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Exercise 1. There exists a positive real number x for which x2 <
√
x.

Proof. Observe that when x = 1
2 then (1

2 )2 = 1
4 which is less than

√
1
2 = 1√

2

Exercise 2. Let x, y ∈ R.
If x2 + 5y = y2 + 5x, then x = y or x+ y = 5.

Proof. Suppose x2 + 5y = y2 + 5x.
Then x2 − y2 = 5x− 5y, and factoring gives (x− y)(x+ y) = 5(x− y).
There are two cases to consider.
Case 1. Suppose x− y = 0.
Then adding y to both sides gives x = y.
Case 2. Suppose x− y 6= 0.
We can divide both sides of the equation (x − y)(x + y) = 5(x − y) by the

nonzero number x− y to get x+ y = 5.

Thus either x = y or x+ y = 5.

Exercise 3. Let x ∈ R. If x5 + 7x3 + 5x ≥ x4 + x2 + 8, then x ≥ 0.

Solution. Using proof by contrapositive is more useful than using direct proof
in this specific instance.

Proof. Suppose it is not the case that x ≥ 0, so x < 0.
Then x5, 7x3, and 5x are negative and x4, x2, and 8 are positive.
Thus the sum x5 + 7x3 + 5x must be less than the sum x4 + x2 + 8, so

x5 + 7x3 + 5x < x4 + x2 + 8.
Consequently it is not the case that x5 + 7x3 + 5x ≥ x4 + x2 + 8.

Exercise 4. Let x ∈ R. If x3 − x > 0 then x > −1.

Proof. Suppose it is not the case that x > −1.
Then x ≤ −1 which implies x+ 1 ≤ 0.
Since x < 0 and x− 1 < 0 then we have x(x− 1) > 0.
Multiply the inequality by x+ 1 to get x(x− 1)(x+ 1) ≤ 0.
Simplifying gives x3 − x ≤ 0.
Thus it is not the case that x3 − x > 0.



Exercise 5. Let x ∈ R. If x2 + 5x < 0, then x < 0.

Proof. We use proof by contrapositive.
Suppose it is not the case that x < 0.
Then x ≥ 0.
Neither x2 nor 5x is negative, so x2 + 5x ≥ 0.
Thus it is not true that x2 + 5x < 0.

Exercise 6. Let x, y ∈ R such that xy = 6 and x > 2.
Then y < 3.

Proof. Since x > 2, then 3x > 3 · 2 = 6 = xy = yx, so 3x > yx.
Since x > 2 and 2 > 0, then x > 0.
Hence, 3 > y, so y < 3.

Exercise 7. Let x, y ∈ R. If y3 + yx2 ≤ x3 + xy2, then y ≤ x.

Proof. We use proof by contrapositive.
Suppose it is not true that y ≤ x. Then y > x which implies that y− x > 0.
Multiply both sides of y − x > 0 by the positive value x2 + y2.

(y − x)(x2 + y2) > 0

yx2 + y3 − x3 − xy2 > 0

y3 + yx2 > x3 + xy2

Therefore y3 + yx2 > x3 + xy2, so it is not true that y3 + yx2 ≤ x3 + xy2.

Exercise 8. Let x, y ∈ R+. If x < y, then x2 < y2.

Proof. Let x, y ∈ R+ and x < y. Then x− y < 0.
Since x > 0 and y > 0, then x+ y > 0.
Since the product of a positive and negative real number is negative, then

(x− y)(x+ y) < 0.
Multiplying gives x2 − y2 < 0.
Adding y2 to both sides gives x2 < y2.
Therefore x2 < y2.

Exercise 9. Prove or disprove the conjecture: If x, y ∈ R, then |x+y| = |x|+|y|.

Solution. We try various values of x and y.
If we have x = 5 and y = −9, then |5 + (−9)| = 4,but |5|+ | − 4| = 14.
One counterexample suffices to disprove the conjecture since this is a uni-

versal quantification, so the proof below works.

Proof. The conjecture is false.
Note that if x = 5 and y = −9, then |5 + (−9)| = 4 but |5|+ | − 9| = 14.

Exercise 10. For every real number θ ∈ [0, π/2], sin θ + cos θ ≥ 1.
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Proof. Suppose for the sake of contradiction that this is not true. Then there
exists θ ∈ [0, π/2] for which sin θ+cos θ < 1. Since θ ∈ [0, π/2], neither sin θ nor
cos θ is negative, so 0 ≤ sin θ+cos θ < 1. Thus 02 ≤ (sin θ+cos θ)2 < 12 using the
previously proved proposition, which gives 02 ≤ sin2 θ+2 sin θ cos θ+cos2 θ < 12.
As sin2 θ+cos2 θ = 1, this becomes 0 ≤ 1+2 sin θ cos θ < 1, so 1+2 sin θ cos θ < 1.
Subtracting 1 and dividing by 2 from both sides gives sin θ cos θ < 0. Therefore
either sin θ is negative or cos θ is negative (but not both). But this contradicts
the fact that neither sin θ nor cos θ is negative.

Exercise 11. Let S = {x ∈ R : x2 − 7x+ 10 < 0}. Then S = {x ∈ R : 2 < x <
5}.

Proof. Let p(x) = x2 − 7x+ 10. Then p(x) = (x− 2)(x− 5). We know p(x) is
negative iff either x− 2 < 0 and x− 5 > 0 or x− 2 > 0 and x− 5 < 0. Thus we
consider two cases.

Case 1: Suppose x− 2 < 0 and x− 5 > 0.
Then x < 2 and x > 5 which is not possible.
Case 2: Suppose x− 2 > 0 and x− 5 < 0.
Then x > 2 and x < 5. Hence, 2 < x < 5.
Therefore, S = {x ∈ R : 2 < x < 5}.

Exercise 12. Let x, y ∈ R. Then (x + y)2 = x2 + y2 if and only if x = 0 or
y = 0.

Proof. We first prove that if (x+ y)2 = x2 + y2, then x = 0 or y = 0. Suppose
(x+y)2 = x2 +y2. Then x2 +2xy+y2 = x2 +y2, so 2xy = 0, and hence xy = 0.
Thus x = 0 or y = 0.

Conversely, we show that if x = 0 or y = 0, then (x+y)2 = x2 +y2. Suppose
x = 0 or y = 0. We consider two cases.
Case 1: Suppose x = 0.
Then (x+ y)2 = (0 + y)2 = y2 = 02 + y2 = x2 + y2.
Case 2: Suppose y = 0.
Then (x+ y)2 = (x+ 0)2 = x2 + 02 = x2 + y2.
Either way we have (x+ y)2 = x2 + y2.

Exercise 13. How can we remember sin(π6 ) = 1
2?

Solution.
Recall the Pythagorean identity x2 + y2 = r2 for a right triangle with hy-

potenuse r. Let r = 1 and one of the legs, say y = 1/2. Then x2 + (1/2)2 = 12,

so x =
√
3
2 .

We know function sin(x) is increasing on the interval [0, π/2] and 1/2 <√
3/2, Therefore, the angle associated with 1/2 must be less than the angle

associated with
√

3/2. It is either π/6 or π/3. Since π/6 < π/3, it must be
π/6.

Exercise 14. Is the following true or false?
For any natural number n the equation 4x2 +x−n = 0 has no rational root.
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Solution. This statement is false. Let n ∈ N. Then 4x2 + x − n = 0 implies
4x2+x = n, so x2+ 1

4x = n
4 . Hence, (x+ 1

8 )2 = n
4 +( 1

8 )2, so (x+ 1
8 )2 = n

4 + 1
64 =

16n+1
64 . Thus, x+ 1

8 = ±
√
16n+1
8 , so x = −1±

√
16n+1
8 . If the quantity 16n+ 1 is

a perfect square, then we will have an integer. We try various values of n and
find n = 3 produces 16 ∗ 3 + 1 = 49, a perfect square.

Proof. The statement is false. Here is a counterexample.
Let n = 3. Then the equation 4x2 + x − 3 = 0 has a rational root 3

4 since
4( 3

4 )2 + 3
4 − 3 = 0.

Exercise 15. Let R be the universal set(domain of discourse). Show that the
set {x ∈ R : 5x2 + 3x+ 2 < 0} is empty.

Solution. Let S = {x ∈ R : 5x2 + 3x+ 2 < 0}. We can factor the polynomial
expression 5x2+3x+2 by completing the square(as if we were solving a quadratic
equation). Thus we have 5x2+3x+2 = 5(x2+3x/5+2/5) = 5(x2+(1/2)(3/5)x+
9/100)+2−45/100 = 5(x+3/10)2 +31/20. Since (x+3/10)2 is greater than or
equal to zero the entire expression 5(x+ 3/10)2 + 31/20 must be strictly greater
than zero for every x ∈ R. Hence 5x2 + 3x + 2 > 0 for each x ∈ R, so there is
no x ∈ R such that 5x2 + 3x+ 2 < 0. Therefore S must be empty, so S = ∅.

We note that we could define function f : R 7→ R by f(x) = 5x2 + 3x + 2
and graph f using calculus and realize that f(x) > 0 for all x ∈ R. The graph
provides concrete visualization that S is empty,but we’re more interested in
showing why S must be empty.

Exercise 16. Prove by induction that 4n > n2 + 4n for each integer n ≥ 2.

Proof. Let p(n) : 4n > n2 + 4n be a predicate defined for each integer n ≥ 2.
Basis:
Since 42 = 16 > 12 = 22 + 4 ∗ 2, then the statement p(2) is true.
Induction:
Let n ≥ 2 such that p(n) is true. Then 4n > n2 + 4n. To prove p(n + 1)

is true, we must prove 4n+1 > (n + 1)2 + 4(n + 1). Thus, we must prove

4 > (n+1)2+4(n+1)
4n .

Observe that (n+1)2+4(n+1)
n2+4n = n2+6n+5

n2+4n = 1 + 2n+5
n2+4n .

To prove (n+1)2+4(n+1)
n2+4n < 4, we prove 2n+5

n2+4n < 1.

