Combinatorics Theorems

Jason Sass

May 27, 2023

Combinatorics

Proposition 1. Let $n \in \mathbb{Z}^{+}$.
Then $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n$.
Proof. Let $S=\left\{n \in \mathbb{Z}^{+}: n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n\right\}$.
We prove $S=\mathbb{Z}^{+}$by induction on n.
Basis:
Since $1!=1$, then $1 \in S$.
Induction:
Let $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $k!=1 \cdot 2 \cdot \ldots \cdot(k-1) k$.
Observe that

$$
\begin{aligned}
(k+1)! & =(k+1) \cdot k! \\
& =(k+1) \cdot[1 \cdot 2 \cdot \ldots(k-1) \cdot k] \\
& =(k+1) \cdot[k \cdot(k-1) \cdot \ldots \cdot 2 \cdot 1] \\
& =(k+1) \cdot k \cdot(k-1) \cdot \ldots \cdot 2 \cdot 1 \\
& =1 \cdot 2 \cdot \ldots \cdot(k-1) \cdot k \cdot(k+1) .
\end{aligned}
$$

Since $k+1 \in \mathbb{Z}^{+}$and $(k+1)!=1 \cdot 2 \cdot \ldots \cdot(k-1) \cdot k \cdot(k+1)$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$ for any $k \in S$.
Since $1 \in S$ and $k \in S$ implies $k+1 \in S$ for any $k \in S$, then by PMI, $n!=1 \cdot 2 \cdot \ldots \cdot(n-1) \cdot n$ for any positive integer n.

Proposition 2. properties of binomial coefficients
Let $n \in \mathbb{Z}^{+}$.

1. $\binom{0}{0}=1$.
2. $\binom{n}{1}=n$.
3. $\binom{n}{0}=1$.
4. $\binom{n}{n}=1$.
5. Let $k \in \mathbb{Z}^{+}$.

If $k \leq n$, then $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ (Pascal's Recursion Rule)
6. Let $k \in \mathbb{Z}$.

If $0 \leq k \leq n$, then $\binom{n}{k}=\binom{n}{n-k}$.(Symmetry)
Proof. We prove 1.
Since $0 \leq 0$, then $\binom{0}{0}=\frac{0!}{(0-0)!0!}=\frac{0!}{0!0!}=\frac{1}{1 \cdot 1}=1$.
Proof. We prove 2.
Since $n \in \mathbb{Z}^{+}$, then $n \geq 1$, so $1 \leq n$.
Since $0<1 \leq n$, then $\binom{n}{1}=\frac{n!}{(n-1)!1!}=\frac{n(n-1)!}{(n-1)!1!}=\frac{n}{1!}=\frac{n}{1}=n$.
Proof. We prove 3.
Since $n \in \mathbb{Z}^{+}$, then $n>0$, so $0<n$.
Observe that $\binom{n}{0}=\frac{n!}{(n-0)!0!}=\frac{n!}{n!0!}=\frac{1}{0!}=\frac{1}{1}=1$.
Proof. We prove 4.
Since $n=n$, then $n \leq n$, so $\binom{n}{n}=\frac{n!}{(n-n)!n!}=\frac{n!}{n!0!}=\frac{1}{0!}=\frac{1}{1}=1$.
Proof. We prove 5.
Suppose $k \leq n$.
Then either $k<n$ or $k=n$.
We consider these cases separately.
Case 1: Suppose $k=n$.
Then $\binom{n}{k}=\binom{n}{n}=1=1+0=\binom{n-1}{n-1}+\binom{n-1}{n}=\binom{n-1}{k-1}+\binom{n-1}{k}$.
Case 2: Suppose $k<n$.
Then $0<n-k$, so $n-k>0$.
Since $k \in \mathbb{Z}^{+}$, then $k>0$.
Since $n \in \mathbb{Z}^{+}$, then $n>0$.
Since $0<k$ and $k<n$, then $0<k<n$.
Observe that

