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Natural number system

Peano Axioms for natural number system

Proposition 1. The successor of a natural number is unique.

Proof. Let n € N.
Each natural number has a successor, by the axiom for N, so n has a suc-
Cessor.

Suppose a’ € N and b € N are successors of n.
Then a’ is the concatenation of n and 1 and &’ is the concatenation of n and

The concatenation of 1 to n is n followed by 1 and this occurs in exactly one

way.
So, any concatenation of n by 1 must be the same.
Therefore, a’ = ', so the successor is unique. O

Theorem 2. Laws of addition
Let k,m,n be natural numbers.
1. m4+n=n+m. (addition is commutative)
2. (k+m)+n=k+ (m+n). (addition is associative)
3. Let s be the successor operation on a natural number n.
Then s(n) =n+ 1.

Proof. We prove 1.

If we combine m ones and n ones, then the order in which we combine doesn’t
matter if we’re interested in just the total number of ones.

Therefore, m +n =n + m. O

Proof. We prove 2.

The total number of ones is the same whether we concatenate the ones of
the first two numbers and then concatenate the ones from the third number, or
whether we concatenate the ones of the second two numbers and then concate-
nate the ones from the first number.

Therefore, (k+m) +n=k+ (m+n). O



Proof. We prove 3.

The successor of n is the natural number formed by the concatenation of n
with |.

Therefore, s(n) =n+ 1. O

Theorem 3. Laws of multiplication
Let k,m,n be natural numbers.
1. mn = nm. (multiplication is commutative)
2. (km)n = k(mn). (multiplication is associative)
3. n x 1 =n (multiplicative identity)

Proof. We prove 1.
TODO D

Proposition 4. relation < over N is transitive
Let a,b,c € N,
If a < b and b < ¢, then a < c.

Proof. Suppose a < b and b < c.

Then there exists x € N such that a + x = b and there exists y € N such
that b+y =c.

Thus, c=b+y=(a+2)+y=a+ (x+y).

Since N is closed under + and z,y € N then z +y € N.

Hence a < ¢, by definition of <.

Therefore, < is transitive. O

Construction of 7Z

Theorem 5. Algebraic properties of addition and multiplication in 7Z
1. For all a,b,c € Z, (a+b)+c=a+ (b+c). Addition is associative.
2. For all a,b € Z, a+b=>b+ a. Addition is commutative.
3. For all a,b,c € Z, (ab)c = a(bc). Multiplication is associative.
4. For all a,b € Z, ab = ba. Multiplication is commutative.
5. For all a,b,c € Z, a(b+ ¢) = ab+ ac. Multiplication is distributive over
addition.

Proof. TODO O

Proposition 6. Zero is additive identity in Z
Foralla€eZ, a+0=a.

Proof. TODO O

Proposition 7. One is multiplicative identity in 7
ForallaeZ,1 -a=a.

Proof. TODO O



Proposition 8. Additive inverse of a is —a in Z
Let a € Z.
Then there exists —a € Z such that a + (—a) = 0.

Proof. TODO O

Proposition 9. The only integers whose product is one are one and
negative one.

Let a,b € Z.

If ab=1, then eithera=b=1ora=0= —1.

Proof. TODO O

Proposition 10. Cancellation law for Z
Let a,b,c € Z.
If ¢ # 0 and ac = be, then a = b.

Proof. TODO O

Proposition 11. For all a,b € Z
1.a>0iffacZ*
2.a<0iff —acZ™.

3. a<biffb—a>0.

Proof. We prove 1.
Let a € Z.
Observe that

a>0 & 0<a

& a-0ezZ"
& a+(-0)ez*
& a+0e€Zt
& acZh.
Therefore, a > 0 iff a € ZT. O
Proof. We prove 2.
Let a € Z.
Observe that a < 0iff 0 —a € ZT iff 0+ (—a) € Z*1 iff —a € ZT.
Therefore, a < 0 iff —a € ZT. O
Proof. We prove 3.
Let a € Z.
Observe that a < biff b—a € Z* iff b —a > 0.
Therefore, a < biff b —a > 0. O



Theorem 12. Z satisfies transitivity and trichotomy laws
1. a < a s false for all a € Z. (Therefore, < is not reflexive.)
2. For all a,b,c € Z, if a <b and b < ¢, then a < c. (< is transitive)
3. For every a € Z, exactly one of the following is true (trichotomy):
.a>0
1. a =0
. a <0
4. For every a,b € Z, exactly one of the following is true (trichotomy):
i.a>b
. a=2»
1. a <b

Proof. We prove 1.
Let a € Z.
By the trichotomy axiom for Z*, 0 € Z*, s0 a —a & Z*.
Therefore, a £ a, by definition of <. O

Proof. We prove 2.
Suppose a < b and b < c.
Then b —a € Z* and c— b € ZT.
Since the sum of positive integers is positive, then (¢ —b) + (b —a) € Z*.
Observe that

(c=b)+(b—a) = (c+(=b)+ (b+(—a))
= e (=D +B) +(-a)
= ¢+0+(—a)
-t (-a)
Therefore, ¢ —a € Z*, s0 a < c. O

Proof. We prove 3.
Let a € Z.
By trichotomy, exactly one of the following is true: a € Z*, a =0, —a € Z™.
Observe that a € ZT iff a > 0 and —a € Z7 iff a < 0.
Therefore, exactly one of the following is true: a > 0, a =0, a < 0. O

Proof. We prove 4.

Let a,b € Z.

Since Z is a ring, then Z is closed under subtraction, so a — b € Z.

By the trichotomy law for axioms of ZT, exactly one of the following is true:
a—beZ T, a—b=0,—(a—b) €Z".

