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Vector Spaces

Linear algebra is the study of linear maps on finite dimensional vector spaces.
It originated as a theory for the solutions of systems of linear equations.

A vector space is an algebraic structure upon which addition and scalar
multiplication are defined.

Definition 1. vector space

Let V be a set.

Define binary operation + : V. xV — V by ¥4+ o € V for all ¥,w € V.
(vector addition)

Let F' be a field.

Define function - : FF x V — V by A € V for all A € I and for all v € V.
(scalar multiplication)

A vector space (V,+,:) over a field F is a set V with two operations
vector addition and scalar multiplication defined on V' such that the following
axioms hold:

V1. Vector addition is associative.

(@ +0) + W =1+ (V+ &) for all @, 7,7 € V.

V2. Vector addition is commutative.

U+ =w+ v for all v, € V.

V3. There exists a right additive identity in V.

(30 € V) (VT € V) (T + 0 = 7).

V4. Every element of V' has a right additive inverse.

(VT e V)3 -7 V)[F+ (~7) =0).

V5. Associativity of scalar multiplication with field multiplication
a(Bv) = (aB)v for all ¥ € V and for all o, 8 € F.

V6. Left distributive law of scalar multiplication over vector addition
AV + W) = A7+ A\ for all ¥, € V and for all A € F.

V7. Right distributive law of scalar multiplication over scalar addition
(a+ B)0=at+ v for all ¥ € V and for all o, 8 € F.

V8. 1 € F is a multiplicative identity for scalar multiplication.
1-v=7vforallveV.



Theorem 2. alternate definition of a vector space

Let V be a set.

Define binary operation + : VXV — V by v+ € V for all v,W € V.
(vector addition)

Let F be a field.

Define function - : FxV =V by A\ €V for all X € F and for oll v € V.
(scalar multiplication)

Then (V,+,) is a vector space over a field F iff

1. (V,4) is an abelian group.

2. Associativity of scalar multiplication with field multiplication

a(BV) = (aB)¥ for all ¥ € V and for all o, 5 € F.

3. Left distributive law of scalar multiplication over vector addition

AU+ W) = AN+ A\ for all ¥, € V and for all X € F.

4. Right distributive law of scalar multiplication over scalar addition

(a+ B)0=at+ B for all 7€V and for all a,f € F.

5. 1 € F is a multiplicative identity for scalar multiplication.

1- =40 forallveV.

Definition 3. vector space terminology
Let (V,4+,-) be a vector space over a field F'.
A vector, denoted 7, is an element of V.
A scalar is an element of F'.

Let (V,+,-) be a vector space over a field F'.
Let v € F.

Then ¥ is a vector.

Let A € F.
Then A is a scalar.
Therefore, a scalar is just a number.

Since (V,+, -) is a vector space over a field F', then vector addition is a binary
operation on V', and scalar multiplication is a function, and (V| +) is an abelian
group, and scalar multiplication satisfies the below axioms.

1. a(p?v) = (ap)v for all ¥ € V and for all o, 3 € F.

2. M(T+ W) = A+ M\ for all ¥, € V and for all A € F.

3. (a+ B)0=at+ v for all ¥ € V and for all o, 8 € F.

4. 1-v=7forall 7 e V.

Since vector addition is a binary operation on V, then V is closed under
vector addition.

Since (V,+) is an abelian group, then vector addition is associative and
commutative, and 0 € V is the additive identity, and every vector in V has an
additive inverse in V.

0 € V is called the zero vector, and the zero vector is the additive identity
in V.

Since 0 € V, then V/ # (), so V contains at least one element.

Therefore, a vector space contains at least one element.



Since scalar multiplication is a function, then - assigns to each A € F' and
each ¥ € V the product Av € V, so V is closed under scalar multiplication.
Therefore, in scalar multiplication, the product of a scalar and a vector is a
vector.