$$
\begin{aligned}
\binom{n}{k} & =\frac{n!}{(n-k)!k!} \\
& =\frac{n(n-k)!}{(n-k)!k!} \\
& =\frac{[k+(n-k)](n-1)!}{(n-k)!k!} \\
& =\frac{k(n-1)!+(n-k)(n-1)!}{(n-k)!k!} \\
& =\frac{k(n-1)!}{(n-k)!k!}+\frac{(n-k)(n-1)!}{(n-k)!k!} \\
& =\frac{k(n-1)!}{(n-k)!k(k-1)!}+\frac{(n-k)(n-1)!}{(n-k)(n-k-1)!k!} \\
& =\frac{(n-1)!}{(n-k)!(k-1)!}+\frac{(n-1)!}{(n-k-1)!k!} \\
& =\frac{(n-1)!}{(n-k)!(k-1)!}+\frac{(n-1)!}{(n-1-k)!k!} \\
& =\frac{(n-1)!}{[(n-1)-(k-1)!(k-1)!}+\frac{(n-1)!}{[(n-1)-k]!k!} \\
& =\binom{n-1}{k-1}+\binom{n-1}{k} .
\end{aligned}
$$

Proof. We prove 6.
Suppose $0 \leq k \leq n$.
Then

$$
\begin{aligned}
\binom{n}{k} & =\frac{n!}{(n-k)!k!} \\
& =\frac{n!}{k!(n-k)!} \\
& =\frac{n!}{(n-n+k)!(n-k)!} \\
& =\frac{n!}{[n-(n-k)]!(n-k)!} \\
& =\binom{n}{n-k} .
\end{aligned}
$$

Theorem 3. Binomial Theorem

Let $a, b \in \mathbb{R}$.
Then $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$ for all $n \in \mathbb{Z}^{+}$.
Proof. We prove by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}:(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}\right\}$.

Basis:

Observe that

$$
\begin{aligned}
\sum_{k=0}^{1}\binom{1}{k} a^{1-k} b^{k} & =\binom{1}{0} a^{1} b^{0}+\binom{1}{1} a^{0} b^{1} \\
& =a+b \\
& =(a+b)^{1}
\end{aligned}
$$

Since $1 \in \mathbb{Z}^{+}$and $(a+b)^{1}=\sum_{k=0}^{1}\binom{1}{k} a^{1-k} b^{k}$, then $1 \in S$.

Induction:

Suppose $m \in S$.
Then $m \in \mathbb{Z}^{+}$and $(a+b)^{m}=\sum_{k=0}^{m}\binom{m}{k} a^{m-k} b^{k}$.
Since $m \in \mathbb{Z}^{+}$, then $m+1 \in \mathbb{Z}^{+}$.
Observe that

$$
\begin{aligned}
a(a+b)^{m} & =a \sum_{k=0}^{m}\binom{m}{k} a^{m-k} b^{k} \\
& =\sum_{k=0}^{m}\binom{m}{k} a^{m-k+1} b^{k} \\
& =\binom{m}{0} a^{m-0+1} b^{0}+\sum_{k=1}^{m}\binom{m}{k} a^{m-k+1} b^{k} \\
& =a^{m+1}+\sum_{k=1}^{m}\binom{m}{k} a^{m-k+1} b^{k}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
b(a+b)^{m} & =b \sum_{j=0}^{m}\binom{m}{j} a^{m-j} b^{j} \\
& =\sum_{j=0}^{m}\binom{m}{j} a^{m-j} b^{j+1} \\
& =\binom{m}{0} a^{m} b+\binom{m}{1} a^{m-1} b^{2}+\ldots+\binom{m}{m-1} a b^{m}+\binom{m}{m} b^{m+1} \\
& =\sum_{k=1}^{m}\binom{m}{k-1} a^{m-k+1} b^{k}+\binom{m}{m} b^{m+1} \\
& =\sum_{k=1}^{m}\binom{m}{k-1} a^{m-k+1} b^{k}+b^{m+1}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\sum_{k=1}^{m}\binom{m}{k} a^{m-k+1} b^{k}+\sum_{k=1}^{m}\binom{m}{k-1} a^{m-k+1} b^{k} & =\left[\binom{m}{1} a^{m} b+\binom{m}{2} a^{m-1} b^{2}+\ldots+\binom{m}{m} a b^{m}\right]+\left[\binom{m}{0} a^{m} b+\binom{m}{0}+\binom{m}{1}\right] a^{m} b+\left[\binom{m}{1}+\binom{m}{2}\right] a^{m-1} b^{2}+\ldots+\left[\left(\begin{array}{c}
m \\
m-1
\end{array}\right.\right. \\
& =\left[\binom{m+1}{m} a b^{m}\right. \\
& =\binom{m+1}{1} a^{m} b+\binom{m+1}{2} a^{m-1} b^{2}+\ldots+\left(\begin{array}{c}
m+1
\end{array}\right. \\
& =\sum_{k=1}^{m}\binom{m+1}{k} a^{m-k+1} b^{k} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
(a+b)^{m+1} & =(a+b)^{m}(a+b) \\
& =(a+b)(a+b)^{m} \\
& =a(a+b)^{m}+b(a+b)^{m} \\
& =\left[a^{m+1}+\sum_{k=1}^{m}\binom{m}{k} a^{m-k+1} b^{k}\right]+\left[\sum_{k=1}^{m}\binom{m}{k-1} a^{m-k+1} b^{k}+b^{m+1}\right] \\
& =a^{m+1}+\left[\sum_{k=1}^{m}\binom{m}{k} a^{m-k+1} b^{k}+\sum_{k=1}^{m}\binom{m}{k-1} a^{m-k+1} b^{k}\right]+b^{m+1} \\
& =a^{m+1}+\left[\sum_{k=1}^{m}\binom{m+1}{k} a^{m-k+1} b^{k}\right]+b^{m+1} \\
& =\sum_{k=0}^{m+1}\binom{m+1}{k} a^{m-k+1} b^{k} \\
& =\sum_{k=0}^{m+1}\binom{m+1}{k} a^{m+1-k} b^{k} .
\end{aligned}
$$

