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Vector Spaces

Theorem 1. alternate definition of a vector space

Let V be a set.

Define binary operation + : VXV = V by v+ € V for oll v,0 € V.
(vector addition)

Let F be a field.

Define function - : FxV -V by A€V forall X € F and for all v € V.
(scalar multiplication)

Then (V,+,-) is a vector space over a field F iff

1. (V,4) is an abelian group.

2. Associativity of scalar multiplication with field multiplication

a(BV) = (aB)¥ for all U € V and for all a, 5 € F.

3. Left distributive law of scalar multiplication over vector addition

MU+ W) = AT+ M for all U,0 € V and for all A € F.

4. Right distributive law of scalar multiplication over scalar addition

(a+ B)0 = at+ B for all U €V and for all a, f € F.

5. 1 € F is a multiplicative identity for scalar multiplication.

1- =79 forallveV.

Proof. Suppose (V,+,-) is a vector space over F.

Then vector addition is associative and commutative, and there exists a right
additive identity in V', and every element of V has a right additive inverse, and
associativity of scalar multiplication with field multiplication holds, and the left
distributive law of scalar multiplication over vector addition holds, and the right
distributive law of scalar multiplication over scalar addition holds, and 1 € F'is
a multiplicative identity for scalar multiplication.

Since vector addition is a binary operation on V', and vector addition is asso-
ciative, and there is a right additive identity in V', and every element of V' has
a right additive inverse, then (V,+) is a group, by the right-sided definition of
group.

Since (V,+) is a group, and vector addition is commutative, then (V,+) is
an abelian group.



Therefore, (V,+) is an abelian group, and associativity of scalar multiplica-
tion with field multiplication holds, and the left distributive law of scalar mul-
tiplication over vector addition holds, and the right distributive law of scalar
multiplication over scalar addition holds, and 1 € F' is a multiplicative identity
for scalar multiplication, as desired.

Conversely, suppose (V,+) is an abelian group, and associativity of scalar
multiplication with field multiplication holds, and the left distributive law of
scalar multiplication over vector addition holds, and the right distributive law
of scalar multiplication over scalar addition holds, and 1 € F' is a multiplicative
identity for scalar multiplication.

Since (V,+) is an abelian group, then vector addition is associative and
commutative, and there is an additive identity in V', and every element of V'
has an additive inverse.

Since there is an additive identity in V, then there exists 0 € V such that
T+0=0+7=0forall ¥ € V, so there exists 0 € V such that 7+ 0 = 7 for all
veV.

Hence, 0 € V is a right additive identity.

Since every element of V' has an additive inverse, then for every ¥ € V, there
exists —@ € V such that 74 (—7) = —7+7 = 0, so for every ¥ € V, there exists
—7 € V such that 7+ (—7) = 0.

Hence, every element of V' has a right additive inverse.

Since vector addition is a binary operation on V defined by + : VxV — V 0+
W € V for all ¥, w € V, and scalar multiplication is a function F'xV — V defined
by A7 € V for all A € F and for all ¥ € V, and vector addition is associative
and commutative, and 0 € V is a right additive identity, and every element of V
has a right additive inverse, and associativity of scalar multiplication with field
multiplication holds, and the left distributive law of scalar multiplication over
vector addition holds, and the right distributive law of scalar multiplication
over scalar addition holds, and 1 € F' is a multiplicative identity for scalar
multiplication, then (V,+,-) is a vector space over F', as desired. O

Theorem 2. basic properties of vector spaces
Let (V,+,-) be a vector space over a field F.
1. Any scalar times the zero vector is the zero vector.
N0 =0 for all \ € F.
2. Zero times any vector is the zero vector.
00=0 forallTe V.
3. The scalar product is zero iff the scalar is zero or the vector is zero.
M=0iff Ax\=0o0rv7=0, for al 7€V and for all \ € F.
4. Negative 1 times any vector is the additive inverse of the vector.
()T =—0forallveV.

Proof. We prove 1.
Let A€ F.



Since 0 € V and 0 is additive identity, then 0+ 0 = 0.

Thus, A0 + A0 = A(0 + 0) = A0, so A0+ A0 = A0.

