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Combinatorics

Proposition 1. Let n ∈ Z+.
Then n! = 1 · 2 · 3 · ... · (n− 1) · n.

Proof. Let S = {n ∈ Z+ : n! = 1 · 2 · 3 · ... · (n− 1) · n}.
We prove S = Z+ by induction on n.
Basis:
Since 1! = 1, then 1 ∈ S.
Induction:
Let k ∈ S.
Then k ∈ Z+ and k! = 1 · 2 · ... · (k − 1)k.
Observe that

(k + 1)! = (k + 1) · k!

= (k + 1) · [1 · 2 · ...(k − 1) · k]

= (k + 1) · [k · (k − 1) · ... · 2 · 1]

= (k + 1) · k · (k − 1) · ... · 2 · 1
= 1 · 2 · ... · (k − 1) · k · (k + 1).

Since k + 1 ∈ Z+ and (k + 1)! = 1 · 2 · ... · (k− 1) · k · (k + 1), then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S for any k ∈ S.
Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for any k ∈ S, then by PMI,

n! = 1 · 2 · ... · (n− 1) · n for any positive integer n.

Proposition 2. properties of binomial coefficients
Let n ∈ Z+.

1.

(
0

0

)
= 1.

2.

(
n

1

)
= n.

3.

(
n

0

)
= 1.

4.

(
n

n

)
= 1.



5. Let k ∈ Z+.

If k ≤ n, then

(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(Pascal’s Recursion Rule)

6. Let k ∈ Z.

If 0 ≤ k ≤ n, then

(
n

k

)
=

(
n

n− k

)
. (Symmetry)

Proof. We prove 1.

Since 0 ≤ 0, then

(
0

0

)
= 0!

(0−0)!0! = 0!
0!0! = 1

1·1 = 1.

Proof. We prove 2.
Since n ∈ Z+, then n ≥ 1, so 1 ≤ n.

Since 0 < 1 ≤ n, then

(
n

1

)
= n!

(n−1)!1! = n(n−1)!
(n−1)!1! = n

1! = n
1 = n.

Proof. We prove 3.
Since n ∈ Z+, then n > 0, so 0 < n.

Observe that

(
n

0

)
= n!

(n−0)!0! = n!
n!0! = 1

0! = 1
1 = 1.

Proof. We prove 4.

Since n = n, then n ≤ n, so

(
n

n

)
= n!

(n−n)!n! = n!
n!0! = 1

0! = 1
1 = 1.

Proof. We prove 5.
Suppose k ≤ n.
Then either k < n or k = n.
We consider these cases separately.
Case 1: Suppose k = n.

Then

(
n

k

)
=

(
n

n

)
= 1 = 1+0 =

(
n− 1

n− 1

)
+

(
n− 1

n

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Case 2: Suppose k < n.
Then 0 < n− k, so n− k > 0.
Since k ∈ Z+, then k > 0.
Since n ∈ Z+, then n > 0.
Since 0 < k and k < n, then 0 < k < n.
Observe that
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(
n

k

)
=

n!

(n− k)!k!

=
n(n− 1)!

(n− k)!k!

=
[k + (n− k)](n− 1)!

(n− k)!k!

=
k(n− 1)! + (n− k)(n− 1)!

(n− k)!k!

=
k(n− 1)!

(n− k)!k!
+

(n− k)(n− 1)!

(n− k)!k!

=
k(n− 1)!

(n− k)!k(k − 1)!
+

(n− k)(n− 1)!

(n− k)(n− k − 1)!k!

=
(n− 1)!

(n− k)!(k − 1)!
+

(n− 1)!

(n− k − 1)!k!

=
(n− 1)!

(n− k)!(k − 1)!
+

(n− 1)!

(n− 1− k)!k!

=
(n− 1)!

[(n− 1)− (k − 1)]!(k − 1)!
+

(n− 1)!

[(n− 1)− k]!k!

=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof. We prove 6.
Suppose 0 ≤ k ≤ n.
Then

(
n

k

)
=

n!

(n− k)!k!

=
n!

k!(n− k)!

=
n!

