Combinatorics Theorems

Jason Sass

May 27, 2023

Combinatorics

Proposition 1. Let $n \in \mathbb{Z}^+$. Then $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot (n-1) \cdot n$. Proof. Let $S = \{n \in \mathbb{Z}^+ : n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot (n-1) \cdot n\}$. We prove $S = \mathbb{Z}^+$ by induction on n. Basis: Since 1! = 1, then $1 \in S$. Induction: Let $k \in S$. Then $k \in \mathbb{Z}^+$ and $k! = 1 \cdot 2 \cdot ... \cdot (k-1)k$. Observe that

Since $k+1 \in \mathbb{Z}^+$ and $(k+1)! = 1 \cdot 2 \cdot \ldots \cdot (k-1) \cdot k \cdot (k+1)$, then $k+1 \in S$. Thus, $k \in S$ implies $k+1 \in S$ for any $k \in S$.

Since $1 \in S$ and $k \in S$ implies $k + 1 \in S$ for any $k \in S$, then by PMI, $n! = 1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n$ for any positive integer n.

Proposition 2. properties of binomial coefficients

Let
$$n \in \mathbb{Z}^+$$
.
1. $\begin{pmatrix} 0\\0 \end{pmatrix} = 1$.
2. $\begin{pmatrix} n\\1 \end{pmatrix} = n$.
3. $\begin{pmatrix} n\\0 \end{pmatrix} = 1$.
4. $\begin{pmatrix} n\\n \end{pmatrix} = 1$.

5. Let
$$k \in \mathbb{Z}^+$$
.
If $k \le n$, then $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (Pascal's Recursion Rule)
6. Let $k \in \mathbb{Z}$.
If $0 \le k \le n$, then $\binom{n}{k} = \binom{n}{n-k}$. (Symmetry)

Proof. We prove 1.

Since $0 \le 0$, then $\begin{pmatrix} 0\\0 \end{pmatrix} = \frac{0!}{(0-0)!0!} = \frac{0!}{0!0!} = \frac{1}{1\cdot 1} = 1.$

Proof. We prove 2.

Since
$$n \in \mathbb{Z}^+$$
, then $n \ge 1$, so $1 \le n$.
Since $0 < 1 \le n$, then $\binom{n}{1} = \frac{n!}{(n-1)!1!} = \frac{n(n-1)!}{(n-1)!1!} = \frac{n}{1!} = \frac{n}{1} = n$.

Proof. We prove 3.

Since
$$n \in \mathbb{Z}^+$$
, then $n > 0$, so $0 < n$.
Observe that $\binom{n}{0} = \frac{n!}{(n-0)!0!} = \frac{n!}{n!0!} = \frac{1}{0!} = \frac{1}{1} = 1$.

Proof. We prove 4.

Since
$$n = n$$
, then $n \le n$, so $\binom{n}{n} = \frac{n!}{(n-n)!n!} = \frac{n!}{n!0!} = \frac{1}{0!} = \frac{1}{1} = 1.$

Proof. We prove 5. Suppose
$$k \leq n$$

Suppose $k \le n$. Then either k < n or k = n. We consider these cases separately. **Case 1:** Suppose k = n. Then $\binom{n}{k} = \binom{n}{n} = 1 = 1 + 0 = \binom{n-1}{n-1} + \binom{n-1}{n} = \binom{n-1}{k-1} + \binom{n-1}{k}$. **Case 2:** Suppose k < n. Then 0 < n - k, so n - k > 0. Since $k \in \mathbb{Z}^+$, then k > 0. Since $n \in \mathbb{Z}^+$, then n > 0. Since 0 < k and k < n, then 0 < k < n. Observe that

