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Natural number system

TODO
Rework the propositions regarding natural numbers so that do not rely on

any axioms or set theory nonsense.

Proposition 1. The successor of a natural number is unique.

Proof. Let n ∈ N.
Each natural number has a successor, by the axiom for N, so n has a suc-

cessor.

Suppose a′ ∈ N and b′ ∈ N are successors of n.
Then a′ is the concatenation of n and 1 and b′ is the concatenation of n and

1.
The concatenation of 1 to n is n followed by 1 and this occurs in exactly one

way.
So, any concatenation of n by 1 must be the same.
Therefore, a′ = b′, so the successor is unique.

Theorem 2. laws of addition
Let k,m, n be natural numbers.
1. m+ n = n+m. (addition is commutative)
2. (k +m) + n = k + (m+ n). (addition is associative)
3. Let s be the successor operation on a natural number n.
Then s(n) = n+ 1.

Proof. We prove 1.
If we combine m ones and n ones, then the order in which we combine doesn’t

matter if we’re interested in just the total number of ones.
Therefore, m+ n = n+m.

Proof. We prove 2.
The total number of ones is the same whether we concatenate the ones of

the first two numbers and then concatenate the ones from the third number, or



whether we concatenate the ones of the second two numbers and then concate-
nate the ones from the first number.

Therefore, (k +m) + n = k + (m+ n).

Proof. We prove 3.
The successor of n is the natural number formed by the concatenation of n

with |.
Therefore, s(n) = n+ 1.

Theorem 3. laws of multiplication
Let k,m, n be natural numbers.
1. mn = nm. (multiplication is commutative)
2. (km)n = k(mn). (multiplication is associative)
3. n× 1 = n (multiplicative identity)

Proof. We prove 1.
TODO

Proposition 4. The relation < over N is transitive.
Let a, b, c ∈ N.
If a < b and b < c, then a < c.

Proof. Suppose a < b and b < c.
Then there exists x ∈ N such that a + x = b and there exists y ∈ N such

that b+ y = c.
Thus, c = b+ y = (a+ x) + y = a+ (x+ y).
Since N is closed under + and x, y ∈ N then x+ y ∈ N.
Hence a < c, by definition of <.
Therefore, < is transitive.

Construction of Z
Theorem 5. algebraic properties of addition in Z

1. Addition is associative.
(a+ b) + c = a+ (b+ c) for all a, b, c ∈ Z.
2. Addition is commutative.
a+ b = b+ a for all a, b ∈ Z.
3. Additive identity is zero.
a+ 0 = 0 + a = a for all a ∈ Z.
4. Additive inverse of a is −a.
For all a ∈ Z there exists −a ∈ Z such that a+ (−a) = 0.

Proof. TODO

Proof. We prove 3.
TODO Prove a+ 0 = a or confirm if this should be an axiom for integers.
Since addition is commutative, then a+ 0 = 0 + a.
Therefore, a = a+ 0 = 0 + a.
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Theorem 6. algebraic properties of multiplication in Z
1. Multiplication is associative.
(ab)c = a(bc) for all a, b, c ∈ Z.
2. Multiplication is commutative.
ab = ba for all a, b ∈ Z.
3. Multiplicative identity is one.
a · 1 = 1 · a = a for all a ∈ Z.
4. Multiplication by zero.
a0 = 0a = 0 for all a ∈ Z.
5. Multiplication is distributive over addition.
a(b+ c) = ab+ ac for all a, b, c ∈ Z. (left distributive law)
(b+ c)a = ba+ ca for all a, b, c ∈ Z. (right distributive law)

Proof. TODO

Proof. We prove 3.
TODO Prove a · 1 = a or confirm if this should be an axiom for integers.
Since multiplication is commutative, then a · 1 = 1 · a.
Therefore, a = a · 1 = 1 · a.

Proposition 7. For all a, b ∈ Z
1. a > 0 iff a ∈ Z+

2. a < 0 iff −a ∈ Z+.
3. a < b iff b− a > 0.

Proof. We prove 1.
Let a ∈ Z.
Observe that

a > 0 ⇔ 0 < a

⇔ a− 0 ∈ Z+

⇔ a+ (−0) ∈ Z+

⇔ a+ 0 ∈ Z+

⇔ a ∈ Z+.

Therefore, a > 0 iff a ∈ Z+.

Proof. We prove 2.
Let a ∈ Z.
Observe that a < 0 iff 0− a ∈ Z+ iff 0 + (−a) ∈ Z+ iff −a ∈ Z+.
Therefore, a < 0 iff −a ∈ Z+.

Proof. We prove 3.
Let a ∈ Z.
Observe that a < b iff b− a ∈ Z+ iff b− a > 0.
Therefore, a < b iff b− a > 0.
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Theorem 8. Z satisfies transitivity and trichotomy laws.
1. a < a is false for all a ∈ Z. (Therefore, < is not reflexive.)
2. < is transitive.
For all a, b, c ∈ Z, if a < b and b < c, then a < c.
3. For every a ∈ Z, exactly one of the following is true (trichotomy):
i. a > 0
ii. a = 0
iii. a < 0
4. For every a, b ∈ Z, exactly one of the following is true (trichotomy):
i. a > b
ii. a = b
iii. a < b

Proof. We prove 1.
Let a ∈ Z.
By the trichotomy axiom for Z+, 0 6∈ Z+, so a− a 6∈ Z+.
Therefore, a 6< a, by definition of <.

Proof. We prove 2.
Suppose a < b and b < c.
Then b− a ∈ Z+ and c− b ∈ Z+.
Since the sum of positive integers is positive, then (c− b) + (b− a) ∈ Z+.
Observe that

(c− b) + (b− a) = (c+ (−b)) + (b+ (−a))

= c+ ((−b) + b) + (−a)

= c+ 0 + (−a)

= c+ (−a)

= c− a.

Therefore, c− a ∈ Z+, so a < c.

Proof. We prove 3.
Let a ∈ Z.
By the trichotomy axiom for Z+, exactly one of the following is true: a ∈ Z+,

a = 0, −a ∈ Z+.
By proposition 7, we have a ∈ Z+ iff a > 0 and −a ∈ Z+ iff a < 0.
Therefore, exactly one of the following is true: a > 0, a = 0, a < 0.

Proof. We prove 4.
Let a, b ∈ Z.
Since Z is closed under subtraction, then a− b ∈ Z.
By the trichotomy axiom for Z+, exactly one of the following is true: a−b ∈

Z+, a− b = 0, −(a− b) ∈ Z+.
Observe that a− b ∈ Z+ iff b < a iff a > b.
Observe that a− b = 0 iff a = b.
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Observe that −(a− b) ∈ Z+ iff −a+ b ∈ Z+ iff b− a ∈ Z+ iff a < b.
Therefore, exactly one of the following is true: a > b, a = b, a < b.

Theorem 9. order relation rules with ring operations in Z
Let a, b, c ∈ Z.
1. Addition preserves order.
If a < b, then a+ c < b+ c.
2. Subtraction preserves order.
If a < b, then a− c < b− c.
3. Multiplication by positive integer preserves order.
If a < b and c > 0, then ac < bc.
4. Multiplication by negative integer reverses order.
If a < b and c < 0, then ac > bc.

Proof. We prove 1.
Suppose a < b.
Then b− a ∈ Z+.
Observe that

b− a = b+ (−a)

= b+ 0 + (−a)

= b+ [c+ (−c)] + (−a)

= (b+ c) + [−c+ (−a)]

= (b+ c) + [−a+ (−c)]
= (b+ c)− (a+ c).

Therefore, (b+ c)− (a+ c) ∈ Z+, so a+ c < b+ c.

Proof. We prove 2.
Suppose a < b.
Then b− a ∈ Z+.
Observe that

b− a = b+ (−a)

= b+ 0 + (−a)

= b+ (−c+ c) + (−a)

= [b+ (−c)] + [c+ (−a)]

= (b− c) + [c+ (−a)]

= (b− c) + (−a+ c)

= (b− c)− (a− c).

Therefore, (b− c)− (a− c) ∈ Z+, so a− c < b− c.
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Proof. We prove 3.
Suppose a < b and c > 0.
Then b− a ∈ Z+ and c ∈ Z+.
Since the product of positive integers is a positive integer, then (b−a)c ∈ Z+.
Therefore, (b− a)c = bc− ac ∈ Z+, so ac < bc.

Proof. We prove 4.
Suppose a < b and c < 0.
Then b− a ∈ Z+ and −c ∈ Z+.
Since the product of positive integers is a positive integer, then (b−a)(−c) ∈

Z+.
Observe that

(b− a)(−c) = [b+ (−a)](−c)
= b(−c) + (−a)(−c)
= −bc+ ac

= ac− bc.

Hence, ac− bc ∈ Z+, so bc < ac.
Therefore, ac > bc.

Proposition 10. Let a, b, c, d ∈ Z+.
If a < b and c < d, then ac < bd.

Proof. Suppose a < b and c < d.
Then there exists a′ ∈ Z+ such that a+a′ = b and there exists c′ ∈ Z+ such

that c+ c′ = d.
Let e = ac′ + a′c+ a′c′.
Since a, a′, c, c′ are positive integers and Z+ is closed under addition and

multiplication, then e is a positive integer.
Observe that

ac+ e = ac+ (ac′ + a′c+ a′c′)

= (ac+ ac′) + (a′c+ a′c′)

= a(c+ c′) + a′(c+ c′)

= (a+ a′)(c+ c′)

= bd.

Since there exists a positive integer e such that ac+e = bd, then ac < bd.

Proposition 11. multiplication with positive and negative integers
Let a, b ∈ Z.
1. If a > 0 and b > 0, then ab > 0.
2. If a > 0 and b < 0, then ab < 0.
3. If a < 0 and b < 0, then ab > 0.
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Proof. We prove 1.
Suppose a > 0 and b > 0.
Since a > 0, then 0 < a.
By theorem 9, multiplication by a positive integer preserves order.
Since 0 < a and b > 0, then we conclude 0b < ab.
Therefore, 0 < ab, so ab > 0.

Proof. We prove 2.
Suppose a > 0 and b < 0.
Since a > 0, then 0 < a.
By theorem 9, multiplication by a negative integer reverses order.
Since 0 < a and b < 0, then we conclude 0b > ab.
Therefore, 0 > ab, so ab < 0.

Proof. We prove 3.
Suppose a < 0 and b < 0.
By theorem 9, multiplication by a negative integer reverses order.
Since a < 0 and b < 0, then we conclude ab > 0b.
Therefore, ab > 0.

Theorem 12. multiplicative property of zero
Let a, b ∈ Z.
Then ab = 0 iff a = 0 or b = 0.

Proof. We prove if a = 0 or b = 0, then ab = 0.
Suppose a = 0 or b = 0.
We consider these cases separately.
Case 1: Suppose a = 0.
Then ab = 0 · b = 0, so ab = 0.
Case 2: Suppose b = 0.
Then ab = a · 0 = 0, so ab = 0.

Proof. Conversely, we prove if ab = 0, then either a = 0 or b = 0 by contrapos-
itive.

Suppose a 6= 0 and b 6= 0.
Then by trichotomy, either a > 0 or a < 0, and either b > 0 or b < 0.
Hence, either a > 0 and b > 0, or a > 0 and b < 0, or a < 0 and b > 0, or

a < 0 and b < 0.
We consider these cases separately.
Case 1: Suppose a > 0 and b > 0.
By proposition 11, a positive integer times a positive integer is positive.
Since a > 0 and b > 0, then we conclude ab > 0.
Therefore, by trichotomy, ab 6= 0.
Case 2: Suppose a > 0 and b < 0.
By proposition 11, a positive integer times a negative integer is negative.
Since a > 0 and b < 0, then we conclude ab < 0.
Therefore, by trichotomy, ab 6= 0.
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Case 3: Suppose a < 0 and b > 0.
By proposition 11, a positive integer times a negative integer is negative.
Since a < 0 and b > 0, then we conclude ab < 0.
Therefore, by trichotomy, ab 6= 0.
Case 4: Suppose a < 0 and b < 0.
By proposition 11, a negative integer times a negative integer is positive.
Since a < 0 and b < 0, then we conclude ab > 0.
Therefore, by trichotomy, ab 6= 0.

In all cases, we have ab 6= 0, as desired.

Corollary 13. cancellation law for Z
Let a, b, k ∈ Z.
If ak = bk and k 6= 0, then a = b.

Proof. Suppose ak = bk and k 6= 0.
Since ak = bk, then 0 = ak − bk = (a− b)k.
By theorem 12, if (a− b)k = 0, then either a− b = 0 or k = 0.
Since k 6= 0, then we conclude a− b = 0.
Therefore, a = b.

Theorem 14. The relation ≤ is a partial order over Z.

Proof. We prove ≤ is reflexive.
Let a ∈ Z.
Then a = a, so either a = a or a < a.
Hence, either a < a or a = a.
Therefore, a ≤ a, so ≤ is reflexive.

Proof. We prove ≤ is anti-symmetric.
To prove for all a, b ∈ Z, if a ≤ b and b ≤ a, then a = b, we prove the

logically equivalent statement a ≤ b and a 6= b implies b 6≤ a for all a, b ∈ Z.

Let a, b ∈ Z such that a ≤ b and a 6= b.
Since a ≤ b, then either a < b or a = b.
Since a 6= b, then we conclude a < b, so b > a.
By the trichotomy law of Z, exactly one of the following is true: b < a, b = a,

b > a.
Since b > a, then we conclude b 6< a and b 6= a.
Hence, b 6≤ a, as desired.
Therefore, ≤ is anti-symmetric.

Proof. We prove ≤ is transitive.
Let a, b, c ∈ Z such that a ≤ b and b ≤ c.
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Then

(a ≤ b) ∧ (b ≤ c) ⇒ (a ≤ b) ∧ (b < c ∨ b = c)

⇒ (a ≤ b ∧ b < c) ∨ (a ≤ b ∧ b = c)

⇒ (a ≤ b ∧ b < c) ∨ (a ≤ c)
⇒ [(a < b ∨ a = b) ∧ b < c] ∨ (a ≤ c)
⇒ [(a < b ∧ b < c) ∨ (a = b ∧ b < c)] ∨ (a ≤ c)
⇒ [a < c ∨ (a = b ∧ b < c)] ∨ (a ≤ c)
⇒ (a < c ∨ a < c) ∨ (a ≤ c)
⇒ (a < c) ∨ (a ≤ c)
⇒ (a < c) ∨ (a < c ∨ a = c)

⇒ (a < c ∨ a < c) ∨ (a = c)

⇒ (a < c) ∨ (a = c)

⇒ a ≤ c.

Therefore, a ≤ c, so ≤ is transitive.

Proof. Since ≤ over Z is reflexive, anti-symmetric, and transitive, then ≤ is a
partial order over Z.

Theorem 15. The relation ≤ is a total order over Z.

Proof. By theorem 14, the relation ≤ is a partial order over Z, so (Z,≤) is a
partially ordered set.

To prove ≤ is a total order over Z, we must prove any two integers are
comparable.

Let a, b ∈ Z.
We must prove either a ≤ b or b ≤ a.
By theorem 8, the trichotomy law implies exactly one of the following is

true: a < b, a = b, a > b.
We consider these cases separately.
Case 1: Suppose a < b.
Then a < b or a = b, so a ≤ b.
Case 2: Suppose a = b.
Then a < b or a = b, so a ≤ b.
Case 3: Suppose a > b.
Then b < a, so b < a or b = a.
Therefore, b ≤ a.

In all cases, we have either a ≤ b or b ≤ a, as desired.

Lemma 16. There is no integer between zero and one.
There is no n ∈ Z such that 0 < n < 1.
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Proof. Suppose for the sake of contradiction there is n ∈ Z such that 0 < n < 1.
Let S = {n ∈ Z : 0 < n < 1}.
Then n ∈ S, so S 6= ∅.

Let s ∈ S.
Then s ∈ Z and 0 < s < 1, so 0 < s.
Since s ∈ Z and s > 0, then s ∈ Z+.
Hence, s ∈ S implies s ∈ Z+, so S ⊂ Z+.

Since S ⊂ Z+ and S 6= ∅, then by WOP, S has a least element.
Let m be the least element of S.
Then m ∈ S and m ≤ s for all s ∈ S.
Since m ∈ S, then m ∈ Z and 0 < m < 1.
Since 0 < m < 1, then 0 < m and m < 1 and 0 < m2 < 1 .
Since m ∈ Z, then m2 ∈ Z.
Since m2 ∈ Z and 0 < m2 < 1, then m2 ∈ S.
Since m < 1 and m > 0, then m2 = m ·m < m · 1 = m, so m2 < m.
Thus, there is m2 ∈ S such that m2 < m.
This contradicts the fact that m is the least element of S.
Therefore, there is no n ∈ Z such that 0 < n < 1.

Lemma 17. For all n ∈ Z+, n ≥ 1.

Proof. Let n ∈ Z+ such that n 6= 1.
We must prove n > 1.

Suppose n is not greater than 1.
Then, by trichotomy, either n = 1 or n < 1.
Since n 6= 1, then we conclude n < 1.
Since n ∈ Z+, then n > 0.
Thus, 0 < n and n < 1, so 0 < n < 1.
Hence, n is an integer between 0 and 1.
But, there is no integer between 0 and 1, by lemma 16.
Therefore, n is greater than 1, so n > 1, as desired.

Theorem 18. Principle of Mathematical Induction
Let S be a subset of Z+ such that
1. 1 ∈ S (basis)
2. for all k ∈ Z+, if k ∈ S, then k + 1 ∈ S. (induction hypothesis)
Then S = Z+.

Proof. Let T be the set of all positive integers not in S.
Then T = {t ∈ Z+ : t 6∈ S}.
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Suppose T 6= ∅.
Since T ⊂ Z+ and T 6= ∅, then by the well-ordering principle of Z+, the set

T has a least element.
Let m be the least element of T .
Then m ∈ T and m ≤ x for all x ∈ T .
Since m ∈ T , then m ∈ Z+ and m 6∈ S.
Since m 6∈ S and 1 ∈ S, then m 6= 1.
By lemma 17, n ≥ 1 for all n ∈ Z+.
Since m ∈ Z+, then we conclude m ≥ 1.
Hence, either m > 1 or m = 1.
Since m 6= 1, then we conclude m > 1, so m− 1 > 0.
Since m ∈ Z, then m− 1 ∈ Z.
Since m− 1 ∈ Z and m− 1 > 0, then m− 1 ∈ Z+.

If n ∈ Z+, then either n ∈ S or n 6∈ S, so either n ∈ S or n ∈ T .
Since m− 1 ∈ Z+, then either m− 1 ∈ S or m− 1 ∈ T .

Since m− 1 < m and m is the least element of T , then m− 1 cannot be in T .
Hence, m− 1 6∈ T .
Since either m − 1 ∈ S or m − 1 ∈ T and m − 1 6∈ T , then we conclude

m− 1 ∈ S.
By the induction hypothesis, if m−1 ∈ Z+ and m−1 ∈ S, then (m−1)+1 =

m ∈ S.
Since m− 1 ∈ Z+ and m− 1 ∈ S, then we conclude m ∈ S.
Thus, we have m ∈ S and m 6∈ S, a contradiction.
Therefore, T = ∅.

Since Z+ = S ∪ T = S ∪ ∅ = S, then S = Z+, as desired.

Theorem 19. Principle of Mathematical Induction(strong)
Let S be a subset of Z+ such that
1. 1 ∈ S (basis)
2. for all k ∈ Z+, if 1, 2, ..., k ∈ S, then k + 1 ∈ S. (strong induction

hypothesis)
Then S = Z+.

Proof. Let T be the set of all positive integers not in S.
Then T = {t ∈ Z+ : t 6∈ S}.

Suppose T 6= ∅.
Since T ⊂ Z+ and T 6= ∅, then by the well-ordering principle of Z+, the set

T has a least element.
Let m be the least element of T .
Then m ∈ T and m ≤ x for all x ∈ T .
Since m ∈ T , then m ∈ Z+ and m 6∈ S.
Since m 6∈ S and 1 ∈ S, then m 6= 1.
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By lemma 17, n ≥ 1 for all n ∈ Z+.
Since m ∈ Z+, then we conclude m ≥ 1.
Hence, either m > 1 or m = 1.
Since m 6= 1, then we conclude m > 1, so m− 1 > 0.
Since m ∈ Z, then m− 1 ∈ Z.
Since m− 1 ∈ Z and m− 1 > 0, then m− 1 ∈ Z+.

If n ∈ Z+, then either n ∈ S or n 6∈ S, so either n ∈ S or n ∈ T .

Since 1, 2, ...,m− 1 are positive integers, then 1, 2, ...,m− 1 ∈ Z+.
Thus, each of 1, 2, ...,m− 1 is either an element of S or an element of T .
Since 1 < 2 < ... < m − 1 < m, then 1 < m and 2 < m and ... and

m− 1 < m.
Hence, each of 1, 2, ...,m− 1 is less than m, the least element of T .
Thus, each of 1, 2, ...,m− 1 cannot be in T .
Hence, 1 6∈ T and 2 6∈ T and ... and m− 1 6∈ T .
Since each of 1, 2, ...,m− 1 is either an element of S or an element of T , and

1 6∈ T and 2 6∈ T and ... and m− 1 6∈ T , then we conclude 1, 2, ..,m− 1 ∈ S.
By the induction hypothesis, if m − 1 ∈ Z+ and 1, 2, ..,m − 1 ∈ S, then

(m− 1) + 1 = m ∈ S.
Since m− 1 ∈ Z+ and 1, 2, ..,m− 1 ∈ S, then we conclude m ∈ S.
Thus, we have m ∈ S and m 6∈ S, a contradiction.
Therefore, T = ∅.

Since Z+ = S ∪ T = S ∪ ∅ = S, then S = Z+, as desired.

Proposition 20. The set of all non-negative integers is well-ordered.

Proof. Let S be the set of all non-negative integers.
Then S = {n ∈ Z : n ≥ 0}.
Let T be a non-empty subset of S.
Then T ⊂ S and T 6= ∅.
Either 0 ∈ T or 0 6∈ T .
We consider these cases separately.
Case 1: Suppose 0 6∈ T .
Since T 6= ∅, then let t ∈ T .
Since T ⊂ S, then t ∈ S, so t ∈ Z and t ≥ 0.
Since t ≥ 0, then either t > 0 or t = 0.
Since 0 6∈ T and t ∈ T , then t 6= 0.
Hence, t > 0.
Since t ∈ Z and t > 0, then t ∈ Z+.
Thus, t ∈ T implies t ∈ Z+, so T ⊂ Z+.
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By the well-ordering principle of Z+, every nonempty subset of Z+ has a least
element.

Since T ⊂ Z+ and T 6= ∅, then T is a nonempty subset of Z+, so T has a
least element.

Case 2: Suppose 0 ∈ T .
Since T 6= ∅, let x ∈ T .
Then x ∈ Z and x ≥ 0.
Thus, x ≥ 0 for all x ∈ T , so 0 ≤ x for all x ∈ T .
Since 0 ∈ T and 0 ≤ x for all x ∈ T , then 0 is the least element of T .
Therefore, T has a least element.

In all cases, T has a least element.
Hence, if T is a nonempty subset of S, then T has a least element, so every

nonempty subset of S has a least element.
Therefore, S is well-ordered.

Theorem 21. Archimedean property of Z+

Let a, b ∈ Z+.
Then there exists n ∈ Z+ such that nb > a.

Proof. Suppose for the sake of contradiction nb ≤ a for all n ∈ Z+.
Let S = {a− nb : n ∈ Z+}.
Since 1 ∈ Z+, then a− (1)b = a− b ∈ S, so S 6= ∅.

We prove S ⊂ Z+ ∪ {0}.
Let x ∈ S.
Then x = a− nb for some n ∈ Z+.
Since n ∈ Z+, then nb ≤ a, so a ≥ nb.
Hence, a− nb ≥ 0.
Since a, b, n ∈ Z and Z is closed under subtraction and multiplication, then

a− nb ∈ Z.
Since a− nb ∈ Z and a− nb ≥ 0, then a− nb ∈ Z+ ∪ {0}, so x ∈ Z+ ∪ {0}.
Therefore, S ⊂ Z+ ∪ {0}.

By proposition 20, the set of all non-negative integers is well-ordered, so every
nonempty subset of non-negative integers has a least element.

Since S ⊂ Z+ ∪ {0} and S 6= ∅, then we conclude S has a least element.
Let m be the least element of S.
Then m ∈ S and m ≤ x for all x ∈ S.

Since m ∈ S, then m = a− kb for some k ∈ Z+.
Since k ∈ Z+, then k + 1 ∈ Z+, so a− (k + 1)b ∈ S.
Since b ∈ Z+, then b ∈ Z and b > 0, so −b < 0.
Hence, a− (k + 1)b = a− kb− b < a− kb+ 0 = m, so a− (k + 1)b < m.
Since k + 1 ∈ Z+, then a− (k + 1)b ∈ S.
Thus, there exists a− (k + 1)b ∈ S such that a− (k + 1)b < m.
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But, this contradicts the fact that m is the least element of S.
Therefore, the assumption is false, so there exists n ∈ Z+ such that nb >

a.

Proposition 22. There is no greatest positive integer.

Proof. Suppose there is a greatest positive integer.
Let g be a greatest positive integer.
Then g ∈ Z+ and g ≥ x for all x ∈ Z+.
Since g ∈ Z+, then g + 1 ∈ Z+.
Since (g + 1) − g = g + 1 − g = g − g + 1 = 0 + 1 = 1 and 1 ∈ Z+, then

(g + 1)− g ∈ Z+, so g < g + 1.
Hence, g + 1 > g.
Thus, there exists g + 1 ∈ Z+ such that g + 1 > g.
But, this contradicts g is a greatest positive integer.
Therefore, there is no greatest positive integer.

Lemma 23. Let a, b ∈ N.
If a < b then b 6≤ a.

Proof. Suppose for the sake of contradiction b ≤ a.
Then either b < a or b = a by defn of ≤.
We consider these cases separately.
Case 1: Suppose b < a.
Then ∃c ∈ N such that b+ c = a, by defn of <.
Since a < b then ∃d ∈ N such that a+ d = b, by defn of <.
Choose c, d ∈ N such that b+ c = a and a+ d = b.
Then b+ c+ d = b.
Set m = c+ d.
Then b+m = b.
Since N is closed under + and c, d ∈ N then c+ d ∈ N, so m ∈ N.
The only solution to b+m = b is m = 0.
But 0 6∈ N, so m 6∈ N.
Thus we have m ∈ N and m 6∈ N, a contradiction.
Hence, b 6< a.
Case 2: Suppose b = a.
Since a < b then ∃c ∈ N such that a+ c = b.
Choose c ∈ N such that a+ c = b.
Since b = a then a+ c = a.
The only solution to a+ c = a is c = 0.
But, 0 6∈ N so c 6∈ N.
Thus we have c ∈ N and c 6∈ N, a contradiction.
Hence, b 6= a.
Both cases show that b 6< a and b 6= a.
Thus neither b < a nor b = a, so b 6≤ a.
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Elementary Aspects of Integers

Proposition 24. No integer exists between two consecutive integers.
Let n ∈ Z.
There is no m ∈ Z such that n < m < n+ 1.

Proof. Suppose there is m ∈ Z such that n < m < n+ 1.
Then n < m and m < n+ 1.
Since n < m, then there exists k ∈ Z+ such that n+ k = m.
Since k ∈ Z+, then k ≥ 1, so m− n ≥ 1 and m− n ∈ Z+.
Since m < n+ 1, then m− n < 1.
Since m− n ∈ Z+ and Z+ ⊂ Z, then m− n ∈ Z.
Since m− n ∈ Z and m− n < 1 and m− n ≥ 1, then we have a violation of

trichotomy.
Therefore, there is no m ∈ Z such that n < m < n+ 1.

Proposition 25. Every positive integer is either even or odd.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : n is even or n is odd}.
Basis:
Since 1 = 2 · 0 + 1 and 0 is an integer, then 1 is odd.
Since 1 ∈ Z+ and 1 is odd, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and k is even or k is odd.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since k is either even or odd, we consider these cases separately.
Case 1: Suppose k is even.
Then k = 2a for some integer a.
Thus, k + 1 = 2a+ 1, so k + 1 is odd.
Case 2: Suppose k is odd.
Then k = 2b+ 1 for some integer b.
Thus, k + 1 = (2b+ 1) + 1 = 2b+ 2 = 2(b+ 2).
Since b+ 2 is an integer, then this implies k + 1 is even.
Hence, in all cases, either k + 1 is even or k + 1 is odd.
Since k + 1 ∈ Z+ and k + 1 is either even or odd, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S for all k ∈ Z+.

Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ Z+, then by induction,
S = Z.

Hence, S = Z+, so if n ∈ Z+, then n is even or n is odd.
Therefore, every positive integer is even or odd.

Proposition 26. An integer is not both even and odd.
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Proof. Let n be an integer.
Suppose n is both even and odd.
Then n is even and n is odd.
Since n is even, then n = 2k for some integer k.
Since n is odd, then n = 2m+ 1 for some integer m.
Thus, 2k = n = 2m+ 1, so 2k = 2m+ 1.
Hence, 1 = 2k − 2m = 2(k −m).
Since k −m ∈ Z and 1 = 2(k −m), then 1 is even.
But, this contradicts the fact that 1 is not even.
Therefore, n is not both even and odd.

Proposition 27. A product of two consecutive integers is even.
If n ∈ Z, then n(n+ 1) is even.

Proof. Let n ∈ Z.
Either n is even or n is not even.
We consider these cases separately.
Case 1: Suppose n is even.
Then n = 2s for some integer s.
Thus, n(n+ 1) = 2s(2s+ 1).
Since s(2s+ 1) ∈ Z and n(n+ 1) = 2s(2s+ 1), then n(n+ 1) is even.
Case 2: Suppose n is not even.
Then n is odd, so n = 2t+ 1 for some integer t.
Thus, n(n+ 1) = (2t+ 1)[(2t+ 1) + 1] = (2t+ 1)(2t+ 2) = 2(2t+ 1)(t+ 1).
Since (2t + 1)(t + 1) ∈ Z and n(n + 1) = 2(2t + 1)(t + 1), then n(n + 1) is

even.

