Linear Algebra Notes

Jason Sass

April 25, 2023

Linear algebra is the study of linear maps on finite dimensional vector spaces.

Matrix Theory

Definition 1. Real Matrix

A $m \times n$ real matrix is a rectangular array of m rows and n columns of real numbers.

Each $a_{ij} \in \mathbb{R}$ is an **entry** at row *i* and column *j* and $1 \leq i \leq m$ and $1 \leq j \leq n$.

Let $A = (a_{ij})_{m \times n}$ be a $m \times n$ matrix where $i \in \mathbb{N}_m$ and $j \in \mathbb{N}_n$. Then

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Definition 2. Equal Matrices

Two matrices are equal iff corresponding entries are equal. Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$. Then A = B iff $(\forall i \in \mathbb{N}_m)(\forall j \in \mathbb{N}_n)(a_{ij} = b_{ij})$. Equal matrices have the same size.

Definition 3. Matrix Addition

The sum of two matrices is the sum of corresponding entries. Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$. Then the matrix sum is defined by the rule $A + B = (c_{ij})_{m \times n}$ where $c_{ij} = a_{ij} + b_{ij}$.

Let $k \in \mathbb{R}$ be a scalar. Then $kA = (ka_{ij})_{m \times n}$.

Definition 4. Matrix Multiplication

The entry at row i and column j of the matrix product is the dot product of the i^{th} row vector of matrix A with the j^{th} column vector of matrix B.

Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times p}$. Then the matrix product is defined by the rule $AB = (c_{ij})_{m \times p}$ where $c_{ij} =$

 $\sum_{k=1}^{n} a_{ik} b_{kj} \ .$

Definition 5. Transpose of a Matrix

Let A be a matrix.

The transpose of A, denoted A^t , is the matrix obtained by transposing the rows and columns of A.

The i^{th} row of $A = i^{th}$ column of A^t . The j^{th} column of $A = j^{th}$ row of A^t .

Let $A = (a_{ij})_{m \times n}$ with $i \in \mathbb{N}_m$ and $j \in \mathbb{N}_n$. Then $A^t = (a_{ji})_{n \times m}$.

Let $A = (a_{ij})_{m \times n}$. Then A^t is of size $n \times m$, so $(A^t)^t$ is of size $m \times n$. Hence $(A^t)^t$ and A have the same size $m \times n$. Let $i \in \mathbb{N}_m$ and $j \in \mathbb{N}_n$ be arbitrary. Let a_{ij} be the ij^{th} entry of A. Let b_{ij} be the ij^{th} entry of $(A^t)^t$. Then

$$b_{ij}$$
 of $(A^t)^t = b_{ji}$ of A^t
= b_{ij} of A
= a_{ij} of A

Therefore $(A^t)^t = A$.

Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$. Then A + B is of size $m \times n$, so $(A + B)^t$ is of size $n \times m$. Also, A^t and B^t are each of size $n \times m$, so $A^t + B^t$ is of size $n \times m$. Hence $(A + B)^t$ and $A^t + B^t$ have the same size $n \times m$. Let $i \in \mathbb{N}_n$ and $j \in \mathbb{N}_m$ be arbitrary. Let c_{ij} be the ij^{th} entry of $(A + B)^t$. Let d_{ij} be the ij^{th} entry of $A^t + B^t$. Then

$$c_{ij} \text{ of } (A+B)^t = c_{ji} \text{ of } A+B$$

= $a_{ji} + b_{ji}$ where a_{ji} in A and b_{ji} in B
= $a_{ij} + b_{ij}$ where a_{ij} in A^t and b_{ij} in B^t
= d_{ij} of $A^t + B^t$

Therefore $(A+B)^t = A^t + B^t$.

Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times p}$. Then AB is of size $m \times p$, so $(AB)^t$ is of size $p \times m$. Also, B^t is of size $p \times n$ and A^t is of size $n \times m$, so B^tA^t is of size $p \times m$. Hence $(AB)^t$ and B^tA^t have the same size $p \times m$. Let $i \in \mathbb{N}_p$ and $j \in \mathbb{N}_m$ be arbitrary. Let c_{ij} be the ij^{th} entry of $(AB)^t$. Let d_{ij} be the ij^{th} entry of B^tA^t . Then

$$c_{ij} \text{ of } (AB)^t = c_{ji} \text{ of } AB$$

$$= \sum_{k=1}^n a_{jk} b_{ki} \text{ where } a_{jk} \text{ in } A \text{ and } b_{ki} \text{ in } B$$

$$= \sum_{k=1}^n a_{kj} b_{ik} \text{ where } a_{kj} \text{ in } A^t \text{ and } b_{ik} \text{ in } B^t$$

$$= \sum_{k=1}^n b_{ik} a_{kj} \text{ where } b_{ik} \text{ in } B^t \text{ and } a_{kj} \text{ in } A^t$$

$$= d_{ij} \text{ of } B^t A^t$$

Therefore $(AB)^t = B^t A^t$.

Definition 6. Square Matrix

Let $A = (a_{ij})_{m \times n}$ be a $m \times n$ matrix where $i \in \mathbb{N}_m$ and $j \in \mathbb{N}_n$. A matrix is **square** iff m = n.

Therefore, a square matrix has the same number of rows as columns.

Suppose $A = (a_{ij})_{m \times m}$ is a square matrix.

A is symmetric iff $A^t = A$.

A is antisymmetric iff $A^t = -A$.

A is **diagonal** iff $(\forall i, j \in \mathbb{N}_m) (i \neq j \rightarrow a_{ij} = 0)$.

A is upper triangular iff $(\forall i, j \in \mathbb{N}_m) (i > j \rightarrow a_{ij} = 0)$.

A is lower triangular iff $(\forall i, j \in \mathbb{N}_m) (i < j \rightarrow a_{ij} = 0)$.

A square matrix is diagonal iff it is both upper and lower triangular. The sum of two square symmetric matrices is symmetric.

Let $A = (a_{ij})_{m \times m}$. Then $A + A^t$ is symmetric and $A - A^t$ is antisymmetric. Observe that $(A + A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t$. Observe that $(A - A^t)^t = [A + (-A^t)]^t = A^t + (-A^t)^t = A^t + ((-A)^t)^t = A^t + (-A)^t = A^t + (-A)^t = A^t + (-A)^t$.

Definition 7. Determinant of a Matrix

Let $A = (a_{ij})_{2 \times 2}$.

The **determinant of matrix** A is defined by the rule $|A| = a_{11}a_{22} - a_{12}a_{21}$.

Let A and B be 2×2 matrices. Then |AB| = |A||B|.

Definition 8. Identity Matrix

Let $n \in \mathbb{Z}^+$.

The **identity matrix**, denoted I_n , is an $n \times n$ matrix with ones along the principal diagonal and zeros everywhere else.

Therefore, $I_n = (\delta_{ij})_{n \times n}$ such that for every $i, j \in \mathbb{N}_n$,

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

The identity matrix is a square matrix.

Let A be a $n \times n$ matrix. Then A = AI = IA.

Definition 9. Invertible Matrix

Let A be a square matrix. Let I be the identity matrix. Then A is invertible iff \exists a matrix B such that AB = BA = I.

Suppose A is invertible.

Then AB = BA = I for some matrix B. Since A is invertible, then $A = (a_{ij})_{n \times n}$.

Let $B = (b_{ij})_{m \times p}$.

Since the product AB is defined, then $n \times n$ matrix multiplied by a $m \times p$ matrix implies n = m.

Since $I = (\delta_{ij})_{n \times n}$, then $n \times p = n \times n$, so p = n.

Hence, $B = (b_{ij})_{n \times n}$, so B is a square matrix.

The inverse of an invertible matrix is a square matrix.

Let $n \in \mathbb{Z}^+$.

Let GL_n be the set of all $n \times n$ invertible matrices.

