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Natural number system

TODO
Rework the propositions regarding natural numbers so that do not rely on
any axioms or set theory nonsense.

Proposition 1. The successor of a natural number is unique.

Proof. Let n € N.
Each natural number has a successor, by the axiom for N, so n has a suc-
CEssor.

Suppose a’ € N and b € N are successors of n.
Then a’ is the concatenation of n and 1 and ¥ is the concatenation of n and

The concatenation of 1 to n is n followed by 1 and this occurs in exactly one
way.

So, any concatenation of n by 1 must be the same.

Therefore, a’ = b, so the successor is unique. O

Theorem 2. laws of addition
Let k,m,n be natural numbers.
1. m+n=n+m. (addition is commutative)
2. (k+m)+n=Fk+ (m+n). (addition is associative)
3. Let s be the successor operation on a natural number n.
Then s(n) =n+ 1.

Proof. We prove 1.

If we combine m ones and n ones, then the order in which we combine doesn’t
matter if we’re interested in just the total number of ones.

Therefore, m +n =n 4+ m. O

Proof. We prove 2.
The total number of ones is the same whether we concatenate the ones of
the first two numbers and then concatenate the ones from the third number, or



whether we concatenate the ones of the second two numbers and then concate-
nate the ones from the first number.
Therefore, (k+m)+n=k+ (m+n). O

Proof. We prove 3.

The successor of n is the natural number formed by the concatenation of n
with |.

Therefore, s(n) =n+ 1. O

Theorem 3. laws of multiplication
Let k,m,n be natural numbers.
1. mn = nm. (multiplication is commutative)
2. (km)n = k(mn). (multiplication is associative)
3. n x 1 =n (multiplicative identity)

Proof. We prove 1.
TODO =

Proposition 4. The relation < over N is transitive.
Let a,b,c € N.
If a < b and b < ¢, then a < c.

Proof. Suppose a < b and b < c.

Then there exists x € N such that a + x = b and there exists y € N such
that b4y = c.

Thus, c=b+y=(a+2)+y=a+ (x+y).

Since N is closed under + and z,y € N then = + y € N.

Hence a < ¢, by definition of <.

Therefore, < is transitive. O

Construction of 7Z

Theorem 5. algebraic properties of addition in Z
1. Addition is associative.
(a+b)+c=a+ (b+c) forall a,b,c € Z.
2. Addition is commutative.
a+b=0b+a foralla,beZ.
3. Additive identity is zero.
a+0=0+a=a forallacZ.
4. Additive inverse of a is —a.
For all a € Z there exists —a € Z such that a + (—a) = 0.

Proof. TODO O

Proof. We prove 3.
TODO Prove a + 0 = a or confirm if this should be an axiom for integers.
Since addition is commutative, then a + 0 = 0 + a.
Therefore, a =a+ 0 =0+ a. O



Theorem 6. algebraic properties of multiplication in Z
1. Multiplication is associative.
(ab)e = a(be) for all a,b,c € Z.
2. Multiplication is commutative.
ab = ba for all a,b € 7.
3. Multiplicative identity is one.
a-1=1-a=a forall a€Z.
4. Multiplication by zero.
a0 =0a =0 for all a € Z.
5. Multiplication is distributive over addition.
a(b+c) = ab+ ac for all a,b,c € Z. (left distributive law)
(b+ c)a =ba + ca for all a,b,c € Z. (right distributive law)

Proof. TODO O

Proof. We prove 3.
TODO Prove a -1 = a or confirm if this should be an axiom for integers.
Since multiplication is commutative, then a -1 =1 - a.
Therefore,a =a-1=1"-a. O

Proposition 7. For all a,be Z
1.a>0iffacZ"
2.a<0iff —acZ™.

3. a<biffb—a>0.

Proof. We prove 1.
Let a € Z.
Observe that

a>0 & 0<a

& a-0e€z"
& a+(-0)ezt
& a+0ezt
& acZt.
Therefore, a > 0 iff a € Z7T. O
Proof. We prove 2.
Let a € Z.
Observe that a < 0iff 0 —a € ZT iff 0+ (—a) € ZT iff —a € ZT.
Therefore, a < 0 iff —a € Z7T. O
Proof. We prove 3.
Let a € Z.
Observe that a < biff b—a € Z* iff b—a > 0.
Therefore, a < b iff b —a > 0. O



Theorem 8. Z satisfies transitivity and trichotomy laws.
1. a < a s false for all a € Z. (Therefore, < is not reflexive.)
2. < is transitive.
For all a,b,c € Z, if a < b and b < ¢, then a < c.
3. For every a € Z, exactly one of the following is true (trichotomy):
.a>0
1. a=0
1. a <0
4. For every a,b € Z, exactly one of the following is true (trichotomy):
i.a>b
. a=1"
1. a <b

Proof. We prove 1.
Let a € Z.
By the trichotomy axiom for Z*, 0 € Z*,s0 a —a & Z*.
Therefore, a £ a, by definition of <. O

Proof. We prove 2.
Suppose a < b and b < c.
Thenb—a€Z" and c—b € ZT.
Since the sum of positive integers is positive, then (¢ —b) + (b —a) € Z*.
Observe that

(c=b)+(b—a) = (c+(=b)+ (b+(-a))
= e+ (-0 +b) + (~a)
= ¢+0+(—a)
~ ot (a)
Therefore, c —a € Z*, s0 a < c. O

Proof. We prove 3.
Let a € Z.
By the trichotomy axiom for Z™, exactly one of the following is true: a € Z™,
a=0, —acZt.
By proposition 7, we have a € ZT iff a > 0 and —a € Z7 iff a < 0.
Therefore, exactly one of the following is true: a >0, a =0, a < 0. O

Proof. We prove 4.

Let a,b € Z.

Since Z is closed under subtraction, then a — b € Z.

By the trichotomy axiom for Z¥, exactly one of the following is true: a —b €
Zt,a—b=0,—(a—0b) € Z".

Observe that a —b € ZT iff b < a iff a > b.

Observe that a — b= 0 iff a = .



Observe that —(a —b) € ZT iff —a+be ZT iff b—a € ZT iff a < b.
Therefore, exactly one of the following is true: a > b, a = b, a < b.

Theorem 9. order relation rules with ring operations in Z
Let a,b,c € Z.
1. Addition preserves order.
Ifa<b, thena+c<b+ec.
2. Subtraction preserves order.
Ifa < b, thena—c<b—c.
3. Multiplication by positive integer preserves order.
If a < b and c > 0, then ac < bc.
4. Multiplication by negative integer reverses order.
If a < b and ¢ < 0, then ac > bc.

Proof. We prove 1.
Suppose a < b.
Then b —a € ZT.
Observe that

b—a = b+ (—a)

b+0+ (—a)

= b+[c+(—¢)]+ (—a)
(b+¢)+ [-c+ (—a)]
(b+ce)+[-a+ (—0)]
= (b+c)—(a+c).

Therefore, (b+c¢) — (a+c) €ZT,s0a+c<b+c.

Proof. We prove 2.
Suppose a < b.
Then b—a € Z™.
Observe that

b—a = b+ (—a)
= b+0+(—a)
= bt (-cto)+(-a)
= Bt (=) + e+ (—a)
(b )+ [c+ (~a)]
= (b—c)+(—a+c)
(b—c)—(a—c).

Therefore, (b—¢) —(a—c) €ZT,s0a—c<b—c.



Proof. We prove 3.
Suppose a < b and ¢ > 0.
Then b —a € Z* and c € Z7.
Since the product of positive integers is a positive integer, then (b—a)c € Z™.
Therefore, (b —a)c = bec — ac € Z*, so ac < be. O

Proof. We prove 4.

Suppose a < b and ¢ < 0.

Then b —a € Zt and —c € ZT.

Since the product of positive integers is a positive integer, then (b—a)(—c) €
7.

Observe that

(b—a)(=c) = [b+(=a)l(—c)
= W0+ (—a)(=0
= —bc+ac

ac — be.

Hence, ac — bc € ZT, so be < ac.
Therefore, ac > be. O

Proposition 10. Let a,b,c,d € Z™T.
If a < b and c < d, then ac < bd.

Proof. Suppose a < b and ¢ < d.

Then there exists a’ € ZT such that a 4+ a’ = b and there exists ¢/ € Z* such
that c+ ¢ =d.

Let e = ac +a'c+d'c.

Since a,a’,c, ¢’ are positive integers and Z7T is closed under addition and
multiplication, then e is a positive integer.

Observe that

ac+e = ac+ (ac +d'c+dc)
= (ac+acd)+ (dc+d'c)
= alc+)+d(c+)
= (a+ad)(ct+)
bd.

Since there exists a positive integer e such that ac+e = bd, then ac < bd. [

Proposition 11. multiplication with positive and negative integers
Let a,b € Z.
1. If a > 0 and b > 0, then ab > 0.
2. If a>0 and b <0, then ab < 0.
3. Ifa<0 andb <0, then ab > 0.



Proof. We prove 1.
Suppose a > 0 and b > 0.
Since a > 0, then 0 < a.
By theorem 9, multiplication by a positive integer preserves order.
Since 0 < @ and b > 0, then we conclude 0b < ab.
Therefore, 0 < ab, so ab > 0. O

Proof. We prove 2.
Suppose a > 0 and b < 0.
Since a > 0, then 0 < a.
By theorem 9, multiplication by a negative integer reverses order.
Since 0 < a and b < 0, then we conclude 0b > ab.
Therefore, 0 > ab, so ab < 0. O

Proof. We prove 3.
Suppose a < 0 and b < 0.
By theorem 9, multiplication by a negative integer reverses order.
Since a < 0 and b < 0, then we conclude ab > 0b.
Therefore, ab > 0. O

Theorem 12. multiplicative property of zero
Let a,b € 7.
Then ab=10 iffa=0 or b =0.

Proof. We prove if a = 0 or b = 0, then ab = 0.
Suppose a =0 or b = 0.
We consider these cases separately.
Case 1: Suppose a = 0.
Then ab=0-b=0, so ab=0.
Case 2: Suppose b = 0.
Then ab=a-0=0, so ab = 0. O

Proof. Conversely, we prove if ab = 0, then either a = 0 or b = 0 by contrapos-
itive.

Suppose a # 0 and b # 0.

Then by trichotomy, either a > 0 or a < 0, and either b > 0 or b < 0.

Hence, either a > 0 and b > 0, or a > 0 and b < 0, or a < 0 and b > 0, or
a < 0andb<O0.

We consider these cases separately.

Case 1: Suppose a > 0 and b > 0.

By proposition 11, a positive integer times a positive integer is positive.

Since a > 0 and b > 0, then we conclude ab > 0.

Therefore, by trichotomy, ab # 0.

Case 2: Suppose a > 0 and b < 0.

By proposition 11, a positive integer times a negative integer is negative.

Since a > 0 and b < 0, then we conclude ab < 0.

Therefore, by trichotomy, ab # 0.



Case 3: Suppose a < 0 and b > 0.

By proposition 11, a positive integer times a negative integer is negative.
Since a < 0 and b > 0, then we conclude ab < 0.

Therefore, by trichotomy, ab # 0.

Case 4: Suppose a < 0 and b < 0.

By proposition 11, a negative integer times a negative integer is positive.
Since a < 0 and b < 0, then we conclude ab > 0.

Therefore, by trichotomy, ab # 0.

In all cases, we have ab # 0, as desired. U

Corollary 13. cancellation law for Z
Let a, bk € Z.
If ak = bk and k # 0, then a = b.

Proof. Suppose ak = bk and k # 0.
Since ak = bk, then 0 = ak — bk = (a — b)k.
By theorem 12, if (a — b)k = 0, then either a — b =0 or k = 0.
Since k # 0, then we conclude a — b = 0.
Therefore, a = b. U

Theorem 14. The relation < is a partial order over 7.

Proof. We prove < is reflexive.
Let a € Z.
Then a = a, so either a = a or a < a.
Hence, either a < a or a = a.
Therefore, a < a, so < is reflexive. O

Proof. We prove < is anti-symmetric.
To prove for all a,b € Z, if a < b and b < a, then a = b, we prove the
logically equivalent statement a < b and a # b implies b £ a for all a,b € Z.

Let a,b € Z such that a < b and a # b.

Since a < b, then either a < b or a = b.

Since a # b, then we conclude a < b, so b > a.

By the trichotomy law of Z, exactly one of the following is true: b < a, b = a,
b > a.

Since b > a, then we conclude b £ a and b # a.

Hence, b £ a, as desired.

Therefore, < is anti-symmetric. O

Proof. We prove < is transitive.
Let a,b,c € Z such that a < b and b < c.
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a<c.
Therefore, a < ¢, so < is transitive. O

Proof. Since < over Z is reflexive, anti-symmetric, and transitive, then < is a
partial order over Z. O

Theorem 15. The relation < is a total order over Z.

Proof. By theorem 14, the relation < is a partial order over Z, so (Z,<) is a
partially ordered set.

To prove < is a total order over Z, we must prove any two integers are
comparable.

Let a,b € Z.

We must prove either a < b or b < a.

By theorem 8, the trichotomy law implies exactly one of the following is
true: a < b, a=05b,a>0b.

We consider these cases separately.

Case 1: Suppose a < b.

Then a <bora=",s0a<b.

Case 2: Suppose a = b.

Then a < bora=0b,s0a<b.

Case 3: Suppose a > b.

Then b < a,sob<aorb=a.

Therefore, b < a.

In all cases, we have either a < b or b < a, as desired. O

Lemma 16. There is no integer between zero and one.
There is non € Z such that 0 < n < 1.



Proof. Suppose for the sake of contradiction there is n € Z such that 0 < n < 1.
Let S={ne€Z:0<n<1}.
Then n € S, so S # 0.

Let s € S.
Then s € Z and 0 < s < 1,50 0 < s.
Since s € Z and s > 0, then s € ZT.
Hence, s € S implies s € ZT, so S C Z™T.

Since S C Z* and S # ), then by WOP, S has a least element.
Let m be the least element of S.
Then me Sand m<sforallseS.
Since m € S, then m € Z and 0 < m < 1.
Since 0 <m < 1,then0<mandm<land 0 <m?<1.
Since m € Z, then m? € Z.
Since m? € Z and 0 < m? < 1, then m? € S.
Since m < 1and m >0, then m?> =m -m <m-1=m, so m? < m.
Thus, there is m? € S such that m? < m.
This contradicts the fact that m is the least element of S.
Therefore, there is no n € Z such that 0 <n < 1. O

Lemma 17. For alln € Z™, n > 1.

Proof. Let n € Z™* such that n # 1.
‘We must prove n > 1.

Suppose n is not greater than 1.
Then, by trichotomy, either n =1 or n < 1.
Since n # 1, then we conclude n < 1.
Since n € Z™*, then n > 0.
Thus, 0 <nandn <1,s00<n < 1.
Hence, n is an integer between 0 and 1.
But, there is no integer between 0 and 1, by lemma 16.
Therefore, n is greater than 1, so n > 1, as desired. O

Theorem 18. Principle of Mathematical Induction
Let S be a subset of Z such that
1. 1€ S (basis)
2. forallk € Z*, if k € S, then k+1 € S. (induction hypothesis)
Then S = Z7T.

Proof. Let T be the set of all positive integers not in S.
Then T ={te€Z*:t¢ S}.

10



Suppose T # ().

Since T' C Z* and T # (), then by the well-ordering principle of Z*, the set
T has a least element.

Let m be the least element of T

ThenmeT and m<zforallzecT.

Since m € T, then m € Z* and m & S.

Since m ¢ S and 1 € S, then m # 1.

By lemma 17, n > 1 for all n € Z+.

Since m € Z*, then we conclude m > 1.

Hence, either m > 1 or m = 1.

Since m # 1, then we conclude m > 1, so m — 1 > 0.

Since m € Z, then m — 1 € Z.

Sincem —1€Zandm—1>0,thenm —1¢€Z™T.

If n € ZT, then either n € Sor n & S, so either n € S or n € T.
Since m — 1 € Z*, then either m —1€ Sorm—1€T.

Since m — 1 < m and m is the least element of T, then m — 1 cannot be in T'.

Hence, m — 1 ¢ T.

Since either m —1 € Sorm —1 € T and m —1 € T, then we conclude
m—1¢€8.

By the induction hypothesis, if m—1 € ZT and m—1 € S, then (m—1)+1 =
meS.

Since m — 1 € Z* and m — 1 € S, then we conclude m € S.

Thus, we have m € § and m ¢ S, a contradiction.

Therefore, T = §.

Since Zt = SUT =SUQ =S, then S =ZT, as desired. O

Theorem 19. Principle of Mathematical Induction(strong)

Let S be a subset of ZT such that

1. 1€ S (basis)

2. forallk € Z*, if 1,2,...k € S, then k+1 € S. (strong induction
hypothesis)

Then S = Z7*.

Proof. Let T be the set of all positive integers not in S.
Then T ={t€Z" :t¢S}.

Suppose T' # 0.
Since T' C Z* and T # (), then by the well-ordering principle of Z*, the set
T has a least element.
Let m be the least element of T
ThenmeT and m <z forallxz e T.
Since m € T, then m € ZT and m € S.
Since m ¢ S and 1 € S, then m # 1.

11



By lemma 17, n > 1 for all n € Z+.

Since m € Z*, then we conclude m > 1.

Hence, either m > 1 or m = 1.

Since m # 1, then we conclude m > 1, so m — 1 > 0.
Since m € Z, then m — 1 € Z.

Sincem—1€Zand m—1>0, thenm —1¢ Z".

If n € ZT, then either n € Sor n &€ S, so either n € S or n € T.

Since 1,2,...,m — 1 are positive integers, then 1,2,...,m —1 € Z™.

Thus, each of 1,2,...,m — 1 is either an element of S or an element of T'.

Since 1 < 2 < ... <m—1< m, then 1 < m and 2 < m and ... and
m—1<m.

Hence, each of 1,2, ...,m — 1 is less than m, the least element of T.

Thus, each of 1,2,...,m — 1 cannot be in 7.

Hence, 1 ¢ T and 2 ¢ T and ... and m —1 ¢ T.

Since each of 1,2, ...,m — 1 is either an element of S or an element of T, and
1¢T and 2¢ T and ... and m — 1 € T, then we conclude 1,2,..,m —1 € S.

By the induction hypothesis, if m — 1 € Z* and 1,2,..,m — 1 € S, then
(m—1)+1=meSs.

Sincem —1€Z%* and 1,2,..,m — 1 € S, then we conclude m € S.

Thus, we have m € S and m &€ S, a contradiction.

Therefore, T = §.

Since ZT = SUT =SUD =S, then S =Z7, as desired. O
Proposition 20. The set of all non-negative integers is well-ordered.

Proof. Let S be the set of all non-negative integers.
Then S ={n €Z:n>0}.
Let T be a non-empty subset of S.
Then T'C S and T # 0.
Either 0 € T or 0 ¢ T.
We consider these cases separately.
Case 1: Suppose 0 € T'.
Since T' # 0, then let t € T'.
Since T C S, thent € S,sot€Z and t > 0.
Since t > 0, then either ¢t > 0 or t = 0.
Since 0 ¢ T and t € T, then t # 0.
Hence, t > 0.
Sincet € Z and t > 0, then t € Z™T.
Thus, t € T implies t € ZT,s0 T C Z™.

12



By the well-ordering principle of Z*, every nonempty subset of Z*1 has a least

element.

Since T C ZT and T # (), then T is a nonempty subset of Z*, so T has a
least element.

Case 2: Suppose 0 € T.

Since T # 0, let x € T

Then x € Z and = > 0.

Thus, z >0forallz €T,so0 <z forallx eT.

Since 0 € T and 0 < z for all x € T, then 0 is the least element of T'.

Therefore, T has a least element.

In all cases, T has a least element.
Hence, if T" is a nonempty subset of .S, then T" has a least element, so every
nonempty subset of S has a least element.
Therefore, S is well-ordered. U

Theorem 21. Archimedean property of 7=
Leta,bec Z™T.
Then there exists n € ZT such that nb > a.

Proof. Suppose for the sake of contradiction nb < a for all n € Z™T.
Let S={a—nb:neZ"}.
Since 1 € Z*, then a — (1)b=a—b € S, s0 S # .

We prove S C Z+ U {0}.

Let z € S.

Then x = a — nb for some n € Z7T.

Since n € Z™, then nb < a, so a > nb.

Hence, a — nb > 0.

Since a,b,n € Z and Z is closed under subtraction and multiplication, then
a—nbeZ.

Since a — nb € Z and a — nb > 0, then a —nb € ZT U {0}, so x € ZT U {0}.

Therefore, S C Z* U {0}.

By proposition 20, the set of all non-negative integers is well-ordered, so every
nonempty subset of non-negative integers has a least element.
Since S C ZT U {0} and S # 0, then we conclude S has a least element.
Let m be the least element of S.
Then me Sand m <z forallxz e S.

Since m € S, then m = a — kb for some k € Z*.

Since k € Z*, then k+1€ Z",soa— (k+1)b € S.

Since b € ZT, then b€ Z and b > 0, so —b < 0.

Hence,a — (k+1)b=a—kb—b<a—kb+0=m,s0a— (k+1)b <m.
Since k+1€Z", thena— (k+1)b e S.

Thus, there exists a — (k + 1)b € S such that a — (k+ 1)b < m.

13



But, this contradicts the fact that m is the least element of S.
Therefore, the assumption is false, so there exists n € Z* such that nb >
a. U

Proposition 22. There is no greatest positive integer.

Proof. Suppose there is a greatest positive integer.

Let g be a greatest positive integer.

Then g € Z™ and g > x for all x € ZT.

Since g € Z", then g+ 1 € Z*.

Since (9+1)—g=g+1—-g=g—g+1=0+1=1and 1 € Z", then
(9+1)—g€eZ,sog<g+1.

Hence, g +1 > g¢.

Thus, there exists g + 1 € Z* such that g +1 > g.

But, this contradicts g is a greatest positive integer.

Therefore, there is no greatest positive integer. O

Lemma 23. Let a,b € N.
If a < b then b £ a.

Proof. Suppose for the sake of contradiction b < a.
Then either b < a or b = a by defn of <.
We consider these cases separately.
Case 1: Suppose b < a.
Then Je € N such that b+ ¢ = a, by defn of <.
Since a < b then 3d € N such that a + d = b, by defn of <.
Choose ¢,d € N such that b+ c=a and a +d = b.
Then b+c+d=0.
Set m = c+d.
Then b+ m =b.
Since N is closed under + and ¢,d € N then ¢ +d € N, so m € N.
The only solution to b+m =bis m = 0.
But 0 ¢ N, som & N.
Thus we have m € N and m ¢ N, a contradiction.
Hence, b £ a.
Case 2: Suppose b = a.
Since a < b then dc € N such that a + ¢ = 0.
Choose ¢ € N such that a + ¢ = b.
Since b = a then a + ¢ = a.
The only solution to a +c¢c=ais ¢ = 0.
But, 0 ¢ Nso c¢ N.
Thus we have ¢ € N and ¢ ¢ N, a contradiction.

Hence, b # a.
Both cases show that b £ a and b # a.
Thus neither b < @ nor b =a, so b £ a. 0
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Elementary Aspects of Integers

Proposition 24. No integer exists between two consecutive integers.
Let n € Z.
There is no m € Z such that n < m <n+ 1.

Proof. Suppose there is m € Z such that n <m <n + 1.

Then n < m and m <n + 1.

Since n < m, then there exists k € Z™ such that n + k = m.

Since k € Zt, then k> 1,som—n>1and m —n € Zt.

Since m < n+ 1, then m —n < 1.

Since m —n € Z* and Z* C Z, then m —n € Z.

Since m —n € Z and m —n < 1 and m —n > 1, then we have a violation of
trichotomy.

Therefore, there is no m € Z such that n <m <n + 1. O

Proposition 25. Every positive integer is either even or odd.

Proof. We prove by induction on n.
Let S={n€Z" :niseven or n is odd}.
Basis:
Since 1 =2-04 1 and 0 is an integer, then 1 is odd.
Since 1 € Z* and 1 is odd, then 1 € S.
Induction:
Suppose k € S.
Then k € Z* and k is even or k is odd.
Since k € Zt, then k+1 € Z™.
Since k is either even or odd, we consider these cases separately.
Case 1: Suppose k is even.
Then k = 2a for some integer a.
Thus, k4+1=2a+1, so k+ 1 is odd.
Case 2: Suppose k is odd.
Then k& = 2b+ 1 for some integer b.
Thus, k+1=(20+1)+1=2b+2=2(b+2).
Since b+ 2 is an integer, then this implies k + 1 is even.
Hence, in all cases, either k + 1 is even or k£ + 1 is odd.
Since k + 1 € Z* and k 4+ 1 is either even or odd, then k +1 € S.
Thus, k € S implies k+1 € S for all k € Z™.

Since 1 € S and k € S implies k +1 € S for all k € Z™, then by induction,
S=27.
Hence, S = Z*, so if n € Z*, then n is even or n is odd.
Therefore, every positive integer is even or odd. O

Proposition 26. An integer is not both even and odd.
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Proof. Let n be an integer.
Suppose n is both even and odd.
Then n is even and n is odd.
Since n is even, then n = 2k for some integer k.
Since n is odd, then n = 2m + 1 for some integer m.
Thus, 2k =n=2m+ 1, so 2k = 2m + 1.
Hence, 1 =2k —2m = 2(k — m).
Since k —m € Z and 1 = 2(k — m), then 1 is even.
But, this contradicts the fact that 1 is not even.
Therefore, n is not both even and odd. O

Proposition 27. A product of two consecutive integers is even.
Ifn € Z, then n(n + 1) is even.

Proof. Let n € Z.
Either n is even or n is not even.
We consider these cases separately.
Case 1: Suppose n is even.
Then n = 2s for some integer s.
Thus, n(n + 1) = 2s(2s + 1).
Since s(2s+ 1) € Z and n(n + 1) = 2s(2s + 1), then n(n + 1) is even.
Case 2: Suppose n is not even.
Then n is odd, so n = 2t + 1 for some integer ¢.
Thus, n(n+1)= 2t +1)[(2t+ 1)+ 1] = (2t + 1)(2t +2) =2(2t + 1)(t + 1).
Since (2t +1)(t +1) € Z and n(n+ 1) = 2(2t + 1)(t + 1), then n(n + 1) is
even.

Therefore, in all cases, n(n + 1) is even, as desired. O

Natural Number Formulae

Proposition 28. Letn € ZT.
n(n+1)

The sum of the first n positive integers is 7

Solution. Welet S, =1+2+3+ ... +n.

We can reverse the sum of terms and add each pair of corresponding terms
of the equation.

Each pair of terms add up to n 4+ 1. Since we have a total of n terms, then
the sum is n(n + 1) if we add both equations as below

Sy = 14243+ +(n)
Sp = n+mn-1)4+Mn-2)4+---+1
Thus we get
2S5, = (n+1)n
_ n(n+1)
S, = —
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So, we’ve shown that the sum is @ O

1
Proof. Define predicate p(n) over Z* by >°p_ k= @7.

We prove p(n) is true for all n € Z* by induction on n.

