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Geometric Transformations

Exercise 1. If T = (4, 3) and C = {(x, y) : x2 − 2x + y2 − 4y − 5 = 0}, write
an equation for line s such that C ∩ s = T .

Solution. We must write an equation for line s. We can complete the square
for the equation x2 − 2x + y2 − 4y − 5 = 0 to get x2 − 2x + 1 + y2 − 4y + 4 =
5 + 1 + 4. This implies (x − 1)2 + (y − 2)2 = 10 which is the standard form
of the equation of a circle. Hence, C is a circle with center (1, 2) and radius√

10, so C = {(x, y) : (x − 1)2 + (y − 2)2 = 10}. We note that T ∈ C since
(4− 1)2 + (3− 2)2 = 9 + 1 = 10. The intersection of a circle and a line tangent
to a point on the circle is a line that is perpendicular to the line segment joining
the center and the point.

Let l be the line joining the center (1, 2) and point T = (4, 3). Then s is
the tangent line perpendicular to l that contains the point T = (4, 3). Two
non-vertical lines are perpendicular if and only if the slopes of the lines are
negative reciprocals. The slope of l is ml = ∆y

∆x = 3−2
4−1 = 1/3. Thus the slope

of line s is ms = −3. Since we know the slope of line s and a point T = (4, 3)
on s, we have ms = ∆y

∆x = y−3
x−4 = −3. Hence, 3x + y − 15 = 0. Therefore,

s = {(x, y) : 3x + y − 15 = 0}.

Exercise 2. Let G be the function which assigns to each non-horizontal line
the point where the line intersects the x-axis.

If t = {(x, y) : 3x + 2y = 12}, find G(t). What is the range of G ? Is G one
to one?

If (2, 7) ∈ s and s is a pre-image of (−3, 0), write an equation for s.

Solution. Let us precisely characterize function G. Let A be the set of all
non-horizontal lines in the xy Cartesian plane. Let l be any line in A. Then
function G maps l to its x intercept. Thus, G maps A onto the entire x axis.
Hence, the range of G is the x axis, so G is an onto function. In other words,
the codomain of G is the x axis. Let B = {(x, y) : y = 0}. Then G is a function
from A onto B.

Is G one to one? Well, there do exist distinct lines l1, l2 ∈ A such that
G(l1) = G(l2). For example, the line l1 = {(x, y) : y = x} and l2 = {(x, y) :



y = 2x} map to the same point, namely the origin. Thus, this counter-example
shows that G is not one to one.

To find the function value G(t), we must find the x intercept of the line t.
Hence, we must find point P = (p1, p2) ∈ t such that P ∈ B. Thus, {P} = t∩B.
This means find P such that 3p1 + 2p2 = 12 and p2 = 0. This implies p1 = 4,
so P = (4, 0). Hence, G(t) = (4, 0).

Let s ∈ A. We are given (2, 7) ∈ s and G(s) = (−3, 0), so we need to find the
equation for line s. Since (−3, 0) is the x intercept of s, then (−3, 0) ∈ s. So, we
know 2 points on line s. Therefore, the slope of s = ms = ∆y

∆x = 0−7
−3−2 = 7/5.

Hence, y−0
x−(−3) = 7/5, so −7x+5y = 21. Thus, s = {(x, y) : −7x+5y = 21}.

Exercise 3. Let f be a mapping from the plane to the plane defined for any
point P (x, y) by f(P ) = (|x|, |y|).

If f a function? If A = (−3, 6), what is f(A)? What are the pre-images of
B(4, 2)? What is the range of f? Is f one to one? Is f a geometric transforma-
tion?

Solution. We know f : R2 7→ R2 is a relation or mapping from the plane to
the plane. So, more specifically, is f a function?

To decide if f is a function we need to answer 2 questions.
1) Does every point in the plane have some image?
To answer this we must prove every point P in the plane has an image.
In logic symbols: Prove: ∀P ∈ plane,∃f(P ).
2) If points A and B in the plane are identical, is f(A) = f(B) ?
To answer this we must prove if A and B are identical points, then f(A) = f(B).
In logic symbols: Prove: A = B ⇒ f(A) = f(B).

Let P (x, y) be any point in the xy plane. Then f specifies a well defined
rule for obtaining the image of P . Hence, the domain of f is the entire plane,
R2. Therefore, every point in the domain of f has at least one image.