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{(n-k)!k!}$$

$$= \frac{n(n-1)!}{(n-k)!k!}$$

$$= \frac{[k+(n-k)](n-1)!}{(n-k)!k!}$$

$$= \frac{k(n-1)!+(n-k)(n-1)!}{(n-k)!k!}$$

$$= \frac{k(n-1)!}{(n-k)!k!} + \frac{(n-k)(n-1)!}{(n-k)!k!}$$

$$= \frac{k(n-1)!}{(n-k)!k(k-1)!} + \frac{(n-k)(n-1)!}{(n-k)(n-k-1)!k!}$$

$$= \frac{(n-1)!}{(n-k)!(k-1)!} + \frac{(n-1)!}{(n-k-1)!k!}$$

$$= \frac{(n-1)!}{(n-k)!(k-1)!} + \frac{(n-1)!}{(n-1-k)!k!}$$

$$= \frac{(n-1)!}{[(n-1)-(k-1)]!(k-1)!} + \frac{(n-1)!}{[(n-1)-k]!k!}$$

$$= \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Proof. We prove 6. Suppose $0 \le k \le n$. Then

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

$$= \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(n-n+k)!(n-k)!}$$

$$= \frac{n!}{[n-(n-k)]!(n-k)!}$$

$$= \binom{n}{(n-k)}.$$

Theorem 3. Binomial Theorem

Let
$$a, b \in \mathbb{R}$$
.
Then $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ for all $n \in \mathbb{Z}^+$.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{Z}^+ : (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k\}$. Basis:

Observe that

$$\sum_{k=0}^{1} {\binom{1}{k}} a^{1-k} b^{k} = {\binom{1}{0}} a^{1} b^{0} + {\binom{1}{1}} a^{0} b^{1}$$
$$= a+b$$
$$= (a+b)^{1}.$$

Since $1 \in \mathbb{Z}^+$ and $(a+b)^1 = \sum_{k=0}^1 {\binom{1}{k}} a^{1-k} b^k$, then $1 \in S$. Induction:

Suppose $m \in S$. Then $m \in \mathbb{Z}^+$ and $(a+b)^m = \sum_{k=0}^m {m \choose k} a^{m-k} b^k$. Since $m \in \mathbb{Z}^+$, then $m+1 \in \mathbb{Z}^+$. Observe that

$$\begin{aligned} a(a+b)^m &= a \sum_{k=0}^m \binom{m}{k} a^{m-k} b^k \\ &= \sum_{k=0}^m \binom{m}{k} a^{m-k+1} b^k \\ &= \binom{m}{0} a^{m-0+1} b^0 + \sum_{k=1}^m \binom{m}{k} a^{m-k+1} b^k \\ &= a^{m+1} + \sum_{k=1}^m \binom{m}{k} a^{m-k+1} b^k. \end{aligned}$$

Observe that

$$b(a+b)^{m} = b\sum_{j=0}^{m} {m \choose j} a^{m-j} b^{j}$$

$$= \sum_{j=0}^{m} {m \choose j} a^{m-j} b^{j+1}$$

$$= {m \choose 0} a^{m} b + {m \choose 1} a^{m-1} b^{2} + \dots + {m \choose m-1} a b^{m} + {m \choose m} b^{m+1}$$

$$= \sum_{k=1}^{m} {m \choose k-1} a^{m-k+1} b^{k} + {m \choose m} b^{m+1}$$

$$= \sum_{k=1}^{m} {m \choose k-1} a^{m-k+1} b^{k} + b^{m+1}.$$

Observe that

$$\begin{split} \sum_{k=1}^{m} \binom{m}{k} a^{m-k+1} b^{k} + \sum_{k=1}^{m} \binom{m}{k-1} a^{m-k+1} b^{k} &= [\binom{m}{1} a^{m} b + \binom{m}{2} a^{m-1} b^{2} + \ldots + \binom{m}{m} a b^{m}] + [\binom{m}{0} a^{m} b + \binom{m}{1} a^{m} b + [\binom{m}{1} + \binom{m}{2}] a^{m-1} b^{2} + \ldots + [\binom{m}{m-1} a^{m} b + \binom{m+1}{2} a^{m-1} b^{2} + \ldots + \binom{m+1}{m} a b^{m} a^{m} b^{m} b^{m}$$

