Combinatorics Notes

Jason Sass

May 27, 2023

Combinatorics

Study of sets(finite) and set systems(ie,graphs, codes, geometries,groups,rings,fields,topologies,algebras, vector spaces,etc)

Existence, enumeration, analysis, optimization of discrete structures.

- Existence: Arrange objects in a set to satisfy certain conditions. Does an arrangement exist?
- Enumeration/Classification: If an arrangement exists, how many ways can this be done? isomorphism? classify into types, what is the probability of getting this arrangement?
- Analysis: Study an arrangement and develop structure theorems
- Optimize: Are there 'optimal' arrangements? (map coloring, networkflow,etc)

Addition Principle

Let event P occur in p different ways.
Let distinct event Q occur in q different ways.
Then P OR Q can occur in $p+q$ different ways.
OR means ADD.

Generalized Addition Principle

Let $k=$ the number of distinct events, $k \geq 1$.
Let P_{i} be a distinct event, $i=1 . . k$.
Let P_{i} occur in p_{i} different ways.
Then P_{1} or P_{2} or \ldots or P_{k} can occur in $\sum_{i=1}^{k} p_{i}$ different ways.

Let S be a finite set.
Let $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a partition of S.
Then $|S|=\sum_{i=1}^{k}\left|S_{i}\right|$.

Decompose into mutually exclusive cases.

Multiplication Principle

Let event P occur in p different ways.
Let distinct event Q occur in q different ways.
Then P AND Q can occur in $p q$ different ways.
Equivalently,
if first task has p outcomes, and no matter the outcome,
there are q ways to do a second task, then the whole procedure has $p q$ possible outcomes.

AND means multiply.
Decompose into sequential tasks for a procedure.

General Problem Solving Strategy

1. Does order matter?
2. Is repetition allowed?
3. Make most restrictive choices first.
4. Apply counting principles.

Definition 1. factorial function

The factorial of $n \in \mathbb{Z}^{+}$, denoted n !, is defined by

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { if } n>0\end{cases}
$$

Therefore, $0!=1$.
The factorial is a function $\mathbb{Z}^{+} \cup\{0\} \rightarrow \mathbb{Z}^{+}$.
Proposition 2. Let $n \in \mathbb{Z}^{+}$.
Then $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n$.
Definition 3. binomial coefficient
Let $n, k \in \mathbb{Z}$ and $n \geq 0$.
The binomial coefficient $\binom{n}{k}$ is defined by

$$
\binom{n}{k}= \begin{cases}\frac{n!}{(n-k)!k!} & \text { if } 0 \leq k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Let $n, k \in \mathbb{Z}$.
If $k<0$ or $k>n$, then $\binom{n}{k}=0$.

The binomial coefficient $\binom{n}{k}$ is the number of k element subsets of an n element set.

It is the number of ways of selecting k unordered outcomes from n possible outcomes (n choose k).

Proposition 4. properties of binomial coefficients

Let $n \in \mathbb{Z}^{+}$.

1. $\binom{0}{0}=1$.
2. $\binom{n}{1}=n$.
3. $\binom{n}{0}=1$.
4. $\binom{n}{n}=1$.
5. Let $k \in \mathbb{Z}^{+}$.

If $k \leq n$, then $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ (Pascal's Recursion Rule)
6. Let $k \in \mathbb{Z}$.

If $0 \leq k \leq n$, then $\binom{n}{k}=\binom{n}{n-k}$.(Symmetry)
Theorem 5. Binomial Theorem
Let $a, b \in \mathbb{R}$.
Then $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$ for all $n \in \mathbb{Z}^{+}$.
Observe that $2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}$.
Definition 6. Permutation of Set
permutation of set $=$ ordered arrangement, no repetition
k-permutation of n-set $=$ ordered sequence of k distinct elements from set of n distinct elements
$P(n, k)=$ permutation of n things taken k at a time
$=$ the number of different k permutations of an n-set
$=$ the number of different ordered selections of k distinct objects from set of n distinct objects.
$P(n, k)=0$ if $k>n$.
$P(n, n)=n!=$ the number of permutations of n distinct objects
$P(n, k)=\frac{n!}{(n-k)!}=n(n-1)(n-2) \ldots(n-k+1), 0<k \leq n$
There are $(n-1)$! circular permutations of a set of n distinct objects.
There are $P(n, k) / k$ circular k-permutations of n distinct objects.

Definition 7. Permutation of MultiSet

permutation of multiset $=$ ordered arrangement with repetition
Notes: How many

Definition 8. Combination of Set
combination of set $=$ unordered arrangement, no repetition
k-combination of n-set (k-subset) $=$ unordered selection of k distinct elements from set of n distinct elements
$\binom{n}{k}=$ combination of n things taken k at a time
$=n$ choose k
$=$ the number of different k combinations of an n-set
$=$ the number of different k-subsets of an n-set (binomial coefficient)
$=$ the number of different unordered selections of k distinct objects from set of n distinct objects.

Definition 9. Combination of MultiSet

combination of multiset $=$ unordered arrangement, with repetition

