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Propositional Calculus

Statements

Definition 1. Statement
A statement is an assertion that is true or false.

Let P be a propositional variable.
Then P represents a statement, so P is a statement form.
A statement form is neither true nor false.
A statement form becomes a statement when a specific statement is substi-

tuted for each of its components.

A statement form is exactly one of three possibilities.
1. tautology - true for all possible cases
2. contingency - sometimes true or sometimes false - depends on the specific

truth values of its components
3. contradiction - false for all possible cases

Definition 2. Proposition
A proposition is a statement that can be proven to be true.

Definition 3. Axiom
An axiom is a proposition that is assumed to be true but cannot be proved

(self-evident truth).

It is the starting point for logically deriving other propositions.

Definition 4. Theorem
A theorem is a proposition of major importance and can be proved.

Definition 5. Lemma
A lemma is a proposition that is used to help prove another proposition.

Definition 6. Corollary
A corollary is a proposition that can be proven directly from a proposition

just proved.



Definition 7. Conjecture
A conjecture is a proposition that is probably true, but not yet proven

true.

Definition 8. Propositional Constant
A propositional constant is a literal value that represents true or false.

T = true

F = false

Let {T, F} be a set of propositional constants(truth values).

Definition 9. Propositional Variable
A propositional variable is a variable that represents a proposition.

Let P represent a proposition.
Then P may take a value from {T, F}.
P = T means the proposition is true.
P = F means the proposition is false.

If P is a tautology then P = T in all cases. Therefore P ⇔ T .

If P is a contradiction then P = F in all cases. Therefore P ⇔ F .

Definition 10. Tautology
A tautology is a statement form that is always true.

Let P represent a proposition.
Then P is a tautology iff P is true under all possible truth conditions of

its components.

Example 11. Let P be a statement form.
Then P ∨ ¬P is a statement form.
When P is true, P ∨ ¬P is true, so (P ∨ ¬P ) = T .
When P is false, P ∨ ¬P is true, so (P ∨ ¬P ) = T .
Therefore, P ∨ ¬P is a tautology.
Hence, P ∨ ¬P ⇔ T .

The negation of a tautology is a contradiction.

Example 12. Observe that

¬(P ∨ ¬P ) ⇔ ¬P ∧ ¬¬P
⇔ ¬P ∧ P

⇔ P ∧ ¬P

Therefore P ∧ ¬P is a contradiction.
Hence, P ∧ ¬P ⇔ F .
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Suppose P is a tautology.
Then P is always true.
Hence, P is logically equivalent to the truth constant T .
Therefore P ⇔ T .

Definition 13. Contradiction
A contradiction is a statement form that is always false.

Let P represent a proposition.
P is a contradiction iff P is false under all possible truth conditions of its

components.

Example 14. Let P be a statement form.
Then P ∧ ¬P is a statement form.
When P is true, P ∧ ¬P is false, so P ∧ ¬P = F .
When P is false, P ∧ ¬P is false, so P ∧ ¬P = F .
Therefore, P ∧ ¬P is a contradiction.
Hence, P ∧ ¬P ⇔ F .

The negation of a contradiction is a tautology.

Example 15. Observe that

¬(P ∧ ¬P ) ⇔ ¬P ∨ (¬¬P )

⇔ ¬P ∨ P

⇔ P ∨ ¬P

Therefore P ∨ ¬P is a tautology.
Hence, P ∨ ¬P ⇔ T .

Suppose P is a contradiction.
Then P is always false.
Hence, P is logically equivalent to the truth constant F .
Therefore P ⇔ F .
Law of Excluded Middle
Either a proposition is true or its negation is true (there is no third possi-

bility).

P ∨ ¬P ⇔ T

Logical Operators

Let S = {T, F}.
Each logical operator (exception negation) is a binary operation S×S → S.
Therefore each logical operator is truth functional.

Definition 16. Negation(NOT)
Let P represent a proposition.
The negation of P , denoted ¬P , means ‘not P ’.
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Truth table
¬P is true iff P is false
¬P is false iff P is true

English translation:
It’s not true that P.

Negation is a unary operation S 7→ S where S = {T, F}.

Definition 17. Conjunction(AND)
Let P and Q represent propositions.
The conjunction, denoted P ∧Q, means ‘P and Q’.

Truth table
P ∧Q is true iff both P and Q are true
P ∧Q is false iff P is false or Q is false (or both)

Definition 18. Inclusive Disjunction (OR)
Let P and Q represent propositions.
The inclusive disjunction, denoted P ∨Q, means ‘either P or Q (or both)’.

Truth table
P ∨Q is true iff P is true, or Q is true, or both P and Q are true
P ∨Q is false iff both P and Q are false

Definition 19. Exclusive Disjunction (XOR)
Let P and Q represent propositions.
The exclusive disjunction, denoted P Y Q, means ‘either P or Q, but not

both’.

Truth table
P YQ is true iff both P is true and Q is false, or both P is false and Q is true
P YQ is false iff both P and Q are true or both P and Q are false

P YQ ⇔ (P ∧ ¬Q) ∨ (Q ∧ ¬P )

⇔ (P ∨Q) ∧ ¬(P ∧Q)

⇔ ¬(P ↔ Q)

Let S = {T, F}.
Then (S,⊕) is isomorphic to (Z2,+).

Definition 20. Material Implication (Conditional)
Let P and Q represent propositions.
The conditional, denoted P → Q, means ‘if P then Q’.
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Equivalent English meanings:
P implies Q, so P is a sufficient condition for Q
P only if Q, so Q is a necessary condition for P and if not Q, then not P
Q if P
Q whenever P
P = antecedent
Q = consequent

Truth table
P → Q is true iff P is false or Q is true (or both)
P → Q is false iff P is true and Q is false

Whenever P is false then P → Q is vacuously true.

Definition 21. Let P and Q represent propositions.
Let P → Q be a conditional.
The inverse is ¬P → ¬Q.
The converse is Q→ P .
The contrapositive is ¬Q→ ¬P .

The converse of a conditional P → Q is logically equivalent to the inverse of
the conditional P → Q.

P → Q⇔ ¬P ∨Q⇔ ¬Q→ ¬P
¬(P → Q)⇔ P ∧ ¬Q
P ⇒ P (reflexive)

Definition 22. Biconditional (Material Equivalence)
Let P and Q represent propositions.
The biconditional, denoted P ↔ Q, means ‘P if and only if Q’.
Therefore, P ↔ Q means:
1. P if Q, so Q is a sufficient condition for P , so Q→ P .
2. P only if Q, so Q is a necessary condition for P , so P → Q.

Equivalent English meanings:
P is equivalent to Q
P iff Q
P exactly when Q
P is a necessary and sufficient condition for Q
P implies Q and Q implies P

Truth table
P ↔ Q is true iff P and Q are both true or P and Q are both false
P ↔ Q is false iff either P is true and Q is false or Q is true and P is false
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P ↔ Q⇔ (P → Q) ∧ (Q→ P )⇔ (P ∧Q) ∨ (¬P ∧ ¬Q)⇔ ¬P ↔ ¬Q
¬(P ↔ Q)⇔ P ↔ ¬Q⇔ (P ∧ ¬Q) ∨ (Q ∧ ¬P )
(P ↔ Q)⇒ (P → Q)
P → (Q→ R)⇔ (P ∧Q)→ R

The biconditional is an equivalence relation.
P ⇔ P (reflexive)
(P ↔ Q)⇒ (Q↔ P ) (symmetric)
(P ↔ Q) ∧ (Q↔ R)⇒ (P ↔ R) (transitive)

A definition is a universally quantified biconditional that is true.