Since n ≥ 2, then 2n ≥ 4 and n > 0. Since n > 0 and n ≥ 2, then n2 ≥ 2n.
Thus, n2 ≥ 2n and 2n ≥ 4, so n2 ≥ 4. Adding n2 ≥ 4 and 2n ≥ 4, we obtain
n2 + 2n ≥ 8. Hence, n2 + 2n > 5, so n2 + 4n > 2n + 5. Since n > 0, then
n2 + 4n > 0, so dividing we obtain 1 > 2n+5

n2+4n . Therefore, 2n+5
n2+4n < 1.

Thus, we have

(n+ 1)2 + 4(n+ 1)

n2 + 4n
= 1 +

2n+ 5

n2 + 4n
< 2

< 4.
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Hence, (n+1)2+4(n+1)
n2+4n < 4. Since n2+4n > 0, then (n+1)2+4(n+1) < 4(n2+4n).

By hypothesis, n2+4n < 4n, so 4(n2+4n) < 4n+1. Thus, we have (n+1)2+
4(n + 1) < 4(n2 + 4n) and 4(n2 + 4n) < 4n+1, so (n + 1)2 + 4(n + 1) < 4n+1.
Therefore, 4n+1 > (n+ 1)2 + 4(n+ 1), so p(n+ 1) is true. Hence, p(n) implies
p(n+ 1) for all n ≥ 2.

Since p(2) is true and p(n) implies p(n+ 1) for all n ≥ 2, then by induction,
p(n) is true for all n ≥ 2. Therefore, 4n > n2 + 4n for all integers n ≥ 2.

Exercise 17. Let x ∈ R∗ with x > −1. Then (1 + x)n > 1 for every integer
n ≥ 2.

Solution. We must prove the proposition ∀(n ∈ N,n ≥ 2), Sn where the state-
ment Sn is (1 + x)n > 1 + nx.

Since Sn is a statement about the natural numbers, we use proof by induc-
tion(weak).

Our basis is n0 = 2 and we must prove S2.
For induction we must prove Sk → Sk+1 for any k ≥ 2.
Thus we must prove (1 + x)k > 1 + kx → (1 + x)k+1 > 1 + (k + 1)x for

k ≥ 2. We use direct proof to assume (1 + x)k > 1 + kx for any k ≥ 2. This is
our induction hypothesis.

Proof. Let x ∈ R∗, x > −1. Let n ∈ N and let Sn be the statement (1 + x)n >
1 + nx. We prove using mathematical induction(weak).

Basis: For n = 2 the statement S2 is (1 + x)2 > 1 + 2x.
Since x 6= 0, then x2 > 0. Thus, (1 + 2x) + x2 > (1 + 2x) + 0. Hence,

(1 + x)2 > 1 + 2x, so S2 is true.
Induction: Let k ∈ N. Suppose (1 + x)k > 1 + kx for any k ≥ 2.
Since x > −1, then 1 + x > 0. Hence, (1 + x)k(1 + x) > (1 + kx)(1 + x).

Thus, (1 + x)k+1 > (1 + x+ kx) + kx2.
Since k ≥ 2, then k > 0. Since x 6= 0, then x2 > 0. Thus, kx2 > 0.
Since (1 + x)k+1 > (1 + x + kx) + kx2 and kx2 > 0, then lemma implies

(1 + x)k+1 > 1 + x+ kx. Thus, (1 + x)k+1 > 1 + (k + 1)x.
Hence, (1 + x)k > 1 + kx implies (1 + x)k+1 > 1 + (k + 1)x for any k ≥ 2.
Since S2 is true and Sk implies Sk+1 for any integer k ≥ 2, then by induction

Sn is true for every integer n ≥ 2.

Exercise 18. Conjecture: There is a real number x for which x4 < x < x2.

Solution. The conjecture in logic symbols is:
∃(x ∈ R)(x4 < x < x2).
If we assume there is x ∈ R for which x4 < x < x2 is true, then we have

(x4 < x) ∧ (x < x2) → (x4 − x < 0) ∧ (0 < x2 − x)

→ x(x3 − 1) < 0 ∧ (x2 − x > 0)

→ x(x− 1)(x2 + x+ 1) < 0 ∧ (x(x− 1) > 0).

Let the function f(x) = x(x−1)(x2+x+1) and g(x) = x(x−1). Using graphing
techniques and/or calculus (to find the derivative of f and g) we realize that
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the quartic function f is strictly negative when x ∈ (0, 1) and the quadratic
function g is strictly positive when x < 0 or x > 1. Thus we conclude that there
can be no real number x for which x4 < x < x2. Now we will prove this result
below.

Proof. We disprove the conjecture ∃(x ∈ R)(x4 < x < x2) by proving its logical
negation is true. Thus we must prove ∀(x ∈ R)¬(x4 < x < x2). We use proof
by contradiction.

Suppose it is not the case that ∀(x ∈ R)¬(x4 < x < x2). Then ∃(x ∈ R)(x4 <
x < x2). Since x > x4 and x4 ≥ 0, then x > 0. We can therefore divide the
inequality by positive x to get

x3 < 1 < x.

We subtract 1 from the above inequality to get

x3 − 1 < 0 < x− 1.

We factor to get
(x− 1)(x2 + x+ 1) < 0 < (x− 1). (1)

Since x4 < x < x2 then x 6= 1, for if x = 1, then 14 < 1, which is false. Thus
x− 1 6= 0, so either x− 1 < 0 or x− 1 > 0. We consider these cases separately.
Case 1: Suppose x− 1 < 0.
Then we can divide inequality 1 by x− 1 to get

(x2 + x+ 1) > 0 > 1.

This implies 0 > 1, which is false.
Case 2: Suppose x− 1 > 0.
Then we can divide inequality 1 by x− 1 to get

(x2 + x+ 1) < 0 < 1.

Since x > 0, then (x2+x+1) > 0. But, the above inequality implies x2+x+1 <
0, a contradiction.

Both cases show that a contradiction results when we assume ∀(x ∈ R)¬(x4 < x < x2)
is false. Therefore the statement ∀(x ∈ R)¬(x4 < x < x2) is true. Thus we’ve
proved that the logical negation of the conjecture is true, and it follows that the
conjecture is false.

Proof. Suppose for the sake of contradiction that this conjecture is true. Let x
be a real number such that x4 < x < x2. Then x is positive, since it is greater
than the positive number x4. Also, x 6= 1 for 14 6< 12. Dividing all parts of the
inequality by positive x produces x3 < 1 < x. Subtracting 1 from all parts of
the inequality we obtain x3 − 1 < 0 < x− 1 and reason as follows:

x3 − 1 < 0 < x− 1

(x− 1)(x2 + x+ 1) < 0 < x− 1

x2 + x+ 1 < 0 < 1
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Now we have x2 + x + 1 < 0, which is a contradiction because x is positive.
Thus the conjecture must be false.

Exercise 19. Demonstrate that cos(π/2− θ) = sin θ.

Solution.
Let 4ABC be a right triangle with hypotenuse 1 and right angle at C.
Let θ be the angle at A.
Then the complement of θ is π/2− θ which equals the angle at B.
Note: We draw a picture of this to visualize the relationships in the triangle.

We observe that hypotenuse AB = 1.
Observe that sin(θ) = BC/AB = BC/1 = BC and cos(θ) = AC/AB =

AC/1 = AC. Thus, sin(π/2− θ) = AC/AB = cos(θ)/1 = cos(θ) and cos(π/2−
θ) = BC/AB = sin(θ)/1 = sin(θ).

Exercise 20. Prove cos(θ) = sin(π/2− θ) given that sin(x) = cos(π/2− x) for
all x ∈ R.

Solution.
Let θ ∈ R.
Since sin(x) = cos(π/2 − x) for every real x, then in particular, if we let

x = π/2− θ, then

sin(π/2− θ) = cos[π/2− (π/2− θ)]
= cos(π/2− π/2 + θ)

= cos(θ)

Exercise 21. Given the fact that cos(x − y) = cosx cos y + sinx sin y for all
real numbers x and y, show that

a. cos[π/2− y] = sin y for all y ∈ R.
b. cos(−y) = cos y for all y ∈ R. (Thus, cosine is an even function).
c. cos(x+ π/2) = − sinx for all x ∈ R.
d. sin(−x) = − sin(x) for all x ∈ R. (Thus, sine is an odd function).
e. sin(x+ π/2) = cosx for all x ∈ R.
f. cos(x+ y) = cosx cos y − sinx sin y for all x, y ∈ R.
g. sin(x+ y) = sinx cos y + cosx sin y for all x, y ∈ R.
h. sin(x− y) = sinx cos y − cosx sin y for all x, y ∈ R.
i. sin(2x) = 2 sinx cosx for all x ∈ R.
j. sinx− sin y = 2 cos(x+y2 ) sin(x−y2 ) for all x, y ∈ R.

Solution. We can define a predicate for each statement.
For example, in f,
define predicate p(x, y) : cos(x+ y) = cosx cos y − sinx sin y.
Then we must prove (∀x, y ∈ R)[p(x, y)].
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Proof. To prove a:
Let y be an arbitrary real number. Then

cos(π/2− y) = cos(π/2) cos y + sin(π/2) sin y

= 0 ∗ cos y + 1 ∗ sin y

= 0 + sin y

= sin y.

To prove b:
Let y be an arbitrary real number. Then

cos(−y) = cos(0− y)

= cos 0 cos y + sin 0 sin y

= 1 ∗ cos y + 0 ∗ sin y

= cos y + 0

= cos y.

To prove c:
Let x be an arbitrary real number. Then

cos(x+ π/2) = cos(x− (−π/2))

= cosx cos(−π/2) + sinx sin(−π/2)

= cosx cos(π/2) + sinx sin(= π/2)

= cosx ∗ 0 + sinx ∗ (−1)

= 0− sinx

= − sinx.

To prove d:
Let x be an arbitrary real number. Then

sin(−x) = cos(π/2− (−x))

= cos(π/2 + x)

= cos(x+ π/2)

= − sinx.

To prove e:
Let x be an arbitrary real number. Then

sin(x+ π/2) = cos(π/2− (x+ π/2))

= cos(−x)

= cos(x).

To prove f:
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Let x and y be arbitrary real numbers. Then

cos(x+ y) = cos(x− (−y))

= cosx cos(−y) + sinx sin(−y)

= cosx cos y + sinx(− sin y)

= cosx cos y − sinx sin y.