Basis:
Let n = 1. 5 1.9 1l
Then lec:1 k=1= 5= T = %, so p(1) is true.
Induction:
Let m € Z* such that p(m) is true.
1
Then Y7", k = M
Observe that
m—+1 m
ko= D k+(m+1)
k=1 k=1
+1
= % + (m + 1)
= (m+ 1)(% +1)
2
= (m+1) (m; )
_ (m+1)[(m41) +1]
= 5 :

Thus, p(m + 1) is true, so p(m) implies p(m + 1) for all m € Z™.

Since p(1) is true and p(m) implies p(m + 1) for all m € Z*, then p(n) is true
for all n € Z+.

1
Therefore, >}/, k = nin+1)

for alln € Z+. O

Proposition 29. Letn € Z™T.
The sum of the first n odd positive integers is n>.

Solution. Let S,qq = the set of odd natural numbers = {1,3,5,7,9,...}.

The first odd number 1 occurs for n = 1, the second odd number 3 occurs
for n = 2, the third odd number 5 occurs for n = 3, the fourth odd number 7
occurs for n = 4.

So we see a pattern in which the n*” odd number is simply 2n — 1 using
inductive reasoning.

Therefore we really have a sequence (1,3,5,7,...,2n — 1) whose n'? term is
2n — 1.

Let (a,) be the sequence in R defined by a,, =2n — 1 for all n € ZF.

We can make a table of values by plugging in various values to determine if
a pattern emerges.

17



sum of first n odd natural numbers
1=12
1+43=4=22

14+3+5=9=3
1+3+5+7=16=4°
1+3+54+7+9=25=5

U W N =B

n|143+4547+9+..+@2n—-1)=>" (2i—1)=n?
Thus our proposition is really asserting that

Y(neZ"),Y (2i—1)=n?

I

Il
-

(3
Let

S, =S"(2i—1).

I

Il
—

(2

We expand this sum to show the terms
n
Sp=> (2i—1)=143+5+T+--+(2n—1) (1)
i=1

We can reverse the sum of terms and add each pair of corresponding terms of
Equation 1.

Each pair of terms add up to 2n.

Since we have a total of n terms, then the sum is 2n(n), if we add both
equations below.

Sp = 1434547+ +(2n—1)
Sn = 2n-1)+2n-3)+@2n-5)+2n—-T7)+---+1
Thus, we get
25, = 2n(n)
S, = n?

So, we’ve shown that the sum is n2.

Now we will prove this result using mathematical induction since we have
an infinite set of statements to prove (since we’re asserting the sum holds true
for all positive integers).

Note that the universally quantified statement V(n € Z7), Y1 | (2i—1) = n?
is logically equivalent to the conditional implication if n € Z*,then Y .  (2i —
1) = n?.

Proof. We must prove Y_;_,(2k — 1) =n? for all n € Z™.
We prove >, _,(2k — 1) = n? for all n € Z" by induction on n.

18



Let S={neZ":Y,_(2k—1)=n?}.

Basis:

Since 1 € Z+ and Y,_,(2k—1)=2-1-1=2-1=1=1%then 1 € S.
Induction:

Suppose m € S.

Then m € Z* and > ;" (2k — 1) = m?.

Since m € Zt, then m+1 € Z+.

To prove m + 1 € S, we must prove ZZ:T(Z]C —1)=(m+1)>2

Observe that

m—+1 m
S @k—1) = > (2k-1)+[2m+1)—1]
k=1 k=1

= m*+(2m+2-1)

= m?*+(2m+1)

= (m+1)?, as desired.

Proposition 30. Letn € Z7T.

1)(2 1
The sum of the squares of the first n positive integers is n(n+1)@2n + )

6
1)(2 1
Proof. We must prove Y ,_ k? = nin+ )6( n+l) for alln € Z*.
We prove by induction on n.
Let S={neZt: Y, k= n(n+1)(2n+1)}.
= 6
Basis: L1 1)2. 141
Since 1 € Z+ and YL g2 =121 = 1AFDEIFD Wy o g
Induction:

Suppose m € S.

1)(2 1
Then m € Z+ and Z;nzle:m(m+ ()3( m+ ).

Since m € Z*, then m +1 € Z+.

1 1 1]|2 1 1
ToproveerlGS,wemustproveZZl:ka: (m+ D(m + )J6r [2(m+1) + ]
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Observe that

E* 4 (m+1)?

NE

m+1

e -
k=1 1
_ m(m+ 1()3(2m +1) - mt1)?

b

m(2m + 1)
6
(2m? +m + 6m + 6)
6
(2m? + Tm + 6)
6
— (m+1)- (m+2)é2m+3)

_ maDmt ) RmA D+
6 ’ '

= (m+1)-] + (m+1)]

= (m+1)-

= (m+1)-

Proposition 31. The sum of the cubes of the first n positive integers is (

2 1 2
Proof. We must prove Y ;_ k* = n*(n+1)°

We prove by induction on n.

for all n € Z+.

Let S = {neZt: 30 k%= M}.
Basis: ) 5
Since 1 € Z* and Y, _, k3 =13 =1= M, then 1 € S.
Induction:
Suppose m € S.
m2(m+1)?2

Then m € Z* and >_", k% =
Since m € Z*t, then m +1 € Z*.

O

n(n+1)

2

Ml s (m+1)2%(m+1)+ 1]2.

To prove m + 1 € S, we must prove > ;- 1

20
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Observe that

m—+1 m
ok = Y K+ (m+1)?
k=1 k=1
m2(m +1)?
= ( 1 ) + (m+1)*
2
m
= (m+1)2~[7+(m+1)]
214 4
= (m+1)? (m —|—4m—|— )
2 2
— (m41)?- (mz )
1)? 1) +1)?
= (m +1)7[(m +1) +1] , as desired.
4
O
Proposition 32. A positive integer is triangular iff it is of the form ———=
for somen € ZT.
n(n+1)

Proof. We prove ‘if a positive integer is triangular, then it is of the form

for some n € Z+.

Suppose a positive integer is triangular.

Let t be a positive integer that is triangular.

Then ¢t € Z* and ¢ is triangular.

Since t is triangular, then ¢ is the sum of consecutive integers, beginning
with 1.

Therefore, there exists an integer n such that ¢ is the sum of n consecutive
integers, beginning with 1.

Hence, t =7 4.

1
Thus, ¢ is the sum of the first n positive integers, so t = @
1
Therefore, t = % for some n € Z™. O
1
Proof. Conversely, we prove ‘if a positive integer is of the form % for

some n € Z™, then it is triangular”.

1
Suppose a positive integer is of the form % for some n € Z7T.

nn+1)
2

Let t be a positive integer of the form for some n € Z*.

n(n+1)

Thent € Zt and t = for some n € Z+.
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n(n+1)

Since t = — = w1k, then ¢ is the sum of the first n positive
integers.

Hence, t is the sum of n consecutive integers, beginning with one.

Therefore, t is triangular. O

Proposition 33. Let t, denote the n'" triangular number.

Then t, = (n; 1) foralln € Z+.

Proof. Let n € Z™T.
Observe that

n(n+1)
2
(n+1)n
2
(n+1)n
2!
(n+ n(n—1)!
(n—1)!12!
(n+1)!
(n—1)!2!
(n+1)!
(n+1—2)!2!

(1)

Divisibility in Z

Theorem 34. Division Algorithm
Let a,b € Z and b > 0.
Then there exist unique integers q and r such that a = bg+r and 0 < r < b.

Proof. Existence:
Let S ={a—bk: (3k € Z)(a — bk > 0)}.
Since a € 7Z, then either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Let £ =0.
Then k€ Z and a —bk =a—b(0) =a—-0=a > 0.
Hence, there exists k € Z such that a — bk >0, so a — bk € S.
Therefore, S # 0.
Case 2: Suppose a < 0.
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Let k = a.

Since a € Z, then k € Z.

Since b€ Z and b > 0, then b>1,s00>1—b.

Since a < 0 and 1 — b < 0, then a(1 —b) > 0.

Observe that a — bk = a — ba = a(1 — b) > 0.

Hence, there exists k € Z such that a — bk > 0, so a — bk € S.
Therefore, S # 0.

In all cases, we have S # (),

Let s € S.

Then s = a — bk and s > 0 for some integer k.

Since a,b,k € Z, then a — bk € Z,s0 s € Z

Since s € Z and s > 0, then S is a set of non-negative integers.

Since S is a set of non-negative integers and S # (), then S is a nonempty
set of nonnegative integers.

By proposition 20, the set of all nonnegative integers is well-ordered, so every
nonempty subset of nonnegative integers has a least element.

Hence, S has a least element.

Let r be the least element of .S.
Thenre Sandr <z forallxz e S.
Since r € S, then there is some integer g such that r = a — bqg and r > 0.
Since r = a — bq, then a = bg + r.
Either r >borr=>borr <b.

Suppose r > b.

Then a —bqg > b, s0 a —bg—b > 0.

Thus, a — b(¢+ 1) > 0.

Since q € Z, then ¢+ 1 € Z.

Since q+1€Z and a —b(g+1) >0, then a —b(¢g+ 1) € S.

Sinceb>0=r—r,thenr+b>r,sor>r—b=(a—bg)—b=a—-bg—b=
a—>blg+1).

Thus, r > a —b(g + 1).

Since r < z for all z € S and a—b(g+1) € S, then we conclude r < a—b(g+1).

Hence, we have r > a — b(¢+ 1) and r < a — b(q + 1), a contradiction.

Therefore, r cannot be greater than or equal to b.

Since either > b or r = b or r < b and r cannot be greater than or equal to
b, then we conclude r < b.
Since 0 <rand r < b, then 0 <7 < b.
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Therefore, there exist integers ¢ and r such that a = bg+r and 0 <r <b. O

Proof. Uniqueness:

Suppose there are integers ¢;,q2,71, and 7o such that a = bg; + r1 and
a=bg+1ryand 0 <r; <band 0<ry <b.

Since a = bqy + 11 and a = bga + ro, then bgy + 11 = bge + 12, 80 b(q1 — ¢2) =
To —T71.

Since ¢1 — q2 € Z and ro — r1 = b(q1 — ¢2), then b|(re — 71), S0 72 — 71 is a
multiple of b.

Since 7y < b and 0 < rq, then by adding these inequalities we obtain ro <

b+1ry,s01ry —1r1 <D

Since r1 < b and 0 < rg, then by adding these inequalities we obtain r; <
b+rs, 80 —b<ry—r1.

Thus, —b < rs — 71 <b.

Since ro — 71 is a multiple of b and —b < ro — r; < b and the only multiple
of b between —b and b is zero, then we must conclude ro — ry = 0.

Therefore, ro = r1, S0 11 = 9.

Hence, 0 = 79 — 11 = b(q1 — g2), so either b=10 or ¢ — g = 0.

Since b > 0, then b # 0, so ¢ — g2 = 0.

Therefore, g1 = ¢o.

Since ry = ro and g1 = g2, then 7 is unique and ¢ is unique. O

Proposition 35. Every integer divides zero. (Vn € Z)(n|0).

Proof. Let n be an arbitrary integer.
Since 0 is an integer and 0 = n - 0, then n|0. O

Proposition 36. The number 1 divides every integer. (¥n € Z)(1|n).

Proof. Let n be an arbitrary integer.
Since n is an integer and n = 1 - n, then 1|n. O

Proposition 37. FEvery integer divides itself. (Vn € Z)(n|n).

Proof. Let n be an arbitrary integer.
Since 1 is an integer and n = n - 1, then nn. O

Theorem 38. necessary and sufficient condition for bla
Let a,b € Z and b > 0.
Then bla iff the remainder is zero when a is divided by b.

Proof. We prove if the remainder is zero when a is divided by b, then bla.
Suppose the remainder is zero when a is divided by b.
Since a,b € Z and b > 0, then by the division algorithm, there exist unique
integers ¢ and r such that a = bg+r and 0 < r < b.
Since the remainder is zero when a is divided by b, then r = 0.
Thus, a = bg + 0 = bq.
Since ¢ € Z and a = bq, then bla. O
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Proof. Conversely, we prove if b|a, then the remainder is zero when a is divided
by b.

Suppose b|a.

Then a = bn for some integer n, so a = bn + 0.

Since a,b € Z and b > 0, then by the division algorithm, there exist unique
integers ¢ and r such that a = bg+r and 0 < r < b.

Since ¢ and r are unique integers and a = bg+r and a = bn+0and 0 < r < b,
then we must conclude ¢ =n and r = 0.

Therefore, r = 0, so the remainder is zero when a is divided by b. U

Theorem 39. A divisor of a is smaller than a.
Leta,de€Z™.
If da, then d < a.

Proof. Suppose d|a.
Then a = dn for some integer n.
Since a € ZT and d € Zt, then a > 0 and d > 0.
Since a = dn and a > 0 and d > 0, then n > 0.
Since n € Z and n > 0, then n € Z*.
Hence, n > 1, by lemma 17.
Sincen>1and d>0,thena=dn>d-1=d.
Therefore, a > d, so d < a. O

Proof. Suppose d|a.
Then a = dn for some integer n.
Since a,d € Z™T, then @ > 0 and d > 0.
Since a = dn and a > 0 and d > 0, then n > 0.
Since n € Z and n > 0, then n > 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Thend=d-1=dn=a,sod=a.
Case 2: Suppose n > 1.
Then 0 > 1 —n.
Since d > 0 and 1 —n < 0, then d(1 —n) < 0.
Sinced—a=d—dn=d(1—n)<0,thend—a<0,sod<a.
Therefore, in all cases, d < a. U

Proposition 40. Let a,b,c,d € Z.
If alb and c|d, then ac|bd.

Proof. Suppose a|b and c|d.
Then b = am and d = ¢n for some integers m and n.
Thus, bd = (am)(cn) = a(mc)n = a(em)n = (ac)(mn).
Since mn is an integer and bd = (ac)(mn), then ac|bd. O
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Proposition 41. The only integers whose product is one are one and
negative one.

Let a,b e Z.

Thenab=1iffa=b=1o0ora=b=—1.

Proof. We proveifa=b=1o0r a=>b= -1, then ab = 1.
Suppose a =b=1lora=b=—1.
We consider these cases separately.
Case 1: Supposea=b=1.
Thenab=1-1=1,s0ab=1.
Case 2: Suppose a =b = —1.
Then ab = (—1)(—1) =1,s0 ab= 1. O

Proof. Conversely, we prove if ab = 1, then eithera=b=1ora=5b= —1.
Suppose ab = 1.
Since ab =1 > 0, then ab > 0, so either a > 0 and b > 0 or a < 0 and b < 0.
We consider these cases separately.
Case 1: Suppose a > 0 and b > 0.
Suppose a # 1.
Since @ € Z and a > 0 and a # 1, then a > 1.
Since a > 1 and b > 0, then ab > b.
Since b € Z and b > 0, then b > 1.
Thus, ab> b > 1, so ab > 1.
But, this contradicts the hypothesis ab = 1.
Thus, a = 1.

Hence, 1 = ab= (1)b=1>b,s0 b= 1.
Therefore, a =1 =b.
Case 2: Suppose a < 0 and b < 0.
Suppose a # —1.
Since a € Z and a < 0 and a # —1, then a < —1.
Since a < —1 and b < 0, then ab > —b, so —ab < b.
Since b € Z and b < 0, then b < —1.
Thus, —ab < b < —1, 80 —ab < —1.
Hence, ab > 1.
But, this contradicts the hypothesis ab = 1.
Thus, a = —1.

Hence, 1 = ab=(—1)b= —b, so b = —1.
Therefore, a = —1 = b.

We conclude either a =b =1 or a = b = —1, as desired. O

Proposition 42. Leta € Z and b € Z.
If alb and bla, then a = £b.
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Proof. Suppose al|b and b|a.

Then b = ak; and a = bk, for some integers ki and k.

Thus, b= (bkg)k‘l = b(kglﬁ) = b(klkg), SO b(lﬁkg) —-b=0.

Hence, b(ki1ke — 1) = 0.

Either b =0 or b # 0.

We consider these cases separately.

Case 1: Suppose b = 0.

Since bla, then 0]a, so a = 0k3z = 0 for some integer ks.

Hence, a =0=10, so a =b.

Case 2: Suppose b # 0.

Then klkz —1= 0, SO klkg =1.

By proposition 41, the only integers whose product is one are one and neg-
ative one.

Since ki and ko are integers and ki1ko = 1, then we conclude either k; =
]{12:101']{111162:71.

Hence, either b = a(k1) = a(1) = a or b = a(k1) = a(—1) = —a, so either
b=aor b= —a.

Therefore, either a = b or a = —b, so a = +b. O

Theorem 43. Let a,d € 7Z.
If d | a, then d | ma for all m € Z.

Proof. Let m € Z be arbitrary.
Suppose d | a.
Then a = dk for some integer k.
Thus, ma = m(dk) = (md)k = (dm)k = d(mk).
Since m, k € Z and Z is closed under multiplication, then mk € Z.
Since mk € Z and ma = d(mk), then d | ma. O

Proposition 44. Let a,b,n € Z.
1. If alb, then nalnb.
2. If n # 0 and nal|nb, then alb.

Proof. We prove 1.
Suppose alb.
Then b = ak for some integer k.
Thus, nb = n(ak) = (na)k.
Since k is an integer and nb = (na)k, then na|nbd. O

Proof. We prove 2.
Suppose n # 0 and na|nb.
Since na|nb, then nb = (na)k for some integer k.
Thus, 0 = nb— (na)k = nb—n(ak) = n(b—ak), so either n = 0 or b—ak = 0.
Since n # 0, then we conclude b — ak = 0, so b = ak.
Since k € Z and b = ak, then alb. O

Theorem 45. The divides relation on 7 is transitive.
For any integers a,b and ¢, if alb and b|c, then alc.
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Proof. Let a,b, and ¢ be arbitrary integers such that a|b and b|c.
Then b = am and ¢ = bn for some integers m and n.
Thus, ¢ = bn = (am)n = a(mn).
Since mn is an integer and ¢ = a(mn), then alc. O

Theorem 46. The divides relation is a partial order over Z+.

Proof. We prove the divides relation is reflexive.
Let a € Z™ be arbitrary.
Since a € Z™ and ZT C Z, then a € Z.
By proposition 37, every integer divides itself, so ala.
Therefore, | is reflexive. O

Proof. We prove the divides relation is antisymmetric.

Let a,b € ZT.

Then a > 0 and b > 0.

Suppose a|b and b|a.

Then there exist integers k1 and ko such that b = ak; and a = bks.

Hence, a = bky = (akq)ks = a(k1kz), so a(kiks) —a = 0.

Thus, a(k1ks — 1) =0, so either a =0 or k1ko — 1 =0.

Since a > 0, then a # 0, so we conclude k1ks — 1 = 0.

Therefore, ki1ks = 1.

By proposition 41, the only integers whose product is one are one and neg-
ative one.

Therefore, either ky = ko =1 or ky = kg = —1.

Since a > 0 and b > 0 and b = aky, then k; > 0.
Since a > 0 and b > 0 and a = bks, then ko > 0.
Hence, k1 = ko = 1.
Therefore, a = bke = b(1) = b, so a = b. O

Proof. We prove the divides relation is transitive.
Let a,b,c € Z+.
The divides relation defined on Z is transitive, by theorem 45.
Hence, x|y and y|z implies z|z for all integers z, y, 2.
Since a,b,c € Z* and Z* C Z, then a,b,c € Z.
Therefore, alb and b|c implies alc.

Since the divides relation on Z™ is reflexive, antisymmetric, and transitive,
then the divides relation is a partial order over Z*. O
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Greatest common divisor

Proposition 47. Letn € Z.
Then n and —n have the same set of divisors.

Proof. Let S be the set of all divisors of n.
Let T be the set of all divisors of —n.
Then S={de€Z:dn} and T ={d € Z: d| — n}.
We must prove S =1T.

We prove T' C S.
LetteT.
Then t € Z and t| — n.
Since t| — n, then —n = ta for some integer a.
Thus, n = —(—n) = —(ta) = t(—a).
Since —a € Z and n = t(—a), then t|n.
Since t € Z and t|n, then t € S.
Thus, t € T impliest € S, so T C S. O

Proof. We prove S C T.
Let s € S.
Then s € Z and s|n.
Since s|n, then n = sb for some integer b.
Thus, —n = —sb = s(—b).
Since —b € Z and —n = s(—b), then s| — n.
Since s € Z and s| —n, then s € T.
Hence, s € S implies s € T, so S C T.

Proof. Since S CT and T C S, then S=T.

Proposition 48. A positive common divisor is bounded.
Let a,b € Z" and a # b.
Let d be a positive common divisor of a and b.
Then 1 < d < min(a,b).

Proof. Since d is a positive common divisor of a and b, then d € ZT and d|a
and d|b.
Since d € ZT, then d € Z and d > 0, so d > 1.
Let m be the minimum of a and b.
Since a # b, then either a < b or a > b.
We consider these cases separately.
Case 1: Suppose a < b.
Then the minimum of a and b is a, so m = a.
Since d,a € Z* and d|a, then d < a, so d < m.
Since d > 1 and d < m, then 1 <d < m.
Case 2: Suppose b < a.
Then the minimum of a and b is b, so m = b.
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Since d,b € Z* and d|b, then d < b, so d < m.
Since d > 1 and d < m, then 1 < d < m.

Therefore, in all cases, 1 < d < m, as desired. O

Lemma 49. Any common divisor of a and b divides their sum and
difference.

Let a,b,d € Z.

If dla and d|b, then d|(a + b) and d|(a —b).

Proof. Suppose d|a and d|b.
Then a = ds and b = dt for some integers s and t.
Hence, a +b=ds+dt =d(s+t) and a —b=ds — dt = d(s — t).
Since s+t € Z and a4+ b = d(s + t), then d|(a + b).
Since s —t € Z and a — b = d(s — t), then d|(a — D). O

Theorem 50. Any common divisor of a and b divides any linear com-
bination of a and b.

Let a,b,d € Z.

If dla and d|b, then d|(ma + nb) for all integers m and n.

Proof. Suppose d|a and d|b.

Then there exist integers s and ¢ such that a = ds and b = dt.

Let m and n be arbitrary integers.

Then ma + nb = m(ds) + n(dt) = m(sd) + n(td) = (ms)d + (nt)d = (ms +
nt)d = d(ms + nt).

Since ms+nt is an integer and ma +nb = d(ms+nt), then d|(ma+nb). O

Corollary 51. Any common divisor of a finite number of integers
divides any linear combination of those integers.

Let ay,as, ...,a,,d € 7.

If d|ay, dl|ag, ..., d|ay, then d|(cra1 + coag + ... + cpay,) for any integers
C1,C2y...,Cp .

Proof. We prove by induction on n.

Define predicate p(n) over Z* by ’if d|ay, d|ag, ..., d|ay, then d|(c1a1 +c2as +
... + cpay) for any integers ¢y, ca, ..., ¢

Basis:

Let n = 1.

Suppose d|a;.

Then d divides any multiple of a;, by theorem 43.

Hence, d|cia; for some integer c;.

Therefore, p(1) is true.
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Let n = 2.

Suppose d|a; and d|as.

Then d divides any linear combination of a; and as, by theorem 50.

Therefore, d|(c1a1 4 co2az) for some integers ¢; and c¢a, so p(2) is true.

Induction:

Let k € Z* with k > 2 such that p(k) is true.

Since p(k) is true, then d|(ci1a1 +coas+...+ciay) for any integers ¢y, ca, ..., ¢
whenever d|a; and dlag and ... and d|ag.

We must prove p(k + 1) is true.

Suppose d|a; and d|ag and ... and d|a; and d|agy;.

Since d|a; and d|az and ... and d|ag, then by the induction hypothesis,
d|(c1a1 + c2ag + ... + cpay) for any integers ¢y, ca, ..., Cp.

Since d|agy1, then d divides any multiple of ay1, by theorem 43.

Hence, d|cgt1a,+1 for some integer cgyq.

Since d divides the integer cia1 + coas + ... + cxax and d divides the integer
Ck+1ak+1, then d divides the sum (¢1a1 +caas +... + crpag) + cgr10k+1, by lemma
49,

Thus, d divides ciay + caa2 + ... + crag + cgr1ak+1, so p(k + 1) is true.

Hence, p(k + 1) is true whenever p(k) is true for all k € Z* with k > 2.

Since p(1) is true and p(2) is true, and p(k + 1) is true whenever p(k) is true
for all k € Z* with k > 2, then by induction, p(k) is true for all k € Z*.

Therefore, for alln € Z7, if d|ay, d|az, ..., d|ay, then d|(c1a1+c2a2+...+cran)

for any integers ¢y, ¢z, ..., Cp. O

Theorem 52. existence and uniqueness of greatest common divisor
Let a,b € Z with a and b not both zero..
The greatest common divisor of a and b exists and is unique.
Moreover, ged(a, b) is the least positive linear combination of a and b.

Proof. Existence:
We prove there exists a positive integer d such that d|a and d|b.
Let S be the set of all positive linear combinations of a and b.
Then S = {ma +nb: ma+nb>0,m,n € Z}.

We prove S # {).
Since a and b are integers not both zero, then either a # 0 or b # 0.
We consider these cases separately.
Case 1: Suppose a # 0.
Let m =a and n = 0.
Then ma + nb = aa + 0b = a® + 0 = a?.
Since a # 0, then a? > 0.
Thus, a® € 9, so S # (.
Case 2: Suppose b # 0.
Let m =0 and n = 0.

31



Then ma + nb = 0a + bb = 0 + b% = b>.
Since b # 0, then b2 > 0.
Thus, b2 € 9, so S # (.

In all cases, S # 0.
Since S C Z* and S # 0, then by the well-ordering principle, S contains a
least element.
Let d be the least element of S.
Then there exist integers mg,ng such that d = mga + ngb and d > 0 and
d < z for every x € S.

We prove d|a and d|b.
By the Division Algorithm, when a is divided by d, there exist unique integers
q and r such that a =dg+rand 0 <r < d.
Either r > 0 or r = 0.

Suppose r > 0.

Then r = a—dq = a—(moa+ngb)q = a—moag—nobg = a(1—moq)+b(—noq).

Since 1 — moq and —ngq are integers and r = a(1 — moq) + b(—ngq), then r
is a linear combination of a and b.

Since r = a(l—mpq)+b(—nog) and r > 0 and 1 —moq and —ngq are integers,
then r € S.

Since d < z for every x € S and r € S, then we conclude d < r, so r > d.

Consequently, we have r < d and r > d, a contradiction.

Therefore, r cannot be greater than zero.

Since either > 0 or r = 0, and r # 0, then r = 0.
Therefore, a = dg, so d|a.
By similar reasoning, d|b.
Hence d|a and d|b, so d is a common divisor of a and b.

Suppose ¢ is an arbitrary common divisor of a and b.

Then c|a and c|b.

Thus there are integers k1 and ks such that a = ck; and b = cks.

Hence d = mpa + nob = mo(cky) + no(cka) = e(moky) + c(noks) = c(moky +
nokg).

Since moky + npks is an integer and d = ¢(moky + noks), then c|d.

Thus, any common divisor of a and b divides d.

Since d is a common divisor of a and b and any common divisor of a and b
divides d, then d is a greatest common divisor of a and b.

Therefore, a greatest common divisor of a and b exists. O

Proof. Uniqueness:
Suppose d; = ged(a,b) and dy = ged(a, b).
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Any common divisor of a and b divides a greatest common divisor of a and
b.

Since d; is a common divisor of a and b and ds is a greatest common divisor
of a and b, then d;|ds.