Logical Equivalence

Definition 23. Logical Implication
Let P and Q represent statements.
The statement P logically implies Q, denoted P ⇒ Q, means the truth of

P implies the truth of Q.

Suppose P ⇒ Q.
Then the truth of P implies the truth of Q.
Either P is true or false.
Suppose P is true.
Since the truth of P implies the truth of Q, and P is true, then by modus

ponens, Q must also be true.
Hence, the conditional P → Q is true.
Suppose P is false.
Then the conditional P → Q is vacuously true.
Hence, in all cases, P → Q is always true, so P → Q is a tautology.
Thus, if P ⇒ Q, then P → Q is a tautology.

Suppose P → Q is a tautology.
Then P → Q is always true, so P → Q is true under all possible truth

conditions of P and Q.
Thus, based on the truth table for P → Q, either P is false or Q is true.
Furthermore it is never the case that P is true and Q is false.
Moreover, if P is true, then Q must also be true.
Thus, the truth of P implies the truth of Q, so P ⇒ Q.
Hence, if P → Q is a tautology, then P ⇒ Q.

Therefore, P ⇒ Q iff P → Q is a tautology, so P → Q is always true.

Hence, whenever P ⇒ Q, then the truth of P forces Q to be true, so P is a
stronger statement than Q and Q is a weaker statement than P .
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Stronger and Weaker statements:
(P ∧Q)⇒ P ⇒ (P ∨Q).
¬P ⇒ (P → Q)
Q⇒ (P → Q)
(P → R)⇒ (P ∧Q)→ R

Definition 24. Logical Equivalence
Two statement forms that have the same logical content are logically equiv-

alent.
Let P and Q represent statements.
The statement P is logically equivalent to Q, denoted P ⇔ Q, means P

and Q have the same truth values under all possible truth conditions for their
components.

Suppose P ⇔ Q.
Then P and Q have the same truth values under all possible truth conditions

of their components.
Hence, the truth value of P matches line for line with the truth value of Q.
Thus, the truth table for P is identical to the truth table for Q.
Hence, P is true whenever Q is true and P is false whenever Q is false.
Therefore, either P and Q are both true, or P and Q are both false.
Hence, the biconditional P ↔ Q is always true, so P ↔ Q is a tautology.
The argument can be reversed to show if P ↔ Q is a tautology, then P ⇔ Q.

Therefore, P ⇔ Q iff P ↔ Q is a tautology, so P ↔ Q is always true.

Suppose P ⇔ Q.
Then P ↔ Q is a tautology.
Since P ↔ Q is logically equivalent to (P → Q) ∧ (Q → P ), then (P →

Q) ∧ (Q→ P ) is a tautology.
Hence, P → Q is a tautology and Q→ P is a tautology.
Thus, P ⇒ Q and Q⇒ P .
Therefore, if P ⇔ Q, then P ⇒ Q and Q⇒ P .
The argument can be reversed to show if P ⇒ Q and Q⇒ P , then P ⇔ Q.

Therefore P ⇔ Q iff P ⇒ Q and Q⇒ P .

Logic Translation Tips

¬P ∧ ¬Q means ‘P and Q are both not true’ because we’re denying each of
them

¬(P ∧Q) means ‘not both P and Q’ because one of them may be true, just
not both
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¬(P ∨Q) means ‘neither P nor Q’, so P and Q are both not true which means
¬P ∧ ¬Q

¬P ∨¬Q means ‘either not P or not Q’, so P and Q are not both true which
means ¬(P ∧Q)

P unless Q means not Q implies P , so ¬Q→ P

Logic Equivalence Laws

Let P,Q,R be statement forms (propositional variables).
Identity

P ∧ T ⇔ P

P ∨ F ⇔ P

Double Negation

¬(¬P )⇔ P

Domination

P ∨ T ⇔ T

P ∧ F ⇔ F

Idempotent

P ∧ P ⇔ P

P ∨ P ⇔ P

Associative

(P ∧Q) ∧R⇔ P ∧ (Q ∧R)

(P ∨Q) ∨R⇔ P ∨ (Q ∨R)

Commutative

P ∧Q⇔ Q ∧ P

P ∨Q⇔ Q ∨ P

Absorption

P ∨ (P ∧Q)⇔ P

P ∧ (P ∨Q)⇔ P

Distributive

P ∧ (Q ∨R)⇔ (P ∧Q) ∨ (P ∧R)

P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R)
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DeMorgan

¬(P ∧Q)⇔ ¬P ∨ ¬Q
¬(P ∨Q)⇔ ¬P ∧ ¬Q

Conjunction

P → (Q ∧R)⇔ (P → Q) ∧ (P → R)

(P ∨Q)→ R⇔ (P → R) ∧ (Q→ R)

Disjunction

P → (Q ∨R)⇔ (P → Q) ∨ (P → R)⇔ (P ∧ ¬Q)→ R

(P ∧Q)→ R⇔ (P → R) ∨ (Q→ R)⇔ (P ∧ ¬R)→ ¬Q

Rules of Inference

Conjunction Introduction (Conjunction)
P .
Q.
Therefore P ∧Q.
P,Q⇒ (P ∧Q)

Conjunction Elimination (Simplification)
P and Q.
Therefore P.
P ∧Q⇒ P

Disjunction Introduction (Addition)
P.
Therefore P or Q.
P ⇒ (P ∨Q)

Disjunction Elimination
P or Q.
P implies R.
Q implies R.
Therefore R.
[(P ∨Q) ∧ (P → R) ∧ (Q→ R)]⇒ R

Conditional Introduction
P.
Q.
Therefore P → Q.
P,Q⇒ (P → Q)
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Conditional Elimination ( Modus Ponens/ Affirming the Antecedent)
If P then Q.
P.
Therefore Q.
[(P → Q) ∧ P ]⇒ Q

Modus Tollens (Denying the Consequent)
P implies Q.
not Q.
Therefore not P.
[(P → Q) ∧ ¬Q]⇒ ¬P

Biconditional Elimination
P iff Q.
P .
Therefore Q.
(P ↔ Q) ∧ P ⇒ Q

Q iff P .
P.
Therefore Q.
(Q↔ P ) ∧ P ⇒ Q

Biconditional Introduction
P → Q.
Q→ P .
Therefore P iff Q.
(P → Q) ∧ (Q→ P )⇒ (P ↔ Q)

Reductio ad absurdum (Proof by Contradiction)
not P implies Q ∧ ¬Q.
Therefore P.
[¬P → (Q ∧ ¬Q)]⇒ P

Hypothetical Syllogism (Transitive property of implication)
P implies Q.
Q implies R.
Therefore P implies R.
[(P → Q) ∧ (Q→ R)]⇒ (P → R)

Disjunctive Syllogism
P or Q.
not P.
Therefore Q.
(P ∨Q) ∧ ¬P ⇒ Q
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Resolution
P or Q.
not P or R.
Therefore Q or R.
(P ∨Q) ∧ (¬P ∨R)⇒ (Q ∨R)

Proofs

Definition 25. Logical Argument
Let P1, ..., Pn and Q represent propositions.
The statement form (P1 ∧ ... ∧ Pn)→ Q is an argument.
The hypothesis is P1 ∧ ... ∧ Pn.
The conclusion is Q.
The premises are P1, ...Pn.

