Linear Algebra Notes

Jason Sass

April 25, 2023

Linear algebra is the study of linear maps on finite dimensional vector spaces.

Matrix Theory

Definition 1. Real Matrix

A $m \times n$ real matrix is a rectangular array of m rows and n columns of real numbers.

Each $a_{i j} \in \mathbb{R}$ is an entry at row i and column j and $1 \leq i \leq m$ and $1 \leq j \leq n$.

Let $A=\left(a_{i j}\right)_{m \times n}$ be a $m \times n$ matrix where $i \in \mathbb{N}_{m}$ and $j \in \mathbb{N}_{n}$.
Then

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Definition 2. Equal Matrices

Two matrices are equal iff corresponding entries are equal.
Let $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{m \times n}$.
Then $A=B$ iff $\left(\forall i \in \mathbb{N}_{m}\right)\left(\forall j \in \mathbb{N}_{n}\right)\left(a_{i j}=b_{i j}\right)$.
Equal matrices have the same size.

Definition 3. Matrix Addition

The sum of two matrices is the sum of corresponding entries.
Let $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{m \times n}$.
Then the matrix sum is defined by the rule $A+B=\left(c_{i j}\right)_{m \times n}$ where $c_{i j}=$ $a_{i j}+b_{i j}$.

Let $k \in \mathbb{R}$ be a scalar.
Then $k A=\left(k a_{i j}\right)_{m \times n}$.

Definition 4. Matrix Multiplication

The entry at row i and column j of the matrix product is the dot product of the $i^{t h}$ row vector of matrix A with the $j^{t h}$ column vector of matrix B.

Let $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{n \times p}$.
Then the matrix product is defined by the rule $A B=\left(c_{i j}\right)_{m \times p}$ where $c_{i j}=$ $\sum_{k=1}^{n} a_{i k} b_{k j}$.

Definition 5. Transpose of a Matrix

Let A be a matrix.
The transpose of A, denoted A^{t}, is the matrix obtained by transposing the rows and columns of A.

The $i^{\text {th }}$ row of $A=i^{\text {th }}$ column of A^{t}.
The $j^{\text {th }}$ column of $A=j^{\text {th }}$ row of A^{t}.
Let $A=\left(a_{i j}\right)_{m \times n}$ with $i \in \mathbb{N}_{m}$ and $j \in \mathbb{N}_{n}$.
Then $A^{t}=\left(a_{j i}\right)_{n \times m}$.

Let $A=\left(a_{i j}\right)_{m \times n}$.
Then A^{t} is of size $n \times m$, so $\left(A^{t}\right)^{t}$ is of size $m \times n$.
Hence $\left(A^{t}\right)^{t}$ and A have the same size $m \times n$.
Let $i \in \mathbb{N}_{m}$ and $j \in \mathbb{N}_{n}$ be arbitrary.
Let $a_{i j}$ be the $i j^{t h}$ entry of A.
Let $b_{i j}$ be the $i j^{t h}$ entry of $\left(A^{t}\right)^{t}$.
Then

$$
\begin{aligned}
b_{i j} \text { of }\left(A^{t}\right)^{t} & =b_{j i} \text { of } A^{t} \\
& =b_{i j} \text { of } A \\
& =a_{i j} \text { of } A
\end{aligned}
$$

Therefore $\left(A^{t}\right)^{t}=A$.
Let $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{m \times n}$.
Then $A+B$ is of size $m \times n$, so $(A+B)^{t}$ is of size $n \times m$.
Also, A^{t} and B^{t} are each of size $n \times m$, so $A^{t}+B^{t}$ is of size $n \times m$.
Hence $(A+B)^{t}$ and $A^{t}+B^{t}$ have the same size $n \times m$.
Let $i \in \mathbb{N}_{n}$ and $j \in \mathbb{N}_{m}$ be arbitrary.
Let $c_{i j}$ be the $i j^{t h}$ entry of $(A+B)^{t}$.
Let $d_{i j}$ be the $i j^{t h}$ entry of $A^{t}+B^{t}$.
Then

$$
\begin{aligned}
c_{i j} \text { of }(A+B)^{t} & =c_{j i} \text { of } A+B \\
& =a_{j i}+b_{j i} \text { where } a_{j i} \text { in } A \text { and } b_{j i} \text { in } B \\
& =a_{i j}+b_{i j} \text { where } a_{i j} \text { in } A^{t} \text { and } b_{i j} \text { in } B^{t} \\
& =d_{i j} \text { of } A^{t}+B^{t}
\end{aligned}
$$

Therefore $(A+B)^{t}=A^{t}+B^{t}$.

