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Linear algebra is the study of linear maps on finite dimensional vector spaces.

Matrix Theory

Definition 1. Real Matrix

A m x n real matrix is a rectangular array of m rows and n columns of
real numbers.

Each a;; € R is an entry at row ¢ and column j and 1 < 7 < m and
1<j<n

Let A = (aij)mxn be a m x n matrix where ¢ € N,,, and j € N,,.

Then

aill a12 N Aln

a1 a922 . agn
A =

am1 Am2 .. Qmn

Definition 2. Equal Matrices
Two matrices are equal iff corresponding entries are equal.
Let A= (aij)mxn and B = (bij)mxn~
Equal matrices have the same size.

Definition 3. Matrix Addition

The sum of two matrices is the sum of corresponding entries.

Let A= (aij)mxn and B = (b;;)mxn-

Then the matrix sum is defined by the rule A + B = (¢;;j)mxn where ¢;; =
Qi + bij .

Let k£ € R be a scalar.
Then kA = (kaij)mxn-

Definition 4. Matrix Multiplication
The entry at row ¢ and column j of the matrix product is the dot product
of the i'" row vector of matrix A with the j** column vector of matrix B.



Let A= (aij)mxn and B = (bij)nxp-
Then the matrix product is defined by the rule AB = (¢;;)mxp Where ¢;; =
> e Gikbij -

Definition 5. Transpose of a Matrix

Let A be a matrix.

The transpose of A, denoted A’ is the matrix obtained by transposing the
rows and columns of A.

The " row of A = i*" column of A?.

The j*" column of A = j** row of A*.

Let A= (aij)an with i € N, andj € N,.
Then At = (aﬂ)nxm.

Let A= (aij)mxn.
Then A! is of size n x m, so (A)? is of size m x n.
Hence (A?)! and A have the same size m x n.
Let i € N,,, and j € N,, be arbitrary.
Let a;; be the ij'" entry of A.
Let b;; be the ij*" entry of (A?)L.
Then

bij of (At)t = bji of At
= bij of A
= Qj of A

Therefore (AY)t = A.

Let A= (aij)mxn and B = (bij)mxn
Then A + B is of size m x n, so (A + B)! is of size n x m.
Also, At and B! are each of size n x m, so A’ + Bt is of size n x m.
Hence (A + B)' and A* 4+ B have the same size n X m.
Let i € N, and j € N,;, be arbitrary.
Let ¢;; be the ijt" entry of (A + B)*.
Let d;; be the ij!" entry of A® + Bt
Then

Cij Of (A+B)t = Cji OfA+B
aj; + bj; where aj; in A and bj; in B

= a;; + b;; where a;; in A' and bi; in B
= dij Of At + Bt

Therefore (A + B)! = At + Bt.



Let A= (aij)mxn and B = (bij)nxzr
Then AB is of size m x p, so (AB)" is of size p x m.
Also, Bt is of size p x n and A? is of size n x m, so BtA! is of size p x m.
Hence (AB)* and B'A! have the same size p x m.
Let i € N, and j € N,;, be arbitrary.
Let ¢;; be the ij'" entry of (AB)".
Let d;; be the ij'" entry of B'A*.
Then

Cij of (AB)t = Cyji of AB

n
= E a;kbr; where aji, in A and by; in B
k=1

n
= E ak;jbir where ag; in At and b;), in B!
k=1

n
= Zbikakj where b;;, in Bt and ar; in At
k=1
= dij of BtAt

Therefore (AB)! = B! A",

Definition 6. Square Matrix
Let A = (aij)mxn be a m x n matrix where ¢ € N,,, and j € N,,.
A matrix is square iff m = n.
Therefore, a square matrix has the same number of rows as columns.

Suppose A = (@i;j)mxm 1s a square matrix.
A is symmetric iff A* = A.
A is antisymmetric iff A* = —A.
A is diagonal iff (Vi,j € N,,,)(i # j — a;; = 0).
A is upper triangular iff (Vi,j € N,,,)(¢ > j — a;; = 0).
A is lower triangular iff (Vi,j € Np,,)(i < j — a;; = 0).