Then $GL_n = \{X : X \text{ is an } n \times n \text{ invertible matrix }\} =$ general linear group.

 (GL_n, \cdot) is a non-abelian group where $\cdot =$ matrix multiplication. Identity of GL_n is $I_n =$ identity matrix.

Inverse of matrix A is matrix A^{-1} , where $A^{-1} \in GL_n$ and $AA^{-1} = A^{-1}A = I$.

Since $n \times n$ invertible matrices $\subset n \times n$ matrices $\subset m \times n$ matrices, then $GL_n \subset$ square matrices $\subset M_{m \times n}$.

Vector Spaces

Definition 10. Vector Space

Let $V = \{ \vec{v} : \vec{v} \text{ is a vector} \}.$

Define binary operation $+ : V \times V \to V$ by $\vec{v} + \vec{w} \in V$ for all $\vec{v}, \vec{w} \in V$. (vector addition)

Let F be a field such that $F = \{\alpha : \alpha \text{ is a scalar}\}.$

Define binary operation $\cdot : F \times V \to V$ by $\alpha \vec{v} \in V$ for all $\alpha \in F, \vec{v} \in V$ (scalar multiplication).

A vector space V is an abelian group (V, +) with a binary operation \cdot scalar multiplication defined on V such that for all $\vec{v}, \vec{w} \in V$ and for all $\alpha, \beta \in F$ the following axioms hold:

V1. Associative $\alpha(\beta \vec{v}) = (\alpha \beta) \vec{v}$

V2. Left Distributive $\alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}$

- V3. Right Distributive $(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$
- V4. Identity $1 \cdot \vec{v} = \vec{v}$

Let V be a vector space over a field F.

Then V is closed under vector addition and scalar multiplication. The zero vector $\vec{0}$ is additive identity. $\vec{0} + \vec{0} = \vec{0}$

Proposition 11. Let V be a vector space over field K.

Let $\vec{v} \in V$ and $\alpha \in K$ be arbitrary. Then the following are true: 1. $0\vec{v} = \vec{0}$ 2. $\alpha\vec{0} = \vec{0}$ 3. $\alpha\vec{v} = \vec{0}$ iff $\alpha = 0$ or $\vec{v} = \vec{0}$ (or both) 4. $(-1)\vec{v} = -\vec{v}$

Example 12. trivial vector space The trivial vector space is $\{\vec{0}\}$.

Example 13. \mathbb{R}^n is a vector space over \mathbb{R}

Let $n \in \mathbb{Z}^+$. Let $\alpha \in \mathbb{R}$. Let $\mathbb{R}^n = \{(r_1, r_2, r_3, ..., r_n) : r_i \in \mathbb{R}\}.$ Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ such that $\vec{v} = (v_1, v_2, ..., v_n)$ and $\vec{w} = (w_1, w_2, ..., w_n).$ Define + by:

$$\vec{v} + \vec{w} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix}$$

Define \cdot by:

$$\alpha \vec{v} = \alpha \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \alpha v_1 \\ \alpha v_2 \\ \vdots \\ \alpha v_n \end{pmatrix}$$

Then \mathbb{R}^n under vector addition and scalar multiplication is an *n* dimensional real vector space.

 $\mathbb{R}^1 = \mathbb{R} = \{x : x \in \mathbb{R}\}\$ is the real number line. Subspaces of \mathbb{R}^1 are trivial vector space and \mathbb{R}^1 . Therefore, \mathbb{R}^1 does not have any proper subspaces.

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) : x, y \in \mathbb{R}\}$ is the Euclidean 2 dimensional plane. Let $V = \{(x, y) \in \mathbb{R}^2 : y = mx\}$ for some $m \in \mathbb{R}$.

Then V is the line with slope m passing through the origin.

Every line in \mathbb{R}^2 with slope *m* passing through the origin is a vector space.