To prove g:
Let x and y be arbitrary real numbers. Then

sin(x+ y) = cos(π/2− (x+ y))

= cos(π/2− x− y)

= cos((π/2− x)− y)

= cos(π/2− x) cos y + sin(π/2− x) sin y

= sinx cos y + cosx sin y.

To prove h:
Let y be an arbitrary real number. Then

sin(x− y) = sin(x+ (−y))

= sinx cos(−y) + cosx sin(−y)

= sinx cos y + cosx sin(−y)

= sinx cos y − cosx sin y.

To prove i:
Let x be an arbitrary real number. Then

sin(2x) = sin(x+ x)

= sinx cosx+ cosx sinx

= sinx cosx+ sinx cosx

= 2 sinx cosx.

To prove j:
Let x and y be arbitrary real numbers.
Let θ1 = x+y

2 .

Let θ2 = x−y
2 .

Then

sinx− sin y = sin(θ1 + θ2)− sin(θ1 − θ2)

= (sin θ1 cos θ2 + cos θ1 sin θ2)− (sin θ1 cos θ2 − cos θ1 sin θ2)

= cos θ1 sin θ2 + cos θ1 sin θ2

= 2 cos θ1 sin θ2

= 2 cos
x+ y

2
sin

x− y
2

.

9



Exercise 22. For every x ∈ [π/2, π] , sinx− cosx ≥ 1.

Proof. Suppose for the sake of contradiction that there exists x ∈ [π/2, π] such
that sinx− cosx < 1.

Since x ∈ [π/2, π], then cosx ≤ 0 and sinx ≥ 0, so sinx cosx ≤ 0 and
cosx ≤ 0 ≤ sinx.

Since cosx ≤ 0 ≤ sinx, then cosx ≤ sinx, so 0 ≤ sinx− cosx.
Since 0 ≤ sinx− cosx and sinx− cosx < 1, then 0 ≤ sinx− cosx < 1.
Hence, 0 ≤ (sinx− cosx)2 < 1, so (sinx− cosx)2 < 1.
Thus, sin2(x)− 2 sinx cosx+ cos2(x) < 1, so 1− 2 sinx cosx < 1.
Therefore, 0 < 2 sinx cosx, so 0 < sinx cosx.
But, we now have a contradiction sinx cosx > 0 and sinx cosx ≤ 0.

Exercise 23. Show that arccos(x) = π
2 − arcsin(x).

Solution. Let x ∈ R.
We must prove arccos(x) = π

2 − arcsin(x).
Define predicate p(x) : arccos(x) = π

2 − arcsin(x).
We must prove (∀x ∈ R)[p(x)].

Proof. Let a ∈ R be arbitrary.
Since sin(π/2−x) = cos(x) for every x ∈ R, then in particular, sin(π/2−a) =

cos a.
Let b = cos a. Then sin (π/2− a) = b, so arcsin b = π/2− a.
Hence, a = π/2− arcsin b.
Since b = cos a, then arccos b = a.
Therefore, arccos b = π/2− arcsin b.
Since a is arbitrary, then arccosx = π/2− arcsinx for every x ∈ R.

Exercise 24. Given that arcsin is an odd function on domain [−1, 1] and the
fact that arccosx = π/2− arcsinx, prove that arccos (−x) = π− arccosx for all
x such that −1 ≤ x ≤ 1.

Solution. Let x ∈ [−1, 1] be arbitrary.
We must prove arccos (−x) = π− arccosx. We note that x and −x must be

in the domain of arccos function. Since domain of arccos is the interval [−1, 1],
then x is in the domain of arccos. Since x ∈ [−1, 1], then −1 ≤ x ≤ 1, so −1 ≤ x
and x ≤ 1. Hence, 1 ≥ −x and −x ≥ −1, so −x ≤ 1 and −x ≥ −1. Thus,
−1 ≤ −x ≤ 1, so −x ∈ [−1, 1], too.

We can work backwards to find the relationships.

Proof. Let x be an arbitrary real number in the interval [−1, 1].
Then

π − arccosx = π − (π/2− arcsinx)

= π/2 + arcsinx

= π/2− (− arcsinx)

= π/2− (arcsin(−x))

= arccos(−x).
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Exercise 25. Given the fact arcsin(−x) = − arcsin(x) and sec−1 x = arccos(1/x),
prove that sec−1(−x) = π − sec−1(x).

Solution. The conclusion has the form ∀x.p(x) where predicate p(x) : sec−1(−x) =
π − sec−1(x). The domain of discourse is the domain of the arsecant function,
namely, (−∞,−1] ∪ [1,∞).

Let x be an arbitrary real number in the domain of arcsecant function. We
must prove sec−1(−x) = π − sec−1(x).

Proof. Let x be an arbitrary real number such that x ∈ (−∞,−1] ∪ [1,∞).
Then

sec−1(−x) = cos−1(−1/x)

= π − cos−1(1/x)

= π − sec−1(x).

Exercise 26. Given the fact that cot−1(x) = π/2 − tan−1(x) and that tan−1

is an odd function, show that cot−1(−x) = π − cot−1(x) for all x ∈ R.

Solution.
Define predicate p(x) : cot−1(−x) = π − cot−1(x).
We must prove (∀x ∈ R)p(x).
Note that the domain of discourse is the same as the domain of function

cot−1, namely R.

Proof. Let x be an arbitrary real number.
Then

cot−1(−x) = π/2− tan−1(−x)

= π/2− [− tan−1(x)]

= π − π/2− [− tan−1(x)]

= π − [π/2− tan−1(x)]

= π − cot−1(x).

Exercise 27. Prove that if C is the graph of a function y = f(x), then C is
symmetric with respect to the point (h, k) if and only if f(−x+h) = 2k−f(x+h)
for every x such that x+ h is in the domain of f .

Solution.
Our hypothesis is:
1. y = f(x) is a real valued function in R2.
2. The graph of f is C = {(x, y) ∈ R2 : y = f(x)}.
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3. The point (h, k) is some fixed point in R2.
Our conclusion is:
P ↔ Q where
P is the statement C is symmetric with respect to (h, k).
Q is the statement f(−x + h) = 2k − f(x + h) for every x such that x + h

is in the domain of f .
By definition of symmetry with respect to a point, P is translated as:
P : (∀x ∈ R)(∀y ∈ R)[(x+ h, y + k) ∈ C → (−x+ h,−y + k) ∈ C].
Observe that P is a quantified statement with variables x, y bound and

constants h, k, C.
Define predicate p1(x, y) : (x+ h, y + k) ∈ C.
Define predicate p2(x, y) : (−x+ h,−y + k) ∈ C.
Then P : (∀x ∈ R)(∀y ∈ R)[p1(x, y)→ p2(x, y)].

We analyze statement Q.
Q : (∀x, x+ h ∈ dom(f))[f(−x+ h) = 2k − f(x+ h)].
Observe that Q is a quantified statement with variable x and constants f, k.
Thus, define predicate q(x) : f(−x+ h) = 2k − f(x+ h).
Then Q : (∀x, x+ h ∈ dom(f))[q(x)].
To prove the conclusion P ↔ Q, we must prove:
1. P → Q.
2. Q→ P .
To prove 1: To prove Q, we assume P . To prove Q, we let a ∈ R be arbitrary

such that a + h ∈ dom(f). We must prove q(a), that is prove f(−a + h) =
2k − f(a+ h).

To prove 2: To prove P , we assume Q. To prove P , we let a, b ∈ R be
arbitrary such that p1(a, b) is true. We must prove p2(a, b) is true. Thus, we
assume (a+ h, b+ k) ∈ C. We must prove (−a+ h,−b+ k) ∈ C.

Proof. Let y = f(x) be function in R2 with graph C = {(x, y) ∈ R × R : y =
f(x)}. Let (h, k) be some fixed point in R2.
⇒ Let a be an arbitrary real number such that a+ h is in the domain of f .
To prove f(−a+h) = 2k−f(a+h), we assume C is symmetric with respect

to the point (h, k). Since a + h is in the domain of f , then f(a + h) exists, so
the point (a+ h, f(a+ h)) is on the graph C. Thus, (a+ h, f(a+ h)) ∈ C.

Every point on C can be expressed in terms of h, k and some point (x, y) ∈
R2.

Therefore, let a+h = x+h and f(a+h) = y+k for some point (x, y) ∈ R2.
Since a+ h = x+ h, then x = a. Hence, (a+ h, y + k) ∈ C.

Since C is symmetric with respect to (h, k) and (a+ h, y+ k) ∈ C, then the
point (−a+h,−y+k) is on C, so (−a+h,−y+k) ∈ C. Thus, by definition of C,
−y+ k = f(−a+h). Hence, y+ k = f(a+h) and −y+ k = f(−a+h). Adding
these equations we obtain 2k = f(a + h) + f(−a + h), so that f(−a + h) =
2k − f(a+ h), as desired.
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⇐ Conversely, to prove C is symmetric with respect to (h, k), let a be an
arbitrary real number such that a + h is in the domain of f and f(−a + h) =
2k − f(a+ h). Let b be an arbitrary real number such that (a+ h, b+ k) ∈ C.
To prove (−a+ h,−b+ k) ∈ C, we must prove −b+ k = f(−a+ h).

Since f(−a + h) = 2k − f(a + h), then 2k = f(a + h) + f(−a + h). Since
(a + h, b + k) ∈ C, then by definition of C, b + k = f(a + h). Thus, we have
2k = f(a+h) + f(−a+h) and b+k = f(a+h). If we subtract these equations,
we obtain −b+ k = f(−a+ h), as desired.

Exercise 28. If M > 0, then the linear function f(x) = Mx+B is increasing
on R.

Solution. Our hypothesis is M > 0 and a real valued function f(x) = Mx+B
defined on domain R. To prove the conclusion f is increasing on R, we must
prove (∀x1, x2 ∈ R)[x1 < x2 → f(x1) < f(x2)]. Thus, we let x1, x2 be arbitrary
real numbers. To prove x1 < x2 → f(x1) < f(x2) is true, we assume x1 < x2.
We must prove f(x1) < f(x2).

Proof. Let x1 and x2 be arbitrary real numbers. To prove f is increasing on R,
we assume x1 < x2. We must prove f(x1) < f(x2).