Since $m+1 \in \mathbb{Z}^{+}$and $(a+b)^{m+1}=\sum_{k=0}^{m+1}\binom{m+1}{k} a^{m+1-k} b^{k}$, then $m+1 \in S$.
Hence, $m \in S$ implies $m+1 \in S$.
It follows by induction that $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$ for all $n \in \mathbb{Z}^{+}$.
Theorem 4. The number of ordered selections of k distinct objects from a set of n distinct objects is $P(n, k)=\frac{n!}{(n-k)!}=n *(n-1) \ldots(n-k+1), 0<k \leq n$.

Proof. Let $n \in Z, n \geq 0$.
Let S be a finite set of n distinct objects.
Then $|S|=n=$ the number of distinct objects in $S=$ size of S.
Let S_{k} be a k-permutation of the n-set $S, 0<k \leq n$.
Then S_{k} is an ordered arrangement of k distinct objects from a set of n distinct objects.

How many different S_{k} exist?

Let $x=$ the number of different S_{k}.
Let $T=\{t: t$ is a k-permutation $\}=\left\{t: t=S_{k}\right\}=\left\{S_{k}: S_{k}\right.$ is a k-permutation of n-set $\}$.
Then $x=|T|$.
The number of different S_{k} is the number of different ways to create a single S_{k}.

Let $t=$ create a single S_{k}.
Let $|t|=$ the number of different ways to create a single S_{k}.
Then $|T|=|t|$.
What does it mean to 'create a single S_{k} '?
To create a single k-permutation means to choose an object for each of the k positions.

Thus, task t can be decomposed into a sequence of subtasks t_{i} as follows:
$t=$ create a single $S_{k}=$
choose a distinct object from S for the first position,
then choose a remaining distinct object from S for the second position, then choose a remaining distinct object from S for the third position, then choose a remaining distinct object from S for the fourth position,
...
AND
finally, choose a remaining distinct object from S for the $k^{t h}$ position.
Let $t_{i}=$ choose a remaining distinct object from S for placement into the $i^{t h}$ position with $i=1 . . k$.

Let $\left|t_{i}\right|$
$=$ the number of different ways to choose a remaining distinct object from set S for placement into the $i^{t h}$ position with $i=1 . . k$
$=$ the number of choices to select a remaining distinct object from S.
Then we can use the multiplication principle to count.
Thus, $|t|=\prod_{i=1}^{k}\left|t_{i}\right|$.
We must compute each $\left|t_{i}\right|, i=1 . . k$.
$\left|t_{1}\right|=$ the number of choices to select a remaining distinct object from set $S=$ the number of distinct remaining objects that can be chosen from set $S=$ the count of distinct remaining objects in $S=n$.
$\left|t_{2}\right|=$ the number of choices to select a remaining distinct object from set $S=$ the number of distinct remaining objects that can be chosen from set $S=$ the count of distinct remaining objects in $S=n-1$.
$\left|t_{3}\right|=$ the number of choices to select a remaining distinct object from set $S=$ the number of distinct remaining objects that can be chosen from set $S=$ the count of distinct remaining objects in $S=n-2$...
$\left|t_{i}\right|=$ the number of choices to select a remaining distinct object from set $S=$ the number of distinct remaining objects that can be chosen from set $S=$ the count of distinct remaining objects in $S=n-(i-1)=n-i+1$....
$\left|t_{k}\right|=$ the number of choices to select a remaining distinct object from set $S=$ the number of distinct remaining objects that can be chosen from set $S=$ the count of distinct remaining objects in $S=n-k+1$.

