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Geometric Transformations

Theorem 1. Every line reflection is a transformation of the plane.

Solution. Let Ms be a line reflection in the line s of the plane.
Is Ms a function?
If so, is Ms a transformation?
To decide if Ms is a function we need to answer 2 questions.

1) Does every point in the plane have some image?
To answer this we must prove every point P in the plane has an image.
In logic symbols: Prove: ∀P ∈ plane,∃Ms(P ).
2) If points A and B in the plane are identical, is Ms(A) = Ms(B) ?
To answer this we must prove if A and B are identical points, then Ms(A) =
Ms(B).
In logic symbols: Prove: A = B ⇒Ms(A) = Ms(B).

To decide if Ms is a transformation(bijection) we need to answer 2 questions.
1) Is Ms an onto function?
To answer this we must prove every point P in the plane(codomain of Ms) is
the image of some point in the domain of Ms.
In logic symbols: Prove: ∀P ∈ plane,∃Q ∈ plane � Ms(Q) = P .
2) Is Ms a one to one function?
To answer this we must prove Ms satisfies the conditions for a one to one
function.

We have multiple approaches to consider:
a) We could use direct proof and prove: if A 6= B, then Ms(A) 6= Ms(B).
b) We could use proof by contrapositive and prove: if Ms(A) = Ms(B), then
A = B.
c) We could use proof by contradiction and prove: A 6= B ∧Ms(A) = Ms(B)
leads to some contradiction.

We must first prove Ms is a function from the plane to the plane. Then we
prove Ms is both one to one and onto.

Thus our strategy is to prove the following:
1) prove Ms is a function of the plane
2) prove Ms is onto
3) prove Ms is 1 to 1



Proof. Let Ms : plane 7→ plane be a line reflection in the line s.
We prove Ms is a function.
Let P be any point in the plane. Then P is either on s or not on s. The

definition of Ms specifies a well defined rule for obtaining the image of P in
either case, so Ms(P ) exists. Hence, the domain of Ms is the entire plane.
Thus, every point in the domain of Ms has at least one image.

Let A and B be points in the domain of Ms such that A = B = K. Then A
is either on s or not on s. We consider these cases separately.
Case 1: Suppose A ∈ s.
Then by definition of Ms, Ms(A) = A. Since B = A, then B ∈ s, so by defini-
tion of Ms, Ms(B) = B = A. Hence, Ms(A) = Ms(B).
Case 2: Suppose A 6∈ s.
Then by definition of Ms, Ms(A) = A′ and Ms(B) = B′ and s is the perpen-
dicular bisector of both AA′ and BB′. Thus, s is the perpendicular bisector of
both KA′ and KB′.

Suppose for the sake of contradiction that KA′ 6= KB′. Then KA′ and
KB′ are distinct line segments that share a common endpoint K and s is the
perpendicular bisector of both KA′ and KB′. But this is impossible since there
exists no line that can be the perpendicular bisector to two distinct line segments
that share a common endpoint. Thus, it cannot be true that KA′ 6= KB′.
Therefore, KA′ = KB′, so it follows that A′ = B′. Hence, Ms(A) = Ms(B).

In either case we have shown A = B implies Ms(A) = Ms(B). This means
two identical points map to the same point(i.e., they don’t map to two different
points). Since we have shown that each point in the domain of Ms has at least
one image, then this implies Ms maps each point in the domain to at most
one image. Hence, each point in the domain is mapped to exactly one image.
Therefore, Ms is a function.

Proof. We prove Ms is a geometric transformation.
We first prove Ms is an onto function.
Let P be any point in the plane. Then P is either on s or not on s. We

consider these cases separately.
Case 1: Suppose P ∈ s.
Then by definition of Ms, Ms(P ) = P .
Case 2: Suppose P 6∈ s.
Then there exists a unique point Q such that s is the perpendicular bisector of
line segment QP . Thus, Ms(Q) = P .

In either case P is the image of some point in the domain of Ms. Therefore,
Ms is an onto function.

We prove the pre-image of any point P ∈ s is on s. Let P ∈ s. Then by
definition of Ms, Ms(P ) = P . Thus, the pre-image of P is P . Since P ∈ s, then
this means the pre-image of P is also on s.

We prove Ms is a one to one function.
We use proof by contradiction. Suppose Ms is not a one to one function.