Therefore, in all cases, n(n+ 1) is even, as desired.

Natural Number Formulae

Proposition 28. Let n ∈ Z+.

The sum of the first n positive integers is
n(n+ 1)

2
.

Solution. We let Sn = 1 + 2 + 3 + ...+ n.
We can reverse the sum of terms and add each pair of corresponding terms

of the equation.
Each pair of terms add up to n+ 1. Since we have a total of n terms, then

the sum is n(n+ 1) if we add both equations as below

Sn = 1 + 2 + 3 + · · ·+ (n)

Sn = n+ (n− 1) + (n− 2) + · · ·+ 1

Thus we get

2Sn = (n+ 1)n

Sn =
n(n+ 1)

2

16



So, we’ve shown that the sum is n(n+1)
2 .

Proof. Define predicate p(n) over Z+ by ‘
∑n
k=1 k =

n(n+ 1)

2
’.

We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.

Then
∑1
k=1 k = 1 =

2

2
=

1 · 2
2

=
1(1 + 1)

2
, so p(1) is true.

Induction:
Let m ∈ Z+ such that p(m) is true.

Then
∑m
k=1 k =

m(m+ 1)

2
.

Observe that

m+1∑
k=1

k =

m∑
k=1

k + (m+ 1)

=
m(m+ 1)

2
+ (m+ 1)

= (m+ 1)(
m

2
+ 1)

= (m+ 1)
(m+ 2)

2

=
(m+ 1)[(m+ 1) + 1]

2
.

Thus, p(m+ 1) is true, so p(m) implies p(m+ 1) for all m ∈ Z+.

Since p(1) is true and p(m) implies p(m+ 1) for all m ∈ Z+, then p(n) is true
for all n ∈ Z+.

Therefore,
∑n
k=1 k =

n(n+ 1)

2
for all n ∈ Z+.

Proposition 29. Let n ∈ Z+.
The sum of the first n odd positive integers is n2.

Solution. Let Sodd = the set of odd natural numbers = {1, 3, 5, 7, 9, ...}.

The first odd number 1 occurs for n = 1, the second odd number 3 occurs
for n = 2, the third odd number 5 occurs for n = 3, the fourth odd number 7
occurs for n = 4.

So we see a pattern in which the nth odd number is simply 2n − 1 using
inductive reasoning.

Therefore we really have a sequence (1, 3, 5, 7, ..., 2n − 1) whose nth term is
2n− 1.

Let (an) be the sequence in R defined by an = 2n− 1 for all n ∈ Z+.
We can make a table of values by plugging in various values to determine if

a pattern emerges.

17



n sum of first n odd natural numbers
1 1 = 12

2 1 + 3 = 4 = 22

3 1 + 3 + 5 = 9 = 32

4 1 + 3 + 5 + 7 = 16 = 42

5 1 + 3 + 5 + 7 + 9 = 25 = 52

... ...
n 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) =

∑n
i=1 (2i− 1) = n2

Thus our proposition is really asserting that

∀(n ∈ Z+),

n∑
i=1

(2i− 1) = n2.

Let

Sn =

n∑
i=1

(2i− 1).

We expand this sum to show the terms

Sn =

n∑
i=1

(2i− 1) = 1 + 3 + 5 + 7 + · · ·+ (2n− 1) (1)

We can reverse the sum of terms and add each pair of corresponding terms of
Equation 1.

Each pair of terms add up to 2n.
Since we have a total of n terms, then the sum is 2n(n), if we add both

equations below.

Sn = 1 + 3 + 5 + 7 + · · ·+ (2n− 1)

Sn = (2n− 1) + (2n− 3) + (2n− 5) + (2n− 7) + · · ·+ 1

Thus, we get

2Sn = 2n(n)

Sn = n2

So, we’ve shown that the sum is n2.
Now we will prove this result using mathematical induction since we have

an infinite set of statements to prove (since we’re asserting the sum holds true
for all positive integers).

Note that the universally quantified statement ∀(n ∈ Z+),
∑n
i=1(2i−1) = n2

is logically equivalent to the conditional implication if n ∈ Z+, then
∑n
i=1(2i−

1) = n2.

Proof. We must prove
∑n
k=1(2k − 1) = n2 for all n ∈ Z+.

We prove
∑n
k=1(2k − 1) = n2 for all n ∈ Z+ by induction on n.

18



Let S = {n ∈ Z+ :
∑n
k=1(2k − 1) = n2}.

Basis:
Since 1 ∈ Z+ and

∑1
k=1(2k − 1) = 2 · 1− 1 = 2− 1 = 1 = 12, then 1 ∈ S.

Induction:
Suppose m ∈ S.
Then m ∈ Z+ and

∑m
k=1(2k − 1) = m2.

Since m ∈ Z+, then m+ 1 ∈ Z+.
To prove m+ 1 ∈ S, we must prove

∑m+1
k=1 (2k − 1) = (m+ 1)2.

Observe that

m+1∑
k=1

(2k − 1) =

m∑
k=1

(2k − 1) + [2(m+ 1)− 1]

= m2 + (2m+ 2− 1)

= m2 + (2m+ 1)

= (m+ 1)2, as desired.

Proposition 30. Let n ∈ Z+.

The sum of the squares of the first n positive integers is
n(n+ 1)(2n+ 1)

6
.

Proof. We must prove
∑n
k=1 k

2 =
n(n+ 1)(2n+ 1)

6
for all n ∈ Z+.

We prove by induction on n.

Let S = {n ∈ Z+ :
∑n
k=1 k

2 =
n(n+ 1)(2n+ 1)

6
}.

Basis:

Since 1 ∈ Z+ and
∑1
k=1 k

2 = 12 = 1 =
1(1 + 1)(2 · 1 + 1)

6
, then 1 ∈ S.

Induction:
Suppose m ∈ S.

Then m ∈ Z+ and
∑m
k=1 k

2 =
m(m+ 1)(2m+ 1)

6
.

Since m ∈ Z+, then m+ 1 ∈ Z+.

To provem+1 ∈ S, we must prove
∑m+1
k=1 k

2 =
(m+ 1)[(m+ 1) + 1][2(m+ 1) + 1]

6
.
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Observe that

m+1∑
k=1

k2 =

m∑
k=1

k2 + (m+ 1)2

=
m(m+ 1)(2m+ 1)

6
+ (m+ 1)2

= (m+ 1) · [m(2m+ 1)

6
+ (m+ 1)]

= (m+ 1) · (2m2 +m+ 6m+ 6)

6

= (m+ 1) · (2m2 + 7m+ 6)

6

= (m+ 1) · (m+ 2)(2m+ 3)

6

=
(m+ 1)[(m+ 1) + 1][2(m+ 1) + 1]

6
, as desired.

Proposition 31. The sum of the cubes of the first n positive integers is (
n(n+ 1)

2
)2.

Proof. We must prove
∑n
k=1 k

3 =
n2(n+ 1)2

4
for all n ∈ Z+.

We prove by induction on n.

Let S = {n ∈ Z+ :
∑n
k=1 k

3 =
n2(n+ 1)2

4
}.

Basis:

Since 1 ∈ Z+ and
∑1
k=1 k

3 = 13 = 1 =
12(1 + 1)2

4
, then 1 ∈ S.

Induction:
Suppose m ∈ S.

Then m ∈ Z+ and
∑m
k=1 k

3 =
m2(m+ 1)2

4
.

Since m ∈ Z+, then m+ 1 ∈ Z+.

To prove m+ 1 ∈ S, we must prove
∑m+1
k=1 k

3 =
(m+ 1)2([m+ 1) + 1]2

4
.
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Observe that

m+1∑
k=1

k3 =

m∑
k=1

k3 + (m+ 1)3

=
m2(m+ 1)2

4
+ (m+ 1)3

= (m+ 1)2 · [m
2

4
+ (m+ 1)]

= (m+ 1)2 · (m2 + 4m+ 4)

4

= (m+ 1)2 · (m+ 2)2

4

=
(m+ 1)2[(m+ 1) + 1]2

4
, as desired.

Proposition 32. A positive integer is triangular iff it is of the form
n(n+ 1)

2
for some n ∈ Z+.

Proof. We prove ‘if a positive integer is triangular, then it is of the form
n(n+ 1)

2
for some n ∈ Z+.

Suppose a positive integer is triangular.
Let t be a positive integer that is triangular.
Then t ∈ Z+ and t is triangular.
Since t is triangular, then t is the sum of consecutive integers, beginning

with 1.
Therefore, there exists an integer n such that t is the sum of n consecutive

integers, beginning with 1.
Hence, t =

∑n
i=1 i.

Thus, t is the sum of the first n positive integers, so t =
n(n+ 1)

2
.

Therefore, t =
n(n+ 1)

2
for some n ∈ Z+.

Proof. Conversely, we prove ‘if a positive integer is of the form
n(n+ 1)

2
for

some n ∈ Z+, then it is triangular”.

Suppose a positive integer is of the form
n(n+ 1)

2
for some n ∈ Z+.

Let t be a positive integer of the form
n(n+ 1)

2
for some n ∈ Z+.

Then t ∈ Z+ and t =
n(n+ 1)

2
for some n ∈ Z+.
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Since t =
n(n+ 1)

2
=
∑n
k=1 k, then t is the sum of the first n positive

integers.
Hence, t is the sum of n consecutive integers, beginning with one.
Therefore, t is triangular.

Proposition 33. Let tn denote the nth triangular number.

Then tn =

(
n+ 1

2

)
for all n ∈ Z+.

Proof. Let n ∈ Z+.
Observe that

tn =
n(n+ 1)

2

=
(n+ 1)n

2

=
(n+ 1)n

2!

=
(n+ 1)n(n− 1)!

(n− 1)!2!

=
(n+ 1)!

(n− 1)!2!

=
(n+ 1)!

(n+ 1− 2)!2!

=

(
n+ 1

2

)
.

Divisibility in Z
Theorem 34. Division Algorithm

Let a, b ∈ Z and b > 0.
Then there exist unique integers q and r such that a = bq+ r and 0 ≤ r < b.

Proof. Existence:
Let S = {a− bk : (∃k ∈ Z)(a− bk ≥ 0)}.
Since a ∈ Z, then either a ≥ 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a ≥ 0.
Let k = 0.
Then k ∈ Z and a− bk = a− b(0) = a− 0 = a ≥ 0.
Hence, there exists k ∈ Z such that a− bk ≥ 0, so a− bk ∈ S.
Therefore, S 6= ∅.
Case 2: Suppose a < 0.
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Let k = a.
Since a ∈ Z, then k ∈ Z.
Since b ∈ Z and b > 0, then b ≥ 1, so 0 ≥ 1− b.
Since a < 0 and 1− b ≤ 0, then a(1− b) ≥ 0.
Observe that a− bk = a− ba = a(1− b) ≥ 0.
Hence, there exists k ∈ Z such that a− bk ≥ 0, so a− bk ∈ S.
Therefore, S 6= ∅.

In all cases, we have S 6= ∅,
Let s ∈ S.
Then s = a− bk and s ≥ 0 for some integer k.
Since a, b, k ∈ Z, then a− bk ∈ Z, so s ∈ Z
Since s ∈ Z and s ≥ 0, then S is a set of non-negative integers.
Since S is a set of non-negative integers and S 6= ∅, then S is a nonempty

set of nonnegative integers.
By proposition 20, the set of all nonnegative integers is well-ordered, so every

nonempty subset of nonnegative integers has a least element.
Hence, S has a least element.

Let r be the least element of S.
Then r ∈ S and r ≤ x for all x ∈ S.
Since r ∈ S, then there is some integer q such that r = a− bq and r ≥ 0.
Since r = a− bq, then a = bq + r.
Either r > b or r = b or r < b.

Suppose r ≥ b.
Then a− bq ≥ b, so a− bq − b ≥ 0.
Thus, a− b(q + 1) ≥ 0.
Since q ∈ Z, then q + 1 ∈ Z.
Since q + 1 ∈ Z and a− b(q + 1) ≥ 0, then a− b(q + 1) ∈ S.
Since b > 0 = r− r, then r+ b > r, so r > r− b = (a− bq)− b = a− bq− b =

a− b(q + 1).
Thus, r > a− b(q + 1).
Since r ≤ x for all x ∈ S and a−b(q+1) ∈ S, then we conclude r ≤ a−b(q+1).
Hence, we have r > a− b(q + 1) and r ≤ a− b(q + 1), a contradiction.
Therefore, r cannot be greater than or equal to b.

Since either r > b or r = b or r < b and r cannot be greater than or equal to
b, then we conclude r < b.

Since 0 ≤ r and r < b, then 0 ≤ r < b.
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Therefore, there exist integers q and r such that a = bq+r and 0 ≤ r < b.

Proof. Uniqueness:
Suppose there are integers q1, q2, r1, and r2 such that a = bq1 + r1 and

a = bq2 + r2 and 0 ≤ r1 < b and 0 ≤ r2 < b.
Since a = bq1 + r1 and a = bq2 + r2, then bq1 + r1 = bq2 + r2, so b(q1− q2) =

r2 − r1.
Since q1 − q2 ∈ Z and r2 − r1 = b(q1 − q2), then b|(r2 − r1), so r2 − r1 is a

multiple of b.

Since r2 < b and 0 ≤ r1, then by adding these inequalities we obtain r2 <
b+ r1, so r2 − r1 < b.

Since r1 < b and 0 ≤ r2, then by adding these inequalities we obtain r1 <
b+ r2, so −b < r2 − r1.

Thus, −b < r2 − r1 < b.
Since r2 − r1 is a multiple of b and −b < r2 − r1 < b and the only multiple

of b between −b and b is zero, then we must conclude r2 − r1 = 0.
Therefore, r2 = r1, so r1 = r2.
Hence, 0 = r2 − r1 = b(q1 − q2), so either b = 0 or q1 − q2 = 0.
Since b > 0, then b 6= 0, so q1 − q2 = 0.
Therefore, q1 = q2.

Since r1 = r2 and q1 = q2, then r is unique and q is unique.

Proposition 35. Every integer divides zero. (∀n ∈ Z)(n|0).

Proof. Let n be an arbitrary integer.
Since 0 is an integer and 0 = n · 0, then n|0.

Proposition 36. The number 1 divides every integer. (∀n ∈ Z)(1|n).

Proof. Let n be an arbitrary integer.
Since n is an integer and n = 1 · n, then 1|n.

Proposition 37. Every integer divides itself. (∀n ∈ Z)(n|n).

Proof. Let n be an arbitrary integer.
Since 1 is an integer and n = n · 1, then n|n.

Theorem 38. necessary and sufficient condition for b|a
Let a, b ∈ Z and b > 0.
Then b|a iff the remainder is zero when a is divided by b.

Proof. We prove if the remainder is zero when a is divided by b, then b|a.
Suppose the remainder is zero when a is divided by b.
Since a, b ∈ Z and b > 0, then by the division algorithm, there exist unique

integers q and r such that a = bq + r and 0 ≤ r < b.
Since the remainder is zero when a is divided by b, then r = 0.
Thus, a = bq + 0 = bq.
Since q ∈ Z and a = bq, then b|a.
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Proof. Conversely, we prove if b|a, then the remainder is zero when a is divided
by b.

Suppose b|a.
Then a = bn for some integer n, so a = bn+ 0.
Since a, b ∈ Z and b > 0, then by the division algorithm, there exist unique

integers q and r such that a = bq + r and 0 ≤ r < b.
Since q and r are unique integers and a = bq+r and a = bn+0 and 0 ≤ r < b,

then we must conclude q = n and r = 0.
Therefore, r = 0, so the remainder is zero when a is divided by b.

Theorem 39. A divisor of a is smaller than a.
Let a, d ∈ Z+.
If d|a, then d ≤ a.

Proof. Suppose d|a.
Then a = dn for some integer n.
Since a ∈ Z+ and d ∈ Z+, then a > 0 and d > 0.
Since a = dn and a > 0 and d > 0, then n > 0.
Since n ∈ Z and n > 0, then n ∈ Z+.
Hence, n ≥ 1, by lemma 17.
Since n ≥ 1 and d > 0, then a = dn ≥ d · 1 = d.
Therefore, a ≥ d, so d ≤ a.

Proof. Suppose d|a.
Then a = dn for some integer n.
Since a, d ∈ Z+, then a > 0 and d > 0.
Since a = dn and a > 0 and d > 0, then n > 0.
Since n ∈ Z and n > 0, then n ≥ 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then d = d · 1 = dn = a, so d = a.
Case 2: Suppose n > 1.
Then 0 > 1− n.
Since d > 0 and 1− n < 0, then d(1− n) < 0.
Since d− a = d− dn = d(1− n) < 0, then d− a < 0, so d < a.
Therefore, in all cases, d ≤ a.

Proposition 40. Let a, b, c, d ∈ Z.
If a|b and c|d, then ac|bd.

Proof. Suppose a|b and c|d.
Then b = am and d = cn for some integers m and n.
Thus, bd = (am)(cn) = a(mc)n = a(cm)n = (ac)(mn).
Since mn is an integer and bd = (ac)(mn), then ac|bd.
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Proposition 41. The only integers whose product is one are one and
negative one.

Let a, b ∈ Z.
Then ab = 1 iff a = b = 1 or a = b = −1.

Proof. We prove if a = b = 1 or a = b = −1, then ab = 1.
Suppose a = b = 1 or a = b = −1.
We consider these cases separately.
Case 1: Suppose a = b = 1.
Then ab = 1 · 1 = 1, so ab = 1.
Case 2: Suppose a = b = −1.
Then ab = (−1)(−1) = 1, so ab = 1.

Proof. Conversely, we prove if ab = 1, then either a = b = 1 or a = b = −1.
Suppose ab = 1.
Since ab = 1 > 0, then ab > 0, so either a > 0 and b > 0 or a < 0 and b < 0.
We consider these cases separately.
Case 1: Suppose a > 0 and b > 0.
Suppose a 6= 1.
Since a ∈ Z and a > 0 and a 6= 1, then a > 1.
Since a > 1 and b > 0, then ab > b.
Since b ∈ Z and b > 0, then b ≥ 1.
Thus, ab > b ≥ 1, so ab > 1.
But, this contradicts the hypothesis ab = 1.
Thus, a = 1.

Hence, 1 = ab = (1)b = b, so b = 1.
Therefore, a = 1 = b.
Case 2: Suppose a < 0 and b < 0.
Suppose a 6= −1.
Since a ∈ Z and a < 0 and a 6= −1, then a < −1.
Since a < −1 and b < 0, then ab > −b, so −ab < b.
Since b ∈ Z and b < 0, then b ≤ −1.
Thus, −ab < b ≤ −1, so −ab < −1.
Hence, ab > 1.
But, this contradicts the hypothesis ab = 1.
Thus, a = −1.

Hence, 1 = ab = (−1)b = −b, so b = −1.
Therefore, a = −1 = b.

We conclude either a = b = 1 or a = b = −1, as desired.

Proposition 42. Let a ∈ Z and b ∈ Z.
If a|b and b|a, then a = ±b.
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Proof. Suppose a|b and b|a.
Then b = ak1 and a = bk2 for some integers k1 and k2.
Thus, b = (bk2)k1 = b(k2k1) = b(k1k2), so b(k1k2)− b = 0.
Hence, b(k1k2 − 1) = 0.
Either b = 0 or b 6= 0.
We consider these cases separately.
Case 1: Suppose b = 0.
Since b|a, then 0|a, so a = 0k3 = 0 for some integer k3.
Hence, a = 0 = b, so a = b.
Case 2: Suppose b 6= 0.
Then k1k2 − 1 = 0, so k1k2 = 1.
By proposition 41, the only integers whose product is one are one and neg-

ative one.
Since k1 and k2 are integers and k1k2 = 1, then we conclude either k1 =

k2 = 1 or k1 = k2 = −1.
Hence, either b = a(k1) = a(1) = a or b = a(k1) = a(−1) = −a, so either

b = a or b = −a.
Therefore, either a = b or a = −b, so a = ±b.

Theorem 43. Let a, d ∈ Z.
If d | a, then d | ma for all m ∈ Z.

Proof. Let m ∈ Z be arbitrary.
Suppose d | a.
Then a = dk for some integer k.
Thus, ma = m(dk) = (md)k = (dm)k = d(mk).
Since m, k ∈ Z and Z is closed under multiplication, then mk ∈ Z.
Since mk ∈ Z and ma = d(mk), then d | ma.

Proposition 44. Let a, b, n ∈ Z.
1. If a|b, then na|nb.
2. If n 6= 0 and na|nb, then a|b.

Proof. We prove 1.
Suppose a|b.
Then b = ak for some integer k.
Thus, nb = n(ak) = (na)k.
Since k is an integer and nb = (na)k, then na|nb.

Proof. We prove 2.
Suppose n 6= 0 and na|nb.
Since na|nb, then nb = (na)k for some integer k.
Thus, 0 = nb−(na)k = nb−n(ak) = n(b−ak), so either n = 0 or b−ak = 0.
Since n 6= 0, then we conclude b− ak = 0, so b = ak.
Since k ∈ Z and b = ak, then a|b.

Theorem 45. The divides relation on Z is transitive.
For any integers a, b and c, if a|b and b|c, then a|c.
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Proof. Let a, b, and c be arbitrary integers such that a|b and b|c.
Then b = am and c = bn for some integers m and n.
Thus, c = bn = (am)n = a(mn).
Since mn is an integer and c = a(mn), then a|c.

Theorem 46. The divides relation is a partial order over Z+.

Proof. We prove the divides relation is reflexive.
Let a ∈ Z+ be arbitrary.
Since a ∈ Z+ and Z+ ⊆ Z, then a ∈ Z.
By proposition 37, every integer divides itself, so a|a.
Therefore, | is reflexive.

Proof. We prove the divides relation is antisymmetric.
Let a, b ∈ Z+.
Then a > 0 and b > 0.
Suppose a|b and b|a.
Then there exist integers k1 and k2 such that b = ak1 and a = bk2.
Hence, a = bk2 = (ak1)k2 = a(k1k2), so a(k1k2)− a = 0.
Thus, a(k1k2 − 1) = 0, so either a = 0 or k1k2 − 1 = 0.
Since a > 0, then a 6= 0, so we conclude k1k2 − 1 = 0.
Therefore, k1k2 = 1.
By proposition 41, the only integers whose product is one are one and neg-

ative one.
Therefore, either k1 = k2 = 1 or k1 = k2 = −1.

Since a > 0 and b > 0 and b = ak1, then k1 > 0.
Since a > 0 and b > 0 and a = bk2, then k2 > 0.
Hence, k1 = k2 = 1.
Therefore, a = bk2 = b(1) = b, so a = b.

Proof. We prove the divides relation is transitive.
Let a, b, c ∈ Z+.
The divides relation defined on Z is transitive, by theorem 45.
Hence, x|y and y|z implies x|z for all integers x, y, z.
Since a, b, c ∈ Z+ and Z+ ⊂ Z, then a, b, c ∈ Z.
Therefore, a|b and b|c implies a|c.

Since the divides relation on Z+ is reflexive, antisymmetric, and transitive,
then the divides relation is a partial order over Z+.
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Greatest common divisor

Proposition 47. Let n ∈ Z.
Then n and −n have the same set of divisors.

Proof. Let S be the set of all divisors of n.
Let T be the set of all divisors of −n.
Then S = {d ∈ Z : d|n} and T = {d ∈ Z : d| − n}.
We must prove S = T .

We prove T ⊂ S.
Let t ∈ T .
Then t ∈ Z and t| − n.
Since t| − n, then −n = ta for some integer a.
Thus, n = −(−n) = −(ta) = t(−a).
Since −a ∈ Z and n = t(−a), then t|n.
Since t ∈ Z and t|n, then t ∈ S.
Thus, t ∈ T implies t ∈ S, so T ⊂ S.

Proof. We prove S ⊂ T .
Let s ∈ S.
Then s ∈ Z and s|n.
Since s|n, then n = sb for some integer b.
Thus, −n = −sb = s(−b).
Since −b ∈ Z and −n = s(−b), then s| − n.
Since s ∈ Z and s| − n, then s ∈ T .
Hence, s ∈ S implies s ∈ T , so S ⊂ T .

Proof. Since S ⊂ T and T ⊂ S, then S = T .

Proposition 48. A positive common divisor is bounded.
Let a, b ∈ Z+ and a 6= b.
Let d be a positive common divisor of a and b.
Then 1 ≤ d ≤ min(a, b).

Proof. Since d is a positive common divisor of a and b, then d ∈ Z+ and d|a
and d|b.

Since d ∈ Z+, then d ∈ Z and d > 0, so d ≥ 1.
Let m be the minimum of a and b.
Since a 6= b, then either a < b or a > b.
We consider these cases separately.
Case 1: Suppose a < b.
Then the minimum of a and b is a, so m = a.
Since d, a ∈ Z+ and d|a, then d ≤ a, so d ≤ m.
Since d ≥ 1 and d ≤ m, then 1 ≤ d ≤ m.
Case 2: Suppose b < a.
Then the minimum of a and b is b, so m = b.
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Since d, b ∈ Z+ and d|b, then d ≤ b, so d ≤ m.
Since d ≥ 1 and d ≤ m, then 1 ≤ d ≤ m.

Therefore, in all cases, 1 ≤ d ≤ m, as desired.

Lemma 49. Any common divisor of a and b divides their sum and
difference.

Let a, b, d ∈ Z.
If d|a and d|b, then d|(a+ b) and d|(a− b).

Proof. Suppose d|a and d|b.
Then a = ds and b = dt for some integers s and t.
Hence, a+ b = ds+ dt = d(s+ t) and a− b = ds− dt = d(s− t).
Since s+ t ∈ Z and a+ b = d(s+ t), then d|(a+ b).
Since s− t ∈ Z and a− b = d(s− t), then d|(a− b).

Theorem 50. Any common divisor of a and b divides any linear com-
bination of a and b.

Let a, b, d ∈ Z.
If d|a and d|b, then d|(ma+ nb) for all integers m and n.

Proof. Suppose d|a and d|b.
Then there exist integers s and t such that a = ds and b = dt.
Let m and n be arbitrary integers.
Then ma+ nb = m(ds) + n(dt) = m(sd) + n(td) = (ms)d+ (nt)d = (ms+

nt)d = d(ms+ nt).
Since ms+nt is an integer and ma+nb = d(ms+nt), then d|(ma+nb).

Corollary 51. Any common divisor of a finite number of integers
divides any linear combination of those integers.

Let a1, a2, ..., an, d ∈ Z.
If d|a1, d|a2, ..., d|an, then d|(c1a1 + c2a2 + ... + cnan) for any integers

c1, c2, ..., cn.

Proof. We prove by induction on n.
Define predicate p(n) over Z+ by ’if d|a1, d|a2, ..., d|an, then d|(c1a1+c2a2+

...+ cnan) for any integers c1, c2, ..., cn’.
Basis:
Let n = 1.
Suppose d|a1.
Then d divides any multiple of a1, by theorem 43.
Hence, d|c1a1 for some integer c1.
Therefore, p(1) is true.
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Let n = 2.
Suppose d|a1 and d|a2.
Then d divides any linear combination of a1 and a2, by theorem 50.
Therefore, d|(c1a1 + c2a2) for some integers c1 and c2, so p(2) is true.
Induction:
Let k ∈ Z+ with k ≥ 2 such that p(k) is true.
Since p(k) is true, then d|(c1a1+c2a2+...+ckak) for any integers c1, c2, ..., ck

whenever d|a1 and d|a2 and ... and d|ak.
We must prove p(k + 1) is true.

Suppose d|a1 and d|a2 and ... and d|ak and d|ak+1.
Since d|a1 and d|a2 and ... and d|ak, then by the induction hypothesis,

d|(c1a1 + c2a2 + ...+ ckak) for any integers c1, c2, ..., ck.
Since d|ak+1, then d divides any multiple of ak+1, by theorem 43.
Hence, d|ck+1ak+1 for some integer ck+1.
Since d divides the integer c1a1 + c2a2 + ...+ ckak and d divides the integer

ck+1ak+1, then d divides the sum (c1a1+c2a2+ ...+ckak)+ck+1ak+1, by lemma
49.

Thus, d divides c1a1 + c2a2 + ...+ ckak + ck+1ak+1, so p(k + 1) is true.
Hence, p(k + 1) is true whenever p(k) is true for all k ∈ Z+ with k ≥ 2.

Since p(1) is true and p(2) is true, and p(k + 1) is true whenever p(k) is true
for all k ∈ Z+ with k ≥ 2, then by induction, p(k) is true for all k ∈ Z+.

Therefore, for all n ∈ Z+, if d|a1, d|a2, ..., d|an, then d|(c1a1+c2a2+...+cnan)
for any integers c1, c2, ..., cn.

Theorem 52. existence and uniqueness of greatest common divisor
Let a, b ∈ Z with a and b not both zero..
The greatest common divisor of a and b exists and is unique.
Moreover, gcd(a, b) is the least positive linear combination of a and b.

Proof. Existence:
We prove there exists a positive integer d such that d|a and d|b.
Let S be the set of all positive linear combinations of a and b.
Then S = {ma+ nb : ma+ nb > 0,m, n ∈ Z}.

We prove S 6= ∅.
Since a and b are integers not both zero, then either a 6= 0 or b 6= 0.
We consider these cases separately.
Case 1: Suppose a 6= 0.
Let m = a and n = 0.
Then ma+ nb = aa+ 0b = a2 + 0 = a2.
Since a 6= 0, then a2 > 0.
Thus, a2 ∈ S, so S 6= ∅.
Case 2: Suppose b 6= 0.
Let m = 0 and n = b.
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Then ma+ nb = 0a+ bb = 0 + b2 = b2.
Since b 6= 0, then b2 > 0.
Thus, b2 ∈ S, so S 6= ∅.

In all cases, S 6= ∅.
Since S ⊂ Z+ and S 6= ∅, then by the well-ordering principle, S contains a

least element.
Let d be the least element of S.
Then there exist integers m0, n0 such that d = m0a + n0b and d > 0 and

d ≤ x for every x ∈ S.

We prove d|a and d|b.
By the Division Algorithm, when a is divided by d, there exist unique integers

q and r such that a = dq + r and 0 ≤ r < d.
Either r > 0 or r = 0.