Observe that a — b € ZT iff b < a iff a > b.

Observe that a —b =0 iff a = b.

Observe that —(a —b) € ZV iff —a+be ZT if b—a € ZT iff a < b.

Therefore, exactly one of the following is true: a > b, a = b, a < b. O



Theorem 13. order is preserved by the ring operations in Z

Let a,b,c € Z.

1. Ifa <b, then a+c < b+ c. (preserves order for addition)
2. Ifa<b, thena—c<b—c. (preserves order for subtraction)
3. If a < b and ¢ >0, then ac < be. (preserves order for multiplication by a

positive integer)

4. If a < b and ¢ <0, then ac > be. (reverses order for multiplication by a

negative integer)

Proof. We prove 1.
Suppose a < b.
Then b —a € ZT.
Let c € Z.
Observe that

b—a b+ (—a)

= b+0+(—a)

= bt (e (-) +(—0)

= (b+c¢)+ (—c+(—a))

= (b+c)+(-a+(-0))

(b+c¢)—(a+c)
Therefore, (b+c¢) —(a+c) €EZT,s0a+c<b+ec. O
Proof. We prove 2.
Suppose a < b.
Then b —a € Z*.
Let c € Z.
Observe that
b—a b+ (—a)

= b+0+(—a)

= b+ (—ct o)+ (-a)

= (b+—c)+(c+(~a)

= -0+ (—ato)

= (b—c)+(—a+c)

(b—c)—(a—c).

Therefore, (b —¢) — (a—c) € Zt,s0a—c<b—c. O

Proof. We prove 3.

Suppose a < b and ¢ > 0.
Then b —a € Z* and c € Z7.

Since the product of positive integers is a positive integer, then (b—a)c € Z™.
Therefore, (b —a)c = bc — ac € Z*, so ac < be. O



Proof. We prove 4.

Suppose a < b and ¢ < 0.

Then b —a € Z* and —c € Z™.

Since the product of positive integers is a positive integer, then (b—a)(—c) €
7.

Observe that

(b—a)(—c) = (b+(=a))(—c)
b(—c) + (—a)(—c)
= —bc+ac

ac — be.

Hence, ac — bc € Z™, so be < ac.
Therefore, ac > be. O

Theorem 14. Principle of Mathematical Induction
Let S be a subset of Z" such that
1. 1€ S (basis)
2. forallk € Z*, if k € S, then k+1 € S. (induction hypothesis)
Then S = Z7T.

Proof. We prove by contradiction.

Assume ZT — S # 0.

Since Z* — S # () and ZT — S C Z™, then by the well ordering property of
77T, the set ZT — S has a least element m, so m € ZT — S and m < x for each
reZt-8.

Since m € Z* — S, then m € Z* and m ¢ S.

Since m € Z*, then m € Z and m > 1.

Since 1 € S and m ¢ S, then m # 1.

Since m > 1 and m # 1, then m > 1, som —1 > 0.

Since m € Z, then m — 1 € Z.

Sincem —1€Zandm—1>0,thenm—1¢€Z™T.

By hypothesis, if m —1 € S, then m € S, soif m ¢ S, thenm —1¢ S.

Since m ¢ S, then we conclude m — 1 ¢ S.

Sincem—1€Z"andm—1¢S,thenm—1€Z* —S.

Sincem—m=0<1,then m<m+1,som—1<m.

Thus, there exists m — 1 € ZT — S such that m — 1 < m.

This contradicts the assumption that m is the least element of Z1t — 5.

Hence, ZT — S = (.

Since Zt = SU(ZT —S) =SUPD =S, then S =Z%, as desired. O

Theorem 15. Principle of Mathematical Induction(strong)
Let S be a subset of Z such that
1. 1€ S (basis)



2. forallk € Z*, if 1,2,...,k € S, then k+1 € S. (strong induction
hypothesis)
Then S = 7Z%.

Proof. We prove by contradiction.

Assume ZT — S # 0.

Since Z* — S # ) and ZT — S C Z™, then by the well ordering property of
Zt, the set ZT — S has a least element m, so m € ZT — S and m < x for all
reZt-8.

Since m € Z* — S, then m € Z* and m ¢ S.

Since m € Z*, then m € Z and m > 1.

Since 1 € S and m & 5, then m # 1.

Since m > 1 and m # 1, then m > 1, som —1 > 0.

Since m € Z, then m — 1 € Z.

Sincem —1€Zandm—1>0,thenm—1¢€Z™.

Sincem < zforallx € Z* — S, thenif x € ZT — 5, then m < z, so if z < m,
then z & Z+ — S.

Sincex € ZT — Siff r € ZT and v € S, then x € ZT — S iff either x € ZT
orx €S.

Thus, if z ¢ ZT — S, then either z ¢ ZT or x € S.

Hence, if € ZT and ¢ € Z+ — S, then z € S.

Since 1,2,...,m — 1 are positive integers, then 1,2,....,m — 1 € Z*.

Sincel <mand2 <mand... andm—1<m,then1,2,...m—1¢gZ"-S.

Thus, 1,2,....m—1€ S.

Since m — 1 € Z*, then by hypothesis, if 1,2,...,m —1 € S, then m € S.

Therefore, m € S.

Thus, we have m € S and m ¢ S, a contradiction

Hence, ZT — S — 0.

Since ZT = SU(Zt —8)=SUp =S, then S =Z7, as desired. O

Theorem 16. Archimedean Property of 7
Leta,be Z™.
Then there exists n € ZT such that nb > a.