Therefore, a vector space (V+,-) over a field F satisfies the following axioms:
V1. V is closed under vector addition.
v+ W €V for all ¥,w € V.
V2. Vector addition is associative.
(@4 70)+ W =0+ (U4 &) for all @, 0, € V.
V3. Vector addition is commutative.
U4 w =w+ v for all v,w € V.
V4. There exists an additive identity in V.
(FeV)VTeV)(T+0=0+7=7).
V5. Every vector in V' has an additive inverse.
(Vi eV)3-Te V)[4 (-0) = —F+7=0].
V6. V is closed under scalar multiplication.
A eV forall A € F and for all ¥ € V.
V7. Associativity of scalar multiplication with field multiplication
a(BV) = (af)v for all T € V and for all a, 5 € F.
V8. Left distributive law of scalar multiplication over vector addition
AV + W) = A+ A for all ¥, € V and for all A € F.
V9. Right distributive law of scalar multiplication over scalar addition
(a4 B)¥=at+ pov for all ¥ € V and for all o, 3 € F'.
V10. 1 € F is a multiplicative identity for scalar multiplication.
1-v=vforall ¥ V.

Observe that 0+ 0 = 0.

Definition 4. real vector space
A real vector space is a vector space over R.

Definition 5. complex vector space
A complex vector space is a vector space over C.

Theorem 6. basic properties of vector spaces
Let (V,+,-) be a vector space over a field F.
1. Any scalar times the zero vector is the zero vector.
A0 =0 for all A € F.
2. Zero times any vector is the zero vector.
00=0 forallTe V.
3. The scalar product is zero iff the scalar is zero or the vector is zero.
MN=0iff \=00ro=0, for all 7€V and for all A\ € F.
4. Negative 1 times any vector is the additive inverse of the vector.
(—1)0=—0 forallTeV.



Linear subspaces

Definition 7. linear subspace

Let (V,+,-) be a vector space.

A subspace of V is a subset of V' that is a vector space under the operations
of vector addition and scalar multiplication defined on V.

Let (V,+,-) be a vector space.

Let W C V.

Then W is a subspace of (V,+,-) iff (W,+,-) is a vector space under +
and - defined on V.

Let (V, 4+, ) be an arbitrary vector space over a field F' with additive identity
0eV.
Since V' C V and (V,+, ) is a vector space, then V is a subspace of V.
Therefore, every vector space is a subspace of itself.

Since 0 € V, then {0} C V.
Since {0} CV,and 0+0 =0, and A-0 = 0 for all A € F, then the trivial
vector space is a subspace of V.
Therefore, the trivial vector space {0} is a subspace of every vector space.

Let W be a subspace of a vector space V with additive identity 0 € V.
Since {0} is a subspace of every vector space, and W is a vector space, then
{0} is a subspace of W.
Hence, {0} CW,s00€ W.
Therefore, every subspace of a vector space V' contains the zero vector 0 € V.

Thus, if W is a subspace of V' with additive identity 0 € V', then 0 € W.
Therefore, if W C V', but 0 € W, then W cannot be a subspace of V.
TODO: Fix the below stuff and obtain the most common definition of proper

subspace and update it and proper subgroup defn accordingly.

Definition 8. proper subspace
Let V be a vector space.
A proper subspace is a subspace of V' other than V or the trivial subspace.

Let V' be a vector space with additive identity 0 € V.
Let W be a subspace of V.
Then W is a proper subspace of V iff W # V and W # {0}.

Theorem 9. Two-Step Subspace Test
Let (V,+,-) be a vector space over a field F'.
Let W be a nonempty subset of V.
Then W is a subspace of V iff
1. W is closed under vector addition.
U+ €W for all ¥, € W (Closure under vector addition)



2. W is closed under scalar multiplication.
AT €W for allv € W)\ € F (Closure under scalar multiplication)

Linear Independence

Definition 10. linear combination

Let (V,+,-) be a vector space over a field F.

Let n € Z*.

Let 61,’1_)'2, veey 7777, evV.

A vector ¥ € V is a linear combination of ¥, ¥, ..., U, iff there exist scalars
ai,as,...,a, € F such that ¥ = a10 + as¥s + ... + anUy,.

Definition 11. linear span of a set of vectors

Let (V,+,-) be a vector space over a field F.