Definition 26. Valid Argument
An argument is valid if and only if the conclusion logically follows from the

premises.

Let (P1 ∧ ... ∧ Pn)→ Q be a valid argument.
Then P1 ∧ ... ∧ Pn logically implies Q.
Hence (P1 ∧ ... ∧ Pn)⇒ Q, so (P1 ∧ ... ∧ Pn)→ Q is true.
Suppose P1 ∧ ... ∧ Pn is true.
Since (P1 ∧ ... ∧ Pn)⇒ Q and P1 ∧ ... ∧ Pn, then by modus ponens, Q.
Thus Q is true.

Therefore if an argument is valid:
1. the argument is true
2. if the hypothesis is true, then the conclusion is true.

Let (P1 ∧ ... ∧ Pn)→ Q be an argument.
Suppose P1 ∧ ... ∧ Pn is true.
If we can show that Q logically follows from the hypothesis, then (P1 ∧ ... ∧

Pn)⇒ Q.
Hence, we may conclude that the argument is valid.
Since (P1 ∧ ... ∧ Pn)⇒ Q, then the statement (P1 ∧ ... ∧ Pn)→ Q is true.

Definition 27. Invalid Argument
An argument is invalid if and only if the conclusion does not follow from

the premises.

Let (P1 ∧ ... ∧ Pn)→ Q be an invalid argument.
Then P1 ∧ ... ∧ Pn does not logically imply Q.
Hence (P1 ∧ ... ∧ Pn) 6⇒ Q, so (P1 ∧ ... ∧ Pn)→ Q is false.
Suppose P1 ∧ ... ∧ Pn is true.
Then Q is false.
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Therefore if an argument is invalid:
1. the argument is false
2. if the hypothesis is true, then the conclusion is false.

Let (P1 ∧ ... ∧ Pn)→ Q be an argument.
Suppose P1 ∧ ... ∧ Pn is true.
If Q does not logically follow from the hypothesis, then
(P1 ∧ ... ∧ Pn) 6⇒ Q.
Hence, we may conclude that the argument is invalid.
Since P1∧...∧Pn is true and Q is false, then the statement (P1∧...∧Pn)→ Q

is false.

Definition 28. Sound Argument
An argument is sound if and only if the argument is valid and all premises

are true.

Let (P1 ∧ ... ∧ Pn)→ Q be a sound argument.
Then P1 ∧ ... ∧ Pn logically implies Q and P1 ∧ ... ∧ Pn is true.
Hence (P1 ∧ ... ∧ Pn)⇒ Q and P1 ∧ ... ∧ Pn.
By modus ponens, we conclude Q.
Since P1 ∧ ... ∧ Pn is true and Q is true, then (P1 ∧ ... ∧ Pn)→ Q is true.

Therefore if an argument is sound:
1. the argument is true
2. the conclusion is true.

Definition 29. Proof
A proof is a step by step demonstration that a conclusion logically follows

from the hypothesis.
Let P represent a statement.
To prove P means to show that P is true.

Let (P1 ∧ ... ∧ Pn)→ Q be an argument.
To prove (P1∧...∧Pn)→ Q means to show that the argument (P1∧...∧Pn)→

Q is true.
To prove (P1∧ ...∧Pn)→ Q is true, we must show that P1∧ ...∧Pn logically

implies Q; that is, we must show (P1 ∧ ... ∧ Pn)⇒ Q.
We prove a statement is true by using the hypothesis and applicable axioms,

definitions, and proven theorems using inference rules.

A proof is a valid argument.
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fallacy - form of incorrect reasoning

Example 30. fallacy of affirming the conclusion
(P ⇒ Q) ∧Q ` P

Example 31. fallacy of denying the hypothesis
(P ⇒ Q) ∧ ¬P ` ¬Q

circular reasoning - reasoning based on the truth of the statement being
proved

Methods of Proof

Direct proof
We establish the truth of a statement directly by assuming the truth of the

hypothesis and using known theorems/axioms.

Indirect proof
We establish the truth of a statement by proving a logically equivalent state-

ment.

I. Direct Proof (Conditional Introduction)
Let P → Q be an argument.
To Prove P → Q
1. Assume P is true
2. Show that Q must also be true.

Template: Prove P → Q.
Suppose P .
...
Therefore Q.

To prove P → Q is true means to prove P ⇒ Q; that is, to prove P logically
implies Q.

This means to prove the truth of P implies the truth of Q.
Thus, if we assume P is true and show that Q is true, then P logically

implies Q, and this proves that P → Q is true.

II. Vacuous Proof
To Prove P → Q
1. Prove P is false.

P → Q is true when P is false, regardless of the truth value of Q.
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III. Trivial Proof
To Prove P → Q
1. Prove Q is true.

P → Q is true when Q is true, regardless of the truth value of P .

IV. Indirect Proof (Proof by Contrapositive)
Let P → Q be an argument.
To Prove P → Q
1. Prove ¬Q→ ¬P

Template: Prove P → Q.
Suppose ¬Q.
...
Therefore ¬P .

This method is valid because P → Q⇔ ¬Q→ ¬P .
Also, P is the hypothesis.
When we prove ¬Q implies ¬P , then we have P and ¬P , a contradiction.
Therefore, the assumption of ¬Q cannot be true, so its negation, Q must be

true.
Hence, proof by contrapositive is a special type of proof by contradiction.

V. Indirect Proof (Proof by Contradiction)
Let P be a statement.
We prove by assuming the negation of a statement leads to a contradiction.

To Prove P
1. Assume ¬P
2. Show ¬P ⇒ (Q ∧ ¬Q)

Template: Prove P .
Suppose ¬P .
...
Q ∧ ¬Q
Therefore P .

This method is valid because [¬P → (Q ∧ ¬Q)]→ P is a tautology.
We prove [¬P → (Q ∧ ¬Q)]⇒ P .

Proof. Assume ¬P → (Q ∧ ¬Q).
Assume ¬P .
From ¬P and ¬P → (Q ∧ ¬Q), we conclude Q ∧ ¬Q, by modus ponens.
From ¬Q and Q, we derive a contradiction, so we conclude P .
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From premise ¬P → (Q ∧ ¬Q) and P , we conclude [¬P → (Q ∧ ¬Q)]→ P ,
by conditional introduction.

If we show that ¬P → (Q ∧ ¬Q) is true, we apply the tautology and use
modus ponens to conclude P .

Let P → Q be an argument.
To prove P → Q
1. Assume P ∧ ¬Q. (the negation of P → Q)
2. Show (P ∧ ¬Q)⇒ (R ∧ ¬R) for some statement R (leads to a contradic-

tion).

VI. Proof by Division into Cases
Let P → Q be an argument.
To Prove P → Q
1. Express hypothesis P as a disjunction of propositions P ⇔ P1 ∨ ... ∨ Pn.
The cases are always exhaustive and typically mutually exclusive.
2. Prove each Pi → Q individually.

Example: Prove P → Q by cases.
We decompose P ⇔ P1 ∨ P2.
To prove P → Q we must prove (P1 ∨ P2)→ Q.
To prove (P1 ∨ P2)→ Q we can prove P1 → Q and P2 → Q.

