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Abstract

Mills showed the existence of a real number A such that bA3nc is prime
for every positive integer n, where bXc denotes the floor function.

This paper reviews the proof details and calculates several prime val-
ues.

1 Introduction

Mills [1] showed in 1947 that there is a real number A such that bA3nc is prime
for every positive integer n.

This defines a prime-representing function f : Z+ → Z+ defined by f(n) =
bA3nc.

A prime-representing function is a function that generates primes.
The function f is known as Mills function.
The real number A is known as Mills’ constant.
The primes generated by this function are known as Mills primes.
This paper reviews the proof details and calculates several Mills primes.

2 Proof Details

This paper begins with a proof of the existence of a greatest prime number less
than any integer greater than 2.

Lemma 1. Let n ∈ Z+ and n > 2.
Let S be the set of all prime numbers less than n.
Then S has a greatest element.

Proof. Observe that S = {p ∈ Z+ : p is prime and p < n}.
Since n ∈ Z and n > 2, then there is a prime p such that p < n.
Since p ∈ Z+ and p is prime and p < n, then p ∈ S, so S is non-empty.



Since (Z+,≤) is a totally ordered set and S ⊂ Z+, then (S,≤) is a totally
ordered set.

Let T be the set of all positive integers less than n.
Then T = {k ∈ Z+ : k < n} = {1, ..., n − 1} is a finite set of cardinality

n− 1.

Let x ∈ S.
Then x ∈ Z+ and x is prime and x < n.
Since x ∈ Z+ and x < n, then x ∈ T .
Hence, x ∈ S implies x ∈ T , so S ⊆ T .

A subset of a finite set is finite.
Since S ⊆ T and T is finite, then S is finite.
A totally ordered non-empty finite set has a greatest element.
Since (S,≤) is a totally ordered non-empty finite set, then S has a greatest

element.

Ingham [2] established the result below on the difference of consecutive
primes.

Proposition 2. Let K be a fixed positive integer.
Let pn be the nth prime number in the sequence of primes arranged in as-

cending order.

Then pn+1 − pn < Kp
5
8
n .

Lemma 3. Let K be a fixed positive integer.
If N is an integer greater than K8, then there exists a prime p such that

N3 < p < (N + 1)3 − 1.

Proof. Let N be an integer greater than K8.
Then N ∈ Z and N > K8.
Since K ∈ Z+, then K ≥ 1, so K8 ≥ 1.
Since N > K8 and K8 ≥ 1, then N > 1.
Let S be the set of all prime numbers less than N3.
Then S = {p ∈ Z+ : p is prime and p < N3}.
Since N ∈ Z, then N3 ∈ Z.
Since N ∈ Z and N > 1, then N ≥ 2, so N3 ≥ 8 > 2.
Hence, N3 > 2.
Since N3 ∈ Z and N3 > 2 and S is the set of all prime numbers less than

N3, then S has a greatest element, by lemma 1.
Let pn be the greatest element of S.
Then pn ∈ Z+ and pn is prime and pn < N3.
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We prove N3 is composite.
Since N3 = N ·N ·N , then N divides N3.
Since N > 1, then N2 > 1.
Since N > 1 > 0, then N > 0.
Since N2 > 1 and N > 0, then N3 > N .
Since N3 > N and N > 1, then N3 > N > 1.
Since N ∈ Z and 1 < N < N3 and N divides N3, then N3 is composite, so

N3 is not prime.

By Euclid’s theorem, there are infinitely many primes, so there exists a prime
pn+1 > pn.

Either pn+1 < N3 or pn+1 = N3 or pn+1 > N3.
Since pn+1 is prime and N3 is not prime, then pn+1 6= N3.
Since pn is the largest prime less than N3 and pn+1 > pn, then pn+1 cannot

be less than N3.
Since pn+1 cannot be less than N3 and pn+1 6= N3, then pn+1 > N3.
Therefore, N3 < pn+1.

Since K is a positive integer, then pn+1 − pn < Kp
5
8
n , by proposition 2.

Therefore, pn+1 < pn +Kp
5
8
n .

