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1 Linear Algebra Exercises

Exercise 1. Let A and B be m× n matrices with At = Bt. Prove A = B.

Solution. Our hypothesis is A = (aij)m×n and B = (bij)m×n and At = Bt.
To prove our conclusion A = B, we must prove (∀i ∈ Nm)(∀j ∈ Nn)(aij = bij).
Since this is a universally quantified statement, we let i, j be arbitrary integers
such that 1 ≤ i ≤ m and 1 ≤ j ≤ n. We must prove aij = bij .

Proof. Let A = (aij)m×n and B = (bij)m×n and At = Bt. To prove A = B, we
must prove (∀i ∈ Nm)(∀j ∈ Nn)(aij = bij). Matrices A and B have the same
size m × n. Let i ∈ Nm and j ∈ Nn be arbitrary integers. Let aij be the ijth

entry of A. Let bij be the ijth entry of B. We must prove aij = bij .
Observe that

aij of A = aji of At

= bji of Bt

= bij of B

Exercise 2. If A andB are symmetric square matrices, then A+B is symmetric.

Solution. Hypothesis is A and B are symmetric square matrices. To prove the
conclusion A+B is symmetric, we must prove (A+B)t = A+B. In order that
A+B exist, it must be true that A and B must have the same size. Since A is
symmetric then At = A. Since B is symmetric then Bt = B.

Proof. Let A and B be arbitrary symmetric square matrices such that A + B
exists. Since A and B are symmetric, then At = A and Bt = B. To prove
A+B is symmetric, we must prove (A+B)t = A+B. Observe that (A+B)t =
At +Bt = A+B.

Exercise 3. Let matrix ABC exist. Then CtBtAt = (ABC)t.



Solution. Our hypothesis is matrix ABC exists. To prove our conclusion
CtBtAt = (ABC)t, we must prove (∀i)(∀j)(dij = eij). Since this is a universally
quantified statement, we let i, j be arbitrary integers. We must prove dij = eij
where dij is the ij entry of CtBtAt and eij is the ij entry of (ABC)t.

Proof. Since matrix ABC exists and matrix multiplication is associative, then
ABC = (AB)C = A(BC). Since ABC = A(BC) and ABC exists, then A(BC)
exists. Hence, A exists. Therefore, let A = (aij)m×n. Then A has size m× n.

Since ABC = (AB)C and ABC exists, then (AB)C exists. Hence, AB
exists. Thus, B exists. Since AB exists and A has size m×n, let B = (bij)n×p.
Then AB has size m× p.

Since (AB)C exists, then C exists. Since (AB)C exists and AB has size
m× p, let C = (cij)p×q. Then C has size p× q.

Since AB has size m× p and C has size p× q, then (AB)C has size m× q.
Since (AB)C = ABC, then ABC has size m× q. Thus, (ABC)t has size q×m.

Since C has size p× q, then Ct has size q × p. Since B has size n× p, then
Bt has size p × n. Thus, CtBt has size q × n. Since A has size m × n, then
At has size n×m. Thus, (CtBt)At has size q×m. Since matrix multiplication
is associative, then (CtBt)At = Ct(BtAt) = CtBtAt. Hence, CtBtAt has size
q ×m.

Therefore, matrices CtBtAt and (ABC)t have the same size q ×m.
To prove CtBtAt = (ABC)t, we must prove (∀i ∈ Nq)(∀j ∈ Nm)(dij = eij).

Thus, we let i ∈ Nq and j ∈ Nm be arbitrary integers where dij is the ij entry
of CtBtAt and eij is the ij entry of (ABC)t. We must prove dij = eij .

Observe that

eij of (ABC)t = eji of ABC

= eji of (AB)C

=

p∑
k=1

fjkcki where fjk in AB and cki in C

=

p∑
k=1

ckifjk where cki in C and fjk in AB

=

p∑
k=1

ckifkj where cki in C and fkj in (AB)t

=

p∑
k=1

cikfkj where cik in Ct and fkj in (AB)t

=

p∑
k=1

cikfkj where cik in Ct and fkj in BtAt

= dij of Ct(BtAt)

= dij of CtBtAt
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Exercise 4. Let A = (aij)n×n and B = (Bij)n×n be square diagonal matrices.
Then AB is diagonal.