Since ds is a common divisor of a and b and d; is a greatest common divisor
of a and b, then ds|d;.

Since dy and dy are positive integers and dj|dy and da|dy, then by the anti-
symmetric property of divisibility, d; = ds.

Therefore, a greatest common divisor of a and b is unique. O

Proposition 53. properties of gcd

ged(a,0) = a for alla € 7.

ged(a,1) =1 for all a € Z.

ged(a,a) = a for alla € Z7T.

ged(a, b) = ged(b, a) for all a,b € Z*.

ged(a, b) = ged(—a,b) = ged(a, —b) = ged(—a, —b) for all a,b € Z*.
. Let a,b e Z*.

Then ged(ka, kb) = kged(a,b) for allk € Z7T.

S A tote =

Proof. We prove 1.

Let a € Z™T.

Since a € Z™ and Z* C Z, then a € Z.

By proposition 37, every integer divides itself, so ala.

By proposition 35, every integer divides zero, so al0.

Hence, ala and a0, so a is a common divisor of a and 0.

Suppose ¢ is an arbitrary common divisor of a and 0.

Then cla and ¢|0, so c|a.

Hence, any common divisor of ¢ and 0 divides a.

Since a € Z* and a is a common divisor of @ and 0 and any common divisor
of a and 0 divides a, then a = ged(a, 0). O

Proof. We prove 2.

Let a € Z.

By proposition 36, one divides every integer, so 1|a.

Since 1|a and 1]1, then 1 is a common divisor of a and 1.

Suppose c is an arbitrary common divisor of a and 1.

Then c|a and ¢|1, so ¢|1.

Hence, any common divisor of a and 1 divides 1.

Since 1 € Z* and 1 is a common divisor of @ and 1 and any common divisor
of a and 1 divides 1, then 1 = ged(a, 1). O

Proof. We prove 3.
Since a € ZT and ZT C Z, then a € Z.
By proposition 37, every integer divides itself, so a|a.
Since ala and ala, then a is a common divisor of a and a.
Suppose ¢ is an arbitrary common divisor of a and a.
Then cla and cla, so c|a.
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Hence, any common divisor of ¢ and a divides a.
Since a € Z* and a is a common divisor of @ and a and any common divisor
of a and a divides a, then a = ged(a, a). O

Proof. We prove 4.

Let a,b € Z*.

Then a and b are nonzero integers, so a # 0 and b # 0.

Hence, a and b are not both zero, so ged(a,b) exists and is unique.

Let d = ged(a, b).

Then d € Z* and d|a and d|b and if ¢ is any integer such that c|a and c|b,
then c|d.

We prove ged(a, b) = ged(b, a).

Since d|a and d|b, then d|b and d|a, so d is a common divisor of b and a.

Suppose ¢ is an arbitrary divisor of b and a.

Then c|b and cla, so c|la and c|b.

Since cla and ¢|b, then we conclude c|d.

Thus, any common divisor of b and a divides d.

Since d € Z* and d is a common divisor of b and a and any common divisor
of b and a divides d, then d = ged(b, a). O

Proof. We prove 5.

Let a,b € Z*.

Then a and b are nonzero integers, so a # 0 and b # 0.

Hence, a and b are not both zero, so ged(a,b) exists and is unique.

Let d = ged(a, b).

Then d € Z* and d|a and d|b and if ¢ is any integer such that c|a and c|b,
then c|d.

We prove ged(a, b) = ged(—a, b).

Since d|a, then d divides any multiple of a, so d divides (—1)a = —a.

Hence, d|(—a).

Since d|(—a) and d|b, then d is a common divisor of —a and b.

Suppose ¢ is an arbitrary common divisor of —a and b.

Then c|(—a) and c|b.

Since c|(—a), then ¢ divides any multiple of —a, so ¢ divides (—1)(—a) = a.

Hence, c|a.

Since cla and ¢|b, then c|d.

Hence, any common divisor of —a and b divides d.

Since d € Z" and d is a common divisor of —a and b and any common divisor
of —a and b divides d, then d = gcd(—a, b).
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We prove ged(a,b) = ged(a, —b).

Since d|b, then d divides any multiple of b, so d divides (—1)b = —b.

Hence, d|(—b).

Since d|a and d|(—b), then d is a common divisor of a and —b.

Suppose ¢ is an arbitrary common divisor of a and —b.

Then c|a and c|(—b).

Since ¢|(—b), then ¢ divides any multiple of —b, so ¢ divides (—1)(—b) = b.

Hence, c|b.

Since c|a and c|b, then c|d.

Hence, any common divisor of a and —b divides d.

Since d € Z* and d is a common divisor of a and —b and any common divisor
of a and —b divides d, then d = ged(a, —b).

We prove ged(a, b) = ged(—a, —b).

Since d|a, then d divides any multiple of a, so d divides (—1)a = —a.

Since d|b, then d divides any multiple of b, so d divides (—1)b = —b.

Hence, d|(—a) and d|(—b), so d is a common divisor of —a and —b.

Suppose ¢ is an arbitrary common divisor of —a and —b.

Then c|(—a) and ¢|(=b).

Since ¢|(—a), then ¢ divides any multiple of —a, so ¢ divides (—1)(—a) = a.

Hence, cla

Since c|(—b), then ¢ divides any multiple of —b, so ¢ divides (—1)(—b) = b.

Hence, c|b.

Since cla and ¢|b, then c|d.

Hence, any common divisor of —a and —b divides d.

Since d € ZT and d is a common divisor of —a and —b and any common
divisor of —a and —b divides d, then d = ged(—a, —b). O

Proof. We prove 6.

Let k € Z*.

Since a and b are non-negative integers, then a # 0 and b # 0, so a and b
are not both zero.

Therefore, ged(a,b) exists and is unique.

Let d = ged(a, b).

Then d € Z" and d|a and d|b.

Since k € Z* and d € Z™, then kd € Z™.

Since k|k and d|a, then kd|ka, by proposition 40.

Since k|k and d|b, then kd|kb, by proposition 40.

Therefore kd|ka and kd|kb, so kd is a common divisor of ka and kb.

Let ¢ be an arbitrary common divisor of ka and kb.
Then c|ka and cl|kb.
Since d = ged(a, b), then there exist integers m and n such that d = ma+nb.
Thus, kd = k(ma + nb) = kma + knb = mka + nkb, so kd is a linear
combination of ka and kb.
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Since clka and c|kb, then ¢ divides any linear combination of ka and kb by
theorem 50, so c|kd.

Thus, any common divisor of ka and kb divides kd.

Since kd € Z* and kd is a common divisor of ka and kb, and any common
divisor of ka and kb divides kd, then kd = ged(ka, kb).

Therefore, ged(ka, kb) = kd = k ged(a, b). O

Lemma 54. The only positive integer that divides 1 is 1.

Proof. We must prove 1 divides 1 and any positive integer other than 1 does
not divide 1.

We prove 1 divides 1.

Since 1 € Z and 1 =1-1, then 1 divides 1. U

Proof. To prove any positive integer other than 1 does not divide 1, let a € ZT
and a # 1.
We must prove a does not divide 1.

Suppose for the sake of contradiction a divides 1.
Then 1 = ak for some integer k.
Since a € ZT and a # 1, then a > 1, so a # 0.
Since ak = 1 and a # 0, then k = %
Since a > 1, then % is not an integer, so k is not an integer.
But, this contradicts that k is an integer.
Thus, a does not divide 1.

Therefore, any positive integer other than 1 does not divide 1.
Since 1 divides 1 and any positive integer other than 1 does not divide 1,
then 1 is the only positive integer that divides 1. O

Theorem 55. Let a,b € Z.
Let c € Z.
Then c is a linear combination of a and b iff ¢ is a multiple of ged(a,b).

Proof. We prove if ¢ is a linear combination of a and b, then ¢ is a multiple of
ged(a, b).

Suppose ¢ is a linear combination of a and b.

By theorem 50, any common divisor of ¢ and b divides any linear combination
of a and b.

Since ged(a,b) is a common divisor of a and b, then ged(a,b) divides any
linear combination of a and b.

Hence, ged(a, b) divides ¢, so ¢ is a multiple of ged(a, b). O

Proof. Conversely, we prove if ¢ is a multiple of ged(a,b), then ¢ is a linear
combination of a and b.

Suppose ¢ is a multiple of ged(a, b).

Then there exists an integer k such that ¢ = k ged(a, b).
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Since ged(a, b) is the least positive linear combination of a and b, then there
exist integers m and n such that ged(a, b) = ma + nb.

Thus, ¢ = k(ma + nb) = kma + knb = (km)a + (kn)b.

Since km and kn are integers and ¢ = (km)a + (kn)b, then c is a linear
combination of a and b. O

Corollary 56. Let a,b € Z.
Then ged(a,b) = 1 iff there exist m,n € Z such that ma + nb = 1.

Proof. Suppose ged(a,b) = 1.
Then 1 is the least positive linear combination of a and b.
Therefore, there exist integers m and n such that 1 = ma+nb, as desired. [

Proof. Conversely, suppose there exist integers m and n such that ma+nb = 1.

Then 1 is a linear combination of a and b.

Since 1 is a linear combination of a and b iff 1 is a multiple of ged(a,b) by
theorem 55, then 1 is a multiple of ged(a, b).

Therefore, ged(a, b) divides 1.

By lemma 54, the only positive integer that divides 1 is 1.

Since ged(a, b) is a positive integer and the only positive integer that divides
1is 1, then ged(a,b) = 1, as desired. O

Corollary 57. Let a,b € Z.
Let d € Z*.

If d = ged(a, b), then ged(

a b

A

Proof. Suppose d = ged(a, b).
Then d € Z" and d|a and d|b.
Since d € ZT, then d > 0, so d # 0.

Since d|a, then a = dr for some integer r, so r =

ale

Q| o

Since d|b, then b = ds for some integer s, so s =

a b a b
Sincef:randfzs,thengeZandEEZ.
Since d is the least positive linear combination of a and b, then there exist

integers m and n such that ma + nb = d.
a b

Since d # 0, we divide by d to obtain m(g) + n(g) =1.
Since % € Z and g €Z and m € Z and n € Z and m(g) —|—n(g) =1, then
a b
d’'d
Proof. Suppose d = ged(a, b).

Then d € Z" and d|a and d|b, and any common divisor of a and b divides d.

ged( ) = 1, by corollary 56. O

Since d|a, then a = dr for some integer r, so r = 7
b
Since d|b, then b = ds for some integer s, so s = 7
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Since d = ged(a, b), then a and b are integers not both zero, so either a # 0
or b #0.
Since d € ZT, then d > 0, so d # 0.

b
Since r = % and s = p and d # 0, and either a # 0 or b # 0, then either

r# 0 or s # 0, so r and s are not both zero.

Since r and s are integers, and r and s are not both zero, then ged(r, s)
exists and is unique.

Let ¢ = ged(r, s).

Then ¢ € Z* and c|r and ¢|s.

Since c|r, then r = cx for some integer x.

Since c|s, then s = cy for some integer y.

Since r = cx, then a = dr = d(cz) = (dc)x.

Since s = cy, then b = ds = d(cy) = (de)y.

Since = € Z and a = (dc)x, then dc|a.

Since y € Z and b = (dc)y, then dc|b.

Hence, dc|a and dc|b, so dc is a common divisor of a and b.

Since any common divisor of a and b divides d, then we conclude dc|d.

Since ¢ € Z1, then ¢ € Z and ¢ > 0.
Since ¢ > 0, then ¢ # 0.
Since ¢ € Z and ¢ # 0 and dc|d, then c|1, by proposition 44.
By proposition 36, 1 divides every integer.
Since ¢ € Z, then we conclude 1|c.
By theorem 46, the divides relation is antisymmetric.
Since ¢ € ZT and ¢|1 and 1|e, then we conclude ¢ = 1.

4 b) =1, as desired. [

a b
Therefore, gcd(g, g) =ged(r,s) =c=1, so gcd(d7 p

Theorem 58. Let a,b,d € Z.
If dlab and ged(d, a) = 1, then d|b.

Proof. Suppose d|ab and ged(d, a) = 1.

Since ged(d, a) = 1, then there exist integers k and m such that kd+ma = 1,
by corollary 56.

Since d|ab, then ab = dn for some integer n.

Observe that

b = b-1

b(kd + ma)
bkd + bma
bkd + mba
= bkd+ m(ab)
bkd + m(dn)
bkd + mdn
= d(bk + mn).
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Since b = d(bk + mn) and bk + mn is an integer, then d|b. O

Proof. Suppose d|ab and ged(d, a) = 1.

Since ged(d, a) = 1, then there exist integers k and m such that kd+ma = 1,
by corollary 56.

Thus, b = b-1 = b(kd + ma) = bkd + bma = bkd + mba = bkd + mab =
(bk)d + m(ab) is a linear combination of d and ab.

Since d|d and d|ab, then d divides any linear combination of d and ab, so
d|b. O

Theorem 59. Let a,b,m € Z.
If alm and blm and ged(a,b) = 1, then ablm.

Proof. Suppose a|lm and b|m and ged(a,b) = 1.
Since a|m, then m = ak; for some k; € Z.
Since b|m, then m = bk for some ko € Z.
Since ged(a, b) = 1, then 1 = za + yb for some x,y € Z, by corollary 56.
Observe that

m = m-1
= m(za+ yb)
= mxa+ myb
= (bk2)xa + (aky1)yb
= ab(kaz) + ab(k1y)
= ab(kazx + k1y).

Since x,y, k1, ko € Z, then kox + k1y € Z.
Since kox + k1y € Z and m = ab(kex + k1y), then abjm. O

Proof. Suppose a|lm and b|m and ged(a,b) = 1.
Since blm, then m = bs for some integer s.
Since a|m and m = bs, then albs.
Since albs and ged(a,b) = 1, then als, by theorem 58.
Thus, s = at for some integer t.
Hence, m = bs = b(at) = (ba)t = (ab)t.
Since t € Z and m = (ab)t, then ab|m. O

Euclidean Algorithm
Lemma 60. Fuclidean Algorithm lemma

Let a,b € Z and b > 0.
If a is divided by b with remainder r, then ged(a,b) = ged(b, 7).
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Proof. Suppose a is divided by b.

By the division algorithm, there exist unique integers ¢ and r such that
a=bg+rand 0 <r <b.

Let d = ged(b, r).

Then d € Z* and d|b and d|r and if ¢ is any integer such that c|b and c|r,
then c|d.
Since d|b and d|r, then d divides any linear combination of b and 7.
Since a = bq + r is a linear combination of b and r, then dla.
Since d|a and d|b, then d is a common divisor of a and b.

Let ¢ be an arbitrary common divisor of a and b.
Then c|a and c|b, so ¢ divides any linear combination of a and b.
Since r = a — bq is a linear combination of a and b, then c|r.
Since ¢|b and ¢|r, then ¢|d, so any common divisor of a and b divides d.

Since d € Z* and d is a common divisor of a and b and any common divisor
of a and b divides d, then d = ged(a, b).
Therefore, ged(a,b) = d = ged(b, r). O

Theorem 61. Euclidean Algorithm
Let a,b € Z and b > 0.
Let n be the number of iterative steps and

a = bq +11, where ) <ry <b
b = riga+ry, where 0 <ry <1y
rr = 7Toq3 + 13, where 0 <r3 < ro
Tk = Tk41Qkt2 + T2, where 0 < 7o <rpgg
Th—3 = Tpn—2qn-1+7Tn-1, where 0 <ry_1 <7y 2
Tn—2 = Tpn_1qn + 0.

Then ged(a,b) = ry—1.

Solution. By the division algorithm, a = bg; +7r1 and 0 < 1 < b, so ged(a,b) =
ged(b, r1) by lemma 60.

By the division algorithm, b = r1g2 + 72 and 0 < r9 < 7, so ged(b,r1) =
ged(ry,m2) by lemma 60.

By the division algorithm, r; = rogsz + r3 and 0 < r3 < ro, so ged(ry,7r2) =
ged(rg,r3) by lemma 60.

We repeat this process a finite number of times, so ry = Tpr1qr+2 + k12
and 0 < 7gy2 < rg+1, 50 ged(r, re41) = ged(rk41, Tk42) by lemma 60.

On the final nt" step, we have 7, _o = r,,_1¢n+7, and r,, = 0, so gcd(ry,_2,7n_1) =
ged(rp—1,7n) = ged(rp_1,0) = rp_1.
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On the final n'" step, the quotient is ¢, and the remainder is 7, = 0 and
the previous remainder r,_1 is the greatest common divisor of a and b. O

Proof. On the nt" step of the Euclidean algorithm, the remainder is 7, = 0, so
Tn—2 = T'n—14n-

Hence ry,—1|7rn—2.

Since 7y,—1|rp—1 and r,_1|rp—2, then r,_1 divides any linear combination of
Tn—1 and r,_o.

Since r,_3 = T—_2¢n—1+7n_1 is a linear combination of r,_; and r,_o, then
Tn—1 |Tn—3 .

Since ry,—1|rp—2 and r,_1|rp—_3, then r,_; divides any linear combination of
Trn_o and 7,_3.

Since ry,_4 = T_3¢n_2+7,_2 is a linear combination of r,_o and r,_3, then
Tn—1 |rn74 .

This reasoning process is repeated a finite number of times.

Since ry,—1|rg and r,,_1|rK—1, then r,,_; divides any linear combination of 7
and 7,_1.

Since ry_o2 = Tp_1qx + Tk is a linear combination of rp and ri_q, then
Tn—1|Tk—2-

Since ry,_1|r2 and r,_1|ry, then r,_; divides any linear combination of 7y
and 7.

Since b = r1qs + 72 is a linear combination of ro and ry, then r,_1|b.

Since 7y,—1|r1 and 7,,—1]b, then 7,1 divides any linear combination of r; and

Since a = bqy + 71 is a linear combination of r; and b, then r,_1|a.
Since r,—1|a and r,_1]b, then r,_1 is a common divisor of a and b.

Let d be any common divisor of a and b.

Then d|a and d|b, so d divides any linear combination of a and b.

Since r1 = a — bq; is a linear combination of @ and b, then d|ry.

Since d|b and d|ry, then d divides any linear combination of b and r;.

Since 19 = b — r1q2 is a linear combination of b and 71, then d|rs.

Since d|ry and d|ra, then d divides any linear combination of 71 and rs.

Since r3 = r; — raq3 is a linear combination of 7y and 7o, then d|rs.

This reasoning process is repeated a finite number of times.

Since d|ry, and d|rg41, then d divides any linear combination of 7 and 7j1.

Since 142 = Tk — Tk41Gk+2 1S a linear combination of r; and rg41, then
dl’l"k,+2.

Since d|r,,—3 and d|r, _s, then d divides any linear combination of r,_3 and
T'n—2.

Since r,_1 = T_3—Tn_2Gn_1 is a linear combination of r,,_3 and r,_o, then
dl’f’n,1 .

Therefore, any common divisor of a and b divides 7,_1.

Since r,—1 € ZT and r,,_; is a common divisor of a and b and any common
divisor of a and b divides r,,_1, then by definition of ged, r,,—1 = ged(a,b). O
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Least common multiple

Theorem 62. definition of nZ
Let n € Z.

The set of all multiples of n is {nk : k € Z}.

Proof. Let S be the set of all multiples of n.
Then S = {m € Z : n|m}.
Let T ={nk: k € Z}.

We prove S C T.
Let s € S.
Then s € Z and n|s.
Since nls, then s = na for some integer a.
Since s =na and a € Z, then s € T'.
Therefore, s € S implies s € T, s0 S C T.

Conversely, we prove T' C S.
LetteT.
Then t = nb for some integer b.
Since b € Z and t = nb, then n|t.
Since t € Z and n|t, then ¢t € S.
Therefore, t € T impliest € S, s0 T C S.

Since S C T and T' C S, then S =T, as desired.

Proposition 63. Letn € Z*.
The set of all positive multiples of n is {nk : k € Z*}.

Proof. Let S be the set of all positive multiples of n.
Then S = {m € Z* : n|m}.
Let T={nk:keZ"}.

We prove S C T.
Let s € S.
Then s € Z* and nls.
Since n|s, then s = na for some integer a.
Since s € Z* and n € Z* and s = na, then a € Z7T.
Since s = na and a € Z™T, then s € T..
Therefore, s € S implies s € T, s0 S C T.
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We prove T C S.
LetteT.
Then t = nb for some b € Z7T.
Since b € Z and t = nb, then nlt.
Since n € Z* and b € Z™ and t = nb, then t € ZT.
Since ¢ € Z* and n|t, then t € S.
Therefore, t € T implies t € S, so T C S.

Since S C T and T'C S, then S =T, as desired. O

Theorem 64. existence and uniqueness of least common multiple
Leta,bc Z™T.
The least common multiple of a and b exists and is unique.

Proof. Existence:
Let S be the set of all positive common multiples of a and b.
Then S = {s € Z* : a|s and b|s}.
Since @ € ZT and b € ZT, then ab € Z7.
Since b € Z and ab = ab, then alab.
Since a € Z and ab = ba, then b|ab.
Since ab € Z* and alab and blab, then ab € S, so S # (.
Since S C Z* and S # 0, then by the well-ordering principle of Z*, S has a
least element.
Let m be the least element of S.
Then me Sand m<sforallseS.

We prove m is a least common multiple of a and b.
Since m € S, then m € Z* and alm and blm, so m is a positive common
multiple of a and b.

Let ¢ be any positive common multiple of a and b.
Then ¢ € Z* and a|c and b|c.
We must prove m|ec.

We divide ¢ by m.
By the division algorithm, there are unique integers ¢ and r such that ¢ =
mqg+rand 0 <r<m.
Since 0 < r < m, then 0 < r and r < m.
Since 0 < r, then r > 0, so either » > 0 or r = 0.

Suppose r > 0.
Since ¢ = mq + r, then r = ¢ — mgq is a linear combination of ¢ and m.
Since a|c and a|m, then a divides any linear combination of ¢ and m, so a|r.
Since b|c and b|m, then b divides any linear combination of ¢ and m, so b|r.
Since r € Z and r > 0, then r € Z™.
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Since 7 € Z* and a|r and b|r, then r € S.

Thus, r € S and r < m.

This contradicts that m is the least element of S.
Therefore, r % 0.

Since either » > 0 or » = 0 and r ¥ 0, then r = 0.
Thus, c = mqg+1r =mq+ 0 =mgq.
Since q € Z and ¢ = mgq, then m|c, as desired.
Therefore, any positive common multiple of a and b is a multiple of m.

Since m is a positive common multiple of a and b, and any positive common
multiple of a and b is a multiple of m, then m is a least common multiple of a
and b. O

Proof. Uniqueness:

Suppose m is a least common multiple of ¢ and b and m’ is a least common
multiple of a and b.

We must prove m = m/.

Since m is a least common multiple of a and b, then m € Z* and a|m and
blm and for all ¢ € Z*, if a|c and b|c, then m|c.

Since m’ is a least common multiple of a and b, then m’ € Z™ and a|m’ and
blm’ and for all ¢ € Z*, if a|c and blc, then m/|c.

Since m € Z*, then a|m and b|m implies m/|m.

Since a|m and b|lm, then we conclude m'|m.

Since m’ € ZT, then a|m’ and b|m’ implies m|m’.

Since alm’ and b|m/, then we conclude m|m/'.

Since m € ZT and m’ € Z* and m|m’ and m/|m, then we conclude m = m/,
by the the anti-symmetric property of the divides relation on Z™. O

Proposition 65. For all a,b € Z*, lcm(a,b) divides ab.

Proof. Let a,b € Z+.
Let m = lem(a,b).
Then m € Z* and any positive common multiple of a and b is a multiple of

Since a € Z™ and b € Z*, then ab € Z™.
Since b € Z and ab = ab, then alab.
Since a € Z and ab = ba, then b|ab.
Since ab € Z* and alab and blab, then ab is a positive common multiple of
a and b.
Therefore, ab is a multiple of m, so m|ab, as desired. O

Theorem 66. lcm and ged relationship
Leta,be Z™.
Then ged(a,b) - lem(a,b) = ab.
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Proof. Since a € Z* and b € Z*, then a > 0 and b > 0, so a # 0 and b # 0.
Thus, a and b are both nonzero, so a and b are not both zero.
Hence, ged(a,b) exists and is unique.
Let d = ged(a, b).
Then d € Z" and d|a and d|b, so a = dr and b = ds for some integers r and

b
Let m = a—.

We first prove m = lem(a, b).

We prove m is a positive common multiple of a and b.
Observe that

as = (dr)s

= drs
rds
r(ds)
= rb.

Thus, as = rb.
Since b = ds, then s = g
Observe that

as
rb.

Hence, m = as = rb = br.
b
Since a € ZT and b€ Z* and d € Z* andmz%,thenm>0.

Since a € Z and s € Z and m = as, then m € Z.

Since m € Z and m > 0, then m € Z+.

Since s € Z and m = as, then a|m.

Since r € Z and m = br, then bjm.

Since m € Z™ and a|m and b|m, then m is a positive common multiple of a

and b.

We next prove any positive common multiple of a and b is a multiple of m.
Let ¢ € Z* such that a|c and b|c.
Then ¢ = au and ¢ = bv for some integers v and v.

c c
Hence, — = v and - = v.
a

b

Since m = %b and d > 0, then md = ab.
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d
Since ab > 0, then ab # 0, so we divide to obtain m—b =1.

a
Since d = ged(a, b) is the least positive linear combination of @ and b, then
d = za + yb for some integers x and y.
Observe that

c = c¢-1
md
= c- —
ab
_om
 ab
cm
= —_— b
o (@atyb)
_cmza | cmyb
B ab ab
_cmz | cmy
N b a
c c
= - -mxr+-—-my
b a

= vmx + umy

= m(vx + uy).

Since va +uy € Z and ¢ = m(vz + uy), then m|c.
Thus, any positive common multiple of a and b is a multiple of m.

Since m is a positive common multiple of a and b, and any positive common
multiple of a and b is a multiple of m, then m = lem(a, b).

Since ged(a,b) - lem(a,b) = dm = ab, then ged(a,bd) - lem(a,b) = ab, as
desired. O

Corollary 67. Leta,bec Z™T.
Then lem(a,b) = ab iff ged(a,b) = 1.

Proof. Suppose lem(a,b) = ab.
Since a,b € ZT, then @ > 0 and b > 0, so ab > 0.
Thus, ab # 0, so lem(a,b) # 0.
By theorem 66, gcd(a,b) - lem(a,b) = ab.

' ab
Since ged(a, b) - lem(a, b) = ab and lem(a, b) # 0, then ged(a, b) = lem(a,b)’
Observe that
ab
d(a,b) = ——
ged(a, b) lem(a, b)
_ o
- ab

= 1

Therefore, ged(a,b) = 1, as desired.
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Conversely, suppose ged(a, b) = 1.
Since ged(a,b) > 0, then ged(a,b) # 0.
By theorem 66, gcd(a,b) - lem(a,b) = ab.

b
Since ged(a, b) - lem(a, b) = ab and ged(a, b) # 0, then lem(a,b) = m.
Observe that
ab
l b)) = ——
em(a,b) ged(a, b)
_aw
1
= ab.
Therefore, lem(a, b) = ab, as desired. O
Proposition 68. properties of lem
Leta,bc Z™T.
Then

ged(a,b) = lem(a,b) iff a =b.
alb iff ged(a,b) = a iff lem(a,b) = b.