A square matrix is diagonal iff it is both upper and lower triangular.
The sum of two square symmetric matrices is symmetric.

Let A= (aij)me.
Then A + A? is symmetric and A — A is antisymmetric.
Observe that (A + A')t = A+ (AN = A"+ A=A+ A
Observe that (A — A')! = [A + (—A")]! = At + (=AYt = At + ((—A)H)! =
At 4 (—A) = Al — A= —(A— A",

Definition 7. Determinant of a Matrix
Let A = (aij)gxg .
The determinant of matrix A is defined by the rule |A| = a11a22 — a12a2;.



Let A and B be 2 x 2 matrices.
Then |AB| = |A||B|.

Definition 8. Identity Matrix

Let n € Z™.

The identity matrix, denoted I,, is an n X n matrix with ones along the
principal diagonal and zeros everywhere else.

Therefore, I, = (6;j)nxn such that for every ,j € Ny,

1, 1=
by =14 o7
0, i#]

The identity matrix is a square matrix.

Let A be a n x n matrix.
Then A= Al = 1A.

Definition 9. Invertible Matrix
Let A be a square matrix.
Let I be the identity matrix.
Then A is invertible iff 3 a matrix B such that AB = BA = 1.

Suppose A is invertible.

Then AB = BA = I for some matrix B.

Since A is invertible, then A = (a;;)nxn-

Let B = (bij)mxp'

Since the product AB is defined, then n X n matrix multiplied by a m x p
matrix implies n = m.

Since I = (0ij)nxn, then n X p=n xn, so p=n.

Hence, B = (bij)nxn, S0 B is a square matrix.

The inverse of an invertible matrix is a square matrix.

Let n € Z™.
Let GL,, be the set of all n x n invertible matrices.
Then GL, = {X : X is an n X n invertible matrix } = general linear
group.
(GL,,-) is a non-abelian group where - = matrix multiplication.
Identity of GL,, is I, = identity matrix.
Inverse of matrix A is matrix A~!, where A~ € GL,, and AA™' = A714 =

Since n x n invertible matrices C n X n matrices C m X n matrices, then
GL, C square matrices C M, xn.



Vector Spaces

Definition 10. Vector Space

Let V = {¢: ¥ is a vector}.

Define binary operation + : V. x V — V by v+ @ € V for all ¥,w € V.
(vector addition)

Let F be a field such that F' = {« : « is a scalar}.

Define binary operation - : F xV — V by av € V for all a € F,o € V
(scalar multiplication).

A vector space V is an abelian group (V,+) with a binary operation -
scalar multiplication defined on V such that for all ;@ € V and for all
«, B € F the following axioms hold:

V1. Associative a(57) = (af)v

V2. Left Distributive «(7 + @) = ot + aw

V3. Right Distributive (a + 8)7 = av + 8¢

V4. Identity 1-v=v

Let V be a vector space over a field F'.
Then V is closed under vector addition and scalar multiplication.
The zero vector 0 is additive identity.
0+0=0
Proposition 11. Let V be a vector space over field K.

Let v eV and o € K be arbitrary.
Then the following are true:

1. 09=0

2.a0=0

3. at=0iffa=0 or =0 (or both)
4. ()7 = -7

Example 12. trivial vector space
The trivial vector space is {0}.

Example 13. R" is a vector space over R
Let n € ZT.
Let a € R.
Let R™ = {(r1,72,73, ..., Tn) : 73 € R}.
Let @, € R" such that ¥ = (v1,v2,...,v,) and W = (w1, wa, ..., Wy).
Define + by:

V1 w1 v1 +wy

V3 w2 Vg + w2
THw=| |+ T |=

U’IL wn Uﬂ Jr wn



Define - by:

(%} vy

(%) [6%)
av =« =

Un AUy,

Then R™ under vector addition and scalar multiplication is an n dimensional
real vector space.

R! =R = {z : z € R} is the real number line.
Subspaces of R! are trivial vector space and R'.
Therefore, R' does not have any proper subspaces.