Let $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{n \times p}$.
Then $A B$ is of size $m \times p$, so $(A B)^{t}$ is of size $p \times m$.
Also, B^{t} is of size $p \times n$ and A^{t} is of size $n \times m$, so $B^{t} A^{t}$ is of size $p \times m$.
Hence $(A B)^{t}$ and $B^{t} A^{t}$ have the same size $p \times m$.
Let $i \in \mathbb{N}_{p}$ and $j \in \mathbb{N}_{m}$ be arbitrary.
Let $c_{i j}$ be the $i j^{t h}$ entry of $(A B)^{t}$.
Let $d_{i j}$ be the $i j^{t h}$ entry of $B^{t} A^{t}$.
Then

$$
\begin{aligned}
c_{i j} \text { of }(A B)^{t} & =c_{j i} \text { of } A B \\
& =\sum_{k=1}^{n} a_{j k} b_{k i} \text { where } a_{j k} \text { in } A \text { and } b_{k i} \text { in } B \\
& =\sum_{k=1}^{n} a_{k j} b_{i k} \text { where } a_{k j} \text { in } A^{t} \text { and } b_{i k} \text { in } B^{t} \\
& =\sum_{k=1}^{n} b_{i k} a_{k j} \text { where } b_{i k} \text { in } B^{t} \text { and } a_{k j} \text { in } A^{t} \\
& =d_{i j} \text { of } B^{t} A^{t}
\end{aligned}
$$

Therefore $(A B)^{t}=B^{t} A^{t}$.

Definition 6. Square Matrix

Let $A=\left(a_{i j}\right)_{m \times n}$ be a $m \times n$ matrix where $i \in \mathbb{N}_{m}$ and $j \in \mathbb{N}_{n}$.
A matrix is square iff $m=n$.
Therefore, a square matrix has the same number of rows as columns.

Suppose $A=\left(a_{i j}\right)_{m \times m}$ is a square matrix.
A is symmetric iff $A^{t}=A$.
A is antisymmetric iff $A^{t}=-A$.
A is diagonal iff $\left(\forall i, j \in \mathbb{N}_{m}\right)\left(i \neq j \rightarrow a_{i j}=0\right)$.
A is upper triangular iff $\left(\forall i, j \in \mathbb{N}_{m}\right)\left(i>j \rightarrow a_{i j}=0\right)$.
A is lower triangular iff $\left(\forall i, j \in \mathbb{N}_{m}\right)\left(i<j \rightarrow a_{i j}=0\right)$.

A square matrix is diagonal iff it is both upper and lower triangular.
The sum of two square symmetric matrices is symmetric.

Let $A=\left(a_{i j}\right)_{m \times m}$.
Then $A+A^{t}$ is symmetric and $A-A^{t}$ is antisymmetric.
Observe that $\left(A+A^{t}\right)^{t}=A^{t}+\left(A^{t}\right)^{t}=A^{t}+A=A+A^{t}$.
Observe that $\left(A-A^{t}\right)^{t}=\left[A+\left(-A^{t}\right)\right]^{t}=A^{t}+\left(-A^{t}\right)^{t}=A^{t}+\left((-A)^{t}\right)^{t}=$ $A^{t}+(-A)=A^{t}-A=-\left(A-A^{t}\right)$.

Definition 7. Determinant of a Matrix

Let $A=\left(a_{i j}\right)_{2 \times 2}$.
The determinant of matrix A is defined by the rule $|A|=a_{11} a_{22}-a_{12} a_{21}$.

Let A and B be 2×2 matrices.
Then $|A B|=|A||B|$.

Definition 8. Identity Matrix

Let $n \in \mathbb{Z}^{+}$.
The identity matrix, denoted I_{n}, is an $n \times n$ matrix with ones along the principal diagonal and zeros everywhere else.

Therefore, $I_{n}=\left(\delta_{i j}\right)_{n \times n}$ such that for every $i, j \in \mathbb{N}_{n}$,

$$
\delta_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

The identity matrix is a square matrix.

Let A be a $n \times n$ matrix.
Then $A=A I=I A$.

Definition 9. Invertible Matrix

Let A be a square matrix.
Let I be the identity matrix.
Then A is invertible iff \exists a matrix B such that $A B=B A=I$.