We add the additive inverse of A0 to both sides of the equation.
Observe that

(A0 4+ A0) + [—(\0)] = A0+ [—(A0)]
M+ [MN+-0)] = 0
AN+0 = 0
A = 0.
Therefore, A0 = 0, as desired. O

Proof. We prove 2.
Let v € V.
Since 00 4+ 00 = (0 + 0)¥ = 07, then 07 4 00 = 07.
We add the additive inverse of 0¢' to both sides of the equation.
Observe that

(00 + 00) + [—(07)] 07 + [—(00)]
00+ (07 + —(08)] = 0
00+0 = 0
0 0.
Therefore, 07 = 0, as desired. O

Proof. We prove 3.
Let v€ Vand A € F.
Suppose A = 0 or 7 = 0.
If A =0, then A& = 07 = 0.
If & = 0, then M7 = \0 = 0.
Conversely, suppose A7 = 0.
To prove A =0 or ¥ = 0, assume \ # 0.
We must prove 7 = 0.
Since F' is a field and A € F and A # 0, then A has a multiplicative inverse
in F.
Thus, there exists A™! € F such that A- A" =A"1.- A= 1.
Observe that

<y
|

Therefore, ¢ = 0, as desired. O



Proof. We prove 4.
Let v € V.
Observe that

Hence, 0 = (—1)7 + @.
We add the additive inverse of ¥ to both sides of the equation.
Observe that

0+ (=v) = [(-1)T7+ 7]+ (-0
-0 = (1) U+ [T+ (—9)]
—7 = (=1)7+40
- = (=1)7.
Therefore, (—1)0 = —7, as desired. O

Linear subspaces

Theorem 3. Two-Step Subspace Test
Let (V,+,-) be a vector space over a field F'.
Let W be a nonempty subset of V.
Then W is a subspace of V iff
1. W is closed under vector addition.
U+ €W for all ¥,w € W (Closure under vector addition)
2. W is closed under scalar multiplication.
AT e W for all v € W, A € F (Closure under scalar multiplication)

Proof. Suppose W is closed under vector addition and scalar multiplication.

Since (V, +, -) is a vector space over F, then V is closed under vector addition,
and vector addition over V is associative and commutative, and 0 € V is additive
identity, and every vector in V has an additive inverse in V, and V is closed
under scalar multiplication, and associativity of scalar multiplication with field
multiplication holds, and the left distributive law of scalar multiplication over
vector addition holds, and the right distributive law of scalar multiplication
over scalar addition holds, and 1 € F' is a multiplicative identity for scalar
multiplication.

We prove (W, +, ) is a vector space.



Let @, v, W € W.
Since u, ¥, w € W and W C V, then «,v, W € V.
Since vector addition over V' is associative, then (4 + ¢) + @ = @ + (¥ + ).
Therefore, (4 + U) + @ = @ + (¥ + W) for all @, ¥,w € W, so vector addition
over W is associative.

Let v, € W.
Since ¥,w € W and W C V, then v,w € V.
Since vector addition over V is commutative, then v+ @ = @ + 7.
Therefore, ¥ + @ = W + ¥ for all ¥,4 € W, so vector addition over W is
commutative.

forall v e V.

<y

Since 0 € V is additive identity, then 7+ 0 =0+ 7 =
Let v € W.
Since W is closed under scalar multiplication, and 0 € F and v € W, then
0-7eW,s00eW, by theorem 2.
Since 0 € W, and ¥+ 0 = 0+ ¢ = ¥ for all ¥ € V, then 0 € W is additive
identity.

Let v e W.

Since v € W and W C V, then v € V.

Since every vector in V' has an additive inverse in V', then there exists —v € V
such that @+ (—¥) = —0+ 7 = 0.

Since W is closed under scalar multiplication, and —1 € F and v € W, then
(=1)¥ € W, so —U € W, by theorem 2.

Hence, there exists —7 € W such that 7 + (—%) = —7 4 @ = 0, so for every
¥ € W, there exists —t' € W such that ¥+ (—9) = -0+ 0 =

Therefore, every vector in W has an additive inverse in W.