Suppose r > 0.
Then r = a−dq = a−(m0a+n0b)q = a−m0aq−n0bq = a(1−m0q)+b(−n0q).
Since 1−m0q and −n0q are integers and r = a(1−m0q) + b(−n0q), then r

is a linear combination of a and b.
Since r = a(1−m0q)+b(−n0q) and r > 0 and 1−m0q and −n0q are integers,

then r ∈ S.
Since d ≤ x for every x ∈ S and r ∈ S, then we conclude d ≤ r, so r ≥ d.
Consequently, we have r < d and r ≥ d, a contradiction.
Therefore, r cannot be greater than zero.

Since either r > 0 or r = 0, and r 6> 0, then r = 0.
Therefore, a = dq, so d|a.
By similar reasoning, d|b.
Hence d|a and d|b, so d is a common divisor of a and b.

Suppose c is an arbitrary common divisor of a and b.
Then c|a and c|b.
Thus there are integers k1 and k2 such that a = ck1 and b = ck2.
Hence d = m0a+n0b = m0(ck1) +n0(ck2) = c(m0k1) + c(n0k2) = c(m0k1 +

n0k2).
Since m0k1 + n0k2 is an integer and d = c(m0k1 + n0k2), then c|d.
Thus, any common divisor of a and b divides d.
Since d is a common divisor of a and b and any common divisor of a and b

divides d, then d is a greatest common divisor of a and b.
Therefore, a greatest common divisor of a and b exists.

Proof. Uniqueness:
Suppose d1 = gcd(a, b) and d2 = gcd(a, b).
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Any common divisor of a and b divides a greatest common divisor of a and
b.

Since d1 is a common divisor of a and b and d2 is a greatest common divisor
of a and b, then d1|d2.

Since d2 is a common divisor of a and b and d1 is a greatest common divisor
of a and b, then d2|d1.

Since d1 and d2 are positive integers and d1|d2 and d2|d1, then by the anti-
symmetric property of divisibility, d1 = d2.

Therefore, a greatest common divisor of a and b is unique.

Proposition 53. properties of gcd
1. gcd(a, 0) = a for all a ∈ Z+.
2. gcd(a, 1) = 1 for all a ∈ Z.
3. gcd(a, a) = a for all a ∈ Z+.
4. gcd(a, b) = gcd(b, a) for all a, b ∈ Z∗.
5. gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b) for all a, b ∈ Z∗.
6. Let a, b ∈ Z∗.
Then gcd(ka, kb) = k gcd(a, b) for all k ∈ Z+.

Proof. We prove 1.
Let a ∈ Z+.
Since a ∈ Z+ and Z+ ⊂ Z, then a ∈ Z.
By proposition 37, every integer divides itself, so a|a.
By proposition 35, every integer divides zero, so a|0.
Hence, a|a and a|0, so a is a common divisor of a and 0.
Suppose c is an arbitrary common divisor of a and 0.
Then c|a and c|0, so c|a.
Hence, any common divisor of a and 0 divides a.
Since a ∈ Z+ and a is a common divisor of a and 0 and any common divisor

of a and 0 divides a, then a = gcd(a, 0).

Proof. We prove 2.
Let a ∈ Z.
By proposition 36, one divides every integer, so 1|a.
Since 1|a and 1|1, then 1 is a common divisor of a and 1.
Suppose c is an arbitrary common divisor of a and 1.
Then c|a and c|1, so c|1.
Hence, any common divisor of a and 1 divides 1.
Since 1 ∈ Z+ and 1 is a common divisor of a and 1 and any common divisor

of a and 1 divides 1, then 1 = gcd(a, 1).

Proof. We prove 3.
Since a ∈ Z+ and Z+ ⊂ Z, then a ∈ Z.
By proposition 37, every integer divides itself, so a|a.
Since a|a and a|a, then a is a common divisor of a and a.
Suppose c is an arbitrary common divisor of a and a.
Then c|a and c|a, so c|a.
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Hence, any common divisor of a and a divides a.
Since a ∈ Z+ and a is a common divisor of a and a and any common divisor

of a and a divides a, then a = gcd(a, a).

Proof. We prove 4.
Let a, b ∈ Z∗.
Then a and b are nonzero integers, so a 6= 0 and b 6= 0.
Hence, a and b are not both zero, so gcd(a, b) exists and is unique.
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b and if c is any integer such that c|a and c|b,

then c|d.

We prove gcd(a, b) = gcd(b, a).
Since d|a and d|b, then d|b and d|a, so d is a common divisor of b and a.
Suppose c is an arbitrary divisor of b and a.
Then c|b and c|a, so c|a and c|b.
Since c|a and c|b, then we conclude c|d.
Thus, any common divisor of b and a divides d.
Since d ∈ Z+ and d is a common divisor of b and a and any common divisor

of b and a divides d, then d = gcd(b, a).

Proof. We prove 5.
Let a, b ∈ Z∗.
Then a and b are nonzero integers, so a 6= 0 and b 6= 0.
Hence, a and b are not both zero, so gcd(a, b) exists and is unique.
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b and if c is any integer such that c|a and c|b,

then c|d.

We prove gcd(a, b) = gcd(−a, b).
Since d|a, then d divides any multiple of a, so d divides (−1)a = −a.
Hence, d|(−a).
Since d|(−a) and d|b, then d is a common divisor of −a and b.
Suppose c is an arbitrary common divisor of −a and b.
Then c|(−a) and c|b.
Since c|(−a), then c divides any multiple of −a, so c divides (−1)(−a) = a.
Hence, c|a.
Since c|a and c|b, then c|d.
Hence, any common divisor of −a and b divides d.
Since d ∈ Z+ and d is a common divisor of −a and b and any common divisor

of −a and b divides d, then d = gcd(−a, b).
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We prove gcd(a, b) = gcd(a,−b).
Since d|b, then d divides any multiple of b, so d divides (−1)b = −b.
Hence, d|(−b).
Since d|a and d|(−b), then d is a common divisor of a and −b.
Suppose c is an arbitrary common divisor of a and −b.
Then c|a and c|(−b).
Since c|(−b), then c divides any multiple of −b, so c divides (−1)(−b) = b.
Hence, c|b.
Since c|a and c|b, then c|d.
Hence, any common divisor of a and −b divides d.
Since d ∈ Z+ and d is a common divisor of a and −b and any common divisor

of a and −b divides d, then d = gcd(a,−b).

We prove gcd(a, b) = gcd(−a,−b).
Since d|a, then d divides any multiple of a, so d divides (−1)a = −a.
Since d|b, then d divides any multiple of b, so d divides (−1)b = −b.
Hence, d|(−a) and d|(−b), so d is a common divisor of −a and −b.
Suppose c is an arbitrary common divisor of −a and −b.
Then c|(−a) and c|(−b).
Since c|(−a), then c divides any multiple of −a, so c divides (−1)(−a) = a.
Hence, c|a
Since c|(−b), then c divides any multiple of −b, so c divides (−1)(−b) = b.
Hence, c|b.
Since c|a and c|b, then c|d.
Hence, any common divisor of −a and −b divides d.
Since d ∈ Z+ and d is a common divisor of −a and −b and any common

divisor of −a and −b divides d, then d = gcd(−a,−b).

Proof. We prove 6.
Let k ∈ Z+.
Since a and b are non-negative integers, then a 6= 0 and b 6= 0, so a and b

are not both zero.
Therefore, gcd(a, b) exists and is unique.
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b.
Since k ∈ Z+ and d ∈ Z+, then kd ∈ Z+.
Since k|k and d|a, then kd|ka, by proposition 40.
Since k|k and d|b, then kd|kb, by proposition 40.
Therefore kd|ka and kd|kb, so kd is a common divisor of ka and kb.

Let c be an arbitrary common divisor of ka and kb.
Then c|ka and c|kb.
Since d = gcd(a, b), then there exist integers m and n such that d = ma+nb.
Thus, kd = k(ma + nb) = kma + knb = mka + nkb, so kd is a linear

combination of ka and kb.
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Since c|ka and c|kb, then c divides any linear combination of ka and kb by
theorem 50, so c|kd.

Thus, any common divisor of ka and kb divides kd.
Since kd ∈ Z+ and kd is a common divisor of ka and kb, and any common

divisor of ka and kb divides kd, then kd = gcd(ka, kb).
Therefore, gcd(ka, kb) = kd = k gcd(a, b).

Lemma 54. The only positive integer that divides 1 is 1.

Proof. We must prove 1 divides 1 and any positive integer other than 1 does
not divide 1.

We prove 1 divides 1.
Since 1 ∈ Z and 1 = 1 · 1, then 1 divides 1.

Proof. To prove any positive integer other than 1 does not divide 1, let a ∈ Z+

and a 6= 1.
We must prove a does not divide 1.

Suppose for the sake of contradiction a divides 1.
Then 1 = ak for some integer k.
Since a ∈ Z+ and a 6= 1, then a > 1, so a 6= 0.
Since ak = 1 and a 6= 0, then k = 1

a .
Since a > 1, then 1

a is not an integer, so k is not an integer.
But, this contradicts that k is an integer.
Thus, a does not divide 1.

Therefore, any positive integer other than 1 does not divide 1.
Since 1 divides 1 and any positive integer other than 1 does not divide 1,

then 1 is the only positive integer that divides 1.

Theorem 55. Let a, b ∈ Z.
Let c ∈ Z.
Then c is a linear combination of a and b iff c is a multiple of gcd(a, b).

Proof. We prove if c is a linear combination of a and b, then c is a multiple of
gcd(a, b).

Suppose c is a linear combination of a and b.
By theorem 50, any common divisor of a and b divides any linear combination

of a and b.
Since gcd(a, b) is a common divisor of a and b, then gcd(a, b) divides any

linear combination of a and b.
Hence, gcd(a, b) divides c, so c is a multiple of gcd(a, b).

Proof. Conversely, we prove if c is a multiple of gcd(a, b), then c is a linear
combination of a and b.

Suppose c is a multiple of gcd(a, b).
Then there exists an integer k such that c = k gcd(a, b).
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Since gcd(a, b) is the least positive linear combination of a and b, then there
exist integers m and n such that gcd(a, b) = ma+ nb.

Thus, c = k(ma+ nb) = kma+ knb = (km)a+ (kn)b.
Since km and kn are integers and c = (km)a + (kn)b, then c is a linear

combination of a and b.

Corollary 56. Let a, b ∈ Z.
Then gcd(a, b) = 1 iff there exist m,n ∈ Z such that ma+ nb = 1.

Proof. Suppose gcd(a, b) = 1.
Then 1 is the least positive linear combination of a and b.
Therefore, there exist integers m and n such that 1 = ma+nb, as desired.

Proof. Conversely, suppose there exist integers m and n such that ma+nb = 1.
Then 1 is a linear combination of a and b.
Since 1 is a linear combination of a and b iff 1 is a multiple of gcd(a, b) by

theorem 55, then 1 is a multiple of gcd(a, b).
Therefore, gcd(a, b) divides 1.
By lemma 54, the only positive integer that divides 1 is 1.
Since gcd(a, b) is a positive integer and the only positive integer that divides

1 is 1, then gcd(a, b) = 1, as desired.

Corollary 57. Let a, b ∈ Z.
Let d ∈ Z+.

If d = gcd(a, b), then gcd(
a

d
,
b

d
) = 1.

Proof. Suppose d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b.
Since d ∈ Z+, then d > 0, so d 6= 0.

Since d|a, then a = dr for some integer r, so r =
a

d
.

Since d|b, then b = ds for some integer s, so s =
b

d
.

Since
a

d
= r and

b

d
= s, then

a

d
∈ Z and

b

d
∈ Z.

Since d is the least positive linear combination of a and b, then there exist
integers m and n such that ma+ nb = d.

Since d 6= 0, we divide by d to obtain m(
a

d
) + n(

b

d
) = 1.

Since
a

d
∈ Z and

b

d
∈ Z and m ∈ Z and n ∈ Z and m(

a

d
) + n(

b

d
) = 1, then

gcd(
a

d
,
b

d
) = 1, by corollary 56.

Proof. Suppose d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b, and any common divisor of a and b divides d.

Since d|a, then a = dr for some integer r, so r =
a

d
.

Since d|b, then b = ds for some integer s, so s =
b

d
.
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Since d = gcd(a, b), then a and b are integers not both zero, so either a 6= 0
or b 6= 0.

Since d ∈ Z+, then d > 0, so d 6= 0.

Since r =
a

d
and s =

b

d
and d 6= 0, and either a 6= 0 or b 6= 0, then either

r 6= 0 or s 6= 0, so r and s are not both zero.
Since r and s are integers, and r and s are not both zero, then gcd(r, s)

exists and is unique.
Let c = gcd(r, s).
Then c ∈ Z+ and c|r and c|s.
Since c|r, then r = cx for some integer x.
Since c|s, then s = cy for some integer y.
Since r = cx, then a = dr = d(cx) = (dc)x.
Since s = cy, then b = ds = d(cy) = (dc)y.
Since x ∈ Z and a = (dc)x, then dc|a.
Since y ∈ Z and b = (dc)y, then dc|b.
Hence, dc|a and dc|b, so dc is a common divisor of a and b.
Since any common divisor of a and b divides d, then we conclude dc|d.

Since c ∈ Z+, then c ∈ Z and c > 0.
Since c > 0, then c 6= 0.
Since c ∈ Z and c 6= 0 and dc|d, then c|1, by proposition 44.
By proposition 36, 1 divides every integer.
Since c ∈ Z, then we conclude 1|c.
By theorem 46, the divides relation is antisymmetric.
Since c ∈ Z+ and c|1 and 1|c, then we conclude c = 1.

Therefore, gcd(
a

d
,
b

d
) = gcd(r, s) = c = 1, so gcd(

a

d
,
b

d
) = 1, as desired.

Theorem 58. Let a, b, d ∈ Z.
If d|ab and gcd(d, a) = 1, then d|b.

Proof. Suppose d|ab and gcd(d, a) = 1.
Since gcd(d, a) = 1, then there exist integers k and m such that kd+ma = 1,

by corollary 56.
Since d|ab, then ab = dn for some integer n.
Observe that

b = b · 1
= b(kd+ma)

= bkd+ bma

= bkd+mba

= bkd+m(ab)

= bkd+m(dn)

= bkd+mdn

= d(bk +mn).
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Since b = d(bk +mn) and bk +mn is an integer, then d|b.

Proof. Suppose d|ab and gcd(d, a) = 1.
Since gcd(d, a) = 1, then there exist integers k and m such that kd+ma = 1,

by corollary 56.
Thus, b = b · 1 = b(kd + ma) = bkd + bma = bkd + mba = bkd + mab =

(bk)d+m(ab) is a linear combination of d and ab.
Since d|d and d|ab, then d divides any linear combination of d and ab, so

d|b.

Theorem 59. Let a, b,m ∈ Z.
If a|m and b|m and gcd(a, b) = 1, then ab|m.

Proof. Suppose a|m and b|m and gcd(a, b) = 1.
Since a|m, then m = ak1 for some k1 ∈ Z.
Since b|m, then m = bk2 for some k2 ∈ Z.
Since gcd(a, b) = 1, then 1 = xa+ yb for some x, y ∈ Z, by corollary 56.
Observe that

m = m · 1
= m(xa+ yb)

= mxa+myb

= (bk2)xa+ (ak1)yb

= ab(k2x) + ab(k1y)

= ab(k2x+ k1y).

Since x, y, k1, k2 ∈ Z, then k2x+ k1y ∈ Z.
Since k2x+ k1y ∈ Z and m = ab(k2x+ k1y), then ab|m.

Proof. Suppose a|m and b|m and gcd(a, b) = 1.
Since b|m, then m = bs for some integer s.
Since a|m and m = bs, then a|bs.
Since a|bs and gcd(a, b) = 1, then a|s, by theorem 58.
Thus, s = at for some integer t.
Hence, m = bs = b(at) = (ba)t = (ab)t.
Since t ∈ Z and m = (ab)t, then ab|m.

Euclidean Algorithm

Lemma 60. Euclidean Algorithm lemma
Let a, b ∈ Z and b > 0.
If a is divided by b with remainder r, then gcd(a, b) = gcd(b, r).
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Proof. Suppose a is divided by b.
By the division algorithm, there exist unique integers q and r such that

a = bq + r and 0 ≤ r < b.
Let d = gcd(b, r).

Then d ∈ Z+ and d|b and d|r and if c is any integer such that c|b and c|r,
then c|d.

Since d|b and d|r, then d divides any linear combination of b and r.
Since a = bq + r is a linear combination of b and r, then d|a.
Since d|a and d|b, then d is a common divisor of a and b.

Let c be an arbitrary common divisor of a and b.
Then c|a and c|b, so c divides any linear combination of a and b.
Since r = a− bq is a linear combination of a and b, then c|r.
Since c|b and c|r, then c|d, so any common divisor of a and b divides d.

Since d ∈ Z+ and d is a common divisor of a and b and any common divisor
of a and b divides d, then d = gcd(a, b).

Therefore, gcd(a, b) = d = gcd(b, r).

Theorem 61. Euclidean Algorithm
Let a, b ∈ Z and b > 0.
Let n be the number of iterative steps and

a = bq1 + r1, where 0 < r1 < b

b = r1q2 + r2, where 0 < r2 < r1

r1 = r2q3 + r3, where 0 < r3 < r2

· · ·
rk = rk+1qk+2 + rk+2, where 0 < rk+2 < rk+1

· · ·
rn−3 = rn−2qn−1 + rn−1, where 0 < rn−1 < rn−2

rn−2 = rn−1qn + 0.

Then gcd(a, b) = rn−1.

Solution. By the division algorithm, a = bq1+r1 and 0 < r1 < b, so gcd(a, b) =
gcd(b, r1) by lemma 60.

By the division algorithm, b = r1q2 + r2 and 0 < r2 < r1, so gcd(b, r1) =
gcd(r1, r2) by lemma 60.

By the division algorithm, r1 = r2q3 + r3 and 0 < r3 < r2, so gcd(r1, r2) =
gcd(r2, r3) by lemma 60.

We repeat this process a finite number of times, so rk = rk+1qk+2 + rk+2

and 0 < rk+2 < rk+1, so gcd(r, rk+1) = gcd(rk+1, rk+2) by lemma 60.
On the final nth step, we have rn−2 = rn−1qn+rn and rn = 0, so gcd(rn−2, rn−1) =

gcd(rn−1, rn) = gcd(rn−1, 0) = rn−1.
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On the final nth step, the quotient is qn and the remainder is rn = 0 and
the previous remainder rn−1 is the greatest common divisor of a and b.

Proof. On the nth step of the Euclidean algorithm, the remainder is rn = 0, so
rn−2 = rn−1qn.

Hence rn−1|rn−2.
Since rn−1|rn−1 and rn−1|rn−2, then rn−1 divides any linear combination of

rn−1 and rn−2.
Since rn−3 = rn−2qn−1+rn−1 is a linear combination of rn−1 and rn−2, then

rn−1|rn−3.
Since rn−1|rn−2 and rn−1|rn−3, then rn−1 divides any linear combination of

rn−2 and rn−3.
Since rn−4 = rn−3qn−2+rn−2 is a linear combination of rn−2 and rn−3, then

rn−1|rn−4.
This reasoning process is repeated a finite number of times.
Since rn−1|rk and rn−1|rk−1, then rn−1 divides any linear combination of rk

and rk−1.
Since rk−2 = rk−1qk + rk is a linear combination of rk and rk−1, then

rn−1|rk−2.
Since rn−1|r2 and rn−1|r1, then rn−1 divides any linear combination of r2

and r1.
Since b = r1q2 + r2 is a linear combination of r2 and r1, then rn−1|b.
Since rn−1|r1 and rn−1|b, then rn−1 divides any linear combination of r1 and

b.
Since a = bq1 + r1 is a linear combination of r1 and b, then rn−1|a.
Since rn−1|a and rn−1|b, then rn−1 is a common divisor of a and b.

Let d be any common divisor of a and b.
Then d|a and d|b, so d divides any linear combination of a and b.
Since r1 = a− bq1 is a linear combination of a and b, then d|r1.
Since d|b and d|r1, then d divides any linear combination of b and r1.
Since r2 = b− r1q2 is a linear combination of b and r1, then d|r2.
Since d|r1 and d|r2, then d divides any linear combination of r1 and r2.
Since r3 = r1 − r2q3 is a linear combination of r1 and r2, then d|r3.
This reasoning process is repeated a finite number of times.
Since d|rk and d|rk+1, then d divides any linear combination of rk and rk+1.
Since rk+2 = rk − rk+1qk+2 is a linear combination of rk and rk+1, then

d|rk+2.
Since d|rn−3 and d|rn−2, then d divides any linear combination of rn−3 and

rn−2.
Since rn−1 = rn−3−rn−2qn−1 is a linear combination of rn−3 and rn−2, then

d|rn−1.
Therefore, any common divisor of a and b divides rn−1.

Since rn−1 ∈ Z+ and rn−1 is a common divisor of a and b and any common
divisor of a and b divides rn−1, then by definition of gcd, rn−1 = gcd(a, b).
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Least common multiple

Theorem 62. definition of nZ
Let n ∈ Z.
The set of all multiples of n is {nk : k ∈ Z}.

Proof. Let S be the set of all multiples of n.
Then S = {m ∈ Z : n|m}.
Let T = {nk : k ∈ Z}.

We prove S ⊂ T .
Let s ∈ S.
Then s ∈ Z and n|s.
Since n|s, then s = na for some integer a.
Since s = na and a ∈ Z, then s ∈ T .
Therefore, s ∈ S implies s ∈ T , so S ⊂ T .

Conversely, we prove T ⊂ S.
Let t ∈ T .
Then t = nb for some integer b.
Since b ∈ Z and t = nb, then n|t.
Since t ∈ Z and n|t, then t ∈ S.
Therefore, t ∈ T implies t ∈ S, so T ⊂ S.

Since S ⊂ T and T ⊂ S, then S = T , as desired.

Proposition 63. Let n ∈ Z+.
The set of all positive multiples of n is {nk : k ∈ Z+}.

Proof. Let S be the set of all positive multiples of n.
Then S = {m ∈ Z+ : n|m}.
Let T = {nk : k ∈ Z+}.

We prove S ⊂ T .
Let s ∈ S.
Then s ∈ Z+ and n|s.
Since n|s, then s = na for some integer a.
Since s ∈ Z+ and n ∈ Z+ and s = na, then a ∈ Z+.
Since s = na and a ∈ Z+, then s ∈ T .
Therefore, s ∈ S implies s ∈ T , so S ⊂ T .
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We prove T ⊂ S.
Let t ∈ T .
Then t = nb for some b ∈ Z+.
Since b ∈ Z and t = nb, then n|t.
Since n ∈ Z+ and b ∈ Z+ and t = nb, then t ∈ Z+.
Since t ∈ Z+ and n|t, then t ∈ S.
Therefore, t ∈ T implies t ∈ S, so T ⊂ S.

Since S ⊂ T and T ⊂ S, then S = T , as desired.

Theorem 64. existence and uniqueness of least common multiple
Let a, b ∈ Z+.
The least common multiple of a and b exists and is unique.

Proof. Existence:
Let S be the set of all positive common multiples of a and b.
Then S = {s ∈ Z+ : a|s and b|s}.
Since a ∈ Z+ and b ∈ Z+, then ab ∈ Z+.
Since b ∈ Z and ab = ab, then a|ab.
Since a ∈ Z and ab = ba, then b|ab.
Since ab ∈ Z+ and a|ab and b|ab, then ab ∈ S, so S 6= ∅.
Since S ⊂ Z+ and S 6= ∅, then by the well-ordering principle of Z+, S has a

least element.
Let m be the least element of S.
Then m ∈ S and m ≤ s for all s ∈ S.

We prove m is a least common multiple of a and b.
Since m ∈ S, then m ∈ Z+ and a|m and b|m, so m is a positive common

multiple of a and b.

Let c be any positive common multiple of a and b.
Then c ∈ Z+ and a|c and b|c.
We must prove m|c.

We divide c by m.
By the division algorithm, there are unique integers q and r such that c =

mq + r and 0 ≤ r < m.
Since 0 ≤ r < m, then 0 ≤ r and r < m.
Since 0 ≤ r, then r ≥ 0, so either r > 0 or r = 0.

Suppose r > 0.
Since c = mq + r, then r = c−mq is a linear combination of c and m.
Since a|c and a|m, then a divides any linear combination of c and m, so a|r.
Since b|c and b|m, then b divides any linear combination of c and m, so b|r.
Since r ∈ Z and r > 0, then r ∈ Z+.
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Since r ∈ Z+ and a|r and b|r, then r ∈ S.
Thus, r ∈ S and r < m.
This contradicts that m is the least element of S.
Therefore, r 6> 0.

Since either r > 0 or r = 0 and r 6> 0, then r = 0.
Thus, c = mq + r = mq + 0 = mq.
Since q ∈ Z and c = mq, then m|c, as desired.
Therefore, any positive common multiple of a and b is a multiple of m.

Since m is a positive common multiple of a and b, and any positive common
multiple of a and b is a multiple of m, then m is a least common multiple of a
and b.

Proof. Uniqueness:
Suppose m is a least common multiple of a and b and m′ is a least common

multiple of a and b.
We must prove m = m′.
Since m is a least common multiple of a and b, then m ∈ Z+ and a|m and

b|m and for all c ∈ Z+, if a|c and b|c, then m|c.
Since m′ is a least common multiple of a and b, then m′ ∈ Z+ and a|m′ and

b|m′ and for all c ∈ Z+, if a|c and b|c, then m′|c.
Since m ∈ Z+, then a|m and b|m implies m′|m.
Since a|m and b|m, then we conclude m′|m.
Since m′ ∈ Z+, then a|m′ and b|m′ implies m|m′.
Since a|m′ and b|m′, then we conclude m|m′.
Since m ∈ Z+ and m′ ∈ Z+ and m|m′ and m′|m, then we conclude m = m′,

by the the anti-symmetric property of the divides relation on Z+.

Proposition 65. For all a, b ∈ Z+, lcm(a, b) divides ab.

Proof. Let a, b ∈ Z+.
Let m = lcm(a, b).
Then m ∈ Z+ and any positive common multiple of a and b is a multiple of

m.

Since a ∈ Z+ and b ∈ Z+, then ab ∈ Z+.
Since b ∈ Z and ab = ab, then a|ab.
Since a ∈ Z and ab = ba, then b|ab.
Since ab ∈ Z+ and a|ab and b|ab, then ab is a positive common multiple of

a and b.
Therefore, ab is a multiple of m, so m|ab, as desired.

Theorem 66. lcm and gcd relationship
Let a, b ∈ Z+.
Then gcd(a, b) · lcm(a, b) = ab.
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Proof. Since a ∈ Z+ and b ∈ Z+, then a > 0 and b > 0, so a 6= 0 and b 6= 0.
Thus, a and b are both nonzero, so a and b are not both zero.
Hence, gcd(a, b) exists and is unique.
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b, so a = dr and b = ds for some integers r and

s.

Let m =
ab

d
.

We first prove m = lcm(a, b).

We prove m is a positive common multiple of a and b.
Observe that

as = (dr)s

= drs

= rds

= r(ds)

= rb.

Thus, as = rb.

Since b = ds, then s =
b

d
.

Observe that

m =
ab

d

= a · b
d

= as

= rb.

Hence, m = as = rb = br.

Since a ∈ Z+ and b ∈ Z+ and d ∈ Z+ and m =
ab

d
, then m > 0.

Since a ∈ Z and s ∈ Z and m = as, then m ∈ Z.
Since m ∈ Z and m > 0, then m ∈ Z+.
Since s ∈ Z and m = as, then a|m.
Since r ∈ Z and m = br, then b|m.
Since m ∈ Z+ and a|m and b|m, then m is a positive common multiple of a

and b.

We next prove any positive common multiple of a and b is a multiple of m.
Let c ∈ Z+ such that a|c and b|c.
Then c = au and c = bv for some integers u and v.

Hence,
c

a
= u and

c

b
= v.

Since m =
ab

d
and d > 0, then md = ab.
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Since ab > 0, then ab 6= 0, so we divide to obtain
md

ab
= 1.

Since d = gcd(a, b) is the least positive linear combination of a and b, then
d = xa+ yb for some integers x and y.

Observe that

c = c · 1

= c · md
ab

=
cm

ab
· d

=
cm

ab
· (xa+ yb)

=
cmxa

ab
+
cmyb

ab

=
cmx

b
+
cmy

a

=
c

b
·mx+

c

a
·my

= vmx+ umy

= m(vx+ uy).

Since vx+ uy ∈ Z and c = m(vx+ uy), then m|c.
Thus, any positive common multiple of a and b is a multiple of m.

Since m is a positive common multiple of a and b, and any positive common
multiple of a and b is a multiple of m, then m = lcm(a, b).

Since gcd(a, b) · lcm(a, b) = dm = ab, then gcd(a, b) · lcm(a, b) = ab, as
desired.

Corollary 67. Let a, b ∈ Z+.
Then lcm(a, b) = ab iff gcd(a, b) = 1.

Proof. Suppose lcm(a, b) = ab.
Since a, b ∈ Z+, then a > 0 and b > 0, so ab > 0.
Thus, ab 6= 0, so lcm(a, b) 6= 0.
By theorem 66, gcd(a, b) · lcm(a, b) = ab.

Since gcd(a, b) · lcm(a, b) = ab and lcm(a, b) 6= 0, then gcd(a, b) =
ab

lcm(a, b)
.

Observe that

gcd(a, b) =
ab

lcm(a, b)

=
ab

ab
= 1.

Therefore, gcd(a, b) = 1, as desired.
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Conversely, suppose gcd(a, b) = 1.
Since gcd(a, b) > 0, then gcd(a, b) 6= 0.
By theorem 66, gcd(a, b) · lcm(a, b) = ab.

Since gcd(a, b) · lcm(a, b) = ab and gcd(a, b) 6= 0, then lcm(a, b) =
ab

gcd(a, b)
.

Observe that

lcm(a, b) =
ab

gcd(a, b)

=
ab

1
= ab.

Therefore, lcm(a, b) = ab, as desired.