Suppose A is invertible.
Then $A B=B A=I$ for some matrix B.
Since A is invertible, then $A=\left(a_{i j}\right)_{n \times n}$.
Let $B=\left(b_{i j}\right)_{m \times p}$.
Since the product $A B$ is defined, then $n \times n$ matrix multiplied by a $m \times p$ matrix implies $n=m$.

Since $I=\left(\delta_{i j}\right)_{n \times n}$, then $n \times p=n \times n$, so $p=n$.
Hence, $B=\left(b_{i j}\right)_{n \times n}$, so B is a square matrix.
The inverse of an invertible matrix is a square matrix.

Let $n \in \mathbb{Z}^{+}$.
Let $G L_{n}$ be the set of all $n \times n$ invertible matrices.
Then $G L_{n}=\{X: X$ is an $n \times n$ invertible matrix $\}=$ general linear group.
$\left(G L_{n}, \cdot\right)$ is a non-abelian group where $\cdot=$ matrix multiplication.
Identity of $G L_{n}$ is $I_{n}=$ identity matrix.
Inverse of matrix A is matrix A^{-1}, where $A^{-1} \in G L_{n}$ and $A A^{-1}=A^{-1} A=$
I.
Since $n \times n$ invertible matrices $\subset n \times n$ matrices $\subset m \times n$ matrices, then $G L_{n} \subset$ square matrices $\subset M_{m \times n}$.

Vector Spaces

Definition 10. Vector Space

Let $V=\{\vec{v}: \vec{v}$ is a vector $\}$.
Define binary operation $+: V \times V \rightarrow V$ by $\vec{v}+\vec{w} \in V$ for all $\vec{v}, \vec{w} \in V$. (vector addition)

Let F be a field such that $F=\{\alpha: \alpha$ is a scalar $\}$.
Define binary operation $\cdot: F \times V \rightarrow V$ by $\alpha \vec{v} \in V$ for all $\alpha \in F, \vec{v} \in V$ (scalar multiplication).

A vector space V is an abelian group $(V,+)$ with a binary operation . scalar multiplication defined on V such that for all $\vec{v}, \vec{w} \in V$ and for all $\alpha, \beta \in F$ the following axioms hold:

V1. Associative $\alpha(\beta \vec{v})=(\alpha \beta) \vec{v}$
V2. Left Distributive $\alpha(\vec{v}+\vec{w})=\alpha \vec{v}+\alpha \vec{w}$
V3. Right Distributive $(\alpha+\beta) \vec{v}=\alpha \vec{v}+\beta \vec{v}$
V4. Identity $1 \cdot \vec{v}=\vec{v}$

Let V be a vector space over a field F.
Then V is closed under vector addition and scalar multiplication.
The zero vector $\overrightarrow{0}$ is additive identity.
$\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$
Proposition 11. Let V be a vector space over field K.
Let $\vec{v} \in V$ and $\alpha \in K$ be arbitrary.
Then the following are true:

1. $0 \vec{v}=\overrightarrow{0}$
2. $\alpha \overrightarrow{0}=\overrightarrow{0}$
3. $\alpha \vec{v}=\overrightarrow{0}$ iff $\alpha=0$ or $\vec{v}=\overrightarrow{0}$ (or both)
4. $(-1) \vec{v}=-\vec{v}$

Example 12. trivial vector space
The trivial vector space is $\{\overrightarrow{0}\}$.
Example 13. \mathbb{R}^{n} is a vector space over \mathbb{R}
Let $n \in \mathbb{Z}^{+}$.
Let $\alpha \in \mathbb{R}$.
Let $\mathbb{R}^{n}=\left\{\left(r_{1}, r_{2}, r_{3}, \ldots, r_{n}\right): r_{i} \in \mathbb{R}\right\}$.
Let $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ such that $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$.
Define + by:

$$
\vec{v}+\vec{w}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)+\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)=\left(\begin{array}{c}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right)
$$

Define • by:

$$
\alpha \vec{v}=\alpha\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
\alpha v_{1} \\
\alpha v_{2} \\
\vdots \\
\alpha v_{n}
\end{array}\right)
$$

Then \mathbb{R}^{n} under vector addition and scalar multiplication is an n dimensional real vector space.
$\mathbb{R}^{1}=\mathbb{R}=\{x: x \in \mathbb{R}\}$ is the real number line.
Subspaces of \mathbb{R}^{1} are trivial vector space and \mathbb{R}^{1}.
Therefore, \mathbb{R}^{1} does not have any proper subspaces.
$\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y): x, y \in \mathbb{R}\}$ is the Euclidean 2 dimensional plane.
Let $V=\left\{(x, y) \in \mathbb{R}^{2}: y=m x\right\}$ for some $m \in \mathbb{R}$.
Then V is the line with slope m passing through the origin.
Every line in \mathbb{R}^{2} with slope m passing through the origin is a vector space.
$\mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}=\{(x, y, z): x, y, z \in \mathbb{R}\}$ is the Euclidean 3 dimensional space.