(n− n + k)!(n− k)!

=
n!

[n− (n− k)]!(n− k)!

=

(
n

n− k

)
.

Theorem 3. Binomial Theorem
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Let a, b ∈ R.

Then (a + b)n =
∑n

k=0

(
n

k

)
an−kbk for all n ∈ Z+.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : (a + b)n =

∑n
k=0

(
n
k

)
an−kbk}.

Basis:
Observe that

1∑
k=0

(
1

k

)
a1−kbk =

(
1

0

)
a1b0 +

(
1

1

)
a0b1

= a + b

= (a + b)1.

Since 1 ∈ Z+ and (a + b)1 =
∑1

k=0

(
1
k

)
a1−kbk, then 1 ∈ S.

Induction:
Suppose m ∈ S.
Then m ∈ Z+ and (a + b)m =

∑m
k=0

(
m
k

)
am−kbk.

Since m ∈ Z+, then m + 1 ∈ Z+.
Observe that

a(a + b)m = a

m∑
k=0

(
m

k

)
am−kbk

=

m∑
k=0

(
m

k

)
am−k+1bk

=

(
m

0

)
am−0+1b0 +

m∑
k=1

(
m

k

)
am−k+1bk

= am+1 +

m∑
k=1

(
m

k

)
am−k+1bk.

Observe that

b(a + b)m = b

m∑
j=0

(
m

j

)
am−jbj

=

m∑
j=0

(
m

j

)
am−jbj+1

=

(
m

0

)
amb +

(
m

1

)
am−1b2 + ... +

(
m

m− 1

)
abm +

(
m

m

)
bm+1

=

m∑
k=1

(
m

k − 1

)
am−k+1bk +

(
m

m

)
bm+1

=

m∑
k=1

(
m

k − 1

)
am−k+1bk + bm+1.
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Observe that

m∑
k=1

(
m

k

)
am−k+1bk +

m∑
k=1

(
m

k − 1

)
am−k+1bk = [

(
m

1

)
amb +

(
m

2

)
am−1b2 + ... +

(
m

m

)
abm] + [

(
m

0

)
amb +

(
m

1

)
am−1b2 + ...

(
m

m− 1

)
abm]

= [

(
m

0

)
+

(
m

1

)
]amb + [

(
m

1

)
+

(
m

2

)
]am−1b2 + ... + [

(
m

m− 1

)(
m

m

)
]abm

=

(
m + 1

1

)
amb +

(
m + 1

2

)
am−1b2 + ... +

(
m + 1

m

)
abm

=

m∑
k=1

(
m + 1

k

)
am−k+1bk.

Observe that

(a + b)m+1 = (a + b)m(a + b)

= (a + b)(a + b)m

= a(a + b)m + b(a + b)m

= [am+1 +

m∑
k=1

(
m

k

)
am−k+1bk] + [

m∑
k=1

(
m

k − 1

)
am−k+1bk + bm+1]

= am+1 + [

m∑
k=1

(
m

k

)
am−k+1bk +

m∑
k=1

(
m

k − 1

)
am−k+1bk] + bm+1

= am+1 + [

m∑
k=1

(
m + 1

k

)
am−k+1bk] + bm+1

=

m+1∑
k=0

(
m + 1

k

)
am−k+1bk

=

m+1∑
k=0

(
m + 1

k

)
am+1−kbk.

Since m+ 1 ∈ Z+ and (a+ b)m+1 =
∑m+1

k=0

(
m+1
k

)
am+1−kbk, then m+ 1 ∈ S.

Hence, m ∈ S implies m + 1 ∈ S.
It follows by induction that (a + b)n =

∑n
k=0

(
n
k

)
an−kbk for all n ∈ Z+.

Theorem 4. The number of ordered selections of k distinct objects from a set
of n distinct objects is P (n, k) = n!

(n−k)! = n ∗ (n− 1)...(n− k + 1), 0 < k ≤ n.