This method is valid because

(P1 → Q) ∧ (P2 → Q) ⇔ (¬P1 ∨Q) ∧ (¬P2 ∨Q)

⇔ (¬P1 ∧ ¬P2) ∨Q

⇔ ¬(P1 ∨ P2) ∨Q

⇔ (P1 ∨ P2)→ Q

Template: Prove P → Q.
P ⇔ P1 ∨ P2.
We consider these cases separately.
Case 1: Suppose P1.
...
Therefore Q.
Case 2: Suppose P2.
...
Therefore Q.
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VII. Proof of Biconditional
To Prove P ↔ Q
1. ⇒ Prove P → Q
2. ⇐ Prove Q→ P
This method is valid because P ↔ Q is logically equivalent to (P → Q) ∧

(Q→ P ).

VIII. Disproof
To disprove a statement means to prove the statement is false.

Let P represent a statement.
To disprove P
1. Prove ¬P .

Let (P1 ∧ P2 ∧ ... ∧ Pn)→ Q be an argument.
To disprove (P1 ∧ P2 ∧ ... ∧ Pn)→ Q
1. Prove (P1 ∧ P2 ∧ ... ∧ Pn)→ Q is false.
We can do this by proving (P1 ∧ P2 ∧ ... ∧ Pn) ∧ ¬Q.
Thus we find a possible circumstance in which all the premises are true and

the conclusion is false.

First Order/Predicate Calculus

extends propositional logic(zero order) by adding predicates and quantifiers

Definition 32. Propositional Function(Predicate)
A predicate is a declarative sentence containing one or more variables(unknowns).
It is a propositional function(open sentence) whose truth value depends

on the value of its variables.
It is not a statement so it is neither true nor false.

Let U be a universal set.
Define function p : U → {T, F} over domain of discourse U .
Then p is a propositional function(predicate).
Let x ∈ U .
Then p(x) is true or false.

Let P = {x ∈ U : p(x)}.
Then P is the truth set of p.
Therefore P is the set of all x ∈ U such that p(x) is true.
Thus P ⊂ U .

A propositional function (predicate) becomes a proposition (statement) when
1. a specific value is substituted for each of its variable(s)
2. the predicate is quantified
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A variable is bound if it is assigned a value or if it is quantified.

A variable is free if it is not bound.

A predicate describes a property of objects or a relationship among objects.
It is assigned a semantic meaning (interpretation).

Let p : U → {T, F} be a propositional function.
Let P = {x ∈ U : p(x)} be the truth set of p.

Then the following are true:
Truth set of ¬p(x) is P .
Truth set of p(x) ∧ q(x) is P ∩Q.
Truth set of p(x) ∨ q(x) is P ∪Q.
Truth set of p(x)→ q(x) is P ∪Q.
Truth set of p(x)↔ q(x) is (P ∩Q) ∪ (P ∩Q).

Negations:
¬¬p(x)⇔ p(x)
¬[p(x) ∧ q(x)]⇔ ¬p(x) ∨ ¬q(x)
¬[p(x) ∨ q(x)]⇔ ¬p(x) ∧ ¬q(x)
¬[p(x)→ q(x)]⇔ p(x) ∧ ¬q(x)
¬[p(x)↔ q(x)]⇔ [p(x) ∧ ¬q(x)] ∨ [q(x) ∧ ¬p(x)]

Let p : U → {T, F} be a function defined by

p(x) =

{
T iff x ∈ P

F iff x 6∈ P

Then p is a propositional function defined over U .
The truth set of p is P = {x ∈ U : p(x) is a true statement }.

Suppose a is an arbitrary element in U .
Then a ∈ U .
Suppose p(a) is true.
Then a ∈ P .
Thus, the conditional p(a)→ a ∈ P is true.
Suppose a ∈ P .
Then p(a) is true.
Thus, the conditional a ∈ P → p(a) is true.
Since p(a)→ a ∈ P and a ∈ P → p(a) , then the biconditional p(a)↔ a ∈ P

is true.
Since p(a)↔ a ∈ P is true, then p(a)⇔ a ∈ P
Since a is arbitrary, then by universal generalization, p(x)⇔ x ∈ P for every

x ∈ U .
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Hence, (∀x ∈ U)(p(x)↔ a ∈ P ) is true.
Therefore p(x)⇔ x ∈ P .

Definition 33. Logical Implication
Let p(x) and q(x) be predicates defined over U .
Let P = truth set of p(x).
Let Q = truth set of q(x).

Define statement p(x) logically implies q(x), denoted p(x)⇒ q(x), to mean
‘p(x)→ q(x) is true for every x ∈ U ’.

Suppose p(x)⇒ q(x).
Then p(x)→ q(x) is true for every x ∈ U .
Hence the statement (∀x ∈ U)[p(x)→ q(x)] is true.
Since p(x) ⇔ x ∈ P and q(x) ⇔ x ∈ Q, then the statement (∀x ∈ U)(x ∈

P → x ∈ Q) is true.
Thus P ⊂ Q.

Suppose P ⊂ Q.
Then the statement (∀x ∈ U)[x ∈ P → x ∈ Q] is true.
Since x ∈ P ⇔ p(x) and x ∈ Q⇔ q(x), then the statement (∀x ∈ U)[p(x)→

q(x)] is true.
Hence p(x)→ q(x) is true for every x ∈ U .
Thus p(x)⇒ q(x).

Therefore p(x)⇒ q(x) iff P ⊂ Q.

Definition 34. Logical Equivalence
Let p(x) and q(x) be predicates defined over U .
Let P = truth set of p(x).
Let Q = truth set of q(x).

Define statement p(x) is logically equivalent to q(x), denoted p(x)⇔ q(x),
to mean ‘p(x)↔ q(x) is true for every x ∈ U ’.

Suppose p(x)⇔ q(x).
Then p(x)↔ q(x) is true for every x ∈ U .
Hence the statement (∀x ∈ U)[p(x)↔ q(x)] is true.
Since p(x) ⇔ x ∈ P and q(x) ⇔ x ∈ Q, then the statement (∀x ∈ U)(x ∈

P ↔ x ∈ Q) is true.
Thus P = Q.
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Suppose P = Q.
Then the statement (∀x ∈ U)[x ∈ P ↔ x ∈ Q] is true.
Since x ∈ P ⇔ p(x) and x ∈ Q⇔ q(x), then the statement (∀x ∈ U)[p(x)↔

q(x)] is true.
Hence p(x)↔ q(x) is true for every x ∈ U .
Thus p(x)⇔ q(x).

Therefore p(x)⇔ q(x) iff P = Q.

Quantified Statements

Universal Quantifier ∀ means ‘for all’ or ‘for every’

Existential Quantifier ∃ means ‘there exists’ or ‘there is some’ or ‘there is
at least one’

Uniqueness Quantifier ∃! means ‘there exists exactly one’

Let U be a universal set (domain of discourse) for variable x.
Let p(x) be a propositional function defined over U .
Let P = {x ∈ U : p(x) is true } be the truth set of p.
Then P ⊂ U .

Universally Quantified Statement

Let p(x) be a predicate defined over domain of discourse U .
Let P be the truth set of p(x).
Then P = {x ∈ U : p(x) is true }.
Hence P ⊂ U .

Consider ∀x.p(x).
Since x is bound, then ∀x.p(x) is a statement.
Therefore ∀x.p(x) is true or false.

