Ring Theory Propositions

Jason Sass

May 21, 2023

Propositions/Basic Facts

Proposition 1. $(\mathbb{Z}, +, *)$ is a commutative ring with unity $1 \neq 0$.

Proof. Observe that $(\mathbb{Z}, +)$ is an abelian group with additive identity zero. Multiplication of integers is a binary operation on \mathbb{Z} that is associative and commutative. Multiplication is left and right distributive over addition. The multiplicative identity is 1 and $1 \neq 0$. Therefore, \mathbb{Z} is a commutative ring with unity $1 \neq 0$.

Proposition 2. The product of two nonzero integers is nonzero.

Solution. The statement means if a and b are nonzero integers, then $ab \neq 0$. Thus, we must prove:

 $(\forall a, b \in \mathbb{Z}) (a \neq 0 \land b \neq 0 \to ab \neq 0).$

Proof. Let a and b be arbitrary integers such that $a \neq 0$ and $b \neq 0$. Then either a > 0 or a < 0, and either b > 0 or b < 0. Thus, there are 4 cases to consider.

We consider these cases separately.

Case 1: Suppose a > 0 and b > 0.

The product of two positive integers is positive. Therefore, ab > 0. Hence, $ab \neq 0$.

Case 2: Suppose a > 0 and b < 0.

The product of a positive and negative integer is negative. Therefore, ab < 0. Hence, $ab \neq 0$.

Case 3: Suppose a < 0 and b > 0.

The product of a positive and negative integer is negative. Therefore, ba < 0. Since ba = ab, then ab < 0. Hence, $ab \neq 0$.

Case 4: Suppose a < 0 and b < 0.

The product of two negative integers is positive. Therefore, ab > 0. Hence, $ab \neq 0$.

Thus, in all cases, $ab \neq 0$.

Proposition 3. $(\mathbb{R}, +, *)$ is a commutative ring with unity $1 \neq 0$.

Proof. Observe that $(\mathbb{R}, +)$ is an abelian group with additive identity zero.

We must prove multiplication is a binary operation on $\mathbb R$ and that it is associative and commutative.

Multiplication is left and right distributive over addition. The multiplicative identity is 1 and $1 \neq 0$. Therefore, \mathbb{Z} is a commutative ring with unity $1 \neq 0$. \Box

Proposition 4. Let $\mathbb{R}[x]$ be the set of all real polynomials in variable x. Then $(\mathbb{R}[x], +, *)$ is a ring.

Solution. To prove $\mathbb{R}[x]$ is a ring, we must prove:

- 1. $(\mathbb{R}[x], +)$ is an abelian group.
- 2. $(\mathbb{R}[x], *)$ is an associative binary structure.
- 3. Multiplication distributes over addition.
- Thus, we must prove:
- 1. Addition of polynomials is a binary operation on $\mathbb{R}[x]$.
- 2. Addition of polynomials is associative and commutative.
- 3. There exists an additive identity in $\mathbb{R}[x]$.
- 4. Each polynomial has an additive inverse in $\mathbb{R}[x]$.
- 5. Multiplication of polynomials is a binary operation on $\mathbb{R}[x]$.
- 6. Multiplication of polynomials is associative.
- 7. Multiplication is left distributive over addition.
- 8. Multiplication is right distributive over addition.

Proof. We prove addition of polynomials is a binary operation on $\mathbb{R}[x]$. Let $p(x), q(x) \in \mathbb{R}[x]$.

Since $p(x) \in \mathbb{R}[x]$, then there exists $m \in \mathbb{Z}^+$ such that $a_0, a_1, ..., a_m \in \mathbb{R}$ and $p(x) = a_m x^m + a_{m-1} x^{m-1} + ... + a_1 x + a_0$. Since $q(x) \in \mathbb{R}[x]$, then there exists $n \in \mathbb{Z}^+$ such that $b_0, b_1, ..., b_n \in \mathbb{R}$ and $q(x) = b_n x^n + b_{n-1} x^{n-1} + ... + b_1 x + b_0$. Either m = n or $m \neq n$.

We consider these cases separately.

Case 1: Suppose m = n.