Proof. We prove 1.
By proposition 37, every integer divides itself, so ala.
By proposition 36, one divides every integer, so 1|a.

Since a € ZT and ala and 1]a, then a is a positive common multiple of a
and 1.

Let m € Z* such that a|m and 1|m.
Then a|m, so a|m for all m € Z* such that alm and 1|m.
Hence, any positive common multiple of ¢ and 1 is a multiple of a.

Since a is a positive common multiple of a and 1, and any positive common
multiple of a and 1 is a multiple of a, then a = lem(a, 1). O

Proof. We prove 2.

By proposition 37, every integer divides itself, so a|a.

Since a € ZT and ala and ala, then a is a positive common multiple of a
and a.

Let m € Z* such that a|m and a|m.
Then a|m, so a|m for all m € Z* such that a|m and a|m.
Hence, any positive common multiple of a and «a is a multiple of a.
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Since a is a positive common multiple of ¢ and a, and any positive common
multiple of a and a is a multiple of a, then a = lem(a, a). O

Proof. We prove 3.

Let m = lem(a,b).

Then m € Z* and a|m and blm, and for every ¢ € Z*, if a|c and blc, then
m|c.

Since a|m and bjm, then blm and a|m.

Since m € Z* and blm and a|m, then m is a positive common multiple of b
and a.

Let ¢ be any positive common multiple of b and a.
Then ¢ € Z* and b|c and alc.
Since b|c and ale, then alc and b|c.
Since ¢ € ZT and alc and b|c, then we conclude mje.
Hence, any positive common multiple of b and a is a multiple of m.

Since m is a positive common multiple of b and a, and any positive common
multiple of b and a is a multiple of m, then m = lem(b, a). O

Proof. We prove 4.
Let k € Z+.
Observe that

(ka)(kb)
ged(ka, kb)
kakb
k ged(a,b)
akb
ged(a, b)
kab

ged(a, b)
= k-lem(a,b).

Therefore, lem(ka, kb) = k - lem(a, b). O

lem(ka, kb)

Proof. We prove 5.

Let d = ged(a, b).

Let m = lem(a,b).

Since d = ged(a, b), then d is a positive common divisor of a and b, so d is a
positive divisor of a.

Thus, d € Z" and d|a.

Since m = lem(a, b), then m is a positive common multiple of a and b, so m
is a positive multiple of a.

Hence, m € Z* and a|m.

Since d|a and a|m, then d|m, as desired. O

48



Proof. We prove 6.
We prove if a = b, then ged(a, b) = lem(a, b).

Suppose a = b.
Then
ged(a,b) = ged(a,a)
= a
= lem(a,a)
= lem(a,b).

Therefore, ged(a,b) = lem(a,b).

Conversely, we prove if ged(a,b) = lem(a,b), then a = b.

Suppose ged(a, b) = lem(a, b).

Let d = ged(a, b).

Then d = lem(a, b).

Since d = ged(a, b), then d is a positive common divisor of a and b, so d € Z™
and d|a and d|b.

Since d = lem(a,b), then d is a positive common multiple of a and b, so
d € Z" and al|d and b|d.

Since a € Z* and d € ZT and a|d and d|a, then a = d, by the antisymmetric
property of | over Z*.

Since b € ZT and d € Z" and b|d and d|b, then b = d, by the antisymmetric
property of | over Z™.

Therefore, a =d = b, so a = b. U

Proof. We prove 7.
We prove alb iff ged(a,b) = a.

Suppose alb.
By proposition 37, every integer divides itself, so ala.
Since ala and a|b, then a is a common divisor of a and b.

Let ¢ be an arbitrary common divisor of a and b.
Then ¢ € Z and c|a and ¢|b, so ¢|a.
Hence, any common divisor of a and b divides a.
Since a € Z* and a is a common divisor of a and b, and any common divisor
of a and b divides a, then a = ged(a, b).

Conversely, suppose ged(a,b) = a.
Then a is a common divisor of a and b, so a is a divisor of b.
Therefore, alb. O
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Proof. We prove ged(a,b) = a iff lem(a,b) = b.
Suppose ged(a, b) = a.

Then
ab
l b)) = ——
em(a,b) ged(a, b)
_
T
= b
Therefore, lem(a,b) = b.
Conversely, suppose lem(a,b) = b.
Then
ab
ged(a,b) = lem(a, b)
ab
b
= a.

Therefore, ged(a,b) = a.
O

Proof. We prove alb iff lem(a, b) = b.
Since alb iff ged(a,b) = a and ged(a,b) = a iff lem(a,b) = b, then alb iff
lem(a,b) = b. O

Linear Diophantine Equations

Theorem 69. existence of a solution to a linear Diophantine equation

Let a,b,c € Z and a # 0 and b # 0.
A solution (x,y) € Z x Z to the linear diophantine equation ax + by = ¢
exists if and only if ged(a,b) | c.

Proof. Observe that ged(a,b)|c if and only if ¢ is a multiple of ged(a, b).

By theorem 55, ¢ is a linear combination of a and b if and only if ¢ is a
multiple of ged(a, b).

Observe that ¢ is a linear combination of ¢ and b if and only if there exist
integers o and yo such that axg + byg = c.

Hence, ged(a, b)|c if and only if ¢ is a multiple of ged(a, b) if and only if ¢ is
a linear combination of a¢ and b if and only if there exist integers xg and yg such
that axg + byg = c.

Therefore, ged(a, b)|c if and only if there exist integers xy and yo such that
axg + byy = c. O
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Theorem 70. characterization of a general solution to a linear Dio-
phantine equation
Let a,b,c € Z and a # 0 and b # 0.

If (x0,y0) € Z X Z is a particular solution to the linear Diophantine equation

bt t
ax + by = ¢, then a general solution is given by x = xo + — and y = yo — d

d d
for all t € Z, where d = ged(a, b).

Proof. Suppose (zq,yo) € Z X Z is a particular solution to the linear diophantine
equation ax + by = c.

Then zg € Z and yg € Z and axg + byg = c.

Let (2',y’) be another solution to the equation.

Then 2’ € Z and 3y’ € Z and az’ + by’ = c.

Thus, ax’ + by’ = ¢ = axg + byo, so ax’ + by’ = axo + byo.

Hence, a(z'—x9) = ax’—axo = byo—by’ = b(yo—y'), so a(x'—xo) = b(yo—y').

Since a # 0 and b # 0, then a and b are both not zero.
Hence, a and b are not both zero, so let d = ged(a, b).
Then d € Z" and d|a and d|b.

Since d € ZT, then d > 0, so d # 0.
Since d|a, then a = dr for some integer r.

Since d # 0, then r = %.

Since d # 0 and a # 0, then r # 0.

Since d|b, then b = ds for some integer s.
Since d # 0, then s = g

Observe that

0 = a(@ —xo)—blyo—¥)
= (dr)(@’ —xo) — (ds)(yo — ¥/)
= dr(z’ —x0) — ds(yo — ¥)
= d[r(z’ —x0) — s(yo — )]
Since d[r(z'—x)—s(yo—y’)] = 0, then either d = 0 or (2’ —x¢) —s(yo—y') =
0.
Since d # 0, then we conclude r(z' — o) — s(yo — y') = 0, so r(z’ — o) =
s(yo — ')
Since 2’ — zp € Z and s(yo — y') = r(a’ — x0), then r|s(yo — v').
b
Since d = ged(a, b), then by corollary 57, 1 = gcd(%, g) = ged(r, s).
Since 7|s(yo — y') and ged(r, s) = 1, then r|(yo — '), by theorem 58.
Hence, yg — 3y’ = rt for some integer t.
Thus, ' = yo — rt.
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Observe that
0 = 7@ —z0)—s(yo—y)
= r(a’ —xo) — s(rt)
(
[

/

= r(a’ —xzg) — srt

= 7[(a' —z0) — st].

Since r[(z" — xg) — st] = 0, then either r = 0 or (2’ — zp) — st = 0.
Since r # 0, then we conclude (' — zg) — st =0, so &’ — z¢ = st.

b bt
Hence,x’:xo—i—st:mo—f—(f)t:a?o-&-*andy/zyo—rtzyo—(%)t:

d d
_at
" a bt t
Therefore, ' = zo + 7 and y' = yo — %-

We verify a’ and y’ satisfy the diophantine equation.
Observe that

bt t

ar' +by = alwo+ ) +blyo — )
= ax —l—%—i-b _ abt
= 0 d Yo d

abt  abt

= (aa:o—i-byo)—i-j—j

= (axo +byo) +0
= axg+ byo

= C.

Fundamental Theorem of Arithmetic

Lemma 71. A composite number has a positive divisor between 1 and
itself.

Let n be a positive integer.

Then n is composite iff there exists a positive integer d such that d|n and
l1<d<n.

Proof. Suppose n is composite.
Then n # 1 and n is not prime.
Since n is not prime, then there is some positive divisor of n other than 1 or

Hence, there exists a positive integer d such that d|n and d # 1 and d # n.

Since d is a positive integer and d # 1, then d > 1.
Since d and n are positive integers and d|n, then d < n by theorem 39.
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Since d < n and d # n, then d < n.
Since 1 < dand d < n, then 1 < d < n.
Therefore, there exists a positive integer d such that djnand 1 <d <n. O

Proof. Conversely, suppose there exists a positive integer d such that d|n and
1<d<n.

Since 0 <1l<d<n,thenl <dandd<mnand1<mnand0<d.

Since d > 1, then d # 1.

Since d < n, then d # n.

Since n > 1, then n # 1.

Since n is a positive integer and n # 1, then n is a positive integer other
than 1.

Since d is a positive integer and dln and d # 1 and d # n, then there is a
positive divisor of n other than 1 or n.

Since n is a positive integer other than 1, and there is a positive divisor of
n other than 1 or n, then n is not prime.

Since n is a positive integer other than 1 and n is not prime, then n is
composite. O

Theorem 72. A composite number is composed of smaller positive
factors.

Let n be a positive integer.

Then n is composite iff there exist positive integers a and b with 1 < a <n
and 1 < b < n such that n = ab.

Proof. Suppose n is composite.
By lemma 71, a composite number has a positive divisor between 1 and
itself, so there exists a positive integer a such that a|n and 1 < a < n.
Since 0 <1 <a<n,thenl<aanda<nandl<nand0<aandO0<n.
Since a|n, then there exists a positive integer b such that n = ab.
Since n > 0 and a > 0 and n = ab, then b > 0.
Since b is an integer and b > 0, then b is a positive integer.

Since a > 1 and b > 0, then ab > b.
Since n = ab and ab > b, then n > b.
Since n = ab and n > a, then ab > a, so ab —a > 0.
Thus, a(b—1) > 0.
Since a(b—1) >0 and a > 0, then b—1 >0, s0 b > 1.

Since 1 < band b < n, then 1 < b < n.
Therefore, there exist positive integers a and b with 1 <a <nand1 <b<n
such that n = ab. O

Proof. Conversely, suppose there exist positive integers ¢ and b with 1 < a <n
and 1 < b < n such that n = ab.

Since b is a positive integer, and every positive integer is an integer, then b
is an integer.
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Since b is an integer and n = ab, then aln.

By lemma 71, a composite number has a positive divisor between 1 and
itself.

Since a is a positive integer and a|ln and 1 < a < n, then this implies n is
composite. O

Theorem 73. Every integer greater than 1 has a prime factor.

Proof. Let n be any integer greater than 1.

We must prove n has a prime factor.

Either n is prime or n is not prime.

We consider these cases separately.

Case 1: Suppose n is prime.

Since n is prime and n|n, then n is a prime factor of n.

Therefore, n has a prime factor.

Case 2: Suppose n is not prime.

Since n > 1 and 1 > 0, then n > 0.

Since n is an integer and n > 0, then n is a positive integer.

Since n > 1, then n # 1.

Since n is a positive integer and n # 1 and n is not prime, then n is composite.

By lemma 71, a composite number has a positive divisor between 1 and
itself.

Thus, there exists a positive integer d such that dln and 1 < d < n.

Let S={s€Z":1<s<n,sn}.

Since d € ZT and 1 < d < n and d|n, then d € S, so S # 0.

Since S C Z* and S # 0, then by the well-ordering principle of Z*, S has a
least element p.

Thus, p € S and p < s forall s € S.

Since p € S, then p € Z* and 1 < p < n and p|n.

Since 1 < p <n, then 1 < p and p < n.

Since p > 1, then p # 1.

Since p € Z* and p # 1, then p is either prime or not prime.

Suppose p is not prime.

Since p € Z* and p # 1 and p is not prime, then p must be composite.

By lemma 71, a composite number has a positive divisor between 1 and
itself.

Therefore, there exists a € Z* such that alp and 1 < a < p.

Since 1 < a < p, then 1 < a and a < p.

Since alp and p|n, then a|n.

Sincel<aanda<pandp<n,thenl<a<p<mn,sol<a<n.

Since a € Z"T and 1 < a < n and a|n, then a € S.

Hence, a € S and a < p.

But, this contradicts the fact that p is the least element of S.

Therefore, p must be prime.
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Since p is prime and p|n, then p is a prime factor of n.
Therefore, n has a prime factor.

In all cases, n has a prime factor.
Therefore, any integer greater than 1 has a prime factor. O

Proof. Let xz(n) be the predicate ‘n has a prime factor’ defined for all n € Z*
with n > 1.

To prove z(n) is true for all integers n > 1, we prove z(n) is true for all
integers n > 2 by strong induction on n.

Basis:

Let n = 2.

Since 2|2 and 2 is prime, then 2 is a prime factor of 2, so 2 has a prime
factor.

Therefore, (2) is true.

Induction:

For any integer n > 3, assume x(2) and z(3) and ... and z(n — 1) are all
true.

Then z(k) is true for any integer k such that 2 <k <n —1.

Thus, z(k) is true for any integer k such that 1 < k < n.

We must prove z(n) is true.

Sincen >3 >1>0, thenn > 1 and n > 0.

Since n € Z and n > 0, then n € ZT.

Since n > 1, then n # 1.

Since n € Z* and n # 1, then either n is prime or n is composite.

We consider these cases separately.

Case 1: Suppose n is prime.

Since n is prime and n|n, then n is a prime factor of n, so n has a prime
factor.

Case 2: Suppose n is composite.

By lemma 71, a composite number has a positive divisor between 1 and
itself.

Hence, there exists d € Z* such that d|n and 1 < d < n.

Since d € ZT and 1 < d < n, then by the induction hypothesis, p(d) is true,
so d has a prime factor.

Let p € Z™ be a prime factor of d.

Then p is prime and p|d.

Since p|d and d|n, then p|n.

Since p is prime and p|n, then p is a prime factor of n, so n has a prime
factor.

In all cases, n has a prime factor, so z(n) is true.
Therefore, x(n) is true whenever x(2) and z(3) and ... and z(n — 1) are all
true for any integer n > 3.
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Since x(2) is true, and z(n) is true whenever x(2) and 2(3) and ... and z(n—1)
are all true for any integer n > 3, then by strong induction, x(n) is true for all
integers n > 2.

Thus, x(n) is true for all integers n > 1, so n has a prime factor for all
integers n > 1.
Therefore, every integer greater than one has a prime factor. O

Lemma 74. FEuclid’s Lemma
Let a,b € Z.
Letpe Z7T.
If p is prime and plab, then pla or p|b.

Proof. Suppose p is prime and p|ab.

Since p € Z*, then p € Z and p > 0, so p # 0.

Since p € Z and a € Z and p # 0, then p and a are integers not both zero.

Therefore, ged(p, a) exists and is unique.

Either ged(p,a) =1 or ged(p,a) # 1.

We consider these cases separately.

Case 1: Suppose ged(p, a) # 1.

Let d = ged(p, a).

Then d # 1.

Since d = ged(p, a), then d is a positive common divisor of p and a, so d € Z*
and d|p and d|a.

Since p is prime, then the only positive divisors of p are 1 and p.

Since d is positive and d|p, then this implies either d =1 or d = p.

Since d # 1, then we conclude d = p.

Since d|a and d = p, then p|a.

Case 2: Suppose ged(p,a) = 1.

Since plab and ged(p, a) = 1, then by theorem 58, plb. O

Proof. Suppose p is prime and p|ab.

Since p € Z*, then p € Z and p > 0, so p # 0.

Since p € Z and a € Z and p # 0, then p and a are integers not both zero.

Therefore, ged(p, a) exists and is unique.

Either ged(p,a) =1 or ged(p,a) # 1.

We consider these cases separately.

Case 1: Suppose ged(p, a) # 1.

Let d = ged(p, a).

Then d # 1.

Since d = ged(p, a), then d is a positive common divisor of p and a, so d € Z*
and d|p and d|a.

Since p is prime, then the only positive divisors of p are 1 and p.

Since d is positive and d|p, then this implies either d =1 or d = p.

Since d # 1, then we conclude d = p.

Since d|a and d = p, then p|a.

Case 2: Suppose ged(p,a) = 1.

Then 1 is a linear combination of p and a, by corollary 56.
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Therefore, 1 = xp + ya for some integers x and y.

Observe that b =b-1 = b(zp + ya) = bxp + bya = (bx)p + y(ab) is a linear
combination of p and ab.

By proposition 37, every integer divides itself.

Since p € Z, then we conclude p|p.

By theorem 50, any common divisor of p and ab divides any linear combi-
nation of p and ab.

Since p|p and p|ab, then p divides any linear combination of p and ab, so
plb. O

Proof. Suppose p is prime and p|ab and p fa.
We must prove plb.

Since p is prime, then p € Z* and the only positive divisors of p are 1 and p.
Since the only positive divisors of p are 1 and p, then 1 and p are the only
possible positive common divisors of p and a.
By proposition 36, one divides every integer.
Since p € Z and a € Z, then we conclude 1|p and 1|a.
Since 1 € Z™ and 1|p and 1|a, then 1 is a positive common divisor of p and

By proposition 37, every integer divides itself.

Since p € Z™, then we conclude p|p.

Since p|p, but p fa, then p is not a common divisor of p and a, so p cannot
be a positive common divisor of p and a.

Since 1 and p are the only possible positive common divisors of p and a,
and 1 is a positive common divisor of p and a, but p is not a positive common
divisor of p and a, then 1 is the only positive common divisor of p and a.

Therefore, the only positive common divisor of p and a is 1.

Since ged(p, a) is a positive common divisor of p and a, then we must con-
clude ged(p,a) = 1.

Since plab and ged(p, a) = 1, then by theorem 58, plb. O

Proof. Suppose p is prime and p|ab.
Since p is prime, then the only positive divisors of p are 1 and p.
Hence, any positive common divisor of p and a must be either 1 or p.
Thus, either ged(p,a) =1 or ged(p, a) = p.
We consider these cases separately.
Case 1: Suppose ged(p, a) = p.
Then p|p and pla, so pla.
Case 2: Suppose ged(p,a) = 1.
Since plab and ged(p, a) = 1, then by theorem 58, plb. O

Corollary 75. If prime play...a,, then pla; for some k.
Let ay,as, ...,a, € 7.
LetpeZ™.
If p is prime and plaias...an, then plag for some integer k with 1 < k < n.
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Proof. We prove by induction on n, the number of factors in the product
a1a2...0y.

Define predicate p(n) over Z* by ‘if p is prime and p|ajas...a,, then p|ay for
some integer k with 1 < k < n’.

Basis:

Let n = 1.

Suppose p is prime and pl|a;.

Then plaq, so p|ay, for integer k=1 with 1 < k < 1.

Therefore, p(1) is true.

Let n = 2.

Suppose p is prime and p|ajas.

Then either pla; or plas, by Euclid’s lemma (lemma 74).

Hence, play for some integer k with 1 < k < 2.

Therefore, p(2) is true.

Induction:

Let n € ZT with n > 2 such that p(n) is true.

Since p(n) is true, then pla; for some integer k with 1 < k < n whenever p
is prime and plajas...a,.

We must prove p(n + 1) is true.

Suppose p is prime and p|(a1as...an0n11)-

Then either plaas...an or plan4+1, by Euclid’s lemma (lemma 74).

We consider each case separately.

Case 1: Suppose p|an+1.

Let k=n+1.

Sincen+1€Z" and ZT C Z, then n +1 € Z.

Sincen+ 1€ Z and k =n+ 1, then k € Z.

Sincen+1>nandn>2and 2>1,thenn+1>1,s0k > 1.

Therefore, p|ay for some integer k with 1 < k=n+ 1.

Case 2: Suppose plaas...ay.

Since p is prime and p|ayas...a,, then by the induction hypothesis, p|as for
some integer k with 1 < k < n.

Sincel<k<nandn<n+1l,thenl<k<n<n+1l,sol<k<n+41.

Therefore, p|ay for some integer k with 1 <k <n+ 1.

Hence, in all cases, p|ay for some integer k with 1 < k <n 4 1.
Thus, play for some integer k with 1 < k < n + 1 whenever p is prime and
pl(aras...anan+1), so p(n + 1) is true.
Therefore, p(n + 1) is true whenever p(n) is true for all n € Z* with n > 2.

Since p(1) is true and p(2) is true, and p(n + 1) is true whenever p(n) is true
for all n € Z™ with n > 2, then by induction, p(n) is true for all n € Z*.

Therefore, for all n € Z*, if p is prime and p|ajas...a,, then play for some

integer k with 1 < k < n. O
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Corollary 76. Let p,qi,qo,...,qn € Z7.
If p,q1,q2, ..., gn are all prime and p|q1qz...qn, then p = g for some integer
kwithl <k<n.

Proof. Suppose p,q1,qz, -, ¢, are all prime and plq1¢...qx.

Since p, q1, 42, ..., qn are all prime, then p is prime and ¢, g2, ..., q, are all
prime.

By corollary 75, if p is prime and p divides a product of integers, then p
divides one of those integers.

Since p is prime and p|gigs...gn, then we conclude plg; for some integer k
with 1 <k <n.

Since q1, qa, ..., g, are all prime and 1 < k < n, then ¢ is prime, so the only
positive divisors of ¢ are 1 and g.

Since p € Z1 and p|qy, then this implies either p =1 or p = gy.

Since p is prime, then p > 1, so p # 1.

Hence, p = qy.

Therefore, p = g for some integer k with 1 <k < n. O

Theorem 77. Fundamental Theorem of Arithmetic(Existence)
Every integer greater than one can be represented as a product of one or
more primes.

Proof. Existence:

We prove every integer greater than one can be represented as a product of
one or more primes by contradiction.

Suppose not every integer greater than one can be represented as a product
of one or more primes.

Then there is some integer greater than one that cannot be represented as
a product of one or more primes.

Let k be an integer greater than one that cannot be represented as a product
of one or more primes.

Then k € Z and k£ > 1 and k is not a product of one or more primes.

Since k > 1 and 1 > 0, then k > 0.

Since k € Z and k > 0, then k € Z™.

Hence, there exists k € ZT such that k > 1 and k is not a product of one or
more primes.

Let S be the set of all positive integers greater than 1 that cannot be repre-
sented as a product of one or more primes.

Then S ={n € Z" : n > 1 and n is not a product of one or more primes}.

Since k € Z* and k > 1 and k is not a product of one or more primes, then
keS, soS #0.

Since S C Z* and S # 0, then by the well-ordering principle of Z*, S has a
least element.

Let m be the least element of S.

ThenmeSandm<zforallz €.

Since m € S, then m € Z* and m > 1 and m is not a product of one or
more primes.

99



Since m > 1, then m # 1.

Since m € Z* and m # 1, then either m is prime or m is composite.

We consider these cases separately.

Case 1: Suppose m is prime.

Then m is a product of one prime, itself.

But, m is not a product of one or more primes.

Therefore, m is not prime.

Case 2: Suppose m is composite.

By theorem 72, a composite number is composed of smaller positive factors,
so there exist a € Z* and b € Z* such that m = ab with 1 < a < m and
1<b<m.

Since 1 < a < m, then 1 < a and a < m.

Since 1 < a, then a > 1.

Since a < m and m is the least element of S, then a & S.

Since a € Z* and @ > 1 and a € S, then we conclude a is a product of one
or more primes.

Since 1 < b < m, then 1 < b and b < m.
Since 1 < b, then b > 1.
Since b < m and m is the least element of S, then b & S.
Since b € Z* and b > 1 and b ¢ S, then we conclude b is a product of one
or more primes.

Since m = ab and a is a product of one or more primes and b is a product of
one or more primes, then m is a product of one or more primes.
But, this contradicts m is not a product of one or more primes.
Therefore, m is not composite.

Therefore, m is not prime and m is not composite.
Since m € Z* and m # 1 and m is not prime and m is not composite, then
m does not exist.
Hence, there is no integer greater than one that cannot be represented as a
product of one or more primes.
Therefore, every integer greater than one can be represented as a product of
one or more primes. O

Proof. Existence:

We prove every integer greater than one can be represented as a product of
one or more primes.

Let p(n) be the predicate ‘n is a product of one or more primes’ defined for
all positive integers n > 1.

To prove n is a product of one or more primes, we prove p(n) is true for all
positive integers n > 2 by strong induction on n.

Basis:

Let n = 2.
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Since 2 is prime, then 2 is product of one prime(itself), so p(2) is true.
Induction:

For any integer n > 3, assume p(2) and p(3) and ... and p(n—1) are all true.
Then p(z) is true for any integer x such that 2 <z <n — 1.

Hence, p(x) is true for any integer = such that 1 < x < n.

Since n > 3 and 3 > 1, then n > 1, so n # 1.

Since n € Z* and n # 1, then either n is prime or n is composite.

We consider these cases separately.

Case 1: Suppose n is prime.

Then n is a product of one prime(itself).

Case 2: Suppose n is composite.

By theorem 72, a composite number is composed of smaller positive factors.

Hence, n is composed of smaller positive factors, so there exists a,b € ZT
such that n =aband 1 <a <nand 1 <b<n.

Since a € Z and 1 < a < n, then by the induction hypothesis, p(a) is true.
Thus, a is a product of one or more primes, so there exist s primes p1, po, ..., Ps
such that a = p1ps...ps.
Since b € Z and 1 < b < n, then by the induction hypothesis, p(b) is true.
Thus, b is a product of one or more primes, so there exist ¢ primes q1, go, ..., G+
such that b = q1¢2...¢;.
Therefore, n = ab = (p1p2-..ps)(q1g2-..q¢) is a product of primes.

In all cases, n is a product of one or more primes, so p(n) is true.
Hence, p(n) is true whenever p(2) and p(3) and ... and p(n — 1) are all true
for any integer n > 3.

Since p(2) is true, and p(n) is true whenever p(2) and p(3) and ... and p(n—1)
are all true for any integer n > 3, then by strong induction, p(n) is true for all
integers n > 2.

Hence, p(n) is true for all integers n > 1.

Thus, n is a product of one or more primes for all integers n > 1.

Therefore, every integer greater than one is a product of one or more primes.
O

Proof. Existence:
Let n € Z and n > 1.
Since n > 1 and 1 > 0, then n > 0.
Since n € Z and n > 0, then n € Z*.
Since n > 1, then n # 1.
Since n € Z* and n # 1, then either n is prime or n is composite.
We consider these cases separately.
Case 1: Suppose n is prime.
Then n is a product of one prime (itself).
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Case 2: Suppose n is composite.