Since x1 < x2 and M > 0, then Mx1 < Mx2. Thus, Mx1 +B < Mx2 +B.
Hence, f(x1) < f(x2), as desired.

Exercise 29. If the linear function f(x) = Mx + B is increasing on R, then
M > 0.

Solution. This is the converse of the previous exercise.
Hypothesis is: f(x) = Mx+B is increasing.
Conclusion is: M > 0.
The hypothesis is: (∀x1 ∈ R)(∀x2 ∈ R)(x1 < x2 → f(x1) < f(x2)).
Since the conclusion is a simple statement and the hypothesis is complicated,

let’s try proving by contrapositive.
We assume the negation of the conclusion:
Thus, we assume M ≤ 0.
We must prove the negation of the hypothesis:
Thus, we must prove (∃x1 ∈ R)(∃x2 ∈ R)(x1 < x2 ∧ f(x1) ≥ f(x2)).
Hence, we must find concrete real numbers x1 and x2 such that x1 < x2 and

f(x1) ≥ f(x2).
Let x1 = 3 and x2 = 5. Since 3 < 5, then x1 < x2.
We must prove f(3) ≥ f(5).
Since M ≤ 0, then M(3) ≥ M(5). Hence, M(3) + B ≥ M(5) + B, so

f(3) ≥ f(5). Therefore, f(x1) ≥ f(x2).

Proof. We prove by contrapositive. Assume M ≤ 0. We must prove there exist
real numbers x1 and x2 such that x1 < x2 and f(x1) ≥ f(x2).

Let x1 = 3 and x2 = 5. Since 3 < 5, then x1 < x2. Since M ≤ 0, then
Mx1 = 3M ≥ Mx2 = 5M . Hence, 3M + B ≥ 5M + B, so f(3) ≥ f(5).
Therefore, f(x1) ≥ f(x2).
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Exercise 30. If the linear function f(x) = Mx + B is one to one on R, then
M 6= 0.

Solution. Hypothesis is: f is one to one.
Conclusion is: M 6= 0.
Let H : f is one to one.
Let C : M 6= 0.
We must prove H → C.
Note H : (∀a, b)(a 6= b→ f(a) 6= f(b)).
Thus, we must prove (∀a, b)(a 6= b→ f(a) 6= f(b))⇒M 6= 0.
If we try direct proof, we get nowhere because we can’t find a way to deduce

M 6= 0. Thus, we try indirect proof. We can try proof by contrapositive or
proof by contradiction. In this case, since the hypothesis is complicated and the
conclusion is simple, let’s try proof by contrapositive.

Thus, since H → C ⇔ ¬C → ¬H, we assume M = 0. We must prove
¬H ⇔ ¬(∀a, b)(a 6= b→ f(a) 6= f(b))⇔ (∃a, b)(a 6= b ∧ f(a) = f(b)).

Proof. We prove by contrapositive. Suppose M = 0. We must find real numbers
a and b such that a 6= b and f(a) = f(b).

Since M = 0, then f(x) = Mx+B = 0x+B = B.
Let a = 3 and b = 5. Since 3 6= 5, then a 6= b. Observe that f(a) = f(3) =

B = f(5) = f(b).

Exercise 31. Let g : [1, 4]→ R be a function defined by g(x) = 2x2 +
√
x.

Then g is increasing and the inverse image of 0 is the empty set.

Proof. We first prove g is increasing on the interval [1, 4].
Let a and b be arbitrary real numbers such that a, b ∈ [1, 4] and a < b.
Then 1 ≤ a < b ≤ 4.
To prove g is increasing we must prove g(a) < g(b).
Since 1 ≤ a < b ≤ 4, then 0 < 1 ≤ a < b ≤ 4, so 1 ≤ a and 1 < b and

0 < a < b.
Since a ≥ 1 and b > 1, then a+ b > 2.
Since a ≥ 1, then

√
a ≥ 1.

Since b > 1, then
√
b > 1.

Thus,
√
a+
√
b > 2.

Since a + b > 2 and
√
a +
√
b > 2, then (a + b)(

√
a +
√
b) > 4 > −1

2 , so

(a+ b)(
√
a+
√
b) > −1

2 .

Hence, −2(a+ b)(
√
a+
√
b) < 1.

Since 0 < a < b, then 0 <
√
a <
√
b, so

√
a <
√
b.

Thus,
√
b−
√
a > 0.

Since −2(a + b)(
√
a +
√
b) < 1 and

√
b −
√
a > 0, then −2(a + b)(

√
a +√

b)(
√
b−
√
a) <

√
b−
√
a.

Consequently, 2(a+ b)(
√
a+
√
b)(
√
a−
√
b) <

√
b−
√
a, so 2(a+ b)(a− b) <√

b−
√
a.

Hence, 2(a2 − b2) <
√
b−
√
a, so 2a2 − 2b2 <

√
b−
√
a.

Thus, 2a2 +
√
a < 2b2 +

√
b, so g(a) < g(b), as desired.
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Proof. We next prove the inverse image of 0 is the empty set.
Let S = {x ∈ [1, 4] : g(x) = 0}.
To prove the inverse image of 0 is the empty set, we must prove S = ∅.
To prove S = ∅, let x ∈ [1, 4].
We must prove g(x) 6= 0.
Since x ∈ [1, 4], then 1 ≤ x ≤ 4, so 1 ≤ x.
Hence, either x > 1 or x = 1.
We consider these cases separately.
Case 1: Suppose x = 1.
Then g(x) = g(1) = 3 6= 0, so g(x) 6= 0.
Case 2: Suppose x > 1.
Then 1 < x.
Since g is increasing, then g(1) < g(x), so 3 < g(x).
Hence, g(x) > 3, so g(x) 6= 0.
Therefore, in all cases, g(x) 6= 0, as desired.

Exercise 32. Let h : [1, 3]→ R be a function defined by h(x) = x+ 6
x .

Then h is not decreasing and h is not one to one.

Proof. We first prove h is not decreasing.
Since 2 ∈ [1, 3] and 3 ∈ [1, 3] and 2 < 3 and h(2) = 5 = h(3), then h is not

decreasing.

Proof. We next prove h is not one to one.
Since 2 ∈ [1, 3] and 3 ∈ [1, 3] and 2 6= 3 and h(2) = 5 = h(3), then h is not

one to one.

Exercise 33. If function f is increasing on an interval I, then f is one to one
on I.

Solution. Let f be an arbitrary function on an arbitrary interval I.
The hypothesis is: f is increasing on I.
The conclusion is: f is one to one on I.
The hypothesis means: (∀x1, x2 ∈ R)(x1 < x2 → f(x1) < f(x2)).
The conclusion means:
(∀x1, x2 ∈ R)[x1 6= x2 → f(x1) 6= f(x2)].
Thus, let x1, x2 ∈ R such that x1 6= x2. We must prove f(x1) 6= f(x2)
Suppose (∀x1, x2 ∈ R)(x1 < x2 → f(x1) < f(x2)).
Since x1 6= x2, then either x1 < x2 or x1 > x2.
Case 1: Suppose x1 < x2. Since a < b ⇒ f(a) < f(b) for all real a, b,

then in particular, if we let a = x1 and b = x2, then f(x1) < f(x2). Thus,
f(x1) 6= f(x2).

Case 2: Suppose x1 > x2. Then x2 < x1. Since a < b⇒ f(a) < f(b) for all
real a, b, then in particular, if we let a = x2 and b = x1, then f(x2) < f(x1).
Thus, f(x1) 6= f(x2).

Hence, in all cases, x1 6= x2 implies f(x1) 6= f(x2), as desired.
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Proof. To prove f is one to one, let x1 and x2 be arbitrary distinct real numbers.
We must prove f(x1) 6= f(x2).
Since x1 and x2 are distinct, then x1 6= x2. Hence, either x1 < x2 or x1 > x2.
We consider these cases separately.
Case 1: Suppose x1 < x2.
Since f is increasing on I, then, for every real number a and b, a < b implies

f(a) < f(b). Hence, in particular, if we let a = x1 and b = x2, then x1 < x2
implies f(x1) < f(x2). Thus, since x1 < x2, then f(x1) < f(x2). Therefore,
f(x1) 6= f(x2).

Case 2: Suppose x1 > x2.
Then x2 < x1. Since f is increasing on I, then, for every real number a and

b, a < b implies f(a) < f(b). Hence, in particular, if we let a = x2 and b = x1,
then x2 < x1 implies f(x2) < f(x1). Thus, since x2 < x1, then f(x2) < f(x1).
Therefore, f(x2) 6= f(x1).

Hence, in all cases, x1 6= x2 implies f(x1) 6= f(x2), as desired.

Exercise 34. For each n ∈ N, (1 + x)n ≥ 1 + nx for all x ∈ R with x > −1.

Solution. Let x ∈ R, x > −1. We must prove the proposition ∀(n ∈ N), Sn
where the statement Sn is (1 + x)n ≥ 1 + nx.

Since Sn is a statement about the natural numbers, we use proof by induc-
tion(weak).

Our basis is n0 = 1 and we must prove S1.
For induction we must prove Sk → Sk+1 for any k ≥ 1.
Thus we must prove (1 + x)k ≥ 1 + kx → (1 + x)k+1 ≥ 1 + (k + 1)x for

k ≥ 1. We use direct proof to assume (1 + x)k > 1 + kx for any k ≥ 1. This is
our induction hypothesis.

Proof. Let x ∈ R, x > −1.
Let n ∈ N and let Sn be the statement (1 + x)n ≥ 1 + nx. We prove using

mathematical induction(weak).
Basis: If n = 1 then the statement S1 is (1 + x)1 ≥ 1 + 1x, which is true since
both sides equal 1 + x.
Induction: Let k ∈ N. Suppose (1+x)k ≥ 1+kx for any k ≥ 1. Since x > −1,
then x+ 1 > 0, so we can multiply, preserving the inequality: (1 + x)(1 + x)k ≥
(1 + x)(1 + kx). This implies (1 + x)k+1 ≥ 1 + kx + x + kx2 which implies
(1 + x)k+1 ≥ 1 + (k + 1)x+ kx2. Since x2 > 0 and k > 0, then kx2 > 0. Thus
(1 + x)k+1 ≥ 1 + (k + 1)x.