Proposition 68. properties of lcm
Let a, b ∈ Z+.
Then
1. lcm(a, 1) = a.
2. lcm(a, a) = a.
3. lcm(a, b) = lcm(b, a).
4. lcm(ka, kb) = k · lcm(a, b) for all k ∈ Z+.
5. gcd(a, b) divides lcm(a, b).
6. gcd(a, b) = lcm(a, b) iff a = b.
7. a|b iff gcd(a, b) = a iff lcm(a, b) = b.

Proof. We prove 1.
By proposition 37, every integer divides itself, so a|a.
By proposition 36, one divides every integer, so 1|a.
Since a ∈ Z+ and a|a and 1|a, then a is a positive common multiple of a

and 1.

Let m ∈ Z+ such that a|m and 1|m.
Then a|m, so a|m for all m ∈ Z+ such that a|m and 1|m.
Hence, any positive common multiple of a and 1 is a multiple of a.

Since a is a positive common multiple of a and 1, and any positive common
multiple of a and 1 is a multiple of a, then a = lcm(a, 1).

Proof. We prove 2.
By proposition 37, every integer divides itself, so a|a.
Since a ∈ Z+ and a|a and a|a, then a is a positive common multiple of a

and a.

Let m ∈ Z+ such that a|m and a|m.
Then a|m, so a|m for all m ∈ Z+ such that a|m and a|m.
Hence, any positive common multiple of a and a is a multiple of a.
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Since a is a positive common multiple of a and a, and any positive common
multiple of a and a is a multiple of a, then a = lcm(a, a).

Proof. We prove 3.
Let m = lcm(a, b).
Then m ∈ Z+ and a|m and b|m, and for every c ∈ Z+, if a|c and b|c, then

m|c.
Since a|m and b|m, then b|m and a|m.
Since m ∈ Z+ and b|m and a|m, then m is a positive common multiple of b

and a.

Let c be any positive common multiple of b and a.
Then c ∈ Z+ and b|c and a|c.
Since b|c and a|c, then a|c and b|c.
Since c ∈ Z+ and a|c and b|c, then we conclude m|c.
Hence, any positive common multiple of b and a is a multiple of m.

Since m is a positive common multiple of b and a, and any positive common
multiple of b and a is a multiple of m, then m = lcm(b, a).

Proof. We prove 4.
Let k ∈ Z+.
Observe that

lcm(ka, kb) =
(ka)(kb)

gcd(ka, kb)

=
kakb

k gcd(a, b)

=
akb

gcd(a, b)

=
kab

gcd(a, b)

= k · lcm(a, b).

Therefore, lcm(ka, kb) = k · lcm(a, b).

Proof. We prove 5.
Let d = gcd(a, b).
Let m = lcm(a, b).
Since d = gcd(a, b), then d is a positive common divisor of a and b, so d is a

positive divisor of a.
Thus, d ∈ Z+ and d|a.
Since m = lcm(a, b), then m is a positive common multiple of a and b, so m

is a positive multiple of a.
Hence, m ∈ Z+ and a|m.
Since d|a and a|m, then d|m, as desired.
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Proof. We prove 6.
We prove if a = b, then gcd(a, b) = lcm(a, b).
Suppose a = b.
Then

gcd(a, b) = gcd(a, a)

= a

= lcm(a, a)

= lcm(a, b).

Therefore, gcd(a, b) = lcm(a, b).

Conversely, we prove if gcd(a, b) = lcm(a, b), then a = b.
Suppose gcd(a, b) = lcm(a, b).
Let d = gcd(a, b).
Then d = lcm(a, b).
Since d = gcd(a, b), then d is a positive common divisor of a and b, so d ∈ Z+

and d|a and d|b.
Since d = lcm(a, b), then d is a positive common multiple of a and b, so

d ∈ Z+ and a|d and b|d.
Since a ∈ Z+ and d ∈ Z+ and a|d and d|a, then a = d, by the antisymmetric

property of | over Z+.
Since b ∈ Z+ and d ∈ Z+ and b|d and d|b, then b = d, by the antisymmetric

property of | over Z+.
Therefore, a = d = b, so a = b.

Proof. We prove 7.
We prove a|b iff gcd(a, b) = a.

Suppose a|b.
By proposition 37, every integer divides itself, so a|a.
Since a|a and a|b, then a is a common divisor of a and b.

Let c be an arbitrary common divisor of a and b.
Then c ∈ Z and c|a and c|b, so c|a.
Hence, any common divisor of a and b divides a.
Since a ∈ Z+ and a is a common divisor of a and b, and any common divisor

of a and b divides a, then a = gcd(a, b).

Conversely, suppose gcd(a, b) = a.
Then a is a common divisor of a and b, so a is a divisor of b.
Therefore, a|b.
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Proof. We prove gcd(a, b) = a iff lcm(a, b) = b.
Suppose gcd(a, b) = a.
Then

lcm(a, b) =
ab

gcd(a, b)

=
ab

a
= b.

Therefore, lcm(a, b) = b.

Conversely, suppose lcm(a, b) = b.
Then

gcd(a, b) =
ab

lcm(a, b)

=
ab

b
= a.

Therefore, gcd(a, b) = a.

Proof. We prove a|b iff lcm(a, b) = b.
Since a|b iff gcd(a, b) = a and gcd(a, b) = a iff lcm(a, b) = b, then a|b iff

lcm(a, b) = b.

Linear Diophantine Equations

Theorem 69. existence of a solution to a linear Diophantine equation

Let a, b, c ∈ Z and a 6= 0 and b 6= 0.
A solution (x, y) ∈ Z × Z to the linear diophantine equation ax + by = c

exists if and only if gcd(a, b) | c.

Proof. Observe that gcd(a, b)|c if and only if c is a multiple of gcd(a, b).
By theorem 55, c is a linear combination of a and b if and only if c is a

multiple of gcd(a, b).
Observe that c is a linear combination of a and b if and only if there exist

integers x0 and y0 such that ax0 + by0 = c.
Hence, gcd(a, b)|c if and only if c is a multiple of gcd(a, b) if and only if c is

a linear combination of a and b if and only if there exist integers x0 and y0 such
that ax0 + by0 = c.

Therefore, gcd(a, b)|c if and only if there exist integers x0 and y0 such that
ax0 + by0 = c.
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Theorem 70. characterization of a general solution to a linear Dio-
phantine equation

Let a, b, c ∈ Z and a 6= 0 and b 6= 0.
If (x0, y0) ∈ Z×Z is a particular solution to the linear Diophantine equation

ax + by = c, then a general solution is given by x = x0 +
bt

d
and y = y0 −

at

d
for all t ∈ Z, where d = gcd(a, b).

Proof. Suppose (x0, y0) ∈ Z×Z is a particular solution to the linear diophantine
equation ax+ by = c.

Then x0 ∈ Z and y0 ∈ Z and ax0 + by0 = c.
Let (x′, y′) be another solution to the equation.
Then x′ ∈ Z and y′ ∈ Z and ax′ + by′ = c.
Thus, ax′ + by′ = c = ax0 + by0, so ax′ + by′ = ax0 + by0.
Hence, a(x′−x0) = ax′−ax0 = by0−by′ = b(y0−y′), so a(x′−x0) = b(y0−y′).

Since a 6= 0 and b 6= 0, then a and b are both not zero.
Hence, a and b are not both zero, so let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b.
Since d ∈ Z+, then d > 0, so d 6= 0.
Since d|a, then a = dr for some integer r.

Since d 6= 0, then r =
a

d
.

Since d 6= 0 and a 6= 0, then r 6= 0.
Since d|b, then b = ds for some integer s.

Since d 6= 0, then s =
b

d
.

Observe that

0 = a(x′ − x0)− b(y0 − y′)
= (dr)(x′ − x0)− (ds)(y0 − y′)
= dr(x′ − x0)− ds(y0 − y′)
= d[r(x′ − x0)− s(y0 − y′)].

Since d[r(x′−x0)−s(y0−y′)] = 0, then either d = 0 or r(x′−x0)−s(y0−y′) =
0.

Since d 6= 0, then we conclude r(x′ − x0) − s(y0 − y′) = 0, so r(x′ − x0) =
s(y0 − y′).

Since x′ − x0 ∈ Z and s(y0 − y′) = r(x′ − x0), then r|s(y0 − y′).

Since d = gcd(a, b), then by corollary 57, 1 = gcd(
a

d
,
b

d
) = gcd(r, s).

Since r|s(y0 − y′) and gcd(r, s) = 1, then r|(y0 − y′), by theorem 58.
Hence, y0 − y′ = rt for some integer t.
Thus, y′ = y0 − rt.
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Observe that

0 = r(x′ − x0)− s(y0 − y′)
= r(x′ − x0)− s(rt)
= r(x′ − x0)− srt
= r[(x′ − x0)− st].

Since r[(x′ − x0)− st] = 0, then either r = 0 or (x′ − x0)− st = 0.
Since r 6= 0, then we conclude (x′ − x0)− st = 0, so x′ − x0 = st.

Hence, x′ = x0 + st = x0 + (
b

d
)t = x0 +

bt

d
and y′ = y0 − rt = y0 − (

a

d
)t =

y0 −
at

d
.

Therefore, x′ = x0 +
bt

d
and y′ = y0 −

at

d
.

We verify x′ and y′ satisfy the diophantine equation.
Observe that

ax′ + by′ = a(x0 +
bt

d
) + b(y0 −

at

d
)

= ax0 +
abt

d
+ by0 −

abt

d

= (ax0 + by0) +
abt

d
− abt

d
= (ax0 + by0) + 0

= ax0 + by0

= c.

Fundamental Theorem of Arithmetic

Lemma 71. A composite number has a positive divisor between 1 and
itself.

Let n be a positive integer.
Then n is composite iff there exists a positive integer d such that d|n and

1 < d < n.

Proof. Suppose n is composite.
Then n 6= 1 and n is not prime.
Since n is not prime, then there is some positive divisor of n other than 1 or

n.
Hence, there exists a positive integer d such that d|n and d 6= 1 and d 6= n.
Since d is a positive integer and d 6= 1, then d > 1.
Since d and n are positive integers and d|n, then d ≤ n by theorem 39.
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Since d ≤ n and d 6= n, then d < n.
Since 1 < d and d < n, then 1 < d < n.
Therefore, there exists a positive integer d such that d|n and 1 < d < n.

Proof. Conversely, suppose there exists a positive integer d such that d|n and
1 < d < n.

Since 0 < 1 < d < n, then 1 < d and d < n and 1 < n and 0 < d.
Since d > 1, then d 6= 1.
Since d < n, then d 6= n.
Since n > 1, then n 6= 1.
Since n is a positive integer and n 6= 1, then n is a positive integer other

than 1.
Since d is a positive integer and d|n and d 6= 1 and d 6= n, then there is a

positive divisor of n other than 1 or n.
Since n is a positive integer other than 1, and there is a positive divisor of

n other than 1 or n, then n is not prime.
Since n is a positive integer other than 1 and n is not prime, then n is

composite.

Theorem 72. A composite number is composed of smaller positive
factors.

Let n be a positive integer.
Then n is composite iff there exist positive integers a and b with 1 < a < n

and 1 < b < n such that n = ab.

Proof. Suppose n is composite.
By lemma 71, a composite number has a positive divisor between 1 and

itself, so there exists a positive integer a such that a|n and 1 < a < n.
Since 0 < 1 < a < n, then 1 < a and a < n and 1 < n and 0 < a and 0 < n.
Since a|n, then there exists a positive integer b such that n = ab.
Since n > 0 and a > 0 and n = ab, then b > 0.
Since b is an integer and b > 0, then b is a positive integer.

Since a > 1 and b > 0, then ab > b.
Since n = ab and ab > b, then n > b.
Since n = ab and n > a, then ab > a, so ab− a > 0.
Thus, a(b− 1) > 0.
Since a(b− 1) > 0 and a > 0, then b− 1 > 0, so b > 1.

Since 1 < b and b < n, then 1 < b < n.
Therefore, there exist positive integers a and b with 1 < a < n and 1 < b < n

such that n = ab.

Proof. Conversely, suppose there exist positive integers a and b with 1 < a < n
and 1 < b < n such that n = ab.

Since b is a positive integer, and every positive integer is an integer, then b
is an integer.
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Since b is an integer and n = ab, then a|n.
By lemma 71, a composite number has a positive divisor between 1 and

itself.
Since a is a positive integer and a|n and 1 < a < n, then this implies n is

composite.

Theorem 73. Every integer greater than 1 has a prime factor.

Proof. Let n be any integer greater than 1.
We must prove n has a prime factor.
Either n is prime or n is not prime.
We consider these cases separately.
Case 1: Suppose n is prime.
Since n is prime and n|n, then n is a prime factor of n.
Therefore, n has a prime factor.
Case 2: Suppose n is not prime.
Since n > 1 and 1 > 0, then n > 0.
Since n is an integer and n > 0, then n is a positive integer.
Since n > 1, then n 6= 1.
Since n is a positive integer and n 6= 1 and n is not prime, then n is composite.
By lemma 71, a composite number has a positive divisor between 1 and

itself.
Thus, there exists a positive integer d such that d|n and 1 < d < n.

Let S = {s ∈ Z+ : 1 < s < n, s|n}.
Since d ∈ Z+ and 1 < d < n and d|n, then d ∈ S, so S 6= ∅.
Since S ⊂ Z+ and S 6= ∅, then by the well-ordering principle of Z+, S has a

least element p.
Thus, p ∈ S and p ≤ s for all s ∈ S.
Since p ∈ S, then p ∈ Z+ and 1 < p < n and p|n.
Since 1 < p < n, then 1 < p and p < n.
Since p > 1, then p 6= 1.
Since p ∈ Z+ and p 6= 1, then p is either prime or not prime.

Suppose p is not prime.
Since p ∈ Z+ and p 6= 1 and p is not prime, then p must be composite.
By lemma 71, a composite number has a positive divisor between 1 and

itself.
Therefore, there exists a ∈ Z+ such that a|p and 1 < a < p.
Since 1 < a < p, then 1 < a and a < p.
Since a|p and p|n, then a|n.
Since 1 < a and a < p and p < n, then 1 < a < p < n, so 1 < a < n.
Since a ∈ Z+ and 1 < a < n and a|n, then a ∈ S.
Hence, a ∈ S and a < p.
But, this contradicts the fact that p is the least element of S.
Therefore, p must be prime.
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Since p is prime and p|n, then p is a prime factor of n.
Therefore, n has a prime factor.

In all cases, n has a prime factor.
Therefore, any integer greater than 1 has a prime factor.

Proof. Let x(n) be the predicate ‘n has a prime factor’ defined for all n ∈ Z+

with n > 1.
To prove x(n) is true for all integers n > 1, we prove x(n) is true for all

integers n ≥ 2 by strong induction on n.
Basis:
Let n = 2.
Since 2|2 and 2 is prime, then 2 is a prime factor of 2, so 2 has a prime

factor.
Therefore, x(2) is true.
Induction:
For any integer n ≥ 3, assume x(2) and x(3) and ... and x(n − 1) are all

true.
Then x(k) is true for any integer k such that 2 ≤ k ≤ n− 1.
Thus, x(k) is true for any integer k such that 1 < k < n.

We must prove x(n) is true.
Since n ≥ 3 > 1 > 0, then n > 1 and n > 0.
Since n ∈ Z and n > 0, then n ∈ Z+.
Since n > 1, then n 6= 1.
Since n ∈ Z+ and n 6= 1, then either n is prime or n is composite.
We consider these cases separately.
Case 1: Suppose n is prime.
Since n is prime and n|n, then n is a prime factor of n, so n has a prime

factor.
Case 2: Suppose n is composite.
By lemma 71, a composite number has a positive divisor between 1 and

itself.
Hence, there exists d ∈ Z+ such that d|n and 1 < d < n.
Since d ∈ Z+ and 1 < d < n, then by the induction hypothesis, p(d) is true,

so d has a prime factor.
Let p ∈ Z+ be a prime factor of d.
Then p is prime and p|d.
Since p|d and d|n, then p|n.
Since p is prime and p|n, then p is a prime factor of n, so n has a prime

factor.

In all cases, n has a prime factor, so x(n) is true.
Therefore, x(n) is true whenever x(2) and x(3) and ... and x(n− 1) are all

true for any integer n ≥ 3.
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Since x(2) is true, and x(n) is true whenever x(2) and x(3) and ... and x(n−1)
are all true for any integer n ≥ 3, then by strong induction, x(n) is true for all
integers n ≥ 2.

Thus, x(n) is true for all integers n > 1, so n has a prime factor for all
integers n > 1.

Therefore, every integer greater than one has a prime factor.

Lemma 74. Euclid’s Lemma
Let a, b ∈ Z.
Let p ∈ Z+.
If p is prime and p|ab, then p|a or p|b.

Proof. Suppose p is prime and p|ab.
Since p ∈ Z+, then p ∈ Z and p > 0, so p 6= 0.
Since p ∈ Z and a ∈ Z and p 6= 0, then p and a are integers not both zero.
Therefore, gcd(p, a) exists and is unique.
Either gcd(p, a) = 1 or gcd(p, a) 6= 1.
We consider these cases separately.
Case 1: Suppose gcd(p, a) 6= 1.
Let d = gcd(p, a).
Then d 6= 1.
Since d = gcd(p, a), then d is a positive common divisor of p and a, so d ∈ Z+

and d|p and d|a.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d is positive and d|p, then this implies either d = 1 or d = p.
Since d 6= 1, then we conclude d = p.
Since d|a and d = p, then p|a.
Case 2: Suppose gcd(p, a) = 1.
Since p|ab and gcd(p, a) = 1, then by theorem 58, p|b.

Proof. Suppose p is prime and p|ab.
Since p ∈ Z+, then p ∈ Z and p > 0, so p 6= 0.
Since p ∈ Z and a ∈ Z and p 6= 0, then p and a are integers not both zero.
Therefore, gcd(p, a) exists and is unique.
Either gcd(p, a) = 1 or gcd(p, a) 6= 1.
We consider these cases separately.
Case 1: Suppose gcd(p, a) 6= 1.
Let d = gcd(p, a).
Then d 6= 1.
Since d = gcd(p, a), then d is a positive common divisor of p and a, so d ∈ Z+

and d|p and d|a.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d is positive and d|p, then this implies either d = 1 or d = p.
Since d 6= 1, then we conclude d = p.
Since d|a and d = p, then p|a.
Case 2: Suppose gcd(p, a) = 1.
Then 1 is a linear combination of p and a, by corollary 56.
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Therefore, 1 = xp+ ya for some integers x and y.
Observe that b = b · 1 = b(xp + ya) = bxp + bya = (bx)p + y(ab) is a linear

combination of p and ab.
By proposition 37, every integer divides itself.
Since p ∈ Z, then we conclude p|p.
By theorem 50, any common divisor of p and ab divides any linear combi-

nation of p and ab.
Since p|p and p|ab, then p divides any linear combination of p and ab, so

p|b.

Proof. Suppose p is prime and p|ab and p 6 |a.
We must prove p|b.

Since p is prime, then p ∈ Z+ and the only positive divisors of p are 1 and p.
Since the only positive divisors of p are 1 and p, then 1 and p are the only

possible positive common divisors of p and a.
By proposition 36, one divides every integer.
Since p ∈ Z and a ∈ Z, then we conclude 1|p and 1|a.
Since 1 ∈ Z+ and 1|p and 1|a, then 1 is a positive common divisor of p and

a.
By proposition 37, every integer divides itself.
Since p ∈ Z+, then we conclude p|p.
Since p|p, but p 6 |a, then p is not a common divisor of p and a, so p cannot

be a positive common divisor of p and a.
Since 1 and p are the only possible positive common divisors of p and a,

and 1 is a positive common divisor of p and a, but p is not a positive common
divisor of p and a, then 1 is the only positive common divisor of p and a.

Therefore, the only positive common divisor of p and a is 1.
Since gcd(p, a) is a positive common divisor of p and a, then we must con-

clude gcd(p, a) = 1.
Since p|ab and gcd(p, a) = 1, then by theorem 58, p|b.

Proof. Suppose p is prime and p|ab.
Since p is prime, then the only positive divisors of p are 1 and p.
Hence, any positive common divisor of p and a must be either 1 or p.
Thus, either gcd(p, a) = 1 or gcd(p, a) = p.
We consider these cases separately.
Case 1: Suppose gcd(p, a) = p.
Then p|p and p|a, so p|a.
Case 2: Suppose gcd(p, a) = 1.
Since p|ab and gcd(p, a) = 1, then by theorem 58, p|b.

Corollary 75. If prime p|a1...an, then p|ak for some k.
Let a1, a2, ..., an ∈ Z.
Let p ∈ Z+.
If p is prime and p|a1a2...an, then p|ak for some integer k with 1 ≤ k ≤ n.
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Proof. We prove by induction on n, the number of factors in the product
a1a2...an.

Define predicate p(n) over Z+ by ‘if p is prime and p|a1a2...an, then p|ak for
some integer k with 1 ≤ k ≤ n’.

Basis:
Let n = 1.
Suppose p is prime and p|a1.
Then p|a1, so p|ak for integer k = 1 with 1 ≤ k ≤ 1.
Therefore, p(1) is true.

Let n = 2.
Suppose p is prime and p|a1a2.
Then either p|a1 or p|a2, by Euclid’s lemma (lemma 74).
Hence, p|ak for some integer k with 1 ≤ k ≤ 2.
Therefore, p(2) is true.
Induction:
Let n ∈ Z+ with n ≥ 2 such that p(n) is true.
Since p(n) is true, then p|ak for some integer k with 1 ≤ k ≤ n whenever p

is prime and p|a1a2...an.
We must prove p(n+ 1) is true.

Suppose p is prime and p|(a1a2...anan+1).
Then either p|a1a2...an or p|an+1, by Euclid’s lemma (lemma 74).
We consider each case separately.
Case 1: Suppose p|an+1.
Let k = n+ 1.
Since n+ 1 ∈ Z+ and Z+ ⊂ Z, then n+ 1 ∈ Z.
Since n+ 1 ∈ Z and k = n+ 1, then k ∈ Z.
Since n+ 1 > n and n ≥ 2 and 2 > 1, then n+ 1 > 1, so k > 1.
Therefore, p|ak for some integer k with 1 < k = n+ 1.
Case 2: Suppose p|a1a2...an.
Since p is prime and p|a1a2...an, then by the induction hypothesis, p|ak for

some integer k with 1 ≤ k ≤ n.
Since 1 ≤ k ≤ n and n < n+ 1, then 1 ≤ k ≤ n < n+ 1, so 1 ≤ k < n+ 1.
Therefore, p|ak for some integer k with 1 ≤ k < n+ 1.

Hence, in all cases, p|ak for some integer k with 1 ≤ k ≤ n+ 1.
Thus, p|ak for some integer k with 1 ≤ k ≤ n + 1 whenever p is prime and

p|(a1a2...anan+1), so p(n+ 1) is true.
Therefore, p(n+ 1) is true whenever p(n) is true for all n ∈ Z+ with n ≥ 2.

Since p(1) is true and p(2) is true, and p(n+ 1) is true whenever p(n) is true
for all n ∈ Z+ with n ≥ 2, then by induction, p(n) is true for all n ∈ Z+.

Therefore, for all n ∈ Z+, if p is prime and p|a1a2...an, then p|ak for some
integer k with 1 ≤ k ≤ n.
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Corollary 76. Let p, q1, q2, ..., qn ∈ Z+.
If p, q1, q2, ..., qn are all prime and p|q1q2...qn, then p = qk for some integer

k with 1 ≤ k ≤ n.

Proof. Suppose p, q1, q2, ..., qn are all prime and p|q1q2...qn.
Since p, q1, q2, ..., qn are all prime, then p is prime and q1, q2, ..., qn are all

prime.
By corollary 75, if p is prime and p divides a product of integers, then p

divides one of those integers.
Since p is prime and p|q1q2...qn, then we conclude p|qk for some integer k

with 1 ≤ k ≤ n.
Since q1, q2, ..., qn are all prime and 1 ≤ k ≤ n, then qk is prime, so the only

positive divisors of qk are 1 and qk.
Since p ∈ Z+ and p|qk, then this implies either p = 1 or p = qk.
Since p is prime, then p > 1, so p 6= 1.
Hence, p = qk.
Therefore, p = qk for some integer k with 1 ≤ k ≤ n.

Theorem 77. Fundamental Theorem of Arithmetic(Existence)
Every integer greater than one can be represented as a product of one or

more primes.

Proof. Existence:
We prove every integer greater than one can be represented as a product of

one or more primes by contradiction.
Suppose not every integer greater than one can be represented as a product

of one or more primes.
Then there is some integer greater than one that cannot be represented as

a product of one or more primes.
Let k be an integer greater than one that cannot be represented as a product

of one or more primes.
Then k ∈ Z and k > 1 and k is not a product of one or more primes.
Since k > 1 and 1 > 0, then k > 0.
Since k ∈ Z and k > 0, then k ∈ Z+.
Hence, there exists k ∈ Z+ such that k > 1 and k is not a product of one or

more primes.
Let S be the set of all positive integers greater than 1 that cannot be repre-

sented as a product of one or more primes.
Then S = {n ∈ Z+ : n > 1 and n is not a product of one or more primes}.
Since k ∈ Z+ and k > 1 and k is not a product of one or more primes, then

k ∈ S, so S 6= ∅.
Since S ⊂ Z+ and S 6= ∅, then by the well-ordering principle of Z+, S has a

least element.
Let m be the least element of S.
Then m ∈ S and m ≤ x for all x ∈ S.
Since m ∈ S, then m ∈ Z+ and m > 1 and m is not a product of one or

more primes.
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Since m > 1, then m 6= 1.
Since m ∈ Z+ and m 6= 1, then either m is prime or m is composite.
We consider these cases separately.
Case 1: Suppose m is prime.
Then m is a product of one prime, itself.
But, m is not a product of one or more primes.
Therefore, m is not prime.
Case 2: Suppose m is composite.
By theorem 72, a composite number is composed of smaller positive factors,

so there exist a ∈ Z+ and b ∈ Z+ such that m = ab with 1 < a < m and
1 < b < m.

Since 1 < a < m, then 1 < a and a < m.
Since 1 < a, then a > 1.
Since a < m and m is the least element of S, then a 6∈ S.
Since a ∈ Z+ and a > 1 and a 6∈ S, then we conclude a is a product of one

or more primes.

Since 1 < b < m, then 1 < b and b < m.
Since 1 < b, then b > 1.
Since b < m and m is the least element of S, then b 6∈ S.
Since b ∈ Z+ and b > 1 and b 6∈ S, then we conclude b is a product of one

or more primes.

Since m = ab and a is a product of one or more primes and b is a product of
one or more primes, then m is a product of one or more primes.

But, this contradicts m is not a product of one or more primes.
Therefore, m is not composite.

Therefore, m is not prime and m is not composite.
Since m ∈ Z+ and m 6= 1 and m is not prime and m is not composite, then

m does not exist.
Hence, there is no integer greater than one that cannot be represented as a

product of one or more primes.
Therefore, every integer greater than one can be represented as a product of

one or more primes.

Proof. Existence:
We prove every integer greater than one can be represented as a product of

one or more primes.
Let p(n) be the predicate ‘n is a product of one or more primes’ defined for

all positive integers n > 1.
To prove n is a product of one or more primes, we prove p(n) is true for all

positive integers n ≥ 2 by strong induction on n.
Basis:
Let n = 2.
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Since 2 is prime, then 2 is product of one prime(itself), so p(2) is true.
Induction:
For any integer n ≥ 3, assume p(2) and p(3) and ... and p(n−1) are all true.
Then p(x) is true for any integer x such that 2 ≤ x ≤ n− 1.
Hence, p(x) is true for any integer x such that 1 < x < n.

Since n ≥ 3 and 3 > 1, then n > 1, so n 6= 1.
Since n ∈ Z+ and n 6= 1, then either n is prime or n is composite.
We consider these cases separately.
Case 1: Suppose n is prime.
Then n is a product of one prime(itself).
Case 2: Suppose n is composite.
By theorem 72, a composite number is composed of smaller positive factors.
Hence, n is composed of smaller positive factors, so there exists a, b ∈ Z+

such that n = ab and 1 < a < n and 1 < b < n.

Since a ∈ Z and 1 < a < n, then by the induction hypothesis, p(a) is true.
Thus, a is a product of one or more primes, so there exist s primes p1, p2, ..., ps

such that a = p1p2...ps.
Since b ∈ Z and 1 < b < n, then by the induction hypothesis, p(b) is true.
Thus, b is a product of one or more primes, so there exist t primes q1, q2, ..., qt

such that b = q1q2...qt.
Therefore, n = ab = (p1p2...ps)(q1q2...qt) is a product of primes.

In all cases, n is a product of one or more primes, so p(n) is true.
Hence, p(n) is true whenever p(2) and p(3) and ... and p(n− 1) are all true

for any integer n ≥ 3.

Since p(2) is true, and p(n) is true whenever p(2) and p(3) and ... and p(n−1)
are all true for any integer n ≥ 3, then by strong induction, p(n) is true for all
integers n ≥ 2.

Hence, p(n) is true for all integers n > 1.
Thus, n is a product of one or more primes for all integers n > 1.
Therefore, every integer greater than one is a product of one or more primes.

Proof. Existence:
Let n ∈ Z and n > 1.
Since n > 1 and 1 > 0, then n > 0.
Since n ∈ Z and n > 0, then n ∈ Z+.
Since n > 1, then n 6= 1.
Since n ∈ Z+ and n 6= 1, then either n is prime or n is composite.
We consider these cases separately.
Case 1: Suppose n is prime.
Then n is a product of one prime (itself).
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Case 2: Suppose n is composite.
By theorem 73, every integer greater than 1 has a prime factor.
Since n ∈ Z and n > 1, then n has a prime factor.
Therefore, there exists a prime p1 ∈ Z+ such that p1|n.
Since p1 ∈ Z+ and n ∈ Z+ and p1|n, then p1 ≤ n, by theorem 39.
Thus, either p1 < n or p1 = n.
Since p1 is prime and n is composite, and a prime does not equal a composite,

then p1 6= n, so p1 < n.
Since p1 is prime, then p1 > 1.
Thus, 1 < p1 and p1 < n, so 1 < p1 < n.