Solution. Our hypothesis is: A = (aij)n×n is a square diagonal matrix and
B = (Bij)n×n is a square diagonal matrix. To prove our conclusion AB =
(cij)n×n is diagonal, where cij =

∑n
k=1 aikbkj , we let i, j ∈ Nn be arbitrary such

that i 6= j. We must prove (cij)n×n = 0.

Proof. Let A = (aij)n×n be a square diagonal matrix.
Let B = (bij)n×n be a square diagonal matrix.
Let AB = (cij)n×n where cij =

∑n
k=1 aikbkj .

To prove AB is diagonal, we let i, j ∈ Nn be arbitrary such that i 6= j.
We must prove cij = 0.
Since A is diagonal, then for every x, y ∈ Nn such that x 6= y, then axy = 0.

Since B is diagonal, then for every x, y ∈ Nn such that x 6= y, then bxy = 0.
Thus, in particular, if we let x = i and y = j, then if i 6= j, then aij = bij = 0.

Since cij =
∑n

k=1 aikbkj , then k goes from 1 to n. Thus, either k = i or k 6= i
or k = j or k 6= j. If k = i, then since i 6= j, then k 6= j. If k = j, then since
j 6= i, then k 6= i. Hence, either k 6= i or k 6= j.

There are 2 cases to consider.
Case 1: Suppose k 6= i.
Then aik = 0. Then aikbkj = 0 ∗ bkj = 0.
Case 2: Suppose k 6= j.
Then bkj = 0. Then aikbkj = aik ∗ 0 = 0.
Hence, in all cases, the term aikbkj is zero. Since cij is the sum of n such

terms, then cij is the sum of n zeros. Hence, cij = 0, as desired.

Exercise 5. Let S be the set of all n × n matrices with real entries. For all
A,B ∈ S, define a relation ∼ by A ∼ B iff there exists an invertible matrix P
such that B = PAP−1. Then ∼ is an equivalence relation on S.

Proof. Let A ∈ S. Then A is an n × n matrix of real entries. Let I be the
n× n identity matrix. Then I is invertible and AI = IA, so A = IAI−1. Thus,
A ∼ A, so ∼ is reflexive.

Let A,B ∈ S such that A ∼ B. Then A and B are n × n matrices of real
entries and there exists an invertible matrix P such that B = PAP−1. Thus,
P−1B = AP−1, so P−1B(P−1)−1 = A. Since A = P−1B(P−1)−1 and P−1 is
invertible, then B ∼ A. Hence, ∼ is symmetric.

Let A,B,C ∈ S such that A ∼ B and B ∼ C. Then A,B,C are n × n
matrices of real entries and there exists an invertible matrix P such that B =
PAP−1 and there exists an invertible matrix Q such that C = QBQ−1. Thus,

C = Q(PAP−1)Q−1

= (QP )A(P−1Q−1)

= (QP )A(QP )−1.
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The product of invertible matrices is an invertible matrix. Hence, QP is an
invertible matrix. Since QP is an invertible matrix and C = (QP )A(QP )−1,
then A ∼ C. Hence, ∼ is transitive.

Since ∼ is reflexive, symmetric, and transitive, then ∼ is an equivalence
relation on S.

Exercise 6. What are the subspaces of R1?

Solution. We know R1 is a vector space and R1 and the trivial vector space
{~0} are subspaces of R1. Are these the only subspaces of R1? We know R1 =
{(r) : r ∈ R} and if ~r ∈ R1, then ~r = (r) = r and r ∈ R. Let’s assume there
exists a nontrivial subspace of R1 and see what we can deduce.