Suppose ∀x.p(x) is true.
Then p(c) is true for every specific object c ∈ U .
Let a be an arbitrary element of U .
Then a ∈ U , so p(a) is true.
Thus, a ∈ P .
Hence, a ∈ U and a ∈ P , so the conditional a ∈ U → a ∈ P is true.
Since a is arbitrary, then by universal generalization, the conditional x ∈

U → x ∈ P is true for every x ∈ U .
Thus, the statement (∀x ∈ U)(x ∈ U → x ∈ P ) is true, so U ⊂ P .
Since P ⊂ U and U ⊂ P , then P = U .
Therefore ∀x.p(x) implies P = U .
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Suppose P = U .
Then P ⊂ U and U ⊂ P .
Hence U ⊂ P .
Let a be an arbitrary element of U .
Then a ∈ U .
Since a ∈ U and U ⊂ P , then a ∈ P .
Thus p(a) is true.
Since a is arbitrary, then by universal generalization, p(x) is true for every

x ∈ U .
Hence ∀x.p(x) is true.
Therefore P = U implies ∀x.p(x).
Since ∀x.p(x)⇒ P = U and P = U ⇒ ∀x.p(x), then ∀x.p(x)⇔ P = U .

Therefore ∀x.p(x)⇔ (P = U).

Suppose ∀x.p(x) is false.
Then p(c) is false for at least one specific object c ∈ U .
Hence, by existential generalization, there exists x ∈ U such that p(x) is

false.
Thus, ∃x.¬p(x).
Since ∀x.p(x) is false, then ¬∀x.p(x) is true.
Observe that ¬∀x.p(x)⇔ ∃x.¬p(x).
Since ∀x.p(x) iff P = U , then ¬∀x.p(x) iff P 6= U .
Observe that ∃x.¬p(x) is true if and only if P is not empty.

Therefore ¬∀x.p(x)⇔ ∃x.¬p(x)⇔ P 6= U ⇔ P 6= ∅.

Let U be a nonempty finite set.
Then |U | = n for some n ∈ Z+.
Therefore (∀x ∈ U)p(x)⇔ p(x1) ∧ ... ∧ p(xn).

Existentially Quantified Statement

Let p(x) be a predicate defined over domain of discourse U .
Let P be the truth set of p(x).
Then P = {x ∈ U : p(x) is true }.
Hence P ⊂ U .

Consider ∃x.p(x).
Since x is bound then ∃x.p(x) is a statement.
Therefore ∃x.p(x) is true or false.
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Suppose ∃x.p(x) is true.
Then

∃x.p(x) ⇒ p(c) existential instantiation

⇒ c ∈ P defn of P

⇒ (∃x)(x ∈ P ) existential generalization

⇒ P is not empty (defn empty set)

⇒ P 6= ∅

Therefore ∃x.p(x) implies P 6= ∅.

Suppose P 6= ∅.
Then

P 6= ∅ ⇒ P is not empty (defn empty set)

⇒ (∃x)(x ∈ P ) defn empty set

⇒ c ∈ P existential instantiation

⇒ p(c) defn of P

⇒ ∃x.p(x) existential generalization

Since ∃x.p(x)⇒ P 6= ∅ and P 6= ∅ ⇒ ∃x.p(x), then ∃x.p(x)⇔ P 6= ∅.

Therefore ∃x.p(x)⇔ P 6= ∅.

Suppose ∃x.p(x) is false.
Then there is no object c ∈ U such that p(c) is true.
Thus p(c) is false for every c ∈ U .
Hence, p(x) is false for every x ∈ U .
Thus, ∀x.¬p(x) is true.
Since ∃x.p(x) is false, then ¬∃x.p(x) is true.
Observe that ¬∃x.p(x)⇔ ∀x.¬p(x).
Since ∃x.p(x) iff P 6= ∅, then ¬∃x.p(x) iff P = ∅.
Observe that ∀x.¬p(x) is true if and only if P = U .

Therefore ¬∃x.p(x)⇔ ∀x.¬p(x)⇔ P = U ⇔ P = ∅.

Let U be a non empty finite set.
Then |U | = n for some n ∈ Z+.
Therefore (∃x ∈ U)p(x)⇔ p(x1) ∨ ... ∨ p(xn).

Quantifiers with Predicates

∃x.[p(x)→ q(x)] means ‘there is at least one x such that p(x) implies q(x)’
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Distributing ∀ through ∧
∀x.[p(x) ∧ q(x)] ⇔ ∀x.p(x) ∧ ∀x.q(x) same as P ∩ Q = U iff (P = U and

Q = U)
This means ‘All are P and Q if and only if all are P and all are Q’.

Distributing ∃ through ∨
∃x.[p(x) ∨ q(x)] means ‘either p(x) or q(x) for at least one x’
∃x.[p(x)∨ q(x)]⇔ ∃x.p(x)∨∃x.q(x) same as P ∪Q 6= ∅ iff (P 6= ∅ or Q 6= ∅)
This means ‘Some are either P or Q if and only if either some are P or some

are Q’.

∀x.p(x) ∨ ∀x.q(x) means ‘either p(x) for all x, or q(x) for all x’
∀x.p(x)∨∀x.q(x)⇒ ∀x.[p(x)∨q(x)] same as (P = U or Q = U)⇒ (P ∪Q =

U)
This means ‘if either all are P or all are Q, then all are either P or Q’.
Suppose P = U or Q = U .
Then P ∪Q = U ∪ U = U .

∃x.[p(x) ∧ q(x)] means ‘p(x) and q(x) for at least one x’
∃x.[p(x) ∧ q(x)] ⇒ ∃x.p(x) ∧ ∃x.q(x) same as (P ∩ Q 6= ∅) ⇒ (P 6= ∅ and

Q 6= ∅)
This means ‘if some are P and Q, then some are P and some are Q’.
Suppose P ∩Q 6= ∅.
Then P ∩Q is not empty so P ∩Q contains at least one element.
Let a ∈ P ∩Q.
Then a ∈ P and a ∈ Q.
Since a ∈ P then P is not empty, so P 6= ∅.
Since a ∈ Q then Q is not empty, so Q 6= ∅.
Therefore P 6= ∅ and Q 6= ∅.

Proposition 35. Let p(x) and q(x) be predicates defined over domain of dis-
course U .

Let r be a proposition.
Then the following are true:
1. (∀x)r ⇔ r.
2. (∃x)r ⇔ r.
3. (∀x)(r ∨ q(x))⇔ r ∨ (∀x)(q(x)).
4. (∃x)(r ∧ q(x))⇔ r ∧ (∃x)(q(x)).
5. (∀x)[r → q(x)]⇔ r → (∀x)(q(x)).
6. (∃x)[r → q(x)]⇔ r → (∃x)(q(x)).
7. (∀x)[q(x)→ r]⇔ (∃x)q(x)→ r.
8. (∃x)[q(x)→ r]⇔ (∀x)q(x)→ r.
9. (∀x)(p(x))⇔ (∀y)(p(y)).
10.(∃x)(p(x))⇔ (∃y)(p(y)).
11. [(∀x)(p(x)→ r)]⇒ [((∀x)(p(x)))→ r].
12. [(∀x)(p(x)→ q(x))]⇒ [(∀x)(p(x))→ (∀x)(q(x))].
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More Quantified Statements

Let U 6= ∅. Then
∀x.p(x)⇒ ∃x.p(x) same as P = U ⇒ P 6= ∅.
This means ‘if all are P, then some are P’.
Let U 6= ∅.
Suppose P = U .
Then P 6= ∅.