Let n € ZT.

Let {171,62, ,’l_fn} cV.

The span of {¥, ¥a, ..., U } is defined as span{ty, Vs, ..., Un } = {a101 +azta+
e FanTy : ay,a9,...,a, € F}.

Therefore, the span of a set of vectors of a vector space is the set of all linear
combinations of the vectors.

Definition 12. finite-dimensional vector space

Let (V,4+,-) be a vector space over a field F.

Let n € ZT.

Then (V, 4+, -) is finite-dimensional iff span{v;, ¥, ..., 0, } =V, and we say
that the set of vectors {¥y, ¥, ..., U, } spans V.

Definition 13. infinite-dimensional vector space
A vector space that is not finite-dimensional is called infinite-dimensional.

Definition 14. Linear Independence of vectors

Let V be a vector space over a field K.

Let {¥1, ¥, ..., U } be a set of vectors in V.

The set of vectors is linearly independent iff (V_,ay, € K)[(>,_, axty =
0) = (V=1 F)(ar = 0)].
A set of vectors is linearly dependent iff it is not linearly independent.
Observe that ~(V¢_,on € K)[(Xho, i = 0) — (Vi_k)(an, = 0)] &
(Froron € K)[(Xh—y ot = OA(VR_ k) (ar = 0)] = (TFp_y o € K)[(Xjy ot =
0) A (Fx=1k)(ax # 0)].

Therefore a set of vectors is linearly dependent iff (37_, o, € K)[(3>;_; axy =
0) A (Bp_, k) (e # O)]

() is linearly independent.
A subset of a linearly independent set of vectors is linearly independent.
A superset of a linearly dependent set of vectors is linearly dependent.



Linear Transformations

Definition 15. Linear Map

Let V, W be arbitrary vector spaces over a field K.

A linear map(linear operator) is a function T : V — W that assigns to
each vector ¥ € V a unique vector Tt € W such that, for all @, € V and for
alla € K:

1. T(d+9) =T(w) + T(¥) (preserves vector addition)

2. T(a?) = aT(U) (preserves scalar multiplication)

A linear map is a homomorphism of vector spaces.

Let V and W be vector spaces over a field K.
Let T be a linear transformation from V to W.
Let ¢, @ € V be arbitrary.
Let «, 8 € K be arbitrary.
Then the following are true:
1. T(at + pw) = oT (V) + BT (w). (preserves linear combinations)
2. T(0) = 0. (preserves zero vector)
3. T(4—¥) =Tu—TU. (preserves vector subtraction)

Let T : V — W be defined by T'(7) = 0 for all 7 € V.
Then T'(v1 +72) =0=0+0=T(¢h) +T(v%2) and T(av) = 0 = a0 = oT'(7).
Therefore T is a linear map. T'(¢) = 0 is the zero transformation.

Let T : V +— V be defined by T(¢) = v for all 7 € V.
Then T(@ + 0) =i+ ¢ =T (@) + T(¥) and T(a?) = avf = oT' (V).
Therefore T is a linear map.
T(V) = ¥ is the identity linear transformation.

Let A =m X n matrix.
Let T : R™ — R™ be defined by T'(Z) = Ax for all & € R™.
Then T(Z+¢§) = A(Z+ ¢) = AP+ Ay = TZ 4+ T§ and T'(af) = A(ad) =
aAZ = oT(Z).
Therefore T is a linear map.
Hence every m x n matrix gives rise to a linear map from R” to R™.

Let ¥ = (x,y) € R? be a vector with angle a with the z axis.

Then x = rcosa and y = rsina where r = /22 + 2.

Let ¥ be rotated counter clockwise by 6.

Let ¥/ = (2/,9') € R? be the final position of 7.

Then o' = rcos(a + 0) and 3’ = rsin(a + 6).

Since sin(a + 6) = sinacosf + cosasin® and cos(a + 0) = cosacosh —
sinasind then 2/ = rcosacosf — rsinasingd = xcosf — ysinf and y' =
rsinacos® + rcosasinf = ycos + xsinf = xsinf + ycos 6.