Let $V=\left\{(x, y, z) \in \mathbb{R}^{3}: a x+b y+c z=0\right\}$ for fixed $a, b, c \in \mathbb{R}$.
Then V is the plane passing through the origin with normal vector (a, b, c).
Every plane in \mathbb{R}^{3} passing through the origin is a vector space.

Example 14. \mathbb{C}^{n} is a vector space over \mathbb{C}

Let $n \in \mathbb{Z}^{+}$.
Let $\mathbb{C}^{n}=\left\{\left(z_{1}, z_{2}, z_{3}, \ldots, z_{n}\right): z_{i} \in \mathbb{C}\right\}$.
Then \mathbb{C}^{n} under vector addition and scalar multiplication is an n dimensional complex vector space.

Example 15. vector space P_{n} of polynomials

Let $n \in \mathbb{Z}^{+}$.
Let $P_{n}=$ the set of polynomials with real coefficients of degree $\leq n$.
Let $p, q \in P_{n}$.
Then
$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ and $q(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}$ for $a_{i}, b_{i} \in \mathbb{R}$.
Define $p+q$ by $p(x)+q(x)=\left(a_{n}+b_{n}\right) x^{n}+\left(a_{n-1}+b_{n-1}\right) x^{n-1}+\ldots+\left(a_{1}+\right.$ $\left.b_{1}\right) x+\left(a_{0}+b_{0}\right)$.

Then P_{n} is a real vector space.
Example 16. vector space of all $m \times n$ matrices with real entries
Let $M_{m \times n}(\mathbb{R})$ be the set of all $m \times n$ matrices with real entries.
Then $M_{m \times n}(\mathbb{R})=\left\{\left(a_{i j}\right)_{m \times n}: a_{i j} \in \mathbb{R}\right\}$.
$M_{m \times n}(\mathbb{R})$ under matrix addition and scalar multiplication by $k \in \mathbb{R}$ is a vector space over the field \mathbb{R}.
$M_{m \times n}(\mathbb{R})$ is a real vector space.

Example 17. vector space of all $m \times n$ matrices with complex entries Let $M_{m \times n}(\mathbb{C})$ be the set of all $m \times n$ matrices with complex entries. Then $M_{m \times n}(\mathbb{C})=\left\{\left(a_{i j}\right)_{m \times n}: a_{i j} \in \mathbb{C}\right\}$.
$M_{m \times n}(\mathbb{C})$ under matrix addition and scalar multiplication by $k \in \mathbb{C}$ is a vector space over the field \mathbb{C}.
$M_{m \times n}(\mathbb{C})$ is a complex vector space.
Example 18. F^{n} is a vector space over the field F.
Let $n \in \mathbb{Z}^{+}$.
Let F be a field.
Let $F^{n}=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): \alpha_{i} \in F\right\}$.
Then F^{n} under vector addition and scalar multiplication is an n-dimensional vector space over F.

Definition 19. Linear Subspace

Let V be a vector space.
Then W is a subspace of V iff

1. $W \subseteq V$
2. W is a vector space under + and \cdot defined on V

Let V be a vector space with additive identity $\overrightarrow{0} \in V$.
V is a subspace of V (since $V \subseteq V$ and V is a vector space under + and . defined on V)
$\{\overrightarrow{0}\}$ is a subspace of V (since $\overrightarrow{0} \in V$ and $\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} \in\{\overrightarrow{0}\}$ and $\alpha \overrightarrow{0}=\overrightarrow{0} \in\{\overrightarrow{0}\}$)
A proper subspace is any subspace of V other than V or the trivial subspace.

