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Dudley problems section 1

Exercise 1. Let k,n € Z.
Then ged(k,n + k) = 1 iff ged(k,n) = 1.

Proof. Suppose ged(k,n) = 1.

Then there exist integers x,y such that xzk + yn = 1.

Thus, l =zk+yn =ak —yk+yk+yn=k(z—y) +y(k+n)=(x —y)k+
y(n+ k).

Since z —y and y are integers and (x —y)k+y(n—+k) = 1, then ged(k, n+k) =
1. O

Proof. Conversely, suppose ged(k,n + k) = 1.
Then there exist integers s, ¢ such that sk +t(n + k) = 1.
Thus, 1 = sk +tn + tk = sk + tk +tn = (s + t)k + tn.
Since s+t and ¢ are integers and (s + t)k + ¢tn = 1, then ged(k,n) =1. O

Exercise 2. Let k,n € Z.
Then ged(k,n + k) = d iff ged(k,n) = d.

Proof. Suppose ged(k,n) = d.

Then d € Z* and d|k and d|n and if ¢ is any common divisor of k and n,
then c|d.

Since d|n and d|k, then d divides the sum n + k, so d|(n + k).

Since d|k and d|(n + k), then d is a common divisor of k and n + k.

Let ¢ be any common divisor k and n + k.
Then c|k and c|(n + k), so ¢ divides the difference (n + k) — k = n.
Hence, c|n.
Since c|k and c|n, then ¢ is a common divisor of k and n, so c|d.
Therefore, any common divisor of k and n + k divides d.



Since d € Z* and d is a common divisor of k and n + k and any common
divisor of k and n+ k divides d, then by definition of ged, d = ged(k,n+k). O

Proof. Conversely, suppose ged(k,n + k) = d.
Then d € Z" and d|k and d|(n + k) and if ¢ is any common divisor of &k and
n + k, then c|d.
Since d|k and d|(n + k), then d divides the difference (n + k) — k = n.
Since d|k and d|n, then d is a common divisor of k and n.

Let ¢ be any common divisor of k£ and n.
Then c|k and c|n, so ¢ divides the sum n + k.
Since c|k and c|(n + k), then ¢ is a common divisor of k and n + k, so c|d.
Hence, any common divisor of k and n divides d.
Since d € Z* and d is a common divisor k and n and any common divisor
of k and n divides d, then by definition of ged, d = ged(k, n). O

Exercise 3. Let k,n € Z.
Then ged(k,n + rk) = d for all r € Z iff ged(k,n) = d.

Proof. Suppose ged(k,n) = d.
Then d € Z* and d|k and d|n and if ¢ is any common divisor of k and n,
then c|d.

Let r € Z.
Since d|k, then d|rk.
Since d|n and d|rk, then d divides the sum n + rk.
Since d|k and d|(n + rk), then d is a common divisor of k& and n + rk.

Let ¢ be any common divisor of k and n + rk.
Then c|k and ¢|(n + rk).
Since c|k, then c|rk.
Since ¢|(n +rk) and c|rk, then ¢ divides the difference (n+rk) —rk = n, so
cln.
Since c|k and ¢|n, then ¢ is a common divisor of k and n, so c|d.
Hence, any common divisor of k and n + rk divides d.

Since d € ZT and d is a common divisor of k and n + rk and any common
divisor of k and n+rk divides d, then by definition of ged, d = ged(k, n+rk). O

Proof. Conversely, suppose ged(k,n + rk) = d for all r € Z.

Let » = 0.
Then d = ged(k,n + rk) = ged(k,n + 0k) = ged(k,n + 0) = ged(k, n).
Therefore, ged(k,n) = d. O

Exercise 4. Let x € R and a,b € Z.
L. If 22 4+ ax + b = 0 has an integer root, then the root divides b.
IL. If 22 4+ ax + b = 0 has a rational root, then the root is an integer.



Proof. We prove 1.
Suppose the equation 2 + ax + b = 0 has an integer root.
Let r be an integer root of 2 + ax 4+ b = 0.
Thenr € Zand > +ar +b=0,s0 b= —r? —ar =r(—r — a).
Since —r —a € Z and b = r(—r — a), then r divides b. O

Proof. We prove II.
Suppose the equation x2 + az + b = 0 has a rational root.
Let ¢ be a rational root of 22 4+ ax + b = 0.
Then g € Q and ¢® + ag + b = 0.
Since ¢ € Q, then there exist integers 7, s with s # 0 such that ¢ = .
Assume ¢ is in lowest terms. That is, assume ged(r, s) = 1, so 1 = ged(s, 7).
Since (£)%+a-(£)4+b = 0and s # 0, then Z—z—l—%—i—b =0, sor?+ars+bs® = 0.
Thus, r? = —ars — bs? = s(—ar — bs).
Since s € Z, then sls, so s divides any multiple of s.
Hence, s divides (—ar — bs)s = s(—ar — bs), so s divides 2.
Since s|r? and ged(s,r) = 1, then s|r.
Thus, r = st for some integer ¢, so ¢ = % = %t =t.

Therefore, ¢ is an integer. O