Observe that

$$\begin{aligned} (a+b)^{m+1} &= (a+b)^m (a+b) \\ &= (a+b)(a+b)^m \\ &= a(a+b)^m + b(a+b)^m \\ &= [a^{m+1} + \sum_{k=1}^m \binom{m}{k} a^{m-k+1} b^k] + [\sum_{k=1}^m \binom{m}{k-1} a^{m-k+1} b^k + b^{m+1}] \\ &= a^{m+1} + [\sum_{k=1}^m \binom{m}{k} a^{m-k+1} b^k + \sum_{k=1}^m \binom{m}{k-1} a^{m-k+1} b^k] + b^{m+1} \\ &= a^{m+1} + [\sum_{k=1}^m \binom{m+1}{k} a^{m-k+1} b^k] + b^{m+1} \\ &= \sum_{k=0}^{m+1} \binom{m+1}{k} a^{m-k+1} b^k \\ &= \sum_{k=0}^{m+1} \binom{m+1}{k} a^{m+1-k} b^k. \end{aligned}$$

Since $m+1 \in \mathbb{Z}^+$ and $(a+b)^{m+1} = \sum_{k=0}^{m+1} {m+1 \choose k} a^{m+1-k} b^k$, then $m+1 \in S$. Hence, $m \in S$ implies $m+1 \in S$.

It follows by induction that $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$ for all $n \in \mathbb{Z}^+$. \Box

Theorem 4. The number of ordered selections of k distinct objects from a set of n distinct objects is $P(n,k) = \frac{n!}{(n-k)!} = n * (n-1)...(n-k+1), 0 < k \leq n.$

Proof. Let $n \in \mathbb{Z}, n \geq 0$.

Let S be a finite set of n distinct objects.

Then |S| = n = the number of distinct objects in S = size of S.

Let S_k be a k-permutation of the n-set $S, 0 < k \leq n$.

Then S_k is an ordered arrangement of k distinct objects from a set of n distinct objects.

How many different S_k exist?

Let x = the number of different S_k .

Let $T = \{t : t \text{ is a } k\text{-permutation}\} = \{t : t = S_k\} = \{S_k : S_k \text{ is a } k\text{-permutation of } n\text{-set}\}.$ Then x = |T|.

The number of different S_k is the number of different ways to create a single S_k .

Let $t = \text{create a single } S_k$.

Let |t| = the number of different ways to create a single S_k .

Then |T| = |t|.

What does it mean to 'create a single S_k '?

To create a single k-permutation means to choose an object for each of the k positions.

Thus, task t can be decomposed into a sequence of subtasks t_i as follows: t = create a single $S_k =$

choose a distinct object from S for the first position,

then choose a remaining distinct object from S for the second position, then choose a remaining distinct object from S for the third position, then choose a remaining distinct object from S for the fourth position,

AND

...

finally, choose a remaining distinct object from S for the k^{th} position.

Let t_i = choose a remaining distinct object from S for placement into the i^{th} position with i = 1..k.

Let $|t_i|$

= the number of different ways to choose a remaining distinct object from set S for placement into the i^{th} position with i = 1..k

= the number of choices to select a remaining distinct object from S.

Then we can use the multiplication principle to count.

Thus, $|t| = \prod_{i=1}^{k} |t_i|$.

We must compute each $|t_i|, i = 1..k$.

 $|t_1|$ = the number of choices to select a remaining distinct object from set S = the number of distinct remaining objects that can be chosen from set S = the count of distinct remaining objects in S = n.

 $|t_2|$ = the number of choices to select a remaining distinct object from set S = the number of distinct remaining objects that can be chosen from set S = the count of distinct remaining objects in S = n - 1.

 $|t_3|$ = the number of choices to select a remaining distinct object from set S = the number of distinct remaining objects that can be chosen from set S = the count of distinct remaining objects in S = n - 2. ...

 $|t_i|$ = the number of choices to select a remaining distinct object from set S = the number of distinct remaining objects that can be chosen from set S = the count of distinct remaining objects in S = n - (i - 1) = n - i + 1. ...

