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Chapter 1 Preliminaries

Chapter 1.1 Mathematical Induction

Example 1. For all n ∈ Z+,
∑n−1

k=0 2k = 2n − 1.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ :

∑n−1
k=0 2k = 2n − 1}.

Basis:
Since 1 ∈ Z+ and

∑1−1
k=0 2k =

∑0
k=0 2k = 1 = 21 − 1, then 1 ∈ S.

Induction:
Let m ∈ Z+ such that m ∈ S.
Then

∑m−1
k=0 2k = 2m − 1.

Since m ∈ Z+, then m + 1 ∈ Z+.
Observe that

(m+1)−1∑
k=0

2k =

m∑
k=0

2k

=

m−1∑
k=0

2k + 2m

= (2m − 1) + 2m

= 2 · 2m − 1

= 2m+1 − 1.

Since m + 1 ∈ Z+ and
∑(m+1)−1

k=0 2k = 2m+1 − 1, then m + 1 ∈ S.
Hence, m ∈ S implies m + 1 ∈ S for all m ∈ Z+.

Since 1 ∈ S and m ∈ S implies m + 1 ∈ S for all m ∈ Z+, then by induction,
S = Z+, so

∑n−1
k=0 2k = 2n − 1 for all n ∈ Z+.

Example 2. If n ∈ N, then 20 + 21 + 22 + 23 + ... + 2n = 2n+1 − 1.



Proof. Suppose n ∈ N.
Let Sn be the number

Sn = 20 + 21 + 22 + · · ·+ 2n−1 + 2n (1)

We must show that Sn = 2n+1 − 1.
Multiply both sides of Equation 1 by 2 to get

2Sn = 21 + 22 + 23 + · · ·+ 2n + 2n+1 (2)

Now subtract 1 from both sides of Equation 2 to get

2Sn − 1 = 21 + 22 + 23 + · · ·+ 2n + 2n+1 − 1 (3)

From Equation 1 we know that Sn − 1 = 21 + 22 + 23 + · · ·+ 2n so we can
substitute this fact into Equation 3 to get

2Sn − 1 = (Sn − 1) + 2n+1 − 1 (4)

Now add 1 to both sides of Equation 4 to get

2Sn = Sn + 2n+1 − 1 (5)

Now subtract Sn from both sides of Equation 5 to get

Sn = 2n+1 − 1

Example 3. Let (an) be the Lucas sequence defined by a1 = 1 and a2 = 3 and
an = an−1 + an−2 for n ≥ 3.

Then an < (
7

4
)n for all n ∈ Z+.

Proof. Let p(n) be the predicate an < (
7

4
)n defined over Z+.

We prove p(n) is true for all positive integers n by strong induction on n.
Basis:
Since a1 = 1 < 7

4 = ( 7
4 )1, then p(1) is true.

Since a2 = 3 < 49
16 = ( 7

4 )2, then p(2) is true.
Induction:
For any integer k ≥ 3, assume p(n) is true for n = 1, 2, ..., k − 1.

In particular, p(k − 2) and p(k − 1) are true, so ak−2 < (
7

4
)k−2 and ak−1 <

(
7

4
)k−1.
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Observe that

ak = ak−1 + ak−2

< (
7

4
)k−1 + (

7

4
)k−2

= (
7

4
)k−2(

7

4
+ 1)

= (
7

4
)k−2(

11

4
)

< (
7

4
)k−2(

49

16
)

= (
7

4
)k−2(

7

4
)2

= (
7

4
)k.

Thus, ak < (
7

4
)k, so p(k) is true.

Hence, for any integer k ≥ 3 such that p(1), p(2), ..., p(k − 1) is true, then
p(k) is true.

Since p(1) is true and p(2) is true, and for any integer k ≥ 3 such that
p(1), p(2), ..., p(k − 1) is true, then p(k) is true, then by strong induction, p(n)
is true for all n ∈ Z+.

Therefore, an < (
7

4
)n for all n ∈ Z+.

Chapter 1.1 Problems

Exercise 4. sum of the first n products of pairs of consecutive integers

For all n ∈ Z+,
∑n

k=1 k(k + 1) =
n(n + 1)(n + 2)

3
.

Proof. We prove by induction on n.

Let S = {n ∈ Z+ :
∑n

k=1 k(k + 1) =
n(n + 1)(n + 2)

3
}.

Basis:

Since 1 ∈ Z+ and 1 · 2 = 2 =
1 · 2 · 3

3
, then 1 ∈ S.

Induction:
Let m ∈ Z+ such that m ∈ S.

Then
∑m

k=1 k(k + 1) =
m(m + 1)(m + 2)

3
.
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Thus,

m+1∑
k=1

k(k + 1) =

m∑
k=1

k(k + 1) + (m + 1)(m + 2)

=
m(m + 1)(m + 2)

3
+ (m + 1)(m + 2)

= (m + 1)(m + 2)(
m

3
+ 1)

=
(m + 1)(m + 2)(m + 3)

3
.

Since m + 1 ∈ Z+ and
∑m+1

k=1 k(k + 1) =
(m + 1)(m + 2)(m + 3)

3
, then

m + 1 ∈ S.
Therefore, m ∈ S implies m + 1 ∈ S for all m ∈ Z+.

Since 1 ∈ S and m ∈ S implies m + 1 ∈ S for all m ∈ Z+, then by induction,

S = Z+, so
∑n

k=1 k(k + 1) =
n(n + 1)(n + 2)

3
for all n ∈ Z+, as desired.

Exercise 5. The sum of the squares of the first n odd positive integers is
n(4n2 − 1)

3
.

Proof. We must prove
∑n

k=1(2k − 1)2 =
n(4n2 − 1)

3
for all n ∈ Z+.

Let n ∈ Z+.
Then

n∑
k=1

(2k − 1)2 =

n∑
k=1

(4k2 − 4k + 1)

=

n∑
k=1

4k2 −
n∑

k=1

4k +

n∑
k=1

1

= 4

n∑
k=1

k2 − 4

n∑
k=1

k +

n∑
k=1

1

= 4 · n(n + 1)(2n + 1)

6
− 4 · n(n + 1)

2
+ n

=
2n(n + 1)(2n + 1)

3
− 2n(n + 1) + n

=
n

3
[2(n + 1)(2n + 1)− 6(n + 1) + 3]

=
n

3
[2(2n2 + 3n + 1)− 6(n + 1) + 3]

=
n

3
(4n2 + 6n + 2− 6n− 6 + 3)

=
n

3
(4n2 − 1).

4



Therefore,
∑n

k=1(2k − 1)2 =
n(4n2 − 1)

3
.

Exercise 6. The cube of any positive integer can be written as the difference
of two squares.

Proof. We prove for every n ∈ Z+, there exist integers k and m such that
n3 = k2 −m2.

Let n ∈ Z+.

Let k =
n(n + 1)

2
.

Let m =
(n− 1)n

2
.

Since n and n+1 are consecutive integers, then the product n(n+1) is even,
so k is an integer.

Since n−1 and n are consecutive integers, then the product (n−1)n is even,
so m is an integer.

Observe that

n3 = n3 + 0

= n3 + [13 + 23 + ... + (n− 1)3]− [13 + 23 + ... + (n− 1)3]

= [13 + 23 + ... + (n− 1)3 + n3]− [13 + 23 + ... + (n− 1)3]

=

n∑
k=1

k3 −
n−1∑
k=1

k3

= (
n(n + 1)

2
)2 − (

(n− 1)n

2
)2

= k2 −m2.

Exercise 7. Let m,n ∈ Z+.
Is (mn)! = m!n! ?
Is (m + n)! = m! + n!?

Proof. Let m = 4 and n = 5.
Then (mn)! = (4 ∗ 5)! = 20! = 2432902008176640000 6= 22880 = 24 ∗ 120 =

(4!)(5!) = m!n!, so (mn)! 6= m!n!.

Let m = 3 and n = 7.
Then (m + n)! = (3 + 7)! = 10! = 3628800 6= 5046 = 6 + 5040 = 3! + 7! =

m! + n!, so (m + n)! 6= m! + n!.

Exercise 8. For all integers n ≥ 4, n! > n2.
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Proof. We prove n! > n2 for all n ∈ Z+ with n ≥ 4 by induction on n.
Let S = {n ∈ Z+ : n! > n2}.
Basis:
Since 4 ∈ Z+ and 4! = 24 > 16 = 42, then 4 ∈ S.
Induction:
Let k ∈ Z+ with k ≥ 4 such that k ∈ S.
Then k! > k2.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since k + 1 > k and k ≥ 4 and 4 > 0, then k + 1 > 4 and k + 1 > 0.
Since k ≥ 4 > 1, then k > 1.
Since k ≥ 4, then k − 1 ≥ 3.
Since k − 1 ≥ 3 > 1, then k − 1 > 1.
Since k > 1 and k − 1 > 1, then k(k − 1) > 1, so k2 − k > 1.
Hence, k2 > k + 1.
Observe that

(k + 1)! = (k + 1)k!

> (k + 1)k2

> (k + 1)(k + 1)

= (k + 1)2.

Since k + 1 ∈ Z+ and k + 1 > 4 and (k + 1)! > (k + 1)2, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all integers k ≥ 4.

Since 4 ∈ S and k ∈ S implies k + 1 ∈ S for all integers k ≥ 4, then by
induction n! > n2 for all integers n ≥ 4.

Exercise 9. For all integers n ≥ 6, n! > n3.

Proof. We prove n! > n3 for all n ∈ Z+ with n ≥ 6 by induction on n.
Let S = {n ∈ Z+ : n! > n3}.
Basis:
Since 6 ∈ Z+ and 6! = 720 > 216 = 63, then 6 ∈ S.
Induction:
Let k ∈ Z+ with k ≥ 6 such that k ∈ S.
Then k! > k3.
Since k ∈ Z+, then k > 0 and k + 1 ∈ Z+, so k + 1 > 0.
Since k + 1 > k ≥ 6, then k + 1 > 6.
Since k ≥ 6, then k3 ≥ 63 = 216 > 3, so k3 > 3.

Hence, k3

3 > 1.
Since k ≥ 6, then k2 ≥ 62 = 36 > 6, so k2 > 6.

Since k > 0, then k3 > 6k, so k3

3 > 2k.
Since k ≥ 6 > 3, then k > 3.
Since k > 0, then k2 > 0, so k3 > 3k2.

Hence, k3

3 > k2.
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Since k3

3 > k2 and k3

3 > 2k and k3

3 > 1, then k3 = k3

3 + k3

3 + k3

3 > k2+2k+1 =
(k + 1)2, so k3 > (k + 1)2.

Observe that

(k + 1)! = (k + 1)k!

> (k + 1)k3

> (k + 1) · (k + 1)2

= (k + 1)3.

Since k + 1 ∈ Z+ and (k + 1)! > (k + 1)3, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all integers k ≥ 6.

Since 6 ∈ S and k ∈ S implies k + 1 ∈ S for all integers k ≥ 6, then by
induction, n! > n3 for all integers n ≥ 6.

Exercise 10. Let (an) be the sequence defined by a1 = 1 and an = an−1 +nn!
for all positive integers n > 1.

Then an = (n + 1)!− 1 for all n ∈ Z+.

Proof. We prove (∀n ∈ Z+)(an = (n + 1)!− 1) by induction on n.
Let S = {n ∈ Z+ : an = (n + 1)!− 1}.
Basis:
Since 1 ∈ Z+ and a1 = 1 = 2− 1 = (1 + 1)!− 1, then 1 ∈ S.
Induction:
Let k ∈ Z+ such that k ∈ S.
Then ak = (k + 1)!− 1.
Since k ∈ Z+, then k > 0 and k + 1 ∈ Z+.
Since k > 0, then k + 1 > 1.
Observe that

ak+1 = ak + (k + 1)(k + 1)!

= [(k + 1)!− 1] + (k + 1)(k + 1)!

= (k + 1)!− 1 + (k + 1)(k + 1)!

= (k + 1)! + (k + 1)(k + 1)!− 1

= (k + 2)(k + 1)!− 1

= (k + 2)!− 1

= [(k + 1) + 1]!− 1.

Since k + 1 ∈ Z+ and ak+1 = [(k + 1) + 1]!− 1, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all k ∈ Z+.

Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ Z+, then by induction,
S = Z+.

Therefore, an = (n + 1)!− 1 for all n ∈ Z+.
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Chapter 1.2 Mathematical Induction

Chapter 1.2 Problems

Exercise 11. Let k ∈ Z.

Then

(
n

k

)
<

(
n

k + 1

)
iff 0 ≤ k <

n− 1

2
for all n ∈ Z+.

Proof. Let n ∈ Z+.

We first prove if

(
n

k

)
<

(
n

k + 1

)
, then 0 ≤ k <

n− 1

2
.

Suppose

(
n

k

)
<

(
n

k + 1

)
.

Then
n!

k!(n− k)!
<

n!

(k + 1)!(n− k − 1)!
.

Since k! exists, then k ≥ 0, by definition of factorial.
By definition of factorial function, the factorial of an integer is positive, so

n! > 0 and (k + 1)! > 0 and (n− k)! > 0.

Since
n!

k!(n− k)!
<

n!

(k + 1)!(n− k − 1)!
and n! > 0, then

1

k!(n− k)!
<

1

(k + 1)!(n− k − 1)!
.

Since k! and (n − k − 1)! are all in the denominator, then k! 6= 0 and
(n− k − 1)! 6= 0.

Since
1

k!(n− k)!
<

1

(k + 1)!(n− k − 1)!
and (k + 1)! > 0, then

(k + 1)!

k!(n− k)!
<

1

(n− k − 1)!
.

Thus,
(k + 1)k!

k!(n− k)!
<

1

(n− k − 1)!
, so

k + 1

(n− k)!
<

1

(n− k − 1)!
.

Since
k + 1

(n− k)!
<

1

(n− k − 1)!
and (n− k)! > 0, then k + 1 <

(n− k)!

(n− k − 1)!
.

Hence, k + 1 <
(n− k)(n− k − 1)!

(n− k − 1)!
, so k + 1 < n− k.

Thus, 2k < n− 1, so k <
n− 1

2
.

Since 0 ≤ k and k <
n− 1

2
, then 0 ≤ k <

n− 1

2
.

Proof. Conversely, we prove if 0 ≤ k <
n− 1

2
, then

(
n

k

)
<

(
n

k + 1

)
.

Suppose 0 ≤ k <
n− 1

2
.

Then 0 ≤ k and k <
n− 1

2
.
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Since k <
n− 1

2
, then 2k < n− 1, so k + k < n− 1.

Thus, k + 1 < n− k.
By definition of factorial function, the factorial of an integer is positive.
Thus, (n − k − 1)! > 0 and k! > 0 and (n − k)! > 0 and (k + 1)! > 0 and

n! > 0.

Since k + 1 < n− k and (n− k − 1)! > 0, then k + 1 <
(n− k)(n− k − 1)!

(n− k − 1)!
,

so k + 1 <
(n− k)!

(n− k − 1)!
.

Since k! > 0, then
(k + 1)k!

k!
<

(n− k)!

(n− k − 1)!
, so

(k + 1)!

k!
<

(n− k)!

(n− k − 1)!
.

Since (n− k)! > 0, then
(k + 1)!

k!(n− k)!
<

1

(n− k − 1)!
.

Since (k + 1)! > 0, then
1

k!(n− k)!
<

1

(k + 1)!(n− k − 1)!
.

Since n! > 0, then
n!

k!(n− k)!
<

n!

(k + 1)!(n− k − 1)!
, so

(
n

k

)
<

(
n

k + 1

)
.

Exercise 12. Let n, k ∈ Z and 0 ≤ k ≤ n.

Then

(
n

k

)
=

(
n

k + 1

)
iff k =

n− 1

2
.

Proof. We prove if

(
n

k

)
=

(
n

k + 1

)
, then k =

n− 1

2
.

Suppose

(
n

k

)
=

(
n

k + 1

)
.
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Observe that

k + 1 = 1 · (k + 1)

= 1 · 1 · 1 · (k + 1)

=
n!

n!
· (n− k)!

(n− k)!
· k!

k!
· (k + 1)

=
n!

n!
· (n− k)!

(n− k)!
· (k + 1)!

k!

=
n!

k!
· (n− k)!

(n− k)!
· (k + 1)!

n!

=
n!

k!(n− k)!
· (n− k)!(k + 1)!

n!

=

(
n

k

)
· (n− k)!(k + 1)!

n!

=

(
n

k + 1

)
· (n− k)!(k + 1)!

n!

=
n!

(k + 1)!(n− k − 1)!
· (n− k)!(k + 1)!

n!

=
(n− k)!

(n− k − 1)!
· n!

n!
· (k + 1)!

(k + 1)!

=
(n− k)!

(n− k − 1)!

=
(n− k)(n− k − 1)!

(n− k − 1)!

= n− k.

Hence, k + 1 = n− k, so 2k + 1 = n.

Therefore, 2k = n− 1, so k =
n− 1

2
.

Proof. Conversely, we prove if k =
n− 1

2
, then

(
n

k

)
=

(
n

k + 1

)
.

Suppose k =
n− 1

2
.

Then n− 1 = 2k = k + k, so n− 1 = k + k.
Hence, n− k = k + 1, so k = n− k − 1.
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Observe that (
n

k

)
=

n!

k!(n− k)!

=
n!

(n− k)!k!

=
n!

(k + 1)!k!

=
n!

(k + 1)!(n− k − 1)!

=
n!

(k + 1)!(n− k − 1)!

=

(
n

k + 1

)
.

Therefore,

(
n

k

)
=

(
n

k + 1

)
.

Exercise 13. If k ∈ Z and 2 ≤ k ≤ n− 2, then

(
n

k

)
=

(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+(

n− 2

k

)
for all n ∈ Z+ and n ≥ 4.

Proof. We define the predicate p(n) over Z+ by ‘if k ∈ Z and 2 ≤ k ≤ n − 2,

then

(
n

k

)
=

(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+

(
n− 2

k

)
’.

We prove p(n) is true for all n ∈ Z+ with n ≥ 4 by induction on n.
Basis:
Let n = 4.

Suppose k ∈ Z and 2 ≤ k ≤ n− 2.
Then k ∈ Z and 2 ≤ k ≤ 4− 2 = 2, so 2 ≤ k ≤ 2.
Since k ∈ Z and 2 ≤ k ≤ 2, then k = 2.
Observe that(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+

(
n− 2

k

)
=

(
4− 2

2− 2

)
+ 2

(
4− 2

2− 1

)
+

(
4− 2

2

)
=

(
2

0

)
+ 2

(
2

1

)
+

(
2

2

)
= 1 + 2 · 2 + 1

= 6

=

(
4

2

)
=

(
n

k

)
.
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Therefore, p(4) is true.
Induction:
Let n ∈ Z+ with n ≥ 4 such that p(n) is true.

Then k ∈ Z and 2 ≤ k ≤ n − 2 implies

(
n

k

)
=

(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+(

n− 2

k

)
.

Suppose k ∈ Z and 2 ≤ k ≤ n− 1.
Then 2 ≤ k and k ≤ n− 1.
Since k ≤ n− 1, then either k < n− 1 or k = n− 1, so either k ≤ n− 2 or

k = n− 1.
We consider each case separately.
Case 1: Suppose k = n− 1.
Then k + 2 = (n− 1) + 2 = n + 1, so k + 2 = n + 1.
Observe that(

n− 1

k − 2

)
+ 2

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
k

k − 2

)
+ 2

(
k

k − 1

)
+

(
k

k

)
=

(
k

k − 2

)
+ [

(
k

k − 1

)
+

(
k

k − 1

)
] +

(
k

k

)
= [

(
k

k − 2

)
+

(
k

k − 1

)
] + [

(
k

k − 1

)
+

(
k

k

)
]

=

(
k + 1

k − 1

)
+

(
k + 1

k

)
=

(
k + 2

k

)
=

(
n + 1

k

)
.

Case 2: Suppose k ≤ n− 2.
Since 2 ≤ k and k ≤ n− 2, then 2 ≤ k ≤ n− 2.

Since k ∈ Z and 2 ≤ k ≤ n−2, then

(
n

k

)
=

(
n− 2

k − 2

)
+2

(
n− 2

k − 1

)
+

(
n− 2

k

)
,

by the induction hypothesis.
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Observe that(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
=

(
n

k − 1

)
+ [

(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+

(
n− 2

k

)
]

=

(
n

k − 1

)
+

(
n− 2

k − 2

)
+

(
n− 2

k − 1

)
+

(
n− 2

k − 1

)
+

(
n− 2

k

)
=

(
n

k − 1

)
+ [

(
n− 2

k − 2

)
+

(
n− 2

k − 1

)
] + [

(
n− 2

k − 1

)
+

(
n− 2

k

)
]

=

(
n

k − 1

)
+

(
n− 1

k − 1

)
+

(
n− 1

k

)
= [

(
n− 1

k − 2

)
+

(
n− 1

k − 1

)
] +

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n− 1

k − 2

)
+ 2

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Therefore, p(n + 1) is true.
Hence, p(n) implies p(n + 1) for all integers n ≥ 4.

Since p(4) is true and p(n) implies p(n + 1) for all integers n ≥ 4, then by
induction, p(n) is true for all integers n ≥ 4.

Therefore, if k ∈ Z and 2 ≤ k ≤ n− 2, then

(
n

k

)
=

(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+(

n− 2

k

)
for all integers n ≥ 4.

Lemma 14. For every n ∈ Z+,
∑n

k=0(−1)k
(
n

k

)
= 0.

Proof. Let n ∈ Z+.
Then

n∑
k=0

(−1)k
(
n

k

)
=

n∑
k=0

(
n

k

)
· (−1)k

=

n∑
k=0

(
n

k

)
· 1 · (−1)k

=

n∑
k=0

(
n

k

)
· 1n−k · (−1)k

= [1 + (−1)]n

= 0n

= 0.
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Exercise 15. For every n ∈ Z+,
∑∞

k=0

(
n

2k

)
=
∑∞

k=0

(
n

2k + 1

)
= 2n−1.

Proof. Let n ∈ Z+.

Let S =
∑∞

k=0

(
n

2k

)
.

Let T =
∑∞

k=0

(
n

2k + 1

)
.

Since n ∈ Z+, then
∑n

k=0

(
n

k

)
= 2n.

Observe that

S + T =

∞∑
k=0

(
n

2k

)
+

∞∑
k=0

(
n

2k + 1

)
= [

(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ ...] + [

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ ...]

=

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
+

(
n

4

)
+

(
n

5

)
+ ...

=

∞∑
k=0

(
n

k

)

=

n∑
k=0

(
n

k

)
+

∞∑
k=n+1

(
n

k

)
= 2n + [

(
n

n + 1

)
+

(
n

n + 2

)
+

(
n

n + 3

)
+ ...]

= 2n + 0

= 2n.

Therefore, S + T = 2n.

Since n ∈ Z+, then
∑n

k=0(−1)k
(
n

k

)
= 0, by lemma 14.
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Observe that

S − T =

∞∑
k=0

(
n

2k

)
−
∞∑
k=0

(
n

2k + 1

)
= [

(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ ...]− [

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ ...]

=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−
(
n

3

)
+

(
n

4

)
−
(
n

5

)
+ ...

=

∞∑
k=0

(
n

k

)
(−1)k

=

n∑
k=0

(
n

k

)
(−1)k +

∞∑
k=n+1

(
n

k

)
(−1)k

=

n∑
k=0

(
n

k

)
(−1)k + [

(
n

n + 1

)
(−1)n+1 +

(
n

n + 2

)
(−1)n+2 +

(
n

n + 3

)
(−1)n+3 + ...]

=

n∑
k=0

(
n

k

)
(−1)k + 0

=

n∑
k=0

(
n

k

)
(−1)k

=

n∑
k=0

(−1)k
(
n

k

)
= 0.

Therefore, S − T = 0, so S = T .
Hence, 2n = S + T = S + S = 2S, so 2n = 2S.

Thus, 2n−1 = S = T , so
∑∞

k=0

(
n

2k

)
=
∑∞

k=0

(
n

2k + 1

)
= 2n−1.

Exercise 16. Show that
∑n

k=1 k

(
n

k

)
= n · 2n−1 for all n ∈ Z+.

Proof. We prove the statement
∑n

k=1 k

(
n

k

)
= n2n−1 for all n ∈ Z+ by induc-

tion on n.

Let S = {n ∈ Z+ :
∑n

k=1 k

(
n

k

)
= n2n−1}.

Basis:

Since 1 ∈ Z+ and
∑1

k=1 k

(
1

k

)
= 1
(
1
1

)
= 1 = (1)21−1, then 1 ∈ S.

Induction:
Suppose m ∈ S.
Then m ∈ Z+ and

∑m
k=1 k

(
m
k

)
= m2m−1.

15



We must prove
∑m+1

k=1 k
(
m+1
k

)
= (m + 1)2m.

TODO
We may need to abandon using proof by induction and use binomial theorem

instead. Try to get it into a form so that we can use the binomial theorem.
Hence, m ∈ S implies m + 1 ∈ S.
Therefore, by PMI,

∑n
k=1 k

(
n
k

)
= n2n−1 for all n ∈ Z+.

Exercise 17. Show that
∑n

k=0 2k
(
n

k

)
= 3n for all n ∈ Z+.

Proof. Let n ∈ Z+.
Observe that

n∑
k=0

2k
(
n

k

)
= 20

(
n

0

)
+ 21

(
n

1

)
+ ... + 2n−2

(
n

n− 2

)
+ 2n−1

(
n

n− 1

)
+ 2n

(
n

n

)
=

(
n

0

)
20 +

(
n

1

)
21 + ... +

(
n

n− 2

)
2n−2 +

(
n

n− 1

)
2n−1 +

(
n

n

)
2n

=

(
n

n

)
20 +

(
n

n− 1

)
21 + ... +

(
n

2

)
2n−2 +

(
n

1

)
2n−1 +

(
n

0

)
2n

=

(
n

0

)
2n +

(
n

1

)
2n−1 +

(
n

2

)
2n−2 + ... +

(
n

n− 1

)
21 +

(
n

n

)
20

=

(
n

0

)
2n−0 +

(
n

1

)
2n−1 +

(
n

2

)
2n−2 + ... +

(
n

n− 1

)
2n−(n−1) +

(
n

n

)
2n−n

=

n∑
k=0

(
n

k

)
2n−k

=

n∑
k=0

(
n

k

)
2n−k · 1

=

n∑
k=0

(
n

k

)
2n−k · 1k

= (2 + 1)n

= 3n.

Lemma 18. Let n ∈ Z and n ≥ 2.

Then
∑n

k=2

(
k

2

)
=

(
n + 1

3

)
.

Proof. Define predicate p(n) over Z+ by ‘
∑n

k=2

(
k

2

)
=

(
n + 1

3

)
’.

We prove p(n) is true for all integers n ≥ 2 by induction on n.
Basis:
Let n = 2.

16



Then
∑2

k=2

(
k

2

)
=

(
2

2

)
= 1 =

(
3

3

)
=

(
2 + 1

3

)
.

Therefore, p(2) is true.
Induction:
Let m ∈ Z+ with m ≥ 2 such that p(m) is true.

Then
∑m

k=2

(
k

2

)
=

(
m + 1

3

)
.

Observe that

m+1∑
k=2

(
k

2

)
=

m∑
k=2

(
k

2

)
+

(
m + 1

2

)
=

(
m + 1

3

)
+

(
m + 1

2

)
=

(
m + 2

3

)
=

(
(m + 1) + 1

3

)
.

Thus, p(m + 1) is true, so p(m) implies p(m + 1) for all integers m ≥ 2.

Since p(2) is true and p(m) implies p(m + 1) for all integers m ≥ 2, then by
induction, p(n) is true for all integers n ≥ 2.

Therefore,
∑n

k=2

(
k

2

)
=

(
n + 1

3

)
for all integers n ≥ 2.

Exercise 19. If n ∈ Z+, then n2 = 2

(
n

2

)
+

(
n

1

)
.

Proof. Let n ∈ Z+.
Since n ∈ Z+, then n ≥ 1, so either n > 1 or n = 1.
We consider each case separately.
Case 1: Suppose n = 1.

Then 2

(
1

2

)
+

(
1

1

)
= 2 · 0 + 1 = 1 = 12.

Case 2: Suppose n > 1.

Then 2

(
n

2

)
+

(
n

1

)
= 2 · n(n− 1)

2
+ n = n(n− 1) + n = n2 − n + n = n2.

Both cases show n2 = 2

(
n

2

)
+

(
n

1

)
.

Lemma 20. Let n ∈ Z and n ≥ 2.

Then 2

(
n

2

)
+ n = n2.

17



Proof. Define predicate p(n) over Z+ by ‘2

(
n

2

)
+ n = n2’.

We prove p(n) is true for all integers n ≥ 2 by induction on n.
Basis:
Let n = 2.

Then 2

(
2

2

)
+ 2 = 2 · 1 + 2 = 4 = 22, so p(2) is true.

Induction:
Let k ∈ Z+ with k ≥ 2 such that p(k) is true.

Then 2

(
k

2

)
+ k = k2, so 2

(
k

2

)
= k2 − k = k(k − 1).

Observe that

2 ·
(
k + 1

2

)
+ (k + 1) = 2 · (k + 1)!

2!(k − 1)!
+ (k + 1)

= 2 · (k + 1)k!

2!(k − 1)!
+ (k + 1)

= 2 · (k + 1)k!

2!(k − 1)(k − 2)!
+ (k + 1)

= 2 · k!

2!(k − 2)!
· k + 1

k − 1
+ (k + 1)

= 2 ·
(
k

2

)
· k + 1

k − 1
+ (k + 1)

= k(k − 1) · k + 1

k − 1
+ (k + 1)

= k(k + 1) + (k + 1)

= (k + 1)(k + 1)

= (k + 1)2.

Thus, p(k + 1) is true, so p(k) implies p(k + 1) for all integers k ≥ 2.

Since p(2) is true and p(k) implies p(k + 1) for all integers k ≥ 2, then by
induction, p(n) is true for all integers n ≥ 2.

Therefore, 2

(
n

2

)
+ n = n2 for all integers n ≥ 2.

Exercise 21. Let n ∈ Z+.

Prove
∑n

k=1 k
2 =

n(n + 1)(2n + 1)

6
using lemmas 18 and 20.

Proof. Since n ∈ Z+, then n ≥ 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.

18



Since
∑1

k=1 k
2 = 12 = 1 =

6

6
=

1 · 2 · 3
6

=
1(1 + 1)(2 · 1 + 1)

6
, then the

formula holds for n = 1.
Case 2: Suppose n > 1.
Since n ∈ Z and n > 1, then n ≥ 2.

Since n ∈ Z and n ≥ 2, then
∑n

k=2

(
k

2

)
=

(
n + 1

3

)
, by lemma 18.

Since n ∈ Z and n ≥ 2, then 2

(
n

2

)
+ n = n2, by lemma 20.

Observe that

n∑
k=1

k2 =

1∑
k=1

k2 +

n∑
k=2

k2

= 12 +

n∑
k=2

k2

= 1 +

n∑
k=2

k2

= 1 +

n∑
k=2

[2

(
k

2

)
+ k]

= 1 +

n∑
k=2

2

(
k

2

)
+

n∑
k=2

k

= 1 + 2 ·
n∑

k=2

(
k

2

)
+ [

n∑
k=1

k −
1∑

k=1

k]

= 1 + 2 ·
(
n + 1

3

)
+

n(n + 1)

2
− 1

= 2 ·
(
n + 1

3

)
+

n(n + 1)

2

=
2(n + 1)n(n− 1)(n− 2)!