Proof. Suppose W is a nontrivial subspace of R1. Then by definition of sub-
space, W ⊆ R1 and W is a vector space. Since W is not the trivial vector space,
then ∃~w ∈W that is non-zero. Let ~w ∈ W . Then ~w 6= ~0. Since W ⊆ R1 then
~w ∈ R1. Hence ~w = (w) = w and w ∈ R, by definition of R1. Since ~w 6= ~0
and ~0 = (0) = 0 then w 6= 0. Since R is a field then by definition of field, R is
a ring with unity 1 ∈ R. Since R is a field and w ∈ R is nonzero, then w is a
unit. Hence ∃ 1

w ∈ R such that w · 1
w = 1

w · w = 1 by definition of unit. Thus,
1
w ·w = 1, so 1

w · ~w = 1. Since W is a vector space then W is closed under scalar

multiplication. Hence, 1
w · ~w = ~1 so ~1 ∈W .

Let r ∈ R. Then r = (r) = ~r, so ~r ∈ R1. Since (R,+, ·) is a field then 1 ∈ R
is multiplicative identity. Hence, 1 · r = r · 1 = r by definition of multiplicative
identity. Thus, r · 1 = r. Consequently, r ·~1 = r. Since W is closed under scalar
multiplication then r · ~1 = ~r. Hence, ~r ∈ W . Therefore, ~r ∈ R1 implies ~r ∈ W .
Thus, R1 ⊆W by definition of subset.

Since W ⊆ R1 and R1 ⊆ W then W = R1. Hence any nontrivial subspace
of R1 must be R1 itself. Therefore, the only subspaces of R1 are the trivial
subspace and R1. Thus, R1 does not have any proper subspaces.

Exercise 7. Let ~v1, ~v2 and ~v3 be linearly independent vectors in a vector space
V and let c be a nonzero scalar. Then {~v1, c~v2, ~v3} is linearly independent.

Solution. Our hypothesis is V is a vector space over a field K and ~v1, ~v2 and
~v3 are linearly independent vectors of V and c ∈ K and c 6= 0.

To prove our conclusion {~v1, c~v2, ~v3} is linearly independent, we must prove
for every α1, α2, α3 ∈ K, if α1~v1 + α2(c~v2) + α3~v3 = ~0, then α1 = α2 = α3 = 0.

Thus, we assume α1, α2, α3 ∈ K are arbitrary scalars such that α1~v1 +
α2(c~v2) + α3~v3 = ~0. We must prove α1 = α2 = α3 = 0.

Since ~v1, ~v2 and ~v3 is linearly independent, then for every λ1, λ2, λ3 ∈ K, if
λ1~v1 + λ2~v2 + λ3~v3 = ~0, then λ1 = λ2 = λ3 = 0.

Observe that ~0 = α1~v1 + α2(c~v2) + α3~v3 = α1~v1 + (α2c)~v2 + α3~v3. Since
α2c ∈ K, then let λ1 = α1 and λ2 = α2c and λ3 = α3.
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Proof. Let V be a vector space over a field K. Let {~v1, ~v2, ~v3} be a linearly
independent set of vectors of V . Let c ∈ K and c 6= 0.

Suppose α1, α2, α3 ∈ K are arbitrary scalars such that α1~v1 + α2(c~v2) +
α3~v3 = ~0.

Observe that ~0 = α1~v1 + α2(c~v2) + α3~v3 = α1~v1 + (α2c)~v2 + α3~v3.
Since {~v1, ~v2, ~v3} is linearly independent, then for every λ1, λ2, λ3 ∈ K, if

λ1~v1 + λ2~v2 + λ3~v3 = ~0, then λ1 = λ2 = λ3 = 0.
Observe that α1 ∈ K and α2c ∈ K, and α3 ∈ K.
Hence, in particular, if we let λ1 = α1 and λ2 = α2c and λ3 = α3, then we

have if α1~v1 + (α2c)~v2 + α3~v3 = ~0, then α1 = α2c = α3 = 0.
Since α1~v1 +(α2c)~v2 +α3~v3 = ~0, then by modus ponens, α1 = α2c = α3 = 0.