 $|t_k|$ = the number of choices to select a remaining distinct object from set S = the number of distinct remaining objects that can be chosen from set S = the count of distinct remaining objects in S = n - k + 1.

Therefore, $|t| = \prod_{i=1}^{k} (n-i+1) = n * (n-1) * (n-2) * (n-3) * ... * (n-k+1)$. Since |t| is a function of n, k we let $P(n,k) = \prod_{i=1}^{k} (n-i+1) = n * (n-1) * (n-2) * (n-3) * ... * (n-k+1)$. Thus, $P(n,k) = \frac{n * (n-1) * (n-2) * (n-3) * ... * (n-k+1) * (n-k)!}{(n-k)!} = \frac{n!}{(n-k)!}$.

Theorem 5. There are (n-1)! circular permutations of n distinct elements.

Proof. Let S be a set of n distinct elements.

Each n-permutation of n distinct elements gives rise to n identical cyclic rotations.

There are n! such *n*-permutations. Thus, the number of circular permutations $= \frac{n!}{n} = (n-1)!$.

Theorem 6. $\forall 0 \le k \le n. \binom{n}{k} = \frac{n!}{(n-k)!k!}.$

Proof. Let S be a set of n distinct elements.

Let k-subset (k-combination) be an unordered selection of k distinct elements from a set of n distinct elements.

Let $\binom{n}{k}$ = the number of different k combinations.

The number of different ways to arrange the k distinct elements in the k-subset is P(k, k) = k!.

Thus, the total number of k-permutations $= \binom{n}{k} * P(k,k) = P(n,k) = \frac{n!}{(n-k)!}$ Hence, $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.

Theorem 7. $\binom{n}{k} = \binom{n}{n-k}$.

Proof. Let S be a set of n distinct elements.

Then $\binom{n}{k}$ represents the number of different k-subsets selected from an n-set. Selecting a k-subset from an n-set is the same as selecting a (n-k) subset to leave out of the selection.

Theorem 8. Pascal's Identity

Let $n, k \in \mathbb{Z}^+$ with $1 \le k < n$. Then $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.

Proof. Let S be a set of n distinct elements.

Then |S| = n. Let $T = \{X : X \text{ is a } k \text{-subset of } S\}$. Then $|T| = \binom{n}{k}$. Let $e \in S$ be fixed and partition T into $T = T_1 \cup T_2$ and $T_1 \cap T_2 = \emptyset$ where $T_1 = \{X \in T : e \in X\}$ and $T_2 = \{X \in T : e \notin X\}$. T = the set of h subsets of S that den't contain e = the set of h subsets of S.

 T_2 = the set of k-subsets of S that don't contain e = the set of k-subsets of $S - \{e\}$.

Hence, $|T_2| = \binom{n-1}{k}$. T_1 = the set of k-subsets of S that contain e = the set of k - 1-subsets of $S - \{e\}$ in which e is added to each. Hence, $|T_1| = \binom{n-1}{k-1}$. Since $\{T_1, T_2\}$ is a partition of T, then $|T| = |T_1 \cup T_2| = |T_1| + |T_2|$. Thus, $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Proof. An alternate proof exists.

Let $n, k \in \mathbb{Z}^+$ with $k \le n$. Then $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.

Let n be an arbitrary natural number. Let k be an arbitrary integer, $k \ge 0$. Then

$$\binom{n}{k} + \binom{n}{k-1} = \frac{n!}{(n-k)!k!} + \frac{n!}{(n-k+1)!(k-1)!}$$

$$= \frac{n!}{(n-k)!k(k-1)!} + \frac{n!}{(n-k+1)(n-k)!(k-1)!}$$

$$= \frac{n!}{(n-k)!(k-1)!} [\frac{1}{k} + \frac{1}{n-k+1}]$$

$$= \frac{n!}{(n-k)!(k-1)!} \cdot \frac{n+1}{k(n-k+1)}$$

$$= \frac{(n+1)!}{(n+1-k)!k!}$$

$$\binom{n+1}{k}$$

Theorem 9. How many functions exist from an m-set to n-set?

