Book Dudley Exercises

Jason Sass

April 19, 2025

Dudley problems section 1

Exercise 1. Let $k, n \in \mathbb{Z}$. Then gcd(k, n + k) = 1 iff gcd(k, n) = 1. *Proof.* Suppose gcd(k, n) = 1. Then there exist integers x, y such that xk + yn = 1. Thus, 1 = xk + yn = xk - yk + yk + yn = k(x - y) + y(k + n) = (x - y)k + y(n + k). Since x - y and y are integers and (x - y)k + y(n + k) = 1, then gcd(k, n + k) = 1.

Proof. Conversely, suppose gcd(k, n + k) = 1. Then there exist integers s, t such that sk + t(n + k) = 1. Thus, 1 = sk + tn + tk = sk + tk + tn = (s + t)k + tn. Since s + t and t are integers and (s + t)k + tn = 1, then gcd(k, n) = 1. \Box

Exercise 2. Let $k, n \in \mathbb{Z}$. Then gcd(k, n + k) = d iff gcd(k, n) = d.

Proof. Suppose gcd(k, n) = d.

1.

Then $d \in \mathbb{Z}^+$ and d|k and d|n and if c is any common divisor of k and n, then c|d.

Since d|n and d|k, then d divides the sum n + k, so d|(n + k). Since d|k and d|(n + k), then d is a common divisor of k and n + k.

Let c be any common divisor k and n + k. Then c|k and c|(n + k), so c divides the difference (n + k) - k = n. Hence, c|n. Since c|k and c|n, then c is a common divisor of k and n, so c|d. Therefore, any common divisor of k and n + k divides d. Since $d \in \mathbb{Z}^+$ and d is a common divisor of k and n + k and any common divisor of k and n + k divides d, then by definition of gcd, d = gcd(k, n + k). \Box

Proof. Conversely, suppose gcd(k, n + k) = d.

Then $d \in \mathbb{Z}^+$ and d|k and d|(n+k) and if c is any common divisor of k and n+k, then c|d.

Since d|k and d|(n+k), then d divides the difference (n+k) - k = n. Since d|k and d|n, then d is a common divisor of k and n.

Let c be any common divisor of k and n.

Then c|k and c|n, so c divides the sum n + k.

Since c|k and c|(n+k), then c is a common divisor of k and n+k, so c|d. Hence, any common divisor of k and n divides d.

Since $d \in \mathbb{Z}^+$ and d is a common divisor k and n and any common divisor of k and n divides d, then by definition of gcd, d = gcd(k, n).

Exercise 3. Let $k, n \in \mathbb{Z}$.

Then gcd(k, n + rk) = d for all $r \in \mathbb{Z}$ iff gcd(k, n) = d.

Proof. Suppose gcd(k, n) = d.

Then $d \in \mathbb{Z}^+$ and d|k and d|n and if c is any common divisor of k and n, then c|d.

Let $r \in \mathbb{Z}$. Since d|k, then d|rk. Since d|n and d|rk, then d divides the sum n + rk. Since d|k and d|(n + rk), then d is a common divisor of k and n + rk.

Let c be any common divisor of k and n + rk.

Then c|k and c|(n+rk).

Since c|k, then c|rk.

Since c|(n+rk) and c|rk, then c divides the difference (n+rk) - rk = n, so c|n.

Since c|k and c|n, then c is a common divisor of k and n, so c|d. Hence, any common divisor of k and n + rk divides d.

Since $d \in \mathbb{Z}^+$ and d is a common divisor of k and n + rk and any common divisor of k and n + rk divides d, then by definition of gcd, d = gcd(k, n + rk). \Box

Proof. Conversely, suppose gcd(k, n + rk) = d for all $r \in \mathbb{Z}$. Let r = 0. Then d = gcd(k, n + rk) = gcd(k, n + 0k) = gcd(k, n + 0) = gcd(k, n). Therefore, gcd(k, n) = d.

Exercise 4. Let $x \in \mathbb{R}$ and $a, b \in \mathbb{Z}$.

I. If $x^2 + ax + b = 0$ has an integer root, then the root divides b. II. If $x^2 + ax + b = 0$ has a rational root, then the root is an integer.

Proof. We prove I.

Suppose the equation $x^2 + ax + b = 0$ has an integer root. Let r be an integer root of $x^2 + ax + b = 0$. Then $r \in \mathbb{Z}$ and $r^2 + ar + b = 0$, so $b = -r^2 - ar = r(-r - a)$. Since $-r - a \in \mathbb{Z}$ and b = r(-r - a), then r divides b.

Proof. We prove II.

Suppose the equation $x^2 + ax + b = 0$ has a rational root. Let q be a rational root of $x^2 + ax + b = 0$. Then $q \in \mathbb{Q}$ and $q^2 + aq + b = 0$. Since $q \in \mathbb{Q}$, then there exist integers r, s with $s \neq 0$ such that $q = \frac{r}{s}$. Assume q is in lowest terms. That is, assume gcd(r, s) = 1, so 1 = gcd(s, r). Since $(\frac{r}{s})^2 + a \cdot (\frac{r}{s}) + b = 0$ and $s \neq 0$, then $\frac{r^2}{s^2} + \frac{ar}{s} + b = 0$, so $r^2 + ars + bs^2 = 0$. Thus, $r^2 = -ars - bs^2 = s(-ar - bs)$. Since $s \in \mathbb{Z}$, then s|s, so s divides any multiple of s. Hence, s divides (-ar - bs)s = s(-ar - bs), so s divides r^2 . Since $s|r^2$ and gcd(s, r) = 1, then s|r. Thus, r = st for some integer t, so $q = \frac{r}{s} = \frac{st}{s} = t$. Therefore, q is an integer.