Proof. We prove by contradiction.
Suppose nb < a for all n € Z7T.
Let S={a—nb:neZ'}.
Since 1 € Z*, thena — ()b =a—-b e S, s0 S # 0.

We prove S C Z+.
Let x € S.
Then x = a — nb for some n € Z7T.
Since n € Z™, then nb < a, so a > nb.
Hence, a — nb > 0.
Since a,b,n € Z and Z is closed under subtraction and multiplication, then
a—nbeZ.



Since a —nb € Z and @ — nb > 0, then a —nb € Z*, so x € Z*.
Therefore, S C Z™T.

Since S C Z* and S # ), then by WOP, S has a least element m.
Thus, m € Sand m <z for all x € S.

Since m € S, then m = a — kb for some k € Z*.

Since k € Z*, then k+1€ Z",soa— (k+1)b € S.

Since b € ZT, then b€ Z and b > 0, so —b < 0.

Hence,a — (k+1)b=a—kb—b<a—kb=m,soa— (k+1)b<m.

Thus, there exists a — (k + 1)b € S such that a — (k+ 1)b < m.

This contradicts the fact that m < x for all x € S.

Therefore, the assumption is false, so there exists n € Z* such that nb >
a. O

Proposition 17. For alln € N, n > 1.

Proof. We prove the statement n > 1 for all n € N by induction on n.

Let S={neN:n>1}.

Basis:

Sincele Nand 1 =1, then 1€ S.

Induction:

Suppose k € S.

Then £k € N and k > 1.

The successor of kis k+ 1 € N.

Since 1,k € Nand 1+ k =k + 1 then 1 < k + 1 by definition of <.

Sincek+1€Nandk+1>1thenk+1€S.

Hence, k € S implies k+1 € S.

Since 1 € S and k € S implies k+ 1 € S for any k € S, then n € S for any
n € N by induction.

Therefore, by PMI, n > 1 for all n € N. O

Proposition 18. There is no greatest natural number.

Proof. Suppose g € N is a greatest natural number.

Then g + 1 € N is the unique successor of g.

Since 1 e Nand g+ 1 =g+ 1 then g < g + 1 by definition of <.

Therefore g + 1 > g.

Hence there exists a natural number that is larger than a greatest natural
number, a contradiction.

Therefore there is no greatest natural number. O

Proposition 19. Let a,b,c,d € ZT.
If a < b and c < d, then ac < bd.



Proof. Suppose a < b and ¢ < d.

Then there exists a’ € ZT such that a +a’ = b and there exists ¢’ € ZT such
that ¢+ ¢ =d.

Let e = ac +d'c+d'c.

Since a,a’,c,c’ are positive integers and Z* is closed under addition and
multiplication, then e is a positive integer.

Observe that

ac+e = ac+ (ac +d'c+add)
= (ac+ad)+ (d'c+d'c)
= alc+d)+d(c+)
= (a+d)(c+)
= bd.

Since there exists a positive integer e such that ac+e = bd, then ac < bd. [

Lemma 20. Let a,b € N.
If a < b then b £ a.

Proof. Suppose for the sake of contradiction b < a.
Then either b < a or b = a by defn of <.
We consider these cases separately.
Case 1: Suppose b < a.
Then dc € N such that b+ ¢ = a, by defn of <.
Since a < b then 3d € N such that a + d = b, by defn of <.
Choose ¢,d € N such that b+ c=a and a+d = b.
Then b+c+d=0.
Set m =c+d.
Then b+ m = b.
Since N is closed under + and ¢,d € N then c+d € N, so m € N.
The only solution to b +m =bis m = 0.
But 0 ¢ N, som ¢ N.
Thus we have m € N and m ¢ N, a contradiction.
Hence, b £ a.
Case 2: Suppose b = a.
Since a < b then 3¢ € N such that a + ¢ =b.
Choose ¢ € N such that a + ¢ = b.
Since b = a then a + ¢ = a.
The only solution to a +c=ais ¢ = 0.
But, 0 ¢ Nsoc¢N.
Thus we have ¢ € N and ¢ ¢ N, a contradiction.

Hence, b # a.
Both cases show that b £ a and b # a.
Thus neither b < a nor b=a, so b £ a. O



Theorem 21. < is a partial order on 7Z
1. For alla € Z, a < a. (Reflexive)
2. Foralla,beZ, if a <b and b < a, then a =b. (Anti-symmetric)
3. For all a,b,c € Z, if a < b and b < ¢, then a < c¢. (Transitive)

Proof. To prove < is reflexive, let a € Z.
Then a = a, so either a = a or a < a.
Hence, either a < a or a = a, so a < a.
Therefore, < is reflexive. O

Proof. To prove < is anti-symmetric, we must prove a < b and b < a implies
a="for all a,b e Z.

We shall prove the logically equivalent statement a < b and a # b implies
b £ a for all a,b € Z.

Let a,b € Z such that a < b and a # b.

Since a < b, then either a < b or a = b.

Since a # b, then we conclude a < b.

By trichotomy of Z, we have a # b and a % b, so b £ a and b # a.

Therefore, b £ a, so < is anti-symmetric. O

Proof. To prove < is transitive, let a,b,c € Z such that a < b and b < c.
Then

(a<b)A(b<c) —
(a<b)A(b<cVb=c) —
(a<bAb<c)V(a<bAb=c¢) —
((a<bvVa=bArb<c)V(a<bVa=bAb=c) —
((a<bAb<c)V(a=bAb<c)V(la<bAb=c)V(a=bAb=c)) —
((a<ce)Vie<e)V({(a<e)V(ia=c) —
(a<ceVie<ceVia=c) —
(a<avia=c) -

a<c

Therefore, < is transitive.