Let c be a specific element in U . Then

1. ∀x.p(x)⇒ p(c) same as P = U ⇒ c ∈ P .
Suppose P = U .
Since c ∈ U and U = P , then c ∈ P .

2. p(c)⇒ ∃x.p(x) same as c ∈ P ⇒ P 6= ∅.
Suppose c ∈ P .
Then P contains at least one element, so P is not empty.
Therefore P 6= ∅.
Since (∀x)(p(x))⇒ p(c) and p(c)⇒ (∃x)(p(x)), then (∀x)(p(x))⇒ (∃x)(p(x)).

Proposition 36. Let A be a subset of U .
Then
1. (∀x ∈ A).p(x)⇔ ∀x.[x ∈ A→ p(x)]
2. (∃x ∈ A).p(x)⇔ ∃x.[x ∈ A ∧ p(x)]

Observe that

¬(∀x ∈ A).p(x) ⇔ ¬(∀x)[x ∈ A→ p(x)]

⇔ ∃x.[¬(x ∈ A→ p(x))]

⇔ ∃x.[x ∈ A ∧ ¬p(x)]

⇔ (∃x ∈ A).¬p(x)

Therefore
¬(∀x ∈ A).p(x)⇔ (∃x ∈ A).¬p(x).
This means ‘not every x in A is P’ same as ‘some x in A is not P’.

Observe that

¬(∃x ∈ A).p(x) ⇔ ¬∃x.[x ∈ A ∧ p(x)]

⇔ ∀x.¬[x ∈ A ∧ p(x)]

⇔ ∀x.[x 6∈ A ∨ ¬p(x)]

⇔ ∀x.[x ∈ A→ ¬p(x)]

⇔ (∀x ∈ A).¬p(x)
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Therefore
¬(∃x ∈ A).p(x)⇔ (∀x ∈ A).¬p(x).
This means ‘no x in A is P’ same as ‘all x in A are not P’.

Let x be an element of U . Then
(∀x ∈ U).p(x)⇔ ∀x.p(x)
(∃x ∈ U).p(x)⇔ ∃x.p(x)

Uniqueness
Let p(x) be a predicate defined over a universal set U .
Define statement ‘there exists a unique x such that p(x)’ by
(∃!x)((p(x))⇔ [(∃x)(p(x))] ∧ [(∀x)(∀y)((p(x) ∧ p(y))→ (x = y))].
Therefore, the statement ‘there exists a unique x such that p(x)’ means
1. Existence ‘there exists at least one x such that p(x) : (∃x)(p(x)).
2. Uniqueness ‘there exists at most one x such that p(x) : (∀x)(∀y)((p(x)∧

p(y))→ (x = y))].

Aristotelian Forms

All P’s are Q’s means ∀x.[p(x)→ q(x)] which is same as P ⊂ Q

Some P’s are Q’s means ∃x.[p(x) ∧ q(x)] which is same as P ∩Q 6= ∅

No P’s are Q’s means ¬∃x.[p(x) ∧ q(x)] which is same as P ∩Q = ∅

Negation of ‘All P’s are Q’s’ is ‘Not all P’s are Q’s’
which means
‘some P’s are not Q’s’
which is same as
¬∀x.[p(x)→ q(x)]⇔ ∃x.[p(x) ∧ ¬q(x)]

Negation of ‘Some P’s are Q’s’ is ‘No P is Q’
which means
‘All P’s are not Q’s’
which is same as
¬∃x.[p(x) ∧ q(x)]⇔ (∀x)[¬p(x) ∨ ¬q(x)]⇔ (∀x)[p(x)→ ¬q(x)]

Negation of ‘No P’s are Q’s’ is ‘Some P’s are Q’s’
which means
‘there exists a P that is Q’
which is same as
¬¬∃x.[p(x) ∧ q(x)]⇔ ∃x.[p(x) ∧ q(x)]
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Propositional Functions of Several Variables

Let p(x1, x2, ..., xn) be a propositional function of n variables.
Let the set Ui be the domain of discourse for the ith variable, xi.
Then U1 × U2 × ...× Un = domain of discourse for p.
If U = common domain of discourse for all n variables,
then Un = U × U × ...× U = domain of discourse for p.

The truth set of p(x1, x2, ..., xn) is
P = {(x1, x2, ..., xn) ∈ U1×U2× ...×Un : p(x1, x2, ..., xn) is a true statement

}.
Thus P ⊂ U1 × U2 × ...× Un.

Multiple Quantifiers

To translate mixed quantifiers from symbolic logic to English:
1. Insert ‘such that’ or ‘having the property that’ after any occurrence of ∃

that is followed directly by ∀ or by a predicate.
2. Insert ‘and’ between any two occurrences of the same quantifier.
3. ∀x∃y translates as ‘to every x, there corresponds at least one y’.

Let U1, U2 be nonempty sets.
Let p(x, y) be a propositional function defined over domain of discourse

U1 × U2.
Then x ∈ U1 and y ∈ U2 and truth set of p is P = {(x, y) ∈ U1×U2 : p(x, y)

is true }.
Thus P ⊂ U1 × U2.

Quantifiers of the Same Type

Order of quantifiers does not matter when quantifiers are of the same kind(both
universal or both existential).

Thus all permutations of quantifiers of the same kind are logically equivalent.

∀x∀y.p(x, y) means p(x, y) for all x and y
is true whenever p(x, y) is true for every x and every y
is false whenever there is at least one x and at least one y such that p(x, y)

is false
∀x∀y.p(x, y)⇔ ∀y∀x.p(x, y)
¬[∀x∀y.p(x, y)]⇔ ∃x.¬[∀y.p(x, y)]⇔ ∃x∃y.¬p(x, y)

∃x∃y.p(x, y) means there exist x and y such that p(x, y)
is true whenever there is at least one x and at least one y such that p(x, y)

is true
is false whenever there is no x and y such that p(x, y) is true
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which is same as
p(x, y) is false for every x and every y

∃x∃y.p(x, y)⇔ ∃y∃x.p(x, y)
¬[∃x∃y.p(x, y)]⇔ ∀x.¬[∃y.p(x, y)]⇔ ∀x∀y.¬p(x, y)

∀x∀y.p(x, y)⇒ ∃x∃y.p(x, y).

Quantifiers of Different Types

Order of quantifiers matters when quantifiers are of different kinds.