(n− 2)!3!
+

n(n + 1)

2

=
2n(n + 1)(n− 1)

3!
+

n(n + 1)

2

=
2n(n + 1)(n− 1)

6
+

3n(n + 1)

6

=
2n(n + 1)(n− 1) + 3n(n + 1)

6

=
n(n + 1)[2(n− 1) + 3]

6

=
n(n + 1)(2n + 1)

6
.
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Therefore,
∑n

k=1 k
2 =

n(n + 1)(2n + 1)

6
for all n ∈ Z+.

Chapter 1.3 Early Number Theory

Chapter 1.3 Problems

Exercise 22. The positive integer n is triangular iff 8n+ 1 is a perfect square.

Proof. We prove ‘if the positive integer n is triangular, then 8n + 1 is a perfect
square’.

Suppose the positive integer n is triangular.

Then n ∈ Z+ and n is triangular, so n is of the form
a(a + 1)

2
for some

a ∈ Z+.

Hence, n =
a(a + 1)

2
, so 8n = 4a(a + 1).

Let b = 2a + 1.
Since a ∈ Z, then 2a + 1 ∈ Z, so b ∈ Z.
Observe that

b2 = (2a + 1)2

= 4a2 + 4a + 1

= 4a(a + 1) + 1

= 8n + 1.

Since b ∈ Z and b2 = 8n + 1, then 8n + 1 is a perfect square.

Proof. Conversely, we prove ‘if n is a positive integer and 8n + 1 is a perfect
square, then n is triangular’.

Suppose n is a positive integer and 8n + 1 is a perfect square.
Then n ∈ Z+ and 8n + 1 = b2 for some integer b.

Let a =
b− 1

2
.

Then 2a = b− 1, so b = 2a + 1.
Observe that

8n = b2 − 1

= (2a + 1)2 − 1

= 4a2 + 4a + 1− 1

= 4a2 + 4a

= 4a(a + 1).
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Thus, 8n = 4a(a + 1), so 2n = a(a + 1).

Hence, n =
a(a + 1)

2
.

Suppose for the sake of contradiction b is even.
Then b− 1 is odd and b + 1 is odd, so the product (b− 1)(b + 1) = b2 − 1 is

odd.
Hence, 8n = b2 − 1 is odd, so 8n is odd.
But, 8n = 2(4n), so 8n is even.
Since a number cannot be both even and odd, then we must conclude b is

not even.

Therefore, b is odd.

Since b is odd, then b− 1 is even, so
b− 1

2
is even.

Thus,
b− 1

2
= 2c for some integer c, so b− 1 = 4c.

Hence, a =
b− 1

2
=

4c

2
= 2c.

Since 2 ∈ Z and c ∈ Z, then 2c ∈ Z, so a ∈ Z.

Since a ∈ Z and n =
a(a + 1)

2
, then n is triangular.

Exercise 23. The sum of any two consecutive triangular numbers is a perfect
square.

Proof. Let a and b be any two consecutive triangular numbers.

Then a =
n(n + 1)

2
and b =

(n + 1)(n + 2)

2
for some positive integer n.

Observe that

a + b =
n(n + 1)

2
+

(n + 1)(n + 2)

2

=
n(n + 1) + (n + 1)(n + 2)

2

=
(n + 1)[n + (n + 2)]

2

=
(n + 1)(2n + 2)

2

=
2(n + 1)(n + 1)

2
= (n + 1)(n + 1)

= (n + 1)2.

Thus, a + b = (n + 1)2.
Let t = n + 1.
Then a + b = t2.
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Since n ∈ Z, then n + 1 ∈ Z, so t ∈ Z.
Therefore, a + b = t2 for some integer t, as desired.

Exercise 24. If n is a triangular number, then so are 9n + 1, 25n + 3, and
49n + 6.

Proof. Let n be a triangular number.

Then n ∈ Z+ and n =
a(a + 1)

2
for some a ∈ Z+.

We prove 9n + 1 is triangular.
Since n ∈ Z+, then 9n + 1 ∈ Z+.
Let b = 3a + 1.
Since a ∈ Z+, then 3a + 1 ∈ Z+, so b ∈ Z+.

Observe that

9n + 1 =
9a(a + 1)

2
+ 1

=
9a(a + 1) + 2

2

=
9a2 + 9a + 2

2

=
(3a + 1)(3a + 2)

2

=
b(b + 1)

2
.

Thus, 9n + 1 =
b(b + 1)

2
.

Since 9n + 1 ∈ Z+ and b ∈ Z+ and 9n + 1 =
b(b + 1)

2
, then 9n + 1 is

triangular.

Proof. Let n be a triangular number.

Then n ∈ Z+ and n =
a(a + 1)

2
for some a ∈ Z+.

We prove 25n + 3 is triangular.
Since n ∈ Z+, then 25n + 3 ∈ Z+.
Let b = 5a + 2.
Since a ∈ Z+, then 5a + 2 ∈ Z+, so b ∈ Z+.
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Observe that

25n + 3 =
25a(a + 1)

2
+ 3

=
25a(a + 1) + 6

2

=
25a2 + 25a + 6

2

=
(5a + 2)(5a + 3)

2

=
b(b + 1)

2
.

Thus, 25n + 3 =
b(b + 1)

2
.

Since 25n + 3 ∈ Z+ and b ∈ Z+ and 25n + 3 =
b(b + 1)

2
, then 25n + 3 is

triangular.

Proof. Let n be a triangular number.

Then n ∈ Z+ and n =
a(a + 1)

2
for some a ∈ Z+.

We prove 49n + 6 is triangular.
Since n ∈ Z+, then 49n + 6 ∈ Z+.
Let b = 7a + 3.
Since a ∈ Z+, then 7a + 3 ∈ Z+, so b ∈ Z+.

Observe that

49n + 6 =
49a(a + 1)

2
+ 6

=
49a(a + 1) + 12

2

=
49a2 + 49a + 12

2

=
(7a + 3)(7a + 4)

2

=
b(b + 1)

2
.

Thus, 49n + 6 =
b(b + 1)

2
.

Since 49n + 6 ∈ Z+ and b ∈ Z+ and 49n + 6 =
b(b + 1)

2
, then 49n + 6 is

triangular.

23



Exercise 25. The sum of the first n triangular numbers is t1+t2+t3+...+tn =
n(n + 1)(n + 2)

6
for all n ∈ Z+.

Proof. Let n ∈ Z+.
Observe that

t1 + t2 + t3 + ... + tn =

n∑
k=1

k(k + 1)

2

=
1

2

n∑
k=1

k(k + 1)

=
1

2

n∑
k=1

(k2 + k)

=
1

2
[

n∑
k=1

k2 +

n∑
k=1

k]

=
1

2
[
n(n + 1)(2n + 1)

6
+

n(n + 1)

2
]

=
1

2
[
n(n + 1)(2n + 1)

6
+

3n(n + 1)

6
]

=
1

2
[
n(n + 1)(2n + 1) + 3n(n + 1)

6
]

=
1

2
[
n(n + 1)[(2n + 1) + 3)]

6
]

=
1

2
[
n(n + 1)(2n + 4)

6
]

=
2

2
[
n(n + 1)(n + 2)

6
]

=
n(n + 1)(n + 2)

6
.

Exercise 26. The square of any odd multiple of 3 is the difference of two
triangular numbers.

Specifically, 9(2n + 1)2 = t9n+4 − t3n+1 for any integer n ≥ 0.

Proof. Let n be any integer with n ≥ 0.
Let a be any odd multiple of 3.
Then a is odd and a is a multiple of 3, so a = 3(2n + 1).
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Observe that

t9n+4 − t3n+1 =
(9n + 4)(9n + 5)

2
− (3n + 1)(3n + 2)

2

=
81n2 + 81n + 20

2
− 9n2 + 9n + 2

2

=
81n2 + 81n + 20− (9n2 + 9n + 2)

2

=
81n2 + 81n + 20− 9n2 − 9n− 2

2

=
72n2 + 72n + 18

2

=
18(4n2 + 4n + 1)

2

= 9(4n2 + 4n + 1)

= 32(2n + 1)2

= [3(2n + 1)]2

= a2.

Exercise 27. Find two triangular numbers whose sum and difference are also
triangular numbers.

Solution. Let a = 21 and b = 15.
Observe that a and b are triangular and a + b = 21 + 15 = 36 is triangular

and a− b = 21− 15 = 6 is triangular.

Exercise 28. Find three successive triangular numbers whose product is a
perfect square.

Solution. Let a = 6 and b = 10 and c = 15.
Then a, b, and c are successive triangular numbers and the product abc =

6 · 10 · 15 = 900 = 302 is a perfect square.

Exercise 29. Find three successive triangular numbers whose sum is a perfect
square.

Solution. Let a = 15 and b = 21 and c = 28.
Then a, b, and c are successive triangular numbers and the sum a + b + c =

15 + 21 + 28 = 64 = 82 is a perfect square.

Exercise 30. Let n ∈ Z+.
If 2n2 + 1 is a perfect square, say 2n2 + 1 = m2, then (nm)2 is a triangular

number.

Proof. Suppose 2n2 + 1 is a perfect square.
Then 2n2 + 1 = m2 for some m ∈ Z+.
Hence, 2n2 = m2 − 1.
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Let k = m2 − 1.
Then k + 1 = m2.
Observe that

k(k + 1)

2
=

(m2 − 1)m2

2

=
(2n2)m2

2

= n2m2

= (nm)2.

Since m ∈ Z, then m2 − 1 ∈ Z, so k ∈ Z.
Since n ∈ Z+, then n ∈ Z and n > 0.
Since m ∈ Z+, then m ≥ 1, so either m > 1 or m = 1.

Suppose m = 1.
Then 1 = 12 = m2 = 2n2 + 1, so 1 = 2n2 + 1.
Hence, 2n2 = 0, so n2 = 0.
Thus, n = 0.
But, this contradicts n > 0.
Therefore, m 6= 1.

Since m ≥ 1 and m 6= 1, then m > 1.
Since m > 1, then m2 > 1, so m2 − 1 > 0.
Since k = m2 − 1 and m2 − 1 > 0, then k > 0.
Since k ∈ Z and k > 0, then k ∈ Z+.

Therefore, there exists k ∈ Z+ such that
k(k + 1)

2
= (nm)2, so (nm)2 is

triangular.

Exercise 31. Let n ∈ Z+.
If 2n2 − 1 is a perfect square, say 2n2 − 1 = m2, then (nm)2 is a triangular

number.

Proof. Suppose 2n2 − 1 is a perfect square.
Then 2n2 − 1 = m2 for some m ∈ Z+.
Hence, 2n2 = m2 + 1.

Let k = m2 + 1.
Then k − 1 = m2.
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Observe that

(k − 1)k

2
=

m2(m2 + 1)

2

=
m2(2n2)

2

= m2n2

= (mn)2

= (nm)2.

Since m ∈ Z, then m2 + 1 ∈ Z, so k ∈ Z.
Hence, k − 1 ∈ Z.
Since m ∈ Z+, then m ≥ 1, so m2 ≥ 1.
Hence, k = m2 + 1 ≥ 1 + 1 = 2 > 1, so k > 1.
Thus, k − 1 > 0.
Since k − 1 ∈ Z and k − 1 > 0, then k − 1 ∈ Z+.

Therefore, there exists k − 1 ∈ Z+ such that
(k − 1)k

2
= (nm)2, so (nm)2 is

triangular.

Exercise 32. Find five examples of squares which are also triangular numbers.

Solution. Observe that 1 = 12 =
1 · 2

2
is a square and is triangular.

Observe that 36 = 62 =
8 · 9

2
is a square and is triangular.

Observe that 1225 = 352 =
49 · 50

2
is a square and is triangular.

Observe that 41616 = 2042 =
288 · 289

2
is a square and is triangular.

Observe that 1413721 = 11892 =
1681 · 1682

2
is a square and is triangular.

Chapter 2 Divisibility

Chapter 2.1 The Division Algorithm

Example 33. Use the division algorithm to compute 1 divided by −7.

Solution. Since 1 = 7 · 0 + 1, then 1 = (−7) · 0 + 1.

Example 34. Use the division algorithm to compute −2 divided by −7.

Solution. Since 2 = 7 · 0 + 2, then −2 = −(7 · 0 + 2) = −(0 + 2) = −2 =
−2 + 0 = −2 + 7− 7 = 5− 7 = −7 + 5 = (−7)1 + 5.

Therefore, −2 = (−7)1 + 5.
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Example 35. Use the division algorithm to compute 61 divided by −7.

Solution. Since 61 = 7 · 8 + 5, then 61 = (−7)(−8) + 5.

Example 36. Use the division algorithm to compute −59 divided by −7.

Solution.
Observe that

−59 = −(7 · 8 + 3)

= −7 · 8− 3

= −7 · 8− 3 + 7− 7

= −7 · 8 + 4− 7

= −7 · 9 + 4.

Therefore, −59 = (−7)9 + 4.

Example 37. Every perfect square is of the form 4k or 4k+ 1 for some
integer k.

The square of an integer leaves remainder 0 or 1 when divided by 4.

Proof. Let a ∈ Z.
By the division algorithm, when a is divided by 2, there exist unique integers

q and r such that a = 2q + r and 0 ≤ r < 2.
Since r ∈ Z and 0 ≤ r < 2, then either r = 0 or r = 1, so either a = 2q or

a = 2q + 1.
We consider these cases separately.
Case 1: Suppose a = 2q.
Then a2 = (2q)2 = 4q2 = 4(q2) + 0.
Hence, by the division algorithm, when a2 is divided by 4, the remainder is

0.
Case 1: Suppose a = 2q + 1.
Then a2 = (2q + 1)2 = 4q2 + 4q + 1 = 4(q2 + q) + 1.
Hence, by the division algorithm, when a2 is divided by 4, the remainder is

1.

Therefore, in all cases, when a2 is divided by 4, the remainder is either 0 or
1.

Let a ∈ Z.
Then a2 leaves remainder 0 or 1 when divided by 4.
Hence, a2 = 4k or a2 = 4k + 1 for some integer k.
Therefore, every perfect square is of the form 4k or 4k + 1 for some integer

k.

Example 38. The square of any odd integer is of the form 8k + 1 for some
integer k.
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Proof. Let n be any odd integer.
Then n ∈ Z and n is odd.
When n is divided by 4, by the division algorithm, there are unique integers

q and r such that n = 4q + r and 0 ≤ r < 4.
Since r ∈ Z and 0 ≤ r < 4, then r = 0 or r = 1 or r = 2 or r = 3.
Hence, n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.
Since 4q = 2(2q) and 4q + 2 = 2(2q + 1) are both even and n is odd, then n

cannot be 4q or 4q + 2.
Thus, either n = 4q + 1 or n = 4q + 3.
We consider these cases separately.
Case 1: Suppose n = 4q + 1.
Observe that

n2 = (4q + 1)2

= 16q2 + 8q + 1

= 8(2q2 + q) + 1.

Let k = 2q2 + q.
Then n2 = 8k + 1 and k ∈ Z.
Case 2: Suppose n = 4q + 3.
Observe that

n2 = (4q + 3)2

= 16q2 + 24q + 9

= 16q2 + 24q + 8 + 1

= 8(2q2 + 3q + 1) + 1.

Let k = 2q2 + 3q + 1.
Then n2 = 8k + 1 and k ∈ Z.

Therefore, in all cases, n2 = 8k + 1 for some integer k.

Chapter 2.1 Problems

Exercise 39. Let a, b ∈ Z with b > 0.
Then there exist unique integers q and r such that a = bq + r with 2b ≤ r <

3b.

Proof. Since a, b ∈ Z and b > 0, then by the division algorithm, when a is
divided by b, there exist unique integers q′ and r′ such that a = bq′ + r′ with
0 ≤ r′ < b.
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Let q = q′ − 2 and r = 2b + r′.
Since q′ is a unique integer and q = q′ − 2, then q is a unique integer.
Since r′ is a unique integer and r = 2b + r′, then r is a unique integer.
Since q = q′ − 2, then q′ = q + 2.
Since r = 2b + r′, then r′ = r − 2b.
Observe that

a = bq′ + r′

= b(q + 2) + (r − 2b)

= bq + 2b + r − 2b

= bq + r.

Since 0 ≤ r′ < b, then we add 2b to the inequality to obtain 2b+0 ≤ 2b+r′ <
2b + b, so 2b ≤ r < 3b.

Therefore, there are unique integers q and r such that a = bq + r and
2b ≤ r < 3b.

Exercise 40. Any integer of the form 6k+ 5 is also of the form 3k+ 2, but not
conversely.

Proof. We prove any integer of the form 6k + 5 is of the form 3k + 2.

Let a be any integer of the form 6k + 5.
Then a ∈ Z and a = 6k + 5 for some integer k.
Observe that

a = 6k + 5

= 6k + (3 + 2)

= (6k + 3) + 2

= 3(2k + 1) + 2.

Let m = 2k + 1.
Then m ∈ Z and a = 3m + 2.
Therefore, a is of the form 3m + 2 for some integer m.

Proof. Conversely, we prove not every integer of the form 3k + 2 is of the form
6k + 5.

Thus, we prove there is some integer of the form 3k + 2, but not of the form
6k + 5.

Consider the integer 14.
Since 14 = 3 · 4 + 2, then 14 is of the form 3k + 2 with integer k = 4.
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Suppose 14 = 6k + 5 for some integer k.
Then 6k = 14− 5 = 9, so 6k = 9.
Hence, k = 9

6 = 3
2 .

But, k = 3
2 is not an integer.

This contradicts that k is an integer.
Therefore, there is no integer k such that 14 = 6k + 5.

Since 14 is of the form 3k+ 2, but there is no integer k such that 14 = 6k+ 5,
then 14 is an integer of the form 3k + 2, but not of the form 6k + 5.

Exercise 41. Every odd integer is either of the form 4k + 1 or of the form
4k + 3 for some integer k.

Proof. Let a be an odd integer.
Then a = 2b + 1 for some integer b.
Either b is even or b is not even.
We consider these cases separately.
Case 1: Suppose b is even.
Then b = 2k for some integer k.
Thus, a = 2b + 1 = 2(2k) + 1 = 4k + 1.
Therefore, a = 4k + 1 for some integer k.
Case 2: Suppose b is not even.
Then b is odd, so b = 2m + 1 for some integer m.
Thus, a = 2b + 1 = 2(2m + 1) + 1 = 4m + 2 + 1 = 4m + 3.
Therefore, a = 4m + 3 for some integer m.

Proof. Let a be an odd integer.
By the division algorithm, when a is divided by 4, there are unique integers

q and r such that a = 4q + r and 0 ≤ r < 4.
Since 0 ≤ r < 4, then either r = 0 or r = 1 or r = 2 or r = 3.
Thus, either a = 4q or a = 4q + 1 or a = 4q + 2 or a = 4q + 3.

Since 4q = 2(2q) and 4q + 2 = 2(2q + 1) are both even and a is odd, then a
cannot be 4q or 4q + 2.

Thus, a is either 4q + 1 or 4q + 3, so either a = 4q + 1 or a = 4q + 3.

Therefore, either a = 4q + 1 or a = 4q + 3 for some integer q, so a is either of
the form 4q + 1 or 4q + 3 for some integer q.

Exercise 42. The square of any integer is either of the form 3k or of the form
3k + 1 for some integer k.

Proof. Let a ∈ Z.
By the division algorithm, when a is divided by 3, there exist unique integers

q and r such that a = 3q + r with 0 ≤ r < 3.
Since r is an integer and 0 ≤ r < 3, then either r = 0 or r = 1 or r = 2.
Hence, either a = 3q or a = 3q + 1 or a = 3q + 2.
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We consider these cases separately.
Case 1: Suppose a = 3q.
Then a2 = (3q)2 = 32q2 = 3(3q2).
Let k = 3q2.
Then k is an integer and a2 = 3k.
Case 2: Suppose a = 3q + 1.
Then a2 = (3q + 1)2 = 9q2 + 6q + 1 = 3q(3q + 2) + 1.
Let k = q(3q + 2).
Then k is an integer and a2 = 3k + 1.
Case 3: Suppose a = 3q + 2.
Then a2 = (3q+2)2 = 9q2 +12q+4 = 9q2 +12q+3+1 = 3(3q2 +4q+1)+1.
Let k = 3q2 + 4q + 1.
Then k is an integer and a2 = 3k + 1.

Exercise 43. The cube of any integer is either of the form 9k, 9k+1, or 9k+8.

Proof. Let a ∈ Z.
By the division algorithm, when a is divided by 3, there exist unique integers

q and r such that a = 3q + r with 0 ≤ r < 3.
Thus, either a = 3q or a = 3q + 1 or a = 3q + 2.
We consider these cases separately.
Case 1: Suppose a = 3q.
Then a3 = (3q)3 = 27q3 = 9(3q3) = 9k for integer k = 3q3.
Case 2: Suppose a = 3q + 1.
Then a3 = (3q + 1)3 = 27q3 + 27q2 + 9q + 1 = 9q(3q2 + 3q + 1) + 1 = 9k + 1

for integer k = q(3q2 + 3q + 1).
Case 3: Suppose a = 3q + 2.
Then a3 = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 = 9q(3q2 + 6q + 4) + 8 = 9k + 8

for integer k = q(3q2 + 6q + 4).

Exercise 44. For every n ∈ Z+, 6|n(n + 1)(2n + 1).

Proof. Define predicate p(n) : 6|n(n + 1)(2n + 1) over Z+.
We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Since 1(1 + 1)(2 ∗ 1 + 1) = 6 and 6|6, then p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then 6|k(k + 1)(2k + 1).
Observe that

(k + 1)(k + 2)(2k + 3) = 2k3 + 9k2 + 13k + 6

= k(k + 1)(2k + 1) + 6(k + 1)2.

Since 6|6, then 6 divides any multiple of 6, so 6 divides 6(k + 1)2.
Since 6 divides k(k + 1)(2k + 1) and 6 divides 6(k + 1)2, then 6 divides the

sum k(k + 1)(2k + 1) + 6(k + 1)2, so 6 divides (k + 1)(k + 2)(2k + 3).
Hence, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ Z+.
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Since p(1) is true and p(k) implies p(k + 1) for all k ∈ Z+, then by induction,
p(n) is true for all n ∈ Z+, so 6|n(n + 1)(2n + 1) for all n ∈ Z+.

Exercise 45. For all n ∈ Z+, 6|n(n + 1)(2n + 1).

Proof. By the division algorithm, when n is divided by 6, there exist unique
integers q, r such that n = 6q + r with 0 ≤ r < 6, so either n = 6q or n = 6q + 1
or n = 6q + 2 or n = 6q + 3 or n = 6q + 4 or n = 6q + 5.

We consider each case separately.
Case 1: Suppose n = 6q.
Then 6|n, so 6 divides any multiple of n.
Therefore, 6|n(n + 1)(2n + 1).
Case 2: Suppose n = 6q + 1.
Then n+1 = 6q+2 = 2(3q+1) and 2n+1 = 2(6q+1)+1 = 12q+3 = 3(4q+1),

so (n + 1)(2n + 1) = 6(3q + 1)(4q + 1).
Hence, 6|(n + 1)(2n + 1), so 6 divides any multiple of (n + 1)(2n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 3: Suppose n = 6q + 2.
Then n = 2(3q + 1) and n + 1 = 6q + 3 = 3(2q + 1), so n(n + 1) =

6(3q + 1)(2q + 1).
Hence, 6|n(n + 1), so 6 divides any multiple of n(n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 4: Suppose n = 6q + 3.
The n = 3(2q+1) and n+1 = 6q+4 = 2(3q+2), so n(n+1) = 6(2q+1)(3q+2).
Hence, 6|n(n + 1), so 6 divides any multiple of n(n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 5: Suppose n = 6q + 4.
Then n = 2(3q + 2) and 2n + 1 = 2(6q + 4) + 1 = 12q + 9 = 3(4q + 3), so

n(2n + 1) = 6(3q + 2)(4q + 3).
Hence, 6|n(2n + 1), so 6 divides any multiple of n(2n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 6: Suppose n = 6q + 5.
Then n + 1 = 6q + 6 = 6(q + 1), so 6|(n + 1).
Hence, 6 divides any multiple of n + 1.
Therefore, 6|n(n + 1)(2n + 1).

Exercise 46. If a positive integer is both a square and a cube, then it must be
either of the form 7k or 7k + 1.

Solution. We prove:
1. Every square is of the form 7k, 7k + 1, 7k + 2, 7k + 4.
2. Every cube is of the form 7k, 7k + 1, 7k + 6.
So, this would imply any integer that is both a square and a cube must be

of a form that it common to both squares and cubes.
We observe that if n is a square and a cube, then n = a6 for a ∈ Z+.
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Proof. We first prove every square is of the form 7k, 7k + 1, 7k + 2 or 7k + 4 for
some integer k.

Let n ∈ Z.
Suppose n is a square.
Then n = a2 for some integer a.
By the division algorithm, there exist unique integers q and r such that

a = 7q + r with 0 ≤ r < 7.
Thus, either r = 0 or r = 1 or r = 2 or r = 3 or r = 4 or r = 5 or r = 6.
We consider these cases separately.
Case 1: Suppose r = 0.
Then a = 7q.
Therefore, n = (7q)2 = 72q2 = 7(7q2) = 7k for integer k = 7q2.
Case 2: Suppose r = 1.
Then a = 7q + 1.
Therefore, n = (7q + 1)2 = 49q2 + 14q + 1 = 7q(7q + 2) + 1 = 7k + 1 for

integer k = q(7q + 2).
Case 3: Suppose r = 2.
Then a = 7q + 2.
Therefore, n = (7q + 2)2 = 49q2 + 28q + 4 = 7q(7q + 4) + 4 = 7k + 4 for

integer k = q(7q + 4).
Case 4: Suppose r = 3.
Then a = 7q + 3.
Therefore, n = (7q + 3)2 = 49q2 + 42q + 9 = 7(7q2) + 7(6q) + (7 ∗ 1 + 2) =

7(7q2 + 6q + 1) + 2 = 7k + 2 for integer k = 7q2 + 6q + 1.
Case 5: Suppose r = 4.
Then a = 7q + 4.
Therefore, n = (7q + 4)2 = 49q2 + 56q + 16 = 7(7q2) + 7 ∗ 8q + (7 ∗ 2 + 2) =

7(7q2 + 8q + 2) + 2 = 7k + 2 for integer k = 7q2 + 8q + 2.
Case 6: Suppose r = 5.
Then a = 7q + 5.
Therefore, n = (7q + 5)2 = 49q2 + 70q + 25 = 7(7q2) + 7 ∗ 10q + (7 ∗ 3 + 4) =

7(7q2 + 10q + 3) + 4 = 7k + 4 for integer k = 7q2 + 10q + 3.
Case 7: Suppose r = 6.
Then a = 7q + 6.
Therefore, n = (7q + 6)2 = 49q2 + 84q + 36 = 7(7q2) + 7 ∗ 12q + (7 ∗ 5 + 1) =

7(7q2 + 12q + 5) + 1 = 7k + 1 for integer k = 7q2 + 12q + 5.

Therefore, in all cases, either n = 7k or n = 7k+1 or n = 7k+2 or n = 7k+4
for some integer k.

Proof. We next prove every cube is of the form 7k, 7k + 1, or 7k + 6 for some
integer k.

Let n ∈ Z.
Suppose n is a cube.
Then n = a3 for some integer a.
We must prove either n = 7k or n = 7k + 1 or n = 7k + 6.
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By the division algorithm, there exist unique integers q and r such that
a = 7q + r with 0 ≤ r < 7.

Thus, either r = 0 or r = 1 or r = 2 or r = 3 or r = 4 or r = 5 or r = 6.
We consider these cases separately.
Case 1: Suppose r = 0.
Then a = 7q.
Therefore, n = (7q)3 = 73q3 = 7(72q3) = 7(49q3) = 7k for integer k = 49q3.
Case 2: Suppose r = 1.
Then a = 7q + 1.
Observe that

n = (7q + 1)3

=

3∑
k=0

(
3

k

)
(7q)3−k

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2 +

(
3

2

)
(7q) +

(
3

3

)
= (7q)3 + 3(7q)2 + 3(7q) + 1

= (73q3) + 3(72q2) + 3(7q) + 1

= 7(72q3 + 3 ∗ 7q2 + 3q) + 1

= 7(49q3 + 21q2 + 3q) + 1.

Therefore, n = 7k + 1 for integer k = 49q3 + 21q2 + 3q.
Case 3: Suppose r = 2.
Then a = 7q + 2.
Observe that

n = (7q + 2)3

=

3∑
k=0

(
3

k

)
(7q)3−k(2k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(21) +

(
3

2

)
(7q)(22) +

(
3

3

)
(23)

= (7q)3 + 3(7q)2(2) + 3(7q)(22) + 8

= (73q3) + (3)(2)(72q2) + (3)(22)(7q) + (7 ∗ 1 + 1)

= 7(72q3 + (3)(2) ∗ 7q2 + (3)(22)q + 1) + 1

= 7(49q3 + 42q2 + 12q + 1) + 1.

Therefore, n = 7k + 1 for integer k = 49q3 + 42q2 + 12q + 1.
Case 4: Suppose r = 3.
Then a = 7q + 3.
Observe that
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n = (7q + 3)3

=

3∑
k=0

(
3

k

)
(7q)3−k(3k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(31) +

(
3

2

)
(7q)(32) +

(
3

3

)
(33)

= (7q)3 + 3(7q)2(3) + 3(7q)(32) + 27

= (73q3) + (3)(3)(72q2) + (3)(32)(7q) + (7 ∗ 3 + 6)

= 7(72q3 + (3)(3) ∗ 7q2 + (3)(32)q + 3) + 6

= 7(49q3 + 63q2 + 27q + 3) + 6.

Therefore, n = 7k + 6 for integer k = 49q3 + 63q2 + 27q + 3.
Case 5: Suppose r = 4.
Then a = 7q + 4.
Observe that

n = (7q + 4)3

=

3∑
k=0

(
3

k

)
(7q)3−k(4k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(41) +

(
3

2

)
(7q)(42) +

(
3

3

)
(43)

= (7q)3 + 3(7q)2(4) + 3(7q)(42) + 64

= (73q3) + (3)(4)(72q2) + (3)(42)(7q) + (7 ∗ 9 + 1)

= 7(72q3 + (3)(4) ∗ 7q2 + (3)(42)q + 9) + 1

= 7(49q3 + 84q2 + 48q + 9) + 1.

Therefore, n = 7k + 1 for integer k = 49q3 + 84q2 + 48q + 9.
Case 6: Suppose r = 5.
Then a = 7q + 5.
Observe that
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n = (7q + 5)3

=

3∑
k=0

(
3

k

)
(7q)3−k(5k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(51) +

(
3

2

)
(7q)(52) +

(
3

3

)
(53)

= (7q)3 + 3(7q)2(5) + 3(7q)(52) + 125

= (73q3) + (3)(5)(72q2) + (3)(52)(7q) + (7 ∗ 17 + 6)

= 7(72q3 + (3)(5) ∗ 7q2 + (3)(52)q + 17) + 6

= 7(49q3 + 105q2 + 75q + 17) + 6.

Therefore, n = 7k + 6 for integer k = 49q3 + 105q2 + 75q + 17.
Case 7: Suppose r = 6.
Then a = 7q + 6.
Observe that

n = (7q + 6)3

=

3∑
k=0

(
3

k

)
(7q)3−k(6k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(61) +

(
3

2

)
(7q)(62) +

(
3

3

)
(63)

= (7q)3 + 3(7q)2(6) + 3(7q)(62) + 216

= (73q3) + (3)(6)(72q2) + (3)(62)(7q) + (7 ∗ 30 + 6)

= 7(72q3 + (3)(6) ∗ 7q2 + (3)(62)q + 30) + 6

= 7(49q3 + 126q2 + 108q + 30) + 6.

Therefore, n = 7k + 6 for integer k = 49q3 + 126q2 + 108q + 30.

Therefore, in all cases, either n = 7k or n = 7k + 1 or n = 7k + 6 for some
integer k.