Then $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ Observe that

$$p(x) + q(x) = (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) + (b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0)$$

= $(a_n + b_n) x^n + (a_{n-1} + b_{n-1}) x^{n-1} + \dots + ((a_1 + b_1) x + (a_0 + b_0)).$

The sum of two real numbers is a real number. Therefore, $a_k + b_k$ is a real number for each k = 0, 1, ..., n. Hence, $p(x) + q(x) \in \mathbb{R}[x]$, so $\mathbb{R}[x]$ is closed under addition. Since p(x) + q(x) is a unique real polynomial, then addition is a binary operation on $\mathbb{R}[x]$.

Case 2: Suppose $m \neq n$.

Then either m < n or m > n. Without loss of generality, we may assume m > n. Let k = m - n. Then k is a positive integer. Let p'(x) be a polynomial of degree m with k terms such that $p'(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_{m-(k-2)} x^{m-(k-2)} + a_{m-(k-1)} x^{m-(k-1)}$.

Let q'(x) be a zero polynomial of degree m with k terms such that $q'(x) = 0x^m + 0x^{m-1} + 0x^{m-2} + \dots + 0x^{m-(k-1)}$.

Observe that

$$\begin{array}{rcl}
x^m &=& x^{n+k} \\
x^{m-1} &=& x^{n+k-1} \\
x^{m-(k-2)} &=& x^{n+k-(k-2)} = x^{n+2} \\
x^{m-(k-1)} &=& x^{n+k-(k-1)} = x^{n+1}
\end{array}$$

Thus, q'(x) + p'(x) =.

Then q(x) = q'(x) + q(x) =.

The polynomial q(x) = q'(x) + q(x), where q'(x) is the sum of k terms each with zero coefficient. Since

Observe that

$$p(x) + q(x) = (a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0) + (b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0)$$

= $(a_n + b_n) x^n + (a_{n-1} + b_{n-1}) x^{n-1} + \dots + ((a_1 + b_1) x + (a_0 + b_0)).$

To prove $p(x) + q(x) \in \mathbb{R}[x]$, we must prove there exist a positive integer k such that

Proposition 5. The only subring of \mathbb{Z} is \mathbb{Z} itself.

Proof. We prove the only subring of \mathbb{Z} is \mathbb{Z} itself.

Let H be an arbitrary subring of \mathbb{Z} . Then $H \subset \mathbb{Z}$, by definition of subring. By definition of subring, H must contain the multiplicative identity of \mathbb{Z} . Thus, $1 \in H$.

By definition of subring, (H, +) must be an abelian subgroup of $(\mathbb{Z}, +)$. The smallest subgroup containing 1 is the cyclic group generated by 1 under addition. The cyclic group generated by 1 under addition is $\{k * 1 : k \in \mathbb{Z}\} =$ $\{k : k \in \mathbb{Z}\} = \mathbb{Z}$. Hence, the smallest additive subgroup of \mathbb{Z} containing 1 is \mathbb{Z} itself. Thus, every integer must be contained in H, so $\mathbb{Z} \subset H$.

Since $H \subset \mathbb{Z}$ and $\mathbb{Z} \subset H$, then $H = \mathbb{Z}$. Since \mathbb{Z} is a ring, then this implies the only subring of \mathbb{Z} is \mathbb{Z} itself.

Proposition 6. The only subring of \mathbb{Z}_n is \mathbb{Z}_n .

Proof. We prove the only subring of \mathbb{Z}_n is \mathbb{Z}_n itself.

Let $n \in \mathbb{Z}^+$. Let (H, +, *) be an arbitrary subring of $(\mathbb{Z}_n, +, *)$. Then $H \subset \mathbb{Z}_n$, by definition of subring. By definition of subring, H must contain the same multiplicative identity as \mathbb{Z}_n . Thus, $[1] \in H$.

By definition of subring, (H, +) must be an abelian subgroup of $(\mathbb{Z}_n, +)$. The smallest subgroup containing [1] is the cyclic group generated by [1] under addition modulo n. The cyclic group generated by [1] under addition modulo n is \mathbb{Z}_n . Thus, the smallest subgroup of \mathbb{Z}_n containing [1] is \mathbb{Z}_n itself. Hence, every element of \mathbb{Z}_n must be contained in H. Thus, $\mathbb{Z}_n \subset H$.

Since $H \subset \mathbb{Z}_n$ and $\mathbb{Z}_n \subset H$, then $H = \mathbb{Z}_n$. Since \mathbb{Z}_n is a ring, then the only subring of \mathbb{Z}_n is \mathbb{Z}_n itself.