We prove pn +Kp
5
8
n < N3 +KN

15
8 .

Since 1 < pn < N3, then p5n < (N3)5 = N15, so p
5
8
n < N

15
8 .

Since p
5
8
n < N

15
8 and K > 0, then Kp

5
8
n < KN

15
8 .

Since pn < N3 and Kp
5
8
n < KN

15
8 , then pn +Kp

5
8
n < N3 +KN

15
8 .

We prove N3 +KN
15
8 < N3 +N2.

Since N > 1, then N15 > 1 > 0, so N15 > 0.
Since N > K8 and N15 > 0, then N16 > K8N15, so N2 > KN

15
8 .

Therefore, N3 +N2 > N3 +KN
15
8 , so N3 +KN

15
8 < N3 +N2.

We prove N3 +N2 < (N + 1)3 − 1.
Since N > 1, then 3N > 3 and N2 > 1, so 2N2 > 2.
Since 2N2 > 2 and 3N > 3, then 2N2 + 3N > 5 > 0, so 2N2 + 3N > 0.
Hence, 0 < 2N2 + 3N .
Observe that

N3 +N2 + 1 < (N3 +N2 + 1) + (2N2 + 3N)

= N3 + 3N2 + 3N + 1

= (N + 1)3.

Therefore, N3 +N2 + 1 < (N + 1)3, so N3 +N2 < (N + 1)3 − 1.
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Since pn < N3 and N3 < pn+1 and pn+1 < pn + Kp
5
8
n and pn + Kp

5
8
n <

N3 + KN
15
8 and N3 + KN

15
8 < N3 + N2 and N3 + N2 < (N + 1)3 − 1, then

pn < N3 < pn+1 < pn + Kp
5
8
n < N3 + KN

15
8 < N3 + N2 < (N + 1)3 − 1, so

N3 < pn+1 < (N + 1)3 − 1.
Therefore, pn+1 is a prime such that N3 < pn+1 < (N + 1)3 − 1, so there

exists a prime p such that N3 < p < (N + 1)3 − 1.

Theorem 4. Mills theorem
There is a prime-representing function f : Z+ → Z+ defined by f(n) =

bA3nc for some real number A.

Proof. Let K be a fixed positive integer.
Then K ∈ Z+, so K8 ∈ Z+.
For every positive integer n, there is a prime p greater than n.
Since K8 is a positive integer, then there is a prime greater than K8.
Let P0 be a prime greater than K8.
Then P0 is prime and P0 > K8.
Since P0 > K8, then there exists a prime P1 such that P 3

0 < P1 < (P0 +
1)3 − 1, by lemma 3.

We construct a sequence of primes (Pn) such that Pn < Pn+1 and P 3
n <

Pn+1 < (Pn + 1)3 − 1 for all n ∈ Z+.
We prove by induction on n.
Define predicate q(n) over Z+ by ‘Pn is prime and Pn+1 is prime and Pn >

K8 and Pn−1 < Pn and P 3
n < Pn+1 < (Pn + 1)3 − 1’.

Basis:
Let n = 1.
Since P 3

0 < P1 < (P0 + 1)3 − 1, then P 3
0 < P1, so P1 > P 3

0 .
Since P0 is prime, then P0 > 1, so P0 > 0.
Since P0 > 1 and P0 > 1, then P 2

0 > 1.
Since P 2

0 > 1 and P0 > 0, then P 3
0 > P0.

Since P1 > P 3
0 and P 3

0 > P0, then P1 > P0.
Since P1 > P0 and P0 > K8, then P1 > K8.
Since P1 > K8, then there exists a prime P2 such that P 3

1 < P2 < (P1 +
1)3 − 1, by lemma 3.

Since P1 is prime and P2 is prime and P1 > K8 and P0 < P1 and P 3
1 < P2 <

(P1 + 1)3 − 1, then q(1) is true.
Induction:
Let k ∈ Z+ such that q(k) is true.
Then Pk is prime and Pk+1 is prime and Pk > K8 and Pk−1 < Pk and

P 3
k < Pk+1 < (Pk + 1)3 − 1.