Since associativity of scalar multiplication with field multiplication holds, then
a(BV) = (af)v for all ¥ € V and for all o, 8 € F.
Let v e W.
Since ¥ € W and W C V| then ¥ € V, so a(59) = (af)¥ for all o, 5 € F'.
Therefore, a(70) = (f)v for all ¥ € W and for all o, 3 € F, so associativity
of scalar multiplication with field multiplication holds in W.

Since the left distributive law of scalar multiplication over vector addition
holds, then \(¥'+ W) = A0+ A\ for all ¥,% € V and for all A € F.
Let v, € W.
Since ¥,W € W and W C V, then 9,4 € V, so A(¥ + W) = AU + A\ for all
reF.
Therefore, A(¥ + @) = A\ + A& for all ;@ € W and for all A € F, so the
left distributive law of scalar multiplication over vector addition holds in W.



Since the right distributive law of scalar multiplication over scalar addition
holds, then (a + 8)0 = at'+ B for all ¥ € V and for all o, 8 € F.
Let v € W.
Since 7€ Wand W C V, then ¥ € V, so (a+ )V = av+ v for all a, § € F.
Therefore, (o + 8)7 = at' + U for all ¥ € W and for all o, € F, so the
right distributive law of scalar multiplication over scalar addition holds in W.

Since 1 € F is a multiplicative identity for scalar multiplication, then 1-¢v' = ¥
forall v € V.
Let t € W.
Since v € W and W C V, then v € V,s01-v=7.
Therefore, 1 -4 = v for all ¥ € W, so 1 € I is a multiplicative identity for
scalar multiplication in W.

Since W is closed under vector addition, and vector addition over W is as-
sociative, and vector addition over W is commutative, and 0 € W is additive
identity, and every vector in W has an additive inverse in W, and W is closed
under scalar multiplication, and associativity of scalar multiplication with field
multiplication holds in W, and the left distributive law of scalar multiplication
over vector addition holds in W, and the right distributive law of scalar multi-
plication over scalar addition holds in W, and 1 € F' is a multiplicative identity
for scalar multiplication in W, then (W, +,-) is a vector space.

Since W C V and (W, +,+) is a vector space, then W is a subspace of V, as
desired. O

Proof. Conversely, suppose W is a subspace of V.

Then (W, +,-) is a vector space under vector addition and scalar multipli-
cation defined on V', so vector addition W x W — W is a binary operation on
W, and scalar multiplication F' x W — W is a function.

Therefore, W is closed under vector addition and scalar multiplication. [

TODO: Rework the below sections.

1 Matrix Theory

Proposition 4. Letn € Z™T.
Let A be an x n matrix and I be the identity matriz.
Then A = AlI.

Solution. Hypothesis is: A is a n X n matrix.

Conclusion is: A = Al.

To prove A = Al, we must prove

(VZ S Nn)(Vj S Nn)(aij = bij)7 where A = (aij)an and Al = (bij)an and
(bij) = D=1 @ikOj-



We can work through examples and see that each entry a;; will be a;; - 1
when we're in the &** row and column of I and zero everywhere else. So, the
key idea is either k = j or not, based on the definition of I. O

Proof. Let ¢ and j be arbitrary elements of N,,. Let A = (a;;)nxn. Let AI =
(bij)nxn where bij = 22:1 aikékj and 5ij = 1 whenever ¢ = ] and 5”‘ =0
whenever i # j.

To prove a;; = b;;, we must prove a;; = 22:1 AikOk;j -

Let k € N,,. Either k =j or k # j.

We consider these cases separately.

Suppose k= j Then aikékj = aijéjj = (lz'j(l) = Qjj-

Suppose k # j. Then a;x0,; = a;x(0) = 0.

Hence, the term a;6y; is either a;; or zero.

Since >"7_; aixdy; is the sum of n of these terms, then Y ,_; a;dk; is the
sum of a;; and n — 1 zeroes. Thus, Y ,_; aidk; = a;; + (n — 1)(0) = a4, as
desired. O

Proposition 5. Let n € Z*. Let S be the set of all invertible n X n matrices.
Let - represent matriz multiplication. Then (S,-) is a non-abelian group.

Solution. To prove (S, ) is a group we must prove:

1. - is a binary operation on S.

2. - is associative.