Therefore, $|t|=\prod_{i=1}^{k}(n-i+1)=n *(n-1) *(n-2) *(n-3) * \ldots *(n-k+1)$.
Since $|t|$ is a function of n, k we
let $P(n, k)=\prod_{i=1}^{k}(n-i+1)=n *(n-1) *(n-2) *(n-3) * \ldots *(n-k+1)$.
Thus, $P(n, k)=\frac{n *(n-1) *(n-2) *(n-3) * \ldots *(n-k+1) *(n-k)!}{(n-k)!}=\frac{n!}{(n-k)!}$.
Theorem 5. There are $(n-1)$! circular permutations of n distinct elements.
Proof. Let S be a set of n distinct elements.
Each n-permutation of n distinct elements gives rise to n identical cyclic rotations.

There are n ! such n-permutations.
Thus, the number of circular permutations $=\frac{n!}{n}=(n-1)!$.
Theorem 6. $\forall 0 \leq k \leq n \cdot\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
Proof. Let S be a set of n distinct elements.
Let k-subset (k-combination) be an unordered selection of k distinct elements from a set of n distinct elements.

Let $\binom{n}{k}=$ the number of different k combinations.
The number of different ways to arrange the k distinct elements in the k subset is $P(k, k)=k!$.

Thus, the total number of k-permutations $=\binom{n}{k} * P(k, k)=P(n, k)=\frac{n!}{(n-k)!}$
Hence, $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
Theorem 7. $\binom{n}{k}=\binom{n}{n-k}$.
Proof. Let S be a set of n distinct elements.
Then $\binom{n}{k}$ represents the number of different k-subsets selected from an n-set.
Selecting a k-subset from an n-set is the same as selecting a $(n-k)$ subset to leave out of the selection.

Theorem 8. Pascal's Identity
Let $n, k \in \mathbb{Z}^{+}$with $1 \leq k<n$.
Then $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$.
Proof. Let S be a set of n distinct elements.
Then $|S|=n$.
Let $T=\{X: X$ is a k-subset of $S\}$.
Then $|T|=\binom{n}{k}$.
Let $e \in S$ be fixed and partition T into $T=T_{1} \cup T_{2}$ and $T_{1} \cap T_{2}=\emptyset$ where
$T_{1}=\{X \in T: e \in X\}$ and
$T_{2}=\{X \in T: e \notin X\}$.
$T_{2}=$ the set of k-subsets of S that don't contain $e=$ the set of k-subsets of $S-\{e\}$.

Hence, $\left|T_{2}\right|=\binom{n-1}{k}$.
$T_{1}=$ the set of k-subsets of S that contain $e=$ the set of $k-1$-subsets of $S-\{e\}$ in which e is added to each.

Hence, $\left|T_{1}\right|=\binom{n-1}{k-1}$.
Since $\left\{T_{1}, T_{2}\right\}$ is a partition of T, then
$|T|=\left|T_{1} \cup T_{2}\right|=\left|T_{1}\right|+\left|T_{2}\right|$.
Thus, $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.
Proof. An alternate proof exists.
Let $n, k \in \mathbb{Z}^{+}$with $k \leq n$.
Then $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
Let n be an arbitrary natural number.
Let k be an arbitrary integer, $k \geq 0$.
Then

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k-1}= & \frac{n!}{(n-k)!k!}+\frac{n!}{(n-k+1)!(k-1)!} \\
= & \frac{n!}{(n-k)!k(k-1)!}+\frac{n!}{(n-k+1)(n-k)!(k-1)!} \\
= & \frac{n!}{(n-k)!(k-1)!}\left[\frac{1}{k}+\frac{1}{n-k+1}\right] \\
= & \frac{n!}{(n-k)!(k-1)!} \cdot \frac{n+1}{k(n-k+1)} \\
= & \frac{(n+1)!}{(n+1-k)!k!} \\
& \binom{n+1}{k}
\end{aligned}
$$