 $\mathbb{R}^3=\mathbb{R}\times\mathbb{R}\times\mathbb{R}=\{(x,y,z):x,y,z\in\mathbb{R}\}$ is the Euclidean 3 dimensional space.

Let $V = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}$ for fixed $a, b, c \in \mathbb{R}$.

Then V is the plane passing through the origin with normal vector (a, b, c). Every plane in \mathbb{R}^3 passing through the origin is a vector space.

Example 14. \mathbb{C}^n is a vector space over \mathbb{C}

Let $n \in \mathbb{Z}^+$.

Let $\mathbb{C}^n = \{(z_1, z_2, z_3, ..., z_n) : z_i \in \mathbb{C}\}.$

Then \mathbb{C}^n under vector addition and scalar multiplication is an n dimensional **complex vector space**.

Example 15. vector space P_n of polynomials

Let $n \in \mathbb{Z}^+$. Let P_n = the set of polynomials with real coefficients of degree $\leq n$. Let $p, q \in P_n$. Then $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ and $q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$ for $a_i, b_i \in \mathbb{R}$. Define p + q by $p(x) + q(x) = (a_n + b_n) x^n + (a_{n-1} + b_{n-1}) x^{n-1} + \dots + (a_1 + b_1) x + (a_0 + b_0)$.

Then P_n is a real vector space.

Example 16. vector space of all $m \times n$ matrices with real entries

Let $M_{m \times n}(\mathbb{R})$ be the set of all $m \times n$ matrices with real entries.

Then $M_{m \times n}(\mathbb{R}) = \{(a_{ij})_{m \times n} : a_{ij} \in \mathbb{R}\}.$

 $M_{m \times n}(\mathbb{R})$ under matrix addition and scalar multiplication by $k \in \mathbb{R}$ is a vector space over the field \mathbb{R} .

 $M_{m \times n}(\mathbb{R})$ is a real vector space.

Example 17. vector space of all $m \times n$ matrices with complex entries

Let $M_{m \times n}(\mathbb{C})$ be the set of all $m \times n$ matrices with complex entries.

Then $M_{m \times n}(\mathbb{C}) = \{(a_{ij})_{m \times n} : a_{ij} \in \mathbb{C}\}.$

 $M_{m \times n}(\mathbb{C})$ under matrix addition and scalar multiplication by $k \in \mathbb{C}$ is a vector space over the field \mathbb{C} .

 $M_{m \times n}(\mathbb{C})$ is a complex vector space.

Example 18. F^n is a vector space over the field F.

Let $n \in \mathbb{Z}^+$.

Let F be a field.

Let $F^n = \{(\alpha_1, \alpha_2, ..., \alpha_n) : \alpha_i \in F\}.$

Then F^n under vector addition and scalar multiplication is an *n*-dimensional vector space over F.

Definition 19. Linear Subspace

Let V be a vector space. Then W is a **subspace of** V iff 1. $W \subseteq V$ 2. W is a vector space under + and \cdot defined on V

Let V be a vector space with additive identity $\vec{0} \in V$.

V is a subspace of V (since $V \subseteq V$ and V is a vector space under + and \cdot defined on V)

 $\{\vec{0}\}\$ is a subspace of V (since $\vec{0} \in V$ and $\vec{0} + \vec{0} = \vec{0} \in \{\vec{0}\}\$ and $\alpha \vec{0} = \vec{0} \in \{\vec{0}\}\$) A **proper subspace** is any subspace of V other than V or the trivial sub-

space.

Let V be a vector space over a field K.

Let $W \subseteq V$ and $W \neq \emptyset$.

Then W is a subspace of V iff

1. Closure under Vector Addition: $\vec{v} + \vec{w} \in W$ for all $\vec{v}, \vec{w} \in W$

2. Closure under Scalar Multiplication: $\alpha \vec{v} \in W$ for all $\vec{v} \in W, \alpha \in K$

Every subspace of V contains $\vec{0}$.

Thus, if W is a subspace of V, then $\vec{0} \in W$. Therefore, if $W \subset V$ but $\vec{0} \notin W$, then W cannot be a subspace of V.