∀x∃y.p(x, y) means for every x, there exists y such that p(x, y)
is true whenever for every x, there is at least one y such that p(x, y) is true
is false whenever there is an x such that p(x, y) is false for all y
¬[∀x∃y.p(x, y)]⇔ ∃x.¬[∃y.p(x, y)]⇔ ∃x∀y.¬p(x, y)

∃x∀y.p(x, y) means there exists x such that p(x, y) for all y
is true whenever there is an x such that p(x, y) is true for every y
is false whenever for every x, there is at least one y such that p(x, y) is false
¬[∃x∀y.p(x, y)]⇔ ∀x.¬[∀y.p(x, y)]⇔ ∀x∃y.¬p(x, y)

Consider ∃x∀y.p(x, y).
Observe that variables x and y are each quantified, so all variables are bound.
Hence ∃x∀y.p(x, y) is a statement, so ∃x∀y.p(x, y) is true or false.
Suppose ∃x∀y.p(x, y) is true.
Consider the innermost predicate ∀y.p(x, y).
Observe that y is quantified, so y is bound, and x is free.
Hence ∀y.p(x, y) is a function of x.
Let r(x) = ∀y.p(x, y).
Then ∃x.r(x) is true.
Let R be the truth set of r.
Then R = {x ∈ U1 : r(x) is true } = {x ∈ U1 : p(x, y) is true for every

y ∈ U2} = {x ∈ U1 : (x, y) ∈ P for every y ∈ U2}.
Since ∃x.r(x) is true, then by existential instantiation, let u1 be an arbitrary

element of U1 such that r(u1) is true.
Then u1 ∈ U1 and r(u1) is true, so u1 ∈ R.
Therefore, u1 ∈ U1 and (u1, y) ∈ P for every y ∈ U2.
This means P must contain the vertical line x = u1.
Since u1 is a specific element, then by existential generalization, P must

contain at least one vertical line.
Therefore, the truth of ∃x∀y.p(x, y) implies that the truth set of p must

contain at least one vertical line.
Let y = u2 be an arbitrary horizontal line.
Then the line y = u2 must intersect P in at least one point, namely (u1, u2).
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Thus (u1, u2) ∈ (U1 × {u2}) ∩ P .
Hence (u1, u2) ∈ P , so p(u1, u2) is true.
Since x = u1 is a particular element of U1, then by existential generalization,

p(x, u2) is true for some x ∈ U1.
Thus, ∃x.p(x, u2) is true.
Since y = u2 is arbitrary, then by universal generalization, ∃x.p(x, y) is true

for every y ∈ U2.
Thus, ∀y∃x.p(x, y) is true.
Hence ∃x∀y.p(x, y) logically implies ∀y∃x.p(x, y).

Therefore ∃x∀y.p(x, y)⇒ ∀y∃x.p(x, y).

To negate a statement involving the predicate p(x1, x2, ..., xn) preceded by n
quantifiers,

change each universal quantifier ∀ to ∃,
change each existential quantifier ∃ to ∀, and negate the predicate.

Proposition 37. Let p(x, y) be a predicate defined over domain of discourse
U1 × U2.

Let A ⊆ U1 and B ⊆ U2.
Then the following are true:
1. ¬(∀x ∈ A)(∃y ∈ B).p(x, y)⇔ (∃x ∈ A)(∀y ∈ B).¬p(x, y).
2. ¬(∃x ∈ A)(∀y ∈ B).p(x, y)⇔ (∀x ∈ A)(∃y ∈ B).¬p(x, y).
3. (∃x ∈ A)(∀y ∈ B).p(x, y)⇒ (∀y ∈ B)(∃x ∈ A).p(x, y).
4. (∀x)(∀y)p(x, y)⇒ (∃x)(∀y)p(x, y)⇒ (∀y)(∃x)p(x, y)⇒ (∃x)(∃y)p(x, y).

Rules of Inference for Quantified Statements

Let p : U 7→ {T, F} be a predicate defined over a domain of discourse U .

existential introduction (existential generalization)
p(c)⇒ ∃x.p(x), where c is a particular (specific) element of U .

universal elimination (universal instantiation)
∀x.p(x)⇒ p(c), where c is a particular (specific) element of U .

universal introduction (universal generalization)
p(a)⇒ ∀x.p(x) , where a is an arbitrary element of U .

existential elimination (existential instantiation)
∃x.p(x)⇒ p(c), where c is some element of U .
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Methods of Proof for Quantified Statements

I. Universally Quantified Statement
Let p(x) be a predicate defined over domain of discourse U .
Let (∀x)(p(x)) be a statement.

To prove (∀x)(p(x))
1. Assume a ∈ U is arbitrary.
2. Prove p(a).

This method is valid because if a is an arbitrary element of U , then p(a) ⇒
(∀x)p(x) (universal generalization).

To disprove (∀x)(p(x))
1. Prove (∃x)¬p(x).
Thus we find a specific c ∈ U such that p(c) is false, a counter example.

This method is valid because ¬(∀x)p(x)⇔ (∃x)¬p(x).

To prove (∀x)(p(x)→ q(x))
1. Assume a ∈ U is arbitrary such that p(a).
2. Prove q(a).

Suppose a ∈ U is arbitrary and p(a) is true.
If p(a)⇒ q(a), then the conditional p(a)→ q(a) is true.
By universal generalization, the conditional p(a)→ q(a) is true for all x ∈ U .
Therefore the statement (∀x)(p(x)→ q(x)) is true.

To disprove (∀x)[p(x)→ q(x)]
1. Prove (∃x)[p(x) ∧ ¬q(x)].
Thus we find a specific counter example c ∈ U such that p(c) is true and

q(c) false.

This method is valid because ¬(∀x)[p(x)→ q(x)]⇔ (∃x)[p(x) ∧ ¬q(x)].

II. Existentially Quantified Statement
Let p(x) be a predicate defined over domain of discourse U .
Let (∃x)(p(x)) be a statement.

To prove (∃x)(p(x))
1. Find a specific c ∈ U such that p(c) is true. (constructive proof)

This is method is valid because if c is a specific element of U , then p(c) ⇒
(∃x)p(x) (existential generalization).
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Alternate approach:
Establish the existence of c ∈ U such that p(c) is true without actually

finding c. (non-constructive proof).

To disprove (∃x)(p(x))
1. Prove (∀x)¬p(x).

This method is valid because ¬(∃x)p(x)⇔ (∀x)¬p(x).

III. Disproof
Let p(x) be a predicate defined over domain of discourse U .
We find a counterexample.
Example: Prove ∀x.[p(x)→ q(x)] is false.

To prove ∀x.[p(x) → q(x)] is false, we take its negation which is ∃x.[p(x) ∧
¬q(x)].

Thus we find a specific element c such that p(c) ∧ ¬q(c) is true (counter
example).

IV. Uniqueness Proof
Let p(x) be a predicate defined over domain of discourse U .
Let (∃!x)[p(x)] be a statement.
To prove (∃!x)[p(x)]
1. Existence: Prove (∃x)[p(x)]. (at least one x exists)
2. Uniqueness: Prove (∀x)(∀y)[(p(x) ∧ p(y)) → (x = y)]. (at most one x

exists)
To prove uniqueness, we assume two objects x and y exist such that p(x)

and p(y) are true.
We must prove x = y.

Template: Prove (∃!x)(p(x)).
Suppose (∃x)(p(x)) and (∃y)(p(y)).
...
Therefore x = y.

V. Mathematical Induction
Prove ∀(n ≥ n0).p(n) where n ∈ Z+.

Mathematical Induction

Principle of Mathematical Induction
Let S be a subset of Z+ such that
1. 1 ∈ S
2. (∀k ∈ Z+)(k ∈ S → k + 1 ∈ S)
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Then S = Z+.

Observe that Z+ satisfies both of the above conditions.
No proper subset of Z+ satisfies both of the above conditions.

To prove (∀n ∈ Z+)[p(n)] by induction:
1. Define predicate p(n) where domain of discourse is Z+.
2. Let S be the truth set of p(n).
Then S = {n ∈ Z+ : p(n) is true }, so S ⊂ Z+.
3. Show that S = Z+ by using the principle of mathematical induction.
a. Basis: To prove 1 ∈ S, we prove p(1) is true.
b. Induction: To prove (∀k ∈ Z+)(k ∈ S → k + 1 ∈ S),
we assume arbitrary k ∈ S.
Thus, we assume p(k) is true for arbitrary k ∈ Z+. (Induction hypothe-

sis)
To prove k + 1 ∈ S, we must prove p(k + 1) is true.