Proof. Let n ∈ Z.
Suppose n is a square and a cube.
Then n is a square and n is a cube.
Since every square is of the form 7k, 7k + 1, 7k + 2, 7k + 4 for some integer k

and n is a square, then n is of the form 7k, 7k+1, 7k+2, 7k+4 for some integer
k.

Since every cube is of the form 7m, 7m + 1, 7m + 6 for some integer m and
n is a cube, then n is of the form 7k, 7k + 1, 7k + 6.

Since n is both a square and a cube, then this implies n is of the form that
is common to both a square and a cube, so n is of the form 7k or 7k + 1.
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Exercise 47. another version of the division algorithm
Let a, b ∈ Z and b 6= 0.

Then there exist unique integers q and r such that a = bq + r and
−|b|

2
<

r ≤ |b|
2

.

Proof. Since b ∈ Z and b 6= 0, then either b > 0 or b < 0.
We consider these cases separately.
Case 1: Suppose b > 0.
By the division algorithm, when a is divided by b, there are unique integers

q′ and r′ such that a = bq′ + r′ and 0 ≤ r′ < b.

Since 0 ≤ r′ < b, then either 0 ≤ r′ ≤ b

2
or

b

2
< r′ < b.

Case 1a: Suppose
b

2
< r′ < b.

Let r = r′ − b and q = q′ + 1.
Then r′ = r + b and q′ = q − 1.
Since q′ is a unique integer and q = q′ + 1, then q is a unique integer.
Since r′ is a unique integer and r = r′ − b, then r is a unique integer.

Since b > 0, then |b| = b and
b

2
> 0.

Observe that

a = bq′ + r′

= b(q − 1) + (r + b)

= bq − b + r + b

= bq + r.

Observe that

b

2
< r′ < b ⇔ b

2
− b < r′ − b < b− b

⇔ −b
2

< r < 0

⇒ −b
2

< r < 0 <
b

2

⇒ −b
2

< r <
b

2

⇒ −|b|
2

< r <
|b|
2
.

Therefore, there are unique integers q and r such that a = bq + r and
−|b|

2
< r <

|b|
2

.

Case 1b: Suppose 0 ≤ r′ ≤ b

2
.

38



Let r = r′ and q = q′.
Since q′ is a unique integer and q = q′, then q is a unique integer.
Since r′ is a unique integer and r = r′, then r is a unique integer.

Since b > 0, then |b| = b and b
2 > 0, so

−b
2

< 0.

Observe that

a = bq′ + r′

= bq + r.

Since
−b
2

< 0 and 0 ≤ r′ ≤ b

2
, then

−b
2

< 0 ≤ r′ ≤ b

2
, so
−b
2

< r′ ≤ b

2
.

Observe that

−b
2

< r′ ≤ b

2
⇔ −b

2
< r ≤ b

2

⇔ −|b|
2

< r ≤ |b|
2
.

Therefore, there are unique integers q and r such that a = bq + r and
−|b|

2
< r ≤ |b|

2
.

Case 2: Suppose b < 0.
Then b 6= 0.
Hence, by the extended version of the division algorithm, when a is divided

by b, there are unique integers q′ and r′ such that a = bq′ + r′ and 0 ≤ r′ < |b|.

Since 0 ≤ r′ < |b|, then either 0 ≤ r′ ≤ |b|
2

or
|b|
2

< r′ < |b|.

Case 2a: Suppose
|b|
2

< r′ < |b|.
Let r = r′ − |b| and q = q′ − 1.
Then r′ = r + |b| and q′ = 1 + q.
Since q′ is a unique integer and q = q′ − 1, then q is a unique integer.
Since r′ is a unique integer and r = r′ − |b|, then r is a unique integer.

Since b < 0, then |b| = −b > 0, so
|b|
2

> 0.

Observe that

a = bq′ + r′

= b(1 + q) + (r + |b|)
= b + bq + r + |b|
= b + bq + r − b

= bq + r.

Observe that

39



|b|
2

< r′ < |b| ⇔ |b|
2
− |b| < r′ − |b| < |b| − |b|

⇔ −|b|
2

< r < 0

⇒ −|b|
2

< r < 0 <
|b|
2

⇒ −|b|
2

< r <
|b|
2
.

Therefore, there are unique integers q and r such that a = bq + r and
−|b|

2
< r <

|b|
2

.

Case 2b: Suppose 0 ≤ r′ ≤ |b|
2

.

Let r = r′ and q = q′.
Since q′ is a unique integer and q = q′, then q is a unique integer.
Since r′ is a unique integer and r = r′, then r is a unique integer.

Since b < 0, then |b| = −b and
b

2
< 0.

Observe that

a = bq′ + r′

= bq + r.

Since 0 ≤ r′ ≤ |b|
2

and |b| = −b, then 0 ≤ r′ ≤ −b
2

.

Since
b

2
< 0 and 0 ≤ r′ ≤ −b

2
, then

b

2
< 0 ≤ r′ ≤ −b

2
, so

b

2
< r′ ≤ −b

2
.

Observe that

b

2
< r′ ≤ −b

2
⇔ b

2
< r ≤ −b

2

⇔ −|b|
2

< r ≤ |b|
2
.

Therefore, there are unique integers q and r such that a = bq + r and
−|b|

2
< r ≤ |b|

2
.

Exercise 48. There is no integer in the sequence 11, 111, 1111, 11111, ... that
is a perfect square.

Proof. Let (an) be the sequence 11, 111, 1111, 11111, ....
Then an = 10 ∗ an−1 + 1 for positive integers n > 1 and a1 = 11.
We first prove each term of the sequence has the form 4k+3 for some integer

k.
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Thus, we must prove for all n ∈ Z+, there exists k ∈ Z such that an = 4k+3.
We prove by induction on n.
Let S = {n ∈ Z+ : (∃k ∈ Z)(an = 4k + 3)}.
Basis:
Since 1 ∈ Z+ and 2 ∈ Z and a1 = 11 = 4 ∗ 2 + 3, then 1 ∈ S.
Since 2 ∈ Z+ and 27 ∈ Z and a2 = 10∗a1+1 = 10∗11+1 = 111 = 4∗27+3,

then 2 ∈ S.
Induction:
Let m ∈ Z+ with m ≥ 2 such that p(m) is true.
Then there exists k ∈ Z such that am = 4k + 3.
Since m ∈ Z+, then m + 1 ∈ Z+.
Since m + 1 > m ≥ 2 > 1, then m + 1 > 1.
Observe that

am+1 = 10am + 1

= 10(4k + 3) + 1

= 40k + 31

= 4 · 10k + (4 · 7 + 3)

= (4 · 10k + 4 · 7) + 3

= 4(10k + 7) + 3.

Let p = 10k + 7.
Since k ∈ Z, then p ∈ Z and am+1 = 4p + 3.
Since m + 1 ∈ Z+ and there exists p ∈ Z such that am+1 = 4p + 3, then

m + 1 ∈ S.
Hence, m ∈ S implies m + 1 ∈ S for all integers m ≥ 2.

Since 1 ∈ S and 2 ∈ S and m ∈ S implies m + 1 ∈ S for all integers m ≥ 2,
then by induction S = Z+.

Therefore, for all n ∈ Z+, there exists k ∈ Z such that an = 4k + 3, so every
term an has the form 4k + 3 for some integer k.

Proof. We prove no term of the sequence 11, 111, 1111, ... is a perfect square.

Let an be a term of the sequence 11, 111, 1111, ....
Since every term an has the form 4k + 3 for some integer k, then an has the

form 4k + 3 for some integer k, so an is of the form 4k + 3.
By lemma 37, every perfect square is either of the form 4k or 4k + 1, so if n

is a perfect square, then either n = 4k or n = 4k + 1.
Hence, if n 6= 4k and n 6= 4k + 1, then n is not a perfect square.
Since 4k + 3 6= 4k and 4k + 3 6= 4k + 1, then we conclude 4k + 3 is not a

perfect square.
Thus, an is not a perfect square.
Therefore, every term of the sequence 11, 111, 1111, ... is not a perfect square,

so there is no term of the sequence that is a perfect square.
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Chapter 2.2 The greatest common divisor

Example 49. Let a, b, c ∈ Z.
Disprove: if a|c and b|c, then ab|c.

Proof. Let a = 6 and b = 8 and c = 24.
Observe that 6|24 and 8|24, but 6 · 8 6 |24.

Example 50. Let a, b, c ∈ Z.
Disprove: if a|bc, then a|b or a|c.

Proof. Let a = 12 and b = 9 and c = 8.
Observe that 12|9 · 8, but 12 6 |8.

Chapter 2.2 Problems

Exercise 51. Let a, b, c ∈ Z.
If a|b and a|c, then a2|bc.

Proof. Suppose a|b and a|c.
Then b = am and c = an for some integers m and n.
Thus, bc = (am)(an) = a(ma)n = a(am)n = (aa)(mn) = a2(mn).
Since mn ∈ Z and bc = a2(mn), then a2|bc.

Exercise 52. Let a, b, c ∈ Z.
Disprove: If a|(b + c), then either a|b or a|c.

Proof. Let a = 3 and b = 4 and c = 5.
Since 3|9, then 3|(4 + 5), but 3 6 |4 and 3 6 |5.

Exercise 53. Let a ∈ Z.
Then either a or a + 2 or a + 4 is divisible by 3.

Proof. By the division algorithm, when a is divided by 3, there exist unique
integers q and r such that a = 3q + r with 0 ≤ r < 3.

Thus, either a = 3q or a = 3q + 1 or a = 3q + 2.
We consider these cases separately.
Case 1: Suppose a = 3q.
Since a = 3q and q ∈ Z, then 3|a, so a is divisible by 3.
Case 2: Suppose a = 3q + 1.
Then a + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1).
Since a + 2 = 3(q + 1) and q + 1 ∈ Z, then 3|(a + 2), so a + 2 is divisible by

3.
Case 3: Suppose a = 3q + 2.
Then a + 4 = (3q + 2) + 4 = 3q + 6 = 3(q + 2).
Since a + 4 = 3(q + 2) and q + 2 ∈ Z, then 3|(a + 4), so a + 4 is divisible by

3.
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Exercise 54. A product of 3 consecutive integers is divisible by 3
Let a ∈ Z.
Then 3|a(a + 1)(a + 2).

Proof. By the division algorithm, when a is divided by 3, then either a = 3k or
a = 3k + 1 or a = 3k + 2 for some integer k.

We consider these cases separately.
Case 1: Suppose a = 3k.
Then 3|a, so 3 divides any multiple of a.
Hence, 3|a(a + 1)(a + 2).
Case 2: Suppose a = 3k + 1.
Then a + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1), so 3|(a + 2).
Hence, 3 divides any multiple of a + 2, so 3|a(a + 1)(a + 2).
Case 3: Suppose a = 3k + 2.
Then a + 1 = (3k + 2) + 1 = 3k + 3 = 3(k + 1), so 3|(a + 1).
Hence, 3 divides any multiple of a + 1, so 3|a(a + 1)(a + 2).

Therefore, in all cases, 3|a(a + 1)(a + 2).

Exercise 55. For any integer a, 4 6 |(a2 + 2).

Proof. Let a ∈ Z.
By the division algorithm, when a is divided by 4, there exist unique integers

q and r such that a = 4q + r and 0 ≤ r < 4.
Thus, either a = 4q or a = 4q + 1 or a = 4q + 2 or a = 4q + 3.
We consider these cases separately.
Case 1: Suppose a = 4q.
Then a2 + 2 = (4q)2 + 2 = 42q2 + 2 = 4(4q2) + 2.
Let k = 4q2.
Then k ∈ Z and a2 + 2 = 4k + 2.
Case 2: Suppose a = 4q + 1.
Then a2+2 = (4q+1)2+2 = (16q2+8q+1)+2 = 16q2+8q+3 = 4(4q2+2q)+3.
Let k = 4q2 + 2q.
Then k ∈ Z and a2 + 2 = 4k + 3.
Case 3: Suppose a = 4q + 2.
Then a2 + 2 = (4q + 2)2 + 2 = (16q2 + 16q + 4) + 2 = 4(4q2 + 4q + 1) + 2.
Let k = 4q2 + 4q + 1.
Then k ∈ Z and a2 + 2 = 4k + 2.
Case 4: Suppose a = 4q + 3.
Then a2 + 2 = (4q + 3)2 + 2 = (16q2 + 24q + 9) + 2 = 16q2 + 24q + 11 =

16q2 + 24q + (4 ∗ 2 + 3) = 4(4q2 + 6q + 2) + 3.
Let k = 4q2 + 6q + 2.
Then k ∈ Z and a2 + 2 = 4k + 3.
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Therefore, in all cases, either a2 + 2 = 4k + 2 or a2 + 2 = 4k + 3 for some
integer k, so the remainder is either 2 or 3 when a2 + 2 is divided by 4.

Hence, the remainder is not zero when a2 + 2 is divided by 4.
Since 4|(a2 + 2) iff the remainder is zero when a2 + 2 is divided by 4, then

4 6 |(a2 + 2) iff the remainder is not zero when a2 + 2 is divided by 4.
Since the remainder is not zero when a2+2 is divided by 4, then we conclude

4 6 |(a2 + 2), as desired.

Proof. Let a ∈ Z.
Suppose 4|(a2 + 2).
Then there is an integer k such that a2 + 2 = 4k.
Either a is even or not.
We consider these cases separately.
Case 1: Suppose a is even.
Then a = 2m for some integer m.
Thus, 4k = a2 + 2 = (2m)2 + 2 = 4m2 + 2 = 2(2m2 + 1).
Hence, 2k = 2m2 + 1.
But, this equation implies the even integer 2k equals the odd integer 2m2+1,

a contradiction.
Case 2: Suppose a is odd.
Then a2 is odd, so a2 + 2 is odd.
Since 2(2k) = 4k = a2 + 2 and 2k is an integer, then a2 + 2 is even.
But, this contradicts the fact that a2 + 2 is odd.

Therefore, 4 6 |(a2 + 2).

Proof. Let a ∈ Z.
Then a2 ∈ Z is a perfect square.
By lemma 37, every perfect square is either of the form 4k or 4k+1 for some

integer k, so if n is a perfect square, then either n = 4k or n = 4k + 1 for some
integer k.

Since a2 is a perfect square, then we conclude either a2 = 4k or a2 = 4k + 1
for some integer k.

Thus, either a2 + 2 = 4k + 2 or a2 + 2 = (4k + 1) + 2 = 4k + 3 for some
integer k.

Hence, by the division algorithm, when a2 +2 is divided by 4, the remainder
is either 2 or 3.

Thus, when a2 + 2 is divided by 4, the remainder is not zero.
Since 4|(a2 + 2) iff the remainder is zero when a2 + 2 is divided by 4, then

4 6 |(a2 + 2) iff the remainder is not zero when a2 + 2 is divided by 4.
Since the remainder is not zero when a2+2 is divided by 4, then we conclude

4 6 |(a2 + 2).

Exercise 56. For all n ∈ Z+, 7 divides 23n − 1.
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Proof. We prove by induction on n.
Let S = {n ∈ Z+ : 7|(23n − 1)}.
Basis:
Since 23∗1 − 1 = 7 = 7 ∗ 1, then 7 divides 23∗1 − 1, so 1 ∈ S.
Induction:
Let k ∈ Z+ such that k ∈ S.
Then 7|(23k − 1).
Since k ∈ Z+, then k + 1 ∈ Z+.
Since 7|(23k − 1), then 23k − 1 = 7x for some integer x.
Observe that

23(k+1) − 1 = 23k+3 − 1

= 23k ∗ 23 − 1

= 8 · 23k − 1

= 8 · 23k − 8 + 7

= 8(23k − 1) + 7

= 8(7x) + 7

= 7(8x) + 7

= 7(8x + 1).

Since 8x + 1 ∈ Z and 23(k+1) − 1 = 7(8x + 1), then 7 divides 23(k+1) − 1.
Since k + 1 ∈ Z+ and 7 divides 23(k+1) − 1, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all k ∈ Z+.

Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ Z+, then by induction,
S = Z+, so 7|(23n − 1) for all n ∈ Z+.

Exercise 57. For all n ∈ Z+, 8 divides 32n + 7.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : 8|32n + 7}.
Basis:
Since 32∗1 + 7 = 16 = 8 ∗ 2, then 8 divides 32∗1 + 7, so 1 ∈ S.
Induction:
Let k ∈ Z+ such that k ∈ S.
Then 8|(32k + 7).
Since k ∈ Z+, then k + 1 ∈ Z+.
Since 8|(32k + 7), then 32k + 7 = 8x for some integer x.
Observe that
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32(k+1) + 7 = 32k+2 + 7

= 32k ∗ 32 + 7

= 9 ∗ 32k + 7

= (8 + 1)32k + 7

= 8(32k) + 32k + 7

= 8(32k) + 8x

= 8(32k + x)

= 8(9k + x).

Since 9k + x ∈ Z and 32(k+1) + 7 = 8(9k + x), then 8 divides 32(k+1) + 7.
Since k + 1 ∈ Z+ and 8 divides 32(k+1) + 7, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all k ∈ Z+.

Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ Z+, then by induction
S = Z+, so 8|(32n + 7) for all n ∈ Z+.

Exercise 58. For all n ∈ Z+, 2n + (−1)n+1 is divisible by 3.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : 3|2n + (−1)n+1}.
Basis:
Since 21 +(−1)1+1 = 2+1 = 3 = 3 ·1, then 3 divides 21 +(−1)1+1, so 1 ∈ S.
Induction:
Let k ∈ Z+ such that k ∈ S.
Then 3|2k + (−1)k+1.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since 3|2k + (−1)k+1, then 2k + (−1)k+1 = 3x for some integer x.
Observe that

2k+1 + (−1)(k+1)+1 = 2k · 2 + (−1)k+1(−1)

= 2k + 2k − (−1)k+1

= 2k + (2− 1)2k − (−1)k+1

= 2k + 2(2k)− 2k − (−1)k+1

= 3(2k)− [2k + (−1)k+1]

= 3(2k)− 3x

= 3(2k − x).

Since 2k − x ∈ Z and 2k+1 + (−1)(k+1)+1 = 3(2k − x), then 3 divides 2k+1 +
(−1)(k+1)+1.

Since k + 1 ∈ Z+ and 3 divides 2k+1 + (−1)(k+1)+1, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all k ∈ Z+.
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Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ Z+, then by induction,
S = Z+, so 3|(2n + (−1)n+1) for all n ∈ Z+.

Lemma 59. If n is an odd integer, then 8|(n2 − 1).

Proof. Suppose n is an odd integer.
Then n = 2a + 1 for some integer a.
Thus n2 − 1 = (2a + 1)2 − 1 = 4a2 + 4a + 1− 1 = 4a2 + 4a = 4a(a + 1).
Since the product of two consecutive integers is even and a(a+1) is a product

of two consecutive integers a and a + 1, then a(a + 1) is even.
Thus a(a + 1) = 2b for some integer b.
Therefore, n2 − 1 = 4a(a + 1) = 4(2b) = 8b, so 8|(n2 − 1).

Proof. Suppose n is an odd integer.
By the division algorithm, when n is divided by 4, there are unique integers

q and r such that n = 4q + r with 0 ≤ r < 4.
Since r ∈ Z and 0 ≤ r < 4, then either r = 0 or r = 1 or r = 2 or r = 3, so

either n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.

Since 4q = 2(2q) is even and n is odd, then n 6= 4q.
Since 4q + 2 = 2(2q + 1) is even and n is odd, then n 6= 4q + 2.
Since n 6= 4q and n 6= 4q+2, then we conclude either n = 4q+1 or n = 4q+3.
We consider each case separately.
Case 1: Suppose n = 4q + 1.
Then n2 − 1 = (4q + 1)2 − 1 = 16q2 + 8q + 1− 1 = 16q2 + 8q = 8(2q2 + q).
Since 2q2 + q ∈ Z and n2 − 1 = 8(2q2 + q), then 8|(n2 − 1).
Case 2: Suppose n = 4q + 3.
Then n2 − 1 = (4q + 3)2 − 1 = 16q2 + 24q + 9 − 1 = 16q2 + 24q + 8 =

8(2q2 + 3q + 1).
Since 2q2 + 3q + 1 ∈ Z and n2 − 1 = 8(2q2 + 3q + 1), then 8|(n2 − 1).

Therefore, in all cases, 8|(n2 − 1).

Lemma 60. If n is an odd integer, then n2 ≡ 1 (mod 8).

Proof. Suppose n is an odd integer.
Then n = 2k + 1 for some integer k.
Thus, n2 = (2k + 1)2 = 4k2 + 4k + 1.
Since the product of two consecutive integers is even and k(k+1) is a product

of two consecutive integers, then k(k + 1) is even, so 2|k(k + 1).
Hence 4 · 2|4k(k + 1), so 8|4k(k + 1).
Thus, 8|(4k2 + 4k), so 4k2 + 4k ≡ 0 (mod 8).
Therefore, 4k2 + 4k + 1 ≡ 1 (mod 8), so n2 ≡ 1 (mod 8).

Exercise 61. Let a ∈ Z.
If 2 6 |a and 3 6 |a, then 24|(a2 − 1).
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Proof. Suppose 2 6 |a and 3 6 |a.
Since 2 6 |a, then a is not even, so a is odd.
By lemma 59, if a is an odd integer, then 8|(a2 − 1).
Since a is an odd integer, then we conclude 8|(a2 − 1).

Since 3 6 |a, then by the division algorithm, when a is divided by 3, either
a = 3m + 1 or a = 3m + 2 for some integer m.

If a = 3m+1, then a2−1 = (3m+1)2−1 = 9m2 +6m+1−1 = 9m2 +6m =
3m(3m + 2), so 3|(a2 − 1).

If a = 3m + 2, then a2 − 1 = (3m + 2)2 − 1 = 9m2 + 12m + 4 − 1 =
9m2 + 12m + 3 = 3(3m2 + 4m + 1), so 3|(a2 − 1).

In either case, 3|(a2 − 1).

Since 3|(a2 − 1) and 8|(a2 − 1), then a2 − 1 is a common multiple of 3 and 8.
Since gcd(3, 8) = 1, then 3 and 8 are relatively prime.
Since a2 − 1 is a common multiple of 3 and 8 and 3 and 8 are relatively

prime, then a2 − 1 is a multiple of the product 3 · 8 = 24.
Therefore, a2 − 1 is a multiple of 24, so 24|(a2 − 1).

Exercise 62. The sum of the squares of two odd integers cannot be a perfect
square.

Proof. Let x and y be two odd integers.
Then x = 2a + 1 and y = 2b + 1 for some integers a and b.
Thus,

x2 + y2 = (2a + 1)2 + (2b + 1)2

= 4a2 + 4a + 1 + 4b2 + 4b + 1

= 4a2 + 4b2 + 4a + 4b + 2

= 4(a2 + b2 + a + b) + 2.

Let k = a2 + b2 + a + b.
Then x2 + y2 = 4k + 2 and k ∈ Z, so x2 + y2 is of the form 4k + 2 for some

integer k.
By exercise 37, every perfect square is of the form 4k or 4k + 1 for some

integer k.
Thus, if n is a perfect square, then either n = 4k or n = 4k + 1 for some

integer k.
Hence, if n 6= 4k and n 6= 4k + 1 for some integer k, then n is not a perfect

square.
Since 4k + 2 6= 4k and 4k + 2 6= 4k + 1, then 4k + 2 is not a perfect square.
Since x2 + y2 = 4k+ 2, then we conclude x2 + y2 is not a perfect square.

Exercise 63. The product of four consecutive integers is one less than a perfect
square.
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Proof. Let n ∈ Z.
We must prove there exists m ∈ Z such that n(n+1)(n+2)(n+3) = m2−1.
Let m = (n + 1)(n + 2)− 1.
Since n ∈ Z, then m ∈ Z.
Observe that

m2 − 1 = [(n + 1)(n + 2)− 1]2 − 1

= (n2 + 3n + 2− 1)2 − 1

= (n2 + 3n + 1)2 − 1

= (n2 + 3n + 1− 1)(n2 + 3n + 1 + 1)

= (n2 + 3n)(n2 + 3n + 2)

= n(n + 3)(n + 2)(n + 1)

= n(n + 1)(n + 2)(n + 3).

Exercise 64. The difference of two consecutive cubes is never divisible by 2.

Proof. Let a and b be two consecutive cubes.
Then a = n3 and b = (n + 1)3 for some n ∈ Z+.
Observe that

b− a = (n + 1)3 − n3

= (n3 + 3n2 + 3n + 1)− n3

= 3n2 + 3n + 1

= 3n(n + 1) + 1.

Since a product of two consecutive integers is even and n and n + 1 are
consecutive integers, then the product n(n + 1) is even.

Hence, n(n + 1) = 2k for some integer k.
Thus, b− a = 3n(n + 1) + 1 = 3(2k) + 1 = 2(3k) + 1 is odd, so b− a is not

even.
Therefore, 2 6 |(b− a), so b− a is not divisible by 2.

Proof. Let a and b be two consecutive cubes.
Then a = n3 and b = (n + 1)3 for some n ∈ Z+.
Since n ∈ Z, then either n is even or n is not even.
We consider these cases separately.
Case 1: Suppose n is even.
Then n3 is even and n + 1 is odd.
Since n3 is even and a = n3, then a is even.
Since n + 1 is odd, then (n + 1)3 is odd, so b is odd.
Since the difference of an even and odd integer is odd and b is odd and a is

even, then the difference b− a is odd.
Case 2: Suppose n is not even.
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Then n is odd, so n3 is odd and n + 1 is even.
Since n3 is odd and a = n3, then a is odd.
Since n + 1 is even, then (n + 1)3 is even, so b is even.
Since the difference of an even and odd integer is odd and b is even and a is

odd, then the difference b− a is odd.

Hence, in all cases, b− a is odd, so b− a is not even.
Therefore, 2 6 |(b− a), so b− a = (n + 1)3 − n3 is not divisible by 2.

Exercise 65. Let a ∈ Z∗.
Then gcd(a, 0) = |a|.

Proof. Since a ∈ Z∗, then a ∈ Z and a 6= 0, so either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then gcd(a, 0) = a = |a|.
Case 2: Suppose a < 0.
Then |a| = −a and −a > 0.
Since −a > 0, then gcd(−a, 0) = −a.
Therefore, gcd(a, 0) = gcd(−a, 0) = −a = |a|.

In all cases, we have gcd(a, 0) = |a|.

Exercise 66. Let a ∈ Z∗.
Then gcd(a, a) = |a|.

Proof. Since a ∈ Z∗, then a ∈ Z and a 6= 0, so either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then gcd(a, a) = a = |a|.
Case 2: Suppose a < 0.
Then |a| = −a and −a > 0.
Since −a > 0, then gcd(−a,−a) = −a.
Therefore, gcd(a, a) = gcd(−a,−a) = −a = |a|.

In all cases, we have gcd(a, a) = |a|.

Exercise 67. Let a ∈ Z∗.
Then gcd(a, 1) = 1.

Proof. Since a ∈ Z∗, then a ∈ Z and a 6= 0, so either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then gcd(a, 1) = 1.
Case 2: Suppose a < 0.
Then −a > 0, so gcd(−a, 1) = 1.
Therefore, gcd(a, 1) = gcd(−a, 1) = 1.

50



In all cases, we have gcd(a, 1) = 1.

Exercise 68. Let n ∈ Z+ and a ∈ Z.
Then gcd(a, a + n)|n.

Proof. Suppose a = 0 and a + n = 0.
Then 0 = a + n = 0 + n = n, so n = 0.
Since n ∈ Z+, then n > 0, so n 6= 0.
Hence, we have n = 0 and n 6= 0, a contradiction.
Therefore, either a 6= 0 or a + n 6= 0, so a and a + n are not both zero.
Thus, gcd(a, a + n) exists and is unique.

Let d = gcd(a, a + n).
Then d ∈ Z+ and d|a and d|(a + n).
Since d|(a + n) and d|a, then d is a common divisor of a + n and a.
Hence, d divides the difference (a + n)− a = a + n− a = n.
Therefore, d|n, as desired.

Note: If d is a common divisor of a + n and a, then d|n.

Exercise 69. Consecutive integers are relatively prime.
Let a ∈ Z.
Then gcd(a, a + 1) = 1.

Proof. Since 1 divides any integer, then 1|a and 1|(a + 1), so 1 is a common
divisor of a and a + 1.

Let c be any common divisor of a and a + 1.
Then c|a and c|(a + 1), so c divides the difference (a + 1)− a = 1.
Hence, c|1, so any common divisor of a and a + 1 divides 1.
Since 1 ∈ Z+ and 1 is a common divisor of a and a + 1, and any common

divisor of a and a+ 1 divides 1, then by definition of gcd, 1 = gcd(a, a+ 1).

Proof. Since 1 ∈ Z+ and a ∈ Z, then by exercise 68, gcd(a, a + 1) divides 1.
Since n|1 iff n = ±1, then gcd(a, a + 1) = 1 or gcd(a, a + 1) = −1.
Since the greatest common divisor is positive, then we conclude gcd(a, a +

1) = 1.

Proof. Since 1 = 0+1 = 0a+1 = (−1+1)a+1 = (−1)a+a+1 = (−1)a+1(a+1)
is a linear combination of a and a + 1, then 1 = gcd(a, a + 1).

Exercise 70. Let a, b ∈ Z.
If there exist integers x and y such that ax+by = gcd(a, b), then gcd(x, y) =

1.
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Proof. Suppose there exist integers x and y such that ax + by = gcd(a, b).
Let d = gcd(a, b).
Then d|a and d|b and ax + by = d.

Since d|a, then a = dr for some integer r, so r =
a

d
.

Since d|b, then b = ds for some integer s, so s =
b

d
.

Divide the equation by d to obtain 1 =
ax + by

d
=

a

d
· x +

b

d
· y.

Since 1 =
a

d
· x +

b

d
· y and

a

d
∈ Z and

b

d
∈ Z, then 1 is a linear combination

of x and y.
Therefore, gcd(x, y) = 1.

Exercise 71. The product of any three consecutive integers is a mul-
tiple of 6.

For all n ∈ Z+, 6|(n3 − n).

Proof. We prove the statement by induction.
Let p(n) be the predicate 6|(n3 − n) over Z+.
Basis:
Since 13 − 1 = 1− 1 = 0 = 6 · 0, then 13 − 1 = 6 · 0, so 6|(13 − 1).
Hence, p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then 6|(k3 − k), so k3 − k = 6a for some integer a.
Observe that

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1)− (k + 1)

= k3 + 3k2 + 3k + 1− k − 1

= k3 + 3k2 + 3k − k

= k3 − k + 3k2 + 3k

= (k3 − k) + (3k2 + 3k)

= 6a + (3k2 + 3k)

= 6a + 3k(k + 1).

Thus, (k + 1)3 − (k + 1) = 6a + 3k(k + 1).
A product of two consecutive integers is even.
Since k and k + 1 are consecutive integers, then k(k + 1) is even.
Hence, k(k + 1) = 2b for some integer b.
Observe that

(k + 1)3 − (k + 1) = 6a + 3k(k + 1)

= 6a + 3(2b)

= 6a + 6b

= 6(a + b).
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Since a+b ∈ Z and (k+1)3−(k+1) = 6(a+b), then 6 divides (k+1)3−(k+1),
so p(k + 1) is true.

Thus, p(k) implies p(k + 1) for all k ∈ Z+.

Since p(1) is true and p(k) implies p(k + 1) for all k ∈ Z+, then by induction
p(n) is true for all n ∈ Z+.

Therefore, 6|(n3 − n) for all n ∈ Z+.

Exercise 72. The product of any three consecutive integers is divisible
by 6.
∀n ∈ Z, 6|n(n + 1)(n + 2).

