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Abstract

Mills showed the existence of a real number A such that LA3nJ is prime
for every positive integer n, where | X | denotes the floor function.

This paper reviews the proof details and calculates several prime val-
ues.

1 Introduction

Mills [1] showed in 1947 that there is a real number A such that | A3" | is prime
for every positive integer n.

This defines a prime-representing function f : ZT — Z* defined by f(n) =
[A%].

A prime-representing function is a function that generates primes.

The function f is known as Mills function.

The real number A is known as Mills’ constant.

The primes generated by this function are known as Mills primes.

This paper reviews the proof details and calculates several Mills primes.

2 Proof Details

This paper begins with a proof of the existence of a greatest prime number less
than any integer greater than 2.

Lemma 1. Letn € Z* and n > 2.
Let S be the set of all prime numbers less than n.
Then S has a greatest element.

Proof. Observe that S = {p € Z" : p is prime and p < n}.
Since n € Z and n > 2, then there is a prime p such that p < n.
Since p € Z* and p is prime and p < n, then p € S, so S is non-empty.



Since (Z*, <) is a totally ordered set and S C Z*, then (S, <) is a totally
ordered set.

Let T be the set of all positive integers less than n.

Then T = {k € Z* : k < n} = {1,..,n — 1} is a finite set of cardinality
n— 1.

Let x € S.
Then x € Z* and z is prime and z < n.
Since 2 € Z* and x < n, then z € T..
Hence, x € S impliesx € T, s0 S CT.

A subset of a finite set is finite.
Since S C T and T is finite, then S is finite.
A totally ordered non-empty finite set has a greatest element.
Since (9, <) is a totally ordered non-empty finite set, then S has a greatest
element. O

Ingham [2] established the result below on the difference of consecutive
primes.

Proposition 2. Let K be a fixed positive integer.
Let p,, be the n'™ prime number in the sequence of primes arranged in as-
cending order.

Then Pnt1 — Pn < Kp7§l~

Lemma 3. Let K be a fized positive integer.

If N is an integer greater than K2, then there exists a prime p such that
N3 <p<(N+1)3—1.

Proof. Let N be an integer greater than K?8.

Then N € Z and N > K8.

Since K € Z*, then K > 1, so K® > 1.

Since N > K® and K8 > 1, then N > 1.

Let S be the set of all prime numbers less than N3.

Then S = {p € Z* : p is prime and p < N3}.

Since N € Z, then N° € Z.

Since N € Z and N > 1, then N > 2, so N® > 8 > 2.

Hence, N3 > 2.

Since N3 € Z and N3 > 2 and S is the set of all prime numbers less than
N3, then S has a greatest element, by lemma 1.

Let p,, be the greatest element of S.

Then p,, € Z* and p,, is prime and p,, < N3.



We prove N3 is composite.
Since N> = N - N - N, then N divides N3.
Since N > 1, then N? > 1.
Since N > 1 > 0, then N > 0.
Since N2 > 1 and N > 0, then N3 > N.
Since N3 > N and N > 1, then N3 > N > 1.
Since N € Z and 1 < N < N3 and N divides N3, then N3 is composite, so
N3 is not prime.

By Euclid’s theorem, there are infinitely many primes, so there exists a prime

Pn+1 > Dn.-

Either p,+1 < N3 or Pnt1 = N3 or DPnt1 > N3.

Since p,, 41 is prime and N3 is not prime, then p, 1 # N3.

Since p,, is the largest prime less than N2 and p,, 1 > p,, then p, 1 cannot
be less than N3.

Since p,, 41 cannot be less than N3 and p,41 # N3, then p, 11 > N3.

Therefore, N3 < p,41.

Since K is a positive integer, then p, 11 — p, < Kpg, by proposition 2.
5
Therefore, pp11 < pn + Kpji.

We proveaner,% < N34+ KN¥*.
Since 1 < p, < N3, then p? < (N3)5 = N1 so p% <N¥.
Since p,% < N% and K > 0, then Kp§ < KN%‘,
Since p,, < N3 and Kpﬁg < KN%, then pn—l—Kp?: < N34 KN%.