Since p1|n, then n = p1n1 for some integer n1.
Since n ∈ Z+ and p1 ∈ Z+, then n1 ∈ Z+, so n1 ≥ 1.
Hence, either n1 > 1 or n1 = 1.

Suppose n1 = 1.
Then n = p1n1 = p1(1) = p1.
But, this implies composite n equals prime p1.
This is a contradiction, since a prime number cannot equal a composite

number.
Therefore, n1 6= 1.

Since either n1 > 1 or n1 = 1 and n1 6= 1, then we conclude n1 > 1.
Since p1 ∈ Z and n = p1n1 = n1p1, then n1|n.
Since n1 ∈ Z+ and n ∈ Z+ and n1|n, then n1 ≤ n, by theorem 39, so either

n1 < n or n1 = n.

Suppose n1 = n.
Then 0 = n− p1n1 = n− p1n = n(1− p1), so either n = 0 or 1− p1 = 0.
Since n > 1, then n 6= 0, so we conclude 1− p1 = 0.
Thus, p1 = 1, so prime p1 is 1.
But, this contradicts the fact that any prime integer is not one.
Therefore, n1 6= n.

Since either n1 < n or n1 = n and n1 6= n, then we conclude n1 < n.
Therefore, 1 < n1 and n1 < n, so 1 < n1 < n.

Since n1 ∈ Z+ and n1 6= 1, then either n1 is prime or n1 is composite.
If n1 is prime, then n = p1n1 is a product of primes and we are done.
If n1 is composite, then we apply the argument in case 2 to n1.
Therefore, there exists a prime p2 ∈ Z+ such that p2|n1 and 1 < p2 < n1

and there exists n2 ∈ Z+ such that n1 = p2n2 and 1 < n2 < n1.

62



Since 1 < n2 < n1, then 1 < n2, so n2 > 1.
Thus, n2 6= 1.
Since n2 ∈ Z+ and n2 6= 1, then either n2 is prime or n2 is composite.
If n2 is prime, then n = p1n1 = p1(p2n2) = p1p2n2 is a product of primes

and we are done.
If n2 is composite, then we apply the argument in case 2 to n2.
Therefore, there exists a prime p3 ∈ Z+ such that p3|n2 and 1 < p3 < n2

and there exists n3 ∈ Z+ such that n2 = p3n3 and 1 < n3 < n2.

Since 1 < n3 < n2, then 1 < n3, so n3 > 1.
Thus, n3 6= 1.
Since n3 ∈ Z+ and n3 6= 1, then either n3 is prime or n3 is composite.
If n3 is prime, then n = p1p2n2 = p1p2(p3n3) = p1p2p3n3 is a product of

primes and we are done.
If n3 is composite, then we apply the argument in case 2 to n3.

Eventually this process must end, since the decreasing sequence n > n1 >
n2 > ... > 1 cannot continue forever.

Hence, after a finite number of steps, nk−1 is prime, say pk.
Therefore, n = p1p2 · · · pk is a product of primes.

Lemma 78. A product of primes is greater than one.

Proof. To prove a product of primes is greater than one, define the predicate
r(n) over Z+ by ‘p1p2...pn > 1 for primes p1, p2, ..., pn’.

We prove r(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Suppose p1 is prime.
Then p1 ∈ Z+ and p1 > 1.
Since p1 > 1, then r(1) is true.

Let n = 2.
Suppose p1 and p2 are prime.
Then p1, p2 ∈ Z+ and p1 > 1 and p2 > 1.
Hence, p1p2 > 1 · 1, so p1p2 > 1.
Therefore, r(2) is true.
Induction:
Let k ∈ Z+ with k ≥ 2 such that r(k) is true.
Then p1p2...pk > 1 for primes p1, p2, ..., pk.

Suppose p1 and p2 and ... and pk and pk+1 are all primes.
Since p1 and p2 and ... and pk are all primes, then p1p2...pk > 1, by the

induction hypothesis.
Since pk+1 is a prime, then pk+1 ∈ Z+ and pk+1 > 1.
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Since p1p2...pk > 1 and pk+1 > 1, then (p1p2...pk)pk+1 > 1·1, so p1p2...pkpk+1 >
1.

Hence, r(k + 1) is true.
Thus, r(k) implies r(k + 1) for all k ∈ Z+ with k ≥ 2.

Since r(1) is true and r(2) is true, and r(k) implies r(k + 1) for all k ∈ Z+

with k ≥ 2, then by induction, r(n) is true for all n ∈ Z+.
Therefore, p1p2...pn > 1 for primes p1, p2, ..., pn for all n ∈ Z+, so a product

of primes is greater than one.

Theorem 79. Fundamental Theorem of Arithmetic(Unique Factoriza-
tion)

Every integer greater than one can be represented as a product of one or
more primes in exactly one way.

Proof. Uniqueness:
To prove every integer greater than one can be represented as a product of

one or more primes in exactly one way, we prove every integer greater than one
has a unique prime factorization.

Let x(n) be the predicate defined over Z+ by ‘n has a unique prime factor-
ization’.

To prove x(n) is true for all n ∈ Z+ with n > 1, we prove x(n) is true for all
n ∈ Z+ with n ≥ 2 by strong induction on n.

Basis:
Let n = 2.
Since 2 is prime, then the only prime factor of 2 is 2 itself, so 2 = 2 is the

only prime factorization of 2.
Therefore, x(2) is true.
Induction:
For any integer n ≥ 2, assume x(2) and x(3) and ... and x(n) are all true.
Then x(k) is true for any integer k such that 2 ≤ k ≤ n.
Hence, x(k) is true for any integer k such that 1 < k < n+ 1.

To prove x(n+1) is true, we must prove n+1 has a unique prime factorization.
Suppose n+ 1 has two representations as a product of one or more primes.
Then n + 1 = p1p2...pr = q1q2...qs, where pi and qj are all primes and

p1 ≤ p2 ≤ ... ≤ pr and q1 ≤ q2 ≤ ... ≤ qs.
Since p1 divides p1p2 . . . pr and p1p2 . . . pr = q1q2 . . . qs, then p1 divides

q1q2 . . . qs.
By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of

primes, then p is one of those primes.
Since p1 is prime and p1 divides the product q1q2 . . . qs and q1, q2, ..., qs are

all primes, then we conclude p1 is one of those primes, so p1 = qk for some
integer k with 1 ≤ k ≤ s.

Since q1 ≤ qk and qk = p1, then q1 ≤ p1.
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Since q1 divides q1q2 . . . qs and q1q2 . . . qs = p1p2 . . . pr, then q1 divides p1p2 . . . pr.
By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of

primes, then p is one of those primes.
Since q1 is prime and q1 divides the product p1p2 . . . pr and p1, p2, ..., pr are

all primes, then we conclude q1 is one of those primes, so q1 = pm for some
integer m with 1 ≤ m ≤ r.

Since p1 ≤ pm and pm = q1, then p1 ≤ q1.

Since p1 ≤ q1 and q1 ≤ p1, then p1 = q1, by the anti-symmetric property of
≤ on Z.

Since p1 is prime, then p1 > 1, so p1 > 0.
Hence, p1 6= 0.
Since p1 = q1 and p1 6= 0, then q1 6= 0.
Since p1 = q1 and p1 6= 0 and q1 6= 0, then we may cancel the factor p1 = q1

to obtain the equation p2p3 . . . pr = q2q3 . . . qs.

Let y = p2p3 . . . pr = q2q3 . . . qs.
Then y ∈ Z and n+ 1 = p1y.
Since p1 is prime, then p1 > 1.
By lemma 78, a product of primes is greater than one.
Since p2p3 . . . pr is a product of primes, then y > 1.
Since y > 1 and 1 > 0, then y > 0.
Since p1 > 1 and y > 0, then we multiply to obtain p1y > 1 · y, so n+ 1 > y.
Thus, 1 < y and y < n+ 1, so 1 < y < n+ 1.
Since y ∈ Z and 1 < y < n + 1, then by the induction hypothesis, x(y) is

true, so y has a unique prime factorization.
Since n + 1 = p1y and p1 is prime and y has a unique prime factorization,

then n+ 1 must also have a unique prime factorization, so x(n+ 1) is true.
Hence, x(n+ 1) is true whenever x(2) and x(3) and ... and x(n) are all true

for any integer n ≥ 2.

Since x(2) is true, and x(n + 1) is true whenever x(2) and x(3) and ... and
x(n) are all true for any integer n ≥ 2, then by strong induction, x(n) is true
for all integers n ≥ 2.

Thus, x(n) is true for all integers n > 1, so n has a unique prime factorization
for all integers n > 1.

Therefore, every integer greater than one has a unique prime factorization,
so every integer greater than one can be represented as a product of one or more
primes in exactly one way.

Proof. Uniqueness:
Let n ∈ Z and n > 1.
By theorem 77, the Fundamental Theorem of Arithmetic(Existence), every

integer greater than one can be represented as a product of one or more primes.
Therefore, n can be represented as a product of one or more primes.

65



Suppose n has two representations as a product of one or more primes.
Let n = p1p2 . . . pr = q1q2 . . . qs, where pi and qj are all primes and p1 ≤

p2 ≤ . . . ≤ pr and q1 ≤ q2 . . . ≤ qs.
Without loss of generality, assume r ≤ s.
Since p1 divides p1p2 . . . pr and p1p2 . . . pr = q1q2 . . . qs, then p1 divides

q1q2 . . . qs.
By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of

primes, then p is one of those primes.
Since p1 is prime and p1 divides the product q1q2 . . . qs and q1, q2, ..., qs are

all primes, then we conclude p1 is one of those primes, so p1 = qk for some
integer k with 1 ≤ k ≤ s.

Since q1 ≤ qk and qk = p1, then q1 ≤ p1.

Since q1 divides q1q2 . . . qs and q1q2 . . . qs = p1p2 . . . pr, then q1 divides p1p2 . . . pr.
By Euclid’s lemma corollary, corollary 76, if a prime p divides a product of

primes, then p is one of those primes.
Since q1 is prime and q1 divides the product p1p2 . . . pr and p1, p2, ..., pr are

all primes, then we conclude q1 is one of those primes, so q1 = pm for some
integer m with 1 ≤ m ≤ r.

Since p1 ≤ pm and pm = q1, then p1 ≤ q1.

Since p1 ≤ q1 and q1 ≤ p1, then p1 = q1, by the anti-symmetric property of
≤ on Z.

Since p1 is prime, then p1 > 1, so p1 > 0.
Hence, p1 6= 0.
Since p1 = q1 and p1 6= 0, then q1 6= 0.
Since p1 = q1 and p1 6= 0 and q1 6= 0, then we may cancel the factor p1 = q1

to obtain the equation p2p3 . . . pr = q2q3 . . . qs.

We repeat this process to obtain p2 = q2 and the equation p3p4 . . . pr =
q3q4 . . . qs.

We repeat this process.
Since r ≤ s, then either r < s or r = s.

Suppose r < s.
Then there are s − r factors remaining on the right side of the equation,

namely, qr+1, qr+2, ..., qs, and there is only one factor 1 on the left side of the
equation.

Thus, the equation will be 1 = qr+1qr+2 . . . qs.
By lemma 78, a product of primes is greater than one.
Since each qj is prime, then the product qr+1qr+2 . . . qs is greater than one.
Thus, qr+1qr+2 . . . qs > 1.
But, this contradicts qr+1qr+2 . . . qs = 1.
Hence, r cannot be less than s, so r = s.
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Therefore, p1 = q1 and p2 = q2 and ... and pr = qs = qr, so n is represented
as a product of primes in only one way.

Corollary 80. Every integer greater than one has a unique prime
power factorization.

Every integer n > 1 can be written uniquely in a canonical form n =
pe11 p

e2
2 ...p

ek
k , where for each i = 1, 2, ..., k, each exponent ei is a positive integer

and each pi is a prime with p1 < p2 < ... < pk.

Proof. Let n ∈ Z and n > 1.
By theorem 79, the Fundamental Theorem of Arithmetic(Unique Factoriza-

tion), every integer greater than one can be represented as a product of one or
more primes in exactly one way.

Therefore, n can be represented as a product of one or more primes in exactly
one way.

Let S be the set of distinct primes in the prime factorization of n.
Then S = {p1, p2, ..., pk}, where each pi is a distinct prime factor in the

prime factorization of n.
Let these distinct prime factors be ordered such that p1 < p2 < ... < pk.
Let ei be the number of occurrences of each prime pi in the prime factoriza-

tion of n.
Then each ei is a positive integer and n = pe11 p

e2
2 ...p

ek
k .

Theorem 81. The gcd of two integers equals the product of the in-
tersection of the primes to the smallest power which appears in each
integer.

Let a, b ∈ Z+ with a > 1 and b > 1.
Then either gcd(a, b) = 1, or gcd(a, b) is the integer d whose prime factor-

ization contains primes common to the prime factorizations of a and b such that
each prime of d has a power equal to the minimum power occurring in the prime
factorizations of a and b.

Proof. Since a ∈ Z+ and b ∈ Z+, then a > 0 and b > 0, so a 6= 0 and b 6= 0.
Hence, a and b are not both zero, so gcd(a, b) exists and is unique.
Let d = gcd(a, b).
Then d ∈ Z+, so d ≥ 1.
Hence, either d > 1 or d = 1.
We consider these cases separately.
Case 1: Suppose d = 1.
Then gcd(a, b) = d = 1, so gcd(a, b) = 1.
Case 2: Suppose d > 1.
Since d ∈ Z and d > 1, then by theorem 80, the fundamental theorem of

arithmetic, d has a unique prime power factorization.
Since a ∈ Z and a > 1, then by theorem 80, the fundamental theorem of

arithmetic, a has a unique prime power factorization.
Since b ∈ Z and b > 1, then by theorem 80, the fundamental theorem of

arithmetic, b has a unique prime power factorization.
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If p is a prime factor of a or b, then either p is prime factor of a and not b, or
p is a prime factor of b and not a, or p is a common prime factor of a and b.

We consider these cases separately.
Case 2a: Suppose p is a common prime factor of a and b.
Then p is prime and p|a and p|b.
Since p is prime, then p ∈ Z+ and p > 1.
Since d = gcd(a, b), then d is a positive common divisor of a and b, and any

common divisor of a and b is a divisor of d.
Thus, d ∈ Z+ and d|a and d|b, and if c ∈ Z such that c|a and c|b, then c|d.
Since p ∈ Z and p|a and p|b, then we conclude p|d.
Since p is prime and p|d, then p is a prime factor of d.
Since p is a prime factor of d, and d has a unique prime factorization, then

p is a prime factor in the prime factorization of d.
Therefore, if p is a common prime factor of a and b, then p is a prime factor

in the prime factorization of d.

Since a has a unique prime power factorization, let e be the number of occur-
rences of p in the prime factorization of a.

Then e ∈ Z+ and pe is a factor in the prime factorization of a, so pe|a.
Since b has a unique prime power factorization, let f be the number of

occurrences of p in the prime factorization of b.
Then f ∈ Z+ and pf is a factor in the prime factorization of b, so pf |b.
Since d has a unique prime power factorization, let g be the number of

occurrences of p in the prime factorization of d.
Then g ∈ Z+ and pg is a factor in the prime factorization of d, so pg|d.

We must prove g = min(e, f).
Since pg|d and d|a, then pg|a.
Since pg|d and d|b, then pg|b.
Since g is the largest power of p that divides a, and g is the largest power of

p that divides b, and pe|a and pf |b, then either g = e or g = f .

Since e ∈ Z+ and pe is a factor in the prime factorization of a, then e is the
largest power of p that divides a.

Hence, if n is a positive integer greater than e, then pn cannot divide a.
Thus, if n ∈ Z+ and n > e, then pn 6 |a, so if n ∈ Z+ and pn|a, then n ≤ e.
Since g ∈ Z+ and pg|a, then we conclude g ≤ e.

Since f ∈ Z+ and pf is a factor in the prime factorization of b, then f is the
largest power of p that divides b.

Hence, if n is a positive integer greater than f , then pn cannot divide b.
Thus, if n ∈ Z+ and n > f , then pn 6 |b, so if n ∈ Z+ and pn|b, then n ≤ f .
Since g ∈ Z+ and pg|b, then we conclude g ≤ f .
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Since either g = e or g = f , and g ≤ e and g ≤ f , then g = min(e, f).
Hence pmin(e,f) divides d, so pmin(e,f) is a factor in the prime factorization

of d.
Therefore, if p is a common prime factor of a and b, then pmin(e,f) is a factor

in the prime factorization of d, where pe is a factor in the prime factorization
of a, and pf is a factor in the prime factorization of b.

Case 2b: Suppose p is a prime factor of a and not b.
Then p|a and p 6 |b.
Suppose p|d.
Since p|d and d|b, then p|b.
Hence, we have p|b and p 6 |b, a contradiction.
Therefore, p 6 |d.
Consequently, if p is a prime factor of a, but not of b, then p is not a prime

factor of d, so p is not in the prime factorization of d.
Therefore, if p is a prime factor of a, but not of b, then p is not in the prime

factorization of d.
Case 2c: Suppose p is a prime factor of b and not a.
Then p|b and p 6 |a.
Suppose p|d.
Since p|d and d|a, then p|a.
Hence, we have p|a and p 6 |a, a contradiction.
Therefore, p 6 |d.
Consequently, if p is a prime factor of b, but not of a, then p is not a prime

factor of d, so p is not in the prime factorization of d.
Therefore, if p is a prime factor of b, but not of a, then p is not in the prime

factorization of d.

If p is a common prime factor of a and b, then p is a prime factor in the prime
factorization of d.

If p is a prime factor of a, but not of b, then p is not in the prime factorization
of d.

If p is a prime factor of b, but not of a, then p is not in the prime factorization
of d.

Therefore, the only prime factors in the prime factorization of d are the
common prime factors of a and b.

If p is a common prime factor of a and b, then pmin(e,f) is a factor in the
prime factorization of d, where pe is a factor in the prime factorization of a, and
pf is a factor in the prime factorization of b.

Thus, for every common prime factor p of a and b, pmin(e,f) is a factor in
the prime factorization of d, where pe is a factor in the prime factorization of a,
and pf is a factor in the prime factorization of b.

Hence, for every common prime factor p of a and b, p has a power equal to
the minimum power occurring in the prime factorizations of a and b.

Therefore, gcd(a, b) is the product of all common prime factors p of a and b
such that each prime p power is the minimum of the powers of p in the prime
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factorizations of a and b.

Theorem 82. The lcm of two integers equals the product of the union
of the primes to the largest power which appears in each integer.

Let a, b ∈ Z+ with a > 1 and b > 1.
Then either lcm(a, b) = ab, or lcm(a, b) is the integer m whose prime fac-

torization contains primes in either of the prime factorizations of a and b such
that each prime of m has a power equal to the maximum power occurring in the
prime factorizations of a and b.

Proof. Since a ∈ Z+ and b ∈ Z+, then lcm(a, b) exists and is unique.
Let m = lcm(a, b).
Either m = ab or m 6= ab.
We consider these cases separately.
Case 1: Suppose m = ab.
Then lcm(a, b) = m = ab.
Therefore, lcm(a, b) = ab.
Case 2: Suppose m 6= ab.
Since a ∈ Z and a > 1, then by theorem 80, the fundamental theorem of

arithmetic, a has a unique prime power factorization.
Since b ∈ Z and b > 1, then by theorem 80, the fundamental theorem of

arithmetic, b has a unique prime power factorization.
Since m = lcm(a, b), then m is a positive common multiple of a and b, and

any positive common multiple of a and b is a multiple of m.
Hence, m ∈ Z+ and a|m and b|m, and for every c ∈ Z+, if a|c and b|c, then

m|c.
Since a ∈ Z+ and m ∈ Z+ and a|m, then a ≤ m, by theorem 39.
Since m ≥ a and a > 1, then m > 1.
Since m ∈ Z+ and m > 1, then by theorem 80, the fundamental theorem of

arithmetic, m has a unique prime power factorization.

If p is a prime factor of a or b, then either p is prime factor of a and not b, or
p is a prime factor of b and not a, or p is a common prime factor of a and b.

We consider these cases separately.
Case 2a: Suppose p is a common prime factor of a and b.
Since a has a unique prime factorization, let e be the number of occurrences

of p in the prime factorization of a.
Then e ∈ Z+ and pe is a factor in the prime factorization of a, so pe|a.
Since b has a unique prime factorization, let f be the number of occurrences

of p in the prime factorization of b.
Then f ∈ Z+ and pf is a factor in the prime factorization of b, so pf |b.
Since pe|a and a|m, then pe|m.
Since pf |b and b|m, then pf |m.
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We prove p|m.
Since pe|m, then m = pe · k for some integer k.
Since e ∈ Z+, then e ≥ 1, so e− 1 ≥ 0.
Hence, pe−1 ∈ Z.
Observe that

m = pe · k
= (p · pe−1) · k
= p(pe−1 · k).

Since m = p(pe−1 · k) and pe−1 · k ∈ Z, then p|m.

Since p is prime and p|m and m has a unique prime factorization, then p is a
prime factor in the prime factorization of m.

Therefore, if p is a common prime factor of a and b, then p is a prime factor
in the prime factorization of m.

Let g be the number of occurrences of p in the prime factorization of m.
Then g ∈ Z+ and pg is a factor in the prime factorization of m, so pg|m.

We must prove g = max(e, f).
Since pe|m and pg|m, then g is the smallest power of p such that m is a

multiple of pe.
Since pf |m and pg|m, then g is the smallest power of p such that m is a

multiple of pf .
Since g is the smallest power of p such that m is a multiple of pe, and g is

the smallest power of p such that m is a multiple of pf , and pe|m and pf |m,
then either g = e or g = f .

Since e ∈ Z+ and pe|m, then e is the smallest power of p such that m is a
multiple of pe.

Hence, if n is a positive integer less than e, then m is not a multiple of pe.
Thus, if n ∈ Z+ and n < e, then pe 6 |m, so if n ∈ Z+ and pe|m, then n ≥ e.
Since g ∈ Z+ and pg|m, then we conclude g ≥ e.

Since f ∈ Z+ and pf |m, then f is the smallest power of p such that m is a
multiple of pf .

Hence, if n is a positive integer less than f , then m is not a multiple of pf .
Thus, if n ∈ Z+ and n < f , then pf 6 |m, so if n ∈ Z+ and pf |m, then n ≥ f .
Since g ∈ Z+ and pg|m, then we conclude g ≥ f .
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Since either g = e or g = f , and g ≥ e and g ≥ f , then g = max(e, f).
Hence, pmax(e,f) divides m, so pmax(e,f) is a factor in the prime factorization

of m.
Therefore, if p is a common prime factor of a and b, then pmax(e,f) is a factor

in the prime factorization of m, where pe is a factor in the prime factorization
of a, and pf is a factor in the prime factorization of b.

Case 2b: Suppose p is a prime factor of a and not b.
Let e be the number of occurrences of p in the prime factorization of a.
Then pe is a prime factor of a, so pe|a.
Since pe|a and a|m, then pe|m, so pe is a factor in the prime factorization of

m.
Therefore, if p is a prime factor of a, but not of b, and pe is a factor in the

prime factorization of a, then pe is a factor in the prime factorization of m.
Case 2c: Suppose p is a prime factor of b and not a.
Let f be the number of occurrences of p in the prime factorization of b.
Then pf is a prime factor of b, so pf |b.
Since pf |b and b|m, then pf |m, so pf is a factor in the prime factorization

of m.
Therefore, if p is a prime factor of b, but not of a, and pf is a factor in the

prime factorization of b, then pf is a factor in the prime factorization of m.

If p is a prime factor of a, but not of b, and pe is a factor in the prime
factorization of a, then pe is a factor in the prime factorization of m.

If p is a prime factor of b, but not of a, and pf is a factor in the prime
factorization of b, then pf is a factor in the prime factorization of m.

Therefore, if p is a prime factor of a or b, but not a common prime factor of
a and b, then p is a factor in the prime factorization of m with power equal to
the power occurring in the prime factorizations of a or b.

If p is a common prime factor of a and b, then pmax(e,f) is a factor in the
prime factorization of m, where pe is a factor in the prime factorization of a,
and pf is a factor in the prime factorization of b.

Hence, if p is a common prime factor of a and b, then p has a power equal
to the maximum power occurring in the prime factorizations of a and b.

Therefore, the prime factorization of m contains primes in either of the prime
factorizations of a and b such that each prime of m has a power equal to the
maximum power occurring in the prime factorizations of a and b.

Distribution of Primes

Proposition 83. Any distinct primes are relatively prime.

Proof. Let p and q be distinct primes.
Then p ∈ Z+ and q ∈ Z+ and p is prime and q is prime and p 6= q.
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Suppose for the sake of contradiction p|q.
Since p ∈ Z+ and p|q, then p is a positive divisor of q.
Since q is prime, then the only positive divisors of q are 1 and q.
Hence, either p = 1 or p = q.
Since p is prime, then p 6= 1.
Since either p = 1 or p = q, and p 6= 1, then we conclude p = q.
But, this contradicts the hypothesis p 6= q.
Therefore, p 6 |q.

Since 1 ∈ Z+ and 1|p and 1|q, then 1 is a positive common divisor of p and q.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p|p, but p 6 |q, then p cannot be a common divisor of p and q, so p

cannot be a positive common divisor of p and q.
Hence, the only positive common divisor of p and q is 1.
Since gcd(p, q) is a positive common divisor of p and q, then gcd(p, q) must

be 1, so gcd(p, q) = 1.
Therefore, p and q are relatively prime.

Theorem 84. Euclid’s Theorem
There are infinitely many prime numbers.

Proof. Let n ∈ Z+.
Let p1, p2, ..., pn be any finite list of prime numbers.
We prove there is a prime number not included in the list.
Let N = p1p2 · · · pn + 1.
Since each prime p1, p2, ..., pn is an integer, then the product p1 . . . pn is an

integer, so p1 . . . pn + 1 is an integer.
Hence, N is an integer.
Since each prime p1, p2, ..., pn is positive, then p1p2 · · · pn > 0, so N =

p1p2 · · · pn + 1 > 0 + 1 = 1.
Hence, N > 1.
By theorem 73, every integer greater than one has a prime factor.
Since N ∈ Z and N > 1, then N has a prime factor.
Let p be a prime factor of N .
Then p is prime and p|N .

Suppose p is a prime in the list.
Then p is one of the primes p1, p2, ..., pn.
Thus, p is one of the factors of the product p1p2 · · ·pn, so p divides p1p2 · · ·pn.
Since p|N and p|(p1p2 ···pn), then p is a common divisor of N and (p1p2 ···pn).
By theorem 50, any common divisor of N and (p1p2 · · ·pn) divides any linear

combination of N and (p1p2 · · · pn).
Hence, p divides any linear combination of N and (p1p2 · · · pn).
Since 1 = N − p1p2 · · · pn is a linear combination of N and p1p2 · · · pn, then

p must divide 1.
Since p is prime, then p ∈ Z+.
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Since p ∈ Z+ and p|1, then p = 1.
But, p is prime and 1 is not prime, so p 6= 1.
Therefore, p is a prime not in the list, so there is a prime number that is not

in the list.

Proof. Let S = {p1, p2, ..., pn} be a finite set of primes.
We show that there exist primes that are not in S.
Let p = p1 ∗ p2 ∗ ... ∗ pn.
Let q = p+ 1.
Either q is prime or not.
We consider these cases separately.
Case 1: Suppose q is prime.
Then q is greater than each of the primes in S, so q is not one of the primes

in S.
Hence, there exists some prime that is not in S.
Case 2: Suppose q is not prime.
Since each prime pk for k = 1, 2, ..., n is greater than one, then the product

p of all of these primes must be greater than one.
Thus, p > 1.
Hence, q = p+ 1 > 1 + 1 = 2 > 1, so q > 1.
By theorem 73, every integer greater than one has a prime factor.
Therefore, q has a prime factor.
Let r be a prime factor of q.
Then, r|q.

Suppose for the sake of contradiction that r ∈ S.
Then r is one of the prime factors of p, so r|p.
Since r|p and r|q, then r is a common divisor of p and q.
By theorem 50, any common divisor of p and q divides any linear combination

of p and q.
Since 1 = q − p is a linear combination of p and q, then this implies r|1.
Since r is prime, then r > 1, so r > 0.
Since r > 0 and 1 > 0 and r|1, then r ≤ 1, by theorem 39.
Thus, we have r > 1 and r ≤ 1, a contradiction.
Therefore, r 6∈ S.
Hence, there exists some prime that is not in S.

Thus, in all cases, there exists some prime that is not in S.
Therefore, there must be infinitely many prime numbers.

Proof. Suppose for the sake of contradiction that there are finitely many prime
numbers.

Then we can list all the prime numbers as p1, p2, p3, ...pn, where p1 = 2, p2 =
3, p3 = 5, p4 = 7, and so on.

Thus, pn is the nth and largest prime number.
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Let a be the product of all prime numbers plus one.
Then a = (p1p2p3 · · · pn) + 1.
Hence, a > 1.
By theorem 73, every integer greater than one has a prime factor, so a has

a prime factor.
Therefore, one of the primes p1, p2, ..., pn must divide a, so pk|a for at least

one of the primes pk, where k = 1, 2, ..., n.
Since pk|a, then a = pkb for some integer b.
Observe that

1 = a− (p1p2 · ... · pn)

= pkb− (p1p2 · ... · pn)

= pkb− (p1p2 · ...pk−1pkpk+1... · pn)

= pk(b− p1p2 · ...pk−1pk+1... · pn).

Since b−p1p2 · ...pk−1pk+1... ·pn ∈ Z and 1 = pk(b−p1p2 · ...pk−1pk+1... ·pn),
then pk|1.

Since pk is prime, then pk > 1.
Since pk > 1 and 1 > 0, then pk > 0.
Since pk > 0 and 1 > 0 and pk|1, then pk ≤ 1, by theorem 39.
Hence, we have pk > 1 and pk ≤ 1, a contradiction.
Therefore, there are not finitely many prime numbers, so there are infinitely

many prime numbers.

Proof. Suppose for the sake of contradiction that there exist finitely many
primes.

