Multivariable Math Examples

Jason Sass

June 1, 2025

Vectors

Coordinate Vectors

Example 1. vector addition Let $\vec{x} \in \mathbb{R}^4$ and $\vec{y} \in \mathbb{R}^4$ be vectors such that $\vec{x} = (2, -1, 0, 3)$ and $\vec{y} = (0, 7, -2, 3)$. Compute $\vec{x} + \vec{y}$.
Solution. Observe that $\vec{x} + \vec{y} = (2, 6, -2, 6)$.
Example 2. scalar multiplication Let $\vec{x} \in \mathbb{R}^4$ be a vector such that $\vec{x} = (2, -1, 0, 3)$. Compute $3\vec{x}$.
Solution. Observe that $3\vec{x} = 3(2, -1, 0, 3) = (6, -3, 0, 9).$
Example 3. vector as a linear combination of basis vectors Let $\vec{v} \in \mathbb{R}^3$ be a vector such that $\vec{v} = (1, 2, -7)$. Express \vec{v} in terms of the basis vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3$.
Solution. Observe that $\vec{v} = \vec{e}_1 + 2\vec{e}_2 - 7\vec{e}_3$.
Example 4. linear combination of vectors Let $\vec{v} \in \mathbb{R}^3$ be a vector such that $\vec{v} = (2, 3, 4)$. Express \vec{v} as a linear combination of the vectors $(1, 1, 1), (1, 1, 0), (1, 0, 0)$.
Solution. We must find scalars $a_1, a_2, a_3 \in \mathbb{R}$ such that $\vec{v} = a_1(1, 1, 1) + a_2(1, 1, 0) + a_3(1, 0, 0)$. Suppose there exist scalars $a_1, a_2, a_3 \in \mathbb{R}$ such that $\vec{v} = a_1(1, 1, 1) + a_2(1, 1, 0) + a_3(1, 0, 0)$. Then $(2, 3, 4) = a_1(1, 1, 1) + a_2(1, 1, 0) + a_3(1, 0, 0)$. Observe that
$(2,3,4) = a_1(1,1,1) + a_2(1,1,0) + a_3(1,0,0) = (a_1,a_1,a_1) + (a_2,a_2,0) + (a_3,0,0)$

 $= (a_1 + a_2, a_1 + a_2, a_1) + (a_3, 0, 0)$ = $(a_1 + a_2 + a_3, a_1 + a_2, a_1).$ Hence, $(2,3,4) = (a_1 + a_2 + a_3, a_1 + a_2, a_1)$, so $2 = a_1 + a_2 + a_3$ and $3 = a_1 + a_2$ and $4 = a_1$.

Thus, $a_2 = 3 - a_1 = 3 - 4 = -1$, so $a_3 = 2 - a_1 - a_2 = 2 - 4 - (-1) = -1$. Therefore, $a_1 = 4$ and $a_2 = -1$ and $a_3 = -1$, so $\vec{v} = (2, 3, 4) = 4(1, 1, 1) - 1(1, 1, 0) - 1(1, 0, 0)$.

Geometry of Vectors in \mathbb{R}^2 and \mathbb{R}^3