We prove N3 + KN% < N3 4+ N2,
Since N > 1, then N'® >1 >0, so N'® > 0.
Since N > K8 and N5 > 0, then N1¢ > K8N15 g0 N2> KN%.
Therefore, N3+ N2 > N3+ KN%,so N3+ KN¥ < N3+ N2

We prove N3 + N2 < (N +1)3 — 1.
Since N > 1, then 3N > 3 and N2 > 1, so 2N? > 2.
Since 2N?2 > 2 and 3N > 3, then 2N2 +3N > 5> 0, so 2N? + 3N > 0.
Hence, 0 < 2N2 + 3N.
Observe that

N?+N?4+1 < (N°+N?+1)+(2N?+3N)
= N*43N?24+3N+1
= (N+1)>°

Therefore, N3 + N2 +1 < (N +1)%,50 N3+ N2 < (N +1)% - 1.



Since p, < N3 and N3 < p,y1 and ppp1 < pn JerE and p, +Kp§ <
N3+ KN% and N3 + KN% < N3+ N2 and N3 + N2 < (N +1)3 — 1, then
Pn < N3 < pps1 < po+ Kpi < N3+ KN¥ < N3 4+ N2 < (N + 1) — 1, so
N3 <ppp1 < (N+1)* —1.

Therefore, p,.1 is a prime such that N3 < p,1 < (N + 1)3 — 1, so there
exists a prime p such that N® < p < (N +1)% — 1. O

Theorem 4. Mills theorem
There is a prime-representing function f : ZT — Z*1 defined by f(n)
| A" | for some real number A.

Proof. Let K be a fixed positive integer.

Then K € ZF, so K® € Zt.

For every positive integer n, there is a prime p greater than n.

Since K?® is a positive integer, then there is a prime greater than K®.

Let P, be a prime greater than K®.

Then P, is prime and Py > K8.

Since Py > K®, then there exists a prime P; such that Py < P, < (P +
1)3 — 1, by lemma 3.

We construct a sequence of primes (P,) such that P, < P,41 and PS’ <

Poy1 < (P, +1)2—1forallnecZ".

We prove by induction on n.

Define predicate q(n) over Z* by ‘P, is prime and P, is prime and P, >
K®and P, 1 < P, and P2 < P41 < (P, +1)3—1".

Basis:

Let n = 1.

Since P§ < P < (Py+1)3 — 1, then P§ < Py, s0 P, > P.

Since Py is prime, then Py > 1, so Py > 0.

Since Py > 1 and Py > 1, then P > 1.

Since P > 1 and Py > 0, then P3 > P,.

Since P, > P$ and P§ > Py, then P; > P.

Since P, > Py and Py > K8, then P; > K8.

Since P; > K®, then there exists a prime P, such that P} < P, < (P +
1)3 — 1, by lemma 3.

Since Py is prime and P, is prime and P; > K8 and Py < Py and PP < P, <
(P; +1)3 — 1, then ¢(1) is true.

Induction:

Let k € Z* such that g(k) is true.

Then P is prime and Pjy; is prime and P, > K® and P,_; < P, and
P]S’ < Pryr < (Pk + 1)3 — 1.

Since P,? < Pry1 < (P +1)2 — 1, then P,S’ < Piy1, 80 Peyq > P,?.

Since Py is prime, then Py > 1, so P, > 0.

Since Py > 1 and Py > 1, then P? > 1.

Since P? > 1 and Py > 0, then P? > Pj.

Since Pk—i—l > P]? and Pkg > Py, then Pk+1 > Pg.



Since Py,1 > Pi, and P, > K8, then P, > K8,

Since Pyy1 > K8, then there exists a prime Py o such that P,?_H < Pyio <
(Pyy1 +1)% — 1.

Since Py 1 is prime and Pjyo is prime and Py > K® and Py < Py and
P2\ < Piya < (Prgr+1)® — 1, then q(k + 1) is true.

Therefore, g(k) implies g(k + 1) for all k € Z+.

Since ¢(1) is true, and g(k) implies q(k+ 1) for all k € Z*, then by induction,
q(k) is true for all k € Z*, so q(n) is true for all n € Z*.
Therefore, P, > K% and P,_1 < P,, and P3 < P41 < (P, +1)3 — 1 for all
ne€zr.
Hence, there is a sequence of primes Py, Py, P, ... such that K® < Py < P| <
P, <..<P, <Py <...and PS < Poy1 < (P, + 1)3 — 1 for all non-negative
integers n.

Let (uy) be the sequence defined by u,, = P2~ for all n € Z*.
Let (vy,) be the sequence defined by v, = (P, +1)% " for all n € ZF.

We prove 37" > 0 for all n € ZT.
Let n € Z™.
Then 3" € Z*, so 3™ > 0.