Since < is reflexive, anti-symmetric, and transitive, then < is a partial order.
O

Proposition 22. No natural number exists between two consecutive
natural numbers.

Let n be a natural number.

There is no m € N such that n <m <n + 1.

Proof. Suppose there is m € N such that n <m <n+ 1.
Then n < m and m <n+ 1.
Since n < m, then there exists p € N such that n +p = m.

10



Thus, p=m —n,som—n € N.

Since every natural number is greater than or equal to one, then m —n > 1.

Since m <n+ 1, then m —n < 1.

Since m —n € Nand m —n < 1 and m —n > 1, then we have a violation of
trichotomy.

Therefore, there is no m € N such that n <m < n + 1. O

Elementary Aspects of Integers

Lemma 23. FEwvery positive integer is either even or odd.

Proof. We prove by induction on n.
Let S={n € Z"% :niseven or n is odd}.
Basis:
Since 1 =2-0+ 1 and 0 is an integer, then 1 is odd.
Since 1 € Z* and 1 is odd, then 1 € S.
Induction:
Suppose k € S.
Then k € Z* and k is even or k is odd.
Since k € ZT, then k+1 € Z™.
Since k is either even or odd, we consider these cases separately.
Case 1: Suppose k is even.
Then k = 2a for some integer a.
Thus, k+1=2a+1,s0 k+ 1 is odd.
Case 2: Suppose k is odd.
Then k = 2b+ 1 for some integer b.
Thus, k+1=(2b+1)+1=20+2=2(b+2).
Since b+ 2 is an integer, then this implies k£ + 1 is even.
Hence, in all cases, either k + 1 is even or k + 1 is odd.
Since k + 1 € Z* and k + 1 is either even or odd, then k +1 € S.
Therefore, by PMI, S = Z™. O

Lemma 24. An integer is not both even and odd.

Proof. Let n be an integer.
We prove by contradiction.
Suppose n is both even and odd.
Then n is even and n is odd.
Since n is even, then n = 2k for some integer k.
Since n is odd, then n = 2m + 1 for some integer m.
Thus, 2k =n =2m + 1, so 2k = 2m + 1.
Hence, 1 =2k —2m = 2(k —m), so k —m = 3.
Since k and m are integers, then k — m is an integer.

1

Thus, 5 is an integer, a contradiction.

Therefore, n is not both even and odd. O

Proposition 25. A positive integer is either even or odd, but not both.

11



Proof. Let n be a positive integer.
Then either n is even or n is odd.
Since n is an integer, then n is not both even and odd.
Therefore, n is either even or odd, but not both. O

Proposition 26. A product of two consecutive integers is even.
If n € Z, then n(n+ 1) is even.

Proof. Let n € Z be given.
Either n is even or n is not even.
We consider these cases separately.
Case 1: Suppose n is even.
Then there exists m € Z such that n = 2m.
Thus, n(n + 1) = 2m(n + 1).
Since m € Z and n+ 1 € Z, then m(n+ 1) € Z.
Therefore, n(n + 1) is even.
Case 2: Suppose n is not even.
Then n is odd, so there exists m € Z such that n = 2m + 1.
Thus, n(n+1) = 2m+1)(2m+2) = 2m+1)(2)(m+1) = 2(2m+1)(m+1).
Since m € Z, then 2m+1€Z and m+ 1€ Z,so 2m+1)(m+1) € Z.
Therefore, n(n + 1) is even.
Hence, in all cases, n(n + 1) is even, as desired. O

Natural Number Formulae

n(n+1) )

Proposition 27. The sum of the first n natural numbers is ==

Solution. Welet S,, =14+2+3+ ... +n.

We can reverse the sum of terms and add each pair of corresponding terms
of the equation.

Each pair of terms add up to n + 1. Since we have a total of n terms, then
the sum is n(n + 1) if we add both equations as below

Sy = 1424344 (n)
S, = n+n—-1)+n—-2)+---+1
Thus we get
28, = (n+1)n
n(n+1
5, = oD
So, we’ve shown that the sum is nndl) O

2

Proof. We prove (VYn € N)(};_, k = @) by induction on n.
LetS:{nGstzzlkzw}.
Basis:

12



Since 1 € N and Z/lg:1 k=1= w, then 1 € S.
Induction:

Suppose m € S.

Then m € Nand > ;" k= m(”;“).

Since m € N, then m+ 1 € N.

Observe that

m—+1 m
>k o= Y k+(m+1)
k=1 k=1
+1
= %)Jr(mﬂ)
- (m—&-l)(%—i—l)
2
= (m+1)(m2+ )
_ (m+1)[(m+1) +1]
— : ,
Since m + 1 € N and Y pH! = (DIOnEDH] then i 4+1 € S.
Therefore, by PML, 37, k = "t for all n € N. O

Proposition 28. The sum of the first n odd natural numbers is n>.

Solution. Let S,qq = the set of odd natural numbers = {1,3,5,7,9,...}.

The first odd number 1 occurs for n = 1, the second odd number 3 occurs
for n = 2, the third odd number 5 occurs for n = 3, the fourth odd number 7
occurs for n = 4.

So we see a pattern in which the n
inductive reasoning.

Therefore we really have a sequence (1,3,5,7,...,2n — 1) whose n'" term is
2n — 1.

Let (a,) be the sequence in R defined by a,, =2n — 1 for all n € Z*.

We can make a table of values by plugging in various values to determine if
a pattern emerges.

th odd number is simply 2n — 1 using

n sum of first n odd natural numbers

1 1=12

2 1+3=4=2

3 14+3+5=9=232

4 14+34+5+7=16 =42

5 14+3+5+4+7+9=25=52
n|14+3+547+9+...+02n—-1)=>" (2i—1)=n?