Let A(a1, a2) and B(b1, b2) be points in the xy plane such that A = B. Then
a1 = b1 and a2 = b2. So, f(A) = (|a1|, |a2|) = (|b1|, |b2|) = f(B). Hence, A = B
implies f(A) = f(B).

We have shown that A = B implies f(A) = f(B). This means two identical
points map to the same point(i.e., they don’t map to two different points). Since
we have shown that each point in the domain of f has at least one image, then
this implies f maps each point in the domain to at most one image. Hence, each
point in the domain is mapped to exactly one image. Therefore, f is a function.

Let P (a, b) be any point in the domain of f . Then f(P ) = f(a, b) = (|a|, |b|),
so a ≥ 0 and b ≥ 0. Hence, the range of f is any point in quadrant I or on the
positive x or y axis.

We find f(A) = f(−3, 6) = (| − 3|, |6|) = (3, 6).
We must find the pre-images of point B = (4, 2). Thus, we must find all

points X ∈ domainf such that f(X) = (4, 2). Let X = (x1, x2) ∈ R2. Then
f(X) = (|x1|, |x2|) = (4, 2), so |x1| = 4 and |x2| = 2. Hence, x1 = ±4 and
x2 = ±2. Thus, there are 4 pre-images of B. The set of pre-images of B(4, 2) is
{(4, 2), (4,−2), (−4, 2), (−4,−2)}.
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Is f a one to one function?
To answer this we must prove f satisfies the conditions for a one to one function.

We have multiple approaches to consider:
a) We could use direct proof and prove: if A 6= B, then f(A) 6= f(B).
b) We could use proof by contrapositive and prove: if f(A) = f(B), then A = B.
c) We could use proof by contradiction and prove: A 6= B ∧ f(A) = f(B) leads
to some contradiction. Or, we could disprove f is a one to one function by
providing a counter example.

Since we just showed that f(4,−2) = f(4, 2), then f is not a one to one
function. Since f is not one to one, then f is not a geometric transformation.

Exercise 4. Let T be a function from the plane to the plane defined for any
point P (x, y) by T (P ) = (x + 2, 2y − 3).

If T a function? If A = (1,−6), what is T (A)? What are the pre-images
of B(−2, 4)? What is the range of T? Is T one to one? Is T a geometric
transformation?

Solution. We know T : R2 7→ R2 is a relation or mapping from the plane to
the plane. So, more specifically, is T truly a function?

To decide if T is a function we need to answer 2 questions.
1) Does every point in the plane have some image?
To answer this we must prove every point P in the plane has an image.
In logic symbols: Prove: ∀P ∈ plane,∃T (P ).
2) If points A and B in the plane are identical, is T (A) = T (B) ?
To answer this we must prove if A and B are identical points, then T (A) = T (B).
In logic symbols: Prove: A = B ⇒ T (A) = T (B).

To decide if T is a transformation(bijection) we need to answer 2 questions.
1) Is T an onto function?
To answer this we must prove every point P in the plane(codomain of T ) is the
image of some point in the domain of T .
In logic symbols: Prove: ∀P ∈ plane,∃Q ∈ plane � T (Q) = P .
2) Is T a one to one function?
To answer this we must prove T satisfies the conditions for a one to one function.

We have multiple approaches to consider:
a) We could use direct proof and prove: if A 6= B, then T (A) 6= T (B).
b) We could use proof by contrapositive and prove: if T (A) = T (B), then
A = B.
c) We could use proof by contradiction and prove: A 6= B ∧ T (A) = T (B) leads
to some contradiction.

To prove T is onto, we suppose P (x, y) is any point in the codomain of T and
find some pre-image Q(a, b) such that T (Q) = P . This means find Q such that
T (a, b) = (x, y) which implies (a+ 2, 2b− 3) = (x, y). This means a+ 2 = x and
2b−3 = y, so a = x−2 and b = (y+3)/2. Thus, we can let Q = (x−2, (y+3)/2).

Since we prove T is actually a transformation, then we know we can find
T (A). Thus, T (A) = T (1,−6) = (1 + 2, 2 ∗ −6− 3) = (3,−15).