By theorem 73, every integer greater than 1 has a prime factor.

Since n € Z and n > 1, then n has a prime factor.

Therefore, there exists a prime p; € Z* such that pq|n.

Since p; € ZT and n € Z* and py|n, then p; < n, by theorem 39.

Thus, either p; < n or p; = n.

Since p; is prime and n is composite, and a prime does not equal a composite,
then p; # n, so p; < n.

Since p; is prime, then p; > 1.

Thus, 1 <p; and p; <n,s01<p; <n.

Since p1|n, then n = pyn; for some integer n;.
Since n € ZT and p; € Z™1, then ny; € Z*, so ny > 1.
Hence, either ny > 1 or nq = 1.

Suppose nq = 1.
Then n = piny = pi(1) = p1.
But, this implies composite n equals prime p;.
This is a contradiction, since a prime number cannot equal a composite
number.
Therefore, ny # 1.

Since either n; > 1 or n; = 1 and n; # 1, then we conclude n; > 1.
Since p; € Z and n = p1n; = n1p1, then nq|n.
Since ny € Z* and n € Z* and nq|n, then ny < n, by theorem 39, so either
ny <norn; =n.

Suppose n; = n.
Then 0 =n —piny =n—pin=n(l —p;), soeither n =0o0r 1 —p; =0.
Since n > 1, then n # 0, so we conclude 1 — p; = 0.
Thus, p; = 1, so prime p; is 1.
But, this contradicts the fact that any prime integer is not one.
Therefore, ny # n.

Since either n; < n or n; = n and n; # n, then we conclude n; < n.
Therefore, 1 <n; and ny <n,sol<n; <n.

Since ny € Z* and n; # 1, then either n; is prime or n; is composite.
If ny is prime, then n = pin; is a product of primes and we are done.
If ny is composite, then we apply the argument in case 2 to n;.
Therefore, there exists a prime ps € Z1 such that palny and 1 < ps < ny
and there exists no € Z1 such that n; = pany and 1 < ny < nq.
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Since 1 < ngy < nq, then 1 < no, s0 no > 1.

Thus, no # 1.

Since my € ZT and no # 1, then either ny is prime or ny is composite.

If ny is prime, then n = pyny = p1(pana) = pipang is a product of primes
and we are done.

If no is composite, then we apply the argument in case 2 to no.

Therefore, there exists a prime p3 € Z*1 such that p3lne and 1 < p3 < ng
and there exists n3 € ZT such that ny = psns and 1 < ng < ns.

Since 1 < n3 < no, then 1 < ng3, so ng > 1.
Thus, ng # 1.
Since n3 € Z™ and n3 # 1, then either n3 is prime or ns is composite.
If n3 is prime, then n = p1pans = p1p2(psns) = pi1papsns is a product of
primes and we are done.
If ng is composite, then we apply the argument in case 2 to ng.

Eventually this process must end, since the decreasing sequence n > ny >
ng > ... > 1 cannot continue forever.
Hence, after a finite number of steps, ng_1 is prime, say pg.
Therefore, n = pi1ps - - - px is a product of primes. O

Lemma 78. A product of primes is greater than one.

Proof. To prove a product of primes is greater than one, define the predicate
r(n) over Z* by ‘p1pa...pn > 1 for primes pi, pa, ..., pn -

We prove r(n) is true for all n € Z by induction on n.

Basis:

Let n = 1.

Suppose p; is prime.

Then p; € Z* and p; > 1.

Since p; > 1, then r(1) is true.

Let n = 2.
Suppose p; and po are prime.
Then p1,p2 € Z* and p; > 1 and py > 1.
Hence, p1ps > 1-1, so pips > 1.
Therefore, r(2) is true.
Induction:
Let k € Z* with k > 2 such that r(k) is true.
Then p1py...pr > 1 for primes py, pa, ..., Dk-

Suppose p; and py and ... and p and pgq are all primes.
Since p; and ps and ... and pj are all primes, then pyps...px, > 1, by the
induction hypothesis.
Since pyy1 is a prime, then ppi1 € ZT and ppq > 1.
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Since p1pa...pr > 1 and pg41 > 1, then (p1p2...pk)pr+1 > 1-1, S0 p1pa...pkPr+1 >

Hence, r(k + 1) is true.
Thus, r(k) implies r(k + 1) for all k € Z* with k > 2.

Since r(1) is true and r(2) is true, and r(k) implies r(k + 1) for all k € Z*
with k& > 2, then by induction, r(n) is true for all n € Z*.

Therefore, p1ps...pn > 1 for primes p1, pa, ..., pn for all n € ZT, so a product

of primes is greater than one. O

Theorem 79. Fundamental Theorem of Arithmetic(Unique Factoriza-
tion)

FEvery integer greater than one can be represented as a product of one or
more primes in exactly one way.

Proof. Uniqueness:

To prove every integer greater than one can be represented as a product of
one or more primes in exactly one way, we prove every integer greater than one
has a unique prime factorization.

Let z(n) be the predicate defined over Z™ by ‘n has a unique prime factor-
ization’.

To prove z(n) is true for all n € Z* with n > 1, we prove z:(n) is true for all
n € ZT with n > 2 by strong induction on n.

Basis:

Let n = 2.

Since 2 is prime, then the only prime factor of 2 is 2 itself, so 2 = 2 is the
only prime factorization of 2.

Therefore, z(2) is true.

Induction:

For any integer n > 2, assume z(2) and x(3) and ... and x(n) are all true.

Then z(k) is true for any integer k such that 2 < k < n.

Hence, x(k) is true for any integer k such that 1 < k <n + 1.

To prove xz(n+1) is true, we must prove n+1 has a unique prime factorization.
Suppose n + 1 has two representations as a product of one or more primes.
Then n + 1 = p1p2..pr = q1G2...¢s, Where p; and g; are all primes and

pr<p2<..<prandq <q <. <gs.

Since p; divides pips...p. and pip2...pr = q1q2...qs, then p; divides
q192 - - - 4qs-

By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of
primes, then p is one of those primes.

Since p; is prime and p; divides the product ¢1¢s...qs and q1, g2, ..., qs are
all primes, then we conclude p; is one of those primes, so p; = gx for some
integer k with 1 < k <s.

Since ¢1 < g and g = p1, then ¢1 < p;.
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Since ¢ divides ¢1¢s . ..qs and q1¢2 . . . ¢s = p1p2 - - . P, then ¢; divides p1ps ... .

By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of
primes, then p is one of those primes.

Since ¢ is prime and ¢; divides the product pips...p, and p1,po, ..., p, are
all primes, then we conclude ¢; is one of those primes, so qg; = p,, for some
integer m with 1 <m <.

Since p1 < pm and py, = g1, then p1 < 1.

Since p1 < ¢; and ¢q; < p1, then p; = ¢1, by the anti-symmetric property of
< on Z.
Since p; is prime, then p; > 1, so p; > 0.
Hence, p; # 0.
Since p; = g1 and p; # 0, then ¢; # 0.
Since p; = q1 and p; # 0 and ¢; # 0, then we may cancel the factor p; = ¢;
to obtain the equation pops...p, = q2q3 ... ¢s-

Let y = pap3...pr = q2G3 - - - qs-

Then y € Z and n + 1 = pyy.

Since p; is prime, then p; > 1.

By lemma 78, a product of primes is greater than one.

Since paops ... p, is a product of primes, then y > 1.

Since y > 1 and 1 > 0, then y > 0.

Since p; > 1 and y > 0, then we multiply to obtain p1y > 1-y,son+1>y.

Thus, l<yandy<n+1,s0l <y<n+1.

Since y € Z and 1 < y < n + 1, then by the induction hypothesis, z(y) is
true, so y has a unique prime factorization.

Since n + 1 = p1y and p; is prime and y has a unique prime factorization,
then n + 1 must also have a unique prime factorization, so x(n 4 1) is true.

Hence, z(n + 1) is true whenever z(2) and z(3) and ... and z(n) are all true
for any integer n > 2.

Since x(2) is true, and z(n + 1) is true whenever z(2) and z(3) and ... and
x(n) are all true for any integer n > 2, then by strong induction, z(n) is true
for all integers n > 2.

Thus, x(n) is true for all integers n > 1, so n has a unique prime factorization
for all integers n > 1.

Therefore, every integer greater than one has a unique prime factorization,
so every integer greater than one can be represented as a product of one or more
primes in exactly one way. O

Proof. Uniqueness:
Let n € Z and n > 1.
By theorem 77, the Fundamental Theorem of Arithmetic(Existence), every
integer greater than one can be represented as a product of one or more primes.
Therefore, n can be represented as a product of one or more primes.
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Suppose n has two representations as a product of one or more primes.

Let n = pip2...pr = q1G2-..¢s, Where p; and g; are all primes and p; <
p2<...<prand ¢1 < q2... < gs.

Without loss of generality, assume r < s.

Since p; divides pips...pr and pips...pr = q1q2-..qs, then p; divides
q192 - - -Qs-

By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of
primes, then p is one of those primes.

Since p; is prime and p; divides the product ¢i1qs...qs and q1, g2, ..., qs are
all primes, then we conclude p; is one of those primes, so p; = qx for some
integer k with 1 < k <s.

Since ¢1 < g and gx = p1, then ¢1 < p;.

Since ¢ divides q1¢ - .. gs and q1¢2 - . . ¢ = p1p2 - - - P, then ¢; divides p1ps ... ;.

By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of
primes, then p is one of those primes.

Since ¢; is prime and ¢; divides the product pips...p, and p1,ps, ..., p, are
all primes, then we conclude ¢; is one of those primes, so qg; = p,, for some
integer m with 1 <m <r.

Since p1 < py, and py, = g1, then p; < q1.

Since p; < ¢; and ¢q; < p1, then p; = ¢1, by the anti-symmetric property of
< on Z.
Since p; is prime, then p; > 1, so p; > 0.
Hence, p; # 0.
Since p; = q1 and p; # 0, then ¢; # 0.
Since p; = q1 and p; # 0 and ¢; # 0, then we may cancel the factor p; = ¢;
to obtain the equation pops...p, = q2qs3 ... ¢s-

We repeat this process to obtain p, = g2 and the equation psps...p, =
q3q4 - - -Qs-
We repeat this process.
Since r < s, then either r < s or r = s.

Suppose r < s.

Then there are s — r factors remaining on the right side of the equation,
namely, ¢,11,Gr+2, .., qs, and there is only one factor 1 on the left side of the
equation.

Thus, the equation will be 1 = ¢, 11¢r4+2 ... qs-

By lemma 78, a product of primes is greater than one.

Since each g; is prime, then the product g.11¢r42...¢s is greater than one.

Thus, ¢y 11¢r42...qs > 1.

But, this contradicts ¢,11¢r+2...9s = 1.

Hence, r cannot be less than s, so r = s.
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Therefore, p; = ¢; and ps = g2 and ... and p,. = ¢s = g, S0 n is represented
as a product of primes in only one way. O

Corollary 80. FEwvery integer greater than one has a unique prime
power factorization.

Every integer n > 1 can be written uniquely in a canonical form n =
Py ps?...pyt, where for each i =1,2,....k, each exponent e; is a positive integer
and each p; is a prime with p; < ps < ... < pg.

Proof. Let n € Z and n > 1.

By theorem 79, the Fundamental Theorem of Arithmetic(Unique Factoriza-
tion), every integer greater than one can be represented as a product of one or
more primes in exactly one way.

Therefore, n can be represented as a product of one or more primes in exactly
one way.

Let S be the set of distinct primes in the prime factorization of n.

Then S = {p1,p2,...,pr}, where each p; is a distinct prime factor in the
prime factorization of n.

Let these distinct prime factors be ordered such that p; < ps < ... < pg.

Let e; be the number of occurrences of each prime p; in the prime factoriza-
tion of n.

Then each e; is a positive integer and n = p{'p5?...pe~. O

Theorem 81. The gcd of two integers equals the product of the in-
tersection of the primes to the smallest power which appears in each
integer.

Leta,be ZT witha>1 and b > 1.

Then either ged(a,b) = 1, or ged(a,b) is the integer d whose prime factor-
ization contains primes common to the prime factorizations of a and b such that
each prime of d has a power equal to the minimum power occurring in the prime
factorizations of a and b.

Proof. Since a € Z* and b € Z*, then a > 0 and b > 0, so a # 0 and b # 0.

Hence, a and b are not both zero, so ged(a,b) exists and is unique.

Let d = ged(a, b).

Then d € Z+,sod > 1.

Hence, either d > 1 or d = 1.

We consider these cases separately.

Case 1: Suppose d = 1.

Then ged(a,b) = d =1, so ged(a,b) = 1.

Case 2: Suppose d > 1.

Since d € Z and d > 1, then by theorem 80, the fundamental theorem of
arithmetic, d has a unique prime power factorization.

Since a € Z and a > 1, then by theorem 80, the fundamental theorem of
arithmetic, @ has a unique prime power factorization.

Since b € Z and b > 1, then by theorem 80, the fundamental theorem of
arithmetic, b has a unique prime power factorization.
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If p is a prime factor of a or b, then either p is prime factor of a¢ and not b, or

p is a prime factor of b and not a, or p is a common prime factor of a and b.

We consider these cases separately.

Case 2a: Suppose p is a common prime factor of a and b.

Then p is prime and pla and p|b.

Since p is prime, then p € Z™ and p > 1.

Since d = ged(a, b), then d is a positive common divisor of @ and b, and any
common divisor of a and b is a divisor of d.

Thus, d € Z™ and d|a and d|b, and if ¢ € Z such that c|a and c|b, then ¢|d.

Since p € Z and p|a and pl|b, then we conclude p|d.

Since p is prime and p|d, then p is a prime factor of d.

Since p is a prime factor of d, and d has a unique prime factorization, then
p is a prime factor in the prime factorization of d.

Therefore, if p is a common prime factor of a and b, then p is a prime factor
in the prime factorization of d.

Since a has a unique prime power factorization, let e be the number of occur-

rences of p in the prime factorization of a.

Then e € Z* and p° is a factor in the prime factorization of a, so p¢|a.

Since b has a unique prime power factorization, let f be the number of
occurrences of p in the prime factorization of b.

Then f € ZT and pf is a factor in the prime factorization of b, so p/|b.

Since d has a unique prime power factorization, let g be the number of
occurrences of p in the prime factorization of d.

Then g € ZT and p? is a factor in the prime factorization of d, so p9ld.

We must prove g = min(e, f).
Since p?|d and d|a, then p?|a.
Since p9|d and d|b, then p9|b.
Since g is the largest power of p that divides a, and g is the largest power of
p that divides b, and p®|a and p7|b, then either g = ¢ or g = f.

Since e € Z1 and p® is a factor in the prime factorization of a, then e is the
largest power of p that divides a.
Hence, if n is a positive integer greater than e, then p™ cannot divide a.
Thus, if n € ZT and n > e, then p™ fa, so if n € ZT and p"|a, then n < e.
Since g € ZT and p?|a, then we conclude g < e.

Since f € ZT and p/ is a factor in the prime factorization of b, then f is the
largest power of p that divides b.
Hence, if n is a positive integer greater than f, then p™ cannot divide b.
Thus, if n € ZT and n > f, then p™ Jb, so if n € ZT and p"|b, then n < f.
Since g € ZT and p?|b, then we conclude g < f.
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Since either g =e or g = f, and g < e and g < f, then g = min(e, f).

Hence p™™(e:f) divides d, so p™»(e:f) is a factor in the prime factorization
of d.

Therefore, if p is a common prime factor of @ and b, then p™i*(¢:f) is a factor
in the prime factorization of d, where p© is a factor in the prime factorization
of a, and p7 is a factor in the prime factorization of b.

Case 2b: Suppose p is a prime factor of a and not b.

Then pla and p }b.

Suppose pl|d.

Since p|d and d|b, then p|b.

Hence, we have p|b and p fb, a contradiction.

Therefore, p fd.

Consequently, if p is a prime factor of a, but not of b, then p is not a prime
factor of d, so p is not in the prime factorization of d.

Therefore, if p is a prime factor of a, but not of b, then p is not in the prime
factorization of d.

Case 2c: Suppose p is a prime factor of b and not a.

Then p|b and p fa.

Suppose pl|d.

Since p|d and d|a, then pla.

Hence, we have pla and p fa, a contradiction.

Therefore, p fd.

Consequently, if p is a prime factor of b, but not of a, then p is not a prime
factor of d, so p is not in the prime factorization of d.

Therefore, if p is a prime factor of b, but not of a, then p is not in the prime
factorization of d.

If p is a common prime factor of a and b, then p is a prime factor in the prime
factorization of d.

If p is a prime factor of a, but not of b, then p is not in the prime factorization
of d.

If p is a prime factor of b, but not of a, then p is not in the prime factorization
of d.

Therefore, the only prime factors in the prime factorization of d are the
common prime factors of a and b.

If p is a common prime factor of a and b, then p™(&:f) is a factor in the
prime factorization of d, where p° is a factor in the prime factorization of a, and
p! is a factor in the prime factorization of b.

Thus, for every common prime factor p of a and b, p™n(&:f) is a factor in
the prime factorization of d, where p€ is a factor in the prime factorization of a,
and p’ is a factor in the prime factorization of b.

Hence, for every common prime factor p of @ and b, p has a power equal to
the minimum power occurring in the prime factorizations of a and b.

Therefore, ged(a, b) is the product of all common prime factors p of @ and b
such that each prime p power is the minimum of the powers of p in the prime
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factorizations of a and b. O

Theorem 82. The lcm of two integers equals the product of the union
of the primes to the largest power which appears in each integer.

Let a,b € ZT witha > 1 and b > 1.

Then either lem(a,b) = ab, or lem(a,b) is the integer m whose prime fac-
torization contains primes in either of the prime factorizations of a and b such
that each prime of m has a power equal to the mazimum power occurring in the
prime factorizations of a and b.

Proof. Since a € ZT and b € Z*, then lcm(a,b) exists and is unique.

Let m = lem(a,b).

Either m = ab or m # ab.

We consider these cases separately.

Case 1: Suppose m = ab.

Then lem(a,b) = m = ab.

Therefore, lecm(a, b) = ab.

Case 2: Suppose m # ab.

Since a € Z and a > 1, then by theorem 80, the fundamental theorem of
arithmetic, ¢ has a unique prime power factorization.

Since b € Z and b > 1, then by theorem 80, the fundamental theorem of
arithmetic, b has a unique prime power factorization.

Since m = lem(a, b), then m is a positive common multiple of ¢ and b, and
any positive common multiple of a and b is a multiple of m.

Hence, m € Z™ and a|m and blm, and for every ¢ € Z*, if a|c and b|c, then
m|c.

Since a € ZT and m € Z* and a|m, then a < m, by theorem 39.

Since m > a and a > 1, then m > 1.

Since m € Z* and m > 1, then by theorem 80, the fundamental theorem of
arithmetic, m has a unique prime power factorization.

If p is a prime factor of a or b, then either p is prime factor of a and not b, or

p is a prime factor of b and not a, or p is a common prime factor of a and b.

We consider these cases separately.

Case 2a: Suppose p is a common prime factor of a and b.

Since a has a unique prime factorization, let e be the number of occurrences
of p in the prime factorization of a.

Then e € Z* and p® is a factor in the prime factorization of a, so p¢|a.

Since b has a unique prime factorization, let f be the number of occurrences
of p in the prime factorization of b.

Then f € Z* and p/ is a factor in the prime factorization of b, so pf|b.

Since p®|a and a|m, then p®|m.

Since pf|b and blm, then pf|m.
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We prove p|m.
Since p¢|m, then m = p® - k for some integer k.
Since e € Z*, thene>1,s0e—1> 0.
Hence, p*~! € Z.
Observe that

m = p°-k
= (p-p" ")k
p(p°~" - k).

Since m = p(p°~! - k) and p¢~! - k € Z, then p|m.

Since p is prime and p|m and m has a unique prime factorization, then p is a
prime factor in the prime factorization of m.
Therefore, if p is a common prime factor of a and b, then p is a prime factor
in the prime factorization of m.

Let g be the number of occurrences of p in the prime factorization of m.
Then g € ZT and p9 is a factor in the prime factorization of m, so p?|m.

We must prove g = max(e, f).

Since p¢|m and pJ|m, then g is the smallest power of p such that m is a
multiple of p°.

Since p/|m and pY|m, then g is the smallest power of p such that m is a
multiple of p/.

Since g is the smallest power of p such that m is a multiple of p®, and g is
the smallest power of p such that m is a multiple of p/, and p®|m and p/|m,
then either g = e or g = f.

Since e € ZT and p®|m, then e is the smallest power of p such that m is a
multiple of p°.
Hence, if n is a positive integer less than e, then m is not a multiple of p°.
Thus, if n € ZT and n < e, then p¢ Jm, so if n € ZT and p¢|m, then n > e.
Since g € ZT and p9|m, then we conclude g > e.

Since f € Z* and pf|m, then f is the smallest power of p such that m is a
multiple of p/.
Hence, if n is a positive integer less than f, then m is not a multiple of p/.
Thus, if n € ZT and n < f, then p/ fm, so if n € Z* and p/|m, then n > f.
Since g € ZT and p?|m, then we conclude g > f.
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Since either g =e or g = f, and g > e and g > f, then g = max(e, f).

Hence, p™a*(e:f) divides m, so p™®*(©:f) ig a factor in the prime factorization
of m.

Therefore, if p is a common prime factor of @ and b, then p@*(e:f) is a factor
in the prime factorization of m, where p€ is a factor in the prime factorization
of a, and p7 is a factor in the prime factorization of b.

Case 2b: Suppose p is a prime factor of a and not b.

Let e be the number of occurrences of p in the prime factorization of a.

Then p° is a prime factor of a, so p¢|a.

Since p¢|a and a|m, then p¢|m, so p€ is a factor in the prime factorization of
m.

Therefore, if p is a prime factor of a, but not of b, and p€ is a factor in the
prime factorization of a, then p© is a factor in the prime factorization of m.

Case 2c: Suppose p is a prime factor of b and not a.

Let f be the number of occurrences of p in the prime factorization of b.

Then p is a prime factor of b, so p/|b.

Since pf|b and b|m, then pf|m, so pf is a factor in the prime factorization
of m.

Therefore, if p is a prime factor of b, but not of a, and pf is a factor in the
prime factorization of b, then p/ is a factor in the prime factorization of m.

If p is a prime factor of a, but not of b, and p® is a factor in the prime
factorization of a, then p€ is a factor in the prime factorization of m.
If p is a prime factor of b, but not of a, and pf is a factor in the prime
factorization of b, then p/ is a factor in the prime factorization of m.
Therefore, if p is a prime factor of a or b, but not a common prime factor of
a and b, then p is a factor in the prime factorization of m with power equal to
the power occurring in the prime factorizations of a or b.

If p is a common prime factor of a and b, then p™**(e:-f) ig a factor in the
prime factorization of m, where p°¢ is a factor in the prime factorization of a,
and p/ is a factor in the prime factorization of b.

Hence, if p is a common prime factor of a and b, then p has a power equal
to the maximum power occurring in the prime factorizations of a and b.

Therefore, the prime factorization of m contains primes in either of the prime
factorizations of a and b such that each prime of m has a power equal to the
maximum power occurring in the prime factorizations of a and b. O

Distribution of Primes

Proposition 83. Any distinct primes are relatively prime.

Proof. Let p and ¢ be distinct primes.
Then p € ZT and ¢ € ZT and p is prime and g is prime and p # q.
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Suppose for the sake of contradiction p|q.
Since p € Z1 and plq, then p is a positive divisor of gq.
Since ¢ is prime, then the only positive divisors of ¢ are 1 and gq.
Hence, either p =1 or p = q.
Since p is prime, then p # 1.
Since either p =1 or p = ¢, and p # 1, then we conclude p = q.
But, this contradicts the hypothesis p # q.
Therefore, p fq.

Since 1 € Z* and 1|p and 1]g, then 1 is a positive common divisor of p and g¢.

Since p is prime, then the only positive divisors of p are 1 and p.

Since p|p, but p /g, then p cannot be a common divisor of p and ¢, so p
cannot be a positive common divisor of p and q.

Hence, the only positive common divisor of p and ¢ is 1.

Since ged(p, g) is a positive common divisor of p and ¢, then ged(p, ¢) must
be 1, so ged(p,q) = 1.

Therefore, p and ¢ are relatively prime. O

Theorem 84. FEuclid’s Theorem
There are infinitely many prime numbers.

Proof. Let n € Z*.

Let p1,p2, ..., pn be any finite list of prime numbers.

We prove there is a prime number not included in the list.

Let N =pip2 - pn+ 1.

Since each prime p, po, ..., p, is an integer, then the product p;...p, is an
integer, so p1...py + 1 is an integer.

Hence, N is an integer.

Since each prime pi1,po,...,p, is positive, then pips - - - p, > 0, so N =
pip2--pn+1>0+1=1

Hence, N > 1.

By theorem 73, every integer greater than one has a prime factor.

Since N € Z and N > 1, then N has a prime factor.

Let p be a prime factor of N.

Then p is prime and p|N.

Suppose p is a prime in the list.

Then p is one of the primes p1,pa, ..., Pn.

Thus, p is one of the factors of the product p1ps - pn, so p divides p1ps -« pn.

Since p|N and p|(p1p2---pn), then pis a common divisor of N and (p1p2---pn)-

By theorem 50, any common divisor of N and (p1ps -+ py,) divides any linear
combination of N and (pip2 - - - pn)-

Hence, p divides any linear combination of N and (p1ps2 - - - pn)-

Since 1 = N — p1ps - - - p, is a linear combination of N and pips - - - p,, then
p must divide 1.

Since p is prime, then p € Z+.
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Since p € Z1 and p|1, then p = 1.

But, p is prime and 1 is not prime, so p # 1.

Therefore, p is a prime not in the list, so there is a prime number that is not
in the list. O

Proof. Let S = {p1,pa,...,pn} be a finite set of primes.

We show that there exist primes that are not in S.

Let p = p1 *po * ... x Dy

Let g=p+ 1.

Either ¢ is prime or not.

We consider these cases separately.

Case 1: Suppose q is prime.

Then q is greater than each of the primes in S, so ¢ is not one of the primes
in S.

Hence, there exists some prime that is not in S.

Case 2: Suppose q is not prime.

Since each prime py for k = 1,2, ...,n is greater than one, then the product
p of all of these primes must be greater than one.

Thus, p > 1.

Hence, q=p+1>1+1=2>1,s0¢q > 1.

By theorem 73, every integer greater than one has a prime factor.

Therefore, ¢ has a prime factor.

Let r be a prime factor of gq.

Then, r|gq.

Suppose for the sake of contradiction that r € S.
Then r is one of the prime factors of p, so r|p.
Since r|p and r|q, then r is a common divisor of p and q.
By theorem 50, any common divisor of p and ¢ divides any linear combination
of p and gq.
Since 1 = ¢ — p is a linear combination of p and ¢, then this implies r|1.
Since r is prime, then r > 1, so r > 0.
Since r > 0 and 1 > 0 and r|1, then r < 1, by theorem 39.
Thus, we have r > 1 and r» < 1, a contradiction.
Therefore, r ¢ S.
Hence, there exists some prime that is not in S.

Thus, in all cases, there exists some prime that is not in S.
Therefore, there must be infinitely many prime numbers. O

Proof. Suppose for the sake of contradiction that there are finitely many prime
numbers.