Thus our proposition is really asserting that

n

V(n eN),> (2i—1) =n’.

i=1

13



Let .
Sp= (2i—1).
=1

We expand this sum to show the terms
Sp= (2i—1)=143+5+T+-+(2n—1) (1)
i=1
We can reverse the sum of terms and add each pair of corresponding terms of

Equation 1. Each pair of terms add up to 2n. Since we have a total of n terms,
then the sum is 2n(n) if we add both equations as below

Sp = 143+54+7+---+(2n—-1)
Sn = Cn—-1D)+2n—-3)+2n—-5)+2n—-T7)+---+1
Thus we get
25, = 2n(n)
S, = n?

So, we’ve shown that the sum is n?. Now we will prove this result using

mathematical induction since we have an infinite set of statements to prove
(since we're asserting the sum holds true for all natural numbers).

Note that the universally quantified statement V(n € N), Y7, (2i—1) = n?is
logically equivalent to the conditional implication if n € N,then ) .  (2i—1) =
n?. O

Proof. We must prove Y ,_,(2k — 1) =n? for all n € N.
We prove >, _,(2k — 1) = n? for all n € N by induction on n.
Let S={neN:>]_ (2k—1) =n?}.
Basis:
Since 1 € Nand 3, ,(2k—1)=2-1-1=2—-1=1=12,then 1 € S.
Induction:
Suppose m € S.
Then m € Nand Y ;°,(2k — 1) = m?.
Since m € N, then m +1 € N.
To prove m + 1 € S, we must prove Z;n:ll(Qk —1)=(m+1)>2
Observe that

m—+1 m
S @k-1) = > (2k—1)+[2(m+1)-1]
k=1 k=1
m?+ (2m+2—1)
= m?’+(2m+1)

(m +1)2, as desired.

14



Proposition 29. The sum of the squares of the first n natural numbers is

n(n+1)(2n+1)
-6

Proof. We must prove Y _ k? =

We prove by induction on n.

2t D@ for all € N.

Let S = {neN:Y 7 k2 = nedl@nil)y

Basis:

Since 1 € Nand 3,_ k2 =12 =

Induction:

Suppose m € S.

Then m € Nand Y " k? =
Since m € N, then m +1 € N.

Observe that

m—+1

> K
k=1

6

1:%,’6}1611165.

m(m+1)(2m+1)

3 .

ik2+(m+l)2

m(m+1)(2m + 1)

= + (m+1)?
= (m+1)-[W+(m+1)]
_ (m+1).(2m2+m+6m+6)
6

_ (m+1)'(2m2+7m+6)

6
B (m+2)(2m + 3)
= (m+1)- G

(m+D[(m+1)+1]2(m+1) + 1]

Proposition 30. The sum of the cubes of the first n natural numbers is (

noo13_
Proof. We must prove ), k° =
We prove by induction on n.

6

M for all n € N.

n n?(n+1)?
Let S ={neN:Yp_ k¥=""ntly

Basis:

Since 1 € Nand 32, _, k% =1° =

Induction:

Suppose m € S.

Then m € Nand })" | k* =
Since m € N, then m +1 € N.

1= L0 hen 1 € 3.

m?(m+1)?
—

To prove m + 1 € S, we must prove ),

15

, as desired.

m+1 B3 — (m+1)*([m+1)+1]?
=

To prove m + 1 € S, we must prove Z?:ll k2 = (m+1)[(m+1)21”2(m+1)+1].

O

n(n+1)
2

)2.



Observe that

nik?’ = ik3+(m+1)3
k=1 k=1
- 7m2<”1+ D (m+ 1)
= (m+1)2~[%+(m+1)]
= (m+1)2~7(mjl_2)
= (m+ 1)*[(m + 1) + 1 as desired
1 , )

Divisibility and greatest common divisor

Proposition 31. FEvery integer divides zero. (¥n € Z)(n|0).

Proof. Let n be an arbitrary integer.
Since 0 is an integer and 0 = n - 0, then n|0.

Proposition 32. The number 1 divides every integer. (¥n € Z)(1|n).

Proof. Let n be an arbitrary integer.
Since n is an integer and n = 1 - n, then 1|n.

Proposition 33. Fuvery integer divides itself. (Vn € Z)(n|n).

Proof. Let n be an arbitrary integer.
Since 1 is an integer and n = n - 1, then n|n.

Proposition 34. Let a,b,c,d € Z.
If alb and c|d, then ac|bd.

Proof. Suppose alb and c|d.
Then b = am and d = cn for some integers m and n.
We multiply to obtain bd = (am)(cn) = a(mc)n = a(em)n = (ac)(mn).
Since mn is an integer, then ac|bd.

Proposition 35. (Va,b € Z*)(a|b A bla — a = +b).

Proof. Let a and b be arbitrary nonzero integers such that a|b and bla.
Since alb, then b = an; for some integer n;.
Since bla, then a = bny for some integer na.
Since a = bny = (anq)ns = a(ning), then 0 = a(ning) —a = a(niny — 1).
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Thus, either a =0 or nine — 1 =0.

Since a # 0, then nyny — 1 =0, so nyny = 1.

The only integers whose product is one are one and negative one.
Therefore, either ny =ngy =1 o0r ny =ng = —1.

We consider these cases separately.

Case 1: Suppose ny = ng = 1.

Then a = bny = b(1) = b.

Case 2: Suppose n1 = ng = —1.

Then a = bny = b(—1) = —b.