Proof. Let $B^A = \{f : A \mapsto B : f \text{ is a function}\}$ where |A| = m and |B| = n. Then $|B^A| =$ the number of different functions from m-set to n-set. An example of a function from A to B is the identity function I(x) = x. Thus, $I \in B^A$, so $B^A \neq \emptyset$. Hence, $|B^A| > 0$. How many functions exist in B^A ? We know the number of different functions = the number of different ways

We know the number of different functions = the number of different ways to create a single function.

In order to create a single function we must assign each of the elements in the domain.

Let $f: A \mapsto B$ be a function in B^A .

To create f, we can label the domain as follows.

Let $A = \{a_1, a_2, a_3, ..., a_m\}.$

In order to assign each of the elements in the domain,

we assign a_1 , then assign a_2 , then assign a_3 , then ... then assign a_m .

Each of these subtasks are independent, so we can use the multiplication principle.

Thus, the number of ways to create a single function $=\prod_{k=1}^{m} |a_k|$

where $|a_k|$ = the number of different ways to assign a_k in B = the number of different ways to choose $f(a_k)$ in B.

We must now determine each $|a_k|$ for k = 1..m. $|a_1| = |B| = n$. $|a_2| = n$. $|a_3| = n$. $|a_m| = n$. Thus, $|B^A| = n * n * n * ... * n = n^m$. Therefore, there are n^m different functions from an m set to n set.

Theorem 10. How many injective functions exist from an m-set to n-set?

Proof. Let $B^A = \{f : A \mapsto B : f \text{ is injective}\}$ where |A| = m and |B| = n.

Then $|B^A|$ = the number of different injective functions from m-set to n-set. An injective function is 1-1, so by the Pigeonhole principle, $m \le n$.

An example of a 1-1 function from A to B is the identity function I(x) = x. We know I is bijective, so it is also 1-1.

Thus, $I \in B^A$, so $S \neq \emptyset$.

Hence, $|B^A| > 0$.

How many injective functions exist in B^A ?

We know the number of different 1-1 functions = the number of different ways to create a single 1-1 function.

In order to create a single 1-1 function we must assign each of the elements in the domain.

Let $f: A \mapsto B$ be a 1-1 function in B^A .

To create f, we can label the domain as follows.

Let $A = \{a_1, a_2, a_3, ..., a_m\}.$

In order to assign each of the elements in the domain,

we assign a_1 , then assign a_2 , then assign a_3 , then ... then assign a_m .

Each of these subtasks are independent, so we can use the multiplication principle.

Thus, the number of ways to create a single 1-1 function = $\prod_{k=1}^{m} |a_k|$

where $|a_k|$ = the number of different ways to assign a_k in B = the number of different ways to choose $f(a_k)$ in B.

We must now determine each $|a_k|$ for k = 1..m.

 $\begin{aligned} |a_1| &= |B| = n. \\ |a_2| &= n - 1. \\ |a_3| &= n - 2. \\ |a_m| &= n - (m - 1) = n - m + 1. \\ \text{Thus, } |B^A| &= n * (n - 1) * (n - 2) * \dots * (n - m + 1) = P(n, m) = \frac{n!}{(n - m)!}. \end{aligned}$

Therefore, there are $\frac{n!}{(n-m)!}$ different injective functions from an m set to n set.

Theorem 11. Let S be a finite set containing n elements, $n \ge 0$. Then there are 2^n different subsets of S.

Proof. How many subsets of S exist? Let $n \in \mathbb{Z}, n \ge 0$. Let S be a finite set of n elements. Then |S| = n. Let t = the number of different subsets of S. Let $\mathscr{P}(S) = \{X : X \subseteq S\}$ where $\mathscr{P}(S)$ is the powerset of S. Then $t = |\mathscr{P}(S)|$. Since $\emptyset \subseteq S$, then $\emptyset \in \mathscr{P}(S)$. Thus, $\mathscr{P}(S) \neq \emptyset$, so $|\mathscr{P}(S)| > 0$. How many different subsets of S exist in $\mathscr{P}(S)$?