R? =R x R = {(2,y) : z,y € R} is the Euclidean 2 dimensional plane.
Let V = {(x,y) € R? : y = ma} for some m € R.
Then V is the line with slope m passing through the origin.
Every line in R? with slope m passing through the origin is a vector space.

R =R xR xR = {(2,9,2) : 7,5,z € R} is the Euclidean 3 dimensional
space.
Let V = {(x,9,2) € R®: ax + by + cz = 0} for fixed a,b,c € R.
Then V is the plane passing through the origin with normal vector (a, b, ¢).
Every plane in R? passing through the origin is a vector space.

Example 14. C” is a vector space over C

Let n € ZT.

Let C" = {(21, 22,23, ..., 2n) : 2; € C}.

Then C™ under vector addition and scalar multiplication is an n dimensional
complex vector space.

Example 15. vector space P, of polynomials

Let n € ZT.

Let P,, = the set of polynomials with real coefficients of degree < n.

Let p,q € P,.

Then

p(x) = apz™ + ap_ 12" + ... + a1 + ap and

q(x) = bpa™ + by 12"+ ..+ biw + by for a;, b; € R.

Define p + ¢ by p(z) +q(z) = (an +bp)z" + (an—1 +bp—1)2™ " + ... + (a1 +
bl).’L‘ + (ao + bo)

Then P, is a real vector space.

Example 16. vector space of all m x n matrices with real entries

Let M, xn(R) be the set of all m x n matrices with real entries.

Then Man(R) = {(aij)mxn 1 € R}

M, 5n(R) under matrix addition and scalar multiplication by k& € R is a
vector space over the field R.

M, x»(R) is a real vector space.



Example 17. vector space of all m x n matrices with complex entries
Let M xn(C) be the set of all m x n matrices with complex entries.
Then men((c) = {(aij)an tai; € (C}
M xn(C) under matrix addition and scalar multiplication by k € C is a
vector space over the field C.
M, xn(C) is a complex vector space.

Example 18. F" is a vector space over the field F.

Let n € ZT.

Let F be a field.

Let F" = {(a1, g,y ..., ) : a; € F'}.

Then F™ under vector addition and scalar multiplication is an n-dimensional
vector space over F.

Definition 19. Linear Subspace
Let V be a vector space.
Then W is a subspace of V iff
1. WCV
2. W is a vector space under + and - defined on V'

Let V be a vector space with additive identity leV.
V' is a subspace of V (since V' C V and V is a vector space under + and -
defined on V)
{0} is a subspace of V (since 0 € V and 0+0 =0 € {0} and a0 = 0 € {0} )
A proper subspace is any subspace of V' other than V or the trivial sub-
space.

Let V be a vector space over a field K.
Let W CV and W # ().
Then W is a subspace of V iff
1. Closure under Vector Addition: v+ w € W for all v,W € W
2. Closure under Scalar Multiplication: oty € W for all v € W, a € K

Every subspace of V contains 0.
Thus, if W is a subspace of V', then 0 € W.
Therefore, if W C V but 0 € W, then W cannot be a subspace of V.

Linear Independence

Definition 20. Linear Independence of vectors

Let V be a vector space over a field K.

Let {0y, Vs, ..., 0, } be a set of vectors in V.

The set of vectors is linearly independent iff (V?_,a;, € K)[(> ", _; axt =
0) = (Viz1F)(ax = 0)].



A set of vectors is linearly dependent iff it is not linearly independent.

Observe that —(Vi_,ap € _'K)[(Zzzl T, = 0) = (VI_ k) (o, = 0)] &
oy € K)[(5oy ot = 0)A(Vi k) (ar = 0)] & (Fpoyon € K305, ol =
0) A (Fi=i k) (an # 0)].

Therefore a set of vectors is linearly dependent iff (37_, o, € K)[(3>;_; axty =
0) A (BR=ik)(ax # 0)].

() is linearly independent.
A subset of a linearly independent set of vectors is linearly independent.
A superset of a linearly dependent set of vectors is linearly dependent.

Linear Transformations

Definition 21. Linear Map

Let V, W be arbitrary vector spaces over a field K.

