Transformational Geometry Notes

Jason Sass

July 20, 2023

Geometric Transformations

Definition 1. Transformation

A geometric transformation is a one to one function from a set of points onto a set of points.

Let A be a set of points. Let B be a set of points. Let $f: A \to B$ be a geometric transformation. Then f is a bijective map.

Definition 2. Transformation of the plane

A transformation of the plane is a one to one function from the plane onto the plane.

Therefore, a transformation of the plane is a bijective map. Let \mathbb{R}^2 be a plane. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a function. Then f is a **transformation of the plane** iff 1. f is injective (one to one). 2. f is surjective (onto).

Definition 3. Line Reflection

A line reflection in a given line s is a function f defined for every point P of the plane such that:

1) if $P \in s$, then f(P) = P2) if $P \notin s$, then f(P) = P' such that s is the \perp bisector of segment $\overline{PP'}$.

Let s be a line in \mathbb{R}^2 . Let $f_s : \mathbb{R}^2 \to \mathbb{R}^2$ be a function. Let P be an arbitrary point of \mathbb{R}^2 . Then f_s is a line reflection iff 1. if $P \in s$, then f(P) = P2. if $P \notin s$, then f(P) = P' such that s is the \perp bisector of $\overline{PP'}$. The line s is the **axis of reflection**. f_s is an isometry. **Example 4.** Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a line reflection with axis of reflection s. Let P be an arbitrary point of \mathbb{R}^2 .

Then there exist $x, y \in \mathbb{R}$ such that P = (x, y). If s is the x axis, then f(P) = f(x, y) = (x, -y). If s is the y axis, then f(P) = f(x, y) = (-x, y). If s is the line y = x, then f(P) = f(x, y) = (y, x). If s is the line y = -x, then f(P) = f(x, y) = (-y, -x).

Theorem 5. Every line reflection is a transformation of the plane.

Therefore every line reflection is a bijective map.

Definition 6. Isometry

An isometry is a distance preserving transformation.

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a transformation of the plane.

Then T is an **isometry** iff for every pair of points P and Q, P'Q' = PQwhere P' = T(P) and Q' = T(Q).

PQ represents the distance between points P and Q.

The images of any two points are the same distance as the original two points.

Theorem 7. Every line reflection is an isometry.

Theorem 8. The image of any line under an isometry is a line.

Therefore, an isometry maps lines onto lines. f maps lines onto lines. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be an isometry. If s is a line, then f(s) is a line. Therefore, isometries preserve lines.

Theorem 9. The image of any angle under an isometry has the same measure as the given angle.

f preserves angle measures between lines. m $\angle A'B'C' = m \angle ABC$. Therefore, isometries preserve angles.

Corollary 10. The images of two lines under an isometry are perpendicular if and only if the given lines are perpendicular.

f preserves perpendicularity between lines. $f(s) \perp f(t)$ iff $s \perp t$. Therefore, isometries preserve perpendicularity between lines.

Theorem 11. The images of two lines under an isometry are parallel if and only if the given lines are parallel.

f preserves parallelism between lines. $f(s) \parallel f(t)$ iff $s \parallel t$. Therefore, isometries preserve parallelism between lines.