Linear Independence

Definition 20. Linear Independence of vectors

Let V be a vector space over a field K. Let $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ be a set of vectors in V. The set of vectors is **linearly independent** iff $(\forall_{k=1}^n \alpha_k \in K)[(\sum_{k=1}^n \alpha_k \vec{v}_k = \vec{0}) \rightarrow (\forall_{k=1}^n k)(\alpha_k = 0)].$ A set of vectors is **linearly dependent** iff it is not linearly independent.

Observe that $\neg(\forall_{k=1}^{n}\alpha_{k} \in K)[(\sum_{k=1}^{n}\alpha_{k}\vec{v}_{k} = \vec{0}) \rightarrow (\forall_{k=1}^{n}k)(\alpha_{k} = 0)] \Leftrightarrow (\exists_{k=1}^{n}\alpha_{k} \in K)[(\sum_{k=1}^{n}\alpha_{k}\vec{v}_{k} = \vec{0}) \land \neg(\forall_{k=1}^{n}k)(\alpha_{k} = 0)] \Leftrightarrow (\exists_{k=1}^{n}\alpha_{k} \in K)[(\sum_{k=1}^{n}\alpha_{k}\vec{v}_{k} = \vec{0}) \land (\exists_{k=1}^{n}k)(\alpha_{k} \neq 0)].$

Therefore a set of vectors is **linearly dependent** iff $(\exists_{k=1}^{n} \alpha_k \in K)[(\sum_{k=1}^{n} \alpha_k \vec{v}_k = \vec{0}) \land (\exists_{k=1}^{n} k)(\alpha_k \neq 0)].$

 \emptyset is linearly independent.

A subset of a linearly independent set of vectors is linearly independent.

A superset of a linearly dependent set of vectors is linearly dependent.

Linear Transformations

Definition 21. Linear Map

Let V, W be arbitrary vector spaces over a field K.

A linear map(linear operator) is a function $T: V \mapsto W$ that assigns to each vector $\vec{v} \in V$ a unique vector $T\vec{v} \in W$ such that, for all $\vec{u}, \vec{v} \in V$ and for all $\alpha \in K$:

1. $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ (preserves vector addition)

2. $T(\alpha \vec{v}) = \alpha T(\vec{v})$ (preserves scalar multiplication)

A linear map is a homomorphism of vector spaces.

Let V and W be vector spaces over a field K. Let T be a linear transformation from V to W. Let $\vec{v}, \vec{w} \in V$ be arbitrary. Let $\alpha, \beta \in K$ be arbitrary. Then the following are true: 1. $T(\alpha \vec{v} + \beta \vec{w}) = \alpha T(\vec{v}) + \beta T(\vec{w})$. (preserves linear combinations) 2. $T(\vec{0}) = \vec{0}$. (preserves zero vector) 3. $T(\vec{u} - \vec{v}) = T\vec{u} - T\vec{v}$. (preserves vector subtraction)

Let $T: V \mapsto W$ be defined by $T(\vec{v}) = \vec{0}$ for all $\vec{v} \in V$. Then $T(\vec{v}_1 + \vec{v}_2) = \vec{0} = \vec{0} + \vec{0} = T(\vec{v}_1) + T(\vec{v}_2)$ and $T(\alpha \vec{v}) = \vec{0} = \alpha \vec{0} = \alpha T(\vec{v})$. Therefore T is a linear map. $T(\vec{v}) = \vec{0}$ is the **zero transformation**.

Let $T: V \mapsto V$ be defined by $T(\vec{v}) = \vec{v}$ for all $\vec{v} \in V$. Then $T(\vec{u} + \vec{v}) = \vec{u} + \vec{v} = T(\vec{u}) + T(\vec{v})$ and $T(\alpha \vec{v}) = \alpha \vec{v} = \alpha T(\vec{v})$. Therefore T is a linear map. $T(\vec{v}) = \vec{v}$ is the **identity linear transformation**. Let $A = m \times n$ matrix.