Proposition 7. Let p be prime. Then \mathbb{Z}_p is a field.

Proof. For any positive integer p, \mathbb{Z}_p is a commutative ring with unity [1]. In particular, for prime p, \mathbb{Z}_p is a commutative ring with unity [1].

We prove $[1]_p \neq [0]_p$. Suppose for the sake of contradiction $[1]_p = [0]_p$. Then $1 \equiv 0 \pmod{p}$, so p|1. Since p is an integer, then this implies either p = 1 or p = -1. Since p > 0, then $p \neq -1$, so p = 1. But p is prime, so p > 1. Hence, 1 > 1, a contradiction. Therefore, $[1]_p \neq [0]_p$.

Thus, \mathbb{Z}_p is a commutative ring with unity $[1] \neq [0]$.

Observe that $\mathbb{Z}_p = \{[1], [2], ..., [p-1], [p]\} = \{[a]_p : 1 \leq a \leq p, a \in \mathbb{Z}\}$. Let $[a] \in \mathbb{Z}_p$ such that $[a]_p \neq [0]_p$. Observe that $[a]_p = [0]_p$ iff $a \equiv 0 \pmod{p}$ iff p|a. Since $[a]_p \neq [0]_p$ and $[a]_p = [0]_p$ iff p|a, then $p \not| a$. Since p is prime, then either p|a or gcd(p, a) = 1. Since $p \not| a$, then we conclude gcd(p, a) = 1, so gcd(a, p) = 1. Since $[a]_p$ has a multiplicative inverse in \mathbb{Z}_p iff gcd(a, p) = 1, then $[a]_p$ has a multiplicative inverse in \mathbb{Z}_p . Hence, [a] is a unit. Since [a] is arbitrary, then every nonzero element of \mathbb{Z}_p is a unit.

Therefore, \mathbb{Z}_p is a field.

Proposition 8. The characteristic of \mathbb{Z}_p for prime p is p.

Proof. Let p be prime.

To prove p is the characteristic of the field \mathbb{Z}_p , we must prove p is the least positive integer such that p[a] = [0] for all $[a] \in \mathbb{Z}_p$.

Since $(\mathbb{Z}_p, +, *)$ is a ring, then $(\mathbb{Z}_p, +)$ is an abelian group of order p. Every group of prime order is cyclic, so $(\mathbb{Z}_p, +)$ is cyclic. Since \mathbb{Z}_p is a field, then there exists a nonzero element in \mathbb{Z}_p . Let [a] be an arbitrary element of \mathbb{Z}_p .

Either [a] = [0] or $[a] \neq [0]$.

We consider these cases separately.

Case 1: Suppose $[a] \neq [0]$.

Then [a] is a generator of \mathbb{Z}_p . Hence, the order of [a] is p. Thus, p is the least positive integer such that p[a] = [0].

Case 2: Suppose [a] = [0].

Then p[a] = p[0] = [p0] = [0].

Thus, in all cases, p is the least positive integer such that p[a] = [0] for every $[a] \in \mathbb{Z}_p$. Therefore, p is the characteristic of \mathbb{Z}_p .

Lemma 9. The ring of integers has no zero divisors.

Solution. This statement means there does not exist an integer that is a zero divisor.

We must prove there does not exist an integer that is a zero divisor.

Our domain of discourse is the ring \mathbb{Z} .

Define over the set of all integers \mathbb{Z} the predicate:

p(a): a is a zero divisor which means

$$\begin{split} p(a) &: a \neq 0 \land (\exists b \in \mathbb{Z}) (b \neq 0 \land ab = 0). \\ \text{We must prove } \neg (\exists a \in \mathbb{Z}) (p(a)). \end{split}$$

Observe that

$$\begin{aligned} \neg(\exists a \in \mathbb{Z})(p(a)) & \Leftrightarrow \quad (\forall a \in \mathbb{Z})(\neg p(a)) \\ & \Leftrightarrow \quad (\forall a \in \mathbb{Z})(a = 0 \lor \neg (\exists b \in \mathbb{Z})(b \neq 0 \land ab = 0)). \end{aligned}$$

Thus, let a be arbitrary. We must prove $a = 0 \lor \neg (\exists b \in \mathbb{Z}) (b \neq 0 \land ab = 0)$.