Then we could list all the primes.
Let p1, p2, ..., pn be a listing where each pi is prime.
To derive at a contradiction we construct a number which is not in the list

and which must be prime.
Let p = p1p2 ∗ ∗ ∗ pn + 1.
Clearly, p is not in the list and each pi divides the product p1p2 ∗ ∗ ∗ pn.
Therefore, none of the pi can divide p.
For if a certain pi divided both p and p1p2 ∗∗∗pn, then pi would divide their

difference p− p1p2 ∗ ∗ ∗ pn = 1.
Hence, pi|1 which implies pi = 1.
But, 1 is not prime contradicting the assumption pi is prime.
Hence, p is not divisible by any prime, so p itself must be prime.

Sieve of Eratosthenes

Lemma 85. Let n ∈ Z+.
If n is composite, then there exists d ∈ Z such that d|n and 1 < d ≤

√
n.

Proof. Suppose n is composite.
By theorem 72, a composite number is composed of smaller positive factors.
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Since n is composite, then there exist integers a and b with 1 < a < n and
1 < b < n such that n = ab.

Since 1 < a < n, then 1 < a and a < n.
Since 1 < b < n, then 1 < b and b < n.
Since n = ab = ba, then a|n and b|n.

Suppose a >
√
n and b >

√
n.

Since n ∈ Z+, then n ≥ 1.
Since n ≥ 1 and 1 > 0, then n > 0, so

√
n > 0.

Since a >
√
n and b >

√
n and

√
n > 0, then n = ab >

√
n·
√
n = (

√
n)2 = n,

so n > n, a contradiction.

Hence, either a ≤
√
n or b ≤

√
n.

We consider these cases separately.
Case 1: Suppose a ≤

√
n.

Since 1 < a and a ≤
√
n, then 1 < a ≤

√
n.

Therefore, a is an integer and a|n and 1 < a ≤
√
n.

Case 2: Suppose b ≤
√
n.

Since 1 < b and b ≤
√
n, then 1 < b ≤

√
n.

Therefore, b is an integer and b|n and 1 < b ≤
√
n.

In all cases, there is an integer d such that d|n and 1 < d ≤
√
n.

Proposition 86. Let n ∈ Z+.
If n is composite, then n has a prime factor less than or equal to

√
n.

Proof. Suppose n is composite.
By lemma 85, there exists d ∈ Z such that d|n and 1 < d ≤

√
n.

Since 1 < d ≤
√
n, then 1 < d and d ≤

√
n.

By theorem 73, every integer greater than one has a prime factor.
Since d ∈ Z and d > 1, then d has a prime factor.

Let p be a prime factor of d.
Then p ∈ Z+ and p is prime and p|d.
Since p|d and d|n, then p|n.
Since d > 1 and 1 > 0, then d > 0.
Since d ∈ Z and d > 0, then d ∈ Z+.
Since p ∈ Z+ and p is prime, then p > 1, so p > 0.
Since p ∈ Z+ and d ∈ Z+ and p|d, then p ≤ d.
Since p ≤ d and d ≤

√
n, then p ≤

√
n.

Since p is prime and p|n, then p is a prime factor of n.
Therefore, p is a prime factor of n and p ≤

√
n.

Proposition 87. For every integer n > 2, there is a prime p such that p < n.
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Proof. Let n be an integer greater than 2.
Then n ∈ Z and n > 2.
Let p = 2.
Since 2 is prime and 2 < n, then there is a prime p such that p < n.

Proposition 88. For every n ∈ Z+, there is a prime p such that p > n.

Proof. Let n ∈ Z+.
Then n ≥ 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Since 2 is prime and 2 > 1, then there is a prime p such that p > n.
Case 2: Suppose n > 1.
Suppose for the sake of contradiction there is no prime p greater than n.
Then p ≤ n for every prime p.
Hence, p < n+ 1 for every prime p.

Let S be the set of all primes less than n+ 1.
Then S = {p ∈ Z+ : p is prime and p < n+ 1}.
Since n ∈ Z+ and n > 1, then n ≥ 2, so n+ 1 ≥ 3.
Since n+ 1 ≥ 3 and 3 > 2, then n+ 1 > 2.
Since n ∈ Z+, then n+ 1 ∈ Z+.
Since n+ 1 ∈ Z and n+ 1 > 2, then there is a prime p such that p < n+ 1,

by proposition 87.
Since p is prime, then p ∈ Z+.
Since p ∈ Z+ and p is prime and p < n+ 1, then p ∈ S, so S is not empty.

We prove S is finite.
Let T be the set of all positive integers less than n+ 1.
Then T = {t ∈ Z+ : t < n+ 1} = {1, ..., n− 1, n} is a finite set of cardinality

n.

Let x ∈ S.
Then x ∈ Z+ and x is prime and x < n+ 1.
Since x ∈ Z+ and x < n+ 1, then x ∈ T .
Hence, x ∈ S implies x ∈ T , so S ⊆ T .

A subset of a finite set is finite.
Since S ⊆ T and T is finite, then S is finite.

Since S is a non-empty finite set of prime numbers, then S contains exactly
k primes p1, p2, ..., pk such that p1 < p2 < ... < pk for k ∈ Z+.

Since pk ∈ S, then pk < n+ 1.
By Euclid’s theorem, there are infinitely many prime numbers, so there exists

a prime pk+1 such that pk+1 > pk.
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Suppose pk+1 < n+ 1.
Since pk+1 is prime, then pk+1 ∈ Z+.
Since pk+1 ∈ Z+ and pk+1 is prime and pk+1 < n+ 1, then pk+1 ∈ S.
Hence, S contains at least k+1 elements, so S contains more than k elements.
But, this contradicts that S contains exactly k elements.
Therefore, pk+1 cannot be less than n+ 1, so pk+1 ≥ n+ 1.

Since pk+1 ≥ n+ 1 and n+ 1 > n, then pk+1 > n.
Thus, pk+1 is prime and pk+1 > n, so there is a prime greater than n.
But, this contradicts the assumption there is no prime greater than n.
Therefore, there must be a prime p such that p > n.

Lemma 89. Let n ∈ Z+.
Let pn be the nth prime number when the sequence of primes is arranged in

ascending order.
Then pn+1 ≤ p1 · p2 · . . . · pn + 1 for all n ∈ Z+.

Proof. Suppose for the sake of contradiction there exists n ∈ Z+ such that
pn+1 > p1 · p2 · . . . · pn + 1.

Let N = p1 · p2 · . . . · pn + 1.
Then pn+1 > N .
Since each prime p1, p2, ..., pn is positive, then p1p2 · · · pn > 0, so N =

p1p2 · · · pn + 1 > 0 + 1 = 1.
Hence, N > 1.
Since p1, p2, ..., pn ∈ Z+ and N = p1 · p2 · . . . · pn + 1, then N ∈ Z.
By theorem 73, every integer greater than 1 has a prime factor.
Since N ∈ Z and N > 1, then N has a prime factor.

Let p ∈ Z+ be a prime factor of N .
Then p is prime and p|N .
Since pn|pn, then pn divides any multiple of pn, by theorem 43.
Hence, pn divides the product p1p2...pn, so pn divides N − 1.
Since N > 1, then N − 1 > 0.
Since N ∈ Z, then N − 1 ∈ Z.
Since N − 1 ∈ Z and N − 1 > 0, then N − 1 ∈ Z+.
Since pn is prime, then pn ∈ Z+.
By theorem 39, a divisor of a is smaller than a.
Since pn ∈ Z+ and N − 1 ∈ Z+ and pn divides N − 1, then pn ≤ N − 1.
Thus, pn ≤ N − 1 < N , so pn < N .
Since p1 is prime, then p1 > 1.
Since the sequence of primes is arranged in ascending order, and p1, p2, ...pn

are all primes, and p1 > 1 and pn+1 > N and pn < N , then 1 < p1 < p2 < ... <
pn < N < pn+1.

Since N ∈ Z and N > 1, then N ∈ Z+.
Since p ∈ Z+ and N ∈ Z+ and p divides N , then p ≤ N .
Since p is prime, then p > 1, so 1 < p ≤ N .
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Since p is prime, and p divides N , and 1 < p1 < p2 < ... < pn < N < pn+1,
and 1 < p ≤ N , then p must be one of the primes p1, p2, ..., pn, so p = pk for
some integer k ∈ {1, 2, ..., n}.

Since pk is one of the factors of the product p1p2...pn, then pk divides
p1p2...pn.

Since pk|N and pk divides p1p2...pn, then pk is a common divisor of N and
p1p2...pn.

By theorem 50, any common divisor of N and (p1p2 · · ·pn) divides any linear
combination of N and (p1p2 · · · pn).

Since 1 = N − p1p2 · · · pn is a linear combination of N and p1p2 · · · pn, then
pk must divide 1.

Since pk is prime, then pk ∈ Z+.
Since pk ∈ Z+ and pk|1, then pk = 1.
But, pk is prime and 1 is not prime, so pk 6= 1.
Consequently, there is no n ∈ Z+ such that pn+1 > p1 · p2 · . . . · pn + 1.
Therefore, pn+1 ≤ p1 · p2 · . . . · pn + 1 for all n ∈ Z+.

Proposition 90. Let n ∈ Z+.
Let pn be the nth prime number when the sequence of primes is arranged in

ascending order.
Then p1 · p2 · . . . · pn + 1 ≤ pnn + 1 for all n ∈ Z+.

Proof. Let q(n) be the predicate defined by p1 · p2 · . . . · pn + 1 ≤ pn
n + 1 over

Z+.
We prove q(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Since p1 + 1 = p1

1 + 1, then q(1) is true.

Let n = 2.
Since p1p2 + 1 = 2 · 3 + 1 = 7 < 10 = 32 + 1 = p2

2 + 1, then q(2) is true.
Induction:
Let k ∈ Z+ with k ≥ 2 such that q(k) is true.
Then p1p2 · ... · pk + 1 ≤ pkk + 1, so p1p2 · ... · pk ≤ pkk.
Hence, p1p2 · ... · pk ≤ pkk < pk+1

k, so p1p2 · ... · pk < pk+1
k.

Thus, p1p2 · ... · pk · pk+1 < pk+1
k · pk+1, so p1p2 · ... · pk · pk+1 < pk+1

k+1.
Therefore, p1p2 · ... · pk · pk+1 + 1 < pk+1

k+1 + 1, so q(k + 1) is true.
Consequently, q(k) implies q(k + 1) for all k ∈ Z+ with k ≥ 2.

Since q(1) and q(2) are true, and q(k) implies q(k + 1) for all k ∈ Z+ with
k ≥ 2, then by induction, q(k) is true for all k ∈ Z+, so q(n) is true for all
n ∈ Z+.

Therefore, p1 · p2 · . . . · pn + 1 ≤ pnn + 1 for all n ∈ Z+.

Proposition 91. growth of the prime number sequence
Let n ∈ Z+.
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Let pn be the nth prime number when the sequence of primes is arranged in
ascending order.

Then pn ≤ 22
n−1

for all n ∈ Z+.

Proof. Let q(n) be the predicate pn ≤ 22
n−1

defined over Z+.
We prove q(n) is true for all n ∈ Z+ by strong induction on n.
Basis:
Let n = 1.
Since p1 = 2 = 21 = 22

0

= 22
1−1

, then q(1) is true.

Let n = 2.
Since p2 = 3 < 4 = 22 = 22

2−1

, then p2 < 22
2−1

, so q(2) is true.
Induction:
Let k ∈ Z+ with k ≥ 2 such that q(1) and q(2) and ... and q(k) are all true.

Then p1 ≤ 2 and p2 ≤ 22 and p3 ≤ 24 and ... and pk ≤ 22
k−1

.
Since p1, p2, ..., pk are all greater than zero, then p1p2 · ... · pk ≤ 21 · 22 · 24 ·

... · 22k−1

= 21+2+4+...+2k−1

.
Let S = 1 + 2 + 4 + ...+ 2k−1.
Then S =

∑k−1
k=0 2k is the sum of the first k terms of a geometric series, so

S = 2k − 1.
Hence, p1p2 · ... · pk ≤ 2S = 22

k−1, so p1p2 · ... · pk ≤ 22
k−1.

Thus, p1p2 · ... · pk + 1 ≤ 22
k−1 + 1.

Since pn is the nth prime number when the sequence of primes is arranged in
ascending order, then pn+1 ≤ p1 · p2 · . . . · pn + 1 for all n ∈ Z+, by lemma 89.

Thus, pk+1 ≤ p1 · p2 · . . . · pk + 1.

Since pk+1 ≤ p1 · p2 · . . . · pk + 1 and p1p2 · ... · pk + 1 ≤ 22
k−1 + 1, then

pk+1 ≤ 22
k−1 + 1.

Since k ≥ 2 > 0, then k > 0.
Observe that

k > 0 ⇒ 2k > 1

⇒ 2k − 1 > 0

⇒ 22
k−1 > 1

⇒ 1 < 22
k−1

⇒ 22
k−1 + 1 < 22

k−1 + 22
k−1

⇒ 22
k−1 + 1 < 2 · 22

k−1

⇒ 22
k−1 + 1 < 22

k

.

Thus, 22
k−1 + 1 < 22

k

.
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Since pk+1 ≤ 22
k−1 + 1 and 22

k−1 + 1 < 22
k

, then pk+1 < 22
k

, so q(k + 1) is
true.

Therefore, q(k + 1) is true whenever q(1) and q(2) and ... and q(k) are all
true for all k ∈ Z+ with k ≥ 2.

Since q(1) and q(2) are true, and q(k+ 1) is true whenever q(1) and q(2) and
... and q(k) are all true for all k ∈ Z+ with k ≥ 2, then by induction, q(k) is
true for all k ∈ Z+, so q(n) is true for all n ∈ Z+.

Therefore, pn ≤ 22
n−1

for all n ∈ Z+.

Corollary 92. Let n ∈ Z+.
Then there are at least n+ 1 primes less than 22

n

.

Proof. Let pn be the nth prime number when the sequence of primes is arranged
in ascending order.

Since n ∈ Z+, then pn ≤ 22
n−1

, by proposition 91.
Since n ∈ Z+, then n+ 1 ∈ Z+, so pn+1 ≤ 22

n

, by proposition 91.
Since n ∈ Z+, then n ≥ 1.
Since 1 < 2 = p1 ≤ pn < pn+1, then 2 < pn+1.
Since pn+1 is prime and pn+1 > 2, then pn+1 is odd.

Since 22
n−1

and 22
n

are even, and pn+1 is odd, then pn+1 6= 22
n−1

and pn+1 6=
22

n

, so 1 < p1 < ... < pn ≤ 22
n−1

< pn+1 < 22
n

.
Thus, 1 < p1 < ... < pn < pn+1 < 22

n

, so p1, ..., pn, pn+1 are primes less
than 22

n

.
Therefore, there are at least n+ 1 primes less than 22

n

.

Goldbach Conjecture

Proposition 93. Twin primes are odd.
Let p and p+ 2 be twin primes.
Then p and p+ 2 are odd.

Proof. Since p and p+ 2 are twin primes, then p is prime and p+ 2 is prime.
Since p is prime, then p ∈ Z+.

Suppose p is not odd.
Since p ∈ Z+ and p is not odd, then p is even.
Since p is prime and p is even, then p = 2, so p + 2 = 2 + 2 = 4 = 2 · 2 is

composite.
Since p+ 2 is composite, then p+ 2 is not prime.
But, this contradicts the assumption p+ 2 is prime.
Thus, p is odd, so p = 2n+ 1 for some integer n.
Hence, p+ 2 = (2n+ 1) + 2 = 2n+ 2 + 1 = 2(n+ 1) + 1 is odd.
Therefore, p is odd and p+ 2 is odd.
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Proposition 94. For every integer n ≥ 2, there are n consecutive positive
integers which are all composite.

Proof. Let n be an integer greater than or equal to 2.
Then n ≥ 2, so n ∈ Z+.
Let S be the set of all numbers (n+1)!+k for each integer k = 2, 3, ..., n+1.
Then S = {(n + 1)! + k : k ∈ {2, 3, ..., n + 1}}, so S = {(n + 1)! + 2, (n +

1)! + 3, ..., (n+ 1)! + (n+ 1)}.
Since n ∈ Z+, then (n + 1)! ∈ Z+, so (n + 1)! + k ∈ Z+ for each k =

2, 3, ..., n+ 1.
Hence, each element of S is a positive integer.
Since (n+1)!+2 < (n+1)!+3 < ... < (n+1)!+(n+1), then each successive

integer is one greater than the previous integer, so there are n consecutive
positive integers.

We prove each element of S is composite.
First, we prove (n+ 1)! + k is divisible by k for each k = 2, 3, ..., n+ 1.
Since k = 2, 3, ..., n+ 1, then 2 ≤ k ≤ n+ 1.
Since (n+ 1)! = 1 · 2 · 3 · . . . ·n(n+ 1), and k is an integer and 2 ≤ k ≤ n+ 1,

then k is a factor of (n+ 1)!, so k divides (n+ 1)!.
Since k divides (n+ 1)! and k divides k, then k divides the sum (n+ 1)! + k,

so (n+ 1)! + k = km for some integer m.

Since n ≥ 2, then n+ 1 ≥ 3.
Thus, (n+ 1)! ≥ 3! = 6 > 0, so (n+ 1)! > 0.
Hence, (n+ 1)! + k > k.
Since k ≥ 2 and 2 > 1, then k > 1.
Since k > 1 and (n+ 1)! + k > k, then 1 < k < (n+ 1)! + k.

Since (n+ 1)! + k ∈ Z+ and k ∈ Z+ and (n+ 1)! + k = km, then m ∈ Z+, so
m ≥ 1.

Hence, either m > 1 or m = 1.

Suppose m = 1.
Then (n+ 1)! + k = k(1) = k, so (n+ 1)! = 0.
But, this contradicts (n+ 1)! > 0.
Hence, m 6= 1, so m > 1.

Since m ∈ Z+ and (n + 1)! + k ∈ Z+ and m divides (n + 1)! + k, then
m ≤ (n+ 1)! + k, by theorem 39.

Thus, either m < (n+ 1)! + k or m = (n+ 1)! + k.
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Suppose m = (n+ 1)! + k.
Then m = (n+ 1)! + k = km, so m = km.
Hence, 0 = km−m = m(k − 1), so either m = 0 or k = 1.
Since m > 1, then m 6= 0, so k = 1.
But, this contradicts k > 1.
Therefore, m 6= (n+ 1)! + k, so m < (n+ 1)! + k.
Since m > 1 and m < (n+ 1)! + k, then 1 < m < (n+ 1)! + k.

By theorem 72, a composite number is composed of smaller positive factors.
Since k and m are integers, and 1 < k < (n+1)!+k, and 1 < m < (n+1)!+k,

and (n+ 1)! + k = km, then (n+ 1)! + k is composite.
Therefore, (n+1)!+k is composite for each k = 2, 3, ..., n+1, so each element

of S is composite.

Conjecture 95. ternary(weak) Goldbach conjecture
Every odd integer greater than 5 is the sum of three primes.

Proof. Suppose the strong Goldbach conjecture is true.
Let n be an odd integer greater than 5.
Then n is odd and n > 5.
Since n is odd and 3 is odd, then the difference n− 3 is even.
Since n > 5, then n− 3 > 2.
Since n− 3 is even and n− 3 > 2, then n− 3 = p+ q for some primes p and

q, since we’re assuming the strong Goldbach conjecture is true.
Since n = 3 +p+ q, and 3, p, and q are all primes, then n is the sum of three

primes.

Proposition 96. Every odd integer is of the form 4n + 1 or 4n + 3 for some
integer n.

Proof. Let a be any odd integer.
Then a is an integer and a is odd.
By the division algorithm, when a is divided by 4, there are unique integers

q and r such that a = 4q + r and 0 ≤ r < 4, so either a = 4q or a = 4q + 1 or
a = 4q + 2 or a = 4q + 3.

Hence, either a = 4q = 2(2q) or a = 4q + 1 or a = 4q + 2 = 2(2q + 1) or
a = 4q + 3.

Since a is odd, then a is not even, so a 6= 4q and a 6= 4q + 2.
Therefore, either a = 4q+ 1 or a = 4q+ 3, so either a = 4q+ 1 or a = 4q+ 3

for some integer q.

Proof. Let a be any odd integer.
Since a is odd, then a = 2b+ 1 for some integer b.
Either b is even or b is not even.
We consider these cases separately.
Case 1: Suppose b is even.
Then b = 2n for some integer n.
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Hence, a = 2b+ 1 = 2(2n) + 1 = 4n+ 1.
Therefore, a = 4n+ 1 for some integer n.
Case 2: Suppose b is not even.
Then b is odd, so b = 2n+ 1 for some integer n.
Hence, a = 2b+ 1 = 2(2n+ 1) + 1 = 4n+ 2 + 1 = 4n+ 3.
Therefore, a = 4n+ 3 for some integer n.

Lemma 97. The product of any finite number of integers of the form 4a+ 1 is
of the same form.

Proof. We must prove (4a1 + 1)(4a2 + 1) · . . . · (4an + 1) = 4m + 1 for some
integer m for all n ∈ Z+.

Thus, we must prove: for all n ∈ Z+,
∏n
i=1(4ai + 1) = 4m + 1 for some

integer m.
Let p(n) be the predicate defined over Z+ by ‘

∏n
i=1(4ai + 1) = 4m + 1 for

some integer m’.
We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
Then

∏1
i=1(4ai + 1) = 4a1 + 1 for some integer a1.

Therefore, p(1) is true.

Let n = 2.
Then

∏2
i=1(4ai + 1) = (4a1 + 1)(4a2 + 1) for some integers a1 and a2.

Observe that
2∏
i=1

(4ai + 1) = (4a1 + 1)(4a2 + 1)

= 16a1a2 + 4a1 + 4a2 + 1

= 4(4a1a2 + a1 + a2) + 1

= 4m+ 1.

Hence,
∏2
i=1(4ai+1) = 4m+1 for some integer m, where m = 4a1a2+a1+a2.

Therefore, p(2) is true.
Induction:
Let k ∈ Z+ with k ≥ 2 such that p(k) is true.

Then
∏k
i=1(4ai + 1) = 4s+ 1 for some integer s.

Observe that
k+1∏
i=1

(4ai + 1) =

k∏
i=1

(4ai + 1) · (4ak+1 + 1)

= (4s+ 1)(4ak+1 + 1)

= 16sak+1 + 4s+ 4ak+1 + 1

= 4(4sak+1 + s+ ak+1) + 1

= 4t+ 1.
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Hence,
∏k+1
i=1 (4ai+1) = 4t+1 for some integer t, where t = 4sak+1+s+ak+1.

Therefore, p(k + 1) is true.
Thus, p(k) implies p(k + 1) for all k ∈ Z+ with k ≥ 2.

Since p(1) is true and p(2) is true, and p(k) implies p(k + 1) for all k ∈ Z+

with k ≥ 2, then by induction, p(k) is true for all k ∈ Z+.
Therefore, for all n ∈ Z+,

∏n
i=1(4ai + 1) = 4m+ 1 for some integer m.

Theorem 98. There are infinitely many primes of the form 4n + 3, where
n ∈ Z.

Proof. Suppose for the sake of contradiction there are finitely many primes of
the form 4n+ 3.

Let p1, p2, ..., pk be k primes such that each pi is of the form 4n+ 3 for some
integer n, where i = 1, 2, ..., k.

Let N = 4p1p2 . . . pk − 1.
Then N = 4p1p2 . . . pk−4+3 = 4(p1p2 . . . pk−1)+3, so N = 4(p1p2 . . . pk−

1) + 3.
Thus, by the division algorithm, 3 is the unique remainder when N is divided

by 4.
Since each prime pi is an integer and N = 4p1p2 . . . pk − 1, then N ∈ Z.
By lemma 78, a product of primes is greater than 1.
Thus, p1p2 . . . pk > 1, so 4p1p2 . . . pk > 4.
Hence, N = 4p1p2 . . . pk − 1 > 4− 1 = 3 > 1, so N > 1.
Since N ∈ Z and N > 1, then N is a product of primes, by the fundamental

theorem of arithmetic.
Thus, there are m primes q1, q2, ..., qm such that N = q1q2 . . . qm, where

m ∈ Z+.

Since the product 4p1p2 . . . pk = 2(2p1p2 . . . pk) is even, then 4p1p2 . . . pk − 1
is odd, so N is odd.

Thus, N is not even, so 2 does not divide N .
Hence, 2 is not a prime factor of N , so each prime factor qj 6= 2 for j =

1, 2, ...,m.
Consequently, each prime qj is greater than 2, so each qj is odd.
Therefore, each qj is of the form 4n + 1 or 4n + 3 for some integer n, by

proposition 96.

Suppose every prime qj is of the form 4n+ 1 for some integer n.
By lemma 97, the product of any finite number of integers of the form 4n+1

is of the same form.
Hence, the product q1q2 . . . qm is of the form 4n+ 1, so q1q2 . . . qm = 4a+ 1

for some integer a.
Thus, N = 4a+ 1, so 1 is the remainder when N is divided by 4.
But, this contradicts 3 is the unique remainder when N is divided by 4.
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Therefore, not every prime qj is of the form 4n + 1, so there is some prime
qs that is not of the form 4n+ 1 for some s ∈ {1, 2, ...,m}.

Since qs is of the form 4n+ 1 or 4n+ 3, and qs is not of the form 4n+ 1, then
qs is of the form 4n+ 3, so qs = 4t+ 3 for some integer t.

Since qs is prime and s ∈ {1, 2, ...,m}, then qs is one of the prime factors in
the product q1q2 . . . qm, so qs divides q1q2 . . . qm.

Therefore, qs divides N .
Since qs is prime and qs = 4t+ 3, then qs is one of the primes p1, p2, ..., pk,

so qs divides the product p1p2 . . . pk.
Since qs divides p1p2 . . . pk and qs divides N , then qs divides any linear

combination of p1p2 . . . pk and N , so qs divides 1 = 4p1p2 . . . pk −N .
Thus, qs|1.
Since qs is prime, then qs ∈ Z+.
Since qs ∈ Z+ and qs|1, then qs = 1.
But, qs is prime, so qs 6= 1.
Therefore, there are not finitely many primes of the form 4n + 3, so there

are infinitely many primes of the form 4n+ 3.

Proof. Let (an) be the sequence of positive integers given by an = 4n + 3 and
a0 = 3.

Then the sequence is 3, 7, 11, 15, 19, 23, 27, 31, ....
Since gcd(3, 4) = 1, then 3 and 4 are relatively prime.
Therefore, by Dirichlet’s theorem, the sequence contains infinitely many

primes, so there are infinitely many primes of the form 4n+ 3.

Proposition 99. Let a,m ∈ Z+.
If gcd(a,m) > 1 and a is composite, then the arithmetic sequence a, a +

m, a+ 2m, a+ 3m, ... contains only composite numbers.

Proof. Since a ∈ Z+ and m ∈ Z+, then gcd(a,m) exists and is unique.
Let d = gcd(a,m).
Then d ∈ Z+ and d|a and d|m.
Suppose d > 1 and a is composite.
Let (an) be the arithmetic sequence defined by a0 = a and an = a+ nm for

all n ∈ Z+.
To prove (an) consists of only composite numbers, we must prove a is com-

posite and an is composite for all n ∈ Z+.
By hypothesis, a is composite.
By theorem 73, every integer greater than 1 has a prime factor.
Since d ∈ Z and d > 1, then d has a prime factor.
Let p be a prime factor of d.
Then p ∈ Z+ and p is prime and p|d.
Since p|d and d|a, then p|a.
Since p|d and d|m, then p|m.
Since p|a and p|m, then p divides any linear combination of a and m, by

theorem 50.
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Let n ∈ Z+.
Then an = a+ nm.
Since a+ nm is a linear combination of a and m, then p|(a+ nm), so p|an.
Since n ∈ Z+ and m ∈ Z+, then nm ∈ Z+, so nm > 0.
Hence, a+ nm > a, so an > a.
Since p is prime, then p > 1.
Since p ∈ Z+ and a ∈ Z+ and p|a, then p ≤ a, by theorem 39.
Since p ≤ a and a < an, then p < an.
Since 1 < p and p < an, then 1 < p < an.
By lemma 71, a composite number has a positive divisor between 1 and

itself.
Since p ∈ Z+ and p|an and 1 < p < an, then an is composite.
Hence, an is composite for all n ∈ Z+.
Since a is composite, and an is composite for all n ∈ Z+, then every term of

the sequence (an) is composite, so the sequence (an) contains only composite
numbers.

Lemma 100. Let a,m ∈ Z+.
If the arithmetic sequence a, a + m, a + 2m, a + 3m, ... contains a prime

number, then it contains infinitely many composite numbers.

Proof. Let (an) be the arithmetic sequence defined by a0 = a and an = a+ nm
for all n ∈ Z+.

Suppose (an) contains a prime number.
Then there is a prime p = a+ nm for some integer n with n ≥ 0.
Since p is prime, then p ∈ Z+ and p > 1.

Let (bk) be the arithmetic sequence n+ p, n+ 2p, n+ 3p, ....
Then bk = n + kp for all k ∈ Z+, so the sequence (bk) is the function

f : Z+ → S defined by f(k) = n+ kp = bk and S = {bk : k ∈ Z+}.
We prove f is bijective.
We first prove f is injective.
Suppose f(k) = f(m).
Then n+ kp = n+mp for some k,m ∈ Z+, so kp = mp.
Hence, 0 = kp−mp = p(k −m), so either p = 0 or k = m.
Since p ∈ Z+, then p > 0, so p 6= 0.
Thus, k = m, so f(k) = f(m) implies k = m.
Therefore, f is injective.

We prove f is surjective.
Let bk ∈ S.
Then bk = n+ kp for some k ∈ Z+.
Since k ∈ Z+ and f(k) = n+ kp = bk, then f is surjective.
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Since f is injective and f is surjective, then f is bijective, so |Z+| = |S|.
Since Z+ is an infinite set, then this implies S is an infinite set, so the

sequence (bk) has infinitely many terms.