Let V be a vector space over a field K.
Let $W \subseteq V$ and $W \neq \emptyset$.
Then W is a subspace of V iff

1. Closure under Vector Addition: $\vec{v}+\vec{w} \in W$ for all $\vec{v}, \vec{w} \in W$
2. Closure under Scalar Multiplication: $\alpha \vec{v} \in W$ for all $\vec{v} \in W, \alpha \in K$

Every subspace of V contains $\overrightarrow{0}$.
Thus, if W is a subspace of V, then $\overrightarrow{0} \in W$.
Therefore, if $W \subset V$ but $\overrightarrow{0} \notin W$, then W cannot be a subspace of V.

Linear Independence

Definition 20. Linear Independence of vectors

Let V be a vector space over a field K.
Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be a set of vectors in V.
The set of vectors is linearly independent iff $\left(\forall_{k=1}^{n} \alpha_{k} \in K\right)\left[\left(\sum_{k=1}^{n} \alpha_{k} \vec{v}_{k}=\right.\right.$ $\left.\overrightarrow{0}) \rightarrow\left(\forall_{k=1}^{n} k\right)\left(\alpha_{k}=0\right)\right]$.

A set of vectors is linearly dependent iff it is not linearly independent.
Observe that $\neg\left(\forall_{k=1}^{n} \alpha_{k} \in K\right)\left[\left(\sum_{k=1}^{n} \alpha_{k} \vec{v}_{k}=\overrightarrow{0}\right) \rightarrow\left(\forall_{k=1}^{n} k\right)\left(\alpha_{k}=0\right)\right] \Leftrightarrow$ $\left(\exists_{k=1}^{n} \alpha_{k} \in K\right)\left[\left(\sum_{k=1}^{n} \alpha_{k} \vec{v}_{k}=\overrightarrow{0}\right) \wedge \neg\left(\forall_{k=1}^{n=1} k\right)\left(\alpha_{k}=0\right)\right] \Leftrightarrow\left(\exists_{k=1}^{n} \alpha_{k} \in K\right)\left[\left(\sum_{k=1}^{n} \alpha_{k} \vec{v}_{k}=\right.\right.$ $\left.\overrightarrow{0}) \wedge\left(\exists_{k=1}^{n} k\right)\left(\alpha_{k} \neq 0\right)\right]$.

Therefore a set of vectors is linearly dependent iff $\left(\exists_{k=1}^{n} \alpha_{k} \in K\right)\left[\left(\sum_{k=1}^{n} \alpha_{k} \vec{v}_{k}=\right.\right.$ $\left.\overrightarrow{0}) \wedge\left(\exists_{k=1}^{n} k\right)\left(\alpha_{k} \neq 0\right)\right]$.
\emptyset is linearly independent.
A subset of a linearly independent set of vectors is linearly independent.
A superset of a linearly dependent set of vectors is linearly dependent.

Linear Transformations

Definition 21. Linear Map

Let V, W be arbitrary vector spaces over a field K.
A linear map(linear operator) is a function $T: V \mapsto W$ that assigns to each vector $\vec{v} \in V$ a unique vector $T \vec{v} \in W$ such that, for all $\vec{u}, \vec{v} \in V$ and for all $\alpha \in K$:

1. $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ (preserves vector addition)
2. $T(\alpha \vec{v})=\alpha T(\vec{v})$ (preserves scalar multiplication)

A linear map is a homomorphism of vector spaces.

Let V and W be vector spaces over a field K.
Let T be a linear transformation from V to W.
Let $\vec{v}, \vec{w} \in V$ be arbitrary.
Let $\alpha, \beta \in K$ be arbitrary.
Then the following are true:

1. $T(\alpha \vec{v}+\beta \vec{w})=\alpha T(\vec{v})+\beta T(\vec{w})$. (preserves linear combinations)
2. $T(\overrightarrow{0})=\overrightarrow{0}$. (preserves zero vector)
3. $T(\vec{u}-\vec{v})=T \vec{u}-T \vec{v}$. (preserves vector subtraction)

Let $T: V \mapsto W$ be defined by $T(\vec{v})=\overrightarrow{0}$ for all $\vec{v} \in V$.
Then $T\left(\vec{v}_{1}+\vec{v}_{2}\right)=\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)$ and $T(\alpha \vec{v})=\overrightarrow{0}=\alpha \overrightarrow{0}=\alpha T(\vec{v})$.
Therefore T is a linear map. $T(\vec{v})=\overrightarrow{0}$ is the zero transformation.