Proof. Let n ∈ Z.
Let p = n(n + 1)(n + 2).
We must prove 6|p.
By the division algorithm, either n = 6k or n = 6k + 1 or n = 6k + 2 or

n = 6k + 3 or n = 6k + 4 or n = 6k + 5 for some integer k.
We consider these cases separately.
Case 1: Suppose n = 6k.
Then 6|n, so 6 divides any multiple of n.
Therefore, 6|p.
Case 2: Suppose n = 6k + 1.
Since n + 1 = (6k + 1) + 1 = 6k + 2 = 2(3k + 1), then 2|(n + 1).
Since n + 2 = (6k + 1) + 2 = 6k + 3 = 3(2k + 1), then 3|(n + 2).
Since 2|(n + 1) and 3|(n + 2), then 6|(n + 1)(n + 2).
Hence, 6 divides any multiple of (n + 1)(n + 2), so 6|p.
Case 3: Suppose n = 6k + 2.
Then n = 6k + 2 = 2(3k + 1), so 2|n.
Since n + 1 = (6k + 2) + 1 = 6k + 3 = 3(2k + 1), then 3|(n + 1).
Since 2|n and 3|(n + 1), then 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6|p.
Case 4: Suppose n = 6k + 3.
Then n = 6k + 3 = 3(2k + 1), so 3|n.
Since n + 1 = (6k + 3) + 1 = 6k + 4 = 2(3k + 2), then 2|(n + 1).
Since 3|n and 2|(n + 1), then 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6|p.
Case 5: Suppose n = 6k + 4.
Then n + 2 = (6k + 4) + 2 = 6k + 6 = 6(k + 1), so 6|(n + 2).
Hence, 6 divides any multiple of n + 2, so 6|p.
Case 6: Suppose n = 6k + 5.
Then n + 1 = (6k + 5) + 1 = 6k + 6 = 6(k + 1), so 6|(n + 1).
Hence, 6 divides any multiple of n + 1, so 6|p.
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In all cases, 6|p.

Proof. Let n ∈ Z.
Let p = n(n + 1)(n + 2).
We must prove 6|p.

Since a product of two consecutive integers is even and n(n + 1) is a product
of two consecutive integers, then n(n + 1) is even.

Hence, 2 divides n(n + 1), so 2 divides any multiple of n(n + 1).
Therefore, 2|p.

By the division algorithm, when n is divided by 3, there are unique integers
q and r such that n = 3q + r and 0 ≤ r < 3.

Since r ∈ Z and 0 ≤ r < 3, then r = 0 or r = 1 or r = 2, so n = 3q or
n = 3q + 1 or n = 3q + 2.

We consider these cases separately.
Case 1: Suppose n = 3q.
Then 3|n, so 3 divides any multiple of n.
Hence, 3|p.
Case 2: Suppose n = 3q + 1.
Then n + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1), so 3|n + 2.
Hence, 3 divides any multiple of n + 2, so 3|p.
Case 3: Suppose n = 3q + 2.
Then n + 1 = (3q + 2) + 1 = 3q + 3 = 3(q + 1), so 3|n + 1.
Hence, 3 divides any multiple of n + 1, so 3|p.

In all cases, 3|p.

Since 2|p and 3|p and gcd(2, 3) = 1, then 2 ·3 divides p, so 6|p, as desired.

Proof. We prove by induction(strong).
Basis:
If n = 1 then the statement S1 is 6|1 ∗ 2 ∗ 3. This simplifies to 6|6, which is

true because 6 = 6 * 1.
If n = 2 then the statement S2 is 6|2 ∗ 3 ∗ 4. This simplifies to 6|24, which

is true because 24 = 6 * 4.
Induction:
We must prove S1 ∧ S2 ∧ ... ∧ Sk ⇒ Sk+1 for k ≥ 2.
This implies we must prove Sk−1 ∧ Sk ⇒ Sk+1 for k ≥ 2.
For simplicity, let m = k − 1.
Then Sk−1 ∧ Sk ⇒ Sk+1 for k ≥ 2 becomes
Sm ∧ Sm+1 ⇒ Sm+2 for m ≥ 1.
We prove the latter statement using direct proof.
Suppose Sm ∧ Sm+1 for m ≥ 1.
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We must prove that these assumptions together imply Sm+2.

Since Sm ∧ Sm+1 is true by assumption, then Sm is certainly true.

This implies 6|m(m+ 1)(m+ 2) which implies m(m+ 1)(m+ 2) = 6a, a ∈ Z,
by definition of divisibility.

Thus m(m + 1)(m + 2) = m(m2 + 3m + 2) = m3 + 3m2 + 2m = 6a.
Observe the following equalities:

(m + 2)(m + 3)(m + 4) = (m + 2)(m2 + 7m + 12)

= m3 + 9m2 + 26m + 24

= (m3 + 3m2 + 2m) + (6m2 + 24m + 24)

= 6a + 6(m2 + 4m + 4)

= 6(a + m2 + 4m + 4).

Since a + m2 + 4m + 4 ∈ Z, then by definition of divisibility, 6|(m + 2)(m +
3)(m + 4).

Hence Sm ∧ Sm+1 ⇒ Sm+2 for m ≥ 1.
Thus, Sk−1 ∧ Sk ⇒ Sk+1 for k ≥ 2.
It follows by strong induction that 6|n(n + 1)(n + 2) for all n ∈ N.

Exercise 73. The product of any four consecutive integers is divisible
by 24.
∀n ∈ Z, 24|n(n + 1)(n + 2)(n + 3).

Proof. Let n ∈ Z.
Let p = n(n + 1)(n + 2)(n + 3).
We must prove 24|p.

By exercise 72, a product of three consecutive integers is divisible by 6.
Since n(n + 1)(n + 2) is a product of three consecutive integers, then n(n +

1)(n + 2) is divisible by 6.
Hence, 6 divides n(n+1)(n+2), so 6 divides any multiple of n(n+1)(n+2).
Therefore, 6|p.
Since 3|6 and 6|p, then 3|p.

By the division algorithm, when n is divided by 8, there are unique integers
q and r such that n = 8q + r and 0 ≤ r < 8.

Since r ∈ Z and 0 ≤ r < 8, then r = 0 or r = 1 or r = 2 or r = 3 or r = 4
or r = 5 or r = 6 or r = 7, so n = 8q or n = 8q + 1 or n = 8q + 2 or n = 8q + 3
or n = 8q + 4 or n = 8q + 5 or n = 8q + 6 or n = 8q + 7.

We consider these cases separately.
Case 1: Suppose n = 8q.
Then 8|n, so 8 divides any multiple of n.
Hence, 8|p.
Case 2: Suppose n = 8q + 1.
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Then n + 3 = (8q + 1) + 3 = 8q + 4 = 4(2q + 1), so 4|n + 3.
Hence, 4 divides any multiple of n + 3, so 4|(n + 2)(n + 3).
Since a product of two consecutive integers is even, then n(n+ 1) is even, so

2|n(n + 1).
Since 2|n(n + 1) and 4|(n + 2)(n + 3), then the product 2 · 4 divides the

product n(n + 1)(n + 2)(n + 3), so 8|p.
Case 3: Suppose n = 8q + 2.
Then n + 2 = (8q + 2) + 2 = 8q + 4 = 4(2q + 1), so 4|n + 2.
Hence, 4 divides any multiple of n + 2, so 4|(n + 2)(n + 3).
Since a product of two consecutive integers is even, then n(n+ 1) is even, so

2|n(n + 1).
Since 2|n(n + 1) and 4|(n + 2)(n + 3), then the product 2 · 4 divides the

product n(n + 1)(n + 2)(n + 3), so 8|p.
Case 4: Suppose n = 8q + 3.
Then n + 1 = (8q + 3) + 1 = 8q + 4 = 4(2q + 1), so 4|n + 1.
Hence, 4 divides any multiple of n + 1, so 4|n(n + 1).
Since a product of two consecutive integers is even, then (n + 2)(n + 3) is

even, so 2|(n + 2)(n + 3).
Since 4|n(n + 1) and 2|(n + 2)(n + 3), then the product 4 · 2 divides the

product n(n + 1)(n + 2)(n + 3), so 8|p.
Case 5: Suppose n = 8q + 4.
Then n = 8q + 4 = 4(2q + 1), so 4|n.
Hence, 4 divides any multiple of n, so 4|n(n + 1).
Since a product of two consecutive integers is even, then (n + 2)(n + 3) is

even, so 2|(n + 2)(n + 3).
Since 4|n(n + 1) and 2|(n + 2)(n + 3), then the product 4 · 2 divides the

product n(n + 1)(n + 2)(n + 3), so 8|p.
Case 6: Suppose n = 8q + 5.
Then n + 3 = (8q + 5) + 3 = 8q + 8 = 8(q + 1), so 8|n + 3.
Hence, 8 divides any multiple of n + 3, so 8|p.
Case 7: Suppose n = 8q + 6.
Then n + 2 = (8q + 6) + 2 = 8q + 8 = 8(q + 1), so 8|n + 2.
Hence, 8 divides any multiple of n + 2, so 8|p.
Case 8: Suppose n = 8q + 7.
Then n + 1 = (8q + 7) + 1 = 8q + 8 = 8(q + 1), so 8|n + 1.
Hence, 8 divides any multiple of n + 1, so 8|p.

In all cases, 8|p.

Since 3|p and 8|p and gcd(3, 8) = 1, then 3·8 divides p, so 24|p, as desired.

Exercise 74. The product of any five consecutive integers is divisible
by 120.
∀n ∈ Z, 120|n(n + 1)(n + 2)(n + 3)(n + 4).
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Proof. Let n ∈ Z.
Let p = n(n + 1)(n + 2)(n + 3)(n + 4).
We must prove 120|p.

By exercise 73, a product of four consecutive integers is divisible by 24.
Since n(n + 1)(n + 2)(n + 3) is a product of four consecutive integers, then

n(n + 1)(n + 2)(n + 3) is divisible by 24.
Hence, 24 divides n(n + 1)(n + 2)(n + 3), so 24 divides any multiple of

n(n + 1)(n + 2)(n + 3).
Therefore, 24|p.

By the division algorithm, when n is divided by 5, there are unique integers
q and r such that n = 5q + r and 0 ≤ r < 5.

Since r ∈ Z and 0 ≤ r < 5, then r = 0 or r = 1 or r = 2 or r = 3 or r = 4,
so n = 5q or n = 5q + 1 or n = 5q + 2 or n = 5q + 3 or n = 5q + 4.

We consider these cases separately.
Case 1: Suppose n = 5q.
Then 5|n, so 5 divides any multiple of n.
Hence, 5|p.
Case 2: Suppose n = 5q + 1.
Then n + 4 = (5q + 1) + 4 = 5q + 5 = 5(q + 1), so 5|n + 4.
Hence, 5 divides any multiple of n + 4, so 5|p.
Case 3: Suppose n = 5q + 2.
Then n + 3 = (5q + 2) + 3 = 5q + 5 = 5(q + 1), so 5|n + 3.
Hence, 5 divides any multiple of n + 3, so 5|p.
Case 4: Suppose n = 5q + 3.
Then n + 2 = (5q + 3) + 2 = 5q + 5 = 5(q + 1), so 5|n + 2.
Hence, 5 divides any multiple of n + 2, so 5|p.
Case 5: Suppose n = 5q + 4.
Then n + 1 = (5q + 4) + 1 = 5q + 5 = 5(q + 1), so 5|n + 1.
Hence, 5 divides any multiple of n + 1, so 5|p.

In all cases, 5|p.

Since 5|p and 24|p and gcd(5, 24) = 1, then 5 · 24 divides p, so 120 divides p,
as desired.

Exercise 75. If a is an odd integer, then 24|a(a2 − 1).

Proof. Suppose a is an odd integer.
Let p = a(a2 − 1).
Then p = a(a− 1)(a+ 1) = (a− 1)a(a+ 1) is a product of three consecutive

integers.
By exercise 72, a product of three consecutive integers is divisible by 6.
Hence, p is divisible by 6, so 6|p.
Since 3|6 and 6|p, then 3|p.
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By lemma 59, if n is an odd integer, then 8|(n2 − 1).
Since a is an odd integer, then we conclude 8|(a2 − 1).
Hence, 8 divides any multiple of a2 − 1, so 8|p.

Since 3|p and 8|p, then p is a common multiple of 3 and 8.
Since gcd(3, 8) = 1, then 3 and 8 are relatively prime.
Since p is a common multiple of 3 and 8 and 3 and 8 are relatively prime,

then p is a multiple of the product 3 · 8, so p is a multiple of 24.
Therefore, 24|p, as desired.

Exercise 76. If a and b are odd integers, then 8|(a2 − b2).

Proof. Suppose a and b are odd integers.
Then a is an odd integer and b is an odd integer.
By lemma 59, if n is an odd integer, then 8|(n2 − 1).
Since a is an odd integer, then we conclude 8|(a2 − 1), so a2 − 1 = 8k for

some integer k.
Hence, a2 = 8k + 1.
Since b is an odd integer, then we conclude 8|(b2 − 1), so b2 − 1 = 8m for

some integer m.
Hence, b2 = 8m + 1.
Observe that

a2 − b2 = (8k + 1)− (8m + 1)

= 8k + 1− 8m− 1

= 8k − 8m

= 8(k −m).

Since k−m ∈ Z and a2−b2 = 8(k−m), then 8 divides a2−b2, so 8|(a2−b2),
as desired.

Proof. Suppose a and b are odd integers.
Then a is an odd integer and b is an odd integer.
By lemma 60, if n is any odd integer, then n2 ≡ 1 (mod 8).
Since a is an odd integer, then a2 ≡ 1 (mod 8).
Since b is an odd integer, then b2 ≡ 1 (mod 8), so 1 ≡ b2 (mod 8).
Since a2 ≡ 1 (mod 8) and 1 ≡ b2 (mod 8), then a2 ≡ b2 (mod 8).
Therefore, 8|(a2 − b2).

Proof. Suppose a and b are odd integers.
Since the sum of two odd integers is even and a and b are odd integers, then

a + b is even, so a + b = 2m for some integer m.
Since the difference of two odd integers is even and a and b are odd integers,

then a− b is even, so a− b = 2n for some integer n.
Thus, (a + b) + (a− b) = 2m + 2n = 2(m + n), so 2a = 2(m + n).
Hence, a = m + n.
Since a is odd and a = m + n, then m + n is odd.
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Either m is even and n is even, or m is even and n is odd, or m is odd and n
is even, or m is odd and n is odd.

Suppose m is even and n is even.
Since the sum of two even integers is even, then m + n is even, so m + n is

not odd.
Hence, if m and n are both even, then m + n is not odd, so if m + n is odd,

then m and n are not both even.
Since m + n is odd, then we conclude m and n cannot be both even.

Suppose m is odd and n is odd.
Since the sum of two odd integers is even, then m + n is even, so m + n is

not odd.
Hence, if m and n are both odd, then m + n is not odd, so if m + n is odd,

then m and n are not both odd.
Since m + n is odd, then we conclude m and n cannot be both odd.

Since m and n cannot be both even or both odd, then we conclude either m
is even and n is odd, or m is odd and n is even.

We consider these cases separately.
Case 1: Suppose m is even and n is odd.
Since m is even, then m = 2c for some integer c.
Observe that

a2 − b2 = (a + b)(a− b)

= (2m)(2n)

= 4mn

= 4(2c)n

= 8(cn).

Hence, a2 − b2 = 8(cn), so 8 divides a2 − b2.
Case 2: Suppose m is odd and n is even.
Since n is even, then n = 2d for some integer d.
Observe that

a2 − b2 = (a + b)(a− b)

= (2m)(2n)

= 4mn

= 4m(2d)

= 8(nd).

Hence, a2 − b2 = 8(nd), so 8 divides a2 − b2.
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Therefore, in all cases, 8 divides a2 − b2, so 8|(a2 − b2), as desired.

Exercise 77. Let a ∈ Z.
If 2 6 |a and 3 6 |a, then 24|(a2 + 23).

Proof. Suppose 2 6 |a and 3 6 |a.
Since 2 6 |a, then a is not divisible by 2, so a is not even.
Hence, a is odd.
By lemma 59, if n is an odd integer, then 8|(n2 − 1).
Since a is an odd integer, then we conclude 8|(a2 − 1).
Since 8|(a2− 1) and 8|24, then 8 divides the sum (a2− 1) + 24 = a2 + 23, so

8|(a2 + 23).

By the division algorithm, when a is divided by 3, there are unique integers
q and r such that a = 3q + r and 0 ≤ r < 3.

Since r ∈ Z and 0 ≤ r < 3, then either r = 0 or r = 1 or r = 2, so either
a = 3q or a = 3q + 1 or a = 3q + 2.

Since 3|a iff a = 3q, then 3 6 |a iff a 6= 3q.
Since 3 6 |a, then we conclude a 6= 3q.
Thus, either a = 3q + 1 or a = 3q + 2.
We consider these cases separately.
Case 1: Suppose a = 3q + 1.
Observe that

a2 + 23 = (3q + 1)2 + 23

= (9q2 + 6q + 1) + 23

= 9q2 + 6q + 24

= 3(3q2 + 2q + 8).

Thus, a2 + 23 = 3(3q2 + 2q + 8), so 3|(a2 + 23).
Case 2: Suppose a = 3q + 2.
Observe that

a2 + 23 = (3q + 2)2 + 23

= (9q2 + 12q + 4) + 23

= 9q2 + 12q + 27

= 3(3q2 + 4q + 9).

Thus, a2 + 23 = 3(3q2 + 4q + 9), so 3|(a2 + 23).

Thus, in all cases, 3|(a2 + 23).

60



Since 3|(a2 + 23) and 8|(a2 + 23), then a2 + 23 is a common multiple of 3 and
8.

Since gcd(3, 8) = 1, then 3 and 8 are relatively prime.
Since a2 + 23 is a common multiple of 3 and 8 and 3 and 8 are relatively

prime, then a2 + 23 is a multiple of the product 3 · 8, so a2 + 23 is a multiple of
24.

Therefore, 24|(a2 + 23).

Exercise 78. If a ∈ Z, then 360|a2(a2 − 1)(a2 − 4).

Proof. Let a ∈ Z.
Let p = a2(a2 − 1)(a2 − 4).
Then p = a2(a− 1)(a + 1)(a− 2)(a + 2) = a(a− 2)(a− 1)a(a + 1)(a + 2).
Let s = (a− 2)(a− 1)a(a + 1)(a + 2).
Then p = as and s is a product of five consecutive integers.
By exercise 74, the product of any five consecutive integers is divisible by

120.
Since s is a product of five consecutive integers, then s is divisible by 120,

so 120|s.
Hence, 120 divides any multiple of s, so 120|p.
Since 40|120 and 120|p, then 40|p.

By the division algorithm, when a is divided by 3, either a = 3q or a = 3q+ 1
or a = 3q + 2 for some integer q.

We consider each case separately.
Case 1: Suppose a = 3q.
Then a2 = (3q)2 = 9q2, so 9|a2.
Hence, 9 divides any multiple of a2, so 9|p.
Case 2: Suppose a = 3q + 1.
Then a− 1 = 3q, so 3|(a− 1).
Since a + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1), then 3|(a + 2).
Since 3|(a − 1) and 3|(a + 2), then the product 3 · 3 divides the product

(a− 1)(a + 2), so 9 divides (a− 1)(a + 2).
Hence, 9 divides any multiple of (a− 1)(a + 2), so 9|p.
Case 3: Suppose a = 3q + 2.
Then a− 2 = 3q, so 3|(a− 2).
Since a + 1 = (3q + 2) + 1 = 3q + 3 = 3(q + 1), then 3|(a + 1).
Since 3|(a − 2) and 3|(a + 1), then the product 3 · 3 divides the product

(a− 2)(a + 1), so 9 divides (a− 2)(a + 1).
Hence, 9 divides any multiple of (a− 2)(a + 1), so 9|p.

Therefore, in all cases, 9|p.
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Since 9|p and 40|p and gcd(9, 40) = 1, then 9 · 40 divides p, so 360|p, as
desired.

Exercise 79. Let a, b, c ∈ Z.
Then gcd(a, bc) = 1 if and only if gcd(a, b) = gcd(a, c) = 1.

Proof. We prove if gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1.

Suppose gcd(a, b) = 1 = gcd(a, c).
Since gcd(a, b) = 1, then there exist integers m and n such that 1 = ma+nb.
Since gcd(a, c) = 1, then there exist integers r and s such that 1 = ra + sc.
Observe that

1 = 1 · 1
= (ma + nb) · (ra + sc)

= mara + masc + nbra + nbsc

= (mar + msc + nbr)a + nbsc

= (mar + msc + nbr)a + (ns)bc.

Since mar+msc+nbr and ns are integers and (mar+msc+nbr)a+(ns)bc =
1, then 1 is a linear combination of a and bc, so gcd(a, bc) = 1, as desired.

Proof. Conversely, we prove if gcd(a, bc) = 1, then gcd(a, b) = gcd(a, c) = 1.

Suppose gcd(a, bc) = 1.
Then there exist integers m and n such that ma + n(bc) = 1.
Since 1 = ma + n(bc) = ma + (nb)c and m and nb are integers, then 1 is a

linear combination of a and c, so gcd(a, c) = 1.
Since 1 = ma+n(bc) = ma+n(cb) = ma+(nc)b and m and nc are integers,

then 1 is a linear combination of a and b so 1 = gcd(a, b).
Therefore, gcd(a, b) = 1 = gcd(a, c), as desired.

Exercise 80. Let a, b, c ∈ Z.
If gcd(a, b) = 1 and c|a, then gcd(b, c) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Since c|a, then a = ck for some integer k.
Observe that

1 = ma + nb

= m(ck) + nb

= nb + m(ck)

= nb + m(kc)

= nb + (mk)c.

Since n and mk are integers and nb + (mk)c = 1, then 1 is a linear combi-
nation of b and c, so gcd(b, c) = 1.

62



Proof. Suppose gcd(a, b) = 1 and c|a.
Since 1 divides every integer, then 1|b and 1|c, so 1 is a common divisor of

b and c.

Let d be any common divisor of b and c.
Then d|b and d|c.
Since d|c and c|a, then d|a.
Since gcd(a, b) = 1, then ma + nb = 1 for some integers m and n.
Hence, 1 is a linear combination of a and b.
Since d|a and d|b, then d divides any linear combination of a and b, so d|1.
Therefore, any common divisor of b and c divides 1.

Since 1 is a common divisor of b and c, and any common divisor of b and c
divides 1, then by definition of gcd, 1 = gcd(b, c).

Exercise 81. Let a, b, c ∈ Z.
If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).

Proof. Suppose gcd(a, b) = 1.
Then 1 = ma + nb for some integers m and n.
Let d = gcd(c, b).
Then d is the least positive linear combination of c and b, and d is a common

divisor of c and b.
Since d is the least positive linear combination of c and b, then d ∈ Z+ and

d = rc + sb for some integers r and s.
Observe that

d = 1 · d
= (ma + nb) · (rc + sb)

= marc + masb + nbrc + nbsb

= (mr)ac + masb + nbrc + nbsb

= (mr)ac + (mas + nrc + nbs)b.

Since mr and mas+nrc+nbs are integers and (mr)ac+(mas+nrc+nbs)b =
d, then d is a linear combination of ac and b.

Hence, d is a multiple of gcd(ac, b).
Let e = gcd(ac, b).
Then d is a multiple of e, so e|d.

Since e = gcd(ac, b), then e ∈ Z+ and any common divisor of ac and b divides
e.

Since d is a common divisor of c and b, then d|c and d|b.
Since d|c, then d divides any multiple of c, so d|ac.
Since d|ac and d|b, then we conclude d|e.
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Since d ∈ Z+ and e ∈ Z+ and d|e and e|d, then d = e.
Therefore, gcd(ac, b) = e = d = gcd(c, b), so gcd(ac, b) = gcd(c, b), as de-

sired.

Exercise 82. Let d, a, b ∈ Z.
If d|(a + b) and gcd(a, b) = 1, then gcd(d, a) = gcd(d, b) = 1.

Proof. Suppose d|(a + b) and gcd(a, b) = 1.
Since d|(a + b), then a + b = dk for some integer k.
Since gcd(a, b) = 1, then 1 = ma + nb for some integers m and n.

Observe that

1 = ma + nb

= m(dk − b) + nb

= mdk −mb + nb

= mkd−mb + nb

= mkd + nb−mb

= (mk)d + (n−m)b.

Since mk and n − m are integers and 1 = (mk)d + (n − m)b, then 1 is a
linear combination of d and b, so gcd(d, b) = 1.

Observe that

1 = ma + nb

= ma + n(dk − a)

= ma + ndk − na

= ndk + ma− na

= nkd + ma− na

= (nk)d + (m− n)a.

Since nk and m−n are integers and 1 = (nk)d+ (m−n)a, then 1 is a linear
combination of d and a, so 1 = gcd(d, a).

Therefore, gcd(d, a) = 1 = gcd(d, b).

Proof. Suppose d|(a + b) and gcd(a, b) = 1.
Let e = gcd(d, a).
Then e ∈ Z+ and e is a common divisor of d and a, so e|d and e|a.
Since e|d and d|(a + b), then e|(a + b).
Since e|(a + b) and e|a, then e divides the difference (a + b)− a = b, so e|b.
Since gcd(a, b) = 1, then any common divisor of a and b divides 1.
Since e|a and e|b, then e is a common divisor of a and b, so e|1.
Since e ∈ Z+ and e|1, then e = 1.
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Let f = gcd(d, b).
Then f ∈ Z+ and f is a common divisor of d and b, so f |d and f |b.
Since f |d and d|(a + b), then f |(a + b).
Since f |(a+ b) and f |b, then f divides the difference (a+ b)− b = a, so f |a.
Since gcd(a, b) = 1, then any common divisor of a and b divides 1.
Since f |a and f |b, then f is a common divisor of a and b, so f |1.
Since f ∈ Z+ and f |1, then f = 1.

Therefore, gcd(d, a) = e = 1 = f = gcd(d, b), so gcd(d, a) = 1 = gcd(d, b), as
desired.

Chapter 2.3 The Euclidean Algorithm

Example 83. Express gcd(12378, 3054) as a linear combination of 12378 and
3054.

Solution. We use the Euclidean algorithm to obtain the equations below.

12378 = 3054 · 4 + 162

3054 = 162 · 18 + 138

162 = 138 · 1 + 24

138 = 24 · 5 + 18

24 = 18 · 1 + 6

18 = 6 · 3 + 0.

Thus, gcd(12378, 3054) = gcd(3054, 162) = gcd(162, 138) = gcd(138, 24) =
gcd(24, 18) = gcd(18, 6) = 6.

We backtrack through the equations to find the linear combination.

6 = 24− 18 · 1
= 24− (138− 24 · 5) · 1
= 6 · 24− 138

= 6(162− 138 · 1)− 138

= 6 · 162− 7 · 138

= 6 · 162− 7(3054− 162 · 18)

= 132 · 162− 7(3054)

= 132(12378− 3054 · 4)− 7(3054)

= 132 · 12378− 535 · 3054

= 132 · 12378 + (−535)3054.

Therefore, gcd(12378, 3054) = 6 = (132)12378 + (−535)3054.
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Example 84. Prove gcd(39, 42, 54) = 3.

Proof. Since 39 = 3 · 13, then 3|39.
Since 42 = 3 · 14, then 3|42.
Since 54 = 3 · 18, then 3|54.
Since 3|39 and 3|42 and 3|54, then 3 is a common divisor of 39, 42, and 54.
Since 3 ∈ Z+ and 3 is a common divisor of 39, 42, and 54, then 3 is a positive

common divisor of 39, 42, and 54.

Let c ∈ Z such that c|39 and c|42 and c|54.
Then 39 = ck1 and 42 = ck2 and 54 = ck3 for some integers k1, k2, and k3.
Observe that

3 = 39(−1) + 42(1) + 54(0)

= ck1(−1) + ck2(1) + ck3(0)

= c(−k1) + ck2 + 0

= c(−k1) + ck2

= c(−k1 + k2).

Since −k1 + k2 ∈ Z and 3 = c(−k1 + k2), then c|3, so any common divisor
of 39, 42, 54 divides 3.

Since 3 is a positive common divisor of 39, 42, 54, and any common divisor of
39, 42, 54 divides 3, then 3 = gcd(39, 42, 54), as desired.

Example 85. Prove gcd(49, 210, 350) = 7.

Proof. Since 49 = 7 · 7, then 7|49.
Since 210 = 7 · 30, then 7|210.
Since 350 = 7 · 50, then 7|350.
Since 7|49 and 7|210 and 7|350, then 7 is a common divisor of 49, 210, and

350.
Since 7 ∈ Z+ and 7 is a common divisor of 49, 210, and 350, then 7 is a

positive common divisor of 49, 210, and 350.

Let c ∈ Z such that c|49 and c|210 and c|350.
Then 49 = ck1 and 210 = ck2 and 350 = ck3 for some integers k1, k2, and

k3.
Observe that

7 = 49(13) + 210(−3) + 350(0)

= ck1(13) + ck2(−3) + ck3(0)

= c(13k1)− 3ck2 + 0

= c(13k1)− 3ck2

= c(13k1 − 3k2).
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Since 13k1−3k2 ∈ Z and 7 = c(13k1−3k2), then c|7, so any common divisor
of 49, 210, 350 divides 7.

Since 7 is a positive common divisor of 49, 210, and 350, and any common
divisor of 49, 210, 350 divides 7, then 7 = gcd(49, 210, 350), as desired.

Example 86. Prove gcd(6, 10, 15) = 1.
Observe that gcd(6, 10) = 2 and gcd(6, 15) = 3 and gcd(10, 15) = 5, but

gcd(6, 10, 15) = 1.
Therefore, three integers can be relatively prime as a triple, even though

they are not relatively prime in pairs.

Proof. Since 1 divides every integer, then 1|6 and 1|10 and 1|15, so 1 is a common
divisor of 6, 10, 15.

Since 1 ∈ Z+ and 1 is a common divisor of 6, 10, 15, then 1 is a positive
common divisor of 6, 10, 15.

Let c ∈ Z such that c|6 and c|10 and c|15.
Then 6 = ck1 and 10 = ck2 and 15 = ck3 for some integers k1, k2, and k3.
Observe that

1 = 6(−14) + 10(7) + 15(1)

= ck1(−14) + ck2(7) + ck3(1)

= c(−14k1) + 7ck2 + ck3

= c(−14k1 + 7k2 + k3).

Since −14k1 + 7k2 + k3 ∈ Z and 1 = c(−14k1 + 7k2 + k3), then c|1, so any
common divisor of 6, 10, 15 divides 1.

Since 1 is a positive common divisor of 6, 10, 15, and any common divisor of
6, 10, 15 divides 1, then 1 = gcd(6, 10, 15), as desired.

Chapter 2.3 Problems

Exercise 87. Compute gcd(143, 227).

Solution. We use the Euclidean algorithm to obtain the equations below.
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227 = 143 · 1 + 84

143 = 84 · 1 + 59

84 = 59 · 1 + 25

59 = 25 · 2 + 9

25 = 9 · 2 + 7

9 = 7 · 1 + 2

7 = 2 · 3 + 1

2 = 1 · 2 + 0.

Observe that

gcd(143, 227) = gcd(227, 143)

= gcd(143, 84)

= gcd(84, 59)

= gcd(59, 25)

= gcd(25, 9)

= gcd(9, 7)

= gcd(7, 2)

= gcd(2, 1)

= 1.

Therefore, gcd(143, 227) = 1.

Exercise 88. Compute gcd(306, 657).

Solution. We use the Euclidean algorithm to obtain the equations below.

657 = 306 · 2 + 7

306 = 45 · 6 + 36

45 = 36 · 1 + 9

36 = 9 · 4 + 0.

Observe that

gcd(306, 657) = gcd(657, 306)

= gcd(306, 45)

= gcd(45, 36)

= gcd(36, 9)

= 9.