This statement has the form $Q \vee \neg R$, a disjunction, where the statements are

 $\begin{aligned} Q &: a = 0 \text{ and} \\ R &: (\exists b \in \mathbb{Z}) (b \neq 0 \land ab = 0). \end{aligned}$ From logic we know that

$$\begin{array}{rcl} Q \lor \neg R & \Leftrightarrow & \neg \neg Q \lor \neg R \\ & \Leftrightarrow & \neg Q \to \neg R. \end{array}$$

Thus, to prove $Q \vee \neg R$ we may prove $\neg Q \to \neg R$. Hence, assume $\neg Q$, that is assume $a \neq 0$.

We must prove $\neg R$.

Thus, we must prove $\neg(\exists b \in \mathbb{Z})(b \neq 0 \land ab = 0)$.

We observe that the product of two nonzero integers is nonzero because we already proved that fact.

Thus, $(\forall x, y \in \mathbb{Z})(x \neq 0 \land y \neq 0 \rightarrow xy \neq 0)$.

Thus, assume b is an arbitrary integer such that $b \neq 0$. Then $a \neq 0$ and $b \neq 0$ implies $ab \neq 0$. Since $a \neq 0$ and $b \neq 0$, then $ab \neq 0$. Thus, we have $b \neq 0$ and $ab \neq 0$. Hence, this implies the statement $b \neq 0$ and ab = 0 is false. Therefore, there does not exist $b \in \mathbb{Z}$ such that $b \neq 0$ and ab = 0. Thus, a is not a zero divisor, by definition of zero divisor. Since a is arbitrary, then a is not a zero divisor for all $a \in \mathbb{Z}$, by universal generalization. Therefore, every integer is not a zero divisor. Hence, there does not exist an integer that is a zero divisor. Thus, \mathbb{Z} has no zero divisors.

Proof. Observe that \mathbb{Z} is a commutative ring. Let a and b be arbitrary nonzero integers. Then $a \neq 0$ and $b \neq 0$. The product of two nonzero integers is nonzero. Thus, $ab \neq 0$. Since $b \neq 0$ and $ab \neq 0$, then there does not exist an integer b such that $b \neq 0$ and ab = 0. Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero integer is not a zero divisor. Hence, there does not exist a nonzero integer that is a zero divisor. Therefore, \mathbb{Z} has no zero divisors.

Integral Domains

Proposition 10. The ring of integers is an integral domain.

Proof. Let $(\mathbb{Z}, +, *)$ be the ring of integers under addition and multiplication. Observe that multiplication of integers is commutative. Observe that the unity of \mathbb{Z} is $1 \neq 0$. Observe that \mathbb{Z} has no zero divisors. Therefore, \mathbb{Z} is an integral domain.

Lemma 11. The product of two nonzero rational numbers is nonzero.

Proof. Let a and b be arbitrary nonzero rational numbers. Then there exist integers m, n, p, q such that $a = \frac{m}{n}$ and $b = \frac{p}{q}$ and $n \neq 0$ and $q \neq 0$. A rational number is zero if and only if its numerator is zero. Since a and b are

nonzero rational numbers, then this implies $m \neq 0$ and $p \neq 0$. Observe that $ab = \frac{m}{n} \frac{p}{q} = \frac{mp}{nq}$. The product of two nonzero integers is non zero. Hence, $mp \neq 0$. Therefore, $ab \neq 0$.

Proposition 12. The ring of rational numbers is an integral domain.

Proof. Let $(\mathbb{Q}, +, *)$ be the ring of rational numbers. Then \mathbb{Q} is a commutative ring with unity $1 \neq 0$.

To prove \mathbb{Q} is an integral domain we need only show that \mathbb{Q} has no zero divisors.

Let a and b be arbitrary nonzero rational numbers. Then $a \neq 0$ and $b \neq 0$. The product of two nonzero rational numbers is nonzero. Thus, $ab \neq 0$. Since $b \neq 0$ and $ab \neq 0$, then there does not exist a rational number b such that $b \neq 0$ and ab = 0. Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero rational number is not a zero divisor. Hence, there does not exist a nonzero rational number that is a zero divisor. Therefore, \mathbb{Q} has no zero divisors.

