General Math Notes

Jason Sass

July 9, 2023

Trig Facts and Identities

θ	$\sin (\theta)$	$\cos (\theta)$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0

Let $\theta \in \mathbb{R}$.
Then $\cos \left(\frac{\pi}{2}-\theta\right)=\sin (\theta)$.

Let $a, b \in \mathbb{R}$.
$\sin (a+b)=\sin a \cos b+\cos a \sin b$.
$\cos (a+b)=\cos a \cos b-\sin a \sin b$
Definition 1. Max/Min binary operations
Let $x, y \in \mathbb{R}$.
Define binary operations max $: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\min : \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \max (x, y)=x \vee y= \begin{cases}x, & x \geq y \\
y, & y \geq x\end{cases} \\
& \min (x, y)=x \wedge y= \begin{cases}x, & x \leq y \\
y, & y \leq x\end{cases}
\end{aligned}
$$

Let $x, y, z \in \mathbb{R}$.
Then $x \wedge(y \wedge z)=(x \wedge y) \wedge z(\max$ is associative $)$

Definition 2. Convex Set

Let V be a vector space over field \mathbb{R}.
Let $S \subseteq V$.
Then S is convex iff $(\forall \vec{v}, \vec{w} \in S)(\forall t \in \mathbb{R}, 0 \leq t \leq 1)[t \vec{v}+(1-t) \vec{w} \in S]$.

The closed interval $[0,1] \in \mathbb{R}^{1}$ is convex.
Let S_{1} and S_{2} be arbitrary convex sets in vector space V. Let $\vec{v}, \vec{w} \in S_{1} \cap S_{2}$ be arbitrary. Let $t \in \mathbb{R}$ such that $t \in[0,1]$. Since $\vec{v} \in S_{1} \cap S_{2}$, then $\vec{v} \in S_{1}$ and $\vec{v} \in S_{2}$. Since $\vec{w} \in S_{1} \cap S_{2}$, then $\vec{w} \in S_{1}$ and $\vec{w} \in S_{2}$. Since S_{1} is convex, then $t \vec{v}+(1-t) \vec{w} \in S_{1}$. Since S_{2} is convex, then $t \vec{v}+(1-t) \vec{w} \in S_{2}$. Hence, $t \vec{v}+(1-t) \vec{w} \in S_{1} \cap S_{2}$. Thus, the intersection of convex sets S_{1} and S_{2} is convex. Since S_{1} and S_{2} are arbitrary, then the intersection of convex sets S_{1} and S_{2} is convex for every S_{1} and every S_{2}.

Therefore the intersection of any two convex sets in a vector space is convex.