This method of proof is valid because to prove a statement of the form (∀n ∈
Z+)(p(n)) is to show that the truth set of p(n) is the universal set Z+.

In this method, U = Z+ and S is the truth set of p(n), so we must prove
S = Z+.

Definition 38. Inductive Set
Let S ⊂ N.
The statement S is inductive means m ∈ S implies m + 1 ∈ S for all

positive integers m.
Therefore S is inductive iff (∀m ∈ Z+)(m ∈ S → m + 1 ∈ S).

N is an inductive set.
∅ is an inductive set.
Let n ∈ N.
The set {n, n + 1, n + 2, ...} is inductive.
Every nonempty inductive set has the form {n, n + 1, n + 2, ...}.

Let T ⊂ N.
To prove T = N by induction:
1. Prove 1 ∈ T .
2. Prove T is an inductive set.

Let S be an inductive subset of N containing a positive integer m0.
Then S contains m for every positive integer m greater than m0; that is,

{m0,m0 + 1,m0 + 2, ...} ⊂ S.
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To prove (∀n ≥ n0)[p(n)]:
Let n0 ∈ N.
Let D = {n ∈ N : n ≥ n0} = {n0, n0 + 1, n0 + 2, ...}.
Then D ⊂ N and D is an inductive set.
Let p(n) be a predicate defined over domain of discourse D.
Let S be the truth set of p.
Then S = {n ∈ D : p(n) is true }.
Thus, S ⊂ D.
To prove S = D, we use induction.
Thus, we must prove:
1. n0 ∈ S.
2. S is an inductive set.
To prove S is an inductive set, we must prove (∀m ∈ N)(m ∈ S → m+1 ∈ S)
Or, we can prove the weaker statement: (∀m ∈ N)(m ∈ S ∧ m ≥ n0 →

m + 1 ∈ S).

Strong Induction

Prove that if Sn is true for all cases up to some arbitrary fixed point n, then Sn

is true for all cases at point n + 1.
A. Prove: Sn for all n ∈ N (basis is 1)
Proof:
I. Basis step
S1 = basis
Prove S1 is true
II. Inductive step
Assume S1 ∧ S2 ∧ ... ∧ Sk is true for fixed k ≥ 1. (inductive hypothesis)
Show that S1 ∧ S2 ∧ ... ∧ Sk → Sk+1 is true.
Conclude that Sn is true ∀n ∈ N.

B. Prove: Sn for all n ≥ n0 ∈ Z (using more than one basis)
Proof:
I. Basis step
Consider multiple bases: n0, n0 + 1, ..., j0
Prove each base case: S(n0), S(n0+1), ..., S(j0)

II. Inductive step
Assume S(n0)∧S(n0+1)∧...∧S(j0)∧Sk is true for arbitrary k ≥ j0. (inductive

hypothesis)
Show that S(n0) ∧ S(n0+1) ∧ ... ∧ S(j0) ∧ Sk → Sk+1 is true.
Conclude that Sn is true ∀(n ≥ n0) ∈ Z.

Formal Language

Notes:
A = alpha set = set of propositional variables(atomic formulae/terminal

elements)
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Ω = omega set = set of logical connectives/operators = {¬,∧,∨,→,↔}
Z = zeta set = set of inference rules(transformation)
I = iota set = set of initial points(axioms/laws)

1. alpha set consists of syntactic expressions(well formed formulae)
2. omega set consists of operator symbols (logical operators)
3. syntax
grammar recursively defines expressions and wffs
determines which collection of symbols are legal expressions
4. semantics - determines meaning behind the expressions(true or false)

L = language = set of wffs defined recursively
1. Basis: Any element of A is a formula(wff)
2. Induction: if p1, p2, ..., pk are formulae and f is in Ωk, then f(p1, p2, ..., pk)

is a formula
3. Closure: Nothing else is a formula

Definition 39. Well Formed Formula (wff)
A well formed formula is a formula(proposition) that is built up from

atomic formulae using logical operators according to the rules of grammar.
1. propositional constant
Example: T,F
2. propositional variable
Example: P,Q,R
3. predicate
Example: p(x), p(x,y), p(x,y,z)
4. Let x be a variable in the domain of discourse.
Let A be a wff.
Then the following are wff:
a. ∀x.A
b. ∃x.A

Example:
Let p(x) be a predicate defined over domain of discourse U .
Then (∀x)(p(x)) is a wff and (∃x)(p(x)) is a wff.

Definition 40. Interpretation of wff
Define the universe(domain of discourse) for each variable.
Define the predicate over a domain of discourse.
Assign a value to each free variable.
Then this specification is an interpretation for the wff.

A wff becomes a proposition when it is given an interpretation.
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Example:
Let U be a domain of discourse for variable x.
Let p(x) be a predicate defined over U .
Then p(x) is a well-formed formula.
Since p(x) is an open sentence, then it is not a statement.
Therefore the truth of p(x) is not determined unless a specific value is as-

signed to x.
Let a be a specific element of U .
Then p(a) is true or false, so p(a) is a proposition(statement).

Definition 41. satisfiable wff
A wff is satisfiable iff there exists an interpretation that makes it true.

Therefore wff is unsatisfiable iff there does not exist an interpretation that
makes it true.

Let U be a domain of discourse for variable x.
Let p(x) be a predicate defined over U .
Then p(x) is a well-formed formula.
Let c be a specific element of U such that p(c) is true.
Then p(x) is satisfiable.

Let U be a domain of discourse for variable x.
Let p(x) be a predicate defined over U .
Then p(x) is a well-formed formula.
Suppose there is no element of U that makes p(x) true.
Then p(x) is unsatisfiable.

Definition 42. Validity of wff
A wff is valid if it is true for every interpretation that makes sense.

Example:
Let U be a universal set.
Then U = {x : x ∈ U}.
Let U be a domain of discourse for variable x.
Let p(x) be a predicate defined over U .
Let P be the truth set of p.
Then P = {x ∈ U : p(x) is true }.
Therefore, P ⊂ U .
Since p(x) is a predicate, then p(x) is a well-formed formula.
Suppose p(x) is true for every x ∈ U .
Then P = U .
Therefore, p(x) is valid.

Definition 43. Equivalence of wff
Let W1 and W2 be wffs.
Then W1 ⇔W2 iff W1 ↔W2 is valid.
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Example:
Let U be a domain of discourse for variable x.
Let p(x) and q(x) be predicates defined over U .
Let P and Q be the truth sets of p and q.
Then P = {x ∈ U : p(x) is true } and Q = {x ∈ U : q(x) is true }.
Therefore, P ⊂ U and Q ⊂ U .
Since p(x) and q(x) are predicates, then each is a well-formed formula.
Suppose P = Q.
Then (∀x)(x ∈ P ↔ x ∈ Q) is true.
Let a ∈ U be arbitrary.
Then the statement a ∈ P ↔ a ∈ Q is true.
Hence, p(a)↔ q(a) is true.
Thus, p(a)⇔ q(a).
Since a is arbitrary, then p(a)⇔ q(a) for all a ∈ U .
Therefore, p(x)⇔ q(x), so p(x) and q(x) are logically equivalent.
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