Proof. Let n ∈ Z, n ≥ 0.
Let S be a finite set of n distinct objects.
Then |S| = n = the number of distinct objects in S = size of S.
Let Sk be a k-permutation of the n-set S, 0 < k ≤ n.
Then Sk is an ordered arrangement of k distinct objects from a set of n

distinct objects.
How many different Sk exist?
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Let x = the number of different Sk.
Let T = {t : t is a k-permutation} = {t : t = Sk} = {Sk : Sk is a k-permutation of n-set}.
Then x = |T |.
The number of different Sk is the number of different ways to create a single

Sk.
Let t = create a single Sk.
Let |t| = the number of different ways to create a single Sk.
Then |T | = |t|.
What does it mean to ‘create a single Sk’?
To create a single k-permutation means to choose an object for each of the

k positions.
Thus, task t can be decomposed into a sequence of subtasks ti as follows:
t = create a single Sk =
choose a distinct object from S for the first position,
then choose a remaining distinct object from S for the second position,
then choose a remaining distinct object from S for the third position,
then choose a remaining distinct object from S for the fourth position,
...
AND
...
finally, choose a remaining distinct object from S for the kth position.

Let ti = choose a remaining distinct object from S for placement into the ith

position with i = 1..k.
Let |ti|
= the number of different ways to choose a remaining distinct object from

set S for placement into the ith position with i = 1..k
= the number of choices to select a remaining distinct object from S.
Then we can use the multiplication principle to count.
Thus, |t| =

∏k
i=1 |ti|.

We must compute each |ti|, i = 1..k.
|t1| = the number of choices to select a remaining distinct object from set

S = the number of distinct remaining objects that can be chosen from set S =
the count of distinct remaining objects in S = n.
|t2| = the number of choices to select a remaining distinct object from set

S = the number of distinct remaining objects that can be chosen from set S =
the count of distinct remaining objects in S = n− 1.
|t3| = the number of choices to select a remaining distinct object from set

S = the number of distinct remaining objects that can be chosen from set S =
the count of distinct remaining objects in S = n− 2. ...
|ti| = the number of choices to select a remaining distinct object from set

S = the number of distinct remaining objects that can be chosen from set S =
the count of distinct remaining objects in S = n− (i− 1) = n− i + 1. ...
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|tk| = the number of choices to select a remaining distinct object from set
S = the number of distinct remaining objects that can be chosen from set S =
the count of distinct remaining objects in S = n− k + 1.

Therefore, |t| =
∏k

i=1 (n− i + 1) = n∗(n−1)∗(n−2)∗(n−3)∗...∗(n−k+1).
Since |t| is a function of n, k we

let P (n, k) =
∏k

i=1 (n− i + 1) = n∗ (n−1)∗ (n−2)∗ (n−3)∗ ...∗ (n−k+1).

Thus, P (n, k) = n∗(n−1)∗(n−2)∗(n−3)∗...∗(n−k+1)∗(n−k)!
(n−k)! = n!

(n−k)! .

Theorem 5. There are (n− 1)! circular permutations of n distinct elements.

Proof. Let S be a set of n distinct elements.
Each n-permutation of n distinct elements gives rise to n identical cyclic

rotations.
There are n! such n-permutations.
Thus, the number of circular permutations = n!

n = (n− 1)!.

Theorem 6. ∀0 ≤ k ≤ n.
(
n
k

)
= n!

(n−k)!k! .

Proof. Let S be a set of n distinct elements.
Let k-subset (k-combination) be an unordered selection of k distinct elements

from a set of n distinct elements.
Let

(
n
k

)
= the number of different k combinations.

The number of different ways to arrange the k distinct elements in the k-
subset is P (k, k) = k!.

Thus, the total number of k-permutations =
(
n
k

)
∗P (k, k) = P (n, k) = n!

(n−k)!
Hence,

(
n
k

)
= n!

(n−k)!k! .

Theorem 7.
(
n
k

)
=
(

n
n−k
)
.

Proof. Let S be a set of n distinct elements.
Then

(
n
k

)
represents the number of different k-subsets selected from an n-set.

Selecting a k-subset from an n-set is the same as selecting a (n− k) subset
to leave out of the selection.

Theorem 8. Pascal’s Identity
Let n, k ∈ Z+ with 1 ≤ k < n.
Then

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
.