Then we can list all the prime numbers as p1, p2, ps3, ..-Pn, Where p; = 2,py =
3,p3 = 5,pg = 7, and so on.

Thus, p, is the nth and largest prime number.
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Let a be the product of all prime numbers plus one.

Then a = (p1p2p3 -+~ pn) + 1.

Hence, a > 1.

By theorem 73, every integer greater than one has a prime factor, so a has
a prime factor.

Therefore, one of the primes p1,pa, ..., p, must divide a, so pg|a for at least
one of the primes py, where k = 1,2, ..., n.

Since pgla, then a = pib for some integer b.

Observe that

1 = a—(pip2- - Pn)
= prb—(pp2- ... Pn)
= prb— (P12 - - Pr—1PEDPK+1- " Pn)
= pr(b—pip2 - . Pr—1Pkt1- " Pn)-

Since b—p1p2 - .. Pk—1Pk+1---Pn € Zand 1 = pr(b—p1pa - ...Dp—1Dk+1- " Pn),
then pg|1.

Since py is prime, then p; > 1.

Since pr > 1 and 1 > 0, then pg > 0.

Since pr > 0 and 1 > 0 and pg|1, then pp < 1, by theorem 39.

Hence, we have p;, > 1 and pr < 1, a contradiction.

Therefore, there are not finitely many prime numbers, so there are infinitely
many prime numbers. O

Proof. Suppose for the sake of contradiction that there exist finitely many
primes.

Then we could list all the primes.

Let p1,p2, ..., pn be a listing where each p; is prime.

To derive at a contradiction we construct a number which is not in the list
and which must be prime.

Let p = p1pa xxxp, + 1.

Clearly, p is not in the list and each p; divides the product pyps * * * p,,.

Therefore, none of the p; can divide p.

For if a certain p; divided both p and p1ps * ** p,,, then p; would divide their
difference p — p1ps * * * p, = 1.

Hence, p;|1 which implies p; = 1.

But, 1 is not prime contradicting the assumption p; is prime.

Hence, p is not divisible by any prime, so p itself must be prime. O

Sieve of Eratosthenes

Lemma 85. Letn € ZT.
If n is composite, then there exists d € Z such that dln and 1 < d < /n.

Proof. Suppose n is composite.
By theorem 72, a composite number is composed of smaller positive factors.

()



Since n is composite, then there exist integers a and b with 1 < a < n and
1 < b < n such that n = ab.

Since 1 < a <n, then 1 <a and a < n.

Since 1 < b < n, then 1 < b and b < n.

Since n = ab = ba, then a|n and b|n.

Suppose a > y/n and b > /n.

Since n € ZT, then n > 1.

Since n > 1 and 1 > 0, then n > 0, so v/n > 0.

Since a > y/n and b > y/n and /n > 0, then n = ab > \/n-\/n = (y/n)> = n,

so n > n, a contradiction.

Hence, either a < y/n or b < /n.
We consider these cases separately.
Case 1: Suppose a < /1.
Since 1 < a and a < y/n, then 1 < a < +/n.
Therefore, a is an integer and a|n and 1 < a < y/n.
Case 2: Suppose b < y/n.
Since 1 < b and b < /n, then 1 < b < y/n.
Therefore, b is an integer and b|n and 1 < b < y/n.

In all cases, there is an integer d such that d|n and 1 < d < \/n. O

Proposition 86. Letn € ZT.
If n is composite, then n has a prime factor less than or equal to /n.

Proof. Suppose n is composite.
By lemma 85, there exists d € Z such that djn and 1 < d < /n.
Since 1 < d < +/n, then 1 < d and d < /n.
By theorem 73, every integer greater than one has a prime factor.
Since d € Z and d > 1, then d has a prime factor.

Let p be a prime factor of d.
Then p € ZT and p is prime and p|d.
Since p|d and d|n, then p|n.
Since d > 1 and 1 > 0, then d > 0.
Since d € Z and d > 0, then d € Z™.
Since p € Z™* and p is prime, then p > 1, so p > 0.
Since p € Z* and d € Z" and pl|d, then p < d.
Since p < d and d < \/n, then p < /n.
Since p is prime and p|n, then p is a prime factor of n.
Therefore, p is a prime factor of n and p < /n. O

Proposition 87. For every integer n > 2, there is a prime p such that p < n.
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Proof. Let n be an integer greater than 2.
Then n € Z and n > 2.
Let p = 2.
Since 2 is prime and 2 < n, then there is a prime p such that p < n. O

Proposition 88. For every n € Z*, there is a prime p such that p > n.

Proof. Let n € Z+.
Then n > 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Since 2 is prime and 2 > 1, then there is a prime p such that p > n.
Case 2: Suppose n > 1.
Suppose for the sake of contradiction there is no prime p greater than n.
Then p < n for every prime p.
Hence, p < n + 1 for every prime p.

Let S be the set of all primes less than n + 1.

Then S ={p€Z™" :pis prime and p < n + 1}.

Sincen € ZT and n > 1, thenn > 2,son+ 1> 3.

Sincen+1>3 and 3 > 2, then n+1 > 2.

Sincen € Z*, thenn+1¢€ Z™.

Since n+1 € Z and n + 1 > 2, then there is a prime p such that p <n + 1,
by proposition 87.

Since p is prime, then p € Z™.

Since p € Z* and p is prime and p < n + 1, then p € S, so S is not empty.

We prove S is finite.
Let T be the set of all positive integers less than n + 1.
Then T ={t€Z" :t <n+1} ={1,...,n—1,n} is a finite set of cardinality

Let x € S.
Then x € Z* and x is prime and z < n + 1.
Sincex € Z*t and z <n+1, thenz € T.
Hence, z € S implies z € T, s0 S C T.

A subset of a finite set is finite.
Since S C T and T is finite, then S is finite.

Since S is a non-empty finite set of prime numbers, then S contains exactly
k primes p1,ps, ..., pr such that p; < py < ... < py for k € Z+.
Since pr € S, then pi, < n + 1.
By Euclid’s theorem, there are infinitely many prime numbers, so there exists
a prime pg4+1 such that pgy1 > pi.
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Suppose prr1 < n + 1.
Since pyy1 is prime, then pp 1 € Z7.
Since pry1 € ZT and pgyq is prime and pry1 < n+ 1, then ppyq € S.
Hence, S contains at least k+1 elements, so S contains more than k elements.
But, this contradicts that S contains exactly k elements.
Therefore, pr+1 cannot be less than n + 1, so pgr1 > n+ 1.

Since pxr1 >n+1and n+ 1 > n, then prrq1 > n.
Thus, px4+1 is prime and pg41 > n, so there is a prime greater than n.
But, this contradicts the assumption there is no prime greater than n.
Therefore, there must be a prime p such that p > n. O

Lemma 89. Letn € Zt.

Let p,, be the n'* prime number when the sequence of primes is arranged in
ascending order.

Then ppi1 <p1-p2-... - pn+1 foralneZ.

Proof. Suppose for the sake of contradiction there exists n € ZT such that
DPnt1 > D1 P2 Pp+ L

Let N=p1-pa-...-pp+ 1.

Then p,+1 > N.

Since each prime pi,ps,...,py is positive, then pips - - - p, > 0, so N =
pip2-- P +1>0+1=1.

Hence, N > 1.

Since p1,p2,....;pn €ZT and N =p; -pa-... - p, + 1, then N € Z.

By theorem 73, every integer greater than 1 has a prime factor.

Since N € Z and N > 1, then N has a prime factor.

Let p € Z™ be a prime factor of N.

Then p is prime and p|N.

Since py |pn, then p, divides any multiple of p,, by theorem 43.

Hence, p,, divides the product pips...p,, so p, divides N — 1.

Since N > 1, then N —1 > 0.

Since N € Z, then N — 1 € Z.

Since N—1€Zand N—1>0,then N —1¢Z".

Since p,, is prime, then p, € ZT.

By theorem 39, a divisor of a is smaller than a.

Since p, € ZT and N — 1 € Z* and p,, divides N — 1, then p, < N — 1.

Thus, p, <N —-1< N, sop, < N.

Since p; is prime, then p; > 1.

Since the sequence of primes is arranged in ascending order, and p1, pa, ...pn
are all primes, and p; > 1 and p,41 > N and p, < N, then 1 <p; <ps < ... <
Pn < N <pny1.

Since N € Z and N > 1, then N € Z*.

Since p € Z* and N € Z™ and p divides N, then p < N.

Since p is prime, then p > 1,s0 1 <p < N.
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Since p is prime, and p divides N, and 1 < p; < ps < ... < pp, < N < ppy1,
and 1 < p < N, then p must be one of the primes p1,po, ..., pn, S0 p = pi for
some integer k € {1,2,...,n}.

Since py is one of the factors of the product pips...p,, then p divides
P1p2---Pn-

Since pi|N and py divides p1ps...pn, then pj is a common divisor of N and
P1P2---Pn-

By theorem 50, any common divisor of N and (p1ps---py) divides any linear
combination of N and (p1ps2 - - - pn)-

Since 1 = N — p1ps - - - p,, is a linear combination of N and pips - - - p,, then
pr. must divide 1.

Since py is prime, then py € Z™.

Since pi, € Z* and pg|1, then py = 1.

But, py is prime and 1 is not prime, so pj # 1.

Consequently, there is no n € Z* such that p,r1 > p1-p2-... pn + 1.

Therefore, pp,11 <p1-pa-...-pp+1forallneZr. O

Proposition 90. Let n € Z*.
Let p,, be the n'" prime number when the sequence of primes is arranged in
ascending order.

Thenpi-pa-... pn+1<p,*+1 foralln c Z*.
Proof. Let g(n) be the predicate defined by p1 -pa-... - pp +1 < p," + 1 over
Zt.

We prove g(n) is true for all n € Z* by induction on n.

Basis:

Let n = 1.

Since p; + 1 = p1* + 1, then ¢(1) is true.

Let n = 2.
Since p1p2 +1=2-3+1=7<10=3%+1=py? + 1, then ¢(2) is true.
Induction:
Let k € Z* with k > 2 such that ¢(k) is true.
Then p1ps - ... -pr +1 < ppF +1, 50 p1pa - ... - pr < pik.
Hence, p1ps - ... - pr < pr* < prsa®, so pipa - oo pe < prar®™
Thus, p1ps - . - Pk * Pht1 < Pht1” - Dh1, SO P1P2 -+ oo * P Pht1 < Phs1”
Therefore, p1ps - ... - pr, - Pra1 + 1 < pra1 ¥+ 1, 50 q(k + 1) is true.
Consequently, ¢(k) implies q(k + 1) for all k € Z* with k > 2.

+1

Since ¢(1) and ¢(2) are true, and g(k) implies g(k + 1) for all k € ZT with
k > 2, then by induction, q(k) is true for all k € ZT, so ¢q(n) is true for all
ne€Zr.

Therefore, p1 pa ... - pp +1<p," +1for all n € Z*. O

Proposition 91. growth of the prime number sequence
LetneZ™".

79



Let p,, be the n'" prime number when the sequence of primes is arranged in
ascending order. )
Then p, < 22"~ for alln € Z*.

Proof. Let q(n) be the predicate p, < 22" defined over Z*.
We prove g(n) is true for all n € Z* by strong induction on n.
Basis:
Let n = 1.
Since p; =2 =21 = 22" = 227" then q(1) is true.

Let n = 2. . .
Since po = 3 <4 =22=22"" then pp < 22" | 50 ¢(2) is true.
Induction:

Let k € Z* with k& > 2 such that ¢(1) and ¢(2) and ... and g(k) are all true.

Then p; <2 and ps < 22 and ps < 2% and ... and p;, < 22"t

Since pq,pa, ..., pr are all greater than zero, then pips - ... - pp < 21 -22.2%.

928 gl 24 428

Let S=1+2+4+..+2F1

Then S = Z:;é 2% is the sum of the first k terms of a geometric series, so
S=2F_1. . .

Hence, p1ps - ... - pr <25 =221 50 p1po ... - pr, <22 1.

Thus, p1p2 - ... ‘P +1< 92" -1 4 1,

Since p,, is the n*" prime number when the sequence of primes is arranged in

ascending order, then p,.1 <p1-p2-...-p, + 1 for all n € Z", by lemma 89.
Thus, ppr1 <p1-p2-...-pp+1 .
Since pry1 < p1-pa-...-pp+1and pipo - .. - pp +1 < 2271 4 1, then

Prt1 < 92" -1 4 1,

Since k > 2 > 0, then k£ > 0.
Observe that

2k > 1

28 —1>0

92" =151

1 <221

92" -1 4 1 <9271 4 92" 1
92" -1 4 1 < 9.92"1
92" -1 4 1 < 92",

k>0

2

Thus, 22"~ +1 < 22",

80



Since pri1 < 227141 and 2271 + 1 < 22° then pryq < 22°, s0 q(k + 1) is
true.
Therefore, q(k + 1) is true whenever ¢(1) and ¢(2) and ... and ¢(k) are all
true for all kK € ZT with k& > 2.

Since ¢(1) and ¢(2) are true, and g(k + 1) is true whenever ¢(1) and ¢(2) and

. and ¢(k) are all true for all k € Z* with k > 2, then by induction, ¢(k) is
true for all k € Z™1, so ¢(n) is true for all n € Z*.

Therefore, p, < 22" for all n € Z. O

Corollary 92. Letn € Z™.
Then there are at least n+ 1 primes less than 22" .

Proof. Let p,, be the nt” prime number when the sequence of primes is arranged
in ascending order.

Since n € Z*, then p, < 22", by proposition 91.

Since n € Z*, then n+1 € Z*, 50 ppy1 < 22" by proposition 91.

Since n € Z*, then n > 1.

Since 1 < 2 =p; <p, < Ppy1, then 2 < ppyq.

Since pp41 is prime and p,41 > 2, then p,41 is odd.

Since 22" and 22" are even, and py41 is odd, then p,1 # 22" and ppy1 #
22" 501 <p1 < .. <pn <227 < payr <227
Thus, 1 < p1 < .. < P < Pyt < 227, S0 P1y.ees Pris Pns1 are primes less
than 22",
Therefore, there are at least n + 1 primes less than 22" . O

Goldbach Conjecture

Proposition 93. Twin primes are odd.
Let p and p + 2 be twin primes.
Then p and p+ 2 are odd.

Proof. Since p and p + 2 are twin primes, then p is prime and p + 2 is prime.
Since p is prime, then p € Z™.

Suppose p is not odd.

Since p € Z* and p is not odd, then p is even.

Since p is prime and p is even, then p =2, so0p+2=2+2=4=2-21is
composite.

Since p + 2 is composite, then p + 2 is not prime.

But, this contradicts the assumption p + 2 is prime.

Thus, p is odd, so p = 2n + 1 for some integer n.

Hence, p+2=(2n+1)+2=2n+2+1=2(n+ 1)+ 1 is odd.

Therefore, p is odd and p + 2 is odd. O
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Proposition 94. For every integer n > 2, there are n consecutive positive
integers which are all composite.

Proof. Let n be an integer greater than or equal to 2.

Then n > 2,s0n € Z+.

Let S be the set of all numbers (n+1)!+ & for each integer k = 2,3,...,n+1.

Then S ={(n+ )+ k:ke{2,3,..,n+1}},s0 S ={(n+ 1) +2,(n+
N+3,.,(n+ 1)+ (n+1)}

Since n € ZT, then (n + 1)! € Z*, so (n+ 1)! + k € ZT for each k =
2,3,..,n+1.

Hence, each element of S is a positive integer.

Since (n+1)!1+2 < (n+1)!4+3 < ... < (n+ 1)+ (n+1), then each successive
integer is one greater than the previous integer, so there are n consecutive
positive integers.

We prove each element of S is composite.
First, we prove (n + 1)! + k is divisible by k for each k =2,3,...,n + 1.
Since k =2,3,....n+ 1, then 2 <k <n+1.
Since (n+1)!=1-2-3-...-n(n+1), and k is an integer and 2 < k <n+1,
then k is a factor of (n + 1), so k divides (n + 1)!.
Since k divides (n+1)! and k divides k, then k divides the sum (n+1)! +k,
so (n 4+ 1)! + k = km for some integer m.

Since n > 2, then n + 1 > 3.

Thus, (n+ 1)1 >3!'=6>0,s0 (n+1)! > 0.

Hence, (n+ 1)+ k > k.

Since k > 2 and 2 > 1, then k£ > 1.

Since k > 1and (n+1)!+k >k, then 1 <k < (n+1)!+k.

Since (n+ 1)!+k €Z* and k € ZT and (n+ 1)! + k = km, then m € Z", so
m > 1.
Hence, either m > 1 or m = 1.

Suppose m = 1.
Then (n+ 1) +k=k(1) =k,s0 (n+1)! =0.
But, this contradicts (n 4+ 1)! > 0.
Hence, m # 1, so m > 1.

Since m € Z* and (n + 1)! + k € Z* and m divides (n + 1)! + k, then

m < (n+ 1)! + k, by theorem 39.
Thus, either m < (n+ 1)+ k or m = (n+ 1)! + k.
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Suppose m = (n+ 1)! + k.
Then m = (n+ 1)! + k = km, so m = km.
Hence, 0 = km — m = m(k — 1), so either m =0 or k = 1.
Since m > 1, then m # 0, so k = 1.
But, this contradicts k£ > 1.
Therefore, m # (n + 1) + &k, som < (n+ 1)! + k.
Sincem >1land m < (n+ 1)+ k&, then 1 <m < (n+ 1)! + k.

By theorem 72, a composite number is composed of smaller positive factors.

Since k and m are integers, and 1 < k < (n+1)!4+k,and 1 < m < (n+1)!+k,
and (n + 1)! 4+ k = km, then (n + 1)! 4+ k is composite.

Therefore, (n+1)!4k is composite for each k = 2,3, ...,n+1, so each element

of S is composite. O

Conjecture 95. ternary(weak) Goldbach conjecture
Every odd integer greater than 5 is the sum of three primes.

Proof. Suppose the strong Goldbach conjecture is true.

Let n be an odd integer greater than 5.

Then n is odd and n > 5.

Since n is odd and 3 is odd, then the difference n — 3 is even.

Since n > 5, then n — 3 > 2.

Since n — 3 is even and n — 3 > 2, then n — 3 = p+ ¢ for some primes p and
q, since we’re assuming the strong Goldbach conjecture is true.

Since n = 3+ p—+gq, and 3, p, and ¢ are all primes, then n is the sum of three
primes. O

Proposition 96. Fvery odd integer is of the form 4n + 1 or 4n + 3 for some
integer n.

Proof. Let a be any odd integer.

Then a is an integer and a is odd.

By the division algorithm, when a is divided by 4, there are unique integers
q and r such that a = 4¢+r and 0 < r < 4, so either a = 4q or a = 4q+ 1 or
a=4q9+2 or a =4q + 3.

Hence, either a = 4¢ = 2(2q) or a = 4g+1ora =4qg+2 = 2(2¢+ 1) or
a=4q+ 3.

Since a is odd, then a is not even, so a # 4q and a # 4q + 2.

Therefore, either a = 4¢g+1 or a = 4q+ 3, so either a =4¢g+1ora =4q+3
for some integer q. O

Proof. Let a be any odd integer.
Since a is odd, then a = 2b + 1 for some integer b.
Either b is even or b is not even.
We consider these cases separately.
Case 1: Suppose b is even.
Then b = 2n for some integer n.
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Hence, a =2b+1=2(2n)+1=4n+ 1.

Therefore, a = 4n + 1 for some integer n.

Case 2: Suppose b is not even.

Then b is odd, so b = 2n + 1 for some integer n.

Hence,a =2b+1=22n+1)+1=4n+2+1=4n+3.

Therefore, a = 4n + 3 for some integer n. O

Lemma 97. The product of any finite number of integers of the form 4a+1 is
of the same form.

Proof. We must prove (4day + 1)(4as + 1) - ... (4a, + 1) = 4m + 1 for some
integer m for all n € ZT.

Thus, we must prove: for all n € Z*, [];_,(4a; + 1) = 4m + 1 for some
integer m.

Let p(n) be the predicate defined over Z* by ‘T]"_;(4a; + 1) = 4m + 1 for
some integer m’.

We prove p(n) is true for all n € Z* by induction on n.

Basis:

Let n = 1.

Then H2:1(4ai + 1) = 4ay + 1 for some integer a;.

Therefore, p(1) is true.

Let n = 2.
Then H?:1(4(l¢ +1) = (4a1 + 1)(4az + 1) for some integers a; and as.
Observe that
2

[[¢a;i+1) = (401 +1)(4az +1)
i=1
= 16(11&2 + 4&1 + 4a2 +1
= 4(4@1@2 + a1 + CLQ) +1
= 4m+ 1.
Hence, H?:1(4ai+1) = 4m+1 for some integer m, where m = 4ajas+a;+as.
Therefore, p(2) is true.
Induction:
Let k € Z+ with k > 2 such that p(k) is true.
Then Hf:1(4ai + 1) = 4s + 1 for some integer s.

Observe that
k+1

k
H(4ai +1) H da; +1) - (dags1 + 1)

i=1 i=1
= (4s+1)(dag+1 +1)
= 16sagq1 +4s+4ag+1 +1
= 4d(4sag41 + s+ ags1) +1
= 4t+1.
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Hence, Hfill (4a;+1) = 4t+1 for some integer t, where t = 4sag1+S+ap41.
Therefore, p(k + 1) is true.
Thus, p(k) implies p(k + 1) for all k € Z* with k > 2.

Since p(1) is true and p(2) is true, and p(k) implies p(k + 1) for all k € Z*
with k& > 2, then by induction, p(k) is true for all k € Z™.
Therefore, for all n € Z*, [[I_,(4a; + 1) = 4m + 1 for some integer m. O

Theorem 98. There are infinitely many primes of the form 4n + 3, where
n € Z.

Proof. Suppose for the sake of contradiction there are finitely many primes of
the form 4n + 3.

Let p1, p2, ..., pr be k primes such that each p; is of the form 4n 4+ 3 for some
integer n, where i = 1,2, ..., k.

Let N =4p1ps...pr — 1.

Then N =4p1ps...pr—4+3=4(p1p2...px—1)+3,s0 N = 4(p1ps ... pr —
1) +3.

Thus, by the division algorithm, 3 is the unique remainder when N is divided
by 4.

Since each prime p; is an integer and N = 4pips...pr — 1, then N € Z.

By lemma 78, a product of primes is greater than 1.

Thus, p1p2...pr > 1, 80 4p1ps ... pr > 4.

Hence, N =4p1ps...pp—1>4—-1=3>1,s0 N > 1.

Since N € Z and N > 1, then N is a product of primes, by the fundamental
theorem of arithmetic.

Thus, there are m primes q1,q2, ..., ¢n such that N = qi1qs...¢mn, where
m e ZT.

Since the product 4p1ps ...pr = 2(2p1p2 ... pk) is even, then 4pi1ps...pp — 1

is odd, so N is odd.

Thus, NV is not even, so 2 does not divide N.

Hence, 2 is not a prime factor of IV, so each prime factor ¢; # 2 for j =
1,2,...,m.

Consequently, each prime g; is greater than 2, so each ¢; is odd.

Therefore, each g; is of the form 4n + 1 or 4n + 3 for some integer n, by
proposition 96.

Suppose every prime g; is of the form 4n + 1 for some integer n.
By lemma 97, the product of any finite number of integers of the form 4n+1
is of the same form.
Hence, the product g1¢qs . .. ¢, is of the form 4n + 1, so q1¢2 ... ¢ = 4a+ 1
for some integer a.
Thus, N =4a+ 1, so 1 is the remainder when N is divided by 4.
But, this contradicts 3 is the unique remainder when N is divided by 4.
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Therefore, not every prime g; is of the form 4n 4+ 1, so there is some prime
gs that is not of the form 4n + 1 for some s € {1,2,...,m}.

Since g5 is of the form 4n + 1 or 4n+ 3, and ¢, is not of the form 4n+ 1, then

s is of the form 4n + 3, so qs = 4t + 3 for some integer ¢.

Since g5 is prime and s € {1,2,...,m}, then gs is one of the prime factors in
the product q1qs . .. ¢m, so qs divides q1qs . .. ¢pm-

Therefore, ¢; divides N.

Since ¢, is prime and gs = 4t + 3, then g5 is one of the primes p1,p2, ..., Pk,
so ¢, divides the product pips ... pk.

Since g5 divides pips...px and g¢s divides N, then gy divides any linear
combination of pips...pr and N, so ¢, divides 1 = 4pips...px — N.

Thus, gs|1.

Since ¢, is prime, then ¢, € ZT.

Since g5 € ZT and g1, then ¢, = 1.

But, ¢ is prime, so g5 # 1.

Therefore, there are not finitely many primes of the form 4n + 3, so there
are infinitely many primes of the form 4n + 3. O

Proof. Let (a,) be the sequence of positive integers given by a, = 4n + 3 and
apg = 3.

Then the sequence is 3,7,11,15,19,23, 27,31, ....

Since gcd(3,4) = 1, then 3 and 4 are relatively prime.

Therefore, by Dirichlet’s theorem, the sequence contains infinitely many
primes, so there are infinitely many primes of the form 4n + 3. O

Proposition 99. Leta,m € Z7.
If ged(a,m) > 1 and a is composite, then the arithmetic sequence a,a +
m,a+ 2m,a + 3m, ... contains only composite numbers.

Proof. Since a € Z+ and m € Z*, then ged(a, m) exists and is unique.

Let d = ged(a, m).

Then d € Z" and d|a and d|m.

Suppose d > 1 and a is composite.

Let (a,) be the arithmetic sequence defined by ag = a and a,, = a + nm for
alln € Z* .

To prove (a,) consists of only composite numbers, we must prove a is com-
posite and a,, is composite for all n € ZT.

By hypothesis, a is composite.

By theorem 73, every integer greater than 1 has a prime factor.

Since d € Z and d > 1, then d has a prime factor.

Let p be a prime factor of d.

Then p € ZT and p is prime and p|d.

Since p|d and d|a, then pla.

Since p|d and d|m, then p|m.

Since pla and p|m, then p divides any linear combination of a and m, by
theorem 50.
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Let n € ZT.

Then a,, = a + nm.

Since a 4+ nm is a linear combination of a and m, then p|(a + nm), so p|a,.

Since n € Z* and m € Z*, then nm € Z*, so nm > 0.

Hence, a + nm > a, so a, > a.

Since p is prime, then p > 1.

Since p € Z* and a € Z" and p|a, then p < a, by theorem 39.

Since p < a and a < ay, then p < a,.

Since 1 < p and p < a,, then 1 < p < a,.

By lemma 71, a composite number has a positive divisor between 1 and
itself.

Since p € Z* and pla, and 1 < p < a,, then a, is composite.

Hence, a,, is composite for all n € Z+.

Since a is composite, and a,, is composite for all n € ZT, then every term of
the sequence (a,) is composite, so the sequence (a,) contains only composite
numbers. O

Lemma 100. Let a,m € Z*.
If the arithmetic sequence a,a + m,a + 2m,a + 3m, ... contains a prime
number, then it contains infinitely many composite numbers.

Proof. Let (ay,) be the arithmetic sequence defined by ap = a and a,, = a + nm
for all n € Z7T.