Then there exist distinct points A and B in the domain of Ms such that A 6= B
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and Ms(A) = Ms(B) = K. K is either on s or not on s. We consider these
cases separately.
Case 1: Suppose K 6∈ s.
Then by definition of Ms, s must be the perpendicular bisector of segments
AK and BK. But this cannot happen since no line can be the perpendicular
bisector of two different segments sharing a common end point.
Case 2: Suppose K ∈ s.
Then the pre-images of K lie on s. Hence, A ∈ s and B ∈ s. Therefore, by
definition of Ms, Ms(A) = A = K = Ms(B) = B. Hence, A = B. But this
contradicts the assumption that A and B are distinct points(i.e. A 6= B).

Both cases result in a contradiction when we assume there exist two distinct
points that map to the same point. Thus, it cannot be true that there exist two
distinct points which map to the same point. Hence, there do not exist distinct
points which map to the same point. Therefore, Ms is one to one.

Since Ms is a function that is both one to one and onto, then Ms is a
transformation of the plane onto the plane.

Theorem 2. Every line reflection is an isometry.

Theorem 3. The image of any line under an isometry is a line.

Solution. The problem can be restated as follows. Let T be an isometry and
let s, t be lines. Then T (s) = t.

We must prove T (s) = t.

To prove this let line s =
←→
AB where A 6= B. Since T is an isometry, then

T (A) = A′ and T (B) = B′. Since A 6= B, then we know A′ 6= B′ because T is

one to one. So let t =
←−→
A′B′ be the line uniquely determined by A′ and B′.

Let T (s) = s′ where s′ is the set of all images of points on s. Is s′ = t? To
answer this question we must use the definition of equal sets since s′ and t are
sets of points. This means we must prove s′ ⊆ t and t ⊆ s′. If we can establish
that s′ = t, then we will have shown that T (s) = s′ is a line.

Proof. Let T be an isometry of the plane onto the plane. Let points A and B
exist in the domain of T such that A 6= B. Two distinct points determine a

unique line, so let line s =
←→
AB. T is a function so T (A) = A′ and T (B) = B′.

Since T is one to one, then A′ 6= B′. Thus, the distinct points A′ and B′

uniquely determine line t =
←−→
A′B′. Let T (s) = s′ where s′ is the set of all images

of points on s.
We prove s′ = t.
We first prove s′ ⊆ t. Let P ∈ s such that P 6= A and P 6= B. Then

T (P ) = P ′ and P ′ ∈ s′. Either P ′ ∈ t or P ′ 6∈ t. Suppose for the sake of
contradiction that P ′ 6∈ t. Either P is between A and B or not. We consider
these cases separately. There are three cases to consider.
Case 1: Suppose P is between A and B (A-P-B).
Since P ′ 6∈ t, then there exists 4A′B′P ′. Since T is an isometry, then A′B′ =
AB, A′P ′ = AP and B′P ′ = BP . Since P is between A and B, then AB =
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AP + PB. Substituting, we obtain A′B′ = A′P ′ + P ′B′. By the triangle
inequality, A′P ′+P ′B′ > A′B′ since the sum of the lengths of two sides is greater
than the length of the third side. So we have a contradiction A′P ′+P ′B′ = A′B′

and A′P ′+P ′B′ > A′B′. Thus, it cannot be true that P ′ 6∈ t. Therefore, P ′ ∈ t.
We have shown that P ′ ∈ s′ implies P ′ ∈ t. Hence, s′ ⊆ t if P is between A and
B.
Case 2: Suppose B is between A and P (A-B-P).
Since P ′ 6∈ t, then there exists 4A′B′P ′. Since T is an isometry, then A′B′ =
AB, A′P ′ = AP and B′P ′ = BP . Since B is between A and P , then AP =
AB + BP . Substituting, we obtain A′P ′ = A′B′ + B′P ′. By the triangle
inequality, A′B′+B′P ′ > A′P ′ since the sum of the lengths of two sides is greater
than the length of the third side. So we have a contradiction A′B′+B′P ′ = A′P ′

and A′B′+B′P ′ > A′P ′. Thus, it cannot be true that P ′ 6∈ t. Therefore, P ′ ∈ t.
We have shown that P ′ ∈ s′ implies P ′ ∈ t. Hence, s′ ⊆ t if B is between A and
P .
Case 3: Suppose A is between P and B (P-A-B).
Since P ′ 6∈ t, then there exists 4A′B′P ′. Since T is an isometry, then A′B′ =
AB, A′P ′ = AP and B′P ′ = BP . Since A is between P and B, then PB =
PA + AB. Substituting, we obtain P ′B′ = P ′A′ + A′B′. By the triangle
inequality, P ′A′+A′B′ > P ′B′ since the sum of the lengths of two sides is greater
than the length of the third side. So we have a contradiction P ′A′+A′B′ = P ′B′

and P ′A′+A′B′ > P ′B′. Thus, it cannot be true that P ′ 6∈ t. Therefore, P ′ ∈ t.
We have shown that P ′ ∈ s′ implies P ′ ∈ t. Hence, s′ ⊆ t if A is between P and
B.