Proof. Let S be a set of n distinct elements.
Then |S| = n.
Let T = {X : X is a k-subset of S}.
Then |T | =

(
n
k

)
.

Let e ∈ S be fixed and partition T into T = T1 ∪ T2 and T1 ∩ T2 = ∅ where
T1 = {X ∈ T : e ∈ X} and
T2 = {X ∈ T : e 6∈ X}.
T2 = the set of k-subsets of S that don’t contain e = the set of k-subsets of

S − {e}.
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Hence, |T2| =
(
n−1
k

)
.

T1 = the set of k-subsets of S that contain e = the set of k − 1-subsets of
S − {e} in which e is added to each.

Hence, |T1| =
(
n−1
k−1
)
.

Since {T1, T2} is a partition of T , then
|T | = |T1 ∪ T2| = |T1|+ |T2|.
Thus,

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
.

Proof. An alternate proof exists.
Let n, k ∈ Z+ with k ≤ n.
Then

(
n+1
k

)
=
(
n
k

)
+
(

n
k−1
)
.

Let n be an arbitrary natural number.
Let k be an arbitrary integer, k ≥ 0.
Then(

n

k

)
+

(
n

k − 1

)
=

n!

(n− k)!k!
+

n!

(n− k + 1)!(k − 1)!

=
n!

(n− k)!k(k − 1)!
+

n!

(n− k + 1)(n− k)!(k − 1)!

=
n!

(n− k)!(k − 1)!
[
1

k
+

1

n− k + 1
]

=
n!

(n− k)!(k − 1)!
· n + 1

k(n− k + 1)

=
(n + 1)!

(n + 1− k)!k!(
n + 1

k

)

Theorem 9. How many functions exist from an m-set to n-set?

Proof. Let BA = {f : A 7→ B : f is a function} where |A| = m and |B| = n.
Then |BA| = the number of different functions from m-set to n-set.
An example of a function from A to B is the identity function I(x) = x.
Thus, I ∈ BA, so BA 6= ∅.
Hence, |BA| > 0.
How many functions exist in BA?
We know the number of different functions = the number of different ways

to create a single function.
In order to create a single function we must assign each of the elements in

the domain.
Let f : A 7→ B be a function in BA.
To create f, we can label the domain as follows.
Let A = {a1, a2, a3, ..., am}.
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In order to assign each of the elements in the domain,
we assign a1, then assign a2, then assign a3, then ... then assign am.
Each of these subtasks are independent, so we can use the multiplication

principle.
Thus, the number of ways to create a single function =

∏m
k=1 |ak|

where |ak| = the number of different ways to assign ak in B = the number
of different ways to choose f(ak) in B.

We must now determine each |ak| for k = 1..m.
|a1| = |B| = n.
|a2| = n.
|a3| = n.
|am| = n.
Thus, |BA| = n ∗ n ∗ n ∗ ... ∗ n = nm.
Therefore, there are nm different functions from an m set to n set.

Theorem 10. How many injective functions exist from an m-set to n-set?

Proof. Let BA = {f : A 7→ B : f is injective} where |A| = m and |B| = n.
Then |BA| = the number of different injective functions from m-set to n-set.
An injective function is 1-1, so by the Pigeonhole principle, m ≤ n.
An example of a 1-1 function from A to B is the identity function I(x) = x.
We know I is bijective, so it is also 1-1.
Thus, I ∈ BA, so S 6= ∅.
Hence, |BA| > 0.
How many injective functions exist in BA?
We know the number of different 1-1 functions = the number of different

ways to create a single 1-1 function.
In order to create a single 1-1 function we must assign each of the elements

in the domain.
Let f : A 7→ B be a 1-1 function in BA.
To create f, we can label the domain as follows.
Let A = {a1, a2, a3, ..., am}.
In order to assign each of the elements in the domain,
we assign a1, then assign a2, then assign a3, then ... then assign am.
Each of these subtasks are independent, so we can use the multiplication

principle.
Thus, the number of ways to create a single 1-1 function =

∏m
k=1 |ak|

where |ak| = the number of different ways to assign ak in B = the number
of different ways to choose f(ak) in B.

