Multivariable Math Notes

Jason Sass

June 1, 2025

Vectors

Coordinate Vectors

Definition 1. unit vector \vec{e}_k in \mathbb{R}^n vector space

Let $n \in \mathbb{Z}^+$. Let $(\mathbb{R}^n, +, \cdot)$ be the *n* dimensional vector space over \mathbb{R} . Define the vector $\vec{e}_k \in \mathbb{R}^n$ to be the *n* tuple in which the k^{th} coordinate is one and all other coordinates are zero.

Observe that $\vec{e}_1 = (1, 0, ..., 0)$ in \mathbb{R}^n . Observe that $\vec{e}_2 = (0, 1, 0, ..., 0)$ in \mathbb{R}^n . Observe that $\vec{e}_n = (0, ..., 0, 1)$ in \mathbb{R}^n .

Proposition 2. The set of vectors $\{\vec{e}_1, ..., \vec{e}_n\}$ is a natural basis for \mathbb{R}^n . Let $n \in \mathbb{Z}^+$. Let $\vec{v} = (v_1, v_2, ..., v_n)$ be a vector in \mathbb{R}^n .

Then $\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2 + \dots + v_n \vec{e}_n$.

Let $n \in \mathbb{Z}^+$. Let $\vec{v} = (v_1, v_2, ..., v_n)$ be a vector in \mathbb{R}^n . Then $\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2 + ... + v_n \vec{e}_n$.

Each scalar v_k is a **coordinate of the vector** \vec{v} relative to the natural basis $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$.

Since $\vec{v} = v_1 \vec{e}_1 + v_2 \vec{e}_2 + ... + v_n \vec{e}_n$, then \vec{v} is a linear combination of the basis vectors $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$.

Geometry of Vectors in \mathbb{R}^2 and \mathbb{R}^3