Let $T: V \mapsto V$ be defined by $T(\vec{v})=\vec{v}$ for all $\vec{v} \in V$.
Then $T(\vec{u}+\vec{v})=\vec{u}+\vec{v}=T(\vec{u})+T(\vec{v})$ and $T(\alpha \vec{v})=\alpha \vec{v}=\alpha T(\vec{v})$.
Therefore T is a linear map.
$T(\vec{v})=\vec{v}$ is the identity linear transformation.

Let $A=m \times n$ matrix.
Let $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be defined by $T(\vec{x})=A x$ for all $\vec{x} \in \mathbb{R}^{n}$.
Then $T(\vec{x}+\vec{y})=A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=T \vec{x}+T \vec{y}$ and $T(\alpha \vec{x})=A(\alpha \vec{x})=$ $\alpha A \vec{x}=\alpha T(\vec{x})$.

Therefore T is a linear map.
Hence every $m \times n$ matrix gives rise to a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}.
Let $\vec{v}=(x, y) \in \mathbb{R}^{2}$ be a vector with angle α with the x axis.
Then $x=r \cos \alpha$ and $y=r \sin \alpha$ where $r=\sqrt{x^{2}+y^{2}}$.
Let \vec{v} be rotated counter clockwise by θ.
Let $\vec{v}^{\prime}=\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ be the final position of \vec{v}.
Then $x^{\prime}=r \cos (\alpha+\theta)$ and $y^{\prime}=r \sin (\alpha+\theta)$.
Since $\sin (\alpha+\theta)=\sin \alpha \cos \theta+\cos \alpha \sin \theta$ and $\cos (\alpha+\theta)=\cos \alpha \cos \theta-$ $\sin \alpha \sin \theta$ then $x^{\prime}=r \cos \alpha \cos \theta-r \sin \alpha \sin \theta=x \cos \theta-y \sin \theta$ and $y^{\prime}=$ $r \sin \alpha \cos \theta+r \cos \alpha \sin \theta=y \cos \theta+x \sin \theta=x \sin \theta+y \cos \theta$.

Let

$$
A_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Then $\vec{v}^{\prime}=\left(x^{\prime}, y^{\prime}\right)=A_{\theta} \vec{v} . A_{\theta}$ is the rotation matrix.
Example:
Let $T_{A}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$.
The associated matrix is

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Let $\vec{x} \in R^{2}$.
Then $\vec{x}=\left(x_{1}, x_{2}\right)$.
Thus, $T_{A}(\vec{x})=A \vec{x}=A\left(x_{1}, x_{2}\right)=\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right)$.

Definition 22. Line Reflection

A line reflection in a given line s is a function f defined for every point P of the plane so that:

1) if $P \in s$, then $f(P)=P$.
2) if $P \notin s$, then $f(P)=P^{\prime}$ such that s is the \perp bisector of segment $\overline{P P^{\prime}}$.

Notes: $f_{s}: R^{2} \rightarrow R^{2}$.
f_{s} is a transformation of the plane, so f_{s} is bijective map.
f_{s} is an isometry.
$s=$ axis of reflection
Examples: if axis of reflection is x axis, $f(P)=f(x, y)=(x,-y)$
if axis of reflection is y axis, $f(P)=f(x, y)=(-x, y)$
if axis of reflection is line $y=x, f(P)=f(x, y)=(y, x)$
if axis of reflection is line $y=-x, f(P)=f(x, y)=(-y,-x)$

Definition 23. Isometry
Transformation f is an isometry iff for every pair of points P and Q, $P^{\prime} Q^{\prime}=P Q$ where $P^{\prime}=f(P)$ and $Q^{\prime}=f(Q)$.

Notes:
$f: R^{2} \mapsto R^{2}$
f is a transformation of the plane.
An isometry is a geometric transformation of the plane that preserves distance.

The images of any two points are the same distance as the original two points.

Facts:
f maps lines onto lines. If s is a line, then $f(s)$ is a line.
f preserves angle measures between lines. $\mathrm{m} \angle A^{\prime} B^{\prime} C^{\prime}=\mathrm{m} \angle A B C$.
f preserves perpendicularity between lines. $f(s) \perp f(t)$ iff $s \perp t$.
f preserves parallelism between lines. $f(s) \| f(t)$ iff $s \| t$.
Definition 24. Dot product (scalar product)
Let $a, b \in \mathbb{R}^{n}$.
The dot product of $a=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $b=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ is defined as $a \cdot b=\sum_{k=1}^{n} a_{k} b_{k}$.