Exercise 35. Let f be a real valued function with domain R. Then f is even
if and only if the curve C = {(x, f(x)) : x ∈ R} is symmetric with respect to
the y axis.

Solution. Our hypothesis is f : R 7→ R is a function and curve C = {(x, f(x)) :
x ∈ R}. Our conclusion is f is even iff C is symmetric with respect to the y
axis. To prove this conclusion we must prove both:

1. if f is even, then C is symmetric with respect to the y axis.
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2. if C is symmetric with respect to the y axis, then f is even.
To prove 1: we assume f is even. We must prove (∀x, y ∈ R)[(x, y) ∈ C →

(−x, y) ∈ C]. Therefore, we let x, y ∈ R be arbitrary. To prove (x, y) ∈ C →
(−x, y) ∈ C, we assume (x, y) ∈ C. We must prove (−x, y) ∈ C.

To prove 2: We assume C is symmetric with respect to the y axis. We must
prove (∀x ∈ R)(f(−x) = f(x)). Therefore, we let x ∈ R be arbitrary. We must
prove f(−x) = f(x).

We note that C = {(x, y) : x ∈ R, y = f(x)} = {(x, y) ∈ R× R : y = f(x)}.
Therefore, C ⊆ R2.

Proof. Let f : R 7→ R be a function and let C = {(x, f(x)) : x ∈ R}.
⇒ Suppose f is even. To prove C is symmetric with respect to the y axis, let

(x, y) ∈ C be arbitrary. We must prove (−x, y) ∈ C, that is, prove y = f(−x).
Since (x, y) ∈ C, then by definition of C, y = f(x). Since f is even, then

f(−x) = f(x). Hence, y = f(−x), as desired.

⇐ Conversely, suppose C is symmetric with respect to the y axis. To prove
f is even, let x be an arbitrary real number. We must prove f(−x) = f(x).

Since x ∈ R, then f(x) ∈ R, by definition of f . Hence, (x, f(x)) ∈ C.
Since x ∈ R, then −x ∈ R. Hence, f(−x) ∈ R, so (−x, f(−x)) ∈ C. Since C
is symmetric with respect to the y axis and (x, f(x)) ∈ C, then (−x, f(x)) ∈
C. Since (−x, f(−x)) ∈ C, then by definition of C, f(−x) = f(−x). Since
(−x, f(x)) ∈ C, then by definition of C, f(−x) = f(x). Since f is a function,
then f(−x) is unique. Therefore, f(−x) = f(x), as desired.

Exercise 36. Let C be a subset of R × R such that C is symmetric with
respect to the y axis, but not with the origin. Assume the fact that if a curve C
is symmetric with respect to the x and y axes, then it is symmetric with respect
to the origin. Show that C cannot be symmetric with respect to the x axis.

Solution. We define statements.
Let P : C is symmetric with respect to the x axis.
Let Q : C is symmetric with respect to the y axis.
Let R : C is symmetric with respect to the origin.
The hypothesis is: Q ∧ ¬R.
The conclusion is: ¬P .
We are given the theorem: P ∧Q→ R.
We use direct proof, so we must prove Q ∧ ¬R→ ¬P .
Since we have negative statements, we’d like to get rid of the negatives.
We can use logical equivalence involving the contrapositive:
We know Q ∧ ¬R→ ¬P ⇔ Q ∧ P → R.
Thus, we prove the equivalent statement Q ∧ P → R.
Hence, we assume P and Q and show that R is true.
We can apply theorem P ∧Q→ R to conclude R.
Suppose C is symmetric with respect to the x axis. By hypothesis C is

symmetric with respect to the y axis. By the theorem, C is symmetric with
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respect to the x and y axes imply C is symmetric with respect to the origin.
Hence, C is symmetric with respect to the origin, as desired.

Proof. We prove C is symmetric with respect to the x and y axes imply C
is symmetric with respect to the origin. Assume C is symmetric with respect
to the x axis. By hypothesis, C is symmetric with respect to the y axis. By a
theorem, if C is symmetric with respect to the x and y axes, then C is symmetric
with respect to the origin. Since C is symmetric with respect to the x and y
axes, then we conclude C is symmetric with respect to the origin.

Exercise 37. Let x, y, z be any real numbers. Let ∨ be the max function. Then
x ∨ (y ∨ z) = (x ∨ y) ∨ z.

Solution.
We must prove that the max function is associative.
Observe that by definition of max function, for any two real numbers x and

y, either x ≤ y or y ≤ x are considered. (This is because of the trichotomy
law of real numbers-either x < y or x = y or x > y, so either x ≤ y or x > y,
so either x ≤ y or y < x, so either x ≤ y or y ≤ x). Hence, for each pair of
numbers, we have two cases. Since we’re doing two max operations, then we
have 4 cases to consider:

1. x ≤ y and y ≤ z.
2. x ≤ y and z ≤ y.
3. y ≤ x and y ≤ z.
4. y ≤ x and z ≤ y.

Proof. Let x, y, and z be arbitrary real numbers.
Either
x ≤ y and y ≤ z, or
x ≤ y and z ≤ y, or
y ≤ x and y ≤ z, or
y ≤ x and z ≤ y.
We consider these cases separately.
Case 1: Suppose x ≤ y and y ≤ z.
Then x ≤ z, by transitivity of ≤.
Observe that

x ∨ (y ∨ z) = x ∨ z
= z

= y ∨ z
= (x ∨ y) ∨ z

Case 2: Suppose x ≤ y and z ≤ y.
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Observe that

x ∨ (y ∨ z) = x ∨ y
= y

= y ∨ z
= (x ∨ y) ∨ z

Case 3: Suppose y ≤ x and y ≤ z.
Observe that

x ∨ (y ∨ z) = x ∨ z
= (x ∨ y) ∨ z

Case 4: Suppose y ≤ x and z ≤ y.
Since z ≤ y and y ≤ x, then z ≤ x.
Observe that

x ∨ (y ∨ z) = x ∨ y
= x

= x ∨ z
= (x ∨ y) ∨ z

In all cases, x ∨ (y ∨ z) = (x ∨ y) ∨ z, as desired, so max is associative.

Exercise 38. Prove |
∑n
k=1 xk| ≤

∑n
k=1 |xk| for every positive integer n and

every real number x1, x2, ..., xn.

Solution.
The statement to prove is:
(∀x1, x2, ..., xn ∈ R)(∀n ∈ N)[|

∑n
k=1 xk| ≤

∑n
k=1 |xk|].

Let x1, x2, ..., xn ∈ R be arbitrary.
Define predicate p(n) : |

∑n
k=1 xk| ≤

∑n
k=1 |xk| over N.

Let S be the truth set of p(n).
To prove (∀n ∈ N)[p(n)], we must prove S = N.
We prove by induction.
Thus, we must prove:
1. 1 ∈ S. Thus,we must prove p(1) is true.
2. (∀m ∈ N)(m ∈ S → m+ 1 ∈ S). To prove, we assume m ∈ N is arbitrary

such that m ∈ S. To prove m+ 1 ∈ S, we must prove p(m+ 1) is true.
We note that this is the generalized triangle inequality.

Proof. Let x1, x2, ..., xn be arbitrary real numbers.
Let S be the truth set of p(n) : |

∑n
k=1 xk| ≤

∑n
k=1 |xk| over N.

We prove S = N by induction.
Basis:
Clearly, 1 ∈ S, since |

∑1
k=1 xk| = |x1| =

∑1
k=1 |xk|.
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Induction:
Suppose m ∈ S.
To prove m+ 1 ∈ S, we must prove |

∑m+1
k=1 xk| ≤

∑m+1
k=1 |xk|.

Since m ∈ S, then |
∑m
k=1 xk| ≤

∑m
k=1 |xk|.

Observe that

|
m+1∑
k=1

xk| = |
m∑
k=1

xk + xm+1|

≤ |
m∑
k=1

xk|+ |xm+1|

≤
m∑
k=1

|xk|+ |xm+1|

≤
m+1∑
k=1

|xk| , as desired.

Exercise 39. Let T be a real number. Let f : R 7→ R be a function such that
f(x+T ) = f(x) for all x ∈ R. Then f(x+nT ) = f(x) for all x ∈ R and n ∈ N.

Solution.
The hypothesis is:
T is an arbitrary real number.
f : R 7→ R is a function.
(∀x ∈ R)[f(x+ T ) = f(x)].
The conclusion is:
(∀x ∈ R)(∀n ∈ N)[f(x+ nT ) = f(x)].
Let x ∈ R.
To prove (∀n ∈ N)[f(x + nT ) = f(x)], we use induction since this is a

statement about N
Define predicate p(n) : f(x+ nT ) = f(x).
Let S be the truth set of p(n).
To prove (∀x ∈ N)[p(n)], we must prove S = N.
Therefore, we must prove:
1. 1 ∈ S.
2. S is inductive. That is, prove (∀m ∈ N)(m ∈ S → m+ 1 ∈ S).

Proof. Let x be an arbitrary real number.
Let S be the truth set of p(n) : f(x+ nT ) = f(x).
We prove S = N by induction.
Basis:
Clearly, 1 ∈ S, since f(x+ 1T ) = f(x+ T ) = f(x).
Induction:
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Suppose m ∈ S.
To prove m+ 1 ∈ S, we must prove f(x+ (m+ 1)T ) = f(x).
Since m ∈ S, then f(x+mT ) = f(x).
Observe that

f(x+ (m+ 1)T ) = f(x+mT + T )

= f((x+mT ) + T )

= f(x+mT )

= f(x) , as desired.

Exercise 40. For every natural number n, cos(nπ) = (−1)n.

Solution.
The conclusion is:
(∀n ∈ N)[cos(nπ) = (−1)n].
Let x ∈ R.
To prove (∀n ∈ N)[cos(nπ) = (−1)n], we use induction since this is a state-

ment about N
Define predicate p(n) : cos(nπ) = (−1)n.
Let S be the truth set of p(n).
To prove (∀x ∈ N)[p(n)], we must prove S = N.
Therefore, we must prove:
1. 1 ∈ S.
2. S is inductive. That is, prove (∀m ∈ N)(m ∈ S → m+ 1 ∈ S).

