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1 Linear Algebra Exercises

Exercise 1. Let A and B be m x n matrices with A* = Bt. Prove A = B.

Solution. Our hypothesis is A = (a;;)mxn and B = (b;j)mxn and A* = B
To prove our conclusion A = B, we must prove (Vi € N,,,)(Vj € N,,)(ai; = b;j).
Since this is a universally quantified statement, we let i, j be arbitrary integers
such that 1 <4 <m and 1 < j <n. We must prove a;; = b;;. O

Proof. Let A = (a;j)mxn and B = (bij)mxn and A" = B*. To prove A = B, we
must prove (Vi € N,,,)(Vj € Ny,)(a;; = b;;). Matrices A and B have the same
size m x n. Let i € N,,, and j € N,, be arbitrary integers. Let a;; be the ijt"
entry of A. Let b;; be the ij" entry of B. We must prove a;; = by;.

Observe that

Qi of A = Aji of At
bji of Bt
bij of B

O
Exercise 2. If A and B are symmetric square matrices, then A+ B is symmetric.

Solution. Hypothesis is A and B are symmetric square matrices. To prove the
conclusion A+ B is symmetric, we must prove (A+ B)! = A+ B. In order that
A + B exist, it must be true that A and B must have the same size. Since A is
symmetric then A* = A. Since B is symmetric then B* = B. O

Proof. Let A and B be arbitrary symmetric square matrices such that A + B
exists. Since A and B are symmetric, then A* = A and B* = B. To prove
A+ B is symmetric, we must prove (A+ B)! = A+ B. Observe that (A+ B)! =
A+ B'= A+ B. O

Exercise 3. Let matrix ABC exist. Then C*B*A' = (ABC)".



Solution. Our hypothesis is matrix ABC exists. To prove our conclusion
C'B'A' = (ABC)', we must prove (Vi)(Vj)(d;; = e;;). Since this is a universally
quantified statement, we let 7, j be arbitrary integers. We must prove d;; = e;;
where d;; is the ij entry of C*B*A" and e;; is the ij entry of (ABC)". O

Proof. Since matrix ABC' exists and matrix multiplication is associative, then
ABC = (AB)C = A(BC). Since ABC = A(BC) and ABC exists, then A(BC')
exists. Hence, A exists. Therefore, let A = (a;j)mxn. Then A has size m x n.

Since ABC = (AB)C and ABC exists, then (AB)C exists. Hence, AB
exists. Thus, B exists. Since AB exists and A has size m x n, let B = (bi;)nxp-
Then AB has size m X p.

Since (AB)C exists, then C exists. Since (AB)C exists and AB has size
m X p, let C = (¢ij)pxq- Then C has size p x gq.

Since AB has size m X p and C' has size p X ¢, then (AB)C has size m X q.
Since (AB)C = ABC, then ABC has size m x q. Thus, (ABC)! has size q x m.

Since C has size p x ¢, then C! has size ¢ x p. Since B has size n x p, then
B! has size p x n. Thus, C*B! has size ¢ x n. Since A has size m x n, then
At has size n x m. Thus, (C*B?*)A! has size ¢ X m. Since matrix multiplication
is associative, then (C*BY)A! = C*(B*A!) = C*B*A!. Hence, C'B!A! has size
q X m.

Therefore, matrices C*B* A" and (ABC)" have the same size ¢ X m.

To prove C*B'A' = (ABC)*, we must prove (Vi € N,)(Vj € N,,,)(dij = €i5).
Thus, we let i € Ny and j € N, be arbitrary integers where d;; is the ij entry
of C*B'A" and e;; is the ij entry of (ABC)'. We must prove d;; = e;;.

Observe that

€ij of (ABC)t = €y of ABC
= €5 of (AB)C

p
= Z fjk:cki where fjk in AB and ¢; in C
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cki frj where ci; in C' and fi; in (AB)!
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ci.fr; where ¢;, in C* and fi; in (AB)"
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= dij of Ct(BtAt)
= dij of CtBtAt



Exercise 4. Let A = (aij)nxn and B = (B;;)nxn be square diagonal matrices.
Then AB is diagonal.

Solution. Our hypothesis is: A = (ai;)nxn is a square diagonal matrix and
B = (Bij)nxn is a square diagonal matrix. To prove our conclusion AB =
(€ij)nxn is diagonal, where ¢;; = >"7'_| a;byj, we let i, j € N,, be arbitrary such
that ¢ # j. We must prove (¢;j)nxn = 0. O

Proof. Let A = (a;;)nxn be a square diagonal matrix.

Let B = (bij)nxn be a square diagonal matrix.

Let AB = (¢ij)nxn where ¢;j = > 1, aikby;j.

To prove AB is diagonal, we let i, j € N,, be arbitrary such that ¢ # j.

We must prove ¢;; = 0.

Since A is diagonal, then for every z,y € N,, such that « # y, then a,y, = 0.
Since B is diagonal, then for every x,y € N,, such that = # y, then b,, = 0.