Theorem 9. How many functions exist from an m-set to n-set?
Proof. Let $B^{A}=\{f: A \mapsto B: f$ is a function $\}$ where $|A|=m$ and $|B|=n$.
Then $\left|B^{A}\right|=$ the number of different functions from m -set to n -set.
An example of a function from A to B is the identity function $I(x)=x$.
Thus, $I \in B^{A}$, so $B^{A} \neq \emptyset$.
Hence, $\left|B^{A}\right|>0$.
How many functions exist in B^{A} ?
We know the number of different functions $=$ the number of different ways to create a single function.

In order to create a single function we must assign each of the elements in the domain.

Let $f: A \mapsto B$ be a function in B^{A}.
To create f , we can label the domain as follows.
Let $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right\}$.

In order to assign each of the elements in the domain,
we assign a_{1}, then assign a_{2}, then assign a_{3}, then \ldots then assign a_{m}.
Each of these subtasks are independent, so we can use the multiplication principle.

Thus, the number of ways to create a single function $=\prod_{k=1}^{m}\left|a_{k}\right|$
where $\left|a_{k}\right|=$ the number of different ways to assign a_{k} in $B=$ the number of different ways to choose $f\left(a_{k}\right)$ in B .

We must now determine each $\left|a_{k}\right|$ for $k=1$..m.
$\left|a_{1}\right|=|B|=n$.
$\left|a_{2}\right|=n$.
$\left|a_{3}\right|=n$.
$\left|a_{m}\right|=n$.
Thus, $\left|B^{A}\right|=n * n * n * \ldots * n=n^{m}$.
Therefore, there are n^{m} different functions from an m set to n set.
Theorem 10. How many injective functions exist from an m-set to n-set?
Proof. Let $B^{A}=\{f: A \mapsto B: f$ is injective $\}$ where $|A|=m$ and $|B|=n$.
Then $\left|B^{A}\right|=$ the number of different injective functions from m -set to n -set.
An injective function is 1-1, so by the Pigeonhole principle, $m \leq n$.
An example of a 1-1 function from A to B is the identity function $I(x)=x$. We know I is bijective, so it is also 1-1.
Thus, $I \in B^{A}$, so $S \neq \emptyset$.
Hence, $\left|B^{A}\right|>0$.
How many injective functions exist in B^{A} ?
We know the number of different 1-1 functions $=$ the number of different ways to create a single 1-1 function.

In order to create a single 1-1 function we must assign each of the elements in the domain.

Let $f: A \mapsto B$ be a 1-1 function in B^{A}.
To create f , we can label the domain as follows.
Let $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right\}$.
In order to assign each of the elements in the domain,
we assign a_{1}, then assign a_{2}, then assign a_{3}, then \ldots then assign a_{m}.
Each of these subtasks are independent, so we can use the multiplication principle.

Thus, the number of ways to create a single 1-1 function $=\prod_{k=1}^{m}\left|a_{k}\right|$
where $\left|a_{k}\right|=$ the number of different ways to assign a_{k} in $B=$ the number of different ways to choose $f\left(a_{k}\right)$ in B .

We must now determine each $\left|a_{k}\right|$ for $k=1 . . m$.
$\left|a_{1}\right|=|B|=n$.
$\left|a_{2}\right|=n-1$.
$\left|a_{3}\right|=n-2$.
$\left|a_{m}\right|=n-(m-1)=n-m+1$.
Thus, $\left|B^{A}\right|=n *(n-1) *(n-2) * \ldots *(n-m+1)=P(n, m)=\frac{n!}{(n-m)!}$.

Therefore, there are $\frac{n!}{(n-m)!}$ different injective functions from an m set to n set.

Theorem 11. Let S be a finite set containing n elements, $n \geq 0$.
Then there are 2^{n} different subsets of S.
Proof. How many subsets of S exist?
Let $n \in \mathbb{Z}, n \geq 0$.
Let S be a finite set of n elements. Then $|S|=n$.
Let $t=$ the number of different subsets of S.
Let $\mathscr{P}(S)=\{X: X \subseteq S\}$ where $\mathscr{P}(S)$ is the powerset of S.
Then $t=|\mathscr{P}(S)|$.
Since $\emptyset \subseteq S$, then $\emptyset \in \mathscr{P}(S)$.
Thus, $\mathscr{P}(S) \neq \emptyset$, so $|\mathscr{P}(S)|>0$.
How many different subsets of S exist in $\mathscr{P}(S)$?
We can partition $\mathscr{P}(S)$ such that each cell contains all subsets of S that have the same cardinality.