We find the pre-images of B = (−2, 4). Thus, we must find all X ∈ domain of
T such that T (X) = (−2, 4). Let X = (x1, x2) ∈ R2. Then T (X) = T (x1, x2) =

3



(x1 + 2, 2x2 − 3) = (−2, 4). This implies x1 + 2 = −2 and 2x2 − 3 = 4, so
x1 = −4 and x2 = 7/2. Thus, the set of pre-images of B is {(−4, 7/2)}. This
is consistent with the fact that T is one to one and onto(ie, bijection). There is
exactly one pre-image of B.

Since T is onto function, then we know the range of T is simply the entire
plane, R2.

Proof. We prove T : R2 7→ R2 is a function.
Let P (x, y) be any point in the xy plane. Then T specifies a well defined

rule for obtaining the image of P . Hence, the domain of T is the entire plane,
R2. Therefore, every point in the domain of T has at least one image.

Suppose points A(a1, a2) and B(b1, b2) are in the domain of T such that
A = B. Then a1 = b1 and a2 = b2. Thus, T (A) = T (a1, a2) = (a1 +2, 2a2−3) =
(b1 + 2, 2b2 − 3) = T (B). Hence, A = B implies T (A) = T (B).

We have shown that A = B implies T (A) = T (B). This means two identical
points map to the same point(i.e., they don’t map to two different points). Since
we have shown that each point in the domain of T has at least one image, then
this implies T maps each point in the domain to at most one image. Hence,
each point in the domain is mapped to exactly one image. Therefore, T is a
function.

Proof. We prove T : R2 7→ R2 is a geometric transformation.
We prove T is onto. Let P (x, y) be any point in the plane(codomain of T ).

Let Q = (x− 2, (y + 3)/2) be in the domain of T . Then T (Q) = ((x− 2) + 2, 2 ∗
(y + 3)/2− 3) = (x, y) = P . Hence, T is an onto function.

We prove T is one to one. We use proof by contrapositive. Suppose points
A(a1, a2) and B(b1, b2) exist in the domain of T such that T (A) = T (B). Then
T (A) = (a1 + 2, 2a2 − 3) and T (B) = (b1 + 2, 2b2 − 3). Thus, a1 + 2 = b1 + 2
and 2a2 − 3 = 2b2 − 3. Hence, a1 = b1 and a2 = b2, so A = B. Therefore,
T (A) = T (B) implies A = B, so T is one to one.

Since T is both one to one and onto function, then T is a geometric trans-
formation of the plane onto the plane.

Exercise 5. Given s = {(x, y) : x = −3}, determine Ms(P ) if P (x, y) is any
point.

Solution. We must determine a formula for the line reflection Ms. We know
Ms is a geometric transformation from the plane onto the plane.

Let P (x, y) be any point in the domain of Ms. Either P is on s or not.
If P ∈ s, then x = −3, so Ms(P ) = Ms(x, y) = (x, y) = (−3, y).
If P 6∈ s, then s is the perpendicular bisector of PP ′ where P ′ = Ms(P ).

Let M = (m1,m2) = s ∩ PP ′ be the midpoint of PP ′. Let P ′ = (p1, p2). We
must find the coordinates of P ′.

Since M ∈ s∩PP ′, then M ∈ s and M ∈ PP ′. Thus, m1 = −3 and m2 = y
(since PP ′ is horizontal), so M = (−3, y). We use the midpoint formula to
obtain: −3 = p1+x

2 and y = p2+y
2 . Thus, p1 = −x − 6 and p2 = y. Hence,

Ms(P ) = Ms(x, y) = P ′ = (−x− 6, y).
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Exercise 6. Let s = {(x, y) : y = x}. Let T be the transformation of the plane
defined for any point P (x, y) by T (P ) = P ′ = (y, x). Is T a line reflection in s?

Solution. To decide if transformation T is a line reflection in s we need to
answer 2 questions.
1) If P ∈ s, is T (P ) = P? To prove this we must show that P ∈ s implies
T (P ) = P .
2) If P 6∈ s, is s the perpendicular bisector of line segment PP ′ ? To prove this
we must show that P 6∈ s implies 2 things:
a) s ⊥ PP ′ ( s is perpendicular to the line segment PP ′ ) and
b) if M = s ∩ PP ′, then M is the midpoint of PP ′.