Therefore, gcd(306, 657) = 9.
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Exercise 89. Compute gcd(272, 1479).

Solution. We use the Euclidean algorithm to obtain the equations below.

1479 = 272 · 5 + 119

272 = 119 · 2 + 34

119 = 34 · 3 + 17

34 = 17 · 2 + 0.

Observe that

gcd(272, 1479) = gcd(1479, 272)

= gcd(272, 119)

= gcd(119, 34)

= gcd(34, 17)

= 17.

Therefore, gcd(272, 1479) = 17.

Exercise 90. Express gcd(56, 72) as a linear combination of 56 and 72.

Solution. We use the Euclidean algorithm to obtain the equations below.

72 = 56 · 1 + 16

56 = 16 · 3 + 8

16 = 8 · 2 + 0.

Observe that

gcd(56, 72) = gcd(72, 56)

= gcd(56, 16)

= gcd(16, 8)

= 8.

We backtrack through the equations to find the linear combination.

8 = 56− 16 · 3
= 56− (72− 56 · 1) · 3
= 56 · 4− 3 · 72

= (4)56 + (−3)72.

Therefore, gcd(56, 72) = 8 = (4)56 + (−3)72.
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Exercise 91. Express gcd(24, 138) as a linear combination of 24 and 138.

Solution. We use the Euclidean algorithm to obtain the equations below.

138 = 24 · 5 + 18

24 = 18 · 1 + 6

18 = 6 · 3 + 0.

Observe that

gcd(24, 138) = gcd(138, 24)

= gcd(24, 18)

= gcd(18, 6)

= 6.

We backtrack through the equations to find the linear combination.

6 = 24− 18 · 1
= 24− (138− 24 · 5) · 1
= 6 · 24− 138 · 1
= (6)24 + (−1)138.

Therefore, gcd(24, 138) = 6 = (6)24 + (−1)138.

Exercise 92. Express gcd(119, 272) as a linear combination of 119 and 272.

Solution. We use the Euclidean algorithm to obtain the equations below.

272 = 119 · 2 + 34

119 = 34 · 3 + 17

34 = 17 · 2 + 0.

Observe that

gcd(119, 272) = gcd(272, 119)

= gcd(119, 34)

= gcd(34, 17)

= 17.

We backtrack through the equations to find the linear combination.

17 = 119− 34 · 3
= 119− (272− 119 · 2) · 3
= 7 · 119− 3 · 272

= (7)119 + (−3)272.
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Therefore, gcd(119, 272) = 17 = (7)119 + (−3)272.

Exercise 93. Express gcd(1769, 2378) as a linear combination of 1769 and 2378.

Solution. We use the Euclidean algorithm to obtain the equations below.

2378 = 1769 · 1 + 609

1769 = 609 · 2 + 551

609 = 551 · 1 + 58

551 = 58 · 9 + 29

58 = 29 · 2 + 0.

Observe that

gcd(1769, 2378) = gcd(2378, 1769)

= gcd(1769, 609)

= gcd(609, 551)

= gcd(551, 58)

= gcd(58, 29)

= 29.

We backtrack through the equations to find the linear combination.

29 = 551− 58 · 9
= 551− (609− 551 · 1) · 9
= 10 · 551− 9 · 609

= 10(1769− 609 · 2)− 9 · 609

= 10 · 1769− 29 · 609

= 10 · 1769− 29(2378− 1769 · 1)

= 39 · 1769− 29 · 2378

= (39)1769 + (−29)2378.

Therefore, gcd(1769, 2378) = 29 = (39)1769 + (−29)2378.

Proposition 94. Let a, b ∈ Z.
Let d be a positive common divisor of a and b.

Then d = gcd(a, b) if and only if gcd(
a

d
,
b

d
) = 1.

Proof. We prove if d = gcd(a, b), then gcd(
a

d
,
b

d
) = 1.
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Suppose d = gcd(a, b).
Then d is the least positive linear combination of a and b.
Since d is a positive common divisor of a and b, then d ∈ Z+ and d|a and

d|b, so a = dr and b = ds for some integers r and s.

Thus, r =
a

d
and s =

b

d
.

Since d is the least positive linear combination of a and b, then d = xa + yb
for some integers y and y.

Observe that

d = xa + yb

= x(dr) + y(ds)

= xdr + yds

= d(xr + ys).

Since d ∈ Z+, then d > 0, so d 6= 0.
Thus, we divide the equation by d to obtain 1 = xr + ys.
Since 1 = xr + ys and x and y are integers, then 1 is a linear combination

of r and s, so 1 = gcd(r, s).

Therefore, 1 = gcd(r, s) = gcd(
a

d
,
b

d
), so gcd(

a

d
,
b

d
) = 1, as desired.

Proof. Conversely, we prove if gcd(
a

d
,
b

d
) = 1, then d = gcd(a, b).

Suppose gcd(
a

d
,
b

d
) = 1.

Since d is a positive common divisor of a and b, then d ∈ Z+ and d|a and
d|b, so a = dr and b = ds for some integers r and s.

Thus, r =
a

d
and s =

b

d
.

Hence, 1 = gcd(
a

d
,
b

d
) = gcd(r, s), so gcd(r, s) = 1.

Since d ∈ Z+, then d > 0, so

gcd(a, b) = gcd(dr, ds)

= d · gcd(r, s)

= d · 1
= d.

Therefore, gcd(a, b) = d, as desired.

Proof. Conversely, we prove if gcd(
a

d
,
b

d
) = 1, then d = gcd(a, b).
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Suppose gcd(
a

d
,
b

d
) = 1.

Then 1 is a linear combination of
a

d
and

b

d
, so there exist integers m and n

such that m(a
d ) + n( b

d ) = 1.
Since d ∈ Z+, then d > 0, so we multiply d to obtain ma + nb = d.
Since d = ma+ nb and m and n are integers, then d is a linear combination

of a and b.

Let c be any common divisor of a and b.
Then c ∈ Z and c divides any linear combination of a and b, so c|d.
Thus, any common divisor of a and b divides d.

Since d is a positive common divisor of a and b, and any common divisor of
a and b divides d, then d = gcd(a, b).

Exercise 95. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(a + b, a− b) is 1 or 2.

Proof. Let d = gcd(a + b, a− b).
Then d ∈ Z+ and d|(a + b) and d|(a− b).

We must prove either d = 1 or d = 2.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Thus, 2ma + 2nb = 2, so 2 is a linear combination of 2a and 2b.
Since d|(a + b) and d|(a− b), then d divides the sum (a + b) + (a− b) = 2a,

so d|2a.
Since d|(a+b) and d|(a−b), then d divides the difference (a+b)−(a−b) = 2b,

so d|2b.
Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so

d|2.
Since d ∈ Z+ and d|2, then either d = 1 or d = 2, as desired.

Exercise 96. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(2a + b, a + 2b) is 1 or 3.

Proof. Let d = gcd(2a + b, a + 2b).
Then d ∈ Z+ and d|(2a + b) and d|(a + 2b).

We must prove either d = 1 or d = 3.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Thus, 3ma + 3nb = 3, so 3 is a linear combination of 3a and 3b.
Since d|(2a + b) and d|(a + 2b), then d divides any linear combination of

2a + b and a + 2b.
Observe that

2(2a + b)− (a + 2b) = 4a + 2b− a− 2b

= 3a.
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Thus, 3a is a linear combination of 2a + b and a + 2b, so d|3a.
Observe that

2(a + 2b)− (2a + b) = 2a + 4b− 2a− b

= 3b.

Thus, 3b is a linear combination of a + 2b and 2a + b, so d|3b.
Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so

d|3.
Since d ∈ Z+ and d|3, then either d = 1 or d = 3, as desired.

Exercise 97. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(a + b, a2 + b2) is 1 or 2.

Proof. Let d = gcd(a + b, a2 + b2).
Then d ∈ Z+ and d|(a + b) and d|(a2 + b2).
We must prove either d = 1 or d = 2.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Since d|(a + b) and d|(a2 + b2) , then d divides any linear combination of

a + b and a2 + b2.
Observe that

(a2 + b2)− (a− b)(a + b) = a2 + b2 − (a2 − b2)

= a2 + b2 − a2 + b2

= 2b2.

Hence, 2b2 is a linear combination of a + b and a2 + b2, so d|2b2.
Observe that

(a + b)2 − (a2 + b2) = (a2 + 2ab + b2)− a2 − b2

= 2ab.

Hence, 2ab is a linear combination of a + b and a2 + b2, so d|2ab.
Observe that

2b = 2b · 1
= 2b(ma + nb)

= 2bma + 2bnb

= 2abm + 2b2n.

Hence, 2b is a linear combination of 2ab and 2b2.
Since d|2ab and d|2b2, then d divides any linear combination of 2ab and 2b2,

so d|2b.
Observe that

2(a + b)2 − 4ab− 2b2 = 2(a2 + 2ab + b2)− 4ab− 2b2

= 2a2 + 4ab + 2b2 − 4ab− 2b2

= 2a2.
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Hence, 2a2 is a linear combination of a + b and 2ab and 2b2.
Since d|(a + b) and d|2ab and d|2b2, then d divides any linear combination

of a + b and 2ab and 2b2, so d|2a2.
Observe that

2a = 2a · 1
= 2a(ma + nb)

= 2ama + 2anb

= 2a2m + 2abn.

Hence, 2a is a linear combination of 2a2 and 2ab.
Since d|2a2 and d|2ab, then d divides any linear combination of 2a2 and 2ab,

so d|2a.
Observe that

2 = 2 · 1
= 2(ma + nb)

= 2ma + 2nb.

Hence, 2 is a linear combination of 2a and 2b.
Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so

d|2.
Since d ∈ Z+ and d|2, then either d = 1 or d = 2.

Exercise 98. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(a + b, a2 − ab + b2) is 1 or 3.

Proof. Let d = gcd(a + b, a2 − ab + b2).
Then d ∈ Z+ and d|(a + b) and d|(a2 − ab + b2).
We must prove either d = 1 or d = 3.
Since a2 − ab + b2 = (a + b)(a− 2b) + 3b2, then 3b2 = (a2 − ab + b2)− (a +

b)(a− 2b), so 3b2 is a linear combination of a2 − ab + b2 and a + b.
Since d|(a + b) and d|(a2 − ab + b2), then d divides any linear combination

of a + b and a2 − ab + b2, so d|3b2.
Since (a + b)2 − (a2 − ab + b2) = (a2 + 2ab + b2)− a2 + ab− b2 = 3ab, then

3ab is a linear combination of a + b and a2 − ab + b2.
Since d divides any linear combination of a+ b and a2− ab+ b2, then d|3ab.
Observe that

3b = 3b · 1
= 3b(ma + nb)

= 3bma + 3bnb

= 3abm + 3b2n.

Hence, 3b is a linear combination of 3ab and 3b2.
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Since d|3ab and d|3b2, then d divides any linear combination of 3ab and 3b2,
so d|3b.

Since 2(a2−ab+b2)+(a+b)2−3b2 = (2a2−2ab+2b2)+(a2+2ab+b2)−3b2 =
3a2, then 3a2 is a linear combination of a2 − ab + b2 and a + b and 3b2.

Since d|(a2 − ab + b2) and d|(a + b) and d|3b2, then d divides any linear
combination of a2 − ab + b2 and a + b and 3b2, so d|3a2.

Observe that

3a = 3a · 1
= 3a(ma + nb)

= 3ama + 3anb

= 3a2m + 3abn.

Hence, 3a is a linear combination of 3a2 and 3ab.
Since d|3a2 and d|3ab, then d divides any linear combination of 3a2 and 3ab,

so d|3a.
Observe that

3 = 3 · 1
= 3(ma + nb)

= 3ma + 3nb.

Hence, 3 is a linear combination of 3a and 3b.
Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so

d|3.
Since d ∈ Z+ and d|3, then this implies either d = 1 or d = 3.

Exercise 99. Let a, b ∈ Z+.
If gcd(a, b) = 1, then gcd(a2, b2) = 1.

Proof. Suppose gcd(a, b) = 1.
Then gcd(b, a) = 1.
By exercise 79, gcd(a, bc) = 1 if and only if gcd(a, b) = gcd(a, c) = 1 for all

a, b, c ∈ Z.
Hence, if gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1 for all a, b, c ∈ Z.
Since gcd(b, a) = gcd(b, a) = 1, then we conclude gcd(b, aa) = 1 = gcd(b, a2) =

gcd(a2, b).
Since gcd(a2, b) = gcd(a2, b) = 1, then we conclude gcd(a2, bb) = 1 =

gcd(a2, b2).
Therefore, gcd(a2, b2) = 1, as desired.

Lemma 100. Let a, b ∈ Z+.
If gcd(a, b) = 1, then gcd(a, bn) = 1 for all n ∈ Z+.

Proof. Suppose gcd(a, b) = 1.
To prove gcd(a, bn) = 1 for all n ∈ Z+, let p(n) be the predicate gcd(a, bn) =

1 defined over Z+.
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We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Since gcd(a, b1) = gcd(a, b) = 1, then p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then gcd(a, bk) = 1.
By exercise 79, gcd(a, bc) = 1 if and only if gcd(a, b) = gcd(a, c) = 1 for all

a, b, c ∈ Z.
Hence, if gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1 for all a, b, c ∈ Z.
Since gcd(a, bk) = gcd(a, b) = 1, then we conclude gcd(a, bkb) = gcd(a, bk+1) =

1, so p(k + 1) is true.
Thus, p(k) implies p(k + 1) for all k ∈ Z+.

Since p(1) is true and p(k) implies p(k + 1) for all k ∈ Z+, then by induction,
p(n) is true for all n ∈ Z+.

Therefore, gcd(a, bn) = 1 for all n ∈ Z+.

Lemma 101. Let a, b ∈ Z+.
If gcd(a, b) = 1, then gcd(an, bn) = 1 for all n ∈ Z+.

Proof. Suppose gcd(a, b) = 1.
Then gcd(b, a) = 1.
To prove gcd(an, bn) = 1 for all n ∈ Z+, let p(n) be the predicate gcd(an, bn) =

1 defined over Z+.
We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Since gcd(a1, b1) = gcd(a, b) = 1, then p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then gcd(ak, bk) = 1, so gcd(bk, ak) = 1.
By lemma 100, for all a, b ∈ Z+, if gcd(a, b) = 1, then gcd(a, bn) = 1 for all

n ∈ Z+.
Hence, if gcd(b, a) = 1, then gcd(b, ak) = 1.
Since gcd(b, a) = 1, then we conclude gcd(b, ak) = 1.
Thus, gcd(ak, b) = 1.

By exercise 79, gcd(a, bc) = 1 if and only if gcd(a, b) = gcd(a, c) = 1 for all
a, b, c ∈ Z.

Hence, if gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1 for all a, b, c ∈ Z.
Since gcd(ak, bk) = gcd(ak, b) = 1, then we conclude gcd(ak, bk+1) = gcd(ak, bkb) =

1, so gcd(ak, bk+1) = 1.
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Since gcd(b, ak) = gcd(b, a) = 1, then we conclude gcd(b, ak+1) = gcd(b, aka) =
1, so gcd(b, ak+1) = 1.

Thus, gcd(ak+1, b) = 1.

Since gcd(a, b) = 1, then gcd(a, bk) = 1.
Thus, gcd(bk, a) = 1.

Since gcd(bk, ak) = gcd(bk, a) = 1, then gcd(bk, ak+1) = gcd(bk, aka) = 1, so
gcd(bk, ak+1) = 1.

Hence, gcd(ak+1, bk) = 1.

Since gcd(ak+1, bk) = gcd(ak+1, b) = 1, then gcd(ak+1, bk+1) = gcd(ak+1, bkb) =
1, so gcd(ak+1, bk+1) = 1.

Thus, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ Z+.

Since p(1) is true and p(k) implies p(k + 1) for all k ∈ Z+, then by induction,
p(n) is true for all n ∈ Z+.

Therefore, gcd(an, bn) = 1 for all n ∈ Z+, as desired.

Exercise 102. Let a, b ∈ Z+.
If an | bn, then a | b for all n ∈ Z+.

Proof. Let n ∈ Z+.
Suppose an | bn.
Let d = gcd(a, b).
Then d ∈ Z+ and d | a and d | b, so a = dr and b = ds for some integers r

and s.
Thus, d = gcd(dr, ds) = d · gcd(r, s).
Since d > 0, then we divide to obtain 1 = gcd(r, s).
By lemma 101, for all a, b ∈ Z+, if gcd(a, b) = 1, then gcd(an, bn) = 1 for all

n ∈ Z+.
Thus, if gcd(r, s) = 1, then gcd(rn, sn) = 1 for all n ∈ Z+.
Since gcd(r, s) = 1, then we conclude gcd(rn, sn) = 1 for all n ∈ Z+.
In particular, gcd(rn, sn) = 1.
Hence, there exist integers x and y such that xrn + ysn = 1.
Since an | bn, then (dr)n|(ds)n, so dnrn|dnsn.
Since d 6= 0, then we have rn|sn, so sn = rnt for some integer t.
Thus, 1 = xrn + y(rnt) = rn(x + yt), so rn|1.
Since d > 0 and a > 0 and a = dr, then r > 0.
Since n > 0, then rn > 0.
Since r ∈ Z, then rn ∈ Z.
Since rn ∈ Z and rn > 0, then rn ∈ Z+.
Since rn ∈ Z+ and rn|1 and the only positive integer that divides 1 is 1,

then rn = 1.
Since r ∈ Z+ and n ∈ Z+ and rn = 1, then we conclude r = 1.
Thus, a = dr = d(1) = d.
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Hence, gcd(a, b) = d = a.
Since a|b iff gcd(a, b) = a, then we conclude a|b, as desired.

Exercise 103. Compute lcm(143, 227).

Solution. By exercise 87, we have gcd(143, 227) = 1.
Hence, 143 and 227 are relatively prime, so the least common multiple of

143 and 227 is the product 143 · 227.
Therefore, lcm(143, 227) = 143 · 227 = 32461.

Exercise 104. Compute lcm(306, 657).

Solution. By exercise 88, we have gcd(306, 657) = 9.
Observe that

lcm(306, 657) =
306 · 657

gcd(306, 657)

=
306 · 657

9
= 22338.

Exercise 105. Compute lcm(272, 1479).

Solution. By exercise 89, we have gcd(272, 1479) = 17.
Observe that

lcm(272, 1479) =
272 · 1479

gcd(272, 1479)

=
272 · 1479

17
= 23664.

Exercise 106. Find integers x, y, z such that gcd(198, 288, 512) = 198x+288y+
512z.

Solution. Let d = gcd(198, 288).
To compute gcd(198, 288) we use the Euclidean algorithm.
Observe that

288 = 198 · 1 + 90

198 = 90 · 2 + 18

90 = 18 · 5 + 0.
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Thus,

d = gcd(198, 288)

= 18

= 198− (90) · 2
= 198− (288− 198 · 1) · 2
= 198− 288 · 2 + 198 · 2
= 3 · 198 + (−2)288.

Since 198x + 288y is a linear combination of 198 and 288, then 198x + 288y
is a multiple of gcd(198, 288).

Hence, 198x + 288y = du for some integer u.
Observe that

gcd(198, 288, 512) = gcd(gcd(198, 288), 512)

= gcd(d, 512)

= gcd(18, 512).

To compute gcd(18, 512) we use the Euclidean algorithm.
Observe that

512 = 18 ∗ 28 + 8

18 = 8 ∗ 2 + 2

8 = 2 ∗ 4 + 0.

Thus,

gcd(18, 512) = 2

= 18− (8)2

= 18− (512− 18 ∗ 28)2

= 18− 512 ∗ 2 + 18(28 ∗ 2)

= (57)18 + (−2)512.

Hence,

gcd(198, 288, 512) = gcd(18, 512)

= 2

= (57)18 + (−2)512

= 57d + (−2)512

= 57[3 · 198 + (−2)288] + (−2)512

= 57 · 3 · 198 + 57(−2)288 + (−2)512

= (171)198 + (−114)288 + (−2)512.

Therefore, gcd(198, 288, 512) = 2 = (171)198 + (−114)288 + (−2)512, so
x = 171 and y = −114 and z = −2.

80



Chapter 2.4 The Diophantine Equation ax+ by = c

Example 107. Find a general solution to the linear Diophantine equation
172x + 20y = 1000.

Solution. We use the Euclidean algorithm to compute gcd(172, 20).
Observe that

172 = 20 · 8 + 12

20 = 12 · 1 + 8

12 = 8 · 1 + 4

8 = 4 · 2 + 0.

Thus, gcd(172, 20) = 4.
Since gcd(172, 20) = 4 and 4|1000, then a solution exists.
We express the gcd as a linear combination of 172 and 20.

4 = 12− (8)1

= 12− (20− 12 · 1)1

= (12) · 2− 20 · 1
= (172− 20 · 8) · 2− 20 · 1
= 172 · 2− 20(17)

= 172 · 2 + 20(−17).

Thus, gcd(172, 20) = 4 = 172 · 2 + 20(−17), so 1000 = 250 ∗ 4 = 250(172 ∗
2 + 20(−17)) = 500 ∗ 172 + 20(−4250).

Hence, a particular solution is x0 = 500 and y0 = −4250.
Therefore, a general solution is x = 500 + ( 20

4 )t = 500 + 5t and y = −4250−
( 172

4 )t = −4250− 43t for any integer t.

We can verify the general solution as shown below.
Observe that

172x + 20y = 172(500 + 5t) + 20(−4250− 43t)

= 172 ∗ 500 + 172 ∗ 5t + 20(−4250) + 20(−43t)

= 86000 + 860t− 85000− 860t

= 1000.

Example 108. Find a general solution to the linear Diophantine equation
5x + 22y = 18.

Solution. Since gcd(5, 22) = 1 and 1|18, then a solution exists.
A particular solution is x0 = 8 and y0 = −1 since 18 = 5(8) + 22(−1).
Since gcd(5, 22) = 1, then a general solution is x = 8 + 22t and y = −1− 5t

for arbitrary integer t.
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We can verify the general solution as shown below.
Observe that

5x + 22y = 5(8 + 22t) + 22(−1− 5t)

= 40 + 110t− 22− 110t

= 40− 22

= 18.

Example 109. A customer brought a dozen pieces of fruit, apples and oranges,
for 1.32.

If an apple costs 3 cents more than an orange and more apples than oranges
were purchased, how many pieces of each kind were bought?

Solution. Let x be the number of apples bought.
Let y be the number of oranges bought.
Let z be the cost of oranges, in cents.
Then x(z + 3) + yz = 132 and x + y = 12.
Observe that

132 = x(z + 3) + yz

= xz + 3x + yz

= 3x + xz + yz

= 3x + (x + y)z

= 3x + 12z.

Since 3x + 12z = 132, then x + 4z = 44.
Since d = gcd(1, 4) = 1 and 1|44, then a solution to the equation x+4z = 44

exists, where a = 1 and b = 4.
We find a linear combination of 1 and 4 for 1, since 44 is a multiple of 1.
Thus, 1 = 1(−3) + 4(1), so multiplying by 44, we obtain 44 = (−3)44 +

4(44) = −132 + 4(44) = x + 4z.
Hence, a particular solution is x0 = −132 and z0 = 44.

The general solution is x = x0 +
bt

d
= x0 +

bt

1
= x0 + bt = −132 + 4t and

z = z0 −
at

d
= z0 −

at

1
= z0 − at = 44− t.

Thus, x = −132 + 4t and z = 44− t.
Since more apples than oranges were bought, then x > y.
Since x + y = 12 and x > y, then x > 6 and x ≤ 12, so 6 < x ≤ 12.
Thus, 6 < −132 + 4t ≤ 12, so 6 < −132 + 4t and −132 + 4t ≤ 12.
Observe that

6 < −132 + 4t ⇒ 138 < 4t

⇒ 138

4
< t

⇒ 34.5 < t.
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Thus, 34.5 < t.
Observe that

−132 + 4t ≤ 12 ⇒ 4t ≤ 144

⇒ t ≤ 36.

Thus, t ≤ 36.
Since 34.5 < t and t ≤ 36, then 34.5 < t ≤ 36.
Since t ∈ Z and 34.5 < t ≤ 36, then t = 35 or t = 36.

If t = 35, then x = −132 + 4t = −132 + 4(35) = −132 + 140 = 8 and
z = 44− t = 44− 35 = 9 and y = 12− x = 12− 8 = 4.

If t = 36, then x = −132 + 4t = −132 + 4(36) = 12 and z = 44 − t =
44− 36 = 8 and y = 12− x = 12− 12 = 0.

Therefore, either there were 8 apples bought at 12 cents each and 4 oranges
bought at 9 cents each, or there were 12 apples bought at 11 cents each.

Chapter 2.4 Problems

Exercise 110. Find all integer solutions to the equation 56x + 72y = 40.

Solution. Since gcd(56, 72) = gcd(8 ·7, 8 ·9) = 8 ·gcd(7, 9) = 8 ·1 = 8 and 8|40,
then the equation has an integer solution.

Since 56x + 72y = 40, then we divide by 8 to obtain 7x + 9y = 5.
Since gcd(7, 9) = 1 and 1|5, then the equation 7x + 9y = 5 has a solution.
We find 1 as a linear combination of 7 and 9.
Since 7(4) + 9(−3) = 1, then we multiply by 40 to obtain 40(7)(4) +

40(9)(−3) = 40(1) = 40 = 56x + 72y, so 56(20) + (72)(−15) = 40.
Hence, a particular solution to the equation 56x + 72y = 40 is x0 = 20 and

y0 = −15.

Therefore, a general solution is x = x0 +
72t

gcd(56, 72)
= 20 +

72t

8
= 20 + 9t

and y = y0−
56t

gcd(56, 72)
= y0−

56t

8
= −15−7t, so x = 20+9t and y = −15−7t

for some integer t.
We verify the general solution below.
Observe that

56x + 72y = 56(20 + 9t) + 72(−15− 7t)

= 56 · 20 + 56 · 9t− 72(15)− 72(7t)

= 1120 + 504t− 1080− 504t

= 40.

Exercise 111. Find all integer solutions to the equation 24x + 138y = 18.
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Solution. Since gcd(24, 138) = 6 and 6|18, then the equation has an integer
solution.

Since 24x + 138y = 18, then we divide by 6 to obtain 4x + 23y = 3.
Since gcd(4, 23) = 1 and 1|3, then the equation 4x+ 23y = 3 has a solution.
We find 1 as a linear combination of 4 and 23.
Since 4(6) + 23(−1) = 1, then we multiply by 18 to obtain (4)(6)(18) +

(23)(−1)(18) = 1(18) = 18 = 24x + 138y, so (24)(18) + (138)(−3) = 18 =
24x + 138y.

Hence, a particular solution to the equation 24x+ 138y = 18 is x0 = 18 and
y0 = −3.

Therefore, a general solution is x = x0+
138t

gcd(24, 138)
= 18+

138t

6
= 18+23t

and y = y0−
24t

gcd(24, 138)
= −3− 24t

6
= −3−4t, so x = 18+23t and y = −3−4t

for some integer t.
We verify the general solution below.
Observe that

24x + 138y = 24(18 + 23t) + 138(−3− 4t)

= 24 · 18 + 24 · 23t− 138(3)− 138(4t)

= 432 + 552t− 414− 552t

= 18.

Exercise 112. Find all integer solutions to the equation 221x + 91y = 117.

Solution. Since gcd(221, 91) = 13 and 13|117, then the equation has an integer
solution.

Since 221x + 91y = 117, then we divide by 13 to obtain 17x + 7y = 9.
Since gcd(17, 7) = 1 and 1|9, then the equation 17x+ 7y = 9 has a solution.
We find 1 as a linear combination of 17 and 7.
Since 17(−2) + 7(5) = 1, then we multiply by 117 to obtain (17)(−2)(117) +

(7)(5)(117) = 1(117) = 117 = 221x + 91y, so (221)(−18) + (91)(45) = 117 =
221x + 91y.

Hence, a particular solution to the equation 221x + 91y = 117 is x0 = −18
and y0 = 45.

Therefore, a general solution is x = x0+
91t

gcd(221, 91)
= −18+

91t

13
= −18+7t

and y = y0 −
221t

gcd(221, 91)
= 45 − 221t

13
= 45 − 17t, so x = −18 + 7t and

y = 45− 17t for some integer t.
We verify the general solution below.
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Observe that

221x + 91y = 221(−18 + 7t) + 91(45− 17t)

= 221 · (−18) + 221 · 7t + 91(45)− 91 · (17t))

= −3978 + 1547t + 4095− 1547t

= 117.

Exercise 113. Find all integer solutions to the equation 84x− 438y = 156.

Solution. Since gcd(84,−438) = 6 and 6|156, then the equation has an integer
solution.

Since 84x− 438y = 156, then we divide by 6 to obtain 14x− 73y = 26.
Since gcd(14,−73) = 1 and 1|156, then the equation 14x − 73y = 26 has a

solution.
We find 1 as a linear combination of 14 and −73.
Since 14(−26)+(−73)(−5) = 1, then we multiply by 156 to obtain (14)(−26)(156)+

(−73)(−5)(156) = 1(156) = 156 = 84x− 438y, so (84)(−676)− (438)(−130) =
156 = 84x− 438y.

Hence, a particular solution to the equation 84x− 438y = 156 is x0 = −676
and y0 = −130.

Therefore, a general solution is x = x0 +
−438t

gcd(84,−438)
= −676 − 438t

6
=

−676 − 73t and y = y0 −
84t

gcd(84,−438)
= −130 − 84t

6
= −130 − 14t, so

x = −676− 73t and y = −130− 14t for some integer t.
We verify the general solution below.
Observe that

84x− 438y = 84(−676− 73t)− 438(−130− 14t)

= 84 · (−676)− 84 · 73t + 438(130) + 438(14t)

= −56784− 6132t + 56940 + 6132t

= 156.

Exercise 114. Find all positive integer solutions to the equation 30x + 17y =
300.

Solution. Since gcd(30, 17) = 1 and 1|300, then the equation has an integer
solution.

We find 1 as a linear combination of 30 and 17.
Since 30(4) + 17(−7) = 1, then we multiply by 300 to obtain (30)(4)(300) +

(17)(−7)(300) = 1(300) = 300 = 30x + 17y, so (30)(1200) + (17)(−2100) =
117 = 30x + 17y.
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Hence, a particular solution to the equation 30x + 17y = 300 is x0 = 1200
and y0 = −2100.

Therefore, a general solution is x = x0 +
17t

gcd(30, 17)
= 1200 +

17t

1
= 1200 +

17t and y = y0 −
30t

gcd(30, 17)
= −2100− 30t

1
= −2100− 30t, so x = 1200 + 17t

and y = −2100− 30t for some integer t.
We verify the general solution below.
Observe that

30x + 17y = 30(1200 + 17t) + 17(−2100− 30t)

= 30 · (1200) + 30 · 17t− 17(2100)− 17 · (30t)

= 36000 + 510t− 35700− 510t

= 300.

A positive solution exists if and only if x > 0 and y > 0.
Assume x > 0.
Observe that

x > 0 ⇔ 1200 + 17t > 0

⇔ 17t > −1200

⇔ t >
−1200

17
.

Assume y > 0.
Observe that

y > 0 ⇔ −2100− 30t > 0

⇔ −2100 > 30t

⇔ −70 > t

⇔ t < −70.

Thus,
−1200

17
< t and t < −70, so

−1200

17
< t < −70.

Since t ∈ Z and
−1200

17
< t < −70, then −70 ≤ t and t < −70, a contradic-

tion.
Therefore, x and y cannot be greater than zero, so there are no positive

integer solutions.

Exercise 115. Find all positive integer solutions to the equation 54x + 21y =
906.

Solution. Since gcd(54, 21) = gcd(3 · 18, 3 · 7) = 3 · gcd(18, 7) = 3 · 1 = 3 and
3|906, then the equation has an integer solution.

