈ Z+.
Suppose n = 1. Then nZ = 1Z = {1k : k ∈ Z} = {k : k ∈ Z} = Z. Since

Z is a ring with unity 1, then 1 is multiplicative identity of Z. Therefore, 1 is
multiplicative identity of nZ, so nZ has a multiplicative identity.

Conversely, suppose nZ has a multiplicative identity. Then there exists
e ∈ nZ such that ae = a for all a ∈ nZ.

Let a ∈ nZ. Then there exists e ∈ nZ such that ae = a.
Since n ∈ Z+, then either n = 1 or n > 1.
Suppose n > 1. Then n 6= 1. Since ae = a, then 0 = ae−a = a(e−1). Since

e, a ∈ nZ and nZ ⊂ Z, then e, a ∈ Z.
The product of two nonzero integers is nonzero. Therefore, for every x, y ∈ Z,

if x 6= 0 and y 6= 0, then xy 6= 0. Thus, for every x, y ∈ Z, if xy = 0, then
either x = 0 or y = 0. Hence, in particular, if a(e− 1) = 0, then either a = 0 or
e− 1 = 0. Thus, since a ∈ Z and e− 1 ∈ Z, then either a = 0 or e− 1 = 0.

Therefore, either a = 0 or e = 1.
We consider these cases separately.
Case 1: Suppose e = 1.
Since e ∈ nZ, then there exists k ∈ Z such that e = nk. Thus, 1 = e = nk.

Since there exists k ∈ Z such that 1 = nk, then n|1. The only integers that
divide 1 are 1 and −1. Since n is a positive integer, then this implies n = 1.
Thus we have n 6= 1 and n = 1, a contradiction.

Case 2: Suppose a = 0.
Since a is arbitrary, then every a ∈ nZ is equal to zero. Since n = n∗1, then

n ∈ nZ. Hence, in particular, n = 0. Since n > 1, then 0 > 1, a contradiction.
Therefore, in all cases a contradiction occurs if n > 1. Thus, n cannot be

greater than 1.
Hence, n = 1, as desired.

Proposition 16. Let n ∈ Z+. Then (nZ,+, ∗) is an integral domain iff n = 1.

Solution. We must prove: 1. if n = 1, then (nZ,+, ∗) is an integral domain
2. if (nZ,+, ∗) is an integral domain, then n = 1.

Proof. Suppose n = 1. Then nZ = 1Z = Z. Since Z is an integral domain, then
nZ is an integral domain.

Conversely, suppose nZ is an integral domain. Then nZ is a commutative
ring with unity. Thus, nZ has a multiplicative identity. The ring nZ has a
multiplicative identity iff n = 1. Hence, n = 1.
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Ideals

Proposition 17. (nZ,+, ∗) is an ideal of Z.

Proof. Let n ∈ Z+. Observe that (nZ,+) is an abelian subgroup of (Z,+).
Let I = nZ.
Let x ∈ I. Then x = nk for some k ∈ Z.
Let a ∈ Zx. Then a = rx for some r ∈ Z. Thus, a = r(nk) = (nk)r = n(kr).

Since kr ∈ Z, then a ∈ I, by definition of I. Hence, a ∈ Zx implies a ∈ I, so
Zx ⊂ I.

Let b ∈ xZ. Then b = xr for some r ∈ Z. Thus, b = (nk)r = n(kr). Since
kr ∈ Z, then b ∈ I, by definition of I. Hence, b ∈ xZ implies b ∈ I, so xZ ⊂ I.

Thus, ZI ⊂ I and IZ ⊂ I.
Therefore, (I,+) is an abelian subgroup of (Z,+) and ZI ⊂ I and IZ ⊂ I,

so I is an ideal of Z. Hence, nZ is an ideal of Z.

Quotient Rings

Proposition 18. Let I be an ideal in a ring R. Let a, b ∈ R. Then a − b ∈ I
iff a + I = b + I.

Proof. Suppose a− b ∈ I. Then a ≡ b (mod I). Since congruence modulo I is
an equivalence relation over R, then every element of R is contained in exactly
one congruence class. Observe that a ∈ a + I and b ∈ b + I. Since a and b
are congruent, then a and b are in the same congruence class, by definition of
equivalence class. Hence, a + I = b + I.

Conversely, suppose a + I = b + I. Since b ∈ b + I and b + I = a + I,
then b ∈ a + I. Hence, b = a + i for some i ∈ I. Thus, i = −a + b = b − a,
so b − a ∈ I. Therefore, b ≡ a (mod I). Since congruence modulo I is an
equivalence relation, then ≡ is symmetric. Hence, b ≡ a (mod I) implies a ≡ b
(mod I), so a ≡ b (mod I). Thus, a− b ∈ I.

Fields
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