3. there exists a multiplicative identity in .S.

4. each element of S has a multiplicative inverse in S.

To prove 1 we must prove: - : S x S +— S is a function; that is, we must
prove

la. S is closed under -, that is, (VA, B € S)(AB € S).

1b. AB is unique.

To prove la, let A, B € S be arbitrary. To prove AB € S, we must prove
la.l1 AB is an n X n matrix we can prove this by showing that A and B are
n X n matrices.

la.2 AB is invertible, that is, there exists matrix C such that (AB)C =
C(AB)=1.

To find C, we work backwards. Suppose (AB)C = I. Solve for C. To do this,
we have A(BC) = I. We must have A~! exist, so that (A~*A)(BC) = A1,
so BC = A~!. We must have B~! exist, so that (B~'B)C = B™1A7!, so
IC=B1'A"',s0C=B"14"1

Thus, we must show A~! and B~! exist, and let C = B~tA~1,

To prove 3, we must find an element e € S such that for every a € S,
ea = ae = a.

We work backwards. Suppose EA = A for some n X n invertible matrix A.
We know identity matrix satisfies this equation. Thus, let £ = I. Now, we
must prove [ is in S; that is, prove [ is n X n matrix and [ is invertible.

To prove 4, we must prove (Va € S)(Ja~! € S)(aa™! =a"ta=¢).



Proof. Let n € Z*. Let S = {X : X is an n x n invertible matrix }. Let -
represent matrix multiplication.

We prove - is a binary operation on S.

Let A and B be arbitrary n x n invertible matrices. Then A and B are n xn
matrices. Therefore, AB is an n X n matrix.

Since A is invertible, then A~! exists and A~! is an n x n matrix. Since B
is invertible, then B! exists and B! is an n x n matrix. Hence, the product
B71A~! exists and B~'A~! is an n x n matrix.

Let C = B~'A~!. Then C is an n x n matrix.

Observe that

(AB)C = (AB)(B~'4A™)
A(BB HA™!
ATA?

= AA™!

= I

and

C(AB) = (B'A™YH(AB)
B~ 1(A7'A)B
B~ 'IB
B
I

'B

Therefore, AB is invertible.

Since AB is an n X n matrix and AB is invertible, then AB € S.

Therefore, S is closed under -.

Since the product of two n xn matrices is a unique matrix, then, in particular,
AB is unique.

Thus, - is a binary operation on S.

Since matrix multiplication is associative in general, then in particular, ma-
trix multiplication is associative in S.

We prove there exists a multiplicative identity in S. Let I be the n x n
identity matrix. Suppose A is an arbitrary n x n invertible matrix. Then
Al =TA = A. Since [ =1 -1, then I is invertible. Since [ is invertible and I is
an n X n matrix, then I € S. Therefore, S has a multiplicative identity, namely,
1, as desired.

We prove each element of S has a multiplicative inverse. Let A be an ar-
bitrary n X n invertible matrix. We must prove there exists some B € S such
that AB = BA=1.

Since A is an invertible n x n matrix, then A~! exists and A~ 'isann x n
matrix. Let B = A~'. Then AB = AA™! =1 = A~'A = BA, as desired.
Thus, A~ is a multiplicative inverse of A.



To prove A~ € S, we must find some C' € S such that A=1C = CA~! = 1I.
Let C = A. Since A € S, then C € S. Observe that A™'C = A™1A =171 =
AA™!' = CA'. Hence, A~! € S. Since A~! is a multiplicative inverse of A and
A~! € S, then A has a multiplicative inverse in S. Since A is arbitrary, then
every A € S has a multiplicative inverse in S.

Therefore, (.5, -) is a group.

Since matrix multiplication is not commutative (in general), then matrix
multiplication is not commutative, in particular, in .S, in general.

Hence, (S, -) is a non-abelian multiplicative group.

We call S the general linear group of degree n and denote it by GL,,. U

2 Vector Space Theorems

Proposition 6. The empty set is linearly independent.

Solution. Let () be the empty set. To prove § is linearly independent, we use
proof by contradiction. Thus, we suppose @ is linearly dependent.

Let V' be a vector space over a field K.