Since 54x + 21y = 906, then we divide by 3 to obtain 18x + 7y = 302.
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Since gcd(18, 7) = 1 and 1|302, then the equation 18x + 7y = 302 has a
solution.

We find 1 as a linear combination of 18 and 7.
Since 18(2) + 7(−5) = 1, then we multiply by 906 to obtain (18)(2)(906) +

(7)(−5)(906) = 1(906) = 906 = 54x + 21y, so (54)(604) + (21)(−1510) = 906 =
54x + 21y.

Hence, a particular solution to the equation 54x + 21y = 906 is x0 = 604
and y0 = −1510.

Therefore, a general solution is x = x0 +
21t

gcd(54, 21)
= 604 +

21t

3
= 604 + 7t

and y = y0 −
54t

gcd(54, 21)
= −1510 − 54t

3
= −1510 − 18t, so x = 604 + 7t and

y = −1510− 18t for some integer t.
We verify the general solution below.
Observe that

54x + 21y = 54(604 + 7t) + 21(−1510− 18t)

= 54 · (604) + 54 · 7t− 21(1510)− 21 · (18t)

= 32616 + 378t− 31710− 378t

= 906.

A positive solution exists if and only if x > 0 and y > 0.
Assume x > 0.
Observe that

x > 0 ⇔ 604 + 7t > 0

⇔ 7t > −604

⇔ t >
−604

7
.

Assume y > 0.
Observe that

y > 0 ⇔ −1510− 18t > 0

⇔ −1510 > 18t

⇔ −1510

18
> t

⇔ −755

9
> t.

Thus,
−604

7
< t and t <

−755

9
, so
−604

7
< t <

−755

9
.

Since t ∈ Z and
−604

7
< t <

−755

9
, then −86 ≤ t ≤ −84, so either t = −86

or t = −85 or t = −84.
Therefore, the positive solutions are:
(2, 38), (9, 20), (16, 2).
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Exercise 116. Find all positive integer solutions to the equation 123x+360y =
99.

Solution. Since gcd(123, 360) = gcd(3 · 41, 3 · 120) = 3 · gcd(41, 120) = 3 · 1 = 3
and 3|99, then the equation has an integer solution.

Since 123x + 360y = 99, then we divide by 3 to obtain 41x + 120y = 33.
Since gcd(41, 120) = 1 and 1|33, then the equation 41x + 120y = 33 has a

solution.
We find 1 as a linear combination of 41 and 120.
Since 41(41)+120(−14) = 1, then we multiply by 99 to obtain (41)(41)(99)+

(120)(−14)(99) = 1(99) = 99 = 123x + 360y, so (123)(1353) + (360)(−462) =
99 = 123x + 360y.

Hence, a particular solution to the equation 123x + 360y = 99 is x0 = 1353
and y0 = −462.

Therefore, a general solution is x = x0 +
360t

gcd(123, 360)
= 1353 +

360t

3
=

1353 + 120t and y = y0 −
123t

gcd(123, 360)
= −462 − 123t

3
= −462 − 41t, so

x = 1353 + 120t and y = −462− 41t for some integer t.
We verify the general solution below.
Observe that

123x + 360y = 123(1353 + 120t) + 360(−462− 41t)

= 123 · 1353 + 123 · 120t− 360 · 462− 360 · 41t

= 166419 + 14760t− 166320− 14760t

= 99.

A positive solution exists if and only if x > 0 and y > 0.
Assume x > 0.
Observe that

x > 0 ⇔ 1353 + 120t > 0

⇔ 120t > −1353

⇔ t >
−1353

120

⇔ t >
−451

40
.

Assume y > 0.
Observe that

y > 0 ⇔ −462− 41t > 0

⇔ −462 > 41t

⇔ −462

41
> t

⇔ t <
−462

41
.
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Thus,
−451

40
< t and t <

−462

41
, so
−451

40
< t <

−462

41
.

Since t ∈ Z and
−451

40
< t <

−462

41
, then there is no integer t that satisfies

the inequality
−451

40
< t <

−462

41
, so no positive solution exists.

Exercise 117. Find all positive integer solutions to the equation 158x−57y = 7.

Solution. Since gcd(158,−57) = gcd(158, 57) = 1 and 1|7, then the equation
has an integer solution.

A particular solution to the equation 158x−57y = 7 is x0 = 74 and y0 = 205.

Therefore, a general solution is x = x0+
−57t

gcd(158,−57)
= 74− 57t

1
= 74−57t

and y = y0 −
158t

gcd(158,−57)
= 205 − 158t

1
= 205 − 158t, so x = 74 − 57t and

y = 205− 158t for some integer t.
We verify the general solution below.
Observe that

158x− 57y = 158(74− 57t)− 57(205− 158t)

= 158 · 74− 158 · 57t− 57 · 205 + 57 · 158t

= 158 · 74− 57 · 205

= 7.

A positive solution exists if and only if x > 0 and y > 0.
Assume x > 0.
Observe that

x > 0 ⇔ 74− 57t > 0

⇔ 74 > 57t

⇔ 74

57
> t

⇔ t <
74

57
.

Assume y > 0.
Observe that

y > 0 ⇔ 205− 158t > 0

⇔ 205 > 158t

⇔ 205

158
> t

⇔ t <
205

158
.

Thus, t <
74

57
and t <

205

158
.
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Since t ∈ Z and t <
74

57
and t <

205

158
, then t ≤ 1.

Therefore, the positive integer solutions are: x = 74−57t and y = 205−158t
for any integer t ≤ 1.

Exercise 118. Let a, b ∈ Z+.
If a and b are relatively prime, then the Diophantine equation ax − by = 1

has infinitely many solutions in Z+.

Proof. Suppose a and b are relatively prime.
Then gcd(a, b) = 1, so there exist integers x0 and y0 such that ax0 +by0 = 1.

Let t be any integer such that t > max(
x0

−b
,
y0
a

).

Let x = x0 + bt and y = −y0 + at.

Observe that

ax− by = a(x0 + bt)− b(−y0 + at)

= ax0 + abt + by0 − bat

= ax0 + abt + by0 − abt

= ax0 + by0

= 1.

Since ax− by = 1, then the general solution to the equation ax− by = 1 is
the ordered pair of integers (x0 + bt,−y0 + at), where t is any integer such that

t > max(
x0

−b
,
y0
a

).

We prove x > 0 and y > 0.

Either max(
x0

−b
,
y0
a

) =
x0

−b
or max(

x0

−b
,
y0
a

) =
y0
a

.

We consider these cases separately.

Case 1: Suppose max(
x0

−b
,
y0
a

) =
x0

−b
.

Then t >
x0

−b
and

x0

−b
≥ y0

a
, so t >

y0
a

.

Since b > 0, then −b < 0.

Since t >
x0

−b
and −b < 0, then −bt < x0, so 0 < x0 + bt.

Therefore, 0 < x, so x > 0.

Since t >
y0
a

and a > 0, then at > y0, so −y0 + at > 0.

Therefore, y > 0.

Case 2: Suppose max(
x0

−b
,
y0
a

) =
y0
a

.

Then t >
y0
a

and
y0
a
≥ x0

−b
, so t >

x0

−b
.

Since b > 0, then −b < 0.

Since t >
x0

−b
and −b < 0, then −bt < x0, so 0 < x0 + bt.

Therefore, 0 < x, so x > 0.
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Since t >
y0
a

and a > 0, then at > y0, so −y0 + at > 0.

Therefore, y > 0.

In all cases, we have x > 0 and y > 0, so x0 + bt > 0 and −y0 + at > 0.
Therefore, the general solution to the equation ax − by = 1 is the ordered

pair of positive integers (x0 + bt,−y0 + at), where t is any integer such that

t > max(
x0

−b
,
y0
a

).

Exercise 119. Find all solutions in the integers of the equation 15x + 12y +
30z = 24.

Solution. The linear diophantine equation 15x+ 12y+ 30z = 24 has a solution
in the integers iff gcd(15, 12, 30)|24.

Since gcd(15, 12, 30) = gcd(gcd(15, 12), 30) = gcd(3, 30) = 3 and 3|24, then
the equation 15x + 12y + 30z = 24 has a solution in the integers.

Since 15x + 12y + 30z = 24, then 15x + 30z = 24− 12y.

The linear diophantine equation 15x + 30z = 24 − 12y has a solution for a
fixed integer y iff gcd(15, 30) | (24− 12y).

Let y = 2− 5s for some integer s.
Then 2− y = 5s, so 5|(2− y).
Hence, 5 divides any multiple of 2− y, so 5|4(2− y).
Thus, 5|8− 4y, so 3 · 5|3(8− 4y).
Consequently, 15|(24− 12y).
Since gcd(15, 30) = 15 and 15 | (24 − 12y), then we conclude the equation

15x + 30z = 24− 12y has a solution for a fixed integer y.
We find a solution to the equation 15x + 30z = 24− 12y.

We find gcd(15, 30) as a linear combination of 15 and 30.
Observe that gcd(15, 30) = 15 = 15(1) + 30(0).
Hence,

15x + 30z = 24− 12y

= 24− 12(2− 5s)

= 24− 24 + 60s

= 60s

= 15 · 4s
= gcd(15, 30) · 4s
= [15(1) + 30(0)] · 4s
= 15(4s) + 30(0).

Therefore, a particular solution to the equation 15x + 30z = 24 − 12y is

x0 = 4s and z0 = 0, so a general solution is x = 4s +
30t

15
= 4s + 2t and

z = 0− 15t

15
= 0− t = −t for any integer t.
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Observe that

15x + 12y + 30z = 15(4s + 2t) + 12(2− 5s) + 30(−t)
= 60s + 30t + 24− 60s− 30t

= 30t + 24− 30t

= 24.

Therefore, a general solution to the equation 15x + 12y + 30z = 24 is x =
4s + 2t and y = 2− 5s and z = −t for any integers s and t.

Exercise 120. A man has $4.55 in change composed entirely of dimes and
quarters. What are the maximum and minimum number of coins that he can
have? Is it possible for the number of dimes to equal the number of quarters?

Solution. Let d be the number of dimes and q be the number of quarters.
Then 10d + 25q = 455.
Since 10d + 25q = 455 is a linear Diophantine equation, then an integer

solution exists iff gcd(10, 25) | 455.
Since gcd(10, 25) = 5 and 5|455, then the equation has a solution in the

integers.

We find a particular solution using the Euclidean algorithm and obtain gcd(10, 25)
as a linear combination.

Observe that

25 = 10 · 2 + 5

10 = 5 · 2 + 0.

Thus, gcd(10, 25) = 5 = 25− (10)2 = 10(−2) + 25(1).
Observe that

10d + 25q = 455

= 91 · 5
= 91 · gcd(10, 25)

= 91[10(−2) + 25(1)]

= 10(−182) + 25(91).

Therefore, a particular solution is d0 = −182 and q0 = 91, so a general

solution is d = −182 + (
25

5
)t = −182 + 5t and q = 91− (

10

5
)t = 91− 2t for any

integer t.

Since d ≥ 0 and q ≥ 0, then −182 + 5t ≥ 0 and 91− 2t ≥ 0.
This leads to t ≥ 36.4 and t ≤ 45.5, so 37 ≤ t ≤ 45.
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We compute the various values of d and q for each t in the integer range
[37, 45].

The maximum number of coins is 44 coins, with 43 dimes and 1 quarter.
The minimum number of coins is 20 coins, with 3 dimes and 17 quarters.
There can be an equal number of dimes and quarters, with 13 dimes and 13

quarters.

Exercise 121. A theatre charges $1.80 for adult admissions and 75 cents for
children.

On a particular evening the total receipts were $90. Assuming that more
adults than children were present, how many people attended?

Solution. Let x be the number of adults and y be the number of children that
attended.

Then 180x + 75y = 9000.
Since 180x + 75y = 9000 is a linear Diophantine equation, then a solution

exists iff gcd(180, 75) | 9000.
Since gcd(180, 75) = 15 and 15|9000, then there is a solution in the integers.

We find a particular solution using the Euclidean algorithm and obtain gcd(180, 75)
as a linear combination.

Observe that

180 = 75 · 2 + 30

75 = 30 · 2 + 15

30 = 15 · 2 + 0.

Thus,

gcd(180, 75) = 15

= 75− (30)2

= 75− (180− 75 · 2)2

= 75− 180 · 2 + 75 · 4
= 75(5)− 180(2)

= 180(−2) + 75(5).

Hence,

180x + 75y = 9000

= 600 · 15

= 600 · gcd(180, 75)

= 600[180(−2) + 75(5)]

= 180(−1200) + 75(3000).

Therefore, a particular solution is x0 = −1200 and y0 = 3000, so a general

solution is x = −1200+(
75

15
)t = −1200+5t and y = 3000− (

180

15
)t = 3000−12t

for any integer t.
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Since x ≥ 0 and y ≥ 0, then −1200 + 5t ≥ 0 and 3000− 12t ≥ 0.
This leads to t ≥ 240 and t ≤ 250, so 240 ≤ t ≤ 250.
We compute the various values of x and y for each t in the integer range

[240, 250], such as by writing a Sage function to compute the values satisfying
the conditions above.

This leads to potential solutions : (40, 24), (45, 12), (50, 0).

There are either 40 adults and 24 children or 45 adults and 12 children or
only 50 adults and no children that attended.

Exercise 122. A certain number of sixes and nines are added to give a sum of
126.

If the number of sixes and nines are interchanged, the new sum is 114.
How many of each were there originally?

Solution. Let x be the original number of sixes and y be the original number
of nines.

Then 6x + 9y = 126 and 6y + 9x = 114, so 9x + 6y = 114.
Since 6x + 9y = 126, then we multiply by 3 to obtain 18x + 27y = 378.
Since 9x + 6y = 114, then we multiply by 2 to obtain 18x + 12y = 228.
We subtract the equations to get 15y = 378− 228 = 150, so y = 10.
Thus, 6x + 9(10) = 126, so 6x = 126− 9(10) = 36.
Hence, x = 6.
Therefore, x = 6 and y = 10, so there were 6 sixes and 10 nines originally.

Exercise 123. A farmer purchased one hundred head of livestock for a total
cost of 4000.

Prices in dollars were 120 for each calf, 50 for each lamb, and 25 for each
piglet.

If the farmer obtained at least one animal of each type, how many did he
buy?

Solution. Let x be the number of calves purchased.
Let y be the number of lambs purchased.
Let z be the number of piglets purchased.
Then 120x + 50y + 25z = 4000 and x + y + z = 100 and x ≥ 1 and y ≥ 1

and z ≥ 1.
Since x+y+z = 100, then z = 100−x−y, so 120x+50y+25(100−x−y) =

4000.
Observe that

4000 = 120x + 50y + 25(100− x− y)

= 120x + 50y + 2500− 25x− 25y

= 95x + 25y + 2500.

Thus, 95x + 25y + 2500 = 4000, so 95x + 25y = 1500.
Since gcd(95, 25) = 5 and 5|1500, then an integer solution exists to the linear

diophantine equation 95x + 25y = 1500
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We obtain gcd(95, 25) as a linear combination using the Euclidean algorithm.
Observe that

95 = 25 · 3 + 20

25 = 20 · 1 + 5

20 = 5 · 4 + 0.

Thus,

gcd(95, 25) = 5

= 25− 20 · 1
= 25− (95− 25 · 3) · 1
= −95 + 25 · 4
= 95(−1) + 25(4).

Observe that

95x + 25y = 1500

= 300 · 5
= 300 · gcd(95, 25)

= 300[95(−1) + 25(4)]

= 95(−300) + 25(1200).

Hence, a particular solution is x0 = −300 and y0 = 1200, so a general

solution is x = −300 +
25t

5
= −300 + 5t and y = 1200 − 95t

5
= 1200 − 19t for

any integer t.
We verify the general solution below.

95x + 25y = 95(−300 + 5t) + 25(1200− 19t)

= −28500 + 475t + 30000− 475t

= −28500 + 30000

= 1500.

Observe that

z = 100− x− y

= 100− (−300 + 5t)− (1200− 19t)

= 100 + 300− 5t− 1200 + 19t

= −800 + 14t.
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Since z ≥ 1, then −800 + 14t ≥ 1.
Since y ≥ 1, then 1200− 19t ≥ 1.
Since x ≥ 1, then −300 + 5t ≥ 1.

These inequalities lead to t ≥ 301

5
and t ≤ 1199

19
and t ≥ 801

14
.

Since t ∈ Z, then we have t ≥ 61 and t ≤ 63 and t ≥ 58, so t ≥ 61 and
t ≤ 63.

Thus, t ∈ Z and 61 ≤ t ≤ 63, so either t = 61 or t = 62 or t = 63.
If t = 61, then x = 5 and y = 41 and z = 54.
If t = 62, then x = 10 and y = 22 and z = 68.
If t = 63, then x = 15 and y = 3 and z = 82.

The farmer purchased 5 calves, 41 lambs, and 54 piglets, or the farmer pur-
chased 10 calves, 22 lambs, and 68 piglets, or the farmer purchased 15 calves, 3
lambs, and 82 piglets.

Exercise 124. When Mr. Smith cashed a check at his bank, the teller mistook
the number of cents for the number of dollars and vice versa.

Unaware of this, Mr. Smith spent 68 cents and then noticed to his surprise
that he had twice the amount of the original check.

Determine the smallest value for which the check could have been written.

Solution. Let x be the original dollar amount of the check.
Let y be the original cents amount of the check.
Then 100y + x− 68 = 2(100x + y).
Observe that

2(100x + y) = 100y + x− 68

68 = 100y + x− 2(100x + y)

= 100y + x− 200x− 2y

= −199x + 98y.

Thus, 68 = −199x + 98y, so −68 = 199x− 98y.
Since gcd(199,−98) = gcd(199, 98) = 1 and 1|−68, then the linear diophan-

tine equation 199x− 98y = −68 has an integer solution.

We use the Euclidean algorithm to find gcd(199, 98) as a linear combination
of 199 and 98.

Observe that

199 = 98 · 2 + 3

98 = 3 · 32 + 2

3 = 2 · 1 + 1

2 = 1 · 2 + 0.
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Observe that

gcd(199, 98) = 1

= 3− 2 · 1
= 3− (98− 3 · 32)1

= 3− 98 + 3 · 32

= 33 · 3− 98

= 33(199− 98 · 2)− 98

= 33 · 199− 66 · 98− 98

= 199(33)− 98(67).

Observe that

199x + (−98)y = 199x− 98y

= −68

= 1 · (−68)

= gcd(199, 98) · (−68)

= [199(33)− 98(67)] · (−68)

= 199(33)(−68) + (−98)(67)(−68)

= 199(−2244) + (−98)(−4556).

Hence, a particular solution is x0 = −2244 and y0 = −4556, so a general

solution is x = −2244 +
−98t

1
= −2244− 98t and y = −4556− 199t

1
= −4556−

199t.

We verify the general solution.
Observe that

199x− 98y = 199(−2244− 98t)− 98(−4556− 199t)

= 199(−2244)− 199(98t) + 98(4556) + 98(199t)

= 199(−2244) + 98(4556)

= −68.

Since the dollars amount is greater than or equal to zero, then x ≥ 0.

Thus, −2244− 98t ≥ 0, so t ≤ −2244

98
.

Since the cents amount is between zero and 99, then 0 ≤ y ≤ 99, so 0 ≤
−4556− 199t ≤ 99.

Hence, 4556 ≤ −199t ≤ 4655, so
−4556

199
≥ t ≥ −4655

199
.

Thus,
−4655

199
≤ t ≤ −2244

98
.

Since
−4655

199
≤ t ≤ −2244

98
and t ≤ −2244

98
, then

−4655

199
≤ t ≤ −2244

98
.
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Since t ∈ Z and
−4655

199
≤ t ≤ −2244

98
, then t = −23.

Hence, x = −2244− 98t = −2244− 98(−23) = 10 and y = −4556− 199t =
−4556− 199(−23) = 21.

Therefore, the check was written for 10 dollars and 21 cents.

Chapter 3 Primes

Chapter 3.1 The Fundamental Theorem of Arithmetic

Chapter 3.1 Problems

Exercise 125. It is conjectured that there are infinitely many primes of the
form n2 − 2 for integer n.

Exhibit 5 such primes.

Solution. If n = 2, then 22 − 2 = 4− 2 = 2 is prime.
If n = 3, then 32 − 2 = 9− 2 = 7 is prime.
If n = 5, then 52 − 2 = 25− 2 = 23 is prime.
If n = 7, then 72 − 2 = 49− 2 = 47 is prime.
If n = 9, then 92 − 2 = 81− 2 = 79 is prime.

Exercise 126. Show that the conjecture is not true:
Every positive integer can be written in the form p + a2, where p is either

prime or 1, and integer a ≥ 0.

Proof. We must prove there exists a positive integer n that cannot be written
in the form p + a2, where p is either prime or 1, and integer a ≥ 0.

Thus, we must prove there exists a positive integer n such that n 6= p + a2,
where p is either prime or 1, and integer a ≥ 0.

Let n = 25.
We shall prove 25 6= p + a2, where p is either prime or 1, and integer a ≥ 0.

Suppose for the sake of contradiction 25 = p + a2, where p is either prime or
1, and integer a ≥ 0.

Suppose p = 1.
Then a2 = 25− p = 25− 1 = 24, so a2 = 24.
But, 24 is not a perfect square, so there is no integer a such that a2 = 24.
Therefore, p 6= 1.

Since p is either prime or 1 and p 6= 1, then p must be prime.
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Suppose p = 2.
Then a2 = 25− p = 25− 2 = 23, so a2 = 23.
But, 23 is not a perfect square, so there is no integer a such that a2 = 23.
Therefore, p 6= 2.

Suppose p = 3.
Then a2 = 25− p = 25− 3 = 22, so a2 = 22.
But, 22 is not a perfect square, so there is no integer a such that a2 = 22.
Therefore, p 6= 3.

Suppose p = 5.
Then a2 = 25− p = 25− 5 = 20, so a2 = 20.
But, 20 is not a perfect square, so there is no integer a such that a2 = 20.
Therefore, p 6= 5.

Suppose p = 7.
Then a2 = 25− p = 25− 7 = 18, so a2 = 18.
But, 18 is not a perfect square, so there is no integer a such that a2 = 18.
Therefore, p 6= 7.

Suppose p = 11.
Then a2 = 25− p = 25− 11 = 14, so a2 = 14.
But, 14 is not a perfect square, so there is no integer a such that a2 = 14.
Therefore, p 6= 11.

Suppose p = 13.
Then a2 = 25− p = 25− 13 = 12, so a2 = 12.
But, 12 is not a perfect square, so there is no integer a such that a2 = 12.
Therefore, p 6= 13.

Suppose p = 17.
Then a2 = 25− p = 25− 17 = 8, so a2 = 8.
But, 8 is not a perfect square, so there is no integer a such that a2 = 8.
Therefore, p 6= 17.

Suppose p = 19.
Then a2 = 25− p = 25− 19 = 6, so a2 = 6.
But, 6 is not a perfect square, so there is no integer a such that a2 = 6.
Therefore, p 6= 19.

Suppose p = 23.
Then a2 = 25− p = 25− 23 = 2, so a2 = 2.
But, 2 is not a perfect square, so there is no integer a such that a2 = 2.
Therefore, p 6= 23.
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Suppose p > 23.
Since p is prime and p > 23, then p ≥ 29, so −p ≤ −29.
Thus, a2 = 25− p ≤ 25− 29 = −4 < 0, so a2 < 0.
Since a ≥ 0, then a2 ≥ 0.
Thus, we have a2 ≥ 0 and a2 < 0, a contradiction.
Hence, p cannot be greater than 23.

Therefore, p cannot be prime.

Since p 6= 1 and p cannot be prime, then 25 6= p + a2, as desired.

Exercise 127. Every prime of the form 3n + 1 is also of the form 6m + 1.

Proof. Let p be a prime of the form 3n + 1 for some integer n.
Then p is prime and p = 3n + 1 for some integer n.
To prove p is of the form 6m+ 1, we must prove p = 6m+ 1 for some integer

m.
Since n ∈ Z, then either n is even or n is odd.

Suppose n is odd.
Then 3n is odd, so p = 3n + 1 is even.
Therefore, p is even.
Since p is prime and p is even, then p is an even prime, so p = 2.
Hence, 3n = p− 1 = 2− 1 = 1, so 3n = 1.
Therefore, 3|1.
But, 1 is not a multiple of 3, so n is not odd.

Since either n is even or n is odd, and n is not odd, then n is even.
Hence, n = 2m for some integer m, so p = 3n + 1 = 3(2m) + 1 = 6m + 1.
Therefore, p = 6m + 1 for some integer m, as desired.

Lemma 128. The product of any finite number of integers of the form 3a + 1
is of the same form.

Proof. We must prove (3a1 + 1)(3a2 + 1) · . . . · (3an + 1) = 3m + 1 for some
integer m for all n ∈ Z+.

Thus, we must prove: for all n ∈ Z+,
∏n

i=1(3ai + 1) = 3m + 1 for some
integer m.

Let p(n) be the predicate defined over Z+ by ‘
∏n

i=1(3ai + 1) = 3m + 1 for
some integer m’.

We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Then

∏1
i=1(3ai + 1) = 3a1 + 1 for some integer a1.

Therefore, p(1) is true.
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Let n = 2.
Then

∏2
i=1(3ai + 1) = (3a1 + 1)(3a2 + 1) for some integers a1 and a2.

Observe that

2∏
i=1

(3ai + 1) = (3a1 + 1)(3a2 + 1)

= 9a1a2 + 3a1 + 3a2 + 1

= 3(3a1a2 + a1 + a2) + 1

= 3m + 1.

Hence,
∏2

i=1(3ai+1) = 3m+1 for some integer m, where m = 3a1a2+a1+a2.
Therefore, p(2) is true.
Induction:
Let k ∈ Z+ with k ≥ 2 such that p(k) is true.

Then
∏k

i=1(3ai + 1) = 3s + 1 for some integer s.

Observe that

k+1∏
i=1

(3ai + 1) =

k∏
i=1

(3ai + 1) · (3ak+1 + 1)

= (3s + 1)(3ak+1 + 1)

= 9sak+1 + 3s + 3ak+1 + 1

= 3(3sak+1 + s + ak+1) + 1

= 3t + 1.

Hence,
∏k+1

i=1 (3ai+1) = 3t+1 for some integer t, where t = 3sak+1+s+ak+1.
Therefore, p(k + 1) is true.
Thus, p(k) implies p(k + 1) for all k ∈ Z+ with k ≥ 2.

Since p(1) is true and p(2) is true, and p(k) implies p(k + 1) for all k ∈ Z+

with k ≥ 2, then by induction, p(k) is true for all k ∈ Z+.
Therefore, for all n ∈ Z+,

∏n
i=1(3ai + 1) = 3m + 1 for some integer m.

Exercise 129. Every positive integer of the form 3n + 2 has a prime factor of
this form.

Proof. Suppose for the sake of contradiction not every positive integer of the
form 3n + 2 has a prime factor of this form.

Then there is some positive integer of the form 3n + 2 that does not have a
prime factor of this form.

Let a be a positive integer of the form 3n + 2 that does not have a prime
factor of this form.

Then a ∈ Z+ and a = 3n+ 2 for some integer n and a does not have a prime
factor of the same form.

Since a ∈ Z+, then a ≥ 1, so either a > 1 or a = 1.
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Suppose a = 1.
Then 3n = a− 2 = 1− 2 = −1, so −1 is a multiple of 3.
But, −1 is not a multiple of 3, so a 6= 1.

Since a > 1 or a = 1 and a 6= 1, then we conclude a > 1.
Hence, by the Fundamental Theorem of Arithmetic, a can be represented as

a product of one or more primes.

Since a|a, then a is a factor of a.
Since a is a factor of a and a = 3n + 2 and a does not have a prime factor

of the same form as a, then a cannot be prime.
Since a can be represented as a product of one or more primes, and a cannot

be prime, then a can be represented as a product of more than one prime.
Thus, a = p1 · p2 · ...pk for primes p1, p2, ..., pk.

Let p be an arbitrary prime factor of a.
Then p is prime and p|a.
Since a = 3n + 2, then by the division algorithm, 2 is the unique remainder

when a is divided by 3.
Since the remainder when a is divided by 3 is not zero, then 3 cannot divide

a, so 3 6 |a.
By the division algorithm, when p is divided by 3, then there are unique

integers q and r such that p = 3q + r and 0 ≤ r < 3.
Since 0 ≤ r < 3, then either r = 0 or r = 1 or r = 2.
Hence, either p = 3q or p = 3q + 1 or p = 3q + 2.

Suppose p = 3q.
Then 3|p.
Since 3|p and p|a, then 3|a.
But, this contradicts 3 6 |a.
Hence, p 6= 3q.

Suppose p = 3q + 2.
Since p is a prime factor of a and p = 3q + 2, then a has a prime factor of

the same form as a.
But, this contradicts the hypothesis that there is no prime factor of a of the

same form as a.
Hence, p 6= 3q + 2.

Since either p = 3q or p = 3q + 1 or p = 3q + 2, and p 6= 3q and p 6= 3q + 2,
then we must conclude p = 3q + 1.

Therefore, every prime factor of a is of the form 3q + 1 for some integer q.

Since p1, p2, ..., pk are all prime factors of a, then p1 = 3q1+1 and p2 = 3q2+1
and ... and pk = 3qk + 1 for some integers q1, q2, ..., qk.
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By lemma 128, the product of any finite number of integers of the form 3q+1
is of the same form.

Therefore, (3q1 + 1)(3q2 + 1) · . . . · (3qk + 1) = 3m + 1 for some integer m.
Observe that

3n + 2 = a

= p1 · p2 · ... · pk
= (3q1 + 1) · (3q2 + 1) · ... · (3qk + 1)

= 3m + 1.

Thus, 3n + 2 = 3m + 1 for some integer m, so 3n + 1 = 3m.
Therefore, 1 = 3m− 3n = 3(m− n).
Since m− n ∈ Z and 1 = 3(m− n), then 3|1.
But, 3 6 |1.
Consequently, there is no positive integer of the form 3n + 2 that does not

have a prime factor of this form.
Therefore, every positive integer of the form 3n + 2 has a prime factor of

this form.

Exercise 130. The only prime of the form n3 − 1 is 7.

Proof. Since 7 is prime and 7 = 23 − 1, then 7 is a prime of the form n3 − 1 for
integer n = 2.

We prove there is no prime of the form n3 − 1 other than 7 by contradiction.
Suppose there is some prime of the form n3 − 1 other than 7.
Let p be a prime of the form n3 − 1 other than 7.
Then p is prime and p = n3 − 1 for some integer n and p 6= 7.
Since p is prime, then p > 1.
Since p > 1 > 0, then n3 − 1 = p > 0, so n3 − 1 > 0.
Hence, n3 > 1.
Since n ∈ Z and n3 > 1, then n > 1, so n− 1 > 0.
Since n− 1 ∈ Z and n− 1 > 0, then n− 1 ∈ Z+.
Since p = n3−1 = (n−1)(n2 +n+ 1) and n2 +n+ 1 ∈ Z, then n−1 divides

p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since n− 1 ∈ Z+ and n− 1 divides p, then this implies either n− 1 = 1 or

n− 1 = p.

Suppose n− 1 = 1.
Then n = 2, so p = n3 − 1 = 23 − 1 = 7.
But, p 6= 7, so n− 1 6= 1.
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Since either n− 1 = 1 or n− 1 = p, and n− 1 6= 1, then n− 1 = p.
Observe that

0 = n3 − 1− p

= (n− 1)(n2 + n + 1)− p

= p(n2 + n + 1)− p

= p(n2 + n + 1− 1)

= p(n2 + n)

= pn(n + 1).