Hence, L >0,s03™" >0.
37L
Therefore, 37" > 0 for alln € Z™T.

We prove v, > u,, for alln € Z*.
Let n € Z7.
Then u,, = P2 " and v, = (P, +1)> " and n > 0 and 37" > 0.
Since P, is prime, then P, > 0.
Since P, +1> P, >0and 37" > 0, then (P, +1)* " > P3 " 50 v, > u,.
Therefore, v, > u,, for alln € ZT.

We prove the sequence (uy,) is strictly increasing.

Let ne Z™.

Then n+1 € Z* and u, = (P,)? " and upyy = (Poy1)® | and P3 <
Pn+1 < (Pn+1)371

Since P2 < P11 < (P, + 1) — 1, then P3 < P, 4.

Since P, is prime, then P, > 0, so P2 > 0.

Since P41 > P3 and P2 > 0, then P,11 > P2 > 0.

Since 3=™ > 0 for all n € ZT and n + 1 € Z*, then 3= (»+1) = 3-7-1 > .

Thus, 37"~ ! > 0.



Observe that

0<P3 <Py = (P < (P
= (PP < (Pa)*

= Up < Up41-

Hence, uy, < Upi1, S0 Up < Upi1 for all n € ZT.
Therefore, the sequence (u,,) is strictly increasing.

We prove the sequence (v,,) is strictly decreasing.

Let n € ZT.

Then v, = (P, + 13" and vnpqy = (Pogy + 1)37”71 and P? < P, <
(P, +1)3—1.

Since P2 < P,y1 < (P, +1)3—1,then P,y < (P, +1)3—1,80 Py +1<
(P, +1)3.

Since P, is prime, then P,4y1 > 1,80 Ppy1+1>2>0.

Hence, P11 +1> 0.

Since 0 < Ppy1+1and Ppy1+1 < (P, +1)3, then 0 < Py +1 < (P, +1)3.

Thus, (Puy1 +1)3 < Py+ 1,50 (Pay1 +1)3 )3 " < (P, +1)% ",

Hence, (Poi1 +1)3 " < (Pa+1)3", 50 pp1 < Un.

Consequently, v, > vy 11, S0 U > vy for all n € ZT.

Therefore, the sequence (vy,) is strictly decreasing.

We prove the sequence (u,,) is bounded above by v.

Observe that v; = (P} 4+ 1)7 is a real number.

Since v, > u,, for all n € Z*, then v; > u;.

Let k € Z*T and k > 1.

Since v, > u,, for all m € Z* and k € Z™, then v, > uy.

Since the sequence (vy) is strictly decreasing, then v; > v > v3 > ..., so
vy > vy, for all n € ZT with n > 1.

Since k € Zt and k > 1, then v; > vy.

Since v1 > v, and v, > ug, then vy > uy.

Hence, v; > uy, for all k € Z*T with k£ > 1.

Since v1 > uq, and vq > uy, for all k € Z+ with k& > 1, then v; > u, for all
nc Z+.

Since v; is a real number, and v; > u, for all n € Z™, then the sequence
(uy,) is bounded above by v;.

Since the sequence (uy,) is strictly increasing and bounded above, then by the
monotone convergence theorem, the sequence (u,) converges.
Let A be the limit of (uy,).
Then A = lim,, o uy, = sup(uy,) is a real number.



We prove u,, > 1 for alln € Z™".

Since P, is prime, then Py > 2.

Since P, > Py and Py > 2, then P; > 2.

Since P, is prime and P; > 2, then P; > 3.

Since P, < P, for all n € Z*, then the sequence (P,) is strictly increasing,
so P; < P, for all positive integers n > 1.

Since P, > P; and P; > 3, then P, > 3 for all positive integers n > 1.

Since P, > 3 and P, > 3 for all positive integers n > 1, then P, > 3 for all
ncZr.

Let n € ZT.

Since 37" > 0 for alln € ZT and n € Z™, then 37" > 0.

Since 3 > 1 and 37" > 0, then 3> " > 1.

Since P, > 3 for all n € Z1 and n € Z*, then P, > 3.

Since P, >3 > 0 and 37" > 0, then P3" " > 33",

Since P37" > 33" and 3> " > 1, then P2 " > 1, s0 u,, > 1.

Therefore, u,, > 1 for all n € Z*.