Proof. We prove T is a line reflection in s.
Let P = (x, y) be any point in the domain of T . Then P ′ = T (P ) =

T (x, y) = (y, x).
Either P is on s or not. We consider these cases separately. There are two

cases to consider.
Case 1: Suppose P ∈ s.
Then y = x, so T (P ) = (y, x) = (x, x) = (x, y) = P . Hence, T (P ) = P .
Therefore, if P ∈ s, then T (P ) = P .
Case 2: Suppose P 6∈ s.
Then the slope of PP ′ is x−y

y−x = −1. The slope of s is 1,so the slope of PP ′ is

the negative reciprocal of the slope of s. Therefore, s ⊥ PP ′.
Let M = (m,n) = s∩PP ′. Then M ∈ s, so n = m. Therefore, M = (m,m).

We compute the distance MP . Observe that MP =
√

(m− x)2 + (m− y)2 =√
(m− y)2 + (m− x)2 = MP ′. Since M is between P and P ′ and MP = MP ′,

then M is the midpoint of line segment PP ′.
Since s ⊥ PP ′ and s∩PP ′ is the midpoint of PP ′, then s is the perpendicular

bisector of PP ′.
Thus, both cases show that T is a line reflection in s.

Exercise 7. Prove or disprove that the transformation T defined for all points
P (x, y) by T (P ) = (2x, y − 1) is an isometry.

Solution. Let T be the transformation from the plane onto the plane defined
by T (P ) = (2x, y − 1) where P (x, y) is any point in the domain of T . Is T an
isometry?

To decide if T is an isometry, we need to answer 1 question.
1) Does A′B′ = AB ? That is, if A and B are any points in the domain of T ,
does A′B′ = AB where A′ = T (A) and B′ = T (B)?

After playing with some examples, we realize that T is not an isometry.
Therefore, we devise a counter example.

Proof. The transformation T defined for all points P (x, y) by T (P ) = (2x, y−1)
is not an isometry. Let A and B be points in the domain of T such that
A = (1, 2) and B = (2, 5). Then A′ = T (A) = T (1, 2) = (2, 1) and B′ = T (B) =
T (2, 5) = (4, 4). We compute the distance A′B′ =

√
(2− 4)2 + (1− 4)2 =

√
13
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and AB =
√

(1− 2)2 + (2− 5)2 =
√

10. Hence A′B′ 6= AB, so T is not an
isometry.

Exercise 8. Let u = {(x, y) : y = 3x}. If A = (4, 3), find the coordinates of
A′ = Mu(A).

Solution. Let Mu be a line reflection in line u. We must find the coordinates
of point A′ = Mu(A) where A = (4, 3). Is A ∈ u ? We compute 3 ∗ 4 = 12 6= 3.
Hence, A 6∈ u.

By definition of Mu, if A 6∈ u, then Mu(A) = A′ such that u is the perpen-
dicular bisector of line segment AA′. Thus, u is the perpendicular bisector of

AA′ where Mu(A) = A′. Let line l =
←−→
AA′. Then, u ⊥ l, so mu ∗ ml = −1.

Since mu = 3, then ml = −1
3 . We compute the equation of a line l with slope

ml = −1/3 through the point A = (4, 3) ∈ l to be y−3
x−4 = −1/3, or equivalently,

x + 3y = 13. Thus, l = {(x, y) : x + 3y = 13}.
Let M = u ∩ l be the midpoint of AA′. Then M = {(m,n) : n = 3m ∧m +

3n = 13}. Thus, we have the system of linear equations:

3m− n = 0

m + 3n = 13

Using linear algebra we find the solution to be (m,n) = (1.3, 3.9). Thus M =
(1.3, 3.9).

Let A′ = (a1, a2). We must find a1 and a2. Since M is the midpoint of AA′,
we compute using the midpoint formula: 1.3 = 4+a1

2 and 3.9 = 3+a2

2 . Thus,
a1 = −1.4 and a2 = 4.8. Hence, A′ = (−1.4, 4.8).

Exercise 9. Define mapping T : plane 7→ plane as follows: T (P ) = P ′ =
(x,−y) if P = (x, y). Then T is a transformation and T is an isometry.

Solution. What facts or relationships can we deduce about T? Certainly,
we know that T is a relation(mapping) from the plane to the plane. Is T a
function? If T is a function, is T a transformation? If T is a transformation, is
T an isometry?