Since P 3
k < Pk+1 < (Pk + 1)3 − 1, then P 3

k < Pk+1, so Pk+1 > P 3
k .

Since Pk is prime, then Pk > 1, so Pk > 0.
Since Pk > 1 and Pk > 1, then P 2

k > 1.
Since P 2

k > 1 and Pk > 0, then P 3
k > Pk.

Since Pk+1 > P 3
k and P 3

k > Pk, then Pk+1 > Pk.
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Since Pk+1 > Pk and Pk > K8, then Pk+1 > K8.
Since Pk+1 > K8, then there exists a prime Pk+2 such that P 3

k+1 < Pk+2 <
(Pk+1 + 1)3 − 1.

Since Pk+1 is prime and Pk+2 is prime and Pk+1 > K8 and Pk < Pk+1 and
P 3
k+1 < Pk+2 < (Pk+1 + 1)3 − 1, then q(k + 1) is true.

Therefore, q(k) implies q(k + 1) for all k ∈ Z+.

Since q(1) is true, and q(k) implies q(k+ 1) for all k ∈ Z+, then by induction,
q(k) is true for all k ∈ Z+, so q(n) is true for all n ∈ Z+.

Therefore, Pn > K8 and Pn−1 < Pn and P 3
n < Pn+1 < (Pn + 1)3 − 1 for all

n ∈ Z+.
Hence, there is a sequence of primes P0, P1, P2, ... such that K8 < P0 < P1 <

P2 < ... < Pn < Pn+1 < ... and P 3
n < Pn+1 < (Pn + 1)3 − 1 for all non-negative

integers n.

Let (un) be the sequence defined by un = P 3−n

n for all n ∈ Z+.

Let (vn) be the sequence defined by vn = (Pn + 1)3
−n

for all n ∈ Z+.

We prove 3−n > 0 for all n ∈ Z+.
Let n ∈ Z+.
Then 3n ∈ Z+, so 3n > 0.

Hence,
1

3n
> 0, so 3−n > 0.

Therefore, 3−n > 0 for all n ∈ Z+.

We prove vn > un for all n ∈ Z+.
Let n ∈ Z+.
Then un = P 3−n

n and vn = (Pn + 1)3
−n

and n > 0 and 3−n > 0.
Since Pn is prime, then Pn > 0.
Since Pn + 1 > Pn > 0 and 3−n > 0, then (Pn + 1)3

−n

> P 3−n

n , so vn > un.
Therefore, vn > un for all n ∈ Z+.

We prove the sequence (un) is strictly increasing.
Let n ∈ Z+.
Then n + 1 ∈ Z+ and un = (Pn)3

−n

and un+1 = (Pn+1)3
−n−1

and P 3
n <

Pn+1 < (Pn + 1)3 − 1.
Since P 3

n < Pn+1 < (Pn + 1)3 − 1, then P 3
n < Pn+1.

Since Pn is prime, then Pn > 0, so P 3
n > 0.

Since Pn+1 > P 3
n and P 3

n > 0, then Pn+1 > P 3
n > 0.

Since 3−n > 0 for all n ∈ Z+ and n+ 1 ∈ Z+, then 3−(n+1) = 3−n−1 > 0.
Thus, 3−n−1 > 0.
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Observe that

0 < P 3
n < Pn+1 ⇒ (P 3

n)3
−n−1

< (Pn+1)3
−n−1

⇒ (Pn)3
−n

< (Pn+1)3
−n−1

⇒ un < un+1.

Hence, un < un+1, so un < un+1 for all n ∈ Z+.
Therefore, the sequence (un) is strictly increasing.

We prove the sequence (vn) is strictly decreasing.
Let n ∈ Z+.
Then vn = (Pn + 1)3

−n

and vn+1 = (Pn+1 + 1)3
−n−1

and P 3
n < Pn+1 <

(Pn + 1)3 − 1.
Since P 3

n < Pn+1 < (Pn + 1)3− 1, then Pn+1 < (Pn + 1)3− 1, so Pn+1 + 1 <
(Pn + 1)3.