Let k ∈ Z+.
Since k ∈ Z+ and p ∈ Z+, then kp ∈ Z+, so kp > 0.
Since n ∈ Z and kp ∈ Z, then n+ kp ∈ Z, so bk ∈ Z.
Since n ≥ 0 and kp > 0, then n+ kp > 0, so bk > 0.
Since bk ∈ Z and bk > 0, then bk ∈ Z+.
Observe that

abk = a+ bkm

= a+ (n+ kp)m

= a+ nm+ kpm

= p+ kpm

= p(1 + km).

Hence, abk = p(1 + km), so p divides abk .

Since k ∈ Z+ and m ∈ Z+, then km ∈ Z+, so km > 0.
Thus, 1 + km > 1.
Since 1 + km > 1 and p > 0, then p(1 + km) > p, so abk > p.
Since abk > p and p > 1, then abk > p > 1.
By lemma 71, a composite number has a positive divisor between 1 and

itself.
Since p ∈ Z+ and p divides abk and 1 < p < abk , then abk is composite.
Hence, abk is composite for all k ∈ Z+,
Since the sequence (bk) has infinitely many terms, and abk is composite for

all k ∈ Z+, then there are infinitely many terms of (an) that are composite.
Therefore, the sequence (an) contains infinitely many composite numbers.

Proposition 101. Let a,m ∈ Z+.
There is no arithmetic sequence a, a + m, a + 2m, a + 3m, ... that contains

only prime numbers.

Proof. Suppose for the sake of contradiction there is an arithmetic sequence
a, a+m, a+ 2m, a+ 3m, ... that contains only prime numbers.

Then every term of the sequence is a prime number.
In particular, a is a prime number.
By lemma 100, the sequence contains infinitely many composite numbers.
Hence, there is at least one composite number that is a term of the sequence,

so there is at least one term of the sequence that is composite.
This contradicts the assumption that every term of the sequence is a prime

number.
Therefore, there is no arithmetic sequence a, a+m, a+ 2m, a+ 3m, ... that

contains only prime numbers.
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Congruences

Theorem 102. Congruent integers leave the same remainder when
divided by n.

Let n be a fixed positive integer.
Let a and b be any integers.
Then a ≡ b (mod n) if and only if a and b leave the same remainder when

divided by n.

Proof. We first prove if a and b leave the same remainder when divided by n,
then a ≡ b (mod n).

By the division algorithm there exist unique integers q1, q2, r1, r2 such that
a = nq1 + r1 and 0 ≤ r1 < n and b = nq2 + r2 and 0 ≤ r2 < n.

Suppose r1 = r2.
Then a− nq1 = b− nq2, so a− b = nq1 − nq2 = n(q1 − q2).
Since a − b = n(q1 − q2) and q1 − q2 is an integer, then n|(a − b), so a ≡ b

(mod n).

Proof. Conversely, we prove if a ≡ b (mod n), then a and b leave the same
remainder when divided by n.

Suppose a ≡ b (mod n).
Then n|(a− b), so a− b = nk for some integer k.
Thus, a = nk + b.
By the division algorithm, when b is divided by n, there exist unique integers

q and r such that b = nq + r and 0 ≤ r < n.
Thus, r is the remainder when b is divided by n.
Hence, a = nk + b = nk + (nq + r) = (nk + nq) + r = n(k + q) + r.
Since a = n(k+q)+r and 0 ≤ r < n, then by the division algorithm, r must

be the unique remainder when a is divided by n.
Thus, r is the remainder when each of a and b is divided by n.
Therefore, a and b leave the same remainder when divided by n.

Theorem 103. The congruence modulo relation is an equivalence relation on
Z.

Proof. Let n be a fixed positive integer.
Let a, b, and c be any integers.
Let R = {(a, b) ∈ Z× Z : n|(a− b)}.
Since R ⊂ Z× Z, then R is the congruence modulo n relation over Z.
By proposition 35, every integer divides zero, so n|0.
Hence, n|a− a, so a ≡ a (mod n).
Therefore, R is reflexive.

Proof. Suppose a ≡ b (mod n).
Then n|(a− b), so a− b = nk for some integer k.
Thus, b− a = −(nk) = n(−k).
Since −k is an integer, then n|(b− a), so b ≡ a (mod n).
Hence, a ≡ b (mod n) implies b ≡ a (mod n), so R is symmetric.
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Proof. Suppose a ≡ b (mod n) and b ≡ c (mod n).
Then n|a−b and n|b−c, so there exist integers k1 and k2 such that a−b = nk1

and b− c = nk2.
Adding these equations we obtain a − c = (a − b) + (b − c) = nk1 + nk2 =

n(k1 + k2).
Since a − c = n(k1 + k2) and k1 + k2 is an integer, then n|a − c, so a ≡ c

(mod n).
Therefore, a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n), so R is

transitive.
Since R is reflexive, symmetric, and transitive, then R is an equivalence

relation over Z.

Proposition 104. Let n be a fixed positive integer.
Let a and b be any integers.
If a = b, then a ≡ b (mod n).

Proof. Suppose a = b.
Then a− b = 0.
By proposition 35, every integer divides 0, so n divides 0.
Therefore, n divides a− b, so a ≡ b (mod n).

Theorem 105. arithmetic operations on congruences
Let n be a fixed positive integer.
Let a, b, c, and d be any integers.
If a ≡ b (mod n) and c ≡ d (mod n), then
1. a+ c ≡ b+ d (mod n) (addition of congruences)
2. a− c ≡ b− d (mod n) (subtraction of congruences)
3. ac ≡ bd (mod n). (multiplication of congruences)

Proof. Suppose a ≡ b (mod n) and c ≡ d (mod n).
Then n|a− b and n|c− d.
Thus, there exist integers k1 and k2 such that

a− b = nk1 (2)

c− d = nk2 (3)

Adding these equations we get (a+ c)− (b+ d) = n(k1 + k2).
Since k1 + k2 is an integer, then n|(a+ c)− (b+ d).
Therefore, a+ c ≡ b+ d (mod n).
Subtracting these equations we get (a− c)− (b− d) = n(k1 − k2).
Since k1 − k2 is an integer, then n|(a− c)− (b− d).
Therefore, a− c ≡ b− d (mod n).
Multiplying the first equation by c we get ac− bc = nk1c.
Multiplying the second equation by b we get bc− bd = bnk2.
We add these equations to get ac− bd = nk1c+ bnk2 = n(k1c+ bk2).
Since k1c+ bk2 is an integer, then n|ac− bd.
Therefore, ac ≡ bd (mod n).
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Theorem 106. operations that preserve congruences
Let n be a fixed positive integer.
Let a and b be any integers.
1. Addition preserves congruence.
If a ≡ b (mod n), then a+ k ≡ b+ k (mod n) for any integer k.
2. Subtraction preserves congruence.
If a ≡ b (mod n), then a− k ≡ b− k (mod n) for any integer k.
3. Multiplication preserves congruence.
If a ≡ b (mod n), then ak ≡ bk (mod n) for any integer k.
4. Exponentiation preserves congruence.
If a ≡ b (mod n), then ak ≡ bk (mod n) for any positive integer k.

Proof. We prove 1.
Suppose a ≡ b (mod n).
Then n|a− b.
Let k be any integer.
Since a−b = a+0−b = a+(k−k)−b = (a+k)−k−b = (a+k)− (k+b) =

(a+ k)− (b+ k), then n|(a+ k)− (b+ k).
Therefore, a+ k ≡ b+ k (mod n).

Proof. We prove 2.
Suppose a ≡ b (mod n).
Then n|a− b.
Let k be any integer.
Since a− b = a− b+ 0 = a− b+ (k − k) = a− b+ k − k = a− b− k + k =

a− k − b+ k = (a− k)− (b− k), then n|(a− k)− (b− k).
Therefore, a− k ≡ b− k (mod n).

Proof. We prove 3.
Suppose a ≡ b (mod n).
Then n|a− b, so n divides any multiple of a− b, by theorem 43.
Let k be any integer.
Then n|k(a− b), so n|(a− b)k.
Therefore, n|(ak − bk), so ak ≡ bk (mod n).

Proof. We prove 4.
Suppose a ≡ b (mod n).
We prove ak ≡ bk (mod n) for any positive integer k by induction on k.
Let p(k) be the predicate ak ≡ bk (mod n) defined over the positive integers.
Basis:
Since a ≡ b (mod n), then a1 ≡ b1 (mod n), so p(1) is true.
Induction:
Let k be any positive integer such that p(k) is true.
Then ak ≡ bk (mod n).
Since ak ≡ bk (mod n) and a ≡ b (mod n), we multiply congruences to

obtain aka ≡ bkb (mod n).
Hence, ak+1 ≡ bk+1 (mod n).

91



Thus, p(k + 1) is true, so p(k) implies p(k + 1) for any positive integer k.

Since p(1) is true, and p(k) implies p(k + 1) for any positive integer k, then
by induction, p(k) is true for any positive integer k.

Therefore, ak ≡ bk (mod n) for any positive integer k.

Theorem 107. cancellation laws for congruences
Let n be a fixed positive integer.
Let a, b, and k be any integers.
1. Addition cancellation law
If a+ k ≡ b+ k (mod n), then a ≡ b (mod n).
2. Multiplication cancellation law

If ak ≡ bk (mod n), then a ≡ b (mod
n

gcd(n, k)
).

Proof. We prove 1.
Suppose a+ k ≡ b+ k (mod n).
Then n divides (a+ k)− (b+ k).
Observe that

(a+ k)− (b+ k) = a+ k − b− k
= a− b+ k − k
= a− b+ 0

= a− b.

Hence, (a+ k)− (b+ k) = a− b, so n divides a− b.
Therefore, a ≡ b (mod n).

Proof. We prove 2.
Suppose ak ≡ bk (mod n).
Then n divides ak − bk, so ak − bk = nm for some integer m.
Thus, nm = (a− b)k = k(a− b).
Let d = gcd(n, k).

Since gcd(n, k) = d, then gcd(
n

d
,
k

d
) = 1, by corollary 57 and

n

d
and

k

d
are

integers.

Since
n

d
and m are integers, then

n

d
·m is an integer.

Since
k

d
· (a− b) =

k(a− b)
d

=
nm

d
=
n

d
·m, then

n

d
divides

k

d
· (a− b).

Since
n

d
divides

k

d
· (a − b) and gcd(

n

d
,
k

d
) = 1, then

n

d
divides a − b, by

theorem 58.
Therefore, a ≡ b (mod

n

d
).

Corollary 108. cancellation multiplication relatively prime
Let n be a fixed positive integer.
Let a, b, and k be any integers.
If ak ≡ bk (mod n) and gcd(n, k) = 1, then a ≡ b (mod n).
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Proof. Suppose ak ≡ bk (mod n) and gcd(n, k) = 1.
Since ak ≡ bk (mod n), then n|ak − bk, so n|(a− b)k.
Thus, n|k(a− b).
Since n|k(a− b) and gcd(n, k) = 1, then n|a− b, by theorem 58.
Therefore, a ≡ b (mod n).

Proof. Suppose ak ≡ bk (mod n) and gcd(n, k) = 1.
By theorem 107 part 2, if ak ≡ bk (mod n) and gcd(n, k) = 1, then a ≡ b

(mod n
1 ).

Therefore, if ak ≡ bk (mod n) and gcd(n, k) = 1, then a ≡ b (mod n).

Lemma 109. Let p be a positive integer.
Let a be any integer.
If p is prime and p 6 |a, then gcd(p, a) = 1.

Proof. Suppose p is prime and p 6 |a.
Let d = gcd(p, a).
Then d is a positive integer and d|p and d|a.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d is a positive integer and d|p, then this implies either d = 1 or d = p.

Suppose d = p.
Since d = p and d|a, then p|a.
But, this contradicts the hypothesis p 6 |a.
Therefore, d 6= p.

Since either d = 1 or d = p, and d 6= p, then d = 1, so gcd(p, a) = 1.

Corollary 110. cancellation multiplication prime modulus
Let p be a positive integer.
Let a, b, and k be any integers.
If ak ≡ bk (mod p) and p is prime and p 6 |k, then a ≡ b (mod p).

Proof. Suppose ak ≡ bk (mod p) and p is prime and p 6 |k.
Since p is prime and p 6 |k, then gcd(p, k) = 1, by lemma 109.

Since ak ≡ bk (mod p) and gcd(p, k) = 1, then a ≡ b (mod p), by corollary
108.

Proposition 111. Let k and n be positive integers.
Let a and b be any integers.
Then ak ≡ bk (mod nk) iff a ≡ b (mod n).

Proof. Since n and k are positive integers, then nk is a positive integer.
Suppose ak ≡ bk (mod nk).
Then nk|(ak − bk), so nk|(a− b)k.
Hence, kn|k(a− b).
Since k is positive, then k > 0, so k 6= 0.
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Since k 6= 0 and kn|k(a− b), then n|(a− b), by proposition 44.
Therefore, a ≡ b (mod n).

Proof. Conversely, suppose a ≡ b (mod n).
Then n|(a− b), so kn|k(a− b), by proposition 44.
Hence, nk|(a− b)k, so nk|ak − bk.
Therefore, ak ≡ bk (mod nk).

Proposition 112. Let n be a fixed positive integer.
Let a and b be any integers.
If ab ≡ 0 (mod n) and gcd(n, a) = 1, then b ≡ 0 (mod n).

Proof. Suppose ab ≡ 0 (mod n) and gcd(n, a) = 1.
Since ab ≡ 0 (mod n), then n divides ab− 0, so n divides ab.
Since n divides ab and gcd(n, a) = 1, then n divides b, by theorem 58.
Therefore, n divides b− 0, so b ≡ 0 (mod n).

Proof. Suppose ab ≡ 0 (mod n) and gcd(n, a) = 1.
Since a · 0 = 0, then a · 0 ≡ 0 (mod n), by proposition 104.
By theorem 103, congruence modulo is symmetric.
Hence, a · 0 ≡ 0 (mod n) implies 0 ≡ a · 0 (mod n).
By theorem 103, congruence modulo is transitive.
Hence, ab ≡ 0 (mod n) and 0 ≡ a · 0 (mod n) implies ab ≡ a · 0 (mod n).
Since ab ≡ a ·0 (mod n) and gcd(n, a) = 1, then b ≡ 0 (mod n), by corollary

108.

Proposition 113. Let p be a positive integer.
Let a and b be any integers.
If ab ≡ 0 (mod p) and p is prime, then a ≡ 0 (mod p) or b ≡ 0 (mod p).

Proof. Suppose ab ≡ 0 (mod p) and p is prime.
Since ab ≡ 0 (mod p), then p|ab.
Since p is prime and p|ab, then p|a or p|b, by Euclid’s lemma 74.
Therefore, p|(a− 0) or p|(b− 0), so a ≡ 0 (mod p) or b ≡ 0 (mod p).

Proof. Suppose ab ≡ 0 (mod p) and p is prime and a 6≡ 0 (mod p).
Since a 6≡ 0 (mod p), then p 6 |a.
Since p is prime and p 6 |a, then gcd(p, a) = 1, by lemma 109.
Since ab ≡ 0 (mod p) and gcd(p, a) = 1, then b ≡ 0 (mod p), by proposition

112.

Proof. Suppose ab ≡ 0 (mod p) and p is prime and a 6≡ 0 (mod p).
Since a 6≡ 0 (mod p), then p 6 |a.
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Since a · 0 = 0, then a · 0 ≡ 0 (mod p), by proposition 104.
By theorem 103, congruence modulo is symmetric.
Hence, a · 0 ≡ 0 (mod p) implies 0 ≡ a · 0 (mod p).
By theorem 103, congruence modulo is transitive.
Hence, ab ≡ 0 (mod p) and 0 ≡ a · 0 (mod p) implies ab ≡ a · 0 (mod p).

Since ab ≡ a · 0 (mod p) and p is prime and p 6 |a, then b ≡ 0 (mod p), by
corollary 110.

Linear Congruences

Proposition 114. Let n ∈ Z+.
Let a, b, x, x0 ∈ Z.
If x0 is a solution to ax ≡ b (mod n), then so is x0 + nk for any integer k.

Proof. Suppose x0 is a solution to ax ≡ b (mod n).
Then ax0 ≡ b (mod n).
Let k be an arbitrary integer.
Since a ∈ Z and k ∈ Z, then ak ∈ Z.
By proposition 37, every integer divides itself.
Since n ∈ Z, then n|n.
Hence, n divides any multiple of n, so n|(ak)n.
Since

n|(ak)n ⇔ n|akn
⇔ n|ank
⇔ n|ank − 0

⇔ ank ≡ 0 (mod n),

then we conclude ank ≡ 0 (mod n).
Since ax0 ≡ b (mod n) and ank ≡ 0 (mod n), then we add congruences to

obtain ax0 + ank ≡ b+ 0 (mod n).
Therefore, a(x0 + nk) ≡ b (mod n).

Proof. Suppose x0 is a solution to ax ≡ b (mod n).
Then ax0 ≡ b (mod n).
Let k be an arbitrary integer.
Observe that

n|nk ⇒ n|(x0 + nk)− x0
⇒ x0 + nk ≡ x0 (mod n)

⇒ a(x0 + nk) ≡ ax0 (mod n)

⇒ a(x0 + nk) ≡ b (mod n).
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Theorem 115. Existence and uniqueness of multiplicative inverse of
a modulo n

Let n ∈ Z+ and n > 1.
Let a ∈ Z.
Then there exists a unique integer b such that ab ≡ 1 (mod n) and 0 < b < n

if and only if gcd(a, n) = 1.

Proof. We prove if gcd(a, n) = 1, then there exists a unique integer b such that
ab ≡ 1 (mod n) and 0 < b < n.

Suppose gcd(a, n) = 1.
Since gcd is the least positive linear combination of a and n and gcd(a, n) =

1, then there exist integers s and t such that sa+ tn = 1.
Thus, as− 1 = sa− 1 = −tn = (−t)n = n(−t).
Since −t ∈ Z and as− 1 = n(−t), then n|(as− 1), so as ≡ 1 (mod n).

By the division algorithm, when s is divided by n, there exist unique integers
q and b such that s = nq + b and 0 ≤ b < n.

Since s = nq + b, then s− b = nq, so n divides s− b.
Hence, s ≡ b (mod n), so b ≡ s (mod n).
Since a ≡ a (mod n) and b ≡ s (mod n), then we multiply congruences to

obtain ab ≡ as (mod n).
Since ab ≡ as (mod n) and as ≡ 1 (mod n), then ab ≡ 1 (mod n), so 1 ≡ ab

(mod n).

Since 0 ≤ b < n, then 0 ≤ b and b < n.
Since 0 ≤ b, then b ≥ 0, so either b > 0 or b = 0.

Suppose b = 0.
Then 1 ≡ ab (mod n) implies 1 ≡ a(0) (mod n).
Hence, 1 ≡ 0 (mod n), so n divides 1− 0 = 1.
By lemma 54, the only positive integer that divides 1 is 1.
Since n ∈ Z+ and n|1, then we must conclude n = 1.
But, n > 1 by hypothesis, so n 6= 1.
Therefore, b 6= 0.

Since either b > 0 or b = 0 and b 6= 0, then b > 0.
Thus, 0 < b and b < n, so 0 < b < n.
Therefore, there exists a unique integer b such that ab ≡ 1 (mod n) and

0 < b < n, as desired.

Proof. Conversely, we prove if there exists a unique integer b such that ab ≡ 1
(mod n) and 0 < b < n, then gcd(a, n) = 1.

Suppose there exists an integer b such that ab ≡ 1 (mod n) and 0 < b < n.
Since ab ≡ 1 (mod n), then n divides ab−1, so ab−1 = nk for some integer

k.

96



Thus, 1 = ab − nk = ab + (−nk) = ab + n(−k) = ba + (−k)n is a linear
combination of a and n.

By corollary 56, gcd(a, n) = 1 if and only if 1 is a linear combination of a
and n.

Therefore, we conclude gcd(a, n) = 1.

Proposition 116. Let n ∈ Z+.
Every integer is congruent to exactly one of the remainders 0, 1, ..., n − 1

when divided by n.

Proof. Let a ∈ Z.
By the division algorithm, there exist unique integers q and r such that

a = nq + r with 0 ≤ r < n when a is divided by n.
Since a = nq + r, then a− r = nq, so n divides a− r.
Hence, a ≡ r (mod n).

Since r ∈ Z and 0 ≤ r < n, then either r = 0 or r = 1 or ... or r = n− 1.
Thus, either r ∈ {0} or r ∈ {1} or ... or r ∈ {n − 1}, so r is an element of

the union {0} ∪ {1} ∪ ... ∪ {n− 1}.
Hence, r ∈ {0, 1, ..., n− 1}.

Therefore, r is a unique integer such that a ≡ r (mod n) and r ∈ {0, 1, ..., n−
1}.

Proposition 117. Let n ∈ Z+.
Let a ∈ Z.
No pair of distinct integers in the set {0, 1, ..., n− 1} are congruent to each

other modulo n.

Proof. Let S = {0, 1, ..., n− 1}.
We must prove there is no pair of distinct integers in the set S that are

congruent to each other.
The statement is: there are no distinct integers a ∈ S and b ∈ S such that

a ≡ b (mod n).

Suppose for the sake of contradiction there are distinct integers a ∈ S and
b ∈ S such that a ≡ b (mod n).

Since a and b are distinct integers, then a 6= b.
Since a ∈ S, then a ≤ n− 1.
Since b ∈ S, then b ≥ 0, so 0 ≤ b.
Since a and b are integers and a 6= b, then either a < b or a > b.
Without loss of generality, assume a > b.
Since a > b, then a− b > 0.
Since a and b are integers and a− b > 0, then a− b is a positive integer.
Since n ∈ Z+ and a − b ∈ Z+, then n divides a − b implies n ≤ a − b, so

n > a− b implies n does not divide a− b.
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Since a ≤ n− 1 and n− 1 < n, then a < n, so a− b < n− b.
Since 0 ≤ b and 0 ≤ b⇔ n ≤ n+ b⇔ n− b ≤ n, then n− b ≤ n.
Since a− b < n− b and n− b ≤ n, then a− b < n, so n > a− b.
Since n > a − b and n > a − b implies n does not divide a − b, then we

conclude n does not divide a− b.
Since n divides a− b iff a ≡ b (mod n), then n does not divide a− b iff a 6≡ b

(mod n).
Since n does not divide a− b, then we conclude a 6≡ b (mod n).

Thus, we have a ≡ b (mod n) and a 6≡ b (mod n), a contradiction.
Therefore, there are no distinct integers a ∈ S and b ∈ S such that a ≡ b

(mod n), so no pair of distinct integers in S are congruent to each other modulo
n.

Theorem 118. Existence of solution to linear congruence
Let n ∈ Z+.
Let a, b ∈ Z.
A solution exists to the linear congruence ax ≡ b (mod n) if and only if d|b,

where d = gcd(a, n).
Moreover, if a solution exists, then there are d distinct solutions modulo n

and these solutions are congruent modulo n
d .

Proof. Suppose a solution exists to the linear congruence ax ≡ b (mod n).
Then there exists an integer x0 such that ax0 ≡ b (mod n), so n|(ax0 − b).
Hence, ax0 − b = nk for some integer k.
Thus, b = ax0 − nk = ax0 + (−nk) = ax0 + n(−k).
Since x0,−k ∈ Z and b = ax0 + n(−k), then b is a linear combination of a

and n.
By theorem 55, b is a multiple of gcd(a, n) if and only if b is a linear combi-

nation of a and n.
Therefore, we conclude b is a multiple of gcd(a, n), so gcd(a, n)|b, as desired.

Proof. Conversely, suppose gcd(a, n)|b.
Let d = gcd(a, n).
Then d|b, so b = dk for some integer k.
Since d is the least positive linear combination of a and n, then there exist

integers r and s such that ra+ sn = d.
Thus, b = dk = (ra+ sn)k = rak + snk, so −snk = rak − b.
Let x0 = rk.
Then x0 ∈ Z and n(−sk) = −nsk = −snk = rak − b = ark − b = ax0 − b.
Since −sk ∈ Z and n(−sk) = ax0− b, then n|(ax0− b), so ax0 ≡ b (mod n).
Therefore, there exists x0 ∈ Z such that ax0 ≡ b (mod n), so a solution to

the congruence exists, as desired.

Proof. We prove if a solution exists to the linear congruence, then there are d
distinct solutions modulo n and these solutions are congruent modulo n

d .
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Suppose a solution exists to the linear congruence ax ≡ b (mod n).
Then there exists c ∈ Z such that ac ≡ b (mod n) and gcd(a, n)|b.
By proposition 116, every integer is congruent to exactly one of the remain-

ders 0, 1, ..., n − 1 when divided by n, so c is congruent to exactly one of the
remainders 0, 1, ..., n− 1 when divided by n.

Thus, there exists a unique x0 ∈ {0, 1, ..., n− 1} such that c ≡ x0 (mod n).
Since c ≡ x0 (mod n), then ac ≡ ax0 (mod n), so ax0 ≡ ac (mod n).
Since ax0 ≡ ac (mod n) and ac ≡ b (mod n), then ax0 ≡ b (mod n).
Therefore, x0 ∈ {0, 1, ..., n − 1} is a particular solution of the congruence

ax ≡ b (mod n).

Let S be the solution set of the congruence ax ≡ b (mod n).
Then S = {x ∈ Z : ax ≡ b (mod n)}.
Let T = {x0 + n

d · k, k ∈ Z}.
We prove S = T .
Since d = gcd(a, n), then d|a and d|n, so a

d and n
d ∈ Z.

We first prove T ⊂ S.
Let t ∈ T .
Then t = x0 + n

d · k for some integer k.
Since x0 ∈ Z and n

d ∈ Z and k ∈ Z and Z is closed under addition and
multiplication, then t ∈ Z.

Since a
d ∈ Z and k ∈ Z, then a

d · k ∈ Z.
By proposition 37, every integer divides itself.
Since n ∈ Z, then n|n.
By theorem 43, if n|n, then n divides any multiple of n.
Thus, n divides any multiple of n, so n divides (ad · k)n = akn

d = ank
d =

a · nd · k = a · nd · k − 0.
Hence, a · nd · k ≡ 0 (mod n).
Since ax0 ≡ b (mod n) and a·nd ·k ≡ 0 (mod n), then we add the congruences

to obtain ax0 + a · nd · k ≡ b+ 0 (mod n).
Hence, a(x0 + n

d · k) ≡ b (mod n), so at ≡ b (mod n).
Since t ∈ Z and at ≡ b (mod n), then t ∈ S.
Since t ∈ T implies t ∈ S, then T ⊂ S.

We next prove S ⊂ T .
Let s ∈ S.
Then s ∈ Z and as ≡ b (mod n).
Since as ≡ b (mod n), then b ≡ as (mod n).
Since ax0 ≡ b (mod n) and b ≡ as (mod n), then ax0 ≡ as (mod n).
Since ax0 ≡ as (mod n) and d = gcd(a, n), then by theorem 107, we have

x0 ≡ s (mod n
d ).

Thus, n
d divides x0 − s, so x0 − s = n

d · k for some integer k.
Hence, s = x0 − n

d · k = x0 + n
d (−k).

Since −k ∈ Z and s = x0 + n
d (−k), then s ∈ T .
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Therefore, s ∈ S implies s ∈ T , so S ⊂ T .

Since S ⊂ T and T ⊂ S, then S = T , as desired.
Therefore, the solution set of the congruence ax ≡ b (mod n) with particular

solution x0 ∈ {0, 1, ..., n−1} is the set {x0+n
d ·k, k ∈ Z}, where d = gcd(a, n).

Proof. We prove there are d distinct solutions modulo n and these solutions are
congruent modulo n

d .
Let x′ and x′′ be arbitrary distinct solutions of the congruence ax ≡ b

(mod n).
Then x′ = x0 + n

d k1 for some integer k1 and x′′ = x0 + n
d k2 for some integer

k2 and k1 6= k2.

Suppose x′ ≡ x′′ (mod n).
Then x0 + n

d k1 ≡ x0 + n
d k2 (mod n), so n

d k1 ≡
n
d k2 (mod n), by theorem

107.
Thus, by theorem 107, we have k1 ≡ k2 (mod n

gcd(n,nd ) ).

Let g = n
gcd(n,nd ) .

Then k1 ≡ k2 (mod g).
Since d|n, then n = dm for some integer m.
Thus, m = n

d .
Since d ∈ Z+ and n ∈ Z+, then m ∈ Z+.
Hence, g = n

gcd(n,m) = n
gcd(dm,m) = n

m·gcd(d,1) = n
m·1 = n

m = n
n
d

= d.

Thus, k1 ≡ k2 (mod d).
Therefore, if x′ ≡ x′′ (mod n), then k1 ≡ k2 (mod d).

Conversely, suppose k1 ≡ k2 (mod d).
Then d|k1 − k2, so k1 − k2 = dα for some α ∈ Z.
Thus, k1 = k2 + dα.
Hence, n

d k1 = n
d k2 + nα, so x0 + n

d k1 = x0 + n
d k2 + αn.

Consequently, x′ = x′′ + αn, so x′ − x′′ = αn.
Thus, n divides x′ − x′′, so x′ ≡ x′′ (mod n).
Therefore, if k1 ≡ k2 (mod d), then x′ ≡ x′′ (mod n).

Since x′ ≡ x′′ (mod n) implies k1 ≡ k2 (mod d) and k1 ≡ k2 (mod d) implies
x′ ≡ x′′ (mod n), then x′ ≡ x′′ (mod n) if and only if k1 ≡ k2 (mod d).

Therefore, x′ 6≡ x′′ (mod n) if and only if k1 6≡ k2 (mod d).

No pair of distinct integers in the set {0, 1, ..., d − 1} are congruent to each
other modulo d, by proposition 117.

Thus, there is no pair k1, k2 ∈ {0, 1, ..., d−1} with k1 6= k2 such that k1 ≡ k2
(mod d).

Hence, k1 6≡ k2 (mod d) for every k1, k2 ∈ {0, 1, ..., d− 1} with k1 6= k2.
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Let k1 and k2 be distinct integers in the set {0, 1, ..., d− 1}.
Then k1 ∈ {0, 1, ..., d− 1} and k2 ∈ {0, 1, ..., d− 1} and k1 6= k2, so k1 6≡ k2

(mod d).
Since x′ 6≡ x′′ (mod n) if and only if k1 6≡ k2 (mod d), then we conclude

x′ 6≡ x′′ (mod n).
Therefore, if k1 and k2 are distinct integers in the set {0, 1, ..., d − 1}, then

x′ 6≡ x′′ (mod n) for any distinct x′, x′′ ∈ T .