To decide if Ms is a function we need to answer 2 questions.
1) Does every point in the plane have some image?
To answer this we must prove every point P in the plane has an image.
In logic symbols: Prove: ∀P ∈ plane,∃Ms(P ).
2) If points A and B in the plane are identical, is Ms(A) = Ms(B) ?
To answer this we must prove if A and B are identical points, then Ms(A) =
Ms(B).
In logic symbols: Prove: A = B ⇒Ms(A) = Ms(B).

To decide if Ms is a transformation(bijection) we need to answer 2 questions.
1) Is Ms an onto function?
To answer this we must prove every point P in the plane(codomain of Ms) is
the image of some point in the domain of Ms.
In logic symbols: Prove: ∀P ∈ plane,∃Q ∈ plane � Ms(Q) = P .
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2) Is Ms a one to one function?
To answer this we must prove Ms satisfies the conditions for a one to one
function.

We have multiple approaches to consider:
a) We could use direct proof and prove: if A 6= B, then Ms(A) 6= Ms(B).
b) We could use proof by contrapositive and prove: if Ms(A) = Ms(B), then
A = B.
c) We could use proof by contradiction and prove: A 6= B ∧Ms(A) = Ms(B)
leads to some contradiction.

To decide if T is an isometry, we need to answer 1 question.
1) Does P ′Q′ = PQ ? That is, if P and Q are any points in the domain of T ,
does P ′Q′ = PQ where P ′ = T (P ) and Q′ = T (Q)?

We must prove T is a function from the plane to the plane. Then we must
prove T is a transformation(bijection). Lastly, we must prove T is an isometry.

Thus our strategy is to prove the following:
1) prove T is a function of the plane
2) prove T is onto
3) prove T is 1-1
4) prove T is an isometry

We observe that T is a line reflection in which the x-axis is the axis of
reflection.

Proof. Let T : plane 7→ plane be a mapping(relation).
We prove T is a function.
Let P be any point in the plane. The definition of T specifies a well defined

rule for obtaining the image of P , so T (P ) exists. Hence, the domain of T is
the entire plane. Thus, every point in the domain of T has at least one image.

Let A = (a1, a2) and B = (b1, b2) be points in the domain of T such that
A = B. Then a1 = b1 and a2 = b2. We compute T (A) = T (a1, a2) = (a1,−a2)
and T (B) = T (b1, b2) = (b1,−b2). Since a2 = b2, then −a2 = −b2. Thus,
a1 = b1 and −a2 = −b2, so it follows that T (A) = T (B).

We have shown that A = B implies T (A) = T (B). This means two identical
points map to the same point(i.e., they don’t map to two different points). Since
we have shown that each point in the domain of T has at least one image, then
this implies T maps each point in the domain to at most one image. Hence,
each point in the domain is mapped to exactly one image. Therefore, T is a
function.

Proof. We prove T is a transformation of the plane.
We prove T is an onto function. Let P = (x, y) be any point in the plane

and point Q = (x,−y). Then T (Q) = T (x,−y) = (x,−(−y)) = (x, y) = P .
Hence, P is the image of some point Q in the domain of T . Thus, T is onto.

We prove T is a one to one function. We use proof by contrapositive. Suppose
T (A) = T (B) where point A = (a, b) and point B = (c, d). Then T (a, b) =
T (c, d) so (a,−b) = (c,−d). Thus, a = c and −b = −d. Hence, b = d. Since
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a = c and b = d, then point A = B. Hence, T (A) = T (B) implies A = B, so it
follows that T is one to one.

Since T is a function that is one to one and onto,then it follows that T is a
transformation of the plane onto the plane.

Proof. We prove T is an isometry.
Let A = (a1, a2) and B = (b1, b2) be any pair of points in the domain of

T . Then A′ = T (A) = (a1,−a2) and B′ = T (B) = (b1,−b2). We must prove
A′B′ = AB. We compute the distance A′B′. Observe the following sequence of
equalities:

A′B′ =
√

(a1 − b1)2 + (−a2 − (−b2))2

=
√

(a1 − b1)2 + (b2 − a2)2

=
√

(a1 − b1)2 + (a2 − b2)2

= AB

Thus, T is an isometry.

Exercise 10. Define mapping T : plane 7→ plane as follows: T (P ) = P if P ∈ t
and T (P ) = P ′ if P 6∈ t such that P ′ is the midpoint of the perpendicular line
segment from P to t.