Suppose (a,,) contains a prime number.

Then there is a prime p = a + nm for some integer n with n > 0.

Since p is prime, then p € Z™ and p > 1.

Let (bg) be the arithmetic sequence n + p,n + 2p,n + 3p, ...

Then by = n + kp for all K € Z™, so the sequence (by) is the function
[:Z" — S defined by f(k)=n+kp=0byand S ={b, : k€ Z*}.

We prove f is bijective.
We first prove f is injective.
Suppose £(k) = f(m).
Then n + kp = n + mp for some k,m € Z™*, so kp = mp.
Hence, 0 = kp — mp = p(k —m), so either p =0 or k = m.
Since p € Z™, then p > 0, so p # 0.
Thus, k = m, so f(k) = f(m) implies k = m.
Therefore, f is injective.

We prove f is surjective.
Let b, € S.
Then b, = n + kp for some k € ZT.
Since k € ZT and f(k) = n + kp = by, then f is surjective.
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Since f is injective and f is surjective, then f is bijective, so |ZT| =|S]|.
Since Z* is an infinite set, then this implies S is an infinite set, so the
sequence (by) has infinitely many terms.

Let k€ ZT.
Since k € Z* and p € ZT, then kp € ZT, so kp > 0.
Since n € Z and kp € Z, then n + kp € Z, so by, € Z.
Since n > 0 and kp > 0, then n + kp > 0, so by > 0.
Since by, € Z and by, > 0, then b, € Z7T.
Observe that

ap, = a+bym
a+ (n+ kp)m
a+ nm+ kpm

= p+kpm
p(1+ km).
Hence, ap, = p(1 + km), so p divides ay, .

Since k € Zt and m € Z*, then km € Z*, so km > 0.

Thus, 1+ km > 1.

Since 1 + km > 1 and p > 0, then p(1 4+ km) > p, so ap, > p.

Since ap, > p and p > 1, then ap, >p > 1.

By lemma 71, a composite number has a positive divisor between 1 and
itself.

Since p € Z1 and p divides ap, and 1 < p < ap,, then ap, is composite.

Hence, ap, is composite for all k € ZT,

Since the sequence (by) has infinitely many terms, and ap, is composite for
all k € Z*, then there are infinitely many terms of (a,) that are composite.

Therefore, the sequence (a,) contains infinitely many composite numbers.

O

Proposition 101. Let a,m € Z*.
There is no arithmetic sequence a,a + m,a + 2m,a + 3m, ... that contains
only prime numbers.

Proof. Suppose for the sake of contradiction there is an arithmetic sequence
a,a+ m,a+ 2m,a + 3m, ... that contains only prime numbers.

Then every term of the sequence is a prime number.

In particular, a is a prime number.

By lemma 100, the sequence contains infinitely many composite numbers.

Hence, there is at least one composite number that is a term of the sequence,
so there is at least one term of the sequence that is composite.

This contradicts the assumption that every term of the sequence is a prime
number.

Therefore, there is no arithmetic sequence a,a + m,a + 2m, a + 3m, ... that
contains only prime numbers. O
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Congruences

Theorem 102. Congruent integers leave the same remainder when
divided by n.

Let n be a fixed positive integer.

Let a and b be any integers.

Then a = b (mod n) if and only if a and b leave the same remainder when
divided by n.

Proof. We first prove if a and b leave the same remainder when divided by n,
then a = b (mod n).

By the division algorithm there exist unique integers g1, g2, 71,72 such that
a=nqgi+riand 0 <ry <nand b=ngy + 1 and 0 < ry < n.

Suppose r; = ro.

Then a — ng; = b —nge, so a —b=ngq —ng =n(q — ¢2).

Since a — b = n(q; — q2) and q; — g2 is an integer, then n|(a — b), so a = b
(mod n). O

Proof. Conversely, we prove if @ = b (mod n), then a and b leave the same
remainder when divided by n.

Suppose a = b (mod n).

Then n|(a —b), so a — b = nk for some integer k.

Thus, a = nk + b.

By the division algorithm, when b is divided by n, there exist unique integers
q and r such that b=ng+rand 0 <r < n.

Thus, r is the remainder when b is divided by n.

Hence, a =nk+b=nk+ (ng+7r) = (nk+nq) +r=n(k+q) +r.

Since a = n(k+q)+r and 0 < r < n, then by the division algorithm, r must
be the unique remainder when a is divided by n.

Thus, r is the remainder when each of a and b is divided by n.

Therefore, a and b leave the same remainder when divided by n. O

Theorem 103. The congruence modulo relation is an equivalence relation on
Z.

Proof. Let n be a fixed positive integer.
Let a, b, and ¢ be any integers.
Let R={(a,b) € ZXZ :n|(a—10)}.
Since R C Z x Z, then R is the congruence modulo n relation over Z.
By proposition 35, every integer divides zero, so n|0.
Hence, nla — a, so a = a (mod n).
Therefore, R is reflexive. O

Proof. Suppose a =b (mod n).
Then n|(a — b), so a — b = nk for some integer k.
Thus, b — a = —(nk) = n(—k).
Since —k is an integer, then n|(b — a), so b = a (mod n).
Hence, a = b (mod n) implies b = a (mod n), so R is symmetric. O
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Proof. Suppose a =b (mod n) and b = ¢ (mod n).

Then n|a—b and n|b—c, so there exist integers k; and ks such that a—b = nky
and b — ¢ = nks.

Adding these equations we obtain a — ¢ = (a — b) + (b — ¢) = nky + nke =
n(k1 + kg)

Since a — ¢ = n(ky + k2) and ky + ko is an integer, then nla — ¢, so a = ¢
(mod n).

Therefore, a = b (mod n) and b = ¢ (mod n) imply a = ¢ (mod n), so R is
transitive.

Since R is reflexive, symmetric, and transitive, then R is an equivalence
relation over Z. O

Proposition 104. Let n be a fixed positive integer.
Let a and b be any integers.
Ifa =0, then a =b (mod n).

Proof. Suppose a = b.

Then a — b= 0.
By proposition 35, every integer divides 0, so n divides 0.
Therefore, n divides a — b, so a = b (mod n). O

Theorem 105. arithmetic operations on congruences
Let n be a fized positive integer.
Let a,b,c, and d be any integers.
Ifa=b (mod n) and c =d (mod n), then
1. a+c=b+d (mod n) (addition of congruences)
2. a—c=b—d (mod n) (subtraction of congruences)
3. ac = bd (mod n). (multiplication of congruences)

Proof. Suppose a =b (mod n) and ¢ =d (mod n).
Then n|a — b and n|c — d.
Thus, there exist integers k; and ks such that

a—b = nk (2)
c—d = nky (3)

Adding these equations we get (a + ¢) — (b + d) = n(ky + k2).

Since ki + ko is an integer, then n|(a + ¢) — (b + d).

Therefore, a + ¢ = b+ d (mod n).

Subtracting these equations we get (a —¢) — (b —d) = n(k; — ko).
Since k1 — ko is an integer, then n|(a — ¢) — (b — d).

Therefore, a — ¢ = b —d (mod n).

Multiplying the first equation by ¢ we get ac — bc = nkyc.
Multiplying the second equation by b we get bec — bd = bnks.

We add these equations to get ac — bd = nkic + bnky = n(kic + bks).
Since kic + bko is an integer, then njac — bd.

Therefore, ac = bd (mod n). O
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Theorem 106. operations that preserve congruences
Let n be a fixed positive integer.
Let a and b be any integers.
1. Addition preserves congruence.
Ifa=0b (mod n), then a+ k =b+ k (mod n) for any integer k.
2. Subtraction preserves congruence.
Ifa=b (mod n), then a —k =b—k (mod n) for any integer k.
3. Multiplication preserves congruence.
If a=b (mod n), then ak = bk (mod n) for any integer k.
4. Ezponentiation preserves congruence.
Ifa=0b (mod n), then a® = b* (mod n) for any positive integer k.

Proof. We prove 1.
Suppose a = b (mod n).
Then nla — b.
Let k be any integer.
Sincea—b=a+0-b=a+(k—k)—b=(a+k)—k—b=(a+k)—(k+b) =
(a+k)— (b+k), then n|(a + k) — (b+ k).
Therefore, a + k = b+ k (mod n). O

Proof. We prove 2.
Suppose a = b (mod n).
Then nla — b.
Let k be any integer.
Sincea—b=a—-b+0=a—-b+(k—k)=a—-b+k—-k=a—-b—k+k=
a—k—b+k=(a—k)—(b—k), then n|(a — k) — (b — k).
Therefore, a — k =b — k (mod n). O

Proof. We prove 3.
Suppose a = b (mod n).
Then n|a — b, so n divides any multiple of a — b, by theorem 43.
Let k be any integer.
Then n|k(a — b), so n|(a — b)k.
Therefore, n|(ak — bk), so ak = bk (mod n). O

Proof. We prove 4.
Suppose a = b (mod n).
We prove a* = b* (mod n) for any positive integer k by induction on k.
Let p(k) be the predicate a* = b* (mod n) defined over the positive integers.

Basis:
Since a = b (mod n), then a' = b (mod n), so p(1) is true.
Induction:

Let k be any positive integer such that p(k) is true.

Then a* = b* (mod n).

Since a* = b* (mod n) and a = b (mod n), we multiply congruences to
obtain a*a = b*b (mod n).

Hence, a**! = b**! (mod n).
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Thus, p(k + 1) is true, so p(k) implies p(k + 1) for any positive integer k.

Since p(1) is true, and p(k) implies p(k + 1) for any positive integer k, then
by induction, p(k) is true for any positive integer k.
Therefore, a* = b* (mod n) for any positive integer k. O

Theorem 107. cancellation laws for congruences
Let n be a fized positive integer.
Let a,b, and k be any integers.
1. Addition cancellation law
Ifa+k=0b+k (modn), then a =0 (mod n).
2. Multiplication cancellation law

n
1 = = —_—).
'f ak = bk (mod n), then a =b (mod gcd(n,k‘))
Proof. We prove 1.
Suppose a + k = b+ k (mod n).
Then n divides (a + k) — (b+ k).
Observe that
(a+k)—(b+k) = a+k—-b—k
= a—-b+k—k
= a—-b+4+0
= a-—b

Hence, (a + k) — (b+ k) = a — b, so n divides a — b.
Therefore, a = b (mod n). O

Proof. We prove 2.
Suppose ak = bk (mod n).
Then n divides ak — bk, so ak — bk = nm for some integer m.
Thus, nm = (a — b)k = k(a — b).
Let d = ged(n, k).
Since ged(n, k) = d, then gcd(ﬁ ) = 1, by corollary 57 and g and k are

, d’d d
ntegers.
Since 7 and m are integers, then — - m is an integer.

. k k(a—b) nm n n ... k
Slnceg-(a—b)— y —7—E~m,thengd1v1desg-(a—b).
Since ™ divides © - (a — b) and ged(", %) = 1, then " divides a — b, b

d d g d ) d - ) d ) y
theorem 58. n
Therefore, a = b (mod —). O

d

Corollary 108. cancellation multiplication relatively prime
Let n be a fixed positive integer.
Let a,b, and k be any integers.
If ak = bk (mod n) and ged(n, k) =1, then a = b (mod n).
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Proof. Suppose ak = bk (mod n) and ged(n, k) = 1.
Since ak = bk (mod n), then n|ak — bk, so n|(a — b)k.
Thus, n|k(a — b).
Since n|k(a — b) and ged(n, k) = 1, then nja — b, by theorem 58.
Therefore, a = b (mod n). O

Proof. Suppose ak = bk (mod n) and ged(n, k) = 1.

By theorem 107 part 2, if ak = bk (mod n) and ged(n, k) = 1, then a = b
(mod %).

Therefore, if ak = bk (mod n) and ged(n, k) =1, then a =b (mod n). O

Lemma 109. Let p be a positive integer.
Let a be any integer.
If p is prime and p fa, then ged(p,a) = 1.

Proof. Suppose p is prime and p fa.
Let d = ged(p, a).
Then d is a positive integer and d|p and d|a.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d is a positive integer and d|p, then this implies either d =1 or d = p.

Suppose d = p.
Since d = p and d|a, then pla.
But, this contradicts the hypothesis p fa.
Therefore, d # p.

Since either d =1 or d = p, and d # p, then d = 1, so ged(p,a) = 1. O

Corollary 110. cancellation multiplication prime modulus
Let p be a positive integer.
Let a,b, and k be any integers.
If ak = bk (mod p) and p is prime and p fk, then a =b (mod p).

Proof. Suppose ak = bk (mod p) and p is prime and p fk.
Since p is prime and p [k, then ged(p, k) = 1, by lemma 109.

Since ak = bk (mod p) and ged(p, k) = 1, then a = b (mod p), by corollary
108. O

Proposition 111. Let k and n be positive integers.
Let a and b be any integers.
Then ak = bk (mod nk) iff a = b (mod n).

Proof. Since n and k are positive integers, then nk is a positive integer.
Suppose ak = bk (mod nk).
Then nk|(ak — bk), so nk|(a — b)k.
Hence, kn|k(a —b).
Since k is positive, then k > 0, so k # 0.
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Since k # 0 and kn|k(a — b), then n|(a — b), by proposition 44.
Therefore, a = b (mod n). O

Proof. Conversely, suppose a = b (mod n).
Then n|(a — b), so kn|k(a — b), by proposition 44.
Hence, nk|(a — b)k, so nk|ak — bk.
Therefore, ak = bk (mod nk). O

Proposition 112. Let n be a fixed positive integer.
Let a and b be any integers.
If ab=0 (mod n) and ged(n,a) =1, then b =0 (mod n).

Proof. Suppose ab =0 (mod n) and ged(n,a) = 1.
Since ab = 0 (mod n), then n divides ab — 0, so n divides ab.
Since n divides ab and ged(n,a) = 1, then n divides b, by theorem 58.
Therefore, n divides b — 0, so b= 0 (mod n). O

Proof. Suppose ab =0 (mod n) and ged(n,a) = 1.

Since a -0 =0, then a-0=0 (mod n), by proposition 104.

By theorem 103, congruence modulo is symmetric.

Hence, a -0 =0 (mod n) implies 0 = a -0 (mod n).

By theorem 103, congruence modulo is transitive.

Hence, ab=0 (mod n) and 0 = a -0 (mod n) implies ab =a -0 (mod n).

Since ab = a-0 (mod n) and ged(n,a) =1, then b = 0 (mod n), by corollary
108. O

Proposition 113. Let p be a positive integer.
Let a and b be any integers.
If ab=0 (mod p) and p is prime, then a =0 (mod p) or b=0 (mod p).

Proof. Suppose ab =0 (mod p) and p is prime.
Since ab =0 (mod p), then p|ab.
Since p is prime and p|ab, then p|a or p|b, by Euclid’s lemma 74.
Therefore, p|(a — 0) or p|(b—0), so a =0 (mod p) or b=0 (mod p). O

Proof. Suppose ab =0 (mod p) and p is prime and a Z 0 (mod p).
Since a # 0 (mod p), then p fa.
Since p is prime and p fa, then ged(p,a) = 1, by lemma 109.
Since ab =0 (mod p) and ged(p,a) = 1, then b =0 (mod p), by proposition
112.
O

Proof. Suppose ab =0 (mod p) and p is prime and a Z 0 (mod p).
Since a # 0 (mod p), then p fa.
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Since a -0 = 0, then a-0 =0 (mod p), by proposition 104.
By theorem 103, congruence modulo is symmetric.
Hence, a -0 =0 (mod p) implies 0 = a -0 (mod p).
By theorem 103, congruence modulo is transitive.
Hence, ab=0 (mod p) and 0 = a -0 (mod p) implies ab =a -0 (mod p).

Since ab = a - 0 (mod p) and p is prime and p /Ja, then b = 0 (mod p), by
corollary 110. O

Linear Congruences

Proposition 114. Letn € Z*.
Let a,b,x,xg € Z.
If xo is a solution to ax =b (mod n), then so is xg + nk for any integer k.

Proof. Suppose x is a solution to az = b (mod n).
Then axg = b (mod n).
Let k£ be an arbitrary integer.
Since a € Z and k € Z, then ak € Z.
By proposition 37, every integer divides itself.
Since n € Z, then nn.
Hence, n divides any multiple of n, so n|(ak)n.
Since
n|(ak)n &  nlakn
< nlank
< nlank —0
< ank =0 (mod n),

then we conclude ank =0 (mod n).

Since axg = b (mod n) and ank = 0 (mod n), then we add congruences to
obtain azg + ank = b+ 0 (mod n).

Therefore, a(xg +nk) =b (mod n). O

Proof. Suppose zg is a solution to ax = b (mod n).
Then azg = b (mod n).

Let k be an arbitrary integer.
Observe that

n|nk n|(xzo + nk) — xo
xo+nk =x9 (mod n)
a(xg + nk) = axg (mod n)

a(zg +nk)=b (mod n).

bl
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Theorem 115. Existence and uniqueness of multiplicative inverse of
a modulo n

Letne€Z" andn > 1.

Let a € Z.

Then there exists a unique integer b such that ab=1 (mod n) and 0 < b < n
if and only if ged(a,n) = 1.

Proof. We prove if ged(a,n) = 1, then there exists a unique integer b such that
ab=1 (mod n) and 0 < b < n.

Suppose ged(a,n) = 1.
Since ged is the least positive linear combination of a and n and ged(a,n) =
1, then there exist integers s and t such that sa +tn = 1.
Thus, as — 1 =sa — 1 = —tn = (—t)n = n(-t).
Since —t € Z and as — 1 = n(—t), then n|(as — 1), so as =1 (mod n).

By the division algorithm, when s is divided by n, there exist unique integers

q and b such that s =ng+band 0 < b < n.

Since s = ng + b, then s — b = ng, so n divides s — b.

Hence, s =b (mod n), so b=s (mod n).

Since @ = a (mod n) and b = s (mod n), then we multiply congruences to
obtain ab = as (mod n).

Since ab = as (mod n) and as =1 (mod n), then ab =1 (mod n),so 1 = ab
(mod n).

Since 0 < b < n, then 0 < b and b < n.
Since 0 < b, then b > 0, so either b > 0 or b = 0.

Suppose b = 0.
Then 1 = ab (mod n) implies 1 = a(0) (mod n).
Hence, 1 =0 (mod n), so n divides 1 — 0 = 1.
By lemma 54, the only positive integer that divides 1 is 1.
Since n € Z* and n|1, then we must conclude n = 1.
But, n > 1 by hypothesis, so n # 1.
Therefore, b # 0.

Since either b > 0 or b =0 and b # 0, then b > 0.
Thus, 0 < band b <n,s00<b<n.
Therefore, there exists a unique integer b such that ab = 1 (mod n) and
0 < b < n, as desired. O

Proof. Conversely, we prove if there exists a unique integer b such that ab =1
(mod n) and 0 < b < n, then ged(a,n) = 1.
Suppose there exists an integer b such that ab =1 (mod n) and 0 < b < n.
Since ab =1 (mod n), then n divides ab—1, so ab— 1 = nk for some integer

k.
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Thus, 1 = ab — nk = ab + (—nk) = ab+ n(—k) = ba + (—k)n is a linear
combination of a and n.

By corollary 56, ged(a,n) = 1 if and only if 1 is a linear combination of a
and n.

Therefore, we conclude ged(a,n) = 1. O

Proposition 116. Letn € Z™T.
Every integer is congruent to exactly one of the remainders 0,1,....,n — 1
when divided by n.

Proof. Let a € Z.

By the division algorithm, there exist unique integers ¢ and r such that
a =nqg+r with 0 <r <n when a is divided by n.

Since a = ng + r, then a — r = nq, so n divides a — r.

Hence, a = r (mod n).

Since r € Z and 0 < r < n, then either r =0orr=1or.. orr=n—1.
Thus, either r € {0} or € {1} or ... or 7 € {n — 1}, so r is an element of
the union {0} U {1} U...U{n —1}.
Hence, r € {0,1,...,n — 1}.

Therefore, r is a unique integer such that « = r (mod n) and r € {0,1,...,n—
1}. O

Proposition 117. Letn € Z*.

Let a € Z.

No pair of distinct integers in the set {0,1,...,n — 1} are congruent to each
other modulo n.

Proof. Let S ={0,1,...,n —1}.

We must prove there is no pair of distinct integers in the set S that are
congruent to each other.

The statement is: there are no distinct integers a € S and b € S such that
a=b (mod n).

Suppose for the sake of contradiction there are distinct integers a € S and

b € S such that a = b (mod n).

Since a and b are distinct integers, then a # b.

Since a € S, then a <n — 1.

Since b € S, then b >0, so 0 < b.

Since a and b are integers and a # b, then either a < b or a > b.

Without loss of generality, assume a > b.

Since a > b, then a — b > 0.

Since a and b are integers and a — b > 0, then a — b is a positive integer.

Since n € Z* and a — b € Z™, then n divides a — b implies n < a — b, so
n > a — b implies n does not divide a — b.
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Sincea<n—1andn—1<mn,thena<n,soa—b<n-—>o
Since0<band0<besn<n+bsn—>b<n,thenn—>b<n.
Sincea—b<n—bandn—b<n,thena—b<n,son>a—>b
Since n > a — b and n > a — b implies n does not divide a — b, then we
conclude n does not divide a — b.

Since n divides a — b iff a = b (mod n), then n does not divide a—b iff a #Z b
(mod n).

Since n does not divide a — b, then we conclude a # b (mod n).

Thus, we have a = b (mod n) and a £ b (mod n), a contradiction.
Therefore, there are no distinct integers @ € S and b € S such that a = b
(mod n), so no pair of distinct integers in S are congruent to each other modulo
n. O

Theorem 118. FExistence of solution to linear congruence

Letn e Z7.

Let a,b e Z.

A solution exists to the linear congruence ax =b (mod n) if and only if d|b,
where d = ged(a,n).

Moreover, if a solution exists, then there are d distinct solutions modulo n
and these solutions are congruent modulo %.

Proof. Suppose a solution exists to the linear congruence ax = b (mod n).
Then there exists an integer xy such that azg = b (mod n), so n|(axg — b).
Hence, axy — b = nk for some integer k.

Thus, b = axg — nk = axg + (—nk) = axg + n(—k).
Since xg, —k € Z and b = axg + n(—k), then b is a linear combination of a

and n.

By theorem 55, b is a multiple of ged(a, n) if and only if b is a linear combi-

nation of a and n.

Therefore, we conclude b is a multiple of ged(a, n), so ged(a, n)|b, as desired.
O

Proof. Conversely, suppose ged(a,n)|b.

Let d = ged(a, n).

Then d|b, so b = dk for some integer k.

Since d is the least positive linear combination of a and n, then there exist
integers r and s such that ra + sn = d.

Thus, b = dk = (ra + sn)k = rak + snk, so —snk = rak — b.

Let zg = rk.

Then z € Z and n(—sk) = —nsk = —snk = rak —b = ark — b= axo — b.

Since —sk € Z and n(—sk) = axg — b, then n|(azg—b), so axg = b (mod n).

Therefore, there exists xg € Z such that axg = b (mod n), so a solution to
the congruence exists, as desired. O

Proof. We prove if a solution exists to the linear congruence, then there are d
distinct solutions modulo n and these solutions are congruent modulo 7.
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Suppose a solution exists to the linear congruence axz = b (mod n).

Then there exists ¢ € Z such that ac = b (mod n) and ged(a, n)|b.

By proposition 116, every integer is congruent to exactly one of the remain-
ders 0,1,...,n — 1 when divided by n, so ¢ is congruent to exactly one of the
remainders 0,1, ...,n — 1 when divided by n.

Thus, there exists a unique zg € {0,1,...,n — 1} such that ¢ = 2o (mod n).

Since ¢ = ¢ (mod n), then ac = axy (mod n), so axg = ac (mod n).

Since axg = ac (mod n) and ac = b (mod n), then axg =b (mod n).

Therefore, g € {0,1,...,n — 1} is a particular solution of the congruence
ax =b (mod n).

Let S be the solution set of the congruence ax = b (mod n).
Then S={z €Z:ax=b (mod n)}.
Let T = {xo+ 45 -k, k € Z}.
We prove S =1T.
Since d = ged(a, n), then d|a and d|n, so § and %5 € Z.

We first prove T' C S.

LetteT.

Then t = x¢ + 4 - k for some integer k.

Since wgp € Z and 4§ € Z and k € Z and Z is closed under addition and
multiplication, then t € Z.

Since § € Z and k € Z, then § - k € Z.

By proposition 37, every integer divides itself.

Since n € Z, then n|n.

By theorem 43, if n|n, then n divides any multiple of n.

Thus, n divides any multiple of n, so n divides (§ - k)n = 2427 = 9408 =
a-%-k=a-%-k—0.

Hence, a- % -k =0 (mod n).

Since axg = b (mod n) and a-5-k = 0 (mod n), then we add the congruences
to obtain axg+a- %5 -k =b+0 (mod n).

Hence, a(zo + % - k) = b (mod n), so at = b (mod n).

Since t € Z and at = b (mod n), then t € S.

Since t € T implies t € S, then T' C S.

We next prove S C T.

Let s € S.

Then s € Z and as = b (mod n).

Since as = b (mod n), then b = as (mod n).

Since axg = b (mod n) and b = as (mod n), then axg = as (mod n).

Since azg = as (mod n) and d = ged(a,n), then by theorem 107, we have
g =s (mod %).

Thus, % divides zo — s, so 19 — s = 5 - k for some integer k.

Hence, s = xo — 5 - k = 20 + 5(—k).

Since —k € Z and s = 29 + 5(—k), then s € T..
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Therefore, s € S implies s € T, s0 S C T.

Since S C T and T' C S, then S =T, as desired.
Therefore, the solution set of the congruence ax = b (mod n) with particular
solution zg € {0, 1,...,n—1} is the set {zo+7%-k, k € Z}, where d = ged(a,n). O

Proof. We prove there are d distinct solutions modulo n and these solutions are
congruent modulo 4.

Let 2/ and z” be arbitrary distinct solutions of the congruence ax = b
(mod n).

Then ' = x + 5k, for some integer ky and 2" = xo + 5 k2 for some integer
]412 and /4}1 75 k‘g.

Suppose ' = z” (mod n).

Then x¢ + 5k = 20 + k2 (mod n), so 5k; = 5k (mod n), by theorem
107.

Thus, by theorem 107, we have k1 = ko (mod m).

Let g = 7gcd(7;7%).

Then k1 = ko (mod g).

Since d|n, then n = dm for some integer m.

Thus, m = 7.

Since d € ZT and n € ZT, then m € Z™".

Hence, 9= gcd(:L’L,m) = gcd(d”:’n,m) = m-gcg(d,l) = #

Thus, k1 = k2 (mod d).

Therefore, if 2’ = 2’ (mod n), then k1 = ko (mod d).

no_n_q
m g

Conversely, suppose k1 = ko (mod d).
Then d|k; — ko, so k1 — ko = da for some « € Z.
Thus, k1 = ke + da.
Hence, k1 = ko + na, so g + Tk1 = xo + k2 + an.
Consequently, ' = z” + an, so 2’ — 2" = an.
Thus, n divides ' — 2", so 2’ = 2" (mod n).
Therefore, if k1 = ko (mod d), then 2’ = 2 (mod n).