Proof. Let S be the truth set of p(n) : cos(nπ) = (−1)n.
We prove S = N by induction.
Basis:
Clearly, 1 ∈ S, since cos(1π) = cos(π) = −1 = (−1)1.
Induction:
Suppose m ∈ S.
To prove m+ 1 ∈ S, we must prove cos((m+ 1)π) = (−1)m+1.
Since m ∈ S, then cos(mπ) = (−1)m.
Observe that

cos((m+ 1)π) = cos(mπ + π)

= cos(mπ) cos(π)− sin(mπ) sin(π)

= cos(mπ)(−1)− (sin(mπ))(0)

= cos(mπ)(−1)− 0

= cos(mπ)(−1)

= (−1)m(−1)

= (−1)m+1, as desired.

21



Exercise 41. If x, a, b ∈ R and xa = xb, then either x = 0 or a = b.

Solution.
Let x, a, b ∈ R.
Define:
h(x) : xa = xb.
c1(x) : x = 0.
c2 : a = b.
We must prove h(x) ⇒ (c1(x) ∨ c2). Observe that h(x) ⇒ (c1(x) ∨ c2) ⇔

(∀x)(h(x)→ (c1(x) ∨ c2).
Thus, we prove (∀x)(h(x)→ (c1(x) ∨ c2).
Let x ∈ R such that h(x) is true. We must prove either x = 0 or a = b.

Proof. Let real numbers a and b be given. Let x be an arbitrary real number
such that xa = xb.

We must prove either x = 0 or a = b.
Since xa = xb, then xa − xb = 0, so x(a − b) = 0. Hence, either x = 0 or

a− b = 0. Therefore, either x = 0 or a = b, as desired.

Exercise 42. Let f, g, h be real valued functions of a real variable. If A = {x ∈
R : f(x) 6= g(x)} and B = {x ∈ R : g(x) 6= h(x)} and C = {x ∈ R : f(x) 6=
h(x)}, then C ⊂ A ∪B.

Solution. To prove C ⊂ A ∪ B, let x ∈ C. We must prove either x ∈ A or
x ∈ B.

One approach is to consider:
x ∈ C → (x ∈ A ∨ x ∈ B)⇔ (x ∈ C ∧ x 6∈ A)→ x ∈ B.
Thus, we may assume x 6∈ A and prove x ∈ B.

Proof. To prove C ⊂ A ∪B, let x ∈ C. We must prove either x ∈ A or x ∈ B.
Suppose x 6∈ A. We must prove x ∈ B.
Since x ∈ C, then x ∈ R and f(x) 6= h(x). Since x ∈ A iff f(x) 6= g(x), then

x 6∈ A iff f(x) = g(x). Since x 6∈ A, then we conclude f(x) = g(x).
Since f, g and h are real valued functions, then f(x), g(x), and h(x) are real

numbers.
We know equality of real numbers is transitive. Thus, for any real numbers

a, b, c, if a = b and b = c, then a = c. Hence, if a 6= c then either a 6= b or b 6= c.
Thus, since f(x) 6= h(x), then either f(x) 6= g(x) or g(x) 6= h(x). Since

f(x) = g(x), then we conclude g(x) 6= h(x). Since x ∈ R and g(x) 6= h(x), then
x ∈ B, as desired.

Exercise 43. Let S be a subset of R that is closed under addition and has the
property that −x ∈ S whenever x ∈ S. Then if x ∈ S and y 6∈ S, then x+y 6∈ S.

Solution.
The hypothesis is:
1. S ⊂ R.
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2. S is closed under addition.
3. (∀x)(x ∈ S → −x ∈ S).
The conclusion is:
x ∈ S and y 6∈ S ⇒ x+ y 6∈ S.
We must prove: x ∈ S ∧ y 6∈ S ⇒ (x + y) 6∈ S which is equivalent to

(∀x, y)(x ∈ S ∧ y 6∈ S → (x+ y) 6∈ S).
Direct proof is not fruitful, so let’s try indirect proof such as using contra-

positive.
Observe that x ∈ S ∧ y 6∈ S ⇒ (x+ y) 6∈ S ⇔ x ∈ S ∧ (x+ y) ∈ S ⇒ y ∈ S.
Let x, y ∈ R be arbitrary. To prove x ∈ S and y 6∈ S ⇒ (x + y) 6∈ S, we

prove x ∈ S and x+ y ∈ S ⇒ y ∈ S.
Suppose x ∈ S and x+ y ∈ S. We must prove y ∈ S.
We note the properties of S specified in the hypothesis:
S is closed under addition means a ∈ S and b ∈ S ⇒ a+ b ∈ S.
The property −x ∈ S whenever x ∈ S means x ∈ S ⇒ −x ∈ S.
How can we show y ∈ S? We use the properties of S(hypothesis). We know

x+ y ∈ S, so if we could add −x we would get (−x+ x) + y = 0 + y.
Thus, we would need to establish that −x ∈ S and 0 ∈ S.
How can we deduce −x ∈ S? We use the property regarding negatives.
How can we deduce 0 ∈ S? Use additive inverses: x + (−x) = 0. But,

we must show −x ∈ S. How can we deduce −x ∈ S? We use the property
regarding negatives.

Thus, since x ∈ S, then −x ∈ S. Hence, x+ (−x) = 0 ∈ S. Since x+ y ∈ S
and −x ∈ S, then −x+(x+y) ∈ S. Since −x+(x+y) = (−x+x)+y = 0+y = y,
then this implies y ∈ S.

We also observe that Z and Q satisfy the hypotheses of this theorem since
(Z,+) and (Q,+) are groups.

Proof. Let x and y be arbitrary real numbers.
To prove x ∈ S and y 6∈ S imply (x+ y) 6∈ S, we prove x ∈ S and x+ y ∈ S

imply y ∈ S.
Suppose x ∈ S and x+ y ∈ S. We must prove y ∈ S.
Since x ∈ S, then−x ∈ S. Since x+y ∈ S and−x ∈ S, then−x+(x+y) ∈ S.

Since −x+ (x+ y) = (−x+ x) + y = 0 + y = y, then this implies y ∈ S.

Exercise 44. Let S be a subset of R that is closed under multiplication and
has the property that 1/x ∈ S whenever x ∈ S and x 6= 0. Then if x ∈ S, x 6= 0
and y 6∈ S, then xy 6∈ S.

Solution.
The hypothesis is:
1. S ⊂ R.
2. S is closed under multiplication.
3. (∀x)(x ∈ S ∧ x 6= 0→ 1/x ∈ S).
The conclusion is:
x ∈ S, x 6= 0 and y 6∈ S ⇒ xy 6∈ S.
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We must prove: x ∈ S ∧ x 6= 0 ∧ y 6∈ S ⇒ xy 6∈ S which is equivalent to
(∀x, y)(x ∈ S ∧ x 6= 0 ∧ y 6∈ S → xy 6∈ S).

Direct proof is not fruitful, so let’s try indirect proof such as using contra-
positive.

Observe that x ∈ S ∧ x 6= 0 ∧ y 6∈ S ⇒ xy 6∈ S ⇔ x ∈ S ∧ x 6= 0 ∧ xy ∈ S ⇒
y ∈ S.

Let x, y ∈ R be arbitrary. To prove x ∈ S, x 6= 0 and y 6∈ S ⇒ xy 6∈ S, we
prove x ∈ S, x 6= 0 and xy ∈ S ⇒ y ∈ S.

Suppose x ∈ S, x 6= 0 and xy ∈ S.
We must prove y ∈ S.
We note the properties of S specified in the hypothesis:
S is closed under multiplication means a ∈ S and b ∈ S ⇒ ab ∈ S.
The inverse property 1/x ∈ S whenever x ∈ S, x 6= 0 means x ∈ S, x 6= 0⇒

1/x ∈ S.
How can we show y ∈ S? We use the properties of S(hypothesis). We know

xy ∈ S, so if we could multiply by 1/x we would get (1/x · x)y = 1y = y.
Thus, we would need to establish that 1/x ∈ S and 1 ∈ S.
How can we deduce 1/x ∈ S? We use the property regarding inverses.
Thus, since x ∈ S and x 6= 0, then 1/x ∈ S. Since xy ∈ S and 1/x ∈ S, then

1/x · (xy) ∈ S. Since 1/x · (xy) = (1/x · x)y = 1y = y, then this implies y ∈ S.
We also observe that Q satisfy the hypotheses of this theorem.

Proof. Let x and y be arbitrary real numbers.
To prove x ∈ S, x 6= 0 and y 6∈ S ⇒ xy 6∈ S, we prove x ∈ S, x 6= 0 and

xy ∈ S ⇒ y ∈ S.
Suppose x ∈ S, x 6= 0 and xy ∈ S.
We must prove y ∈ S.
Since x ∈ S and x 6= 0, then 1/x ∈ S. Since xy ∈ S and 1/x ∈ S, then

1/x·(xy) ∈ S. Since 1/x·(xy) = (1/x·x)y = 1y = y, then this implies y ∈ S.

Exercise 45. Prove there is a unique solution to the equation 7x− 5 = 0.

Solution.
We define predicate p(x) : 7x− 5 = 0 over R.
To prove (∃!x ∈ R)(p(x)), we must prove:
1. at least one such x exists (∃x ∈ R)(p(x)) and
2. at most one such x exists.
We solve for x.
Observe that 7x− 5 = 0⇒ x = 5/7. Therefore, at most one solution exists.
We now prove at least one solution exists.
Let x = 5/7. Then 7x− 5 = 7(5/7)− 5 = 5− 5 = 0, as desired.

Proof. We prove at most one solution to the equation 7x−5 = 0 exists. Suppose
7x− 5 = 0. Then 7x = 5, so x = 5/7. Therefore, at most one solution exists.

We now prove at least one solution exists. Let x = 5/7. Then 7x − 5 =
7(5/7)− 5 = 5− 5 = 0, as desired.
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Since at least one solution exists and at most one solution exists, then exactly
one solution exists. Therefore, there is a unique solution to the equation.

Exercise 46. Prove there is a unique solution to the equation x− 5 =
√
x+ 7.

Solution.
We define predicate p(x) : x− 5 =

√
x+ 7 over R.