We partition because we'd like to count the number of different subsets of S using the addition principle.

We realize that each subset of S can have from 0 to $|S|=n$ elements.
Thus, a subset of S may have 0 or 1 or 2 or \ldots or n elements.
Hence, there exist $n+1$ cells in the partition.
Let $\left\{A_{0}, A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a partition of $\mathscr{P}(S)$
where each cell (equivalence class) $A_{i}=$ the set of all subsets of S that have the same cardinality i.

Thus, $\mathscr{P}(S)=\cup_{i=0}^{n} A_{i}$ and any two distinct cells $A_{i} \neq A_{j}$ are disjoint.
For example, equivalence class $A_{3}=$ the set of all subsets of S that have the same size of 3 .

Since we have a partition we can use the addition principle to count the number of different subsets of S.

Thus, $|\mathscr{P}(S)|=\sum_{k=0}^{n}\left|A_{k}\right|$ where $\left|A_{k}\right|=$ the number of different subsets of size k from a set S of size n.

Define k-set to be a set of size k.
Then $\left|A_{k}\right|=$
the number of different k-sets that can be created from an n-set
$=$ the number of different ways to create a single k-set from an n-set
$=$ the number of ways to select k distinct elements from a set of n distinct elements.

We must determine each $\left|A_{k}\right|$.
How do we create a single k-set from an n-set?
We must select k distinct objects from the n-set.
Since order does not matter, this is a combination.
Let T_{k} be the task to create a set of size k.
Thus, $\left|A_{k}\right|$ is the number of different ways to create a set of size k from a set of size n
$=$ the number of ways to choose k distinct objects from a set of n distinct objects

We know the number of subsets of size k from a set of size n is a combination of n things taken k at a time.

Thus, $\left|A_{k}\right|=\binom{n}{k}$.
Hence, $t=\sum_{k=0}^{n}\binom{n}{k}$.
We must prove $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
Our statement S_{n} is $\sum_{i=0}^{n}\binom{n}{i}=2^{n}$.
We prove using mathematical induction.

Basis:

If $n=0$, the statement S_{0} is $\sum_{i=0}^{0}\binom{0}{i}=2^{0}$.
The left hand side is $\binom{0}{0}=1$ and the right hand side is $2^{0}=1$. Thus S_{0} is true.

If $n=1$, the statement S_{1} is $\sum_{i=0}^{1}\binom{1}{i}=2^{1}$.
The left hand side is $\binom{1}{0}+\binom{1}{1}=1+1=2$ and the right hand side is $2^{1}=2$. Thus S_{1} is true.

Induction: Suppose $\sum_{i=0}^{k}\binom{k}{i}=2^{k}$ for $k \geq 0$.
Observe the following equalities:

$$
\begin{aligned}
\sum_{i=0}^{k+1}\binom{k+1}{i} & =\sum_{i=0}^{k+1}\left[\binom{k}{i-1}+\binom{k}{i}\right] \\
& =\sum_{i=0}^{k+1}\binom{k}{i-1}+\sum_{i=0}^{k+1}\binom{k}{i} \\
& =\binom{k}{-1}+\binom{k}{0}+\binom{k}{1}+\binom{k}{2}+\ldots+\binom{k}{k}+\sum_{i=0}^{k}\binom{k}{i}+\binom{k}{k+1} \\
& =0+\sum_{i=0}^{k}\binom{k}{i}+\sum_{i=0}^{k}\binom{k}{i}+0 \\
& =2 * \sum_{i=0}^{k}\binom{k}{i} \\
& =2 * 2^{k} \\
& =2^{k+1}
\end{aligned}
$$

Thus $\sum_{i=0}^{k}\binom{k}{i}=2^{k}$ implies $\sum_{i=0}^{k+1}\binom{k+1}{i}=2^{k+1}$ for $k \geq 0$.
By induction it follows that $\sum_{k=0}^{n=0}\binom{n}{k}=2^{n}$ for $n \geq 0$.
Theorem 12. A finite set of n elements has 2^{n} subsets.
Solution. How do we even know to come up with an answer for the number of subsets of S ?