A linear map(linear operator) is a function T : V — W that assigns to
each vector ¥ € V a unique vector Tt € W such that, for all @, € V and for
alla € K:

1. T(d+9) =T(w) + T(¥) (preserves vector addition)

2. T(a?) = aT(U) (preserves scalar multiplication)

A linear map is a homomorphism of vector spaces.

Let V and W be vector spaces over a field K.
Let T be a linear transformation from V to W.
Let ¢, @ € V be arbitrary.
Let «, 8 € K be arbitrary.
Then the following are true:
1. T(at + pw) = oT (V) + BT (w). (preserves linear combinations)
2. T(0) = 0. (preserves zero vector)
3. T(i— ) =Tu—TU. (preserves vector subtraction)

Let T : V + W be defined by T'(7) = 0 for all 7 € V.
Then T'(U7 +02) =0=040=T(01) + T(vh) and T'(a?¥) = 0 = a0 = aT'(9).
Therefore T is a linear map. T'(¢) = 0 is the zero transformation.

Let T : V +— V be defined by T'(¢) = ¥ for all 7 € V.
Then T (@ + ¥) =4+ ¢ =T(d) + T(¥) and T(a?v) = av = oT(7).
Therefore T is a linear map.
T(¥) = ¥ is the identity linear transformation.



Let A =m x n matrix.
Let T : R™ — R™ be defined by T'(Z) = Ax for all & € R™.
Then T(Z + ) = A(Z+¢) = AT+ Ay = TZ + Ty and T(aZ) = A(aZ) =
aAZ = oT(Z).
Therefore T is a linear map.
Hence every m x n matrix gives rise to a linear map from R” to R™.

Let 7 = (z,y) € R? be a vector with angle o with the x axis.
Then z = rcosa and y = rsina where r = /22 + y2.
Let ¥ be rotated counter clockwise by 6.
Let ¥/ = (2/,9') € R? be the final position of .
Then o’ = rcos(a + ) and 3’ = rsin(a + 6).
)

Since sin(a + 0) = sinacosf + cosasind and cos(a 4+ 0) = cosacosf —
sinasinf then ' = rcosacosf — rsinasin = xcosh — ysinh and y' =
rsinacosf 4+ rcosasinf = ycosf + xsinf = xsinf + y cos 6.

Let

cosf —sinf
Ao = [ sinf  cosf ]

Then ¢' = (2/,y’) = AgU. Ay is the rotation matrix.
Example:

Let Ty : R? s R2,
The associated matrix is

Let 7 € R2.
Then 7 = (21, x2).
Thus, TA(?) = A7 = A(zxq,x2) = (ax1 + bxo, cxy + dxs).

Definition 22. Line Reflection
A line reflection in a given line s is a function f defined for every point P
of the plane so that:

1) if P € s, then f(P) = P.

2) if P ¢ s, then f(P) = P’ such that s is the | bisector of segment PP’.
Notes: f,: R? — R2.

fs is a transformation of the plane, so fs is bijective map.

fs is an isometry.

s = axis of reflection

Examples: if axis of reflection is x axis, f(P) = f(z,y) = (z, —y)
if axis of reflection is y axis, f(P) = ( y) = (—x,y)

if axis of reflection is line y = z, f(P) = f(z,y) = (y,x)

if axis of reflection is line y = —z, f(P) = ( y) = (—y, —x)



Definition 23. Isometry
Transformation f is an isometry iff for every pair of points P and @,

P'Q" = PQ where P’ = f(P) and Q' = f(Q).

Notes:

f:R>— R?

f is a transformation of the plane.

An isometry is a geometric transformation of the plane that preserves dis-
tance.

The images of any two points are the same distance as the original two
points.

Facts:

f maps lines onto lines. If s is a line, then f(s) is a line.

f preserves angle measures between lines. m ZA'B’'C' = m LABC.

f preserves perpendicularity between lines. f(s) L f(¢) iff s L .

f preserves parallelism between lines. f(s) || f(¢) iff s || ¢.

Definition 24. Dot product (scalar product)
Let a,b € R™.
The dot product of a = [aj, a9, ...,a,] and b = [by, ba, ..., b,] is defined as

a-b= 2221 akbk.
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