To prove (∃!x ∈ R)(p(x)), we must prove:
1. at least one such x exists (∃x ∈ R)(p(x)) and
2. at most one such x exists.
We solve for x.
Suppose x− 5 =

√
x+ 7. Then x2− 10x+ 25 = x+ 7, so x2− 11x+ 18 = 0.

Thus, (x− 9)(x− 2) = 0, so either x = 2 or x = 9.
Suppose x = 2. Then x − 5 = 2 − 5 = −3 6= 3 =

√
9 =
√

2 + 7 =
√
x+ 7.

Therefore, 2 is not a solution. Hence, at most one solution exists.
We prove at least one solution exists. Let x = 9.
Then x− 5 = 9− 5 = 4 =

√
16 =

√
9 + 7 =

√
x+ 7, as desired.

Proof. Uniqueness:
We prove at most one solution exists.
Suppose x−5 =

√
x+ 7 for some real number x. Then x2−10x+25 = x+7,

so x2 − 11x+ 18 = 0. Thus, (x− 9)(x− 2) = 0, so either x = 2 or x = 9.
Suppose x = 2. Then x − 5 = 2 − 5 = −3 6= 3 =

√
9 =
√

2 + 7 =
√
x+ 7.

Therefore, 2 is not a solution. Hence, at most one solution exists.
Existence: We prove at least one solution exists.
Let x = 9.
Then x− 5 = 9− 5 = 4 =

√
16 =

√
9 + 7 =

√
x+ 7, as desired.

Since at least one solution exists and at most one solution exists, then exactly
one solution exists. Therefore, there is a unique solution to the equation x−5 =√
x+ 7.

Exercise 47. Let A be the set of integers which can be expressed as 2k− 1 for
some k ∈ Z.

Let B be the set of integers which can be expressed as 2n+1 for some n ∈ Z.
Then A = B.

Proof. We first prove A ⊂ B.
Let a ∈ A be arbitrary.
Then a = 2k − 1 for some k ∈ Z.
Let n = k − 1.
Since k ∈ Z and Z is closed under subtraction, then n ∈ Z.
Thus,

a = 2k − 1

= 2(n+ 1)− 1

= 2n+ 2− 1

= 2n+ 1.
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Since a = 2n+ 1 for some integer n, then a ∈ B.
Hence, if a ∈ A, then a ∈ B, so A ⊂ B.

We next prove B ⊂ A.
Let b ∈ B be arbitrary.
Then b = 2n+ 1 for some n ∈ Z.
Let k = n+ 1.
Since n ∈ Z and Z is closed under addition, then k ∈ Z.
Thus,

b = 2n+ 1

= 2(k − 1) + 1

= 2k − 2 + 1

= 2k − 1.

Since b = 2k − 1 for some integer k, then b ∈ A.
Hence, if b ∈ B, then b ∈ A, so B ⊂ A.

Since A ⊂ B and B ⊂ A, then A = B, as desired.

Exercise 48. The number log2 3 is irrational.

Proof. We prove by contradiction.
Suppose log2 3 is rational.
Let x = log2 3.
Then x ∈ Q and 2x = 3.
Since 20 = 1 6= 3, then x 6= 0.
Suppose x is negative.
Then x < 0, so −x > 0.
Since x ∈ R and −x > 0, then 2−x > 1.
Hence, 1

2x > 1, so 1
3 > 1, a contradiction.

Therefore, x cannot be negative.
Since x cannot be negative and x cannot be zero, then by trichotomy, x must

be positive.
Thus, x > 0, so there exist positive integers m and n such that x = m

n .
Hence, 2

m
n = 3, so 2m = 3n.

Since m ∈ Z and m > 0, then m ≥ 1, so m− 1 ≥ 0.
Since m ∈ Z and Z is closed under subtraction, then m− 1 ∈ Z.
Since m− 1 ∈ Z and m− 1 ≥ 0, then 2m−1 ∈ Z.
Since 2m = 2 · 2m−1, then this implies 2|2m, so 2 is the only prime factor of

2m.
Since n ∈ Z and n > 0, then n ≥ 1, so n− 1 ≥ 0.
Since n ∈ Z and Z is closed under subtraction, then n− 1 ∈ Z.
Since n− 1 ∈ Z and n− 1 ≥ 0, then 3n−1 ∈ Z.
Since 3n = 3 · 3n−1, then this implies 3|3n, so 3 is the only prime factor of

3n.
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Hence, 2 cannot be a prime factor of 3n.
Since 2 is a prime factor of 2m, but 2 is not a prime factor of 3n, then

2m 6= 3n.
But, this contradicts the fact that 2m = 3n.
Therefore, log2 3 is irrational.

Exercise 49. Let S = {n ∈ N : n2 − 3n+ 2 = 0}.
Then S = {1, 2}.

Proof. We first prove {1, 2} ⊂ S.
Since 1 ∈ N and 12 − 3 ∗ 1 + 2 = 1− 3 + 2 = 0, then 1 ∈ S.
Since 2 ∈ N and 22 − 3 ∗ 2 + 2 = 4− 6 + 2 = 0, then 2 ∈ S.
Since 1 ∈ S and 2 ∈ S, then {1, 2} ⊂ S.

We next prove S ⊂ {1, 2}.
Suppose n ∈ S.
Then n ∈ N and n2 − 3n+ 2 = 0.
Since n ∈ N and N ⊂ Z, then n ∈ Z.
Since n2 − 3n + 2 = 0, then (n − 2)(n − 1) = 0, so either n − 2 = 0 or

n− 1 = 0.
Hence, either n = 2 or n = 1, so n ∈ {1, 2}.
Thus, if n ∈ S, then n ∈ {1, 2}, so S ⊂ {1, 2}.

Since S ⊂ {1, 2} and {1, 2} ⊂ S, then S = {1, 2}, as desired.

Exercise 50. Let Sn = {(n+ 1)k : k ∈ N}.
Compute
1. S1 ∩ S2.
2. ∪∞n=1Sn.
3. ∩∞n=1Sn.

Proof. 1. We prove S1 ∩ S2 = S5.
(Thus, S1 ∩ S2 is the set of multiples of 6).
Observe that S1 = {2k : k ∈ N} and S2 = {3k : k ∈ N} and S5 = {6k : k ∈

N}.
We first prove Sn ⊂ N for each n ∈ N.
Let n ∈ N be given.
Then Sn = {(n+ 1)k : k ∈ N}.
Suppose x ∈ Sn.
Then there exists k ∈ N such that x = (n+ 1)k.
Since n ∈ N, then n+ 1 ∈ N.
Since n+ 1, k ∈ N and N is closed under multiplication, then x ∈ N.
Therefore, Sn ⊂ N, as desired.
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We prove S5 ⊂ S1 ∩ S2.
Let x ∈ S5.
Then x = 6k for some k ∈ N.
Since x = 6k = (2 ∗ 3)k = 2(3k) and 3k ∈ N, then x ∈ S1.
Since x = 6k = (3 ∗ 2)k = 3(2k) and 2k ∈ N, then x ∈ S2.
Thus, x ∈ S1 and x ∈ S2, so x ∈ S1 ∩ S2.
Therefore, S5 ⊂ S1 ∩ S2.

We prove S1 ∩ S2 ⊂ S5.
Let y ∈ S1 ∩ S2.
Then y ∈ S1 and y ∈ S2.
Since y ∈ S1, then y = 2k for some k ∈ N, so 2|y.
Since y ∈ S2, then y = 3m for some m ∈ N, so 3|y.
Since 2|y and 3|y and gcd(2, 3) = 1, then 2 ∗ 3|y, so 6|y.
Since S1 ∩ S2 ⊂ S1 and S1 ⊂ N, then S1 ∩ S2 ⊂ N.
Since y ∈ S1 ∩ S2, then y ∈ N.
Since 6|y and y ∈ N, then y = 6t for some t ∈ N, so y ∈ S5.
Therefore, S1 ∩ S2 ⊂ S5.

Since S1 ∩ S2 ⊂ S5 and S5 ⊂ S1 ∩ S2, then S1 ∩ S2 = S5, as desired.

Proof. 2. We prove ∪∞n=1Sn = N− {1}.

We first prove N− {1} ⊂ ∪∞n=1Sn.
Let x ∈ N− {1}.
Then x ∈ N and x 6= 1.
Since x ∈ N, then x ≥ 1.
Since x 6= 1, then x > 1, so x− 1 > 0.
Since x ∈ N and N ⊂ Z, then x ∈ Z.
Since x ∈ Z, then x− 1 ∈ Z.
Since x− 1 ∈ Z and x− 1 > 0, then x− 1 ∈ N.
Thus, Sx−1 = {xk : k ∈ N}.
Since x = x · 1 and 1 ∈ N, then x ∈ Sx−1.
Thus, there exists x− 1 ∈ N such that x ∈ Sx−1, so x ∈ ∪∞n=1Sn.
Therefore, N− {1} ⊂ ∪∞n=1Sn.

We prove ∪∞n=1Sn ⊂ N− {1}.
Let y ∈ ∪∞n=1Sn.
Then there exists m ∈ N such that y ∈ Sm.
Since y ∈ Sm and Sm = {(m + 1)k : k ∈ N}, then there exists k ∈ N such

that y = (m+ 1)k.
Since m ∈ N, then m+ 1 ∈ N.
Since k,m + 1 ∈ N and N is closed under multiplication, then y ∈ N, so

y ≥ 1.
Suppose for the sake of contradiction y = 1.
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Then 1 ∈ ∪∞n=1Sn, so there exists t ∈ N such that 1 ∈ St.
Since 1 ∈ St and St = {(t+ 1)k : k ∈ N}, then there exists r ∈ N such that

1 = (t+ 1)r.
Since r, t ∈ N, then r ≥ 1 and t ≥ 1, so t+ 1 ≥ 2.
Thus, (t+ 1)r ≥ 2, so 1 ≥ 2, a contradiction.
Hence, y 6= 1, so y 6∈ {1}.
Since y ∈ N and y 6∈ {1}, then y ∈ N− {1}.
Therefore, ∪∞n=1Sn ⊂ N− {1}.

Since ∪∞n=1Sn ⊂ N− {1} and N− {1} ⊂ ∪∞n=1Sn, then ∪∞n=1Sn = N− {1}, as
desired.