The number of different subsets of S is the same as the number of different ways to create a single subset T of S.

So how many ways exist to create a subset of S.
What is the procedure to create a subset T?
Well to create a subset we must decide whether an element is to go into T.
We must decide whether an element of S is to be in the subset T.
Let $t=$ decide whether an element of S is to be an element of T.
Then $|t|=$ the number of ways to decide whether an element of S is to go in T.

There are two outcomes: either an element goes in T or it does not.
Thus $|t|=2$.
To create subset T we have to make this decision for all of the elements of S.

Thus we choose the first element, then choose 2 nd, then 3 rd, and so on until choose $n^{t h}$.

Each choice has 2 outcomes so by multiplication principle we have $2 * 2 * \ldots *$ $2=2^{n}$ different ways to create a subset T.

Thus there are 2^{n} different subsets of S.
We must prove:
$(\forall n \in \mathbb{N})$, a set S of n elements has 2^{n} subsets.
Define predicate $p(n)$: a set S of n elements has 2^{n} subsets.
The statement has the form $(\forall n \in \mathbb{N})(p(n))$, so we use proof by induction.
Let S be the truth set of $p(n)$.
To prove $S=\mathbb{N}$, we must prove:

1. $1 \in S$.
2. $(\forall m \in \mathbb{N})(m \in S \rightarrow m+1 \in S)$.

To prove 1:
we must prove a set S of 1 element has exactly 2^{1} subsets.
To prove 2:
Assume $m \in S$ is arbitrary.
Then we assume a set S of m elements has 2^{m} subsets.
We must prove:
a set of $m+1$ elements has 2^{m+1} subsets.
We must somehow relate a set S of $m+1$ elements to a set T of m elements.
The trick here is to partition S into two sets: a singleton set containing some element, say c that is in S but not in T, and another set $S-\{c\}$.

Proof. We prove for every $n \in \mathbb{N}$, a set of n elements has 2^{n} subsets.
Let S be the truth set of $p(n)$: a set of n elements has 2^{n} subsets.
To prove $S=\mathbb{N}$ by induction, we must prove:

1. $1 \in S$.
2. $(\forall m \in \mathbb{N})(m \in S \rightarrow m+1 \in S)$.

Basis:
To prove $1 \in S$, we must prove a set of 1 element has 2^{1} subsets.
Suppose T is a set containing exactly 1 element.
Then the only subsets of T are \emptyset and T itself.

Hence, there are $2=2^{1}$ subsets of T, as desired.

Induction:

Suppose $m \in S$.
To prove $m+1 \in S$, we must prove a set of $m+1$ elements has 2^{m+1} subsets.
Since $m \in S$, then we assume a set of m elements has 2^{m} subsets.
Let T be a set of m elements.
Let T^{\prime} be a set of $m+1$ elements.
Then T^{\prime} contains one additional element that is not in T.
Thus, let c be an element of T^{\prime} that is not in T.
Then $T^{\prime}=T \cup\{c\}$ and $c \notin T$.
We must prove there exist 2^{m+1} subsets of T^{\prime}.
Let X be a subset of T^{\prime}.
Then either $c \in X$ or $c \notin X$.
Suppose $c \notin X$.
Then X is a subset of T.
Since T contains m elements, then by assumption, T has 2^{m} subsets.
Thus, X is one of the 2^{m} subsets of T.
Hence, there are 2^{m} subsets of T^{\prime} that do not contain c.
Let Y be a subset of T^{\prime} that contains c.
Then $Y=X \cup\{c\}$ for some subset X of T that does not contain c.
Thus, a subset of T^{\prime} that contains c can be formed from a subset of T^{\prime} that does not contain c by adding c.

Hence, we create a subset of T^{\prime} that contains c by adding c to each of the 2^{m} subsets of T^{\prime} that do not contain c.

Thus, we can create a total of 2^{m} subsets of T^{\prime} that contain c.
Therefore, there are 2^{m} subsets of T^{\prime} that do not contain c and there are 2^{m} subsets of T^{\prime} that do contain c.

Hence, there are a total of $2^{m}+2^{m}=2 * 2^{m}=2^{m+1}$ subsets of T^{\prime}, as desired.

