General Math Notes

Jason Sass

July 9, 2023

Trig Facts and Identities

θ	$\sin(\theta)$	$\cos(\theta)$
0	0	1
$\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$	$\begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} \\ 1 \end{array}$	$\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$ $\frac{\frac{1}{2}}{0}$

Let $\theta \in \mathbb{R}$. Then $\cos(\frac{\pi}{2} - \theta) = \sin(\theta)$.

Let $a, b \in \mathbb{R}$. $\sin(a+b) = \sin a \cos b + \cos a \sin b$. $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Definition 1. Max/Min binary operations

Let $x, y \in \mathbb{R}$.

Define binary operations max : $\mathbb{R}^2 \to \mathbb{R}$ and min : $\mathbb{R}^2 \to \mathbb{R}$ by

$$\max(x, y) = x \lor y = \begin{cases} x, & x \ge y \\ y, & y \ge x \end{cases}$$

$$\min(x, y) = x \land y = \begin{cases} x, & x \le y \\ y, & y \le x \end{cases}$$

Let $x, y, z \in \mathbb{R}$.

Then $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (max is associative)

Definition 2. Convex Set

Let V be a vector space over field \mathbb{R} . Let $S \subseteq V$. Then S is **convex** iff $(\forall \vec{v}, \vec{w} \in S)(\forall t \in \mathbb{R}, 0 \le t \le 1)[t\vec{v} + (1-t)\vec{w} \in S]$. The closed interval $[0,1] \in \mathbb{R}^1$ is convex.

Let S_1 and S_2 be arbitrary convex sets in vector space V. Let $\vec{v}, \vec{w} \in S_1 \cap S_2$ be arbitrary. Let $t \in \mathbb{R}$ such that $t \in [0, 1]$. Since $\vec{v} \in S_1 \cap S_2$, then $\vec{v} \in S_1$ and $\vec{v} \in S_2$. Since $\vec{w} \in S_1 \cap S_2$, then $\vec{w} \in S_1$ and $\vec{w} \in S_2$. Since S_1 is convex, then $t\vec{v} + (1-t)\vec{w} \in S_1$. Since S_2 is convex, then $t\vec{v} + (1-t)\vec{w} \in S_2$. Hence, $t\vec{v} + (1-t)\vec{w} \in S_1 \cap S_2$. Thus, the intersection of convex sets S_1 and S_2 is convex. Since S_1 and S_2 are arbitrary, then the intersection of convex sets S_1 and S_2 is convex for every S_1 and every S_2 .

Therefore the intersection of any two convex sets in a vector space is convex.