Thus, in particular, if welet x = ¢ and y = 7, then if i # j, then a;; = b;; = 0.
Since ¢;; = 22:1 airbrj, then k goes from 1 to n. Thus, either Kk =i or k # 1
or k =jork#j. If k=i, then since i # j, then k # j. If k = j, then since
j # i, then k # i. Hence, either k # i or k # j.

There are 2 cases to consider.

Case 1: Suppose k # i.

Then a;; = 0. Then a;pby; = 0 by; = 0.

Case 2: Suppose k # j.

Then bkj = 0. Then aikbkj = Q;k * 0=0.

Hence, in all cases, the term a;;bx; is zero. Since ¢;; is the sum of n such
terms, then c;; is the sum of n zeros. Hence, ¢;; = 0, as desired. O

Exercise 5. Let S be the set of all n X n matrices with real entries. For all
A, B € S, define a relation ~ by A ~ B iff there exists an invertible matrix P
such that B = PAP~'. Then ~ is an equivalence relation on S.

Proof. Let A € S. Then A is an n x n matrix of real entries. Let I be the
n x n identity matrix. Then I is invertible and Al = IA, so A = IAI~!. Thus,
A~ A, so ~ is reflexive.

Let A, B € S such that A ~ B. Then A and B are n X n matrices of real
entries and there exists an invertible matrix P such that B = PAP~!. Thus,
P 1B = AP ! so P'B(P71)"! = A. Since A= P 'B(P~})~!and P~ !is
invertible, then B ~ A. Hence, ~ is symmetric.

Let A,B,C € S such that A ~ B and B ~ C. Then A, B,C are n X n
matrices of real entries and there exists an invertible matrix P such that B =
PAP~! and there exists an invertible matrix Q such that C' = QBQ~'. Thus,

C = QrAPTHQR™
(QP)A(PTIQTY)
(QP)A(QP)™".



The product of invertible matrices is an invertible matrix. Hence, QP is an
invertible matrix. Since QP is an invertible matrix and C' = (QP)A(QP)™!,
then A ~ C. Hence, ~ is transitive.

Since ~ is reflexive, symmetric, and transitive, then ~ is an equivalence
relation on S. O

Exercise 6. What are the subspaces of R'?

Solution. We know R! is a vector space and R! and the trivial vector space
{6} are subspaces of R'. Are these the only subspaces of R!? We know R! =
{(r) : r € R} and if # € R!, then ¥ = (r) = r and r € R. Let’s assume there
exists a nontrivial subspace of R! and see what we can deduce. O

Proof. Suppose W is a nontrivial subspace of R'. Then by definition of sub-
space, W C R! and W is a vector space. Since W is not the trivial vector space,
then 3@ € W that is non-zero. Let @ € W. Then @ # 0. Since W C R! then
W € R'. Hence @ = (w) = w and w € R, by definition of R!. Since @ # 0
and 0 = (0) = 0 then w # 0. Since R is a field then by definition of field, R is
a ring with unity 1 € R. Since R is a field and w € R is nonzero, then w is a
unit. Hence Eli € R such that w - % = i -w = 1 by definition of unit. Thus,
% ~w =1, so % - = 1. Since W is a vector space then W is closed under scalar
multiplication. Hence, i w=1s0oleW.

Let 7 € R. Then r = (r) = 7, so ¥ € R, Since (R, +,") is a field then 1 € R
is multiplicative identity. Hence, 1 -7 = r -1 = r by definition of multiplicative
identity. Thus, -1 = r. Consequently, 7 - T = r. Since W is closed under scalar
multiplication then r - I = 7. Hence, ¥ € W. Therefore, 7 € R! implies 7 € W.
Thus, R C W by definition of subset.

Since W C R! and R' C W then W = R!. Hence any nontrivial subspace
of R! must be R! itself. Therefore, the only subspaces of R! are the trivial
subspace and R!. Thus, R! does not have any proper subspaces. O

Exercise 7. Let v, U5 and U3 be linearly independent vectors in a vector space
V and let ¢ be a nonzero scalar. Then {7}, ¢, U3} is linearly independent.

Solution. Our hypothesis is V is a vector space over a field K and ¥, v and
U3 are linearly independent vectors of V and ¢ € K and ¢ # 0.

To prove our conclusion {¥;, cUa, U3} is linearly independent, we must prove
for every aq,an, a3 € K, if a1 + as(cth) + asts = 6, then oy = apg = a3 = 0.

Thus, we assume «;,as,a3 € K are arbitrary scalars such that aiv; +
as(cty) + asts = 0. We must prove a; = as = ag = 0.

Since 91,72 and ¥ is linearly independent, then for every A\i, Ao, A3 € K, if
A1U1 + AaUs + A3U3 = 6, then A\{ = Ay = A3 = 0.

Observe that 0 = a17; + ag(cth) + asts = a1th + (ec)Us + as¥s. Since
asc € K, then let Ay = a7 and Ay = asc and A3 = as.

O



Proof. Let V be a vector space over a field K. Let {¥}, 02,73} be a linearly
independent set of vectors of V. Let ¢ € K and ¢ # 0.