Since Pn+1 is prime, then Pn+1 > 1, so Pn+1 + 1 > 2 > 0.
Hence, Pn+1 + 1 > 0.
Since 0 < Pn+1 +1 and Pn+1 +1 < (Pn +1)3, then 0 < Pn+1 +1 < (Pn +1)3.

Thus, (Pn+1 + 1)3
−1

< Pn + 1, so ((Pn+1 + 1)3
−1

)3
−n

< (Pn + 1)3
−n

.

Hence, (Pn+1 + 1)3
−n−1

< (Pn + 1)3
−n

, so vn+1 < vn.
Consequently, vn > vn+1, so vn > vn+1 for all n ∈ Z+.
Therefore, the sequence (vn) is strictly decreasing.

We prove the sequence (un) is bounded above by v1.

Observe that v1 = (P1 + 1)
1
3 is a real number.

Since vn > un for all n ∈ Z+, then v1 > u1.
Let k ∈ Z+ and k > 1.
Since vn > un for all n ∈ Z+ and k ∈ Z+, then vk > uk.
Since the sequence (vn) is strictly decreasing, then v1 > v2 > v3 > ..., so

v1 > vn for all n ∈ Z+ with n > 1.
Since k ∈ Z+ and k > 1, then v1 > vk.
Since v1 > vk and vk > uk, then v1 > uk.
Hence, v1 > uk for all k ∈ Z+ with k > 1.
Since v1 > u1, and v1 > uk for all k ∈ Z+ with k > 1, then v1 > un for all

n ∈ Z+.
Since v1 is a real number, and v1 > un for all n ∈ Z+, then the sequence

(un) is bounded above by v1.

Since the sequence (un) is strictly increasing and bounded above, then by the
monotone convergence theorem, the sequence (un) converges.

Let A be the limit of (un).
Then A = limn→∞ un = sup(un) is a real number.
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We prove un > 1 for all n ∈ Z+.
Since P0 is prime, then P0 ≥ 2.
Since P1 > P0 and P0 ≥ 2, then P1 > 2.
Since P1 is prime and P1 > 2, then P1 ≥ 3.
Since Pn < Pn+1 for all n ∈ Z+, then the sequence (Pn) is strictly increasing,

so P1 < Pn for all positive integers n > 1.
Since Pn > P1 and P1 ≥ 3, then Pn > 3 for all positive integers n > 1.
Since P1 ≥ 3 and Pn > 3 for all positive integers n > 1, then Pn ≥ 3 for all

n ∈ Z+.
Let n ∈ Z+.
Since 3−n > 0 for all n ∈ Z+ and n ∈ Z+, then 3−n > 0.
Since 3 > 1 and 3−n > 0, then 33

−n

> 1.
Since Pn ≥ 3 for all n ∈ Z+ and n ∈ Z+, then Pn ≥ 3.
Since Pn ≥ 3 > 0 and 3−n > 0, then P 3−n

n ≥ 33
−n

.

Since P 3−n

n ≥ 33
−n

and 33
−n

> 1, then P 3−n

n > 1, so un > 1.
Therefore, un > 1 for all n ∈ Z+.

We prove A is a lower bound of (vn).
Suppose A is not a lower bound of (vn).
Then there is K ∈ Z+ such that vK < A.
Let ε = A− vK > 0.
Since K ∈ Z+, then K + 1 ∈ Z+ and K + 1 > K.
Since the sequence (vn) is strictly decreasing, then vK > vK+1.
Since vn > un for all n ∈ Z+ and K + 1 ∈ Z+, then vK+1 > uK+1.
Since vK > vK+1 and vK+1 > uK+1, then vK > uK+1, so vK − uK+1 > 0.
Since un > 1 for all n ∈ Z+ and K + 1 ∈ Z+, then uK+1 > 1.
Thus, 0 < 1 < uK+1 < vK < A.
Observe that

|uK+1 −A| = |uK+1 − vK |+ |vk −A|
= |vK − uK+1|+ |A− vk|
= (vK − uK+1) + |ε|
= (vK − uK+1) + ε.