We prove A is a lower bound of (vy,).
Suppose A is not a lower bound of (vy,).
Then there is K € Z%1 such that vg < A.
Let e = A — vk > 0.
Since K € ZT,then K +1€Z" and K +1 > K.
Since the sequence (v,,) is strictly decreasing, then v > v 1.
Since v, > u, for all n € Z* and K +1 € Z*, then vg 1 > ug 1.
Since vg > vi 41 and v 41 > Uk 41, then vg > ug 41, 50 Vg —ug41 > 0.
Since u,, > 1 for allm € ZT and K +1 € Z™, then ugyq1 > 1.
Thus, 0 < 1 <ugy <vg < A.
Observe that

lurt1 — Al = |uxy1 —vi|+ o — A
= |k —uri1| + A — v
= (vk —ur41) + e

= (vk —ug41)te

Hence, |ug4+1 — A| = (vk —uk41) + € 50 |ugs1 — Al —e = vg —ug41 > 0.

Thus, |ugs+1 — Al —€ >0, 80 |lug+1 — A| > €.

Consequently, ux 1 is not in the € neighborhood of A.

Therefore, there exists ¢ > 0 such that for every K € Z* thereis K +1 €
Z* and K +1 > K such that ugxy1 is not in the € neighborhood of A, so
A # limy, o0 Up -

But, this contradicts A = lim,_so up.

Therefore, A is a lower bound of (vy,).



We prove u,, < A for all n € Z*.

Suppose for the sake of contradiction there is some m € Z* such that u,, >
A.

Since A = sup(uy,), then A is the least upper bound of (u,), so A is an upper
bound of (uy,).

Hence, u,, < A.

Since u,, > A and u,, < A, then u,, = A.

Since the sequence (u,,) is strictly increasing, then w,;, < ;1.

Hence, A < Up41, SO Um+1 > A.

But, this contradicts that A is an upper bound of (uy,).

Hence, there is no m € Z™* such that u,, > A, so u,, < A for all m € Z*.

Therefore, u,, < A for all n € Z+.

We prove v, > A for all n € Z+.
Suppose for the sake of contradiction there is some ¢ € ZT such that v; < A.
Since A is a lower bound of (v,,), then A < v;.
Since v; < A and vy > A, then v; = A.
Since the sequence (v,,) is strictly decreasing, then v; > vy41.
Hence, A > v441, 80 v441 < A.
But, this contradicts that A is a lower bound of (v,,).
Hence, there is no t € Z* such that v; < A, so v; > A for all t € ZT.
Therefore, v,, > A for all n € ZT.

Since u, < A foralln € Zt and A < v, for all n € ZT, then u,, < A < v,
for all n € Z+.
Let n € Z7.
Then u,, < A < v,.
Observe that

Up <A<v, & P <A< (P,+1)7°"
= P,<A <P, +1.

Thus, P, < A%" < P, + 1, so |A%"| = P, is a prime number.

Hence, | A%" | is a prime number for every n € Z*.

Therefore, there is a prime-representing function f : ZT — Z*1 defined by
f(n) = | A%" | for some real number A. O

Let f : ZT — Z* be the function defined by f(n) = [A%"| for some real
number A.

The real number A is the supremum of the strictly increasing convergent
sequence (u,) bounded above by v; € R, and P, < A" < P, + 1.

Since P, is prime, then P, € Z*,s0o P, +1 € Z™ .

There is no integer between consecutive integers.

Since P, and P, + 1 are consecutive integers and P,, < A" < P, + 1, then
A%" is not an integer, so A3" & Z.

Since n € Z7, then 3" € Z7.

Since 3" € Z* and A%" ¢ Z, then A ¢ Z, so A is not an integer.



Let n € ZT.

Since u,, > 1 for all n € Z*, then u,, > 1.

Since u, < A for all n € Z*, then u, < A.

Since A > u, and u, > 1, then A >1,s0 A > 0.

Hence, A is a positive real number that is not an integer and A > 1.

Therefore, the Mills’ constant A is a positive real number that is not an
integer and A > 1.

In fact, Mills’ constant was proved irrational in 2025 [3].

Mills’ constant is defined to be the smallest positive real number A such that
| A3" | generates prime numbers.

Numerical calculation of Mills primes

We use Sage to compute several Mills primes generated by Mills function f :
Zt — Z7F defined by f(n) = |A%" | for Mills’ constant A.

If we assume the Riemann hypothesis is true, then A = 1.306377883....
We calculate several Mills primes based on this assumption.

f1) = [4° J =2
f2)=14 SJ =11
f(3)=[A%] =1361
F(4) = | A% ] = 2521008887
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