If () is linearly dependent, then by definition of linear dependence, (3}_; o €
K i = 0) A (31 k) (e # 0)]

We analyze these quantified expressions.

Observe that 37_ o € K < (F7_1k)(ar € K).

This implies the existence of a function that assigns to each index k a value
ag. Observe that each k is contained in N,, where N,, = {1,2,...,n} and each
«y, is contained in K.

Define f : N, = K by f(k) = ag. Then function f assigns to each k € N,
a unique o € K.

Hence, to each index k € N,, there exists a unique scalar oy, € K.

The expression (3 p_, ax@ = 0) A (37_,k)(cs # 0) means that the linear
combination of vectors in () equals the zero vector and at least one k € N,, exists
such that ay, # 0.

Thus, if () is linearly dependent, then there exists some index k € N,, such
that to this k, a nonzero scalar o € K can be assigned for which the linear
combination of vectors in () equals the zero vector.

But, 0 is empty, so there are no vectors in (). Hence, there is no index k to
choose to assign a nonzero scalar oy such that the linear combination of vectors
in @ equals the zero vector. Thus, no such index k exists. Hence, () cannot be
linearly dependent. Thus, ) is linearly independent.

O

Proof. Let () be the empty set in a vector space over a field K.

Suppose 0 is linearly dependent. Let N, = {1,2,...,n}. Then there exists
some index k € N,, such that to this k, a nonzero scalar o € K can be assigned
for which the linear combination of vectors in () equals the zero vector.



Since () is empty, then there are no vectors in ().

Hence, it is impossible to choose an index k such that to k, a nonzero scalar
ay € K can be assigned for which the linear combination of vectors in () equals
the zero vector. Thus, no such index k exists. Since there exists such an index
k and there does not exist such an index k, we have a contradiction. Hence, )
cannot be linearly dependent. Therefore, ) must be linearly independent. [

Proposition 7. LetT be a set of linearly independent vectors. Let S be a subset
of T. Then S is linearly independent.

Solution. Our hypothesis is T is a linearly independent set of vectors and
S C T. To prove our conclusion S is linearly independent, we must prove
(Vizyan € K[, awti = 0) = (Vi_ k) (cax = 0)].

Since T is a linearly independent set of vectors, then T is a finite set of
vectors. Let n be the cardinality of T. Then n > 0. Let T' = {¥y, Vs, ..., Un }.

Since S is a subset of T', then either S = () or S =T or S is a proper subset
of T.

We consider these cases separately.

Case 1: Suppose S = (.

Since () is linearly independent and S = @, then S is linearly independent.

Case 2: Suppose S =T.

By hypothesis, T is linearly independent. Since S = T, then S is linearly
independent.

Case 3: Suppose S is a proper subset of T'.

Then S contains at least one vector of T" but no more than n vectors of T'.
Let k be the cardinality of S. Then 1 < k < n.

Since S is arbitrary, let S = {¥}, ¥, ..., Uy } where each ¥; € T.

To prove S is linearly independent, we must prove (V5_;a; € K )[(Zle a;U; =
0) = (V_10)(c; = 0)].

Let ag, s, ...,ap be k arbitrary elements of K such that Zle a;7; = 0.

We must prove (V5_,i)(c; = 0); that is, we must show that a1 = ag = ... =
ap — 0.

Since T is linearly independent, then (V7_,ax € K)[(3p_, aw®) = 0) —
(Y, k) (e = O)] )

Hence, (F_yon € K)[(Shy antie = 0) = (Y, k) (o = 0)]

Therefore, > p_, ayty = 0 = (V§_,k)(cy, = 0)] for arbitrary a1, az, ..., ay
elements of K.

Thus, let aq, as, ..., ay, be n arbitrary elements of K such that 22:1 Rl =
0.

Then (V}_,k)(ay =0),50 y = s = ... = a,, = 0.

Observe that 0 = o QU = Yo oyt = Zle QiT; + D7 pyq T

Suppose Zf:l o;T; = 0. We must prove (V¥_,i)(c; = 0); that is, we must
show that a; = as = ... = a, = 0.

Sinceay =as=...=a, =0,thena; = =... =ap = qpq41 = ... = @, =
0. Therefore, oy = ag = ... = a, = 0, as desired. O

10



Proof. Let T be a set of linearly independent vectors. Let S be a subset of T'.