Hence, |uK+1 −A| = (vK − uK+1) + ε, so |uK+1 −A| − ε = vK − uK+1 > 0.
Thus, |uK+1 −A| − ε > 0, so |uK+1 −A| > ε.
Consequently, uK+1 is not in the ε neighborhood of A.
Therefore, there exists ε > 0 such that for every K ∈ Z+ there is K + 1 ∈

Z+ and K + 1 > K such that uK+1 is not in the ε neighborhood of A, so
A 6= limn→∞ un.

But, this contradicts A = limn→∞ un.
Therefore, A is a lower bound of (vn).
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We prove un < A for all n ∈ Z+.
Suppose for the sake of contradiction there is some m ∈ Z+ such that um ≥

A.
Since A = sup(un), then A is the least upper bound of (un), so A is an upper

bound of (un).
Hence, um ≤ A.
Since um ≥ A and um ≤ A, then um = A.
Since the sequence (un) is strictly increasing, then um < um+1.
Hence, A < um+1, so um+1 > A.
But, this contradicts that A is an upper bound of (un).
Hence, there is no m ∈ Z+ such that um ≥ A, so um < A for all m ∈ Z+.
Therefore, un < A for all n ∈ Z+.

We prove vn > A for all n ∈ Z+.
Suppose for the sake of contradiction there is some t ∈ Z+ such that vt ≤ A.
Since A is a lower bound of (vn), then A ≤ vt.
Since vt ≤ A and vt ≥ A, then vt = A.
Since the sequence (vn) is strictly decreasing, then vt > vt+1.
Hence, A > vt+1, so vt+1 < A.
But, this contradicts that A is a lower bound of (vn).
Hence, there is no t ∈ Z+ such that vt ≤ A, so vt > A for all t ∈ Z+.
Therefore, vn > A for all n ∈ Z+.

Since un < A for all n ∈ Z+ and A < vn for all n ∈ Z+, then un < A < vn
for all n ∈ Z+.

Let n ∈ Z+.
Then un < A < vn.
Observe that

un < A < vn ⇔ P 3−n

n < A < (Pn + 1)3
−n

⇒ Pn < A3n < Pn + 1.

Thus, Pn < A3n < Pn + 1, so bA3nc = Pn is a prime number.
Hence, bA3nc is a prime number for every n ∈ Z+.
Therefore, there is a prime-representing function f : Z+ → Z+ defined by

f(n) = bA3nc for some real number A.

Let f : Z+ → Z+ be the function defined by f(n) = bA3nc for some real
number A.

The real number A is the supremum of the strictly increasing convergent
sequence (un) bounded above by v1 ∈ R, and Pn < A3n < Pn + 1.

Since Pn is prime, then Pn ∈ Z+, so Pn + 1 ∈ Z+.
There is no integer between consecutive integers.
Since Pn and Pn + 1 are consecutive integers and Pn < A3n < Pn + 1, then

A3n is not an integer, so A3n 6∈ Z.
Since n ∈ Z+, then 3n ∈ Z+.
Since 3n ∈ Z+ and A3n 6∈ Z, then A 6∈ Z, so A is not an integer.
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Let n ∈ Z+.
Since un > 1 for all n ∈ Z+, then un > 1.
Since un < A for all n ∈ Z+, then un < A.
Since A > un and un > 1, then A > 1, so A > 0.
Hence, A is a positive real number that is not an integer and A > 1.
Therefore, the Mills’ constant A is a positive real number that is not an

integer and A > 1.
In fact, Mills’ constant was proved irrational in 2025 [3].
Mills’ constant is defined to be the smallest positive real number A such that

bA3nc generates prime numbers.

Numerical calculation of Mills primes

We use Sage to compute several Mills primes generated by Mills function f :
Z+ → Z+ defined by f(n) = bA3nc for Mills’ constant A.

If we assume the Riemann hypothesis is true, then A ≈ 1.306377883....
We calculate several Mills primes based on this assumption.
f(1) = bA31c = 2

f(2) = bA32c = 11

f(3) = bA33c = 1361

f(4) = bA34c = 2521008887
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