What facts or relationships can we deduce about T? Certainly, we know
that T is a relation(mapping) from the plane to the plane. Is T a function? If T
is a function, is T a transformation? If T is a transformation, is T an isometry?

Solution. To decide if Ms is a function we need to answer 2 questions.
1) Does every point in the plane have some image?
To answer this we must prove every point P in the plane has an image.
In logic symbols: Prove: ∀P ∈ plane,∃Ms(P ).
2) If points A and B in the plane are identical, is Ms(A) = Ms(B) ?
To answer this we must prove if A and B are identical points, then Ms(A) =
Ms(B).
In logic symbols: Prove: A = B ⇒Ms(A) = Ms(B).

To decide if Ms is a transformation(bijection) we need to answer 2 questions.
1) Is Ms an onto function?
To answer this we must prove every point P in the plane(codomain of Ms) is
the image of some point in the domain of Ms.
In logic symbols: Prove: ∀P ∈ plane,∃Q ∈ plane � Ms(Q) = P .
2) Is Ms a one to one function?
To answer this we must prove Ms satisfies the conditions for a one to one
function.

We have multiple approaches to consider:
a) We could use direct proof and prove: if A 6= B, then Ms(A) 6= Ms(B).
b) We could use proof by contrapositive and prove: if Ms(A) = Ms(B), then
A = B.
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c) We could use proof by contradiction and prove: A 6= B ∧Ms(A) = Ms(B)
leads to some contradiction. To decide if T is an isometry, we need to answer 1
question.
1) Does P ′Q′ = PQ ? That is, if P and Q are any points in the domain of T ,
does P ′Q′ = PQ where P ′ = T (P ) and Q′ = T (Q)?

Observations: T is a function and is a transformation,but is not an isometry.
If A′B′ = AB, then AB ‖ t.

Proof. We prove T is a function.
Let P be any point in the plane. Then P is either on t or not on t. In either

case, the definition of T specifies a well defined rule for obtaining the image of
P . Hence, the domain of T is the entire plane, so it follows that every point in
the plane has some image.

Let A and B be points in the domain of T such that A = B. Point A is
either on t or not on t.

If A ∈ t, then T (A) = A. Since B = A, then B ∈ t, so T (B) = B. Hence,
T (A) = A = B = T (B), so it follows that T (A) = T (B).

If A 6∈ t, then T (A) = A′ such that A′ is the midpoint of the perpendicular
segment from A to t. Since B = A, then B 6∈ t. Therefore, T (B) = B′ such
that B′ is the midpoint of the perpendicular segment from B to t. But B = A,
so the segment from A to t is the same segment from B to t. Since the midpoint
of a line segment is unique, then this implies the midpoint A′ = B′. Hence,
T (A) = T (B).

In either case, we have shown that A = B implies T (A) = T (B). This means
two identical points in the domain map to the same point(i.e., they don’t map
to two different points). Since we have shown that each point in the domain
has at least one image, then this implies T maps each point in the domain to
at most one image. Hence, each point in the domain is mapped to exactly one
image. Therefore, we conclude T is a function.

Proof. We prove T is a transformation.
We prove T is onto. Let P be any point in the plane. If P ∈ t, then by

definition of T , T (P ) = P . If P 6∈ t, then there exists a unique point Q such
that P is the midpoint of the perpendicular line segment from Q to t . Thus,
T (Q) = P . In either case, P is the image of at least one point in the domain of
T . Hence, T is onto.

We prove T is one to one. We use proof by contradiction. Suppose T is
not one to one. Then there exist points A and B in the domain of T such
that A 6= B and T (A) = T (B) = K. If K 6∈ t, then K is the midpoint
of the perpendicular line segment from A to t and K is the midpoint of the
perpendicular line segment from B to t. Since the midpoint of a line segment is
unique, then the line segment from A to t must be the same as the line segment
from B to t. Hence, A = B. But, this contradicts the assumption that A 6= B.
But, if K ∈ t, then A ∈ t and B ∈ t. Therefore, T (A) = A = K = T (B) = B.
Hence, A = B. But this contradicts the assumption that A and B are distinct
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points (i.e. A 6= B). The contradiction implies that no distinct points are
mapped to the same point. Hence, T is one to one.

Since T is a function that is both one to one and onto, we conclude that T
is a transformation of the plane onto the plane.