Therefore, in all cases, either a = b or a = —b, so a = +b. O

Theorem 36. divides relation is transitive
For any integers a,b and ¢, if alb and b|c, then a|c.

Proof. Let a,b, and ¢ be arbitrary integers such that a|b and b|c.
Then b = am and ¢ = bn for some integers m and n.
Thus, ¢ = (am)n = a(mn).
Since mn is an integer, then alc. O

Theorem 37. The divides relation defined on Z7T is a partial order.

Proof. To prove the divides relation is reflexive, we must prove ala.
Let a € Z* be arbitrary.
Since a € Z™ and Z* C Z, then a € Z.
By proposition 33, every integer divides itself, so ala.
Therefore, | is reflexive. O

Proof. To prove the divides relation is antisymmetric, we must prove a|b and
bla implies a = b.

Let a,b € ZT.

Then a > 0 and b > 0.

Suppose a|b and b|a.

Then there exist integers k1 and ko such that b = ak; and a = bks.

Hence, a = (aky)kz = a(kiks).

Since a > 0, then a # 0, so we divide by a to get 1 = kyko.

The only integers whose product is one are one and negative one.

Therefore, either k1 = ko =1 or k1 = ky = —1.

Since a > 0 and b > 0 and b = aky, then k; > 0.
Since a > 0 and b > 0 and a = bks, then ko > 0.
Hence, k1 = ko = 1.
Therefore, a = b(1) = b, so a = b. O

Proof. To prove the divides relation is transitive, we must prove alb and b|c
implies alc.

Let a,b,c € ZT.

The divides relation defined on Z is transitive.

Hence, x|y and y|z implies z|z for all integers x,y, 2.
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Since a,b,c € Z* and Z* C Z, then a,b,c € Z.
Therefore, a|b and b|c implies alc.

Since the divides relation is reflexive, antisymmetric, and transitive on ZT,
then the divides relation | is a partial order over Z*. O

Proposition 38. Let a,b € Z™.
If alb, then a <b.

Proof. Suppose alb.
Then b = an for some integer n.
Since a,b € ZT, then a > 0 and b > 0.
Since b = an and a > 0 and b > 0, then n > 0.
Since n € Z and n > 0, then n > 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Thena=a-1=an=>5,s0a=0>0.
Case 2: Suppose n > 1.
Then 0 > 1 —n.
Since @ > 0 and 1 —n < 0, then a(l —n) < 0.
Sincea —b=a—an=a(l —n) <0, then a —b <0, s0 a <b.
Therefore, in all cases, a < b. O

Proposition 39. Leta,d € Z.
Ifd| a, then d | ma for all m € Z.

Proof. Let m € Z be arbitrary.
Suppose d | a.
Then a = dk for some integer k.
Thus, ma = m(dk) = (md)k = (dm)k = d(mk).
Since m, k € Z and Z is closed under multiplication, then mk € Z.
Therefore, d | ma. O

Proposition 40. Let a,b,n € Z.
1. If alb, then nalnb.
2. If n # 0, then nalnb implies alb.

Proof. We prove 1.
Suppose alb.
Then b = ak for some integer k.
Thus, nb = n(ak) = (na)k.
Since k is an integer, then na|nb. O

Proof. We prove 2.

Suppose n # 0 and na|nb.

Since na|nb, then nb = (na)m for some integer m.

Thus, 0 = nb — (na)m = nb — n(am) = n(b — am), so either n = 0 or
b—am=0.
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Since n # 0, then b — am = 0, so b = am.
Since m € Z, then alb. O

Theorem 41. Division Algorithm
Let a,b € Z with b > 0.
Then there exist unique integers q and r such that a = bg+r, with 0 < r < b.

Solution. We must prove the statement:

(Va, b€ Z,b>0)3q,r € Z)(a =bg+1r N0 <71 <Db).

Let a,b € Z be arbitrary with b > 0.

We must prove (3l¢,r € Z)(a =bg+r A0 <71 <Db).

To prove existence we can think about a set of integers for which r could be
an element of; ie, let r = a—bq. Thus, let us define aset S = {a—bk : k € Z}. If
we drew a number line of this sequence of integers: ...,a —3b,a —2b,a —b,a,a+
b,a+ 2b,a + 3b,..., then we would see that we would want r to be such that r is
non-negative( ie, 7 > 0) and we want 7 to be the smallest such number in this
subset of integers. The well ordered principle says that any subset of natural
numbers has a smallest element.

The set S is really an arithmetic sequence of integers whose common differ-
ence is b; ie, the next element in order from smallest to largest is always the
previous element plus b. Thus, any subset can be arranged from smallest to
largest. Thus we can apply the Well Ordering Principle to set S if we can show
that S C N.

Then we let r be the least integer in S.

Note that there exists non-negative integers in set S because we can choose
k € Z such that a > kb which causes a — kb > 0.

Note that ¢ + 1 > ¢, so if we multiply by b > 0, we get (¢ + 1)b > gb. If we
then multiply by -1 we get —(q + 1)b < —gb.

If we then add a to both sides we get a — (¢ + 1)b < a — gb. This simply
shows that a — ¢b is the next element in the sequence following the element
a — (g + 1)b. We easily see that this is the case by simply drawing the number
line and it becomes obvious that the element a — (¢ 4+ 1)b is to the left of the
element a — gb. O

Proof. Existence:

Let a and b be arbitrary integers and b > 0.

‘We must prove there exist integers ¢ and r such that a = bg+r and 0 < r < b.

Let S = {a—0bk: (3k € Z)(a — bk > 0)}.

Suppose there exists k € Z such that a — bk > 0.

Since a, b,k € Z, then a — bk € Z.