Since T is a linearly independent set of vectors, then T is a finite set of
vectors.

Let n € Z be the cardinality of 7. Then n > 0.

Let T = {’171, 172, ceey 1771}

Since S is a subset of T, then either S =) or S =T or S is a proper subset
of T.

We consider these cases separately.

Case 1: Suppose S = ().

Since () is linearly independent and S = @, then S is linearly independent.

Case 2: Suppose S =T.

By hypothesis, T is linearly independent. Since S = T, then S is linearly
independent.

Case 3: Suppose S is a proper subset of T'.

Then S contains at least one vector of 7' but no more than n vectors of T.
Let k € Z be the cardinality of S. Then 1 < k < n.

Since S is arbitrary, let S = {¥), ¥, ..., Uy } where each ¥; € T.

To prove S is linearly independent, we must prove (V5_;a; € K )[(Ele Uy =
0) = (V_10)(c; = 0)]. .

Since T is linearly independent, then (V{_ o € K)[(}p_, caxtx = 0) —
(Vi1 k) (o = 0)]. ]

Let ag, a9, ..., a, be n arbitrary elements of K such that ZZ:1 oty = 0.

Then (V}_,k)(ax =0), 50y =as = ... = a, = 0.

~ n — n — k — n —
Observe that 0 =37, cg¥k = D 1L ity = Y4 ity + D0 q il
Since ay, ag, ..., a., are n arbitrary elements of K and k < n, then ay, as, ..., ai

are k arbitrary elements of K.

Suppose Zle o;T; = 0. To prove (V¥_i)(a; = 0), we must show that
alzagz...:ak:O.

Since each of the n «; is zero and k < n, then each of the k£ a; must be zero.

Therefore, a1 = ag = ... = a = 0, as desired.
Since S and T are arbitrary, then a subset of a linearly independent set of
vectors is linearly independent. O

Proposition 8. Let S be a set of linearly dependent vectors. Let T be a superset
of S. Then T is linearly dependent.

Solution. Hypothesis is: T'D S.

Conclusion is: if S is linearly dependent, then T is linearly dependent.

Directly proving that T is linearly dependent using the definition of linear
dependence does not lead anywhere, so we must try a different approach. We
will use indirect proof using contrapositive.

Thus, we assume T is linearly independent. We must prove S is linearly
independent.

How can we show S is linearly independent? We know T > S, s0 S C T.
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We also proved that a subset of a linearly independent set must be linearly
independent. Hence, since T is linearly independent and S C T, then S is
linearly independent, as desired.

This proposition states that a superset of a linearly dependent set of vectors
is linearly dependent. O

Proof. To prove S is linearly dependent implies T is linearly dependent, we
prove T is linearly independent implies S is linearly independent.
Suppose T is linearly independent. We must prove S is linearly independent.
Since T is a superset of S, then S is a subset of T. A subset of a linearly
independent set of vectors is linearly independent. Since S C T and 7T is linearly
independent, then we conclude S is linearly independent, as desired. O

Proposition 9. Let V and W be vector spaces over a field K.
Let T be a linear transformation from V to W.
Let v, € V be arbitrary.
Let a, 8 € K be arbitrary.
Then the following are true:
1. T(a¥ + pw) = oT(0) + BT (W).
2. T(0) = 0.
3. T(@—7)=Tu—-Tv.
Proof. Let V and W be vector spaces over a field K.
Let T : V — W be a linear transformation.

Let ¢, € V be arbitrary.
Let a, 8 € K be arbitrary.

Observe that

T(at + pw) T(a¥) + T(BW)

= oT(5) + BT ()

Therefore, T'(a¥ + ) = oT'(¥) + BT (W).

Observe that

0 = T(0)—1(0)
= T(0+0)—T(0)
= T(0)+T(0) — T(0)
= T0)+0
= T(0)

Therefore, T(0) = 0.
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Observe that

g

&

Therefore, T(4 — ¥) = Tu — TV.

TG+ —

T () + T(—7)
T(u) +T((-1)7)
T(i) + (-1)T(7)
Ti - T%
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