Suppose aq, s, a3 € K are arbitrary scalars such that o3¢ + as(cth) +
043173 = 6

Observe that 0 = a17; + o (cls) + asts = a1 + (aac)Vz + asls.

Since {¥), ¥, U3} is linearly independent, then for every Aj, Ao, A3 € K, if
A U1 + AoUs + A3t3 = 6, then \{ = Ay = A3 = 0.

Observe that a; € K and asc € K, and a3 € K.

Hence, in particular, if we let A\; = a; and Ay = asc and A3 = ag, then we
have if ay 01 + (agc)tsy + agts = 6, then oy = ape = a3 = 0.

Since a1 U1 + (ac)Va + a3ty = 6, then by modus ponens, a; = ase = a3 = 0.
Hence, oy = 0 and a3 = 0 and asc = 0.

Since asc = 0, then either as = 0 or ¢ = 0. Since ¢ # 0, by hypothesis, then
it follows that ay = 0, by disjunctive syllogism.

Since a1 = ag = a3 = 0, then {7y, ct, U3} is linearly independent.

O

Exercise 8. Let A be any square matrix. Then A is the sum of a symmetric
and antisymmetric matrix.

Solution.

‘We must prove:

(VA)(3B)(3C)(A = B+C), where A is a square matrix and B is a symmetric
matrix and C' is an anti-symmetric matrix.

Let A be an arbitrary square matrix.

We must find a specific matrix B that is symmetric and a specific matrix C
that is anti-symmetric such that A = B+ C.

We can work backwards.

Suppose A = B+ C for some symmetric matrix B and some anti-symmetric
matrix C. Since B is symmetric, then B = B. Since C is anti-symmetric, then
Ct=-C.

Since C* = —C, then C+C" = 0. Let A = (a;j)nxn- Let B = (bij)nxn. Let
C = (Cij)nxn- Assume arbitrary 7,j € N,,. Then ¢;; + ¢j; = 0. Either i = j or
1# j. If i =75, then 0 = cij +¢ji = cij + ¢ = 2¢45, s0 ¢;; = 0. This implies the
principal diagonal of matrix C must be all zeros. If i # j, then ¢;; = —c¢j;.

Since A = B + C, then a;; = b;; + ¢;;. Either i = j or i # j.

Suppose 7 = j. Then ¢;; = 0, so a;; = b;;. This means the principal diagonal
of matrix B must be the same as the principal diagonal of matrix A.

Suppose i # j. Then ¢;; = —c;;. Since B = B?, then b;; = bj;. Hence, a;; =
bz’j + Cij and aj; = bji +Cji- Thus, ajj = bij +Cij and aj; = bij +Cji- Subtracting
both equations, we obtain a;; —aj; = ¢;; —c¢j;. Thus, a;; —aj; = ¢ + ¢ = 2¢44,
S0 ¢;; = “4-% Therefore, C = (A — A).

Since Q5 = bij + Cij, then bij = Q45 — Cij = Q45 — %(aij — aji) = %(aij + ajl-).
Therefore, B = 1(A + A").

We should devise some concrete examples for matrices A, B, C' that satisfy
the criteria and verify this is the case.



Now, how can we actually prove this? We must show that B = 1(A + A?)
is a symmetric matrix and C' = $(A — A") is an anti-symmetric matrix.

We know that in general, for any square matrix X, X 4+ X? is symmetric
and X — X! is anti-symmetric. Hence, in particular, A+ A* must be symmetric
and A — A! must be anti-symmetric. Thus,we must now prove %(A + A is a
symmetric and 1 (A — A') is anti-symmetric.

This suggest a conjecture: If X is symmetric, is kX symmetric for some
scalar k7 Similarly, if X is antisymmetric, is kX anti-symmetric?

We need to prove these lemmas.

Let k € R. Suppose X is a symmetric matrix. Then X* = X and (kX)*
k(X?') = kX. Therefore, kX is symmetric.

Suppose X is an anti-symmetric matrix. Then X! = —X and (kX)*
k(X') = k(—X) = —kX. Therefore, kX is anti-symmetric.

Proof. Let A be an arbitrary square matrix.

We must find a specific matrix B that is symmetric and a specific matrix C'
that is anti-symmetric such that A = B + C.

Let B=1(A+ A") and C = (A — A).

If X is any square matrix, then X + X? is symmetric and X — X? is anti-
symmetric. Hence, in particular, A + A’ is symmetric and A — A? is anti-
symmetric.

If X is any symmetric matrix, then any scalar multiple of X is symmetric.
Hence, in particular, %(A + A?) is symmetric.

If X is any antisymmetric matrix, then any scalar multiple of X is antisym-
metric. Hence, in particular, %(A — A') is antisymmetric.

Therefore, B is symmetric and C' is anti-symmetric.

Observe that

PR
2
A+ A
B 2
(A4 AT+ A-AY
2

B (A+ A + (A — AY)
a 2
A+ AT A-A
- 2 + 2

= B+ C, as desired.