Since a — bk € Z and a — bk > 0, then a — bk is a non-negative integer, so S
is a subset of non-negative integers.

Either 0 € Sor 0 € S.

We consider these cases separately.

Case 1: Suppose 0 € S.

Then there is some integer ¢ such that a — bg = 0, so a = bq.

Let » = 0.
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Then ¢ and r are integers and a = bg =bg+0=>bqg+1r,s0 a=bqg+r.
Sincer =0and 0 < b, thenr=0<b,s00=1r <b.
Case 2: Suppose 0 € S.

We show that S is not empty.

By the trichotomy property of Z, either a > 0 or a =0 or a < 0.
We consider these cases separately.

Let x = a — bk for some integer k.

Case 2a: Suppose a = 0.

Let £k = —1.

Thenx =a—-bk=0—-b(-1)=0+b=0>0.
Since z = a — bk and x > 0, then z € S, so S # ().
Case 2b: Suppose a > 0.

Let £ =0.

Thenx =a—-bk=a—-5b(0)=a—0=a>0.

Since x = a — bk and = > 0, then z € S, so S # 0.
Case 2c: Suppose a < 0.

Let k& = 2a.

Since a € Z, then k € Z.

Observe that © = a — bk = a — b(2a) = a(1 — 2b).
Since b € Z and b > 0, then b > 1.

Hence, —2b < —2,s01—-2b< -1 < 0.

Since a < 0 and 1 — 2b < 0, then z = a(1 — 2b) > 0.
Since x = a — bk and £ > 0, then z € S, so S # 0.

Hence, in all cases there is an integer k such that S # .

Since S is a set of non-negative integers and 0 ¢ .S, then S is a set of positive

integers, so S C Z™.

Since S # () and S C Z™, then by the well ordering principle of Z*, S has a
least element r.

Therefore, r € S and r» < x for all z € S.

Since r € S, then there is some integer g such that » = a — bg and r > 0.

Since r > 0, then either » > 0 or r = 0.

Since 0 € S and r € S, then r # 0, so r > 0.

Since r = a — bq, then a = bg + 7.

Suppose r > b.

Observe that a —b(g+1) =a—bg—b=1r—0».

Since r > b, then r —b > 0,80 a —b(¢+ 1) > 0.

Since q € Z, then ¢+ 1 € Z.

Since q+1€Z and a —b(qg+1) >0, then a —b(¢g+ 1) € S.

Since b > 0, then —b < 0,0 a —bg — b < a — bq.

Thus, a —b(¢+ 1) <a—bg,soa—blg+1) <r.

Hence, a — b(g+ 1) is an element of S that is smaller than the least element

r € S, a contradiction.
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Therefore, r cannot be greater than or equal to b, so r < b.
Since 0 < r and r < b, then 0 < r < b.

Hence, in all cases we have shown the existence of integers ¢ and r such that
a=bg+rand 0 <r <b. O

Proof. Uniqueness:

Suppose there are integers ¢;,q2,71, and 7o such that a = bg; + 1 and
a=bg+rand 0 <r; <band0<ry <b.

Since a = bgqy + 11 and a = bga + ro, then bgy +r1 = bga + 12, 80 b(q1 — ¢2) =
r9 —171.

Thus, b divides ro — r1, so ro — 71 is a multiple of b.

Since ro < b and 0 < r1, then by adding these inequalities we obtain ry <
b+7ry,s0ry —1r1 <D
Since 1 < b and 0 < 7, then by adding these inequalities we obtain r; <
b+re, 80 —b<ry—r1.
Thus, —b < re — 7y < b.
The only multiple of b between —b and b is zero, so ro —r; = 0.
Therefore, r1 = ro.

Observe that b(q1 — g2) =12 —r1 =0, so b(g1 — ¢2) = 0.
Since Z is an integral domain, then either b =0 or ¢; — g2 = 0.
Since b > 0, then b # 0.
Thus, g1 — g2 =0, so ¢1 = q2.
Therefore, r is unique and ¢ is unique. U

Theorem 42. Any common divisor of a and b divides any linear com-
bination of a and b.

Let a,b,d € Z.

If dla and d|b, then d|(ma + nb) for all integers m and n.

Proof. Suppose d|a and d|b.

Then there exist integers x and y such that a = dx and b = dy.

Let m and n be arbitrary integers.

Then ma + nb = m(dz) + n(dy) = m(zd) + n(yd) = (mz)d + (ny)d =
(mz + ny)d = d(mzx + ny).

Since max + ny is an integer, then d|(ma 4 nb), as desired. O

Corollary 43. Let a,b,d € Z.
If dla and d|b, then d|(a + b) and d|(a — D).

Proof. Suppose d|a and d|b.

Then d is a common divisor of a and b, so d divides any linear combination
of a and b.

Hence, d|(ma + nb) for all integers m and n.

In particular, if m =1 and n =1, then d|(1-a+1-b), so d|(a +b).

If m=1and n=—1, then d|(1-a+ (—1)b), so d|(a — b). O
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Corollary 44. Any common divisor of a finite number of integers
divides any linear combination of those integers.

Let ay,as, ...,a,,d € 7.

If d|ay, dl|ag, ..., d|ay, then d|(cra1 + coag + ... + cpay,) for any integers
C1,C2,y...,Cp.

Proof. Suppose d|a; and d|az and ... d|ay,.

Since d|ay, then d divides any multiple of a;, so d|cia; for any integer ¢;.

By similar reasoning, d|caas for any integer ¢z and ... and d|cpa, for any
integer c,,.

Since d|ciaq, then ¢ia; = dk; for some integer ;.