We must now determine each |ak| for k = 1..m.
|a1| = |B| = n.
|a2| = n− 1.
|a3| = n− 2.
|am| = n− (m− 1) = n−m + 1.
Thus, |BA| = n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ (n−m + 1) = P (n,m) = n!

(n−m)! .
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Therefore, there are n!
(n−m)! different injective functions from an m set to n

set.

Theorem 11. Let S be a finite set containing n elements, n ≥ 0.
Then there are 2n different subsets of S.

Proof. How many subsets of S exist?
Let n ∈ Z, n ≥ 0.
Let S be a finite set of n elements. Then |S| = n.
Let t = the number of different subsets of S.
Let P(S) = {X : X ⊆ S} where P(S) is the powerset of S.
Then t = |P(S)|.
Since ∅ ⊆ S, then ∅ ∈P(S).
Thus, P(S) 6= ∅, so |P(S)| > 0.
How many different subsets of S exist in P(S)?
We can partition P(S) such that each cell contains all subsets of S that

have the same cardinality.
We partition because we’d like to count the number of different subsets of

S using the addition principle.
We realize that each subset of S can have from 0 to |S| = n elements.
Thus, a subset of S may have 0 or 1 or 2 or ... or n elements.
Hence, there exist n + 1 cells in the partition.
Let {A0, A1, A2, ..., An} be a partition of P(S)
where each cell (equivalence class) Ai = the set of all subsets of S that have

the same cardinality i.
Thus, P(S) = ∪ni=0Ai and any two distinct cells Ai 6= Aj are disjoint.
For example, equivalence class A3 = the set of all subsets of S that have the

same size of 3.
Since we have a partition we can use the addition principle to count the

number of different subsets of S.
Thus, |P(S)| =

∑n
k=0 |Ak| where |Ak| = the number of different subsets of

size k from a set S of size n.
Define k-set to be a set of size k.
Then |Ak| =
the number of different k-sets that can be created from an n-set
= the number of different ways to create a single k-set from an n-set
= the number of ways to select k distinct elements from a set of n distinct

elements.
We must determine each |Ak|.
How do we create a single k-set from an n-set?
We must select k distinct objects from the n-set.
Since order does not matter, this is a combination.
Let Tk be the task to create a set of size k.
Thus, |Ak| is the number of different ways to create a set of size k from a

set of size n
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= the number of ways to choose k distinct objects from a set of n distinct
objects

We know the number of subsets of size k from a set of size n is a combination
of n things taken k at a time.

Thus, |Ak| =
(
n
k

)
.

Hence, t =
∑n

k=0

(
n
k

)
.

We must prove
∑n

k=0

(
n
k

)
= 2n.

Our statement Sn is
∑n

i=0

(
n
i

)
= 2n.

We prove using mathematical induction.
Basis:
If n = 0, the statement S0 is

∑0
i=0

(
0
i

)
= 20.

The left hand side is
(
0
0

)
= 1 and the right hand side is 20 = 1. Thus S0 is

true.

If n = 1, the statement S1 is
∑1

i=0

(
1
i

)
= 21.

The left hand side is
(
1
0

)
+
(
1
1

)
= 1 + 1 = 2 and the right hand side is 21 = 2.

Thus S1 is true.

Induction: Suppose
∑k

i=0

(
k
i

)
= 2k for k ≥ 0.

Observe the following equalities:

k+1∑
i=0

(
k + 1

i

)
=

k+1∑
i=0

[

(
k

i− 1

)
+

(
k

i

)
]

=

k+1∑
i=0

(
k

i− 1

)
+

k+1∑
i=0

(
k

i

)

=

(
k

−1

)
+

(
k

0

)
+

(
k

1

)
+

(
k

2

)
+ ... +

(
k

k

)
+

k∑
i=0

(
k

i

)
+

(
k

k + 1

)

= 0 +

k∑
i=0

(
k

i

)
+

k∑
i=0

(
k

i

)
+ 0

= 2 ∗
k∑

i=0

(
k

i

)
= 2 ∗ 2k

= 2k+1

Thus
∑k

i=0

(
k
i

)
= 2k implies

∑k+1
i=0

(
k+1
i

)
= 2k+1 for k ≥ 0.