Let

A, - [cos& —sm&]

sinf  cosf

Then ¢' = (2/,y’) = AgU. Ay is the rotation matrix.
Example:

Let T4 : R? — R2.
The associated matrix is

Let 7 € R2.
Then 7 = (.Th.rg).
Thus, TA(T) = A7 = A(xq,22) = (ax1 + bxg, cxy + das).

Definition 16. Line Reflection
A line reflection in a given line s is a function f defined for every point P
of the plane so that:

1) if P € s, then f(P) = P.
2) if P ¢ s, then f(P) = P’ such that s is the | bisector of segment PP’.
Notes: f, : R? — R2.

fs is a transformation of the plane, so f; is bijective map.

fs is an isometry.

s = axis of reflection

Examples: if axis of reflection is x axis, f(P) = f(x

if axis of reflection is y axis, f(P) = f(z,y) = (—z,y
if axis of reflection is line y = x, f(P) = f(z,y) = (y, z)
if axis of reflection is line y = —z, f(P) = f(z,y) = (—y, —x)

Definition 17. Isometry
Transformation f is an isometry iff for every pair of points P and Q,
P'Q" = PQ where P’ = f(P) and Q' = f(Q).

Notes:

f:R*— R?

f is a transformation of the plane.

An isometry is a geometric transformation of the plane that preserves dis-
tance.

The images of any two points are the same distance as the original two
points.

Facts:

f maps lines onto lines. If s is a line, then f(s) is a line.



f preserves angle measures between lines. m ZA’B'C' = m ZABC.
f preserves perpendicularity between lines. f(s) L f(¢) iff s L ¢.
f preserves parallelism between lines. f(s) || f(¢) iff s || ¢.

Definition 18. Dot product (scalar product)

Let a,b € R™.

The dot product of a = [a1,az,...,a,] and b = [by,bs, ..., b,] is defined as
a-b= ZZ:l akbk.

Matrix Theory

Definition 19. Real Matrix

A m x n real matrix is a rectangular array of m rows and n columns of
real numbers.

Each a;; € R is an entry at row ¢ and column j and 1 < 7 < m and
1<j<n.

Let A = (aij)mxn be a m x n matrix where ¢ € N,,, and j € N,,.

Then

a1 ai12 e A1n

a1 a99 e agn
A =

Am1 Am2 oo Qmn

Definition 20. Equal Matrices
Two matrices are equal iff corresponding entries are equal.
Let A = (aij)mxn and B = (bij)mxn-
Then A = B iff (VZ S Nm)(VJ S Nn)(aij = bij).
Equal matrices have the same size.

Definition 21. Matrix Addition

The sum of two matrices is the sum of corresponding entries.

Let A= (aij)mxn and B = (bzg)mxn

Then the matrix sum is defined by the rule A + B = (¢;j)mxn Where ¢;; =
aij + bij.

Let k € R be a scalar.
Then kA = (kaij)mxn.

Definition 22. Matrix Multiplication

The entry at row ¢ and column j of the matrix product is the dot product
of the i" row vector of matrix A with the j** column vector of matrix B.

Let A = (aij)mxn and B = (bi;)nxp-

Then the matrix product is defined by the rule AB = (¢;;)mxp Where ¢;; =
k1 @inj -



Definition 23. Transpose of a Matrix

Let A be a matrix.

The transpose of A, denoted A?, is the matrix obtained by transposing the
rows and columns of A.

The " row of A = i*" column of A?.

The j** column of A = j** row of A’

Let A= (aij)an with ¢ € N,,, and j € N,,.
Then A" = (aji)nxm-

Let A= (G,ij)an.
Then A? is of size n x m, so (A?)? is of size m X n.
Hence (A%)! and A have the same size m X n.
Let i € N,,, and j € N,, be arbitrary.
Let a;; be the ij!" entry of A.
Let b;; be the ij'" entry of (A?)*.
Then

bij of (At)t = bji of At
bij of A
Q4 of A

Therefore (A')! = A.