Thus, pn(n + 1) = 0, so either p = 0 or n = 0 or n + 1 = 0.
Since p is prime and 0 is not prime, then p 6= 0.
Since n > 1 and 1 > 0, then n > 0, so n 6= 0.
Since p = 0 or n = 0 or n + 1 = 0, and p 6= 0 and n 6= 0, then n + 1 = 0, so

n = −1.
Since n > 0 and 0 > −1, then n > −1, so n 6= −1.
Hence, n = −1 and n 6= −1, a contradiction.
Therefore, there is no prime of the form n3 − 1 other than 7.

Since 7 is a prime of the form n3−1, and there is no prime of the form n3−1
other than 7, then 7 is the only prime of the form n3−1 for some integer n.

Exercise 131. The only prime p such that 3p + 1 is a perfect square is p = 5.

Proof. Let p be a prime such that 3p + 1 is a perfect square.
Then p is prime and 3p + 1 = n2 for some n ∈ Z+.
Since p is prime, then p > 1.
Since 3p + 1 = n2, then 3p = n2 − 1 = (n− 1)(n + 1).
Since 3 is prime and p is prime, then 3p is a product of primes.
Since a product of primes is greater than 1, then 3p > 1.
Since 3p ∈ Z and 3p > 1, then by the fundamental theorem of arithmetic,

3p has a unique prime factorization.
Since 3p = (n− 1)(n + 1), then this implies either 3 = n− 1 or 3 = n + 1.

Suppose 3 = n + 1.
Then n = 2, so 3p = n2 − 1 = 22 − 1 = 3.
Hence, 3p = 3, so p = 1.
But, p > 1, so p 6= 1.
Therefore, 3 6= n + 1.

Since either 3 = n−1 or 3 = n+1, and 3 6= n+1, then we conclude 3 = n−1,
so n = 4.

Thus, 3p = n2 − 1 = 42 − 1 = 15, so 3p = 15.
Therefore, p = 5.
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Hence, if p is a prime such that 3p + 1 is a perfect square, then p = 5, so if
3p + 1 is a perfect square for prime p, then p = 5.

Therefore, 3p + 1 is a perfect square for prime p only if p = 5, so the only
prime p such that 3p + 1 is a perfect square is p = 5.

Lemma 132. Let p ∈ Z+.
If p is prime and p ≥ 5, then either p = 6k + 1 or p = 6k + 5 for some

integer k.

Proof. Suppose p is prime and p ≥ 5.
Since p ≥ 5 > 2, then p > 2.
Since p is prime and p > 2, then p must be odd, so 2 6 |p.
Since p ≥ 5 > 3, then p > 3.
We must prove there exists an integer k such that p = 6k + 1 or p = 6k + 5.
By the division algorithm, there is a unique integer k such that either p = 6k

or p = 6k + 1 or p = 6k + 2 or p = 6k + 3 or p = 6k + 4 or p = 6k + 5.
We consider each case separately.
Case 1: Suppose p = 6k.
Then p = 6k = 2 · 3k, so 2|p.
Thus, we have 2|p and 2 6 |p, a contradiction.
Therefore, p 6= 6k.
Case 2: Suppose p = 6k + 2.
Then p = 2(3k + 1), so 2|p.
Thus, we have 2|p and 2 6 |p, a contradiction.
Therefore, p 6= 6k + 2.
Case 3: Suppose p = 6k + 3.
Then p = 3(2k + 1), so 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since 3|p, then this implies either 3 = 1 or 3 = p.
Since 3 6= 1, then this implies 3 = p.
But, p > 3, so p 6= 3.
Therefore, we must conclude p 6= 6k + 3.
Case 4: Suppose p = 6k + 4.
Then p = 2(3k + 2), so 2|p.
Thus, we have 2|p and 2 6 |p, a contradiction
Therefore, p 6= 6k + 4.

Since p 6= 6k and p 6= 6k+ 2 and p 6= 6k+ 3 and p 6= 6k+ 4 and either p = 6k
or p = 6k + 1 or p = 6k + 2 or p = 6k + 3 or p = 6k + 4 or p = 6k + 5, then we
must conclude either p = 6k + 1 or p = 6k + 5, as desired.

Exercise 133. Let p ∈ Z+.
If p is prime and p > 3, then p2 + 2 is composite.

Proof. Suppose p is prime and p > 3.
By the division algorithm, p = 3q + r for some unique integers q and r with

0 ≤ r < 3, so either r = 0 or r = 1 or r = 2.
Thus, either p = 3q or p = 3q + 1 or p = 3q + 2.
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Suppose p = 3q.
Then 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since 3 is positive and 3|p and 3 6= 1, then this implies 3 = p.
But, p > 3, so p 6= 3.
Therefore, we conclude p 6= 3q.

Hence, either p = 3q + 1 or p = 3q + 2.
We consider each case separately.
Case 1: Suppose p = 3q + 1.
Observe that

p2 + 2 = (3q + 1)2 + 2

= 9q2 + 6q + 1 + 2

= 9q2 + 6q + 3

= 3(3q2 + 2q + 1).

Therefore, 3|(p2 + 2).
Case 2: Suppose p = 3q + 2.
Observe that

p2 + 2 = (3q + 2)2 + 2

= 9q2 + 12q + 4 + 2

= 9q2 + 12q + 6

= 3(3q2 + 4q + 2).

Therefore, 3|(p2 + 2).
Hence, in all cases, 3|(p2 + 2).

Since p > 3, then p2 > 9, so p2 + 2 > 11.
Since 0 < 1 < 3 < 11 and 11 < p2 + 2, then 0 < 1 < 3 < 11 < p2 + 2, so

0 < p2 + 2 and 1 < 3 < p2 + 2.
Since p2 + 2 ∈ Z and p2 + 2 > 0, then p2 + 2 ∈ Z+.
A composite number has a positive divisor between 1 and itself.
Since p2 + 2 ∈ Z+ and 3 ∈ Z+ and 3|(p2 + 2) and 1 < 3 < p2 + 2, then we

conclude p2 + 2 is composite.

Exercise 134. Let a, p ∈ Z+.
If p is prime and p|an, then pn|an for all n ∈ Z+.

Proof. Let n ∈ Z+.
Suppose p is prime and p|an.
By corollary one to Euclid’s lemma, if a prime p divides a product of integers,

then p divides one of those integers.
Therefore, p|a.
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Hence, a = pk for some integer k.
Therefore an = (pk)n = pnkn.
Since an = pnkn and kn ∈ Z, then pn|an, as desired.

Proof. Let r(n) be the predicate : ‘if p is prime and p|an, then pn|an’ defined
over Z+.

We prove r(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Suppose p is prime and p|a1.
Since p1 = p and p|a1, then p1|a1.
Therefore, r(1) is true.
Induction:
Let k ∈ Z+ such that r(k) is true.
Then pk|ak whenever p is prime and p|ak.

Suppose p is prime and p|ak+1.
By corollary one to Euclid’s lemma, if p is prime and p divides a product of

integers, then p divides one of those integers.
Since p is prime and p|ak+1, then we conclude p|a.
Hence, p divides any multiple of a.
Since k ∈ Z+, then k ≥ 1, so k − 1 ≥ 0.
Thus, ak−1 ∈ Z.
Since ak−1 ∈ Z, then ak−1 · a is a multiple of a.
Hence, p divides ak−1 · a = ak, so p|ak.
Since p is prime and p|ak, then pk|ak, by the induction hypothesis.
Since pk|ak and p|a, then the product pk · p divides the product ak · a, so

pk+1|ak+1.
Thus, r(k + 1) is true.
Consequently, r(k) implies r(k + 1) for all k ∈ Z+.

Since r(1) is true and r(k) implies r(k + 1) for all k ∈ Z+, then by induction,
we conclude r(n) is true for all n ∈ Z+.

Therefore, if p is prime and p|an, then pn|an for all n ∈ Z+.

Exercise 135. Let a, b, p ∈ Z+.
If p is prime and gcd(a, b) = p, then gcd(a2, b2) = p2.

Proof. Suppose p is prime and gcd(a, b) = p.
Since p is prime, then p ∈ Z+ and p > 1.
Since gcd(a, b) = p, then p ∈ Z+ and p|a and p|b.
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Since p ∈ Z+ and a ∈ Z+ and p|a, then p ≤ a.
Since a ≥ p and p > 1, then a > 1.
Hence, by the fundamental theorem of arithmetic, a has a unique prime

power factorization.
Therefore, a = pe11 pe22 · ... · perr , where for each i = 1, 2, ..., r, each exponent

ei is a positive integer and each pi is a prime with p1 < p2 < ... < pr.
Since p|a and a = pe11 pe22 · ... · perr , then p divides the product pe11 pe22 · ... · perr .
If a prime p divides a product of primes, then p is one of those primes.
Since p is prime and p divides the product pe11 pe22 · ... · perr of primes, then p

is one of the primes p1, p2, ..., pr.
Thus, there exists an integer k such that p = pk and 1 ≤ k ≤ r, so a =

pe11 · p
e2
2 · ... · pek · ... · perr .

Since p ∈ Z+ and b ∈ Z+ and p|b, then p ≤ b.
Since b ≥ p and p > 1, then b > 1.
Hence, by the fundamental theorem of arithmetic, b has a unique prime

power factorization.
Therefore, b = qf11 qf22 · ... · qfss , where for each i = 1, 2, ..., s, each exponent ei

is a positive integer and each qi is a prime with q1 < q2 < ... < qs.
Since p|b and b = qf11 qf22 · ... · qfss , then p divides the product qf11 qf22 · ... · qfss .
If a prime p divides a product of primes, then p is one of those primes.
Since p is prime and p divides the product qf11 qf22 · ... · qfss of primes, then p

is one of the primes q1, q2, ..., qs.
Thus, there exists an integer m such that p = qm and 1 ≤ m ≤ s, so

b = qf11 · q
f2
2 · ... · pfm · ... · qfss .

We next prove p is the only common prime factor of a and b.
Suppose for the sake of contradiction p is not the only common prime factor

of a and b.
Then there exists some other prime factor of a and b.
Let q be some other prime factor of a and b.
Then q is prime and q 6= p and q|a and q|b.
Since q is prime, then q ∈ Z+ and q > 1.
Since q|a and q|b, then q is a common divisor of a and b.
Any common divisor of a and b must divide gcd(a, b).
Thus, q must divide gcd(a, b) = p, so q|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since q ∈ Z+ and q|p, then this implies either q = 1 or q = p.
Since q > 1, then q 6= 1, so q = p.
But, this contradicts q 6= p.
Therefore, p is the only common prime factor of a and b.

Since gcd(a, b) = p = p1, then 1 = min(ek, fm).
Observe that a2 = (pe11 · p

e2
2 · ... · pek · ... · perr )2 = p2e11 p2e22 · ... · p2ek · ... · p2err .

Observe that b2 = (qf11 · q
f2
2 · ... · pfm · ... · qfss )2 = q2f11 qp2f22 · ... · p2fm · ... · q2fss .
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Since 1 = min(ek, fm), then either ek = 1 and fm ≥ 1, or fm = 1 and ek ≥ 1.
Thus, either ek = 1 and fm > 1, or ek = 1 and fm = 1, or fm = 1 and

ek > 1, or fm = 1 and ek = 1.
Therefore, either ek = 1 and fm > 1, or ek = 1 and fm = 1, or ek > 1 and

fm = 1.
We consider these cases separately.
Case 1: Suppose ek = 1 and fm > 1.
Since ek = 1, then 2ek = 2.
Since fm ∈ Z+ and fm > 1, then fm ≥ 2, so 2fm ≥ 4.
Since 2ek = 2 and 2fm ≥ 4, then min(2ek, 2fm) = 2.
Case 2: Suppose ek = 1 and fm = 1.
Then min(2ek, 2fm) = min(2 · 1, 2 · 1) = min(2, 2) = 2.
Case 3: Suppose ek > 1 and fm = 1.
Since ek ∈ Z+ and ek > 1, then ek ≥ 2, so 2ek ≥ 4.
Since fm = 1, then 2fm = 2.
Since 2ek ≥ 4 and 2fm = 2, then min(2ek, 2fm) = 2.

Hence, in all cases, min(2ek, 2fm) = 2, so 2 is the least power of p in the
prime factorization of a2 and b2.

Since p is the only common prime factor of a and b, then p is the only
common prime factor of a2 and b2.

Since p is the only common prime factor of a2 and b2, and 2 is the least
power of p in the prime factorization of a2 and b2, then gcd(a2, b2) = p2, as
desired.

Exercise 136. Let a, b, p ∈ Z+.
If p is prime and gcd(a, b) = p, then either gcd(a2, b) = p or gcd(a2, b) = p2.

Solution. Let’s compute some examples.
Observe that gcd(6, 9) = 3 and 3 is prime and gcd(62, 9) = gcd(36, 9) = 9 =

32.
Observe that gcd(6, 10) = 2 and 2 is prime and gcd(62, 10) = 2.
We conjecture if gcd(a, b) = p and p is prime, then gcd(a2, b) = p or p2.

Proof. Suppose p is prime and gcd(a, b) = p.
Since p is prime, then p > 1.
Since gcd(a, b) = p, then p ∈ Z+ and p|a and p|b.

Since p ∈ Z+ and a ∈ Z+ and p|a, then p ≤ a.
Since a ≥ p and p > 1, then a > 1.
Hence, by the fundamental theorem of arithmetic, a has a unique prime

power factorization.
Therefore, a = pe11 pe22 · ... · perr , where for each i = 1, 2, ..., r, each exponent

ei is a positive integer and each pi is a prime with p1 < p2 < ... < pr.
Since p|a and a = pe11 pe22 · ... · perr , then p divides the product pe11 pe22 · ... · perr .
If a prime p divides a product of primes, then p is one of those primes.
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Since p is prime and p divides the product pe11 pe22 · ... · perr of primes, then p
is one of the primes p1, p2, ..., pr.

Thus, there exists an integer k such that p = pk and 1 ≤ k ≤ r, so a =
pe11 · p

e2
2 · ... · pek · ... · perr .

Since p ∈ Z+ and b ∈ Z+ and p|b, then p ≤ b.
Since b ≥ p and p > 1, then b > 1.
Hence, by the fundamental theorem of arithmetic, b has a unique prime

power factorization.
Therefore, b = qf11 qf22 · ... · qfss , where for each i = 1, 2, ..., s, each exponent ei

is a positive integer and each qi is a prime with q1 < q2 < ... < qs.
Since p|b and b = qf11 qf22 · ... · qfss , then p divides the product qf11 qf22 · ... · qfss .
If a prime p divides a product of primes, then p is one of those primes.
Since p is prime and p divides the product qf11 qf22 · ... · qfss of primes, then p

is one of the primes q1, q2, ..., qs.
Thus, there exists an integer m such that p = qm and 1 ≤ m ≤ s, so

b = qf11 · q
f2
2 · ... · pfm · ... · qfss .

We next prove p is the only common prime factor of a and b.
Suppose for the sake of contradiction p is not the only common prime factor

of a and b.
Then there exists some other prime factor of a and b.
Let q be some other prime factor of a and b.
Then q is prime and q 6= p and q|a and q|b.
Since q is prime, then q ∈ Z+ and q > 1.
Since q|a and q|b, then q is a common divisor of a and b.
Any common divisor of a and b must divide gcd(a, b).
Thus, q must divide gcd(a, b) = p, so q|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since q ∈ Z+ and q|p, then this implies either q = 1 or q = p.
Since q > 1, then q 6= 1, so q = p.
But, this contradicts q 6= p.
Therefore, p is the only common prime factor of a and b.

Since gcd(a, b) = p = p1, then 1 = min(ek, fm).
Observe that a2 = (pe11 · p

e2
2 · ... · pek · ... · perr )2 = p2e11 p2e22 · ... · p2ek · ... · p2err .

Since 1 = min(ek, fm), then either ek = 1 and fm ≥ 1, or fm = 1 and ek ≥ 1.
Thus, either ek = 1 and fm > 1, or ek = 1 and fm = 1, or fm = 1 and

ek > 1, or fm = 1 and ek = 1.
Therefore, either ek = 1 and fm > 1, or ek = 1 and fm = 1, or ek > 1 and

fm = 1.
We consider these cases separately.
Case 1: Suppose ek = 1 and fm > 1.
Since ek = 1, then 2ek = 2.
Since fm ∈ Z+ and fm > 1, then fm ≥ 2.
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Since 2ek = 2 and fm ≥ 2, then min(2ek, fm) = 2.
Case 2: Suppose ek = 1 and fm = 1.
Then min(2ek, fm) = min(2 · 1, 1) = min(2, 1) = 1.
Case 3: Suppose ek > 1 and fm = 1.
Since ek ∈ Z+ and ek > 1, then ek ≥ 2, so 2ek ≥ 4.
Since 2ek ≥ 4 and fm = 1, then min(2ek, fm) = 1.

Hence, in all cases, either min(2ek, fm) = 1 or min(2ek, fm) = 2, so either 1
or 2 is the least power of p in the prime factorization of a2 and b.

Since p is the only common prime factor of a and b, then p is the only
common prime factor of a2 and b.

Since p is the only common prime factor of a2 and b, and 1 or 2 is the
least power of p in the prime factorization of a2 and b, then gcd(a2, b) = p or
gcd(a2, b) = p2, as desired.

Exercise 137. Let a, b, p ∈ Z+.
If p is prime and gcd(a, b) = p, then gcd(a3, b2) = p2 or gcd(a3, b2) = p3.

Solution. Let’s compute some examples.
Observe that gcd(2, 4) = 2 and 2 is prime and gcd(23, 42) = gcd(8, 16) =

8 = 23.
Observe that gcd(3, 12) = 3 and 3 is prime and gcd(33, 122) = gcd(9, 144) =

9 = 32.
We conjecture if gcd(a, b) = p and p is prime, then gcd(a3, b2) = p2 or p3.

Proof. Suppose p is prime and gcd(a, b) = p.
Since p is prime, then p > 1.
Since gcd(a, b) = p, then p ∈ Z+ and p|a and p|b.

Since p ∈ Z+ and a ∈ Z+ and p|a, then p ≤ a.
Since a ≥ p and p > 1, then a > 1.
Hence, by the fundamental theorem of arithmetic, a has a unique prime

power factorization.
Therefore, a = pe11 pe22 · ... · perr , where for each i = 1, 2, ..., r, each exponent

ei is a positive integer and each pi is a prime with p1 < p2 < ... < pr.
Since p|a and a = pe11 pe22 · ... · perr , then p divides the product pe11 pe22 · ... · perr .
If a prime p divides a product of primes, then p is one of those primes.
Since p is prime and p divides the product pe11 pe22 · ... · perr of primes, then p

is one of the primes p1, p2, ..., pr.
Thus, there exists an integer k such that p = pk and 1 ≤ k ≤ r, so a =

pe11 · p
e2
2 · ... · pek · ... · perr .
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Since p ∈ Z+ and b ∈ Z+ and p|b, then p ≤ b.
Since b ≥ p and p > 1, then b > 1.
Hence, by the fundamental theorem of arithmetic, b has a unique prime

power factorization.
Therefore, b = qf11 qf22 · ... · qfss , where for each i = 1, 2, ..., s, each exponent ei

is a positive integer and each qi is a prime with q1 < q2 < ... < qs.
Since p|b and b = qf11 qf22 · ... · qfss , then p divides the product qf11 qf22 · ... · qfss .
If a prime p divides a product of primes, then p is one of those primes.
Since p is prime and p divides the product qf11 qf22 · ... · qfss of primes, then p

is one of the primes q1, q2, ..., qs.
Thus, there exists an integer m such that p = qm and 1 ≤ m ≤ s, so

b = qf11 · q
f2
2 · ... · pfm · ... · qfss .

We next prove p is the only common prime factor of a and b.
Suppose for the sake of contradiction p is not the only common prime factor

of a and b.
Then there exists some other prime factor of a and b.
Let q be some other prime factor of a and b.
Then q is prime and q 6= p and q|a and q|b.
Since q is prime, then q ∈ Z+ and q > 1.
Since q|a and q|b, then q is a common divisor of a and b.
Any common divisor of a and b must divide gcd(a, b).
Thus, q must divide gcd(a, b) = p, so q|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since q ∈ Z+ and q|p, then this implies either q = 1 or q = p.
Since q > 1, then q 6= 1, so q = p.
But, this contradicts q 6= p.
Therefore, p is the only common prime factor of a and b.

Since gcd(a, b) = p = p1, then 1 = min(ek, fm).
Observe that a3 = (pe11 pe22 . . . pek . . . perr )3 = p3e11 p3e22 . . . p3ek . . . p3err .

Observe that b2 = (qf11 qf22 . . . pfm . . . qfss )2 = q2f11 q2f22 . . . p2fm . . . q2fss .
Since 1 = min(ek, fm), then either ek = 1 and fm ≥ 1, or fm = 1 and ek ≥ 1.
Thus, either ek = 1 and fm > 1, or ek = 1 and fm = 1, or fm = 1 and

ek > 1, or fm = 1 and ek = 1.
Therefore, either ek = 1 and fm > 1, or ek = 1 and fm = 1, or ek > 1 and

fm = 1.
We consider these cases separately.
Case 1: Suppose ek = 1 and fm > 1.
Since ek = 1, then 3ek = 3.
Since fm ∈ Z+ and fm > 1, then fm ≥ 2, so 2fm ≥ 4.
Since 3ek = 3 and 2fm ≥ 4, then min(3ek, 2fm) = 3.
Case 2: Suppose ek = 1 and fm = 1.
Then min(3ek, 2fm) = min(3 · 1, 2 · 1) = min(3, 2) = 2.
Case 3: Suppose ek > 1 and fm = 1.
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Since ek ∈ Z+ and ek > 1, then ek ≥ 2, so 3ek ≥ 6.
Since fm = 1, then 2fm = 2.
Since 3ek ≥ 6 and 2fm = 2, then min(3ek, 2fm) = 2.

Hence, in all cases, either min(3ek, 2fm) = 2 or min(3ek, 2fm) = 3, so either
2 or 3 is the least power of p in the prime factorization of a3 and b2.

Since p is the only common prime factor of a and b, then p is the only
common prime factor of a3 and b2.

Since p is the only common prime factor of a3 and b2, and 2 or 3 is the
least power of p in the prime factorization of a3 and b2, then gcd(a3, b2) = p2

or gcd(a3, b2) = p3, as desired.

Exercise 138. Let n ∈ Z+.
If n > 1, then every integer of the form n4 + 4 is composite.

Proof. Suppose n > 1.
To prove every integer of the form n4 + 4 is composite, let k be an integer

of the form n4 + 4.
Then k ∈ Z and k = n4 + 4.
We must prove k is composite.
Observe that

k = n4 + 4

= (n2)2 + 2n2(2) + 22 − 4n2

= (n2 + 2)2 − 4n2

= (n2 + 2 + 2n)(n2 + 2− 2n)

= (n2 + 2n + 2)(n2 − 2n + 2).

Therefore, k = (n2+2n+2)(n2−2n+2) and n2+2n+2 ∈ Z and n2−2n+2 ∈
Z.

Since k = (n2 + 2n + 2)(n2 − 2n + 2) and n2 − 2n + 2 ∈ Z, then n2 + 2n + 2
divides k.

We first prove n2 + 2n + 2 > 1.
Since n > 1, then n + 1 > n > 1 > 0, so n + 1 > 1 and n + 1 > 0 and

n + 1 > n.
Since n + 1 > 1 and n + 1 > 0, then (n + 1)2 > n + 1.
Observe that

n2 + 2n + 2 = n2 + 2n + 1 + 1

= (n + 1)2 + 1

> (n + 1) + 1

> n + 1

> n

> 1.
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Therefore, n2 + 2n + 2 > 1.

We next prove n2 + 2n + 2 < k.
Since n > 1, then n2 > 1 and n + 1 > 2, so n2(n + 1) > 2.
Since n > 1, then n− 1 > 0, so n2(n + 1)(n− 1) > 2(n− 1).
Observe that

n4 − n2 = n2(n2 − 1)

= n2(n + 1)(n− 1)

> 2(n− 1)

= 2n− 2.

Hence, n4 − n2 > 2n− 2, so n4 > n2 + 2n− 2.
Therefore, n4 + 4 > n2 + 2n + 2, so k > n2 + 2n + 2.

Since k > n2 + 2n + 2 and n2 + 2n + 2 > 1, then k > n2 + 2n + 2 > 1, so
1 < n2 + 2n + 2 < k.

A composite number has a positive divisor between 1 and itself.
Since n2 + 2n + 2 ∈ Z and n2 + 2n + 2 divides k and 1 < n2 + 2n + 2 < k,

then k is composite, as desired.

Proof. Suppose n > 1.
Since n ∈ Z, then n4 + 4 ∈ Z.
Observe that

n4 + 4 = (n2)2 + 2n2(2) + 22 − 4n2

= (n2 + 2)2 − 4n2

= (n2 + 2 + 2n)(n2 + 2− 2n)

= (n2 + 2n + 2)(n2 − 2n + 2).

Therefore, n4 + 4 = (n2 + 2n + 2)(n2 − 2n + 2) and n2 + 2n + 2 ∈ Z and
n2 − 2n + 2 ∈ Z.

Since n > 1, then n2 > 1 and n + 1 > 2, so n2(n + 1) > 2.
Thus, n2(n + 1)− 2 > 0.
Since n > 1, then n− 1 > 0.
Since n− 1 > 0 and n2(n + 1)− 2 > 0, then (n− 1)[n2(n + 1)− 2] > 0.
Thus, (n− 1)(n3 + n2 − 2) > 0, so n4 − n2 − 2n + 2 > 0.
Therefore, n4 > n2 + 2n− 2, so n4 + 4 > n2 + 2n + 2.

Since n > 1, then n + 1 > 2, so n + 1 > 0.
Hence, (n + 1)2 > 0, so n2 + 2n + 1 > 0.
Therefore, n2 + 2n + 2 > 1.
Since n4+4 > n2+2n+2 and n2+2n+2 > 1, then n4+4 > n2+2n+2 > 1,

so 1 < n2 + 2n + 2 < n4 + 4.
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Since n2 > 1, then n2 > 0.
Since n− 1 > 0 and n2 > 0, then n2(n− 1) > 0 > −2, so n2(n− 1) > −2.
Thus, n2(n− 1) + 2 > 0.
Since n > 1, then n + 1 > 2 > 0, so n + 1 > 0.
Since n + 1 > 0 and n2(n − 1) + 2 > 0, then (n + 1)[n2(n − 1) + 2] > 0, so

(n + 1)(n3 − n2 + 2) > 0.
Thus, n4 − n2 + 2n + 2 > 0, so n4 > n2 − 2n− 2.
Therefore, n4 + 4 > n2 − 2n + 2.

Since n > 1, then n− 1 > 0, so (n− 1)2 > 0.
Therefore, n2 − 2n + 1 > 0, so n2 − 2n + 2 > 1.
Since n4+4 > n2−2n+2 and n2−2n+2 > 1, then n4+4 > n2−2n+2 > 1,

so 1 < n2 − 2n + 2 < n4 + 4.

A composite number is composed of smaller positive factors.
Since n2 + 2n + 2 ∈ Z and n2 − 2n + 2 ∈ Z, and 1 < n2 + 2n + 2 < n4 + 4

and 1 < n2 − 2n + 2 < n4 + 4 , and n4 + 4 = (n2 + 2n + 2)(n2 − 2n + 2), then
the integer n4 + 4 is composite.

Exercise 139. Let n ∈ Z+.
If n > 4 and n is composite, then n divides (n− 1)!.

Proof. Suppose n > 4 and n is composite.
Since n is composite, then n is composed of smaller factors, so n = ab for

some positive integers a and b with 1 < a < n and 1 < b < n.
Since (n−1)! is the product of the first n−1 positive integers, then (n−1)! =

1 · 2 · . . . · (n− 1) = 2 · ... · (n− 1).
Let S be the set of factors 2, 3, ..., n− 1 of (n− 1)!.
Then S = {2, 3, ..., n− 1}, so S = {s ∈ Z+ : 2 ≤ s ≤ n− 1}.
Since |S| = n− 2 > 4− 2 = 2, then |S| > 2, so |S| ≥ 3.
Hence, S 6= ∅.
Since a and b are integers, then either a = b or a 6= b.
We consider these cases separately.
Case 1: Suppose a 6= b.
Then a and b are distinct integers, so the set {a, b} contains exactly 2 ele-

ments.
Since a ∈ Z and n ∈ Z and 1 < a < n, then 2 ≤ a ≤ n− 1, so a ∈ S.
Since b ∈ Z and n ∈ Z and 1 < b < n, then 2 ≤ b ≤ n− 1, so b ∈ S.

Let T be the set of all elements of S excluding a and b.
Then T = S − {a, b} and T ∪ {a, b} = S and T ∩ {a, b} = ∅.
Observe that |T | = |S| − |{a, b}| = (n− 2)− 2 = n− 4.
Since n > 4, then n− 4 > 0.
Since n− 4 ∈ Z and n− 4 > 0, then n− 4 ≥ 1.
Hence, |T | = n− 4 ≥ 1, so |T | ≥ 1.
Therefore, T contains at least 1 element, so T is not empty.
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Thus, T 6= ∅.
Since T ∪{a, b} = S, then if x ∈ S, then either x ∈ T or x ∈ {a, b}, so either

x ∈ T or x ∈ {a, b} for every x ∈ S.
Since T 6= ∅ and {a, b} 6= ∅ and T ∩{a, b} = ∅, and either x ∈ T or x ∈ {a, b}

for every x ∈ S, then T and {a, b} form a partition of S.
Hence, the product of all elements of T with all elements of {a, b} is (n−1)!.
Therefore, (n− 1)! is the product of all elements of T and ab.

Let t be the product of all elements of T .
Then (n− 1)! = t(ab) = tn = nt and t ∈ Z.
Since (n− 1)! = nt and t ∈ Z, then n divides (n− 1)!.
Case 2: Suppose a = b.
Then n = ab = aa = a2.
Since a ∈ Z and n ∈ Z and 1 < a < n, then 2 ≤ a ≤ n− 1, so a ∈ S.
Let A be the set of all elements of S less than or equal to a.
Then A = {x ∈ S : x ≤ a}.
Let B be the set of all elements of S greater than a.
Then B = {x ∈ S : x > a}.
Observe that S = A ∪B and A ∩B = ∅.

Suppose x ∈ A and y ∈ B.
Since A ∩B = ∅, then A and B are disjoint sets, so x 6= y.
Since x ∈ A and A ⊂ S, then x ∈ S, so x is a factor of (n− 1)!.
Since y ∈ B and B ⊂ S, then y ∈ S, so y is a factor of (n− 1)!.
Since x 6= y and x is a factor of (n− 1)! and y is a factor of (n− 1)!, then x

and y are distinct factors of (n− 1)!, so the product xy is a factor of (n− 1)!.
Therefore, the product xy is a factor of (n− 1)! for all x ∈ A and all y ∈ B.

Let k = 2a.
Then k ∈ Z and a|k.
We prove k ∈ B.
Since 1 < a < n, then 1 < a.
Since a > 1 and 1 > 0, then a > 0.
Since 2 > 1 and a > 0, then k = 2a > a, so k > a.
Since a > 1 and a > 1, then a + a > 1 + 1, so 2a > 2.
Since k = 2a and 2a > 2, then k > 2, so 2 < k.
Since n = a2 and n > 4, then a2 > 4.
Since a2 > 4 and a > 0, then a > 2.
Since a > 2 and a > 0, then n = a2 > 2a = k, so n > k.
Since k ∈ Z and n ∈ Z and k < n, then k ≤ n− 1.
Since k ∈ Z and 2 < k and k ≤ n− 1, then 2 < k ≤ n− 1, so k ∈ S.
Since k ∈ S and k > a, then k ∈ B.
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Since a ∈ A and k ∈ B, then a and k are distinct factors of (n − 1)!, so the
product ak is a factor of (n− 1)!.