By induction it follows that
∑n

k=0

(
n
k

)
= 2n for n ≥ 0.

Theorem 12. A finite set of n elements has 2n subsets.

Solution. How do we even know to come up with an answer for the number of
subsets of S?
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The number of different subsets of S is the same as the number of different
ways to create a single subset T of S.

So how many ways exist to create a subset of S.
What is the procedure to create a subset T?
Well to create a subset we must decide whether an element is to go into T .
We must decide whether an element of S is to be in the subset T .
Let t =decide whether an element of S is to be an element of T .
Then |t| = the number of ways to decide whether an element of S is to go

in T .
There are two outcomes: either an element goes in T or it does not.
Thus |t| = 2.
To create subset T we have to make this decision for all of the elements of

S.
Thus we choose the first element, then choose 2nd,then 3rd, and so on until

choose nth.
Each choice has 2 outcomes so by multiplication principle we have 2∗2∗ ...∗

2 = 2n different ways to create a subset T .
Thus there are 2n different subsets of S.
We must prove:
(∀n ∈ N), a set S of n elements has 2n subsets.
Define predicate p(n) : a set S of n elements has 2n subsets.
The statement has the form (∀n ∈ N)(p(n)), so we use proof by induction.
Let S be the truth set of p(n).
To prove S = N, we must prove:
1. 1 ∈ S.
2. (∀m ∈ N)(m ∈ S → m + 1 ∈ S).
To prove 1:
we must prove a set S of 1 element has exactly 21 subsets.
To prove 2:
Assume m ∈ S is arbitrary.
Then we assume a set S of m elements has 2m subsets.
We must prove:
a set of m + 1 elements has 2m+1 subsets.
We must somehow relate a set S of m+1 elements to a set T of m elements.
The trick here is to partition S into two sets: a singleton set containing some

element, say c that is in S but not in T , and another set S − {c}.

Proof. We prove for every n ∈ N, a set of n elements has 2n subsets.
Let S be the truth set of p(n) : a set of n elements has 2n subsets.
To prove S = N by induction, we must prove:
1. 1 ∈ S.
2. (∀m ∈ N)(m ∈ S → m + 1 ∈ S).
Basis:
To prove 1 ∈ S, we must prove a set of 1 element has 21 subsets.
Suppose T is a set containing exactly 1 element.
Then the only subsets of T are ∅ and T itself.
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Hence, there are 2 = 21 subsets of T , as desired.
Induction:
Suppose m ∈ S.
To prove m+1 ∈ S, we must prove a set of m+1 elements has 2m+1 subsets.
Since m ∈ S, then we assume a set of m elements has 2m subsets.
Let T be a set of m elements.
Let T ′ be a set of m + 1 elements.
Then T ′ contains one additional element that is not in T .
Thus, let c be an element of T ′ that is not in T .
Then T ′ = T ∪ {c} and c 6∈ T .
We must prove there exist 2m+1 subsets of T ′.
Let X be a subset of T ′.
Then either c ∈ X or c 6∈ X.
Suppose c 6∈ X.
Then X is a subset of T .
Since T contains m elements, then by assumption, T has 2m subsets.
Thus, X is one of the 2m subsets of T .
Hence, there are 2m subsets of T ′ that do not contain c.
Let Y be a subset of T ′ that contains c.
Then Y = X ∪ {c} for some subset X of T that does not contain c.
Thus, a subset of T ′ that contains c can be formed from a subset of T ′ that

does not contain c by adding c.
Hence, we create a subset of T ′ that contains c by adding c to each of the

2m subsets of T ′ that do not contain c.
Thus, we can create a total of 2m subsets of T ′ that contain c.
Therefore, there are 2m subsets of T ′ that do not contain c and there are 2m

subsets of T ′ that do contain c.
Hence, there are a total of 2m + 2m = 2 ∗ 2m = 2m+1 subsets of T ′, as

desired.
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