Let A= (aij)mxn and B = (b”)an
Then A + B is of size m x n, so (A + B)! is of size n x m.
Also, At and B! are each of size n x m, so A + Bt is of size n x m.
Hence (A + B)t and A® + B! have the same size n x m.
Let : € N, and j € N,;, be arbitrary.
Let ¢;; be the ij'" entry of (A + B)*.
Let d;; be the ij'" entry of A' + B*.
Then

Cij Of (A —+ B)t = Cji Of A+ B

aj; + bj; where a;; in A and bj; in B

= a;j + b;j; where a;; in At and bi; in B!
= dij Of At + Bt

Therefore (A + B)! = At + B

Let A= (aij)mxn and B = (bij)nxp~
Then AB is of size m x p, so (AB)? is of size p x m.
Also, Bt is of size p x n and A? is of size n x m, so B*A! is of size p x m.
Hence (AB)" and B*A" have the same size p X m.
Let i € N, and j € N,;,, be arbitrary.



Let ¢;; be the ij'" entry of (AB)".
Let d;; be the ij'" entry of B'A".
Then

Cij of (AB)t = Cyji of AB

n
= E a;kbr; where aji, in A and by; in B
k=1

n
= E ar;jbir where ay; in At and b;), in B!
k=1

= Zbikakj where b;;, in Bt and ak; in Al
k=1
= dij of BtAt

Therefore (AB)! = Bt Al

Definition 24. Square Matrix
Let A = (aij)mxn be a m x n matrix where ¢ € N,,, and j € N,,.
A matrix is square iff m = n.
Therefore, a square matrix has the same number of rows as columns.

Suppose A = (a;j)mxm is a square matrix.
A is symmetric iff A® = A.
A is antisymmetric iff A* = —A.
A is diagonal iff (Vi,j € N,,,)(i # j — a;; = 0).
A is upper triangular iff (Vi,j € Np,,)(¢ > j — a;; = 0).
A is lower triangular iff (Vi,j € N;,,)(i < j — a;; =0).

A square matrix is diagonal iff it is both upper and lower triangular.
The sum of two square symmetric matrices is symmetric.

Let A= (aij)me.
Then A + A! is symmetric and A — A? is antisymmetric.
Observe that (A + AY)t = At + (A = A" + A= A+ A"
Observe that (A — ANt = [A + (—AY)]t = At + (ANt = AT + ((—A)H)t =
A (—A)= Al — A= —(A— AY).

Definition 25. Determinant of a Matrix
Let A= (aij)gxg .
The determinant of matrix A is defined by the rule |A| = a11a920 — a12a21.
Let A and B be 2 x 2 matrices.
Then |AB| = |A||B|.
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Definition 26. Identity Matrix

Let n € Z*.

The identity matrix, denoted I,, is an n X n matrix with ones along the
principal diagonal and zeros everywhere else.

Therefore, I, = (6;j)nxn such that for every ,j € N,,,

1, i=j
61‘]‘ = . .
0, 1#7
The identity matrix is a square matrix.

Let A be a n X n matrix.
Then A = Al = I A.

Definition 27. Invertible Matrix
Let A be a square matrix.
Let I be the identity matrix.
Then A is invertible iff 3 a matrix B such that AB = BA = 1.

Suppose A is invertible.

Then AB = BA = I for some matrix B.

Since A is invertible, then A = (a;;)nxn-

Let B = (bij)mxp~

Since the product AB is defined, then n X n matrix multiplied by a m x p
matrix implies n = m.

Since I = (0ij)nxn, then n X p=n xn, so p =n.

Hence, B = (b;j)nxn, S0 B is a square matrix.

The inverse of an invertible matrix is a square matrix.

Let n € ZT.
Let GL,, be the set of all n x n invertible matrices.
Then GL, = {X : X is an n x n invertible matrix } = general linear
group.
(GL,,-) is a non-abelian group where - = matrix multiplication.
Identity of GL,, is I,, = identity matrix.
Inverse of matrix A is matrix A~!, where A~ € GL,, and AA™' = A714 =

Since n X n invertible matrices C n X n matrices C m X n matrices, then
GL,, C square matrices C M, xn.
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