Proof. 3. We prove ∩∞n=1Sn = ∅.
We prove by contradiction.
Suppose ∩∞n=1Sn 6= ∅.
Then there exists x ∈ ∩∞n=1Sn, so x ∈ Sn for each n ∈ N.
Let n ∈ N.
Then x ∈ Sn.
Since Sn = {(n+ 1)k : k ∈ N}, then x = (n+ 1)k for some k ∈ N.
Since n ∈ N, then n+ 1 ∈ N.
Since n+ 1 ∈ N and k ∈ N and N is closed under multiplication, then x ∈ N.
Since k, n ∈ N, then k ≥ 1 and n ≥ 1, so n+ 1 ≥ 2.
Hence, x ≥ 2.
Since x ∈ N, then Sx = {(x+ 1)k : k ∈ N}.
Suppose for the sake of contradiction x ∈ Sx.
Then there exists m ∈ N such that x = (x+ 1)m.
Since x+ 1 ≥ 3 > 0, then x+ 1 > 0, so x+ 1 6= 0.
Hence, x

x+1 = m.
Since x < x+ 1 and x+ 1 > 0, then x

x+1 < 1, so m < 1.
Thus, m ∈ N and m < 1.
But, this contradicts the fact that every natural number is greater than or

equal to one.
Therefore, x 6∈ Sx.
Thus, there exists x ∈ N such that x 6∈ Sx, so x 6∈ ∩∞n=1Sn.
Hence, we have x ∈ ∩∞n=1Sn and x 6∈ ∩∞n=1Sn, a contradiction.
Therefore, we conclude ∩∞n=1Sn = ∅, as desired.

Exercise 51. Let S = {x ∈ R : x(x− 1)(x− 2)(x− 3) < 0}.
Then S = (0, 1) ∪ (2, 3).

Proof. Since 1
2 ( 1

2 − 1)( 1
2 − 2)( 1

2 − 3) = 1
2 (−12 )(−32 )(−52 ) < 0, then 1

2 ∈ S, so
S 6= ∅.

We prove S ⊂ (0, 1) ∪ (2, 3).
Let x ∈ R.
To prove S ⊂ (0, 1) ∪ (2, 3), we must prove if x(x − 1)(x − 2)(x − 3) < 0,

then x ∈ (0, 1) ∪ (2, 3).
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Hence, we must prove if x(x − 1)(x − 2)(x − 3) < 0, then either 0 < x < 1
or 2 < x < 3.

We prove by contrapositive.
Suppose it is not the case that either 0 < x < 1 or 2 < x < 3.
Then it is not the case that 0 < x < 1 and it is not the case that 2 < x < 3,

so it is not the case that 0 < x and x < 1 and it is not the case that 2 < x and
x < 3.

Hence, either 0 ≥ x or x ≥ 1 and either 2 ≥ x or x ≥ 3, so either x ≤ 0 or
x ≥ 1 and either x ≤ 2 or x ≥ 3.

Thus, either x ≤ 0 and x ≤ 2 or x ≤ 0 and x ≥ 3 or x ≥ 1 and x ≤ 2 or
x ≥ 1 and x ≥ 3.

Therefore, either x ≤ 0 or x ≤ 0 and x ≥ 3 or x ≥ 1 and x ≤ 2 or x ≥ 3.
Since the condition x ≤ 0 and x ≥ 3 is impossible, then either x ≤ 0 or

x ≥ 1 and x ≤ 2 or x ≥ 3.
We consider these cases separately.
Case 1: Suppose x ≤ 0.
Since x−3 < x−2 < x−1 < x, then x−3 < x and x−2 < x and x−1 < x.
Since x− 3 < x ≤ 0, then x− 3 < 0.
Since x− 2 < x ≤ 0, then x− 2 < 0.
Since x− 1 < x ≤ 0, then x− 1 < 0.
Since x ≤ 0 and x− 1 < 0 and x− 2 < 0 and x− 3 < 0, then x(x− 1)(x−

2)(x− 3) ≥ 0.
Case 2: Suppose x ≥ 1 and x ≤ 2.
Then x− 1 ≥ 0 and x− 2 ≤ 0.
Since x ≥ 1 > 0, then x > 0.
Since x ≤ 2 < 3, then x < 3, so x− 3 < 0.
Since x > 0 and x− 1 ≥ 0 and x− 2 ≤ 0 and x− 3 < 0, then x(x− 1)(x−

2)(x− 3) ≥ 0.
Case 3: Suppose x ≥ 3.
Then x− 3 ≥ 0.
Since x > x − 1 > x − 2 > x − 3, then x > x − 3 and x − 1 > x − 3 and

x− 2 > x− 3.
Since x > x− 3 ≥ 0, then x > 0.
Since x− 1 > x− 3 ≥ 0, then x− 1 > 0.
Since x− 2 > x− 3 ≥ 0, then x− 2 > 0.
Since x > 0 and x− 1 > 0 and x− 2 > 0 and x− 3 ≥ 0, then x(x− 1)(x−

2)(x− 3) ≥ 0.
Thus, in all cases, x(x− 1)(x− 2)(x− 3) ≥ 0, as desired.
Therefore, if x(x − 1)(x − 2)(x − 3) < 0, then x ∈ (0, 1) ∪ (2, 3), so S ⊂

(0, 1) ∪ (2, 3).

Proof. We prove (0, 1) ∪ (2, 3) ⊂ S.
Let x ∈ (0, 1) ∪ (2, 3).
Then either x ∈ (0, 1) or x ∈ (2, 3), so either 0 < x < 1 or 2 < x < 3.
We consider these cases separately.
Case 1: Suppose 0 < x < 1.
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Then 0 < x and x < 1, so x > 0 and x− 1 < 0.
Since x− 3 < x− 2 < x− 1 < 0, then x− 3 < 0 and x− 2 < 0.
Since x > 0 and x− 1 < 0 and x− 2 < 0 and x− 3 < 0, then x(x− 1)(x−

2)(x− 3) < 0.
Case 2: Suppose 2 < x < 3.
Then 2 < x and x < 3, so x > 2 and x− 3 < 0.
Since x > 2 > 0, then x > 0.
Since x > 2 > 1, then x > 1, so x− 1 > 0.
Since x > 2, then x− 2 > 0.
Since x > 0 and x− 1 > 0 and x− 2 > 0 and x− 3 < 0, then x(x− 1)(x−

2)(x− 3) < 0.
Thus, in all cases, x(x− 1)(x− 2)(x− 3) < 0, so x ∈ S.
Therefore, (0, 1) ∪ (2, 3) ⊂ S.
Since S ⊂ (0, 1) ∪ (2, 3) and (0, 1) ∪ (2, 3) ⊂ S, then S = (0, 1) ∪ (2, 3).

Exercise 52. Let A = {(x, y) ∈ R× R : x 6= 0, y 6= 0, xy + y
x ≥ 2}.

Then A = [(0,∞)× (0,∞)] ∪ [(−∞, 0)× (−∞, 0)].
(In other words, A is the union of quadrants I and III of the xy plane.)

Proof. Let B = [(0,∞)× (0,∞)] ∪ [(−∞, 0)× (−∞, 0)].
To prove A = B, we prove A ⊂ B and B ⊂ A.
We first prove B ⊂ A.
Since (1, 1) ∈ (0,∞) × (0,∞) and (0,∞) × (0,∞) is a subset of B, then

(1, 1) ∈ B, so B 6= ∅.
Let (x, y) ∈ B.
Then either (x, y) ∈ (0,∞)× (0,∞) or (x, y) ∈ (−∞, 0)× (−∞, 0), so either

x ∈ (0,∞) and y ∈ (0,∞) or x ∈ (−∞, 0) and y ∈ (−∞, 0).
Hence, either x > 0 and y > 0 or x < 0 and y < 0, so either xy > 0 or

xy > 0.
Thus, xy > 0.
Hence, xy 6= 0, so x 6= 0 and y 6= 0.
Since 0 ≤ (x− y)2 = x2 − 2xy + y2, then 2xy ≤ x2 + y2.

Since xy > 0 and x 6= 0 and y 6= 0, then 2 ≤ x2+y2

xy = x
y + y

x .

Since x 6= 0 and y 6= 0 and x
y + y

x ≥ 2, then (x, y) ∈ A.
Therefore, B ⊂ A.

Proof. We next prove A ⊂ B.
Since 1 6= 0 and 1

1 + 1
1 = 1 + 1 = 2, then (1, 1) ∈ A, so A 6= ∅.

Let (x, y) ∈ A.
Then (x, y) ∈ R2 and x 6= 0 and y 6= 0 and x

y + y
x ≥ 2.

Since (x, y) ∈ R2, then x ∈ R and y ∈ R.
Since x 6= 0 and y 6= 0, then xy 6= 0, so either xy > 0 or xy < 0.
Suppose xy < 0.
Then either x > 0 and y < 0 or x < 0 and y > 0, so either y < 0 < x or

x < 0 < y.
Hence, either y < x or x < y, so either x > y or x < y.
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Thus, x 6= y, so x− y 6= 0.
Therefore, 0 < (x− y)2 = x2 − 2xy + y2, so 2xy < x2 + y2.

Since xy < 0 and x 6= 0 and y 6= 0, then 2 > x2+y2

xy = x
y + y

x , so x
y + y

x < 2.

But, this contradicts the fact that x
y + y

x ≥ 2.
Hence, xy cannot be less than zero, so xy > 0.
Thus, either x > 0 and y > 0, or x < 0 and y < 0.
We consider these cases separately.
Case 1: Suppose x > 0 and y > 0.
Since x > 0, then x ∈ (0,∞).
Since y > 0, then y ∈ (0,∞).
Thus, (x, y) ∈ (0,∞)× (0,∞).
Since (0,∞)× (0,∞) is a subset of B, then (x, y) ∈ B.
Case 2: Suppose x < 0 and y < 0.
Since x < 0, then x ∈ (−∞, 0).
Since y < 0, then y ∈ (−∞, 0).
Thus, (x, y) ∈ (−∞, 0)× (−∞, 0).
Since (−∞, 0)× (−∞, 0) is a subset of B, then (x, y) ∈ B.
Hence, in either case, (x, y) ∈ B, so A ⊂ B.
Since A ⊂ B and B ⊂ A, then A = B, as desired.
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