Let k ∈ {0, 1, ..., d− 1}.
Then there are d solutions that are not congruent modulo n.
The solutions are x0, x0 + n

d , x0 + 2nd , ..., x0 + (d− 1)nd .
Therefore, there are d distinct solutions modulo n.
The set of solutions modulo n is {x0, x0 + n

d , x0 + 2nd , ..., x0 + (d− 1)nd }.

Proof. We prove the solutions are congruent modulo n
d .

Let k1, k2 be distinct integers in the set {0, 1, ..., d− 1}.
Then x′ = x0+n

d k1 and x′′ = x0+n
d k2 are distinct solutions of the congruence

ax ≡ b (mod n).
We must prove x′ ≡ x′′ (mod n

d ).
Since every integer divides itself and n

d ∈ Z, then n
d divides n

d .
Hence, n

d divides any multiple of n
d , so n

d divides (k1 − k2)nd .
Observe that

(k1 − k2)
n

d
= n

d (k1 − k2)

=
n

d
k1 −

n

d
k2

= x0 +
n

d
k1 − x0 −

n

d
k2

= (x0 +
n

d
k1)− (x0 +

n

d
k2)

= x′ − x′′.

Since n
d divides (k1−k2)nd and (k1−k2)nd = x′−x′′, then n

d divides x′−x′′,
so x′ ≡ x′′ (mod n

d ).
Since x and x′ are arbitrary, then each of the d solutions is congruent modulo

n
d .

Integers Modulo n

Theorem 119. Let n ∈ Z+.
Let a ∈ Z.
Let r be the remainder when a is divided by n.
Then [a] = [r] and there are exactly n distinct congruence classes [0], [1], ..., [n−

1].
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Proof. We prove [a] = [r].
By proposition 116, every integer is congruent to a unique integer in the set

{0, 1, ..., n− 1} when divided by n.
Since n ∈ Z+ and a ∈ Z, then a is congruent to a unique integer in the set

{0, 1, ..., n− 1} when divided by n.
Therefore, there is a unique integer r ∈ {0, 1, ..., n − 1} such that a ≡ r

(mod n).
Since a ≡ r (mod n), then [a] = [r].

Proof. To prove there are exactly n distinct congruence classes [0], [1], ..., [n−1],
we first prove the congruence classes [0], [1], ..., [n− 1] are all distinct.

Let S = {0, 1, ..., n− 1}.
To prove the congruence classes [0], [1], ..., [n − 1] are all distinct, we must

prove [x] 6= [y] for every x, y ∈ S with x 6= y.

Let x, y ∈ S with x 6= y.
Since x ∈ S and y ∈ S and x 6= y, then x and y are a pair of distinct integers

in the set S.
By proposition 117, we know that no pair of distinct integers in the set S

are congruent to each other.
Hence, x cannot be congruent to y modulo n, so x 6≡ y (mod n).
Therefore, [x] 6= [y].
Consequently, [x] 6= [y] for all x, y ∈ S with x 6= y, so the congruence classes

[0], [1], ..., [n− 1] are all distinct.
Since there are n such classes, then there are n distinct congruence classes

[0], [1], ..., [n− 1].

Proposition 120. Let n ∈ Z+.
Then [n] = [0].

Proof. Since every integer divides itself, then n|n.
Since n|n and n = n− 0, then n divides n− 0, so n ≡ 0 (mod n).
Therefore, [n] = [0].

Proposition 121. Let n ∈ Z+.
Then [−a] = [n− a] for all [a] ∈ Zn.

Proof. Let [a] ∈ Zn.
Then a ∈ Z, so −a ∈ Z.
Thus, [−a] ∈ Zn.
Since n ∈ Z and a ∈ Z, then n− a ∈ Z, so [n− a] ∈ Zn.
Since n divides −n = 0−n = (−a+a)−n = −a+(a−n) = −a−(−a+n) =

−a− (n− a), then n divides −a− (n− a), so −a ≡ (n− a) (mod n).
Therefore, [−a] = [n− a].

Theorem 122. Let n ∈ Z+.
Then Zn = Z

nZ = {[0], [1], ..., [n− 1]} and |Zn| = n.
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Proof. Since n ∈ Z+, then there are exactly n distinct congruence classes
[0], [1], ..., [n− 1].

Let S = {[0], [1], ..., [n− 1]}.
Observe that Zn = {[a] : a ∈ Z}.
We must prove Zn = S.

We prove S ⊂ Zn.
Let s ∈ S.
Then s = [x] for some x ∈ {0, 1, ..., n− 1}.
Since x ∈ {0, 1, ..., n− 1} and {0, 1, ..., n− 1} ⊂ Z, then x ∈ Z.
Since x ∈ Z and s = [x], then s ∈ Zn.
Hence, s ∈ S implies s ∈ Zn, so S ⊂ Zn.

We prove Zn ⊂ S.
Let t ∈ Zn.
Then t = [a] for some a ∈ Z.
By the division algorithm, there exist unique integers q, r such that a = nq+r

with 0 ≤ r < n.
Since a = nq + r, then a− r = nq, so n|a− r.
Hence, a ≡ r (mod n), so [a] = [r].
Since t = [a] and [a] = [r], then t = [r].

Since r is an integer and 0 ≤ r < n, then either r = 0 or r = 1 or ... or
r = n− 1.

Hence, either [r] = [0] or [r] = [1] or ... or [r] = [n− 1].
Thus, [r] is one of the congruence classes [0], [1], ..., [n− 1].
Since t = [r], then t is one of the congruence classess [0], [1], ..., [n− 1].
Thus, t ∈ S.
Since t ∈ Zn implies t ∈ S, then Zn ⊂ S.

Since Zn ⊂ S and S ⊂ Zn, then Zn = S, as desired.

Since Zn = S = {[0], [1], ..., [n− 1]} and the set { [0], [1], ..., [n-1] } contains
exactly n elements, then the set Zn contains exactly n elements, so |Zn| = n.

Lemma 123. Addition modulo n is well-defined.
Let n ∈ Z+.
Let [a], [b] ∈ Zn.
Let x, x′ ∈ [a] and y, y′ ∈ [b].
Then [x+ y] = [x′ + y′].

Solution. We must prove the result does not depend on the choice of a partic-
ular representative of the equivalence class.
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Proof. Since [a], [b] ∈ Zn, then a, b ∈ Z.
Suppose x, x′ ∈ [a] and y, y′ ∈ [b].
Then [a] = {x ∈ Z : x ≡ a (mod n)} and [b] = {x ∈ Z : x ≡ b (mod n)}.
Since x, x′ ∈ [a], then x, x′ ∈ Z and x ≡ a (mod n) and x′ ≡ a (mod n).
Since y, y′ ∈ [b], then y, y′ ∈ Z and y ≡ b (mod n) and y′ ≡ b (mod n).
Since x′ ≡ a (mod n), then a ≡ x′ (mod n).
Since x ≡ a (mod n) and a ≡ x′ (mod n), then x ≡ x′ (mod n).
Since y′ ≡ b (mod n), then b ≡ y′ (mod n).
Since y ≡ b (mod n) and b ≡ y′ (mod n), then y ≡ y′ (mod n).
Adding the congruences x ≡ x′ (mod n) and y ≡ y′ (mod n), we obtain

x+ y ≡ (x′ + y′) (mod n).
Therefore, [x+ y] = [x′ + y′].

Theorem 124. Addition modulo n is a binary operation.
Let n ∈ Z+.
Let +n : Zn × Zn → Zn be a binary relation defined by [a] + [b] = [a+ b] for

all [a], [b] ∈ Zn.
Then +n is a binary operation on Zn.

Solution. To prove +n is a binary operation on Zn, we must prove:
1. Closure: (∀[a], [b] ∈ Zn)([a] + [b] ∈ Zn).
2. Uniqueness: (∀[a], [b] ∈ Zn)([a] + [b]) is unique.
To prove [a] + [b] is unique, we must prove:
if ([a], [b]), ([a′], [b′]) ∈ Zn×Zn such that ([a], [b]) = ([a′], [b′]), then [a]+[b] =

[a′] + [b′].
Thus, assume ([a], [b]) = ([a′], [b′]). Prove [a] + [b] = [a′] + [b′].
Suppose ([a], [b]) = ([a′], [b′]).
Then [a] = [a′] and [b] = [b′].
Thus, a ≡ a′ (mod n) and b ≡ b′ (mod n).
Since a ≡ a′ (mod n), then a, a′ ∈ [a].
Since b ≡ b′ (mod n), then b, b′ ∈ [b].
Therefore, we must prove the result does not depend on the choice of a

particular representative of the equivalence class.

Proof. Let [a], [b] ∈ Zn.
Then a and b are integers.
Thus, a+ b is an integer, so [a+ b] ∈ Zn.
Since [a+ b] = [a] + [b], then [a] + [b] ∈ Zn.
Therefore, Zn is closed under addition modulo n.

Addition modulo n is well defined, by lemma 123.
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Since Zn is closed under addition modulo n and addition modulo n is well
defined, then addition modulo n is a binary operation on Zn.

Theorem 125. algebraic properties of addition modulo n
Let n ∈ Z+.
1. Addition is associative.
([a] + [b]) + [c] = [a] + ([b] + [c]) for all [a], [b], [c] ∈ Zn.
2. Addition is commutative.
[a] + [b] = [b] + [a] for all [a], [b] ∈ Zn.
3. Additive identity is [0].
There exists [0] ∈ Zn such that [a] + [0] = [0] + [a] = [a] for all [a] ∈ Zn.
4. Each element has an additive inverse.
For every [a] ∈ Zn, there exists [−a] ∈ Zn such that [a] + [−a] = [−a] + [a] =

[0].

Proof. We prove 1.
Let [a], [b], [c] ∈ Zn.
Then ([a]+[b])+[c] = [a+b]+[c] = [(a+b)+c] = [a+(b+c)] = [a]+[b+c] =

[a] + ([b] + [c]).

Proof. We prove 2.
Let [a], [b] ∈ Zn.
Then [a] + [b] = [a+ b] = [b+ a] = [b] + [a].

Proof. We prove 3.
Since 0 ∈ Z, then [0] ∈ Zn.
Let [a] ∈ Zn.
Then [a] + [0] = [a+ 0] = [a] = [0 + a] = [0] + [a].
Therefore, there exists [0] ∈ Zn such that [a] + [0] = [a] = [0] + [a] for all

[a] ∈ Zn.

Proof. We prove 4.
Let [a] ∈ Zn.
Then a ∈ Z, so −a ∈ Z.
Thus, [−a] ∈ Zn.
Observe that [a] + [−a] = [a+ (−a)] = [0] = [−a+ a] = [−a] + [a].
Therefore, for every [a] ∈ Zn there exists [−a] ∈ Zn such that [a] + [−a] =

[0] = [−a] + [a].

Lemma 126. Multiplication modulo n is well-defined.
Let n ∈ Z+.
Let [a], [b] ∈ Zn.
Let x, x′ ∈ [a] and y, y′ ∈ [b].
Then [xy] = [x′y′].

Solution. We must prove the result does not depend on the choice of a partic-
ular representative of the equivalence class.
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Proof. Since [a], [b] ∈ Zn, then a, b ∈ Z.
Suppose x, x′ ∈ [a] and y, y′ ∈ [b].
Then [a] = {x ∈ Z : x ≡ a (mod n)} and [b] = {x ∈ Z : x ≡ b (mod n)}.
Since x, x′ ∈ [a], then x, x′ ∈ Z and x ≡ a (mod n) and x′ ≡ a (mod n).
Since y, y′ ∈ [b], then y, y′ ∈ Z and y ≡ b (mod n) and y′ ≡ b (mod n).
Since x′ ≡ a (mod n), then a ≡ x′ (mod n).
Since x ≡ a (mod n) and a ≡ x′ (mod n), then x ≡ x′ (mod n).
Since y′ ≡ b (mod n), then b ≡ y′ (mod n).
Since y ≡ b (mod n) and b ≡ y′ (mod n), then y ≡ y′ (mod n).
Multiplying the congruences x ≡ x′ (mod n) and y ≡ y′ (mod n), we obtain

xy ≡ (x′y′) (mod n).
Therefore, [xy] = [x′y′].

Theorem 127. Multiplication modulo n is a binary operation.
Let n ∈ Z+.
Let ∗n : Zn × Zn → Zn be a binary relation defined by [a][b] = [ab] for all

[a], [b] ∈ Zn.
Then ∗n is a binary operation on Zn.

Solution. To prove ∗n is a binary operation on Zn, we must prove:
1. Closure: (∀[a], [b] ∈ Zn)([a] ∗ [b] ∈ Zn).
2. Uniqueness: (∀[a], [b] ∈ Zn)([a] ∗ [b]) is unique.
To prove [a] ∗ [b] is unique, we must prove:
if ([a], [b]), ([a′], [b′]) ∈ Zn×Zn such that ([a], [b]) = ([a′], [b′]), then [a]∗ [b] =

[a′] ∗ [b′].
Thus, assume ([a], [b]) = ([a′], [b′]). Prove [a] ∗ [b] = [a′] ∗ [b′].
Suppose ([a], [b]) = ([a′], [b′]).
Then [a] = [a′] and [b] = [b′].
Thus, a ≡ a′ (mod n) and b ≡ b′ (mod n).
Since a ≡ a′ (mod n), then a, a′ ∈ [a].
Since b ≡ b′ (mod n), then b, b′ ∈ [b].
Therefore, we must prove the result does not depend on the choice of a

particular representative of the equivalence class.

Proof. Let [a], [b] ∈ Zn.
Then a and b are integers.
Thus, ab is an integer, so [ab] ∈ Zn.
Since [ab] = [a][b], then [a][b] ∈ Zn.
Therefore, Zn is closed under multiplication modulo n.

Multiplication modulo n is well defined, by lemma 126.
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Since Zn is closed under multiplication modulo n and multiplication modulo
n is well defined, then multiplication modulo n is a binary operation on Zn.

Theorem 128. algebraic properties of multiplication modulo n
Let n ∈ Z+.
1. Multiplication is associative.
([a][b])[c] = [a]([b][c]) for all [a], [b], [c] ∈ Zn.
2. Multiplication is commutative.
[a][b] = [b][a] for all [a], [b] ∈ Zn.
3. Multiplicative identity is [1].
There exists [1] ∈ Zn such that [a][1] = [1][a] = [a] for all [a] ∈ Zn.
4. Multiplication by [0].
[a][0] = [0][a] = [0] for all [a] ∈ Zn.
5. Multiplication is left distributive over addition.
[a]([b] + [c]) = [a][b] + [a][c] for all [a], [b], [c] ∈ Zn.
6. Multiplication is right distributive over addition.
([b] + [c])[a] = [b][a] + [c][a] for all [a], [b], [c] ∈ Zn.

Proof. We prove 1.
Let [a], [b], [c] ∈ Zn.
Then ([a][b])[c] = [ab][c] = [(ab)c] = [a(bc)] = [a][bc] = [a]([b][c]).

Proof. We prove 2.
Let [a], [b] ∈ Zn.
Then [a][b] = [ab] = [ba] = [b][a].

Proof. We prove 3.
Since 1 ∈ Z, then [1] ∈ Zn.
Let [a] ∈ Zn.
Then [a][1] = [a1] = [a] = [1a] = [1][a].
Therefore, there exists [1] ∈ Zn such that [a][1] = [a] = [1][a] for all [a] ∈

Zn.

Proof. We prove 4.
Since 0 ∈ Z, then [0] ∈ Zn.
Let [a] ∈ Zn.
Then [a][0] = [a0] = [0] = [0a] = [0][a].

Proof. We prove 5.
Let [a], [b], [c] ∈ Zn.
Then [a]([b] + [c]) = [a][b + c] = [a(b + c)] = [ab + ac] = [ab] + [ac] =

[a][b] + [a][c].

Proof. We prove 6.
Let [a], [b], [c] ∈ Zn.
Then ([b] + [c])[a] = [b + c][a] = [(b + c)a] = [ba + ca] = [ba] + [ca] =

[b][a] + [c][a].
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Theorem 129. Existence of multiplicative inverse of [a] modulo n
Let n ∈ Z+.
Let [a] ∈ Zn.
Then [a] has a multiplicative inverse in Zn iff gcd(a, n) = 1.

Proof. Let n be a positive integer.
Let [a] ∈ Zn.
Suppose [a] has a multiplicative inverse.
Then there exists [b] ∈ Zn such that [a][b] = [1], so [ab] = [1].
Hence, ab ≡ 1 (mod n), so n|(ab− 1).
Thus, ab− 1 = nk for some integer k.
Consequently, 1 = ab − nk = ba − nk = ba − kn = ba + (−k)n is a linear

combination of a and n.
Let d = gcd(a, n).
Any common divisor of a and n divides any linear combination of a and n.
Hence, d divides any linear combination of a and n, so d divides 1.
Since d ∈ Z+ and d|1, then d = 1, so gcd(a, n) = 1.

Conversely, suppose gcd(a, n) = 1.
Then there exists x, y ∈ Z such that xa+ yn = 1, so xa− 1 = −yn.
Since −y ∈ Z, then this implies n divides xa− 1, so xa ≡ 1 (mod n).
Thus, 1 ≡ xa, so [1] = [xa] = [x][a] = [a][x].
Since [x] ∈ Zn and [a][x] = [1], then [a] has a multiplicative inverse.

Corollary 130. The inverse of [0] in Z1 is [0].
Let n ∈ Z+.
If n > 1, then [0] has no multiplicative inverse.

Proof. Let n ∈ Z+.
Then either n = 1 or n > 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then Z1 = {[0]}.
Since 0 ≡ 1 (mod 1), then [0] = [1].
Hence, [1] ∈ Z1.
Since [1] = [0] = [0 ∗ 0] = [0][0], then there exists [0] ∈ Z1 such that

[0][0] = [1].
Therefore, [0] has a multiplicative inverse in Z1 and [0]−1 = [0].
Case 2: Suppose n > 1.
Then gcd(0, n) = n > 1, so gcd(0, n) > 1.
Thus, gcd(0, n) 6= 1.
Since [0] has a multiplicative inverse in Zn iff gcd(0, n) = 1, then [0] does

not have a multiplicative inverse in Zn.

Theorem 131. Let n ∈ Z+.
A nonzero element of Zn either has a multiplicative inverse or is a divisor

of zero.
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Solution. Let [a] ∈ Zn, [a] 6= [0].
We must prove: Either [a] has a multiplicative inverse or [a] is a divisor of

zero.
Either a and n are relatively prime or not.

Proof. Let n be a positive integer.
Let [a] ∈ Zn and [a] 6= [0].
Since [a] ∈ Zn, then a is an integer.
Either a and n are relatively prime or not.
We consider these cases separately.
Case 1: Suppose a and n are relatively prime.
Then gcd(a, n) = 1.
The element [a] has a multiplicative inverse in Zn iff gcd(a, n) = 1.
Hence, [a] has a multiplicative inverse in Zn.
Case 2: Suppose a and n are not relatively prime.
Then gcd(a, n) 6= 1, so gcd(a, n) > 1.
Let d = gcd(a, n).
Then d > 1.
Consider the equation [a][x] = [0].
Observe that [a][x] = [ax] = [0].
Hence, ax ≡ 0 (mod n).
The linear congruence has a solution iff gcd(a, n)|0.
Hence, a solution exists iff d|0.
Any integer divides zero, so d|0.
Hence, a solution exists and there are d distinct solutions modulo n.
Zero is a solution since a ∗ 0 ≡ 0 (mod n).
Thus, there are d− 1 distinct nonzero solutions modulo n.
Since d > 1, then d− 1 > 0, so d− 1 ≥ 1.
Hence, there exists at least one nonzero solution modulo n, say b.
Thus, b is a nonzero positive integer that is less than n and is a solution to

ax ≡ 0 (mod n).
Hence, [b] ∈ Zn and [b] 6= [0] and ab ≡ 0 (mod n).
Since ab ≡ 0 (mod n), then [ab] = [0], so [a][b] = [0].
Since [b] ∈ Zn and [b] 6= [0] and [a][b] = [0], then [a] is a divisor of zero.

Proposition 132. Let n ∈ Z+.
Let a, b ∈ Z.
If n|ab and n is prime, then n|a or n|b.

Proof. We prove the equivalent statement: if n|ab and n is prime and n 6 |a,
then n|b.

Suppose n|ab and n is prime and n 6 |a
Since n is prime, then either n|a or gcd(n, a) = 1.
Since n 6 |a, then we conclude gcd(n, a) = 1.
Since n|ab and gcd(n, a) = 1, then n|b.

Proposition 133. If p is prime, then φ(p) = p− 1.
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Proof. Suppose p is a prime number.
Then p is a positive integer and p > 1.
Let S = {1, 2, ..., p− 1, p}.
Let a ∈ S.
Since a ∈ S and S ⊂ Z+, then a ∈ Z+.
Either a < p or a = p.
We consider these cases separately.
Case 1: Suppose a < p.
Since a and p are positive integers and a < p, then p 6 |a.
Since p is prime, then either p|a or gcd(p, a) = 1.
Since p 6 |a, then gcd(p, a) = 1.
Hence, a is relatively prime to p.
Thus, there are p − 1 positive integers less than p that are relatively prime

to p.
Case 2: Suppose a = p.
Then gcd(p, a) = gcd(p, p) = p > 1.
Thus, gcd(p, a) 6= 1, so p and a are not relatively prime.
Hence, in all cases, there are exactly p−1 positive integers less than or equal

to p that are relatively prime to p.
Therefore, φ(p) = p− 1.

Fermat’s Theorem

Theorem 134. Fermat’s Little Theorem
Let p, a ∈ Z+.
If p is prime and p 6 |a, then p|ap−1 − 1.

Proof. Suppose p is prime and p 6 |a.
By the division algorithm, a = pq+r for some integers q and r with 0 ≤ r < p.
Since p 6 |a, then r 6= 0, so 0 < r < p.
Hence, 1 ≤ r ≤ p− 1.

Let s ∈ Z such that 1 ≤ s ≤ p− 1.
We prove if r 6= s then ra 6≡ sa (mod p) by contrapositive.
Suppose ra ≡ sa (mod p).
Then p divides ra− sa = (r − s)a.
Since p is prime and p divides (r − s)a, then by Euclid’s lemma, either

p|(r − s) or p|a.
By assumption, p 6 |a, so we conclude p|r − s.
Hence, r ≡ s (mod p).
Therefore, ra ≡ sa (mod p) implies r ≡ s (mod p), so r 6≡ s (mod p) implies

ra 6≡ sa (mod p).
Thus, any distinct pair of these integers sa, 2a, 3a, ..., (p − 1)a are not con-

gruent (mod p), so a, 2a, 3a, ..., (p− 1)a are all distinct.
Hence, the congruence classes [a], [2a], [3a], ..., [(p− 1)a] are all distinct.

110



Let S be the set of these elements.
Then S = {[ra] : 1 ≤ r ≤ p− 1} = {[a], [2a], ..., [(p− 1)a]}.

We prove [0] 6∈ S.
Suppose [0] ∈ S.
Then [0] = [ra] for 1 ≤ r ≤ p− 1.
Thus, 0 ≡ ra (mod p), so ra ≡ 0 (mod p).
Hence, p divides ra− 0 = ra.
Since p is prime and p divides ra, then by Euclid’s lemma, either p|r or p|a.
By assumption, p 6 |a, so we conclude p|r.
Since p and r are positive integers and p|r, then p ≤ r.
Since r ≤ p− 1 < p,then r < p, so p > r.
Thus, we have p > r and p ≤ r, a contradiction.
Therefore, [0] 6∈ S.

Let T = {[k] : 1 ≤ k ≤ p− 1}.
Then T = {[1], [2], ..., [p− 1]}.

We prove S ⊂ T .
Let x ∈ S.
Then x = [ra] and 1 ≤ r ≤ p− 1.
By the division algorithm, ra = pq′ + r′ for integers q′, r′ with 0 ≤ r′ < p.
Since r′ ∈ Z and r′ < p, then r′ ≤ p− 1, so 0 ≤ r′ ≤ p− 1.
Observe that

x = [ra]

= [pq′ + r′]

= [pq′] + [r′]

= [p][q′] + [r′]

= [0][q′] + [r′]

= [0q′] + [r′]

= [0] + [r′]

= [0 + r′]

= [r′].

Since x = [r′] and x ∈ S and [0] 6∈ S, then [r′] 6= [0], so r′ 6= 0.
Since 0 ≤ r′ ≤ p− 1 and r′ 6= 0, then 0 < r′ ≤ p− 1, so 1 ≤ r′ ≤ p− 1.
Since x = [r′] and 1 ≤ r′ ≤ p− 1, then x ∈ T , so S ⊂ T .

We prove T ⊂ S.
Let y ∈ T .
Then y = [k] for some integer k with 1 ≤ k ≤ p− 1.
The linear congruence ar ≡ k (mod p) has a solution iff gcd(a, p) divides k

and there are gcd(a, p) distinct solutions modulo p.
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Since p is prime, then either p|a or gcd(p, a) = 1.
By assumption, p 6 |a, so we conclude gcd(p, a) = 1.
Since gcd(p, a) = 1 and 1 divides integer k, then we conclude the linear

congruence ar ≡ k (mod p) has 1 distinct solution modulo p.
Hence, there exists an integer r with 0 ≤ r < p such that ar ≡ k (mod p),

so k ≡ ar (mod p).
Thus, k ≡ ra (mod p), so [k] = [ra].
Since k ≥ 1, the k 6= 0.
Since k 6= 0 and ar ≡ k (mod p), then ar 6≡ 0 (mod p), so r 6= 0.
Since 0 ≤ r < p and r 6= 0, then 0 < r < p, so 1 ≤ r ≤ p− 1.
Hence, y = [ra] and 1 ≤ r ≤ p− 1, so y ∈ S.
Therefore, y ∈ T implies y ∈ S, so T ⊂ S.
Since S ⊂ T and T ⊂ S, then S = T .

Observe that
[a] · [2a] · ... · [(p− 1)a] = [1] · [2] · ... · [p− 1]
[a · 2a · ... · (p− 1)a] = [1 · 2 · ... · (p− 1)]
[a · 2a · ... · (p− 1)a] = [(p− 1)!]
[1 · 2 · ...(p− 1) · ap−1] = [(p− 1)!]
[(p− 1)! · ap−1] = [(p− 1)!]
[ap−1] = [1]

Therefore, ap−1 ≡ 1 (mod p), so p divides ap−1 − 1.

Corollary 135. Let p, a ∈ Z.
If p is prime, then ap ≡ a (mod p).

Proof. Suppose p is prime.
Either p|a or p 6 |a.
We consider these cases separately.
Case 1: Suppose p|a.
Then p|a− 0, so a ≡ 0 (mod p).
Since p is prime, then p ∈ Z+.
Since p ∈ Z+ and exponentiation preserves congruences and a ≡ 0 (mod p),

then we raise to the p power to obtain ap ≡ 0p = 0 ≡ a, so ap ≡ a (mod p).
Case 2: Suppose p 6 |a.
Since p is prime and p 6 |a, then by Fermat’s Little theorem, p divides ap−1−1,

so ap−1 ≡ 1 (mod p).
Since a ≡ a (mod p), we multiply these congruences to obtain ap = ap−1·a ≡

1 · a = a, so ap ≡ a (mod p).

Theorem 136. Euler’s Theorem
Let a ∈ Z and n ∈ Z+.
If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).
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Proof. Let Z∗n be the group of units of Zn.
Then Z∗n = {[a] ∈ Zn : gcd(a, n) = 1}.
Let [a] ∈ Z∗n.
Then [a] ∈ Zn and gcd(a, n) = 1.
Let m = |Z∗n| = φ(n).
Then m is a positive integer, so Z∗n is a finite group of order m.
Hence, gm = e for all g ∈ Z∗n.
Thus, [a]m = [1], so [1] = [a]m = [am].
Hence, 1 ≡ am (mod n), so am ≡ 1 (mod n).
Therefore, aφ(n) ≡ 1 (mod n).
Thus, gcd(a, n) = 1 and aφ(n) ≡ 1 (mod n), so gcd(a, n) = 1 implies aφ(n) ≡

1 (mod n).

Corollary 137. Fermat’s Little Theorem
Let a ∈ Z.
If p is prime, then ap ≡ a (mod p).

Proof. Suppose p is prime.
Then either p divides a, or p and a are relatively prime.
We consider these cases separately.
Case 1: Suppose p|a.
Then there exists an integer k such that a = pk.
Hence, ap − a = a(ap−1 − 1) = pk(ap−1 − 1).
Since p > 1, then p− 1 > 0, so p− 1 is a positive integer.
Consequently, ap−1 is an integer, so k(ap−1 − 1) is an integer.
Thus, p divides ap − a, so ap ≡ a (mod p).
Case 2: Suppose p and a are relatively prime.
Then gcd(a, p) = 1.
By Euler’s thm, aφ(p) ≡ 1 (mod p).
Since p is prime, then φ(p) = p− 1, so ap−1 ≡ 1 (mod p).
Multiplying the congruence by a, we obtain ap ≡ a (mod p).

Miscellaneous Stuff

Proposition 138. Every integer is congruent modulo n to exactly one
of the integers 0, 1, 2, ..., n− 1.

Proof. Let a ∈ Z and n ∈ Z+.
By the division algorithm, when a is divided by n, then there exist unique

integers q and r such that a = nq + r and 0 ≤ r < n.
Thus, a− r = nq, so n|(a− r).
Therefore, a ≡ r (mod n).
Since 0 ≤ r < n, then either r = 0 or r = 1 or r = 2 or ... or r = n − 1, so

r ∈ {0, 1, 2, ..., n− 1}.
Hence, a is congruent modulo n to either 0 or 1 or 2 or ... or n− 1.
Therefore, every integer is congruent modulo n to exactly one of the integers

in {0, 1, 2, ..., n− 1}.
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Proposition 139. Any set of n integers is a complete set of residues
modulo n iff no two of the integers are congruent modulo n.

Proof. TODO
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