Thus, \mathbb{Q} is an integral domain.

Lemma 13. The product of two nonzero real numbers is nonzero.

Solution. This statement means: if a is a nonzero real number and b is a nonzero real number, then ab is nonzero.

A basic fact about real numbers is that the product of two real number is zero iff either real number is zero. Thus, $(\forall a, b \in \mathbb{R})(ab = 0 \Leftrightarrow a = 0 \lor b = 0)$. Observe that

$$ab = 0 \Leftrightarrow a = 0 \lor b = 0 \quad \Leftrightarrow \quad ab \neq 0 \Leftrightarrow \neg(a = 0 \lor b = 0)$$
$$\Leftrightarrow \quad ab \neq 0 \Leftrightarrow (a \neq 0 \land b \neq 0).$$

Proof. Observe that the product of two real numbers is zero iff either real number is zero. Therefore, for every real number a and b, ab = 0 iff either a = 0 or b = 0. Hence, for every real number a and b, $ab \neq 0$ iff $a \neq 0$ and $b \neq 0$. Thus, for every real number a and b, if $a \neq 0$ and $b \neq 0$, then $ab \neq 0$. Therefore, the product of two nonzero real numbers is nonzero.

Proposition 14. The ring of real numbers is an integral domain.

Proof. Let $(\mathbb{R}, +, *)$ be the ring of rational numbers. Then \mathbb{R} is a commutative ring with unity $1 \neq 0$.

To prove $\mathbb R$ is an integral domain we need only show that $\mathbb R$ has no zero divisors.

Let a and b be arbitrary nonzero real numbers. Then $a \neq 0$ and $b \neq 0$. The product of two nonzero real numbers is nonzero. Thus, $ab \neq 0$. Since $b \neq 0$ and $ab \neq 0$, then there does not exist a real number b such that $b \neq 0$ and ab = 0. Therefore, a is not a zero divisor. Since a is arbitrary, then every nonzero real

number is not a zero divisor. Hence, there does not exist a nonzero real number that is a zero divisor. Therefore, \mathbb{R} has no zero divisors.

Thus, \mathbb{R} is an integral domain.

Proposition 15. Let $n \in \mathbb{Z}^+$. Then $(n\mathbb{Z}, +, *)$ has a multiplicative identity iff n = 1.

Solution. We must prove: 1. if n = 1, then $n\mathbb{Z}$ has a multiplicative identity 2. if $n\mathbb{Z}$ has a multiplicative identity, then n = 1.

Proof. Let $n \in \mathbb{Z}^+$.

Suppose n = 1. Then $n\mathbb{Z} = 1\mathbb{Z} = \{1k : k \in \mathbb{Z}\} = \{k : k \in \mathbb{Z}\} = \mathbb{Z}$. Since \mathbb{Z} is a ring with unity 1, then 1 is multiplicative identity of \mathbb{Z} . Therefore, 1 is multiplicative identity of $n\mathbb{Z}$, so $n\mathbb{Z}$ has a multiplicative identity.

Conversely, suppose $n\mathbb{Z}$ has a multiplicative identity. Then there exists $e \in n\mathbb{Z}$ such that ae = a for all $a \in n\mathbb{Z}$.

Let $a \in n\mathbb{Z}$. Then there exists $e \in n\mathbb{Z}$ such that ae = a.

Since $n \in \mathbb{Z}^+$, then either n = 1 or n > 1.

Suppose n > 1. Then $n \neq 1$. Since ae = a, then 0 = ae - a = a(e-1). Since $e, a \in n\mathbb{Z}$ and $n\mathbb{Z} \subset \mathbb{Z}$, then $e, a \in \mathbb{Z}$.

The product of two nonzero integers is nonzero. Therefore, for every $x, y \in \mathbb{Z}$, if $x \neq 0$ and $y \neq 0$, then $xy \neq 0$. Thus, for every $x, y \in \mathbb{Z}$, if xy = 0, then either x = 0 or y = 0. Hence, in particular, if a(e-1) = 0, then either a = 0 or e-1=0. Thus, since $a \in \mathbb{Z}$ and $e-1 \in \mathbb{Z}$, then either a = 0 or e-1 = 0.

Therefore, either a = 0 or e = 1.

We consider these cases separately.

Case 1: Suppose e = 1.