We can partition $\mathscr{P}(S)$ such that each cell contains all subsets of S that have the same cardinality.

We partition because we'd like to count the number of different subsets of S using the addition principle.

We realize that each subset of S can have from 0 to |S| = n elements.

Thus, a subset of S may have 0 or 1 or 2 or ... or n elements.

Hence, there exist n + 1 cells in the partition.

Let $\{A_0, A_1, A_2, ..., A_n\}$ be a partition of $\mathscr{P}(S)$

where each cell (equivalence class) A_i = the set of all subsets of S that have the same cardinality *i*.

Thus, $\mathscr{P}(S) = \bigcup_{i=0}^{n} A_i$ and any two distinct cells $A_i \neq A_j$ are disjoint.

For example, equivalence class A_3 = the set of all subsets of S that have the same size of 3.

Since we have a partition we can use the addition principle to count the number of different subsets of S.

Thus, $|\mathscr{P}(S)| = \sum_{k=0}^{n} |A_k|$ where $|A_k|$ = the number of different subsets of size k from a set S of size n.

Define k-set to be a set of size k.

Then $|A_k| =$

the number of different k-sets that can be created from an n-set

= the number of different ways to create a single k-set from an n-set

= the number of ways to select k distinct elements from a set of n distinct elements.

We must determine each $|A_k|$.

How do we create a single k-set from an n-set?

We must select k distinct objects from the n-set.

Since order does not matter, this is a combination.

Let T_k be the task to create a set of size k.

Thus, $|A_k|$ is the number of different ways to create a set of size k from a set of size n

= the number of ways to choose k distinct objects from a set of n distinct objects

We know the number of subsets of size k from a set of size n is a combination of n things taken k at a time.

Thus, $|A_k| = \binom{n}{k}$. Hence, $t = \sum_{k=0}^{n} {n \choose k}$. We must prove $\sum_{k=0}^{n} {n \choose k} = 2^{n}$. Our statement S_n is $\sum_{i=0}^{n} {n \choose i} = 2^{n}$. We prove using mathematical induction. **Basis:**

If n = 0, the statement S_0 is $\sum_{i=0}^{0} {0 \choose i} = 2^0$. The left hand side is ${0 \choose 0} = 1$ and the right hand side is $2^0 = 1$. Thus S_0 is true.

If n = 1, the statement S_1 is $\sum_{i=0}^{1} {\binom{1}{i}} = 2^1$. The left hand side is ${\binom{1}{0}} + {\binom{1}{1}} = 1 + 1 = 2$ and the right hand side is $2^1 = 2$. Thus S_1 is true.

Induction: Suppose $\sum_{i=0}^{k} {k \choose i} = 2^k$ for $k \ge 0$. Observe the following equalities:

$$\begin{split} \sum_{i=0}^{k+1} \binom{k+1}{i} &= \sum_{i=0}^{k+1} \left[\binom{k}{i-1} + \binom{k}{i} \right] \\ &= \sum_{i=0}^{k+1} \binom{k}{i-1} + \sum_{i=0}^{k+1} \binom{k}{i} \\ &= \binom{k}{-1} + \binom{k}{0} + \binom{k}{1} + \binom{k}{2} + \dots + \binom{k}{k} + \sum_{i=0}^{k} \binom{k}{i} + \binom{k}{k+1} \\ &= 0 + \sum_{i=0}^{k} \binom{k}{i} + \sum_{i=0}^{k} \binom{k}{i} + 0 \\ &= 2 * \sum_{i=0}^{k} \binom{k}{i} \\ &= 2 * 2^{k} \\ &= 2^{k+1} \end{split}$$

Thus
$$\sum_{i=0}^{k} {k \choose i} = 2^k$$
 implies $\sum_{i=0}^{k+1} {k+1 \choose i} = 2^{k+1}$ for $k \ge 0$.
By induction it follows that $\sum_{k=0}^{n} {n \choose k} = 2^n$ for $n \ge 0$.