In all three cases we conclude that s′ ⊆ t.
Now we prove t ⊆ s′. Let C ′ ∈ t such that C ′ 6= A′ and C ′ 6= B′. Since T is

an onto function, then there exists some C in the plane such that T (C) = C ′.
Either C ∈ s or C 6∈ s. Suppose for the sake of contradiction that C 6∈ s. Either
C ′ is between A′ and B′ or not. We consider these cases separately. There are
three cases to consider.
Case 1: Suppose C ′ is between A′ and B′ (A’-C’-B’).
Since C 6∈ s, then there exists 4ABC. Since T is an isometry, then AB =
A′B′, BC = B′C ′ and AC = A′C ′. Since C ′ is between A′ and B′, then
A′B′ = A′C ′+C ′B′. Substituting, we obtain AB = AC +CB. By the triangle
inequality, AC + CB > AB since the sum of the lengths of two sides is greater
than the length of the third side. So we have a contradiction AC + CB = AB
and AC + CB > AB. Thus, it cannot be true that C 6∈ s. Therefore, C ∈ s, so
T (C) = C ′. Hence, C ′ ∈ s′. We have shown that C ′ ∈ t implies C ′ ∈ s′. Hence,
t ⊆ s′ if C ′ is between A′ and B′.
Case 2: Suppose B′ is between A′ and C ′ (A’-B’-C’).
Since C 6∈ s, then there exists 4ABC. Since T is an isometry, then AB =
A′B′, BC = B′C ′ and AC = A′C ′. Since B′ is between A′ and C ′, then
A′C ′ = A′B′+B′C ′. Substituting, we obtain AC = AB +BC. By the triangle
inequality, AB + BC > AC since the sum of the lengths of two sides is greater
than the length of the third side. So we have a contradiction AB + BC = AC
and AB + BC > AC. Thus, it cannot be true that C 6∈ s. Therefore, C ∈ s, so
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T (C) = C ′. Hence, C ′ ∈ s′. We have shown that C ′ ∈ t implies C ′ ∈ s′. Hence,
t ⊆ s′ if B′ is between A′ and C ′.
Case 3: Suppose A′ is between C ′ and B′ (C’-A’-B’).
Since C 6∈ s, then there exists 4ABC. Since T is an isometry, then AB =
A′B′, BC = B′C ′ and AC = A′C ′. Since A′ is between C ′ and B′, then
C ′B′ = C ′A′+A′B′. Substituting, we obtain CB = CA+AB. By the triangle
inequality, CA + AB > CB since the sum of the lengths of two sides is greater
than the length of the third side. So we have a contradiction CA + AB = CB
and CA + AB > CB. Thus, it cannot be true that C 6∈ s. Therefore, C ∈ s, so
T (C) = C ′. Hence, C ′ ∈ s′. We have shown that C ′ ∈ t implies C ′ ∈ s′. Hence,
t ⊆ s′ if A′ is between C ′ and B′.

In all three cases we conclude that t ⊆ s′.
Since s′ ⊆ t and t ⊆ s′, then it follows that s′ = t. Hence, T (s) = t. This

means the image of line s under the isometry T is a line.

Theorem 4. The image of any angle under an isometry has the same measure
as the given angle.

Solution. The problem can be restated as follows. Let T be an isometry and
let ∠ABC be any angle. Then m ∠A′B′C ′ = m ∠ABC.

We must prove m ∠A′B′C ′ = m ∠ABC. Either A,B,C are all collinear or
not, so we consider these cases separately.

Proof. Let T be an isometry of the plane onto the plane. Let A,B,C be points
in the plane and let ∠ABC be any angle. Either A,B,C are all collinear or not.
We consider these cases separately. There are two cases to consider.
Case 1: Suppose A,B,C are collinear.
Let line s be the line that contains A,B, and C. Then m ∠ABC is either 0
degrees or 180 degrees. Since T maps lines onto lines, let line t = T (s). Then
the points T (A) = A′, T (B) = B′, T (C) = C ′ are on t. So, m ∠A′B′C ′ is either
0 degrees or 180 degrees. Thus, m ∠A′B′C ′ = m ∠ABC.
Case 2: Suppose A,B,C are not collinear.
Then there exists 4ABC. Let line s = AB and line t = BC. Since T maps
lines onto lines, let line s′ = T (s) and line t′ = T (t). Since A ∈ s, then
T (A) = A′ is on s′. Since C ∈ t, then T (C) = C ′ is on t′. Since B ∈ s ∩ t,
then T (B) = B′ is on both s′ and t′. Thus, B′ ∈ s′ ∩ t′, so s′ ∦ t′. Therefore,
4A′B′C ′ exists. Since T preserves distance, AB = A′B′, AC = A′C ′, BC =
B′C ′. Therefore, AB ∼= A′B′, AC ∼= A′C ′, BC ∼= B′C ′. By SSS(side-side-side
postulate), 4ABC ∼= 4A′B′C ′. By CPCTC(corresponding parts of congruent
triangles are congruent), ∠ABC ∼= A′B′C ′. Therefore, m ∠A′B′C ′ = m ∠ABC.