Proof. We disprove that T is an isometry.
We can orient line t in the xy coordinate system so that t is the y axis. We

demonstrate a counterexample to prove T is not an isometry.
Let A = (12, 8) and B = (14, 5). Then T (A) = A′ = (6, 8) and T (B) = B′ =

(7, 5).
We compute the distance AB and A′B′. Observe that AB =

√
(12− 14)2 + (8− 5)2 =√

13. and A′B′ =
√

(6− 7)2 + (8− 5)2 =
√

10. Hence, A′B′ 6= AB.
Thus, T is not an isometry.

Exercise 11. If s = {(x, y) : y = −x} and t = {(x, y) : y = 2x − 3}, write an
equation for t′ = Ms(t).

Solution. We know the line reflection defined by Ms : R2 7→ R2 in which s
is the axis of reflection is an isometry. Every isometry maps lines onto lines.
Thus, Ms maps lines onto lines. Since t is a line, then Ms(t) = t′ is also a line.
Therefore, we must find the equation of the line t′.

In our analysis, we need to determine a formula for Ms. In other words, if
P = (x, y) is any point in the domain of Ms, then we need to find a rule to
compute Ms(P ). Let P = (x, y) be any point in the domain of Ms. Then the
image of P is P ′ = (p1, p2) = Ms(P ) = Ms(x, y). We must find p1 and p2. Since

s is ⊥ bisector of PP ′, then let M = (m1,m2) = s ∩
←−→
PP ′ be the midpoint of

PP ′.
We know

←−→
PP ′ ⊥ s, so m←−→

PP ′ = −1
ms

. Since ms = −1, then m←−→
PP ′ = 1. Since

M = (m1,m2) ∈ s, then m2 = −m1. Thus, M = (m1,−m1). We need to find

m1. Since we know the slope of line
←−→
PP ′ and a point M ∈

←−→
PP ′, we can use

the formula for a slope to compute: 1 = y−(−m1)
x−m1

. Thus, m1 = x−y
2 , and so

M = (x−y
2 , y−x

2 ).

Since M is the midpoint of
←−→
PP ′, we can use the midpoint formula to ob-

tain: x−y
2 = p1+x

2 and y−x
2 = p2+y

2 . Thus, p1 = −y and p2 = −x. Hence,
P ′ = (−y,−x) = Ms(P ) = Ms(x, y). Therefore, a formula for Ms is Ms(P ) =
Ms(x, y) = (−y,−x).

To determine the equation for line t′ we need two points on t′. Since Ms

is an onto function, we know there exists points A,B ∈ t such that Ms(A) =
A′ ∈ t′ and Ms(B) = B′ ∈ t′. So, we may choose any arbitrary points of
t. For convenience we choose the xy intercepts of t so let A = (0,−3) ∈ t
and B = (3/2, 0) ∈ t. We compute Ms(A) = Ms(0,−3) = (3, 0) ∈ t′ and
Ms(B) = Ms(3/2, 0) = (0,−3/2) ∈ t′. We compute the slope of t′ to be

m′t = −3/2−0
0−3 = 1

2 . Substituting point (0,−3/2) to determine the equation of

the line t′ we obtain y−(−3/2)
x−0 = 1

2 . Thus, the equation of line t′ is y = x−3
2 .

Therefore, t′ = {(x, y) : y = x−3
2 }.
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Exercise 12. If C = {(x, y) : (x − 2)2 + (y − 3)2 = 4} and T is an isometry
which maps (2, 3) onto (1,−7), write an equation for T (C).

Solution. Let T : R2 7→ R2 be an isometry from the plane onto the plane. Let
P = (2, 3) be the center of circle C. Then T (P ) = (1,−7). Let T (C) be the
set of points that is the image of circle C under transformation T . We ask how
does T map each point on circle C to its corresponding image?

Let Q ∈ C be any point on circle C. Since T is an isometry, we know T
preserves distances, so PQ = P ′Q′ = 2 where T (P ) = P ′ and T (Q) = Q′. This
means T maps any point Q on circle C to exactly one point Q′ that is 2 units
from P ′. Thus, T (C) is a circle whose center is P ′ = (1,−7) and radius is 2.
Hence, T (C) = {(x, y) : (x− 1)2 + (y + 7)2 = 4}.

Exercise 13. Given coplanar lines s, s′, t, t′, r such that s′ = Mr(s) and t′ =
Mr(t). If s′ ‖ t′, then s ‖ t.