Theorem 12. A finite set of n elements has 2^n subsets.

Solution. How do we even know to come up with an answer for the number of subsets of S?

The number of different subsets of S is the same as the number of different ways to create a single subset T of S.

So how many ways exist to create a subset of S.

What is the procedure to create a subset T?

Well to create a subset we must decide whether an element is to go into T. We must decide whether an element of S is to be in the subset T.

Let t = decide whether an element of S is to be an element of T.

Then |t| = the number of ways to decide whether an element of S is to go in T.

There are two outcomes: either an element goes in T or it does not.

Thus |t| = 2.

To create subset T we have to make this decision for all of the elements of S.

Thus we choose the first element, then choose 2nd, then 3rd, and so on until choose n^{th} .

Each choice has 2 outcomes so by multiplication principle we have $2 * 2 * ... * 2 = 2^n$ different ways to create a subset T.

Thus there are 2^n different subsets of S.

We must prove:

 $(\forall n \in \mathbb{N})$, a set S of n elements has 2^n subsets.

Define predicate p(n): a set S of n elements has 2^n subsets.

The statement has the form $(\forall n \in \mathbb{N})(p(n))$, so we use proof by induction.

Let S be the truth set of p(n).

To prove $S = \mathbb{N}$, we must prove:

1. $1 \in S$.

2. $(\forall m \in \mathbb{N})(m \in S \to m + 1 \in S).$

To prove 1:

we must prove a set S of 1 element has exactly 2^1 subsets.

To prove 2:

Assume $m \in S$ is arbitrary.

Then we assume a set S of m elements has 2^m subsets.

We must prove:

a set of m+1 elements has 2^{m+1} subsets.

We must somehow relate a set S of m + 1 elements to a set T of m elements. The trick here is to partition S into two sets: a singleton set containing some element, say c that is in S but not in T, and another set $S - \{c\}$.

Proof. We prove for every $n \in \mathbb{N}$, a set of n elements has 2^n subsets.

Let S be the truth set of p(n): a set of n elements has 2^n subsets. To prove $S = \mathbb{N}$ by induction, we must prove: 1. $1 \in S$. 2. $(\forall m \in \mathbb{N})(m \in S \to m + 1 \in S)$. Basis:

To prove $1 \in S$, we must prove a set of 1 element has 2^1 subsets. Suppose T is a set containing exactly 1 element.

Then the only subsets of T are \emptyset and T itself.

Hence, there are $2 = 2^1$ subsets of T, as desired. Induction: Suppose $m \in S$. To prove $m+1 \in S$, we must prove a set of m+1 elements has 2^{m+1} subsets. Since $m \in S$, then we assume a set of m elements has 2^m subsets. Let T be a set of m elements. Let T' be a set of m + 1 elements. Then T' contains one additional element that is not in T. Thus, let c be an element of T' that is not in T. Then $T' = T \cup \{c\}$ and $c \notin T$. We must prove there exist 2^{m+1} subsets of T'. Let X be a subset of T'. Then either $c \in X$ or $c \notin X$. Suppose $c \notin X$. Then X is a subset of T. Since T contains m elements, then by assumption, T has 2^m subsets. Hence, there are 2^m subsets of T' that do not contain c. Let Y be a subset of T' that contains c. Then $Y = X \cup \{c\}$ for some subset X of T that does not contain c.

Thus, X is one of the 2^m subsets of T.

Thus, a subset of T' that contains c can be formed from a subset of T' that does not contain c by adding c.

Hence, we create a subset of T' that contains c by adding c to each of the 2^m subsets of T^\prime that do not contain c.

Thus, we can create a total of 2^m subsets of T' that contain c.

Therefore, there are 2^m subsets of T' that do not contain c and there are 2^m subsets of T' that do contain c.

Hence, there are a total of $2^m + 2^m = 2 * 2^m = 2^{m+1}$ subsets of T', as desired.