Combinatorics Notes

Jason Sass

May 27, 2023

Combinatorics

Study of sets(finite) and set systems(ie,graphs, codes, geometries,groups,rings,fields,topologies,algebras, vector spaces,etc)

Existence, enumeration, analysis, optimization of discrete structures.

- Existence: Arrange objects in a set to satisfy certain conditions. Does an arrangement exist?
- Enumeration/Classification: If an arrangement exists, how many ways can this be done? isomorphism? classify into types, what is the probability of getting this arrangement?
- Analysis: Study an arrangement and develop structure theorems
- Optimize: Are there 'optimal' arrangements? (map coloring, network-flow,etc)

Addition Principle

Let event P occur in p different ways. Let distinct event Q occur in q different ways. Then P **OR** Q can occur in p + q different ways. **OR** means ADD.

Generalized Addition Principle

Let k = the number of distinct events, $k \ge 1$. Let P_i be a distinct event, i = 1..k. Let P_i occur in p_i different ways. Then P_1 or P_2 or ... or P_k can occur in $\sum_{i=1}^k p_i$ different ways.

Let S be a finite set. Let $\{S_1, S_2, ..., S_k\}$ be a **partition** of S. Then $|S| = \sum_{i=1}^k |S_i|$. Decompose into **mutually exclusive** cases.

Multiplication Principle

Let event P occur in p different ways. Let distinct event Q occur in q different ways. Then P **AND** Q can occur in pq different ways.

Equivalently,

if first task has p outcomes, and no matter the outcome,

there are q ways to do a second task, then the whole procedure has pq possible outcomes.

AND means multiply. Decompose into sequential tasks for a procedure.

General Problem Solving Strategy

- 1. Does order matter?
 - 2. Is repetition allowed?
 - 3. Make most restrictive choices first.
 - 4. Apply counting principles.

Definition 1. factorial function

The factorial of $n \in \mathbb{Z}^+$, denoted n!, is defined by

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$$

Therefore, 0! = 1.

The factorial is a function $\mathbb{Z}^+ \cup \{0\} \to \mathbb{Z}^+$.

Proposition 2. Let $n \in \mathbb{Z}^+$.

Then $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$.

Definition 3. binomial coefficient Let $n, k \in \mathbb{Z}$ and $n \ge 0$.

The **binomial coefficient** $\binom{n}{k}$ is defined by

$$\binom{n}{k} = \begin{cases} \frac{n!}{(n-k)!k!} & \text{if } 0 \le k \le n\\ 0 & \text{otherwise} \end{cases}$$

Let $n, k \in \mathbb{Z}$. If k < 0 or k > n, then $\binom{n}{k} = 0$. The binomial coefficient $\binom{n}{k}$ is the number of k element subsets of an n element set.

It is the number of ways of selecting k unordered outcomes from n possible outcomes (n choose k).

Proposition 4. properties of binomial coefficients

Let
$$n \in \mathbb{Z}^+$$
.
1. $\binom{0}{0} = 1$.
2. $\binom{n}{1} = n$.
3. $\binom{n}{0} = 1$.
4. $\binom{n}{n} = 1$.
5. Let $k \in \mathbb{Z}^+$.
If $k \le n$, then $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (Pascal's Recursion Rule)
6. Let $k \in \mathbb{Z}$.
If $0 \le k \le n$, then $\binom{n}{k} = \binom{n}{n-k}$. (Symmetry)

Theorem 5. Binomial Theorem

Let $a, b \in \mathbb{R}$.

Then
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 for all $n \in \mathbb{Z}^+$.

Observe that $2^n = (1+1)^n = \sum_{k=0}^n {n \choose k}.$

Definition 6. Permutation of Set

permutation of set = ordered arrangement, no repetition

k-permutation of n-set = ordered sequence of k distinct elements from set of n distinct elements

P(n,k) =permutation of n things taken k at a time

= the number of different k permutations of an n-set

= the number of different ordered selections of k distinct objects from set of n distinct objects.

P(n,k) = 0 if k > n.

P(n,n) = n! = the number of permutations of n distinct objects $P(n,k) = \frac{n!}{(n-k)!} = n(n-1)(n-2)...(n-k+1), 0 < k \le n$ There are (n-1)! circular permutations of a set of n distinct objects. There are P(n,k)/k circular k-permutations of n distinct objects.

Definition 7. Permutation of MultiSet

permutation of multiset = ordered arrangement with repetition Notes: How many

Definition 8. Combination of Set

combination of set = unordered arrangement , no repetition

k-combination of n-set (k-subset) = unordered selection of k distinct elements from set of n distinct elements

 $\binom{n}{k}$ = combination of *n* things taken *k* at a time = *n* choose *k*

= the number of different k combinations of an n-set

= the number of different k-subsets of an n-set (binomial coefficient)

= the number of different unordered selections of k distinct objects from set of n distinct objects.

Definition 9. Combination of MultiSet

combination of multiset = unordered arrangement, with repetition