Hence, (n− 1)! = ak(c) for some integer c.
Observe that

(n− 1)! = ak(c)

= a(2a)c

= 2a2c

= 2nc

= n(2c).

Since (n− 1)! = n(2c) and 2c ∈ Z, then n divides (n− 1)!.

In all cases, we conclude n divides (n− 1)!, as desired.

Exercise 140. Let n ∈ Z+.
Every integer of the form 8n + 1 is composite.

Proof. Since n ∈ Z+, then 8n + 1 ∈ Z and n ≥ 1.
Observe that

8n + 1 = (23)n + 1

= (2 · 22)n + 1

= 2n · 22n + 1

= 22n(2n + 1) + 1− 22n

= 22n(2n + 1)− 2n(2n + 1) + (2n + 1)

= (2n + 1)(22n − 2n + 1).

Therefore, 8n + 1 = (2n + 1)(22n − 2n + 1).

Since n ≥ 1 and 1 > 0, then n > 0.
Therefore, 2n > 0, so 2n + 1 > 1.

Since 3 > 1 and n > 0, then 3n > n, so 23n > 2n.
Since 8n = 23n, then 8n > 2n, so 8n + 1 > 2n + 1.
Since 8n + 1 > 2n + 1 and 2n + 1 > 1, then 8n + 1 > 2n + 1 > 1, so

1 < 2n + 1 < 8n + 1.

Since n > 0, then 4n > 2n, so 4n − 2n > 0.
Since 4n − 2n > 0 > −1, then 4n − 2n > −1, so 4n > 2n − 1.
Since 2n > 0, then 2n(4n) > 2n(2n − 1), so 8n > 22n − 2n.
Therefore, 8n + 1 > 22n − 2n + 1.
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Since 2 > 1 and n > 0, then 2n > n, so 22n > 2n.
Therefore, 22n − 2n > 0, so 22n − 2n + 1 > 1.
Since 8n+1 > 22n−2n+1 and 22n−2n+1 > 1, then 8n+1 > 22n−2n+1 > 1,

so 1 < 22n − 2n + 1 < 8n + 1.
A composite number is composed of smaller positive factors.
Since 8n + 1 is an integer and 2n + 1 is an integer and 22n − 2n + 1 is

an integer and 1 < 2n + 1 < 8n + 1 and 1 < 22n − 2n + 1 < 8n + 1 and
8n + 1 = (2n + 1)(22n − 2n + 1), then 8n + 1 is composite.

Exercise 141. Every integer n > 11 can be written as the sum of two composite
numbers.

Proof. Let n be an integer greater than 11.
Then n ∈ Z and n > 11, so n ≥ 12.
To prove n is the sum of two composite numbers, we prove n = 2a + 3b for

some composite numbers 2a and 3b.
Thus, we must prove n = 2a + 3b and 2a and 3b are composite.

Since n ∈ Z, then either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then n = 2m for some integer m.
Let a = m− 3 and b = 2.
Observe that

2a + 3b = 2(m− 3) + 3(2)

= 2m− 6 + 6

= 2m

= n.

Hence, n = 2a + 3b.

Since n = 2m and n ≥ 12, then 2m ≥ 12, so m ≥ 6.
Thus, a = m− 3 ≥ 6− 3 = 3 > 1, so a > 1.

Since b > 2 and 2 > 1, then b > 1.

Therefore, n = 2a + 3b and a > 1 and b > 1.
Case 2: Suppose n is odd.
Then n = 2m + 1 for some integer m.
Let a = m− 4 and b = 3.
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Observe that

2a + 3b = 2(m− 4) + 3(3)

= 2m− 8 + 9

= 2m + 1

= n.

Thus, n = 2a + 3b.

Since n ≥ 12 and n = 2m + 1, then 2m + 1 ≥ 12, so 2m ≥ 11.

Hence, m ≥ 11

2
= 5.5.

Since m ∈ Z and m ≥ 5.5, then m ≥ 6.
Hence, a = m− 4 ≥ 6− 4 = 2 > 1, so a > 1.

Since b = 3 and 3 > 1, then b > 1.

Therefore, n = 2a + 3b and a > 1 and b > 1.

Therefore, in all cases, n = 2a + 3b and a > 1 and b > 1.

We prove 2a is composite.
Since a > 1 and 1 > 0, then a > 0.
Since a ∈ Z and a > 0, then a ∈ Z+.
Since 2 ∈ Z+ and a ∈ Z+, then 2a ∈ Z+.
Since 2|2, then 2 divides any multiple of 2, so 2|2a.
Since a > 1, then 2a > 2. so 2 < 2a.
Since 1 < 2 and 2 < 2a, then 1 < 2 < 2a.
Since 2a ∈ Z+ and 2 ∈ Z+ and 2|2a and 1 < 2 < 2a, then 2a is composite.

We prove 3b is composite.
Since b > 1 and 1 > 0, then b > 0.
Since b ∈ Z and b > 0, then b ∈ Z+.
Since 3 ∈ Z+ and b ∈ Z+, then 3b ∈ Z+.
Since 3|3, then 3 divides any multiple of 3, so 3|3b.
Since b > 1, then 3b > 3. so 3 < 3b.
Since 1 < 3 and 3 < 3b, then 1 < 3 < 3b.
Since 3b ∈ Z+ and 3 ∈ Z+ and 3|3b and 1 < 3 < 3b, then 3b is composite.

Therefore, n = 2a + 3b and 2a and 3b are composite, as desired.

Exercise 142. Compute all prime numbers that divide 50!.
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Solution. Observe that 50! = 1 · 2 · 3 . . . · 49 · 50 > 1.
Since 50! ∈ Z and 50! > 1, then by the fundamental theorem of arithmetic,

50! has a unique prime power factorization.
The prime power factorization is 50! = 247 · 322 · 512 · 78 · 114 · 133 · 172 · 192 ·

232 · 29 · 31 · 37 · 41 · 43 · 47.
Therefore, the set of primes that divide 50! is {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

Exercise 143. Let p, q ∈ Z+.
If p and q are primes and p ≥ q > 3, then 24|(p2 − q2).

Proof. Suppose p and q are primes and p ≥ q > 3.
Then p is prime and q is prime and p ≥ q and q > 3.
To prove 24|(p2 − q2), we prove
1. 3|(p2 − q2).
2. 8|(p2 − q2).

We first prove 3|(p2 − q2).
We divide p by 3.
By the division algorithm, there are unique integers a and b such that p =

3a + b and 0 ≤ b < 3.
Since b ∈ Z and 0 ≤ b < 3, then either b = 0 or b = 1 or b = 2.

Suppose b = 0.
Then p = 3a + b = 3a + 0 = 3a, so 3|p.
Since p ≥ q > 3, then p > 3, so p 6= 3.
Since p is prime, then the only positive divisors of p are 1 and p, so 1|p and

p|p.
Since 3 ∈ Z+ and 3|p and 3 6= 1 and p|p, then we must conclude 3 = p, so

p = 3.
But, this contradicts p 6= 3.
Therefore, b 6= 0.

Since either b = 0 or b = 1 or b = 2, and b 6= 0, then either b = 1 or b = 2.

We divide q by 3.
By the division algorithm, there are unique integers c and d such that q =

3c + d and 0 ≤ d < 3.
Since d ∈ Z and 0 ≤ d < 3, then either d = 0 or d = 1 or d = 2.

Suppose d = 0.
Then q = 3c + d = 3c + 0 = 3c, so 3|q.
Since q > 3, then q 6= 3.
Since q is prime, then the only positive divisors of q are 1 and q, so 1|q and

q|q.
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Since 3 ∈ Z+ and 3|q and 3 6= 1 and q|q, then we must conclude 3 = q, so
q = 3.

But, this contradicts q 6= 3.
Therefore, d 6= 0.

Since either d = 0 or d = 1 or d = 2, and d 6= 0, then either d = 1 or d = 2.
Observe that

p2 − q2 = (3a + b)2 − (3c + d)2

= (9a2 + 6ab + b2)− (9c2 + 6cd + d2)

= 9a2 + 6ab + b2 − 9c2 − 6cd− d2

= 9a2 + 6ab− 9c2 − 6cd + b2 − d2

= 3(3a2 + 2ab− 3c2 − 2cd) + (b2 − d2).

Therefore, p2 − q2 = 3(3a2 + 2ab− 3c2 − 2cd) + (b2 − d2).

Since either b = 1 or b = 2, and either d = 1 or d = 2, then either b = 1 and
d = 1, or b = 1 and d = 2, or b = 2 and d = 1, or b = 2 and d = 2.

We consider these cases separately.
Case 1: Suppose b = 1 and d = 1, or b = 2 and d = 2.
Then b = 1 = d or b = 2 = d, so b = d or b = d.
Therefore, b = d.
Hence, b2 − d2 = b2 − b2 = 0.
Since 3|0 and b2 − d2 = 0, then 3|(b2 − d2).
Case 2: Suppose b = 1 and d = 2, or b = 2 and d = 1.
Then b+ d = 1 + 2 = 3 or b+ d = 2 + 1 = 3, so either b+ d = 3 or b+ d = 3.
Therefore, b + d = 3.
Hence, b2 − d2 = (b + d)(b− d) = 3(b− d), so 3|(b2 − d2).

Therefore, in all cases, 3|(b2 − d2).
Since 3 divides 3(3a2 + 2ab− 3c2− 2cd) and 3 divides b2− d2, then 3 divides

the sum 3(3a2 + 2ab− 3c2 − 2cd) + (b2 − d2) = p2 − q2.
Therefore, 3 divides p2 − q2, so 3|(p2 − q2), as desired.

Proof. We next prove 8|(p2 − q2).
Since p ≥ q > 3 and 3 > 2, then p > 2.
Since q > 3 and 3 > 2, then q > 2.
Any prime greater than 2 is odd.
Since p is prime and p > 2, then p is odd, so p = 2m+ 1 for some integer m.
Since q is prime and q > 2, then q is odd, so q = 2n + 1 for some integer n.
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Observe that

p2 − q2 = (2m + 1)2 − (2n + 1)2

= (4m2 + 4m + 1)− (4n2 + 4n + 1)

= 4m2 + 4m + 1− 4n2 − 4n− 1

= 4m2 + 4m− 4n2 − 4n

= 4m(m + 1)− 4n(n + 1).

A product of two consecutive integers is even.
Since m and m + 1 are consecutive integers, then m(m + 1) is even, so

m(m + 1) = 2s for some integer s.
Since n and n+1 are consecutive integers, then n(n+1) is even, so n(n+1) =

2t for some integer t.
Observe that

p2 − q2 = 4m(m + 1)− 4n(n + 1)

= 4(2s)− 4(2t)

= 8s− 8t

= 8(s− t).

Therefore, p2 − q2 = 8(s− t), so 8|(p2 − q2), as desired.

Proof. Since 3|(p2 − q2) and 8|(p2 − q2), then p2 − q2 is a common multiple of
3 and 8.

Since gcd(3, 8) = 1, then 3 and 8 are relatively prime.
Since p2 − q2 is a common multiple of 3 and 8, and 3 and 8 are relatively

prime, then p2 − q2 is a multiple of the product 3 · 8 = 24.
Therefore, 24|(p2 − q2).

Exercise 144. An unanswered question is whether there are infinitely many
primes which are 1 more than a power of 2, such as 5 = 22 + 1.

Find two more of these primes.

Solution. Observe that 24 + 1 = 17 is prime and 28 + 1 = 257 is prime.

Exercise 145. A more general conjecture is that there exist infinitely many
primes of the form n2 + 1; for example, 257 = 162 + 1.

Exhibit five more primes of this type.

Solution. Observe that 42 + 1 = 17 is prime and 102 + 1 = 101 is prime and
142 + 1 = 197 is prime and 202 + 1 = 401 is prime, and 242 + 1 = 577 is
prime.

Exercise 146. Let p ∈ Z+.
If p is an odd prime and p 6= 5, then either 10|(p2 − 1) or 10|(p2 + 1).

Proof. Suppose p is an odd prime and p 6= 5.
Then p is odd and p is prime and p 6= 5.
Since p is odd, then p2 is odd, so p2 − 1 is even and p2 + 1 is even.
Hence, 2|(p2 − 1) and 2|(p2 + 1).
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By the division algorithm, there are unique integers q and r such that p =
5q + r with 0 ≤ r < 5, so either p = 5q or p = 5q + 1 or p = 5q + 2 or p = 5q + 3
or p = 5q + 4.

Suppose p = 5q.
Then 5|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since 5 ∈ Z+ and 5|p and 5 6= 1, then this implies 5 = p, so p = 5.
But, this contradicts the hypothesis p 6= 5.
Therefore, p 6= 5q.

Thus, either p = 5q + 1 or p = 5q + 2 or p = 5q + 3 or p = 5q + 4.
We consider these cases separately.
Case 1: Suppose p = 5q + 1.
Then p2− 1 = (5q + 1)2− 1 = 25q2 + 10q + 1− 1 = 25q2 + 10q = 5q(5q + 2),

so 5|(p2 − 1).
Case 2: Suppose p = 5q + 2.
Then p2 + 1 = (5q + 2)2 + 1 = 25q2 + 20q + 4 + 1 = 25q2 + 20q + 5 =

5(5q2 + 4q + 1), so 5|(p2 + 1).
Case 3: Suppose p = 5q + 3.
Then p2 + 1 = (5q + 3)2 + 1 = 25q2 + 30q + 9 + 1 = 25q2 + 30q + 10 =

5(5q2 + 6q + 2), so 5|(p2 + 1).
Case 4: Suppose p = 5q + 4.
Then p2 − 1 = (5q + 4)2 − 1 = 25q2 + 40q + 16 − 1 = 25q2 + 40q + 15 =

5(5q2 + 8q + 3), so 5|(p2 − 1).
Therefore, in all cases, either 5|(p2 − 1) or 5|(p2 + 1).

We consider these cases separately.
Case 1: Suppose 5|(p2 − 1).
Since 2|(p2− 1) and 5|(p2− 1), then p2− 1 is a common multiple of 2 and 5.
Since gcd(2, 5) = 1, then 2 and 5 are relatively prime.
Since p2 − 1 is a common multiple of 2 and 5, and 2 and 5 are relatively

prime, then p2 − 1 is a multiple of the product 2 · 5 = 10.
Therefore, 10|(p2 − 1).
Case 2: Suppose 5|(p2 + 1).
Since 2|(p2 + 1) and 5|(p2 + 1), then p2 + 1 is a common multiple of 2 and 5.
Since gcd(2, 5) = 1, then 2 and 5 are relatively prime.
Since p2 + 1 is a common multiple of 2 and 5, and 2 and 5 are relatively

prime, then p2 + 1 is a multiple of the product 2 · 5 = 10.
Therefore, 10|(p2 + 1).

In all cases, either 10|(p2 − 1) or 10|(p2 + 1), as desired.

Exercise 147. Another unproven conjecture is that there are an infinitude of
primes which are 1 less than a power of 2, such as 3 = 22 − 1.
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Find four more of these primes.

Solution. Observe that 23 − 1 = 7 is prime, and 25 − 1 = 31 is prime, and
27 − 1 = 127 is prime, and 213 − 1 = 8191 is prime.

Lemma 148. For all positive integers n, 3|(4n − 1).

Proof. To prove 3|(4n − 1) for all n ∈ Z+, let p(n) be the predicate ‘3|(4n − 1)’
defined over Z+.

We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Then 41 − 1 = 3 = 3 · 1, so 3|(41 − 1).
Therefore, p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Since p(k) is true, then 3|(4k − 1), so 4k − 1 = 3a for some integer a.
Observe that

4k+1 − 1 = 4k · 4− 1

= 4k(3 + 1)− 1

= 4k · 3 + 4k − 1

= 4k · 3 + 3a

= 3(4k + a).

Thus, 4k+1 − 1 = 3(4k + a).
Since 4k+1 − 1 = 3(4k + a) and 4k + a ∈ Z, then 3|(4k+1 − 1), so p(k + 1) is

true.
Hence, p(k) implies p(k + 1) for all k ∈ Z+.

Since p(1) is true, and p(k) implies p(k+1) for all k ∈ Z+, then by induction,
p(k) is true for all k ∈ Z+.

Therefore, 3|(4n − 1) for all n ∈ Z+.

Exercise 149. Let k be a positive integer.
If 2k − 1 is prime, then k is an odd, except when k = 2.

Solution. We compute 2k − 1 for various values of k.
If k = 2, then 2k − 1 = 3 = 3 is prime.
If k = 3, then 2k − 1 = 7 = 7 is prime.
If k = 4, then 2k − 1 = 15 = 3 · 5 is not prime.
If k = 5, then 2k − 1 = 31 = 31 is prime.
If k = 6, then 2k − 1 = 63 = 32 · 7 is not prime.
If k = 7, then 2k − 1 = 127 is prime.
If k = 8, then 28 − 1 = 255 = 3 · 5 · 17 is not prime.
If k = 9, then 2k − 1 = 511 = 7 · 73 is not prime.
If k = 10, then 2k − 1 = 1023 = 3 · 11 · 31 is not prime.
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If k = 11, then 2k − 1 = 2047 = 23 · 89 is not prime.
If k = 12, then 2k − 1 = 4095 = 32 · 5 · 7 · 13 is not prime.
We make the following observations.
1. If k = 2, then 2k − 1 is prime and k is even.
2. If k > 2 and k is odd, then 2k − 1 can be prime or not prime.
3. If k > 2 and k is even, then 2k − 1 is not prime.

Proof. We must prove:
1. If 2k − 1 is prime and k = 2, then k is not odd.
2. If 2k − 1 is prime and k 6= 2, then k is odd.

We first prove: if 2k − 1 is prime and k = 2, then k is not odd.
Suppose 2k − 1 is prime and k = 2.
Then k = 2.
Since 2 is even, then 2 is not odd.
Since k = 2 and 2 is not odd, then k is not odd, as desired.

We next prove: if 2k − 1 is prime and k 6= 2, then k is odd.
Suppose 2k − 1 is prime and k 6= 2.
We must prove k is odd.
Suppose for the sake of contradiction k is not odd.
Then k is even, so k = 2n for some integer n.
Since k ∈ Z+ and 2 ∈ Z+ and k = 2n, then n ∈ Z+.

Let p = 2k − 1.
Then p is prime.
We divide p by 3.
By the division algorithm, there are unique integers q and r such that p =

3q + r and 0 ≤ r < 3, so either p = 3q or p = 3q + 1 or p = 3q + 2.
We consider these cases separately.
Case 1: Suppose p = 3q.
Then 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since 3 ∈ Z+ and 3|p and 3 6= 1, then 3 = p.
Hence, 3 = p = 2k − 1, so 4 = 2k.
Since 2k = 4 and k ∈ Z+, then k = 2.
But, k 6= 2, by hypothesis.
Therefore, p 6= 3q.
Case 2: Suppose p = 3q + 1.
Then 3q+ 1 = p = 2k− 1 = 22n− 1 = (22)n− 1 = 4n− 1, so 3q+ 1 = 4n− 1.
By the division algorithm, 1 is the unique remainder when 4n − 1 is divided

by 3.
By lemma 148, 3|(4n − 1) for all n ∈ Z+.
Since n ∈ Z+, then 3|(4n − 1).
Hence, the remainder is 0 when 4n − 1 is divided by 3.
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Since the remainder is unique when 4n−1 is divided by 3, then the remainder
cannot be both 0 and 1.

Therefore, p 6= 3q + 1.
Case 3: Suppose p = 3q + 2.
Then 3q + 2 = p = 2k − 1, so 3q + 3 = 2k.
Hence, 2k = 3(q + 1), so 3|2k.
Since k ∈ Z+ and 2 is prime, then 2k is a product of primes.
Since 3 is prime and 3|2k and 2k is a product of primes, then 3 is one of the

primes in 2k, so 3 = 2, a contradiction.
Therefore, p 6= 3q + 2.

Since either p = 3q or p = 3q + 1 or p = 3q + 2, and p 6= 3q and p 6= 3q + 1
and p 6= 3q + 2, then we must conclude k is odd.

Proof. We must prove:
1. If 2k − 1 is prime and k = 2, then k is not odd.
2. If 2k − 1 is prime and k 6= 2, then k is odd.

We first prove: if 2k − 1 is prime and k = 2, then k is not odd.
Suppose 2k − 1 is prime and k = 2.
Then k = 2.
Since 2 is even, then 2 is not odd.
Since k = 2 and 2 is not odd, then k is not odd, as desired.

We next prove: if 2k − 1 is prime and k 6= 2, then k is odd.
Suppose 2k − 1 is prime and k 6= 2.
Let p = 2k − 1.
Then p is prime.

We must prove k is odd.
Suppose for the sake of contradiction k is not odd.
Then k is even, so k = 2n for some integer n.
Since k = 2n and k ∈ Z+ and 2 ∈ Z+, then n ∈ Z+.
Observe that

p = 2k − 1

= 22n − 1

= (2n)2 − 1

= (2n − 1)(2n + 1).

Hence, p = (2n − 1)(2n + 1).
Since n ∈ Z+, then 2n ∈ Z, so 2n − 1 ∈ Z and 2n + 1 ∈ Z.

Since k ∈ Z+, then k ≥ 1.
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Suppose k = 1.
Then p = 21 − 1 = 1, so p = 1 is prime.
But, 1 is not prime.
Therefore, k 6= 1.

Since k ≥ 1 and k 6= 1, then k > 1.
Since k ∈ Z+ and k > 1 and k 6= 2, then k > 2.
Since 2n = k and k > 2, then 2n > 2, so n > 1.

Since n > 1, then 2n > 2, so 2n − 1 > 1.
Since 2n − 1 > 1 and 1 > 0, then 2n − 1 > 0.
Since 2n − 1 ∈ Z and 2n − 1 > 0, then 2n − 1 ∈ Z+.
Since n ∈ Z+, then 2n > 0, so 2n + 1 > 1.
Since 2n + 1 > 1 and 1 > 0, then 2n + 1 > 0.
Since 2n + 1 ∈ Z and 2n + 1 > 0, then 2n + 1 ∈ Z+.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p = (2n − 1)(2n + 1) and 2n − 1 ∈ Z+ and 2n + 1 ∈ Z+, then one of

the factors 2n − 1 and 2n + 1 must be 1, so either 2n − 1 = 1 or 2n + 1 = 1.

Suppose 2n − 1 = 1.
Then 2n = 2.
Since 2n = 2 and n ∈ Z+, then n = 1.
But, n > 1, so n 6= 1.
Therefore, 2n − 1 6= 1.

Suppose 2n + 1 = 1.
Then 2n = 0.
Since n ∈ Z+ and 2n = 0, then 0 is a positive integral power of 2.
But, there is no positive integer n such that 2n = 0.
Therefore, 2n + 1 6= 1.

Since either 2n − 1 = 1 or 2n + 1 = 1, and 2n − 1 6= 1 and 2n + 1 6= 1, then
we must conclude k is odd, as desired.

Proof. We must prove:
1. If 2k − 1 is prime and k = 2, then k is not odd.
2. If 2k − 1 is prime and k 6= 2, then k is odd.

We first prove: if 2k − 1 is prime and k = 2, then k is not odd.
Suppose 2k − 1 is prime and k = 2.
Then k = 2.
Since 2 is even, then 2 is not odd.
Since k = 2 and 2 is not odd, then k is not odd, as desired.
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We next prove: if 2k − 1 is prime and k 6= 2, then k is odd.
Let p = 2k − 1.
Then p is prime.
Since k ∈ Z+, then k ≥ 1.

Suppose k = 1.
Then p = 21 − 1 = 1, so p = 1 is prime.
But, 1 is not prime.
Therefore, k 6= 1.

Since k ≥ 1 and k 6= 1, then k > 1.
Since k ∈ Z+ and k > 1 and k 6= 2, then k > 2.

We must prove k is odd.
Suppose for the sake of contradiction k is not odd.
Then k is even, so k = 2n for some integer n.
Thus, p = 2k − 1 = 22n − 1 = (2n)2 − 1 = (2n − 1)(2n + 1).
Since 2n = k and k > 2, then 2n > 2, so n > 1.
Since n > 1 and 1 > 0, then n > 0.
Since n ∈ Z and n > 0, then n ∈ Z+.
Since n ∈ Z+, then 2n ∈ Z, so 2n − 1 ∈ Z and 2n + 1 ∈ Z.

Since n > 0 and 1 < 2, then n < 2n, so 2n < 22n.
Hence, 2n − 1 < 22n − 1.

Since n > 1, then 2n > 2, so 2n − 1 > 1.
Since 1 < 2n − 1 and 2n − 1 < 22n − 1, then 1 < 2n − 1 < 22n − 1.
Therefore, 1 < 2n − 1 < p.

Since 2n > 2, then 2n + 2n > 2n + 2.
Hence, 2(2n) = 2n+1 > 2n + 2.
Since 2n > 2 and 2n > 0, then 2n · 2n > 2 · 2n = 2n+1 > 2n + 2.
Thus, (2n)2 > 2n + 2, so 22n > 2n + 2.
Consequently, 22n − 1 > 2n + 1.

Since n > 0, then 2n > 0, so 2n + 1 > 1.
Since 1 < 2n + 1 and 2n + 1 < 22n − 1, then 1 < 2n + 1 < 22n − 1.
Therefore, 1 < 2n + 1 < p.

Since 2n − 1 ∈ Z and 2n + 1 ∈ Z and 1 < 2n − 1 < p and 1 < 2n + 1 < p and
p = (2n − 1)(2n + 1), then p is composite.

But, this contradicts p is prime.
Therefore, k is odd.
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Exercise 150. Compute the prime factorization of the integers:
a. 1234
b. 10140
c. 36000

Solution. For part a, observe that 1234 = 2 · 617.
For part b, observe that 10140 = 22 · 3 · 5 · 132.
For part c, observe that 36000 = 25 · 32 · 53.

Exercise 151. Let S = {3k + 1 : k ∈ Z+ ∨ k = 0}.
Let a ∈ S.
Define a > 1 to be prime iff a cannot be factored into two smaller integers

in S.
Example is 10 and 25 are prime, but 16 = 4∗4 and 28 = 4∗7 are not prime.
a. Prove any member of S greater than 1 is either prime or a product or

primes.
b. Give an example to show that it is possible for an integer in S to be

factored into primes in more than one way.

Solution. Since 1 ∈ S, but 1 6> 1, then 1 does not satisfy the definition of
prime in S.

Therefore we exclude consideration of 1 ∈ S being prime or not prime in S.

Primes in S include:
4 = 1 · 4, since 1 ∈ S and 4 ∈ S and 1 < 4, but 4 6< 4.
7 = 1 · 7
10 = 1 · 10
13 = 1 · 13
19 = 1 · 19
22 = 1 · 22
25 = 1 · 25
31 = 1 · 31
34 = 1 · 34
37 = 1 · 37
43 = 1 · 43
46 = 1 · 46
55 = 1 · 55
58 = 1 · 58
61 = 1 · 61
67 = 1 · 67

Composites in S include:
16 = 4 · 4, since 4 ∈ S and 4 < 16.
28 = 4 · 7, since 4 ∈ S and 7 ∈ S and 4 < 28 and 7 < 28.
40 = 4 · 10, since 4 ∈ S and 10 ∈ S and 4 < 40 and 10 < 40.
49 = 7 · 7
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52 = 4 · 13
64 = 4 · 16
70 = 7 · 10

Proof. We prove : any member of S greater than 1 is either prime or a product
of primes.

Let a be an arbitrary element of S greater than 1.
Then a ∈ S and a > 1.
To prove a is either prime or a product of primes, we prove the equivalent

statement : if a is not prime, then a is a product of primes.
Suppose a is not prime.
Since a ∈ S, then a = 3k + 1 for some integer k with k ≥ 0.

Suppose k = 0.
Then a = 3 · 0 + 1 = 1, so a = 1.
But, a > 1, so a 6= 1.
Therefore, k 6= 0.

Since k ≥ 0 and k 6= 0, then k > 0.
Since a > 1 and a is not prime in S, then a can be factored into smaller

integers in S.
Thus, there exist integers x ∈ S and y ∈ S such that a = xy and x < a and

y < a.
Since x ∈ S, then x = 3m + 1 for some integer m with m ≥ 0.
Since y ∈ S, then y = 3n + 1 for some integer n with n ≥ 0.
We can show that m > 0 and n > 0.
Since x ∈ Z+ and y ∈ Z+, then either x < y or x = y or x > y.
Without loss of generality, assume either x < y or x = y.
We consider these cases separately.
Case 1: Suppose x = y.
Then 3m + 1 = x = y = 3n + 1, so 3m + 1 = 3n + 1.
Hence, 3m = 3n, so m = n.
Either m ∈ S or m 6∈ S.
TODO: Finish proof.
Can x be factored into smaller factors in S?
Should we divide x by 3 using the division algorithm?

Solution. For part b.
NO
TODO: Fix this!
This example does not work.
Let s = 280 = 3 · 93 + 1.
Then s ∈ S.
Observe that s = 280 = 4 · 70 = 10 · 28.
Since 4 = 3 · 1 + 1, then 4 ∈ S
Since 70 = 3 · 23 + 1, then 70 ∈ S.
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Since 10 = 3 · 3 + 1, then 10 ∈ S.
Since 28 = 3 · 9 + 1, then 28 ∈ S.

Exercise 152. It is conjectured that every even integer can be written as the
difference of two consecutive primes in infinitely many ways.

For example, 6 = 29− 23 = 137− 131 = 599− 593 = 1019− 1013 = . . . .
Express the integer 10 as the difference of two consecutive primes in fifteen

ways.

Solution. Observe that

10 = 13− 3

= 17− 7

= 23− 13

= 29− 19

= 41− 31

= 47− 37

= 53− 43

= 71− 61

= 83− 73

= 89− 79

= 107− 97

= 113− 103

= 137− 127

= 149− 139

= 167− 157.

Exercise 153. Let a ∈ Z+.
Then a > 1 is a perfect square iff in the canonical form of a all the exponents

of the primes are even integers.

Proof. TODO We’ve already done this. So find the proof in one of the exercises
and copy it here and clean up the proof to make it coherent, clear.

Lemma 154. Each prime factor of a square number greater than one
has even exponent.

Let n ∈ Z+ and n > 1.
Then each prime factor of n2 has even exponent.

Proof. Since n > 1, then by the Fundamental Theorem of Arithmetic., n has a
unique canonical prime decomposition n = pe11 ∗p

e2
2 ∗∗∗p

ek
k for primes p1, p2, ..., pk

and positive integers e1, e2, ..., ek such that p1 < p2 < ... < pk.
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Observe that n2 = (pe11 ∗ p
e2
2 ∗ ∗ ∗ p

ek
k )2 = p2e11 ∗ p2e22 ∗ ∗ ∗ p2ekk .

Therefore, each of the exponents 2ei is even.

Exercise 155. An integer is said to be square-free if it is not divisible by the
square of any integer greater than 1.

a. Any integer n > 1 is square-free iff n can be factored into a product of
distinct primes.

b. Every integer n > 1 is the product of a square-free integer and a perfect
square.

Proof. TODO

Exercise 156. Any integer n can be expressed as n = 2km, where k ≥ 0 and
m is an odd integer.

Proof. TODO

Exercise 157. It is conjectured that there are infinitely many primes p such
that p + 50 is also prime.

Find 15 of these primes.

Solution. We use SageMath to write a simple function to compute primes p
and p + 50.

Below is a list of some primes.

prime p|p + 50

(3, 53)

(11, 61)

(17, 67)

(23, 73)

(29, 79)

(47, 97)

(53, 103)

(59, 109)

(89, 139)

(101, 151)

(107, 157)

(113, 163)

(131, 181)

(149, 199)

(173, 223).
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Chapter 3.2 The Sieve of Eratosthenes

Chapter 3.2 Problems

TODO
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