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Dudley problems section 1

Exercise 1. Let k, n ∈ Z.
Then gcd(k, n + k) = 1 iff gcd(k, n) = 1.

Proof. Suppose gcd(k, n) = 1.
Then there exist integers x, y such that xk + yn = 1.
Thus, 1 = xk + yn = xk− yk + yk + yn = k(x− y) + y(k + n) = (x− y)k +

y(n + k).
Since x−y and y are integers and (x−y)k+y(n+k) = 1, then gcd(k, n+k) =

1.

Proof. Conversely, suppose gcd(k, n + k) = 1.
Then there exist integers s, t such that sk + t(n + k) = 1.
Thus, 1 = sk + tn + tk = sk + tk + tn = (s + t)k + tn.
Since s + t and t are integers and (s + t)k + tn = 1, then gcd(k, n) = 1.

Exercise 2. Let k, n ∈ Z.
Then gcd(k, n + k) = d iff gcd(k, n) = d.

Proof. Suppose gcd(k, n) = d.
Then d ∈ Z+ and d|k and d|n and if c is any common divisor of k and n,

then c|d.
Since d|n and d|k, then d divides the sum n + k, so d|(n + k).
Since d|k and d|(n + k), then d is a common divisor of k and n + k.

Let c be any common divisor k and n + k.
Then c|k and c|(n + k), so c divides the difference (n + k)− k = n.
Hence, c|n.
Since c|k and c|n, then c is a common divisor of k and n, so c|d.
Therefore, any common divisor of k and n + k divides d.



Since d ∈ Z+ and d is a common divisor of k and n + k and any common
divisor of k and n+k divides d, then by definition of gcd, d = gcd(k, n+k).

Proof. Conversely, suppose gcd(k, n + k) = d.
Then d ∈ Z+ and d|k and d|(n+ k) and if c is any common divisor of k and

n + k, then c|d.
Since d|k and d|(n + k), then d divides the difference (n + k)− k = n.
Since d|k and d|n, then d is a common divisor of k and n.

Let c be any common divisor of k and n.
Then c|k and c|n, so c divides the sum n + k.
Since c|k and c|(n + k), then c is a common divisor of k and n + k, so c|d.
Hence, any common divisor of k and n divides d.
Since d ∈ Z+ and d is a common divisor k and n and any common divisor

of k and n divides d, then by definition of gcd, d = gcd(k, n).

Exercise 3. Let k, n ∈ Z.
Then gcd(k, n + rk) = d for all r ∈ Z iff gcd(k, n) = d.

Proof. Suppose gcd(k, n) = d.
Then d ∈ Z+ and d|k and d|n and if c is any common divisor of k and n,

then c|d.

Let r ∈ Z.
Since d|k, then d|rk.
Since d|n and d|rk, then d divides the sum n + rk.
Since d|k and d|(n + rk), then d is a common divisor of k and n + rk.

Let c be any common divisor of k and n + rk.
Then c|k and c|(n + rk).
Since c|k, then c|rk.
Since c|(n+ rk) and c|rk, then c divides the difference (n+ rk)− rk = n, so

c|n.
Since c|k and c|n, then c is a common divisor of k and n, so c|d.
Hence, any common divisor of k and n + rk divides d.

Since d ∈ Z+ and d is a common divisor of k and n + rk and any common
divisor of k and n+rk divides d, then by definition of gcd, d = gcd(k, n+rk).

Proof. Conversely, suppose gcd(k, n + rk) = d for all r ∈ Z.
Let r = 0.
Then d = gcd(k, n + rk) = gcd(k, n + 0k) = gcd(k, n + 0) = gcd(k, n).
Therefore, gcd(k, n) = d.

Exercise 4. Let x ∈ R and a, b ∈ Z.
I. If x2 + ax + b = 0 has an integer root, then the root divides b.
II. If x2 + ax + b = 0 has a rational root, then the root is an integer.
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Proof. We prove I.
Suppose the equation x2 + ax + b = 0 has an integer root.
Let r be an integer root of x2 + ax + b = 0.
Then r ∈ Z and r2 + ar + b = 0, so b = −r2 − ar = r(−r − a).
Since −r − a ∈ Z and b = r(−r − a), then r divides b.

Proof. We prove II.
Suppose the equation x2 + ax + b = 0 has a rational root.
Let q be a rational root of x2 + ax + b = 0.
Then q ∈ Q and q2 + aq + b = 0.
Since q ∈ Q, then there exist integers r, s with s 6= 0 such that q = r

s .
Assume q is in lowest terms. That is, assume gcd(r, s) = 1, so 1 = gcd(s, r).

Since ( r
s )2+a·( r

s )+b = 0 and s 6= 0, then r2

s2 + ar
s +b = 0, so r2+ars+bs2 = 0.

Thus, r2 = −ars− bs2 = s(−ar − bs).
Since s ∈ Z, then s|s, so s divides any multiple of s.
Hence, s divides (−ar − bs)s = s(−ar − bs), so s divides r2.
Since s|r2 and gcd(s, r) = 1, then s|r.
Thus, r = st for some integer t, so q = r

s = st
s = t.

Therefore, q is an integer.
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