Let $T : \mathbb{R}^n \mapsto \mathbb{R}^m$ be defined by $T(\vec{x}) = Ax$ for all $\vec{x} \in \mathbb{R}^n$. Then $T(\vec{x} + \vec{y}) = A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = T\vec{x} + T\vec{y}$ and $T(\alpha \vec{x}) = A(\alpha \vec{x}) = \alpha A\vec{x} = \alpha T(\vec{x})$.

Therefore T is a linear map.

Hence every $m \times n$ matrix gives rise to a linear map from \mathbb{R}^n to \mathbb{R}^m .

Let $\vec{v} = (x, y) \in \mathbb{R}^2$ be a vector with angle α with the x axis.

Then $x = r \cos \alpha$ and $y = r \sin \alpha$ where $r = \sqrt{x^2 + y^2}$. Let \vec{v} be rotated counter clockwise by θ .

Let $\vec{v}' = (x', y') \in \mathbb{R}^2$ be the final position of \vec{v} .

Then $x' = r \cos(\alpha + \theta)$ and $y' = r \sin(\alpha + \theta)$.

Since $\sin(\alpha + \theta) = \sin \alpha \cos \theta + \cos \alpha \sin \theta$ and $\cos(\alpha + \theta) = \cos \alpha \cos \theta - \sin \alpha \sin \theta$ then $x' = r \cos \alpha \cos \theta - r \sin \alpha \sin \theta = x \cos \theta - y \sin \theta$ and $y' = r \sin \alpha \cos \theta + r \cos \alpha \sin \theta = y \cos \theta + x \sin \theta = x \sin \theta + y \cos \theta$.

Let

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Then $\vec{v}' = (x', y') = A_{\theta} \vec{v}$. A_{θ} is the **rotation matrix**. Example:

Let $T_A : \mathbb{R}^2 \to \mathbb{R}^2$.

The associated matrix is

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Let $\overrightarrow{x} \in R^2$. Then $\overrightarrow{x} = (x_1, x_2)$. Thus, $T_A(\overrightarrow{x}) = A \overrightarrow{x} = A(x_1, x_2) = (ax_1 + bx_2, cx_1 + dx_2)$.

Definition 22. Line Reflection

A line reflection in a given line s is a function f defined for every point P of the plane so that:

1) if $P \in s$, then f(P) = P. 2) if $P \notin s$, then f(P) = P' such that s is the \perp bisector of segment $\overline{PP'}$. Notes: $f_s : R^2 \to R^2$. f_s is a transformation of the plane, so f_s is bijective map. f_s is an isometry. s =axis of reflection Examples: if axis of reflection is x axis, f(P) = f(x, y) = (x, -y)if axis of reflection is y axis, f(P) = f(x, y) = (-x, y)if axis of reflection is line y = x, f(P) = f(x, y) = (y, x)if axis of reflection is line y = -x, f(P) = f(x, y) = (-y, -x)

Definition 23. Isometry

Transformation f is an **isometry** iff for every pair of points P and Q, P'Q' = PQ where P' = f(P) and Q' = f(Q).

Notes:

 $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$

f is a transformation of the plane.

An **isometry** is a geometric transformation of the plane that preserves distance.

The images of any two points are the same distance as the original two points.

Facts:

f maps lines onto lines. If s is a line, then f(s) is a line.

f preserves angle measures between lines. m $\angle A'B'C' = m \angle ABC$.

f preserves perpendicularity between lines. $f(s) \perp f(t)$ iff $s \perp t$.

f preserves parallelism between lines. $f(s) \parallel f(t)$ iff $s \parallel t$.

Definition 24. Dot product (scalar product)

Let $a, b \in \mathbb{R}^n$.

The **dot product** of $a = [a_1, a_2, ..., a_n]$ and $b = [b_1, b_2, ..., b_n]$ is defined as $a \cdot b = \sum_{k=1}^n a_k b_k$.