Since $e \in n\mathbb{Z}$, then there exists $k \in \mathbb{Z}$ such that e = nk. Thus, 1 = e = nk. Since there exists $k \in \mathbb{Z}$ such that 1 = nk, then n|1. The only integers that divide 1 are 1 and -1. Since n is a positive integer, then this implies n = 1. Thus we have $n \neq 1$ and n = 1, a contradiction.

Case 2: Suppose a = 0.

Since a is arbitrary, then every $a \in n\mathbb{Z}$ is equal to zero. Since n = n * 1, then $n \in n\mathbb{Z}$. Hence, in particular, n = 0. Since n > 1, then 0 > 1, a contradiction.

Therefore, in all cases a contradiction occurs if n > 1. Thus, n cannot be greater than 1.

Hence, n = 1, as desired.

Proposition 16. Let $n \in \mathbb{Z}^+$. Then $(n\mathbb{Z}, +, *)$ is an integral domain iff n = 1.

Solution. We must prove: 1. if n = 1, then $(n\mathbb{Z}, +, *)$ is an integral domain 2. if $(n\mathbb{Z}, +, *)$ is an integral domain, then n = 1.

Proof. Suppose n = 1. Then $n\mathbb{Z} = 1\mathbb{Z} = \mathbb{Z}$. Since \mathbb{Z} is an integral domain, then $n\mathbb{Z}$ is an integral domain.

Conversely, suppose $n\mathbb{Z}$ is an integral domain. Then $n\mathbb{Z}$ is a commutative ring with unity. Thus, $n\mathbb{Z}$ has a multiplicative identity. The ring $n\mathbb{Z}$ has a multiplicative identity iff n = 1. Hence, n = 1.

Ideals

Proposition 17. $(n\mathbb{Z}, +, *)$ is an ideal of \mathbb{Z} .

Proof. Let $n \in \mathbb{Z}^+$. Observe that $(n\mathbb{Z}, +)$ is an abelian subgroup of $(\mathbb{Z}, +)$. Let $I = n\mathbb{Z}$.

Let $x \in I$. Then x = nk for some $k \in \mathbb{Z}$.

Let $a \in \mathbb{Z}x$. Then a = rx for some $r \in \mathbb{Z}$. Thus, a = r(nk) = (nk)r = n(kr). Since $kr \in \mathbb{Z}$, then $a \in I$, by definition of I. Hence, $a \in \mathbb{Z}x$ implies $a \in I$, so $\mathbb{Z}x \subset I$.

Let $b \in x\mathbb{Z}$. Then b = xr for some $r \in \mathbb{Z}$. Thus, b = (nk)r = n(kr). Since $kr \in \mathbb{Z}$, then $b \in I$, by definition of I. Hence, $b \in x\mathbb{Z}$ implies $b \in I$, so $x\mathbb{Z} \subset I$. Thus, $\mathbb{Z}I \subset I$ and $I\mathbb{Z} \subset I$.

Therefore, (I, +) is an abelian subgroup of $(\mathbb{Z}, +)$ and $\mathbb{Z}I \subset I$ and $I\mathbb{Z} \subset I$, so I is an ideal of \mathbb{Z} . Hence, $n\mathbb{Z}$ is an ideal of \mathbb{Z} .

Quotient Rings

Proposition 18. Let I be an ideal in a ring R. Let $a, b \in R$. Then $a - b \in I$ iff a + I = b + I.

Proof. Suppose $a - b \in I$. Then $a \equiv b \pmod{I}$. Since congruence modulo I is an equivalence relation over R, then every element of R is contained in exactly one congruence class. Observe that $a \in a + I$ and $b \in b + I$. Since a and b are congruent, then a and b are in the same congruence class, by definition of equivalence class. Hence, a + I = b + I.

Conversely, suppose a + I = b + I. Since $b \in b + I$ and b + I = a + I, then $b \in a + I$. Hence, b = a + i for some $i \in I$. Thus, i = -a + b = b - a, so $b - a \in I$. Therefore, $b \equiv a \pmod{I}$. Since congruence modulo I is an equivalence relation, then \equiv is symmetric. Hence, $b \equiv a \pmod{I}$ implies $a \equiv b \pmod{I}$, so $a \equiv b \pmod{I}$. Thus, $a - b \in I$.

Fields