Hence, α1 = 0 and α3 = 0 and α2c = 0.
Since α2c = 0, then either α2 = 0 or c = 0. Since c 6= 0, by hypothesis, then

it follows that α2 = 0, by disjunctive syllogism.
Since α1 = α2 = α3 = 0, then {~v1, c~v2, ~v3} is linearly independent.

Exercise 8. Let A be any square matrix. Then A is the sum of a symmetric
and antisymmetric matrix.

Solution.
We must prove:
(∀A)(∃B)(∃C)(A = B+C), where A is a square matrix and B is a symmetric

matrix and C is an anti-symmetric matrix.
Let A be an arbitrary square matrix.
We must find a specific matrix B that is symmetric and a specific matrix C

that is anti-symmetric such that A = B + C.
We can work backwards.
Suppose A = B+C for some symmetric matrix B and some anti-symmetric

matrix C. Since B is symmetric, then Bt = B. Since C is anti-symmetric, then
Ct = −C.

Since Ct = −C, then C +Ct = 0. Let A = (aij)n×n. Let B = (bij)n×n. Let
C = (cij)n×n. Assume arbitrary i, j ∈ Nn. Then cij + cji = 0. Either i = j or
i 6= j. If i = j, then 0 = cij + cji = cij + cij = 2cij , so cij = 0. This implies the
principal diagonal of matrix C must be all zeros. If i 6= j, then cij = −cji.

Since A = B + C, then aij = bij + cij . Either i = j or i 6= j.
Suppose i = j. Then cij = 0, so aij = bij . This means the principal diagonal

of matrix B must be the same as the principal diagonal of matrix A.
Suppose i 6= j. Then cij = −cji. Since B = Bt, then bij = bji. Hence, aij =

bij +cij and aji = bji +cji. Thus, aij = bij +cij and aji = bij +cji. Subtracting
both equations, we obtain aij−aji = cij−cji. Thus, aij−aji = cij +cij = 2cij ,

so cij =
aij−aji

2 . Therefore, C = 1
2 (A−At).

Since aij = bij + cij , then bij = aij − cij = aij − 1
2 (aij − aji) = 1

2 (aij + aji).
Therefore, B = 1

2 (A+At).
We should devise some concrete examples for matrices A,B,C that satisfy

the criteria and verify this is the case.
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Now, how can we actually prove this? We must show that B = 1
2 (A + At)

is a symmetric matrix and C = 1
2 (A−At) is an anti-symmetric matrix.

We know that in general, for any square matrix X, X + Xt is symmetric
and X −Xt is anti-symmetric. Hence, in particular, A+At must be symmetric
and A − At must be anti-symmetric. Thus,we must now prove 1

2 (A + At) is a
symmetric and 1

2 (A−At) is anti-symmetric.
This suggest a conjecture: If X is symmetric, is kX symmetric for some

scalar k? Similarly, if X is antisymmetric, is kX anti-symmetric?
We need to prove these lemmas.
Let k ∈ R. Suppose X is a symmetric matrix. Then Xt = X and (kX)t =

k(Xt) = kX. Therefore, kX is symmetric.
Suppose X is an anti-symmetric matrix. Then Xt = −X and (kX)t =

k(Xt) = k(−X) = −kX. Therefore, kX is anti-symmetric.

Proof. Let A be an arbitrary square matrix.
We must find a specific matrix B that is symmetric and a specific matrix C

that is anti-symmetric such that A = B + C.
Let B = 1

2 (A+At) and C = 1
2 (A−At).

If X is any square matrix, then X + Xt is symmetric and X −Xt is anti-
symmetric. Hence, in particular, A + At is symmetric and A − At is anti-
symmetric.

If X is any symmetric matrix, then any scalar multiple of X is symmetric.
Hence, in particular, 1

2 (A+At) is symmetric.
If X is any antisymmetric matrix, then any scalar multiple of X is antisym-

metric. Hence, in particular, 1
2 (A−At) is antisymmetric.

Therefore, B is symmetric and C is anti-symmetric.
Observe that

A =
2A

2

=
A+A

2

=
(A+At +A−At)

2

=
(A+At) + (A−At)

2

=
A+At

2
+
A−At

2
= B + C, as desired.
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