Solution. Let Mr be a line reflection such that s′ = Mr(s) and t′ = Mr(t). We
must prove s′ ‖ t′ implies s ‖ t. We try direct proof.

Proof. Let Mr be a line reflection from the plane onto the plane such that
s′ = Mr(s) and t′ = Mr(t).

We prove if s′ ‖ t′, then s ‖ t. We use direct proof. Suppose s′ ‖ t′. Then,
by substitution, Mr(s) ‖ Mr(t). Since Mr is an isometry, then Mr preserves
parallelism between lines. Thus, Mr(s) ‖ Mr(t) if and only if s ‖ t. Since
Mr(s) ‖Mr(t), then it follows that s ‖ t. Hence, s′ ‖ t′ implies s ‖ t.

Exercise 14. Given coplanar lines s, s′, t such that s′ = Mt(s). If s′ ‖ s, then
s ‖ t.

Solution. We must prove if s′ ‖ s, then s ‖ t. We could try proof by contra-
diction by assuming s′ ‖ s and s ∦ t.

Proof. Let Mt be a line reflection from the plane onto the plane such that
s′ = Mt(s) for lines s, s′, t.

We prove if s′ ‖ s, then s ‖ t. We use proof by contradiction. Suppose
s′ ‖ s and s ∦ t. Then s and t intersect in some point X. Thus, {X} = s ∩ t,
so X ∈ s and X ∈ t. Since X ∈ s, then Mt(X) ∈ Mt(s). Thus, Mt(X) ∈ s′.
Since X ∈ t, then Mt(X) = X, by definition of Mt. Therefore, X ∈ s′. Since
X ∈ s and X ∈ s′, then it follows that X ∈ s ∩ s′. Consequently, s ∦ s′. But,
this contradicts the assumption that s′ ‖ s. Hence, it cannot be true that s ∦ t.
Thus, s ‖ t.

Exercise 15. Given coplanar lines s, s′, t such that s′ = Mt(s). Prove or
disprove: If s′ = s, then s = t.

Solution. We consider how lines s and s′ could be related under a line reflection
Mt in t. Since Mt is an isometry, we know Mt preserves perpendicularity and
parallelism of lines. Thus, Mt(t) ‖ Mt(s) iff t ‖ s and Mt(t) ⊥ Mt(s) iff t ⊥ s.
We know Mt(t) = t since a line reflection reflects the axis of reflection onto itself.
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If t ‖ s, then the only way s′ = s is if t = s. But, if t ⊥ s, then Mt(t) ⊥Mt(s),
so t ⊥Mt(s) which implies t ⊥ s′. Thus, it is possible for s = s′ but s 6= t. This
provides us the counter example.

Proof. The conjecture is false. Let Mt be a line reflection in line t such that
s′ = Mt(s). Suppose s = s′. Let t ⊥ s. Then t 6= s. Thus, s′ = s, but t 6= s.

Exercise 16. Given coplanar lines s, s′, t such that s′ = Mt(s). Prove or
disprove: If s′ ∩ s = {A}, then A ∈ t.

Solution. We must prove if s′ ∩ s = {A}, then A ∈ t. We could try proof by
contradiction by assuming s′ ∩ s = {A} and A 6∈ t.

Proof. We use proof by contradiction. Suppose s′ ∩ s = {A} and A 6∈ t. Then
A ∈ s′ and A ∈ s. Since A ∈ s, then A′ ∈ s′. Since A 6∈ t, then by definition
of Mt, t is the perpendicular bisector of AA′. Thus, A′ is distinct from A, so
A′ 6= A. Hence, the distinct points A and A′ determine the unique line s′ = AA′.
Since t is the perpendicular bisector of AA′, then t ⊥ s′. Since Mt is an isometry,
then Mt preserves perpendicularity of lines. Therefore, Mt(s) ⊥ Mt(t) if and
only if s ⊥ t. Since s′ = Mt(s) and Mt(t) = t, then this means s′ ⊥ t if and only
if s ⊥ t. Thus, since t ⊥ s′, then it follows that s ⊥ t. Since s ⊥ t and s′ ⊥ t,
then s ‖ s′. Consequently, s∩ s′ = ∅. But, this contradicts the assumption that
s ∩ s′ = {A}. Hence, it cannot be true that A 6∈ t. Thus, A ∈ t.
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