Since 2’ = 2 (mod n) implies k1 = ko (mod d) and k1 = ko (mod d) implies
' =2 (mod n), then 2’ = z” (mod n) if and only if k1 = ko (mod d).
Therefore, 2’ £z’ (mod n) if and only if k1 Z ko (mod d).

No pair of distinct integers in the set {0,1,...,d — 1} are congruent to each
other modulo d, by proposition 117.
Thus, there is no pair k1, ks € {0, 1,...,d— 1} with k; # ks such that k; = ks
(mod d).
Hence, k1 # ko (mod d) for every ki,ks € {0,1,...,d — 1} with k; # k.
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Let k1 and ko be distinct integers in the set {0,1,...,d — 1}.
Then k, € {0, 1,....d— 1} and ko € {0, 1,..,d— 1} and kq 75 ko, so ky 5_'5 ko
(mod d).
Since 2’ # 2" (mod n) if and only if k; # k2 (mod d), then we conclude
' £ " (mod n).
Therefore, if k; and ko are distinct integers in the set {0,1,...,d — 1}, then
' £ 2 (mod n) for any distinct «', 2" € T.

Let k € {0,1,...,d — 1}.
Then there are d solutions that are not congruent modulo n.
The solutions are xg, xo + 5,70 + 2%, ...,x0 + (d — 1) 7.
Therefore, there are d distinct solutions modulo n.
The set of solutions modulo n is {xq, o + 5,20 + 25, ..., 20 +(d—1)5}. O

Proof. We prove the solutions are congruent modulo %.

Let kq, ko be distinct integers in the set {0,1,...,d — 1}.

Then 2" = xo+75k; and 2 = xo+ 7 ks are distinct solutions of the congruence
ax =b (mod n).

We must prove 2’ = z” (mod %).

Since every integer divides itself and 4 € Z, then %5 divides 7.

Hence, 5 divides any multiple of %, so 4 divides (ki — k2)%.

Observe that

(k1 = k)% = 3k — ko)

- .
"t d’”?
n
= $0+dk1—9€0—3/€2
n n
= ($O+Ek1)_(x0+8k2)
— 1:/ :I:N

Since 5 divides (k1 —k2)%5 and (k1 —k2)5 = o' — 2", then 5 divides 2’ — 2",
sox' =2 (mod 7).
Since z and ' are arbitrary, then each of the d solutions is congruent modulo

n, O
Integers Modulo n
Theorem 119. Letn € Z*.

Let a € Z.

Let r be the remainder when a s divided by n.

Then [a] = [r] and there are exactly n distinct congruence classes [0], [1], ..., [n—

1.
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Proof. We prove [a] = [r].

By proposition 116, every integer is congruent to a unique integer in the set
{0,1,...,n — 1} when divided by n.

Since n € Z* and a € Z, then a is congruent to a unique integer in the set
{0,1,...,n — 1} when divided by n.

Therefore, there is a unique integer r € {0,1,...,n — 1} such that a = r

(mod n).

Since a = r (mod n), then [a] = [r]. O
Proof. To prove there are exactly n distinct congruence classes [0], [1], ..., [n—1],
we first prove the congruence classes [0], [1], ..., [n — 1] are all distinct.

Let S={0,1,....,n— 1}.

To prove the congruence classes [0], [1],...,[n — 1] are all distinct, we must

prove [z] # [y] for every x,y € S with = # y.

Let z,y € S with  # y.

Since x € S and y € S and = # y, then x and y are a pair of distinct integers
in the set S.

By proposition 117, we know that no pair of distinct integers in the set S
are congruent to each other.

Hence, 2 cannot be congruent to y modulo n, so z Z y (mod n).

Therefore, [z] # [y].

Consequently, [x] # [y] for all z,y € S with x # y, so the congruence classes
[0],[1], ..., [n — 1] are all distinct.

Since there are n such classes, then there are n distinct congruence classes
[0],[1],...,[n — 1] O

Proposition 120. Letn € Z*.
Then [n] = [0].

Proof. Since every integer divides itself, then n|n.
Since n|n and n = n — 0, then n divides n — 0, so n =0 (mod n).
Therefore, [n] = [0]. O

Proposition 121. Letn € Z7T.
Then [—a] = [n — a] for all [a] € Z,.

Proof. Let [a] € Z,,.
Then a € Z, so —a € Z.
Thus, [—a] € Z,.
Since n € Z and a € Z, then n — a € Z, so [n — a] € Zy,.

Since n divides —n =0—n = (—a+a)—n = —a+(a—n) = —a—(—a+n) =
—a — (n —a), then n divides —a — (n — a), so —a = (n — a) (mod n).
Therefore, [—a] = [n — a]. O

Theorem 122. Letn € Z+.

Then Z,, = 2 = {[0], (1], ..., [n — 1]} and |Z,| = n.
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Proof. Since n € Z*, then there are exactly n distinct congruence classes
[0],[1],...,[n — 1]

Let S = {[0],[1], ..., [n — 1]}.
Observe that Z,, = {[a] : a € Z}.
We must prove Z,, = S.

We prove S C Z,.
Let s € S.
Then s = [z] for some = € {0,1,...,n — 1}.
Since z € {0,1,...,n — 1} and {0,1,....,n — 1} C Z, then z € Z.
Since x € Z and s = [z], then s € Z,,.
Hence, s € S implies s € Z,,, so S C Zj,.

We prove Z,, C S.
Let t € Z,,.
Then t = [a] for some a € Z.
By the division algorithm, there exist unique integers ¢, r such that a = ng+r
with 0 <r < n.
Since a = nqg + r, then a — r = ng, so n|la — r.

Hence, a =r (mod n), so [a] = [r].
Since t = [a] and [a] = [r], then t = [r].
Since r is an integer and 0 < r < n, then either r =0 orr =1 or ... or

r=n-—1

Hence, either [r] = [0] or [r] = [1] or ... or [r] = [n — 1].

Thus, [r] is one of the congruence classes [0], [1], ..., [n — 1].

Since t = [r], then ¢ is one of the congruence classess [0], [1], ..., [n — 1].

Thus, t € S.

Since t € Z,, implies t € S, then Z,, C S.
Since Z,, C S and S C Z,, then Z,, = S, as desired.

Since Z,, = S = {[0],[1], ..., [n — 1]} and the set { [0], [1], ..., [n-1] } contains
exactly n elements, then the set Z,, contains exactly n elements, so |Z,| =n. O

Lemma 123. Addition modulo n is well-defined.
LetneZ™.
Let [a], [b] € Zy,.
Let z,z' € [a] and y,y’ € [b].
Then [x +y] = [#' + V']

Solution. We must prove the result does not depend on the choice of a partic-
ular representative of the equivalence class. O

103



Proof. Since [a], [b] € Zy,, then a,b € Z.
Suppose z, 2’ € [a] and y,y’" € [b].
Then [a| ={x €Z:x=a (modn)} and ] ={z €Z: 2 =0b (mod n)}.
Since z, 2’ € [a], then z,2' € Z and © = a (mod n) and 2’ = a (mod n).
Since y,y’ € [b], then y,y’ € Z and y = b (mod n) and ' = b (mod n).
Since 2’ = a (mod n), then a = 2’ (mod n).
Since = a (mod n) and a = 2’ (mod n), then z = 2’ (mod n).
Since y' = b (mod n), then b =y’ (mod n).
Since y = b (mod n) and b=y’ (mod n), then y =y’ (mod n).
Adding the congruences x = 2’ (mod n) and y = ¢y’ (mod n), we obtain
x+y= (2 +y) (mod n).
Therefore, [z + y] = [/ + /] O

Theorem 124. Addition modulo n is a binary operation.

Letn e Z7T.

Let +, : Zp X Ly, — 7y, be a binary relation defined by [a] + [b] = [a + b] for
all [al, [b] € Z,,.

Then +, is a binary operation on Z,,.

Solution. To prove +,, is a binary operation on Z,, we must prove:
1. Closure: (V[al,[b] € Z,)([a] + [b] € Z,,).
2. Uniqueness: (V]al, [b] € Z,)([a] + [b]) is unique.
To prove [a] + [b] is unique, we must prove:

e if ([[ﬁv [0]), ([a'], [b']) € Zn X Z such that ([a], [b]) = ([a'], [t']), then [a] +[b] =
Thus, assume ([a], [b]) = ([¢], [']). Prove [a] 4 [b] = [a'] + [b'].

) =
Suppose ([al, [b]) = ([a']; [V']).
Then [a] = [a] and [b] = [t/].

Thus, a = a’ (mod n) and b =" (mod n).

Since a = @’ (mod n), then a,a’ € [a].

Since b =" (mod n), then b,V € [b].

Therefore, we must prove the result does not depend on the choice of a
particular representative of the equivalence class. O

Proof. Let [a], [b] € Z,.
Then a and b are integers.
Thus, a + b is an integer, so [a + b] € Z,,.
Since [a + b] = [a] + [b], then [a] + [b] € Zy,.
Therefore, Z,, is closed under addition modulo n.

Addition modulo n is well defined, by lemma 123.
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Since Z,, is closed under addition modulo n and addition modulo n is well
defined, then addition modulo n is a binary operation on Z,. O

Theorem 125. algebraic properties of addition modulo n
LetneZ™.
1. Addition is associative.
(la] + [b]) + [] = [a] + (8] + [e]) for all [a],[b], [c] € Z.
2. Addition is commutative.
[a] + [b] = [b] + [a] for all [a], [b] € Z,,.
3. Additive identity is [0].
There exists [0] € Zy, such that [a] + [0] = [0] + [a] = [a] for all [a] € Z,,.
4. Fach element has an additive inverse.
For every [a] € Zy, there exists [—a] € Z,, such that [a]+ [—a] = [—a]+[a] =
[0].

Proof. We prove 1.
Let [a], [b], [c] € Zy,.
Then ([a]+[b]) +[c] = [a+b]+[c] = [(a+b)+c] = [a+ (b+¢c)] = [a]+[b+c] =

[a] + ([o] + [e])- O
Proof. We prove 2.

Let [a], [b] € Zy,.

Then [a] + [b] = [a + b] = [b+ a] = [b] + [a]. O

Proof. We prove 3.

Since 0 € Z, then [0] € Z,,.

Let [a] € Z,,.

Then [a] + [0] = [a + 0] = [a] = [0 + a] = [0] + [a].

Therefore, there exists [0] € Z,, such that [a] 4+ [0] = [a] = [0] + [a] for all
[a] € Z,,. O

Proof. We prove 4.
Let [a] € Zy,.
Then a € Z, so —a € Z.
Thus, [—a| € Z,.
Observe that [a] + [—a] = [a + (—a)] = [0] = [-a + a] = [—a] + [a].
Therefore, for every [a] € Z,, there exists [—a] € Z,, such that [a] + [—a]
0] = [-a] + [a].

oo

Lemma 126. Multiplication modulo n is well-defined.
LetneZ7".
Let [a], [b] € Zy,.
Let x, 2’ € [a] and y,y’ € [b].
Then [zy] = [2y'].

Solution. We must prove the result does not depend on the choice of a partic-
ular representative of the equivalence class. O
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Proof. Since [a], [b] € Zy,, then a,b € Z.
Suppose z, 2’ € [a] and y,y’" € [b].

Then [a| ={x €Z:x=a (modn)} and ] ={z €Z: 2 =0b (mod n)}.
Since z, 2’ € [a], then z,2' € Z and © = a (mod n) and 2’ = a (mod n).
Since y,y’ € [b], then y,y’ € Z and y = b (mod n) and ' = b (mod n).

Since 2’ = a (mod n), then a = 2’ (mod n).

Since = a (mod n) and a = 2’ (mod n), then z = 2’ (mod n).

Since y' = b (mod n), then b =y’ (mod n).

Since y =b (mod n) and b =y’ (mod n), then y =

Multiplying the congruences z = 2’ (mod n) and y
xy = (2'y’") (mod n).

Therefore, [zy] = [z'y'].

Yy (mod n).

y' (mod n), we obtain

O

Theorem 127. Multiplication modulo n is a binary operation.

Letn € Z™.

Let *p, : Ly, X L, — Zp, be a binary relation defined by [a][b] =
[al,[b] € Zy,.

Then *,, is a binary operation on Z.,.

Solution. To prove x*, is a binary operation on Z,,, we must prove:

1. Closure: (V]a],[b] € Z )([ ] % [b] € Zy,).

[ab] for all

2. Uniqueness: (V[a], [b] € Z,)([a] * [b]) is unique.
To prove [a] * [b] is unique, we must prove:
if ([a], [b]), ([a], []) € Zn X Zy such that ([a], [b]) = ([¢], [t']), then [a] + [b] =

@]+ [¥].
Thus, assume ([a], [b]) = ([¢], [']). Prove [a] % [b] = [a'] * [V'].
Suppose ([a], [b]) = ([a], [t']).
Then [a] = [«/) and ] = [,
Thus, a = a’ (mod n) and b =¥ (mod n).
Since a = @’ (mod n), then a,d’ € [a].
Since b = (mod n), then b,V € [b].

Therefore, we must prove the result does not depend on the choice of a

particular representative of the equivalence class.

Proof. Let [a], [b] € Z,.
Then a and b are integers.
Thus, ab is an integer, so [ab] € Z,.
Since [ab] = [a][b], then [a][b] € Z,.
Therefore, Z,, is closed under multiplication modulo n.

Multiplication modulo n is well defined, by lemma 126.
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Since Z,, is closed under multiplication modulo n and multiplication modulo
n is well defined, then multiplication modulo n is a binary operation on Z,,. [

Theorem 128. algebraic properties of multiplication modulo n
LetneZ™.
1. Multiplication is associative.
()l = [al([bl[c]) for all [al, [b],[c] € Z.
2. Multiplication is commutative.
[a][b] = [b][a] for all [a],[b] € Zy,.
3. Multiplicative identity is [1].
There exists [1] € Z,, such that [a][1] = [1][a] = [a] for all [a] € Z,,.
4. Multiplication by [0].
[a][0] = [0][a] = [0] for all [a] € Z,,.
5. Multiplication is left distributive over addition.
[a]([b] + [c]) = [a][b] + [a]lc] for all [al, [b], [c] € Zn.
6. Multiplication is right distributive over addition.
(1] + [e])la] = Blla] + [cla] for all [a], ], [c] € Z.

Proof. We prove 1.
Let [a], [b], [c] € Zp,.

Then ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] = [a]([b][c])- O
Proof. We prove 2.

Let [a], [b] € Z,,.

Then [a][b] = [ab] = [ba] = [b][a]. O

Proof. We prove 3.

Since 1 € Z, then [1] € Z,.

Let [a] € Zy,.

Then [a][1] = [a1] = [a] = [1a] = [1][a].

Therefore, there exists [1] € Z,, such that [a][l] = [a] = [1][a] for all [a] €
L, O

Proof. We prove 4.
Since 0 € Z, then [0] € Z,,.
Let [a] € Zy,.
Then [a][0] = [a0] = [0] = [0a] = [0][a]. O

Proof. We prove 5.

Let [a], [D], [c] € Zy,.

Then [a([b] + [c]) = [allb + ¢] = [a(b+ ¢)] = [ab + ac] = [ab] + [ac] =
[a][b] + [a][c]- O

Proof. We prove 6.

Let [a], [b], [c] € Zp,.

Then ([b] + [¢])[a] = [b+ d][a] = [(b+ c)a] = [ba + ca] = [ba] + [ca] =
[b][a] + [c][a]. O
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Theorem 129. Ezxistence of multiplicative inverse of [a] modulo n
Letn € Z™".
Let [a] € Zy,.
Then [a] has a multiplicative inverse in Z,, iff ged(a,n) = 1.

Proof. Let n be a positive integer.

Let [a] € Zy,.

Suppose [a] has a multiplicative inverse.

Then there exists [b] € Z,, such that [a][b] = [1], so [ab] = [1].

Hence, ab=1 (mod n), so n|(ab — 1).

Thus, ab — 1 = nk for some integer k.

Consequently, 1 = ab — nk = ba — nk = ba — kn = ba + (—k)n is a linear
combination of a and n.

Let d = ged(a,n).

Any common divisor of a and n divides any linear combination of @ and n.

Hence, d divides any linear combination of a and n, so d divides 1.

Since d € Z* and d|1, then d = 1, so ged(a,n) = 1.

Conversely, suppose ged(a,n) = 1.
Then there exists x,y € Z such that za+yn =1, s0 za — 1 = —yn.
Since —y € Z, then this implies n divides za — 1, so za =1 (mod n).
Thus, 1 = za, so [1] = [za] = [z][a] = [a][x].
Since [z] € Z,, and [a][z] = [1], then [a] has a multiplicative inverse. O

Corollary 130. The inverse of [0] in Z; is [0].
LetneZ™.
If n > 1, then [0] has no multiplicative inverse.

Proof. Let n € Z*.

Then either n =1 or n > 1.

We consider these cases separately.

Case 1: Suppose n = 1.

Then Z; = {[0]}.

Since 0 =1 (mod 1), then [0] = [1].

Hence, [1] € Z;.

Since [1] = [0] = [0 % 0] = [0][0], then there exists [0] € Z; such that
0)0) = [1]

Therefore, [0] has a multiplicative inverse in Z; and [0]~* = [0].

Case 2: Suppose n > 1.

Then ged(0,n) =n > 1, so ged(0,n) > 1.

Thus, ged(0,n) # 1.

Since [0] has a multiplicative inverse in Z, iff gcd(0,n) = 1, then [0] does
not have a multiplicative inverse in Z,,. O

Theorem 131. Letn € Z™T.
A nonzero element of Z,, either has a multiplicative inverse or is a divisor
of zero.
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Solution. Let [a] € Z,, [a] # [0].

We must prove: Either [a] has a multiplicative inverse or [a] is a divisor of
zero.

Either a and n are relatively prime or not. O

Proof. Let n be a positive integer.
Let [a] € Zy, and [a] # [0].
Since [a] € Zy,, then a is an integer.
Either a and n are relatively prime or not.
We consider these cases separately.
Case 1: Suppose a and n are relatively prime.
Then ged(a,n) = 1.
The element [a] has a multiplicative inverse in Z,, iff ged(a,n) = 1.
Hence, [a] has a multiplicative inverse in Z,.
Case 2: Suppose a and n are not relatively prime.
Then ged(a,n) # 1, so ged(a,n) > 1.
Let d = ged(a, n).

Then d > 1.
Consider the equation [a][z] = [0].
Observe that [a][z] = [ax] = [0].

Hence, ax =0 (mod n).

The linear congruence has a solution iff ged(a,n)|0.

Hence, a solution exists iff d|0.

Any integer divides zero, so d|0.

Hence, a solution exists and there are d distinct solutions modulo n.

Zero is a solution since a *0 =0 (mod n).

Thus, there are d — 1 distinct nonzero solutions modulo n.

Sinced >1,thend—-1>0,s0d—12> 1.

Hence, there exists at least one nonzero solution modulo n, say b.

Thus, b is a nonzero positive integer that is less than n and is a solution to
ax =0 (mod n).

Hence, [b] € Z,, and [b] # [0] and ab =0 (mod n).

Since ab = 0 (mod n), then [ab] = [0], so [a][b] = [0].

Since [b] € Zy, and [b] # [0] and [a][b] = [0], then [a] is a divisor of zero. O

Proposition 132. Letn € Z*.
Let a,b € Z.
If n|ab and n is prime, then nla or n|b.

Proof. We prove the equivalent statement: if njab and n is prime and n /a,
then n|b.

Suppose n|ab and n is prime and n fa

Since n is prime, then either n|a or ged(n,a) = 1.

Since n fa, then we conclude ged(n,a) = 1.

Since njab and ged(n,a) = 1, then n|b. O

Proposition 133. If p is prime, then ¢(p) =p — 1.
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Proof. Suppose p is a prime number.

Then p is a positive integer and p > 1.

Let S={1,2,..,p— 1,p}.

Let a € S.

Since a € S and S C Z*, then a € Z™.

Either a < p or a = p.

We consider these cases separately.

Case 1: Suppose a < p.

Since a and p are positive integers and a < p, then p fa.

Since p is prime, then either p|a or ged(p,a) = 1.

Since p fa, then ged(p,a) = 1.

Hence, a is relatively prime to p.

Thus, there are p — 1 positive integers less than p that are relatively prime
to p.

Case 2: Suppose a = p.

Then ged(p, a) = ged(p,p) =p > 1.

Thus, ged(p, a) # 1, so p and a are not relatively prime.

Hence, in all cases, there are exactly p—1 positive integers less than or equal
to p that are relatively prime to p.

Therefore, ¢(p) = p — 1. O

Fermat’s Theorem

Theorem 134. Fermat’s Little Theorem
Let p,a € ZT.
If p is prime and p Ja, then plaP~* — 1.

Proof. Suppose p is prime and p fa.
By the division algorithm, a = pg+r for some integers ¢ and r with 0 < r < p.
Since p fa, then r # 0, so 0 < r < p.
Hence, 1 <r <p-—1.

Let s € Z such that 1 <s<p—1.

We prove if r # s then ra Z sa (mod p) by contrapositive.

Suppose ra = sa (mod p).

Then p divides ra — sa = (r — s)a.

Since p is prime and p divides (r — s)a, then by Euclid’s lemma, either
p|(r — s) or pla.

By assumption, p fa, so we conclude p|r — s.

Hence, r = s (mod p).

Therefore, ra = sa (mod p) implies r = s (mod p), sor # s (mod p) implies
ra # sa (mod p).

Thus, any distinct pair of these integers sa, 2a, 3a, ..., (p — 1)a are not con-
gruent (mod p), so a,2a,3a, ..., (p — 1)a are all distinct.

Hence, the congruence classes [a], [2a], [3a], ..., [(p — 1)a] are all distinct.
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Let S be the set of these elements.
Then S ={[ra] : 1 <r <p—1} ={[a],[24d],...,[(p — 1)a] }.

We prove [0] &
Suppose [0] €
Then [0] = [ra] for 1<r<p-1
Thus, 0 = ra (mod p), so ra =0 (mod p).
Hence, p divides ra — 0 = ra.
Since p is prime and p divides ra, then by Euclid’s lemma, either p|r or p|a.
By assumption, p fa, so we conclude p|r.
Since p and r are positive integers and p|r, then p <.
Since r <p—1 < p,then r < p, sop > r.
Thus, we have p > r and p < r, a contradiction.
Therefore, [0] ¢ S.

Let T={[k]: 1<k <p-—1}.
Then T = {[1], 2], ..., [p — 1]}

We prove S C T.
Let x € S.
Then . =[ra)j and 1 <r <p-—1.
By the division algorithm, ra = pq¢’ + 7’ for integers ¢/, v’ with 0 < v’ < p.
Since v’ € Z and ' <p, thenr’ <p—1,s00< 7" <p—1.
Observe that

Since z = [r'] and z € S and [0] € S, then [r'] # [0], so ' # 0.
Since0 <7 <p—1landr #0,then0<r' <p—1,s01<r' <p-—1.
Since z =[r']and 1 <7’ <p-—1,thenx €T,s0 S CT.

We prove T' C S.
LetyeT.
Then y = [k] for some integer k with 1 <k <p—1.
The linear congruence ar = k (mod p) has a solution iff ged(a,p) divides k
and there are ged(a,p) distinct solutions modulo p.
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Since p is prime, then either pla or ged(p,a) = 1.

By assumption, p fa, so we conclude ged(p,a) = 1.

Since ged(p,a) = 1 and 1 divides integer k, then we conclude the linear
congruence ar = k (mod p) has 1 distinct solution modulo p.

Hence, there exists an integer r with 0 < r < p such that ar = k (mod p),
so k = ar (mod p).

Thus, k = ra (mod p), so [k] = [ra].

Since k > 1, the k # 0.

Since k # 0 and ar = k (mod p), then ar Z 0 (mod p), so r # 0.

Since 0 <r<pandr#0,then0<r<p,sol<r<p-1.

Hence, y=[raJand 1 <r<p—1,s0y € S.

Therefore, y € T implies y € S, so T C S.

Since S CT and T C S, then S=T.

Observe that

Therefore, a?~* = 1 (mod p), so p divides a?~! — 1. 0

Corollary 135. Let p,a € Z.
If p is prime, then a? = a (mod p).

Proof. Suppose p is prime.

Either pla or p fa.

We consider these cases separately.

Case 1: Suppose pla.

Then pla — 0, so a =0 (mod p).

Since p is prime, then p € Z™.

Since p € Z* and exponentiation preserves congruences and a = 0 (mod p),
then we raise to the p power to obtain a? = 0” =0 = q, so a”? = a (mod p).

Case 2: Suppose p fa.

Since p is prime and p fa, then by Fermat’s Little theorem, p divides a?~1 —1,
so a?~1 =1 (mod p).

Since @ = a (mod p), we multiply these congruences to obtain a? = a?~t.a =
1-a=a,soa’ =a (mod p). O

Theorem 136. Fuler’s Theorem
Leta€Z andn € Z+.
If ged(a,n) = 1, then a®™ =1 (mod n).
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Proof. Let Z7 be the group of units of Z,.

Then Z} = {[a] € Z,, : gcd(a,n) = 1}.

Let [a] € Z.

Then [a] € Z,, and ged(a,n) = 1.

Let m = |Z}| = ¢(n).

Then m is a positive integer, so Z7 is a finite group of order m.

Hence, g™ = e for all g € Z7.

Thus, [a]™ = [1], so [1] = [a]™ = [a™].

Hence, 1 = a™ (mod n), so a™ =1 (mod n).

Therefore, a®™ =1 (mod n).

Thus, ged(a,n) = 1 and a®™ =1 (mod n), so ged(a,n) = 1 implies a®™) =
1 (mod n). O

Corollary 137. Fermat’s Little Theorem
Let a € Z.
If p is prime, then a? = a (mod p).

Proof. Suppose p is prime.
Then either p divides a, or p and a are relatively prime.
We consider these cases separately.
Case 1: Suppose pla.
Then there exists an integer k such that a = pk.
Hence, a? — a = a(a?~! — 1) = pk(a?~1 - 1).
Since p > 1, then p — 1 > 0, so p — 1 is a positive integer.
Consequently, a?~! is an integer, so k(a?~! — 1) is an integer.
Thus, p divides a? — a, so a? = a (mod p).
Case 2: Suppose p and a are relatively prime.
Then ged(a,p) = 1.
By Euler’s thm, a®®® =1 (mod p).
Since p is prime, then ¢(p) =p — 1, s0 a?~! =1 (mod p).
Multiplying the congruence by a, we obtain a? = a (mod p). O

Miscellaneous Stuff

Proposition 138. FEvery integer is congruent modulo n to exactly one
of the integers 0,1,2,...n — 1.

Proof. Let a € Z and n € Z™T.

By the division algorithm, when a is divided by n, then there exist unique
integers ¢ and r such that a =ng+rand 0 <r < n.

Thus, a — r = ng, so n|(a — 7).

Therefore, a = r (mod n).

Since 0 < r < n, then either r =0orr=1orr=2o0r .. orr=n—1, so
re{0,1,2,...,n—1}

Hence, a is congruent modulo n to either 0 or 1 or 2 or ... or n — 1.

Therefore, every integer is congruent modulo n to exactly one of the integers
in {0,1,2,...,n — 1}. O

113



Proposition 139. Any set of n integers is a complete set of residues
modulo n iff no two of the integers are congruent modulo n.

Proof. TODO O
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