Corollary 5. The images of two lines under an isometry are perpendicular if
and only if the given lines are perpendicular.

Solution. The problem can be restated as follows. Let T be an isometry and
let s, t be lines with T (s) = s′ and T (t) = t′. Then s′ ⊥ t′ iff s ⊥ t.
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Since this is a biconditional we must prove the implication and its converse:
1) prove if s′ ⊥ t′, then s ⊥ t.
2) prove if s ⊥ t, then s′ ⊥ t′.

Proof. Let T be an isometry of the plane onto the plane. Let s and t be lines
in the plane with T (s) = s′ and T (t) = t′.

We prove if s ⊥ t, then s′ ⊥ t′. We use direct proof. Suppose s ⊥ t. Let
A ∈ s,B ∈ s∩ t, C ∈ t be points such that m ∠ABC = 90◦. Then the following
are true: T (A) = A′ and T (s) = s′. Since A ∈ s, then T (A) ∈ T (s), so A′ ∈ s′.
T (C) = C ′ and T (t) = t′. Since C ∈ t, then T (C) ∈ T (t), so C ′ ∈ t′. B = s ∩ t.
T (B) = T (s ∩ t) = B′ = T (s) ∩ T (t) = s′ ∩ t′. Thus, ∠A′B′C ′ = T (∠ABC).
Therefore, m ∠A′B′C ′ = m ∠ABC , by theorem 4. Since m ∠ABC = 90◦,
then it follows that m ∠A′B′C ′ = 90◦. Hence, s′ ⊥ t′.

Conversely, we prove if s′ ⊥ t′, then s ⊥ t. We use direct proof. Suppose
s′ ⊥ t′. Let A′ ∈ s′, B′ ∈ s′ ∩ t′, C ′ ∈ t′ be points such that m ∠A′B′C ′ = 90◦.
Since T is onto, there exists A ∈ s such that T (A) = A′. Since T is onto,
there exists C ∈ t such that T (C) = C ′. Since T is onto, there exists B such
that T (B) = B′. Since B′ ∈ s′ ∩ t′, then B′ ∈ T (s ∩ t), so B ∈ s ∩ t. Thus,
∠A′B′C ′ = T (∠ABC). Therefore, m ∠A′B′C ′ = m ∠ABC, by theorem 4.
Since m ∠A′B′C ′ = 90◦, then it follows that m ∠ABC = 90◦. Hence, s ⊥ t.

Theorem 6. The images of two lines under an isometry are parallel if and only
if the given lines are parallel.

Solution. The problem can be restated as follows. Let T be an isometry and
let s, t be lines with T (s) = s′ and T (t) = t′. Then s′ ‖ t′ iff s ‖ t.

Since this is a biconditional we must prove the implication and its converse:
1) prove if s′ ‖ t′, then s ‖ t.
2) prove if s ‖ t, then s′ ‖ t′.

Proof. Let T be an isometry of the plane onto the plane. Let s and t be lines
in the plane with T (s) = s′ and T (t) = t′.

We prove if s ‖ t, then s′ ‖ t′. We use proof by contradiction. Suppose s ‖ t
and s′ ∦ t′. Then s′ and t′ intersect at some point X. Thus, {X} = s′ ∩ t′.
Therefore, X ∈ s′ and X ∈ t′. Since T is an onto function, then there exists
P ∈ s such that T (P ) = X and there exists Q ∈ t such that T (Q) = X. Since
s ‖ t, then P and Q are distinct points. Thus there exist distinct points P 6= Q
such that T (P ) = T (Q). Hence, T is not one to one. But, T is a transformation,
so T is one to one. Therefore, we have a contradiction T is one to one and T is
not one to one. Consequently, it cannot be true that s′ ∦ t′. Thus, s′ ‖ t′.

Conversely, we prove if s′ ‖ t′, then s ‖ t. We use proof by contradiction.
Suppose s′ ‖ t′ and s ∦ t. Then s and t intersect in some point K. Thus,
{K} = s ∩ t. Therefore, K ∈ s and K ∈ t. Since T is a function, then
there exists P ′ ∈ s′ such that T (K) = P ′ and there exists Q′ ∈ t′ such that
T (K) = Q′. Since T is a function, then P ′ = Q′. Thus, P ′ ∈ s′ and P ′ ∈ t′, so
P ′ ∈ s′ ∩ t′. Hence, s′ ∦ t′. But, this contradicts the assumption that s′ ‖ t′.
Consequently, it cannot be true that s ∦ t. Thus, s ‖ t.
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Proposition 7. If t ⊥ s, then Ms(t) = t.

Solution. Let t′ be the set of all images of line t under the line reflection Ms.
That is, t′ = Ms(t). Since Ms is an isometry, we know Ms maps lines onto lines.
Thus, Ms maps line t onto line t′.

We must prove t′ = t. Since we know t′ and t are sets of points in the plane,
we can use the definition of set equality. Thus, our strategy is to prove both
t′ ⊆ t and t ⊆ t′.

Proof. Let t′ = Ms(t) be the set of all images of line t under the line reflection
Ms and t ⊥ s. We prove t′ = t.

We prove t ⊆ t′. Let P be any point on line t. Either P is on s or not on s.
We consider these cases separately.
Case 1: Suppose P ∈ s.
Then Ms(P ) = P ′ = P , by definition of Ms. Since P ′ ∈ t′, then this means
P ∈ t′. Thus, P ∈ t implies P ∈ t′.
Case 2: Suppose P 6∈ s.
Then s is the perpendicular bisector of PP ′, by definition of Ms. Thus P ′ lies
on line t, so P ′ ∈ t. Since P ′ ∈ t′ and P ′ ∈ t, then P ′ ∈ t ∩ t′. Since Ms is an
isometry, then Ms preserves perpendicularity of lines. Thus, Ms(t) ⊥ Ms(s) if
and only if t ⊥ s. By assumption t ⊥ s, so this implies Ms(t) ⊥ Ms(s). Since
Ms(t) = t′ and Ms(s) = s, then this means t′ ⊥ s. Since s ⊥ t and s ⊥ t′, then
t ‖ t′. This implies either t = t′ or t and t′ are distinct lines that are parallel.
Suppose for the sake of contradiction that t ‖ t′ and t 6= t′. Then t ∩ t′ = ∅.
But we concluded t ∩ t′ = {P ′}. Thus, it cannot be true that t 6= t′. Therefore,
t = t′. Since P ∈ t, this means P ∈ t′.

In both cases we have shown P ∈ t implies P ∈ t′. Hence, we conclude
t ⊆ t′.

We prove t′ ⊆ t. Let P ′ ∈ t′. Since Ms is an onto function, then there exists
P ∈ t such that Ms(P ) = P ′. Either P ′ is on s or not on s. We consider these
cases separately.
Case 1: Suppose P ′ ∈ s.
Then there exists P ∈ t such that Ms(P ) = P ′. Since P ′ ∈ s, then by definition
of Ms, P = P ′. Since P ∈ t, then this means P ′ ∈ t. Hence, P ′ ∈ t′ implies
P ′ ∈ t.
Case 2: Suppose P ′ 6∈ s.
Then s is the perpendicular bisector of line segment PP ′ such that P ∈ t and

P ′ = Ms(P ), by definition of Ms. Thus, P ′ ∈ t and P ′ ∈
←−→
PP ′, so P ′ ∈ t ∩

←−→
PP ′.

Since s is perpendicular to PP ′, then s ⊥
←−→
PP ′. Thus, s ⊥ t and s ⊥

←−→
PP ′, so

it follows that t ‖
←−→
PP ′. Therefore, either t =

←−→
PP ′ or t and

←−→
PP ′ are distinct

lines that are parallel. Suppose for the sake of contradiction that t ‖
←−→
PP ′ and

t 6=
←−→
PP ′. Then t∩

←−→
PP ′ = ∅. But, we concluded t∩

←−→
PP ′ = {P}. Thus, it cannot

be true that t 6=
←−→
PP ′. Hence, t =

←−→
PP ′. Therefore, P ′ ∈ t.

In both cases we have shown P ′ ∈ t′ implies P ′ ∈ t. Hence, we conclude
t′ ⊆ t.
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Since t ⊆ t′ and t′ ⊆ t, then it follows that t = t′. Hence, Ms(t) = t.
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