By similar reasoning, caas = dko for some integer ko and ... and c,a, = dk,
for some integer k,.

Observe that

ciay + cxag + ... +cpa, = dkl —+ dkg + ...+ dkn
= d(kl + ko + ...+ k‘n).

Since k1 + ko + ... + k,, is an integer, then this implies d divides ciaq + coas +
. FCpay. O

Theorem 45. existence and uniqueness of greatest common divisor
Let a,b e Z*.
Then ged(a,b) exists and is unique.
Moreover, gcd(a,b) is the least positive linear combination of a and b.

Proof. Existence:

Let a,b € Z*.

We prove there exists a positive integer d such that d|a and d|b.

Let S be the set of all positive linear combinations of a and b.

Then S = {ma + nb: ma+nb > 0,m,n € Z}.

Let m =a and n = 0.

Then ma + nb = a® + 0 = a?.

Since a # 0, then a? > 0.

Thus, a2 € 9, so S # (.

Since S C ZT and S # 0, then by the well ordering principle of Z*, S
contains a least element.

Let d be the least element of S.

Then there exist integers mg, ng such that d = mga + ngb and d > 0 and for
every x € S,d < .

We prove d|a and d|b.

By the Division Algorithm there exist unique integers ¢ and r such that
a=dg+rand 0 <r<d.

Either » > 0 or r = 0.

Suppose r > 0.

Then r = a—dq = a—(moa+ngb)q = a—moag—nobg = a(1—moq)+b(—noq).
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Since 1 —mgq and —ngq are integers, then r is a linear combination of ¢ and

Hence, r € S.

Thus, d <7, sor >d.

Consequently, we have r < d and r > d, a contradiction.
Therefore, r cannot be greater than zero.

Since either » > 0 or r = 0, and r % 0, then r = 0.
Therefore, a = dg, so d|a.

By similar reasoning, d|b.

Hence d|a and d|b, so d is a common divisor of a and b.

Suppose ¢ is an arbitrary common divisor of a and b.

Then cla and clb.

Thus there are integers k1 and ks such that a = ck; and b = cks.

Hence d = mq(ck1) + no(ckz) = c(mok1) + c(nokz) = c(moky + noka).

Since mok; + noks is an integer, then c|d.

Thus, any common divisor of a and b divides d.

Since d is a common divisor of a and b and any common divisor of a and b
divides d, then d is a greatest common divisor of a and b.

Hence, a greatest common divisor of a and b exists. O

Proof. Uniqueness:

Suppose d; = ged(a, b) and doy = ged(a, b).

Any common divisor of a and b divides a greatest common divisor of a and
b.

Since d; is a common divisor of a and b and ds is a greatest common divisor
of a and b, then dy|ds.

Since ds is a common divisor of a and b and d; is a greatest common divisor
of a and b, then dy|d;.

Since d; and dy are positive integers and dq|dz and da|d;, then by the anti-
symmetric property of divisibility, d; = ds.

Therefore, a greatest common divisor of a and b is unique. O

Proposition 46. Properties of gcd

Leta,bc Z™T.

Then

1. ged(a,0) =a

2. ged(a,1) =1

3. ged(a, a) = a.

4. ged(a,b) = ged(b, a).

5. ged(a, b) = ged(—a, b) = ged(a, —b) = ged(—a, —b).
6. ged(ka, kb) = kged(a,b) for all k € ZT.

Proof. We prove 1.
Since a € Z™ and ZT C Z, then a € Z.
By proposition 33, every integer divides itself, so ala.
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By proposition 31, every integer divides zero, so a|0.

Hence, ala and a0, so a is a common divisor of a and 0.

Suppose c is an arbitrary common divisor of a and 0.

Then c|a and ¢|0, so c|a.

Hence, any common divisor of a and 0 divides a.

Since a € Z™* and a is a common divisor of @ and 0 and any common divisor
of a and 0 divides a, then a = ged(a, 0). O

Proof. We prove 2.

Since a € ZT and ZT C Z, then a € Z.

By proposition 32, one divides every integer, so 1]|a.

Since 1|a and 1]1, then 1 is a common divisor of a and 1.

Suppose ¢ is an arbitrary common divisor of a and 1.

Then cla and c|1, so ¢|1.

Hence, any common divisor of ¢ and 1 divides 1.

Since 1 € Z* and 1 is a common divisor of @ and 1 and any common divisor
of @ and 1 divides 1, then 1 = ged(a, 1). O

Proof. We prove 3.

Since a € Z™ and ZT C Z, then a € Z.

By proposition 33, every integer divides itself, so ala.

Since ala and ala, then a is a common divisor of a and a.

Suppose c is an arbitrary common divisor of a and a.

Then c|a and c|a, so c|a.

Hence, any common divisor of a and a divides a.

Since a € Z* and a is a common divisor of @ and a and any common divisor
of a and a divides a, then a = ged(a, a). O

Proof. We prove 4.

Since a,b € Z*, then ged(a, b) exists and is unique.

Let d = ged(a, b).

Then d € Z* and d|a and d|b and if ¢ is any integer such that c|a and c|b,
then c|d.

We prove ged(a, b) = ged(b, a).
Since d|a and d|b, then d|b and d|a, so d is a common divisor of b and a.
Suppose c is an arbitrary divisor of b and a.
Then ¢|b and c|a, so c|a and c|b.
Hence, c|d.
Thus, any common divisor of b and a divides d.

Since d € Z™* and d is a common divisor of b and a and any common divisor
of b and a divides d, then d = ged(b, a). O

Proof. We prove 5.
Since a,b € Z*, then ged(a,b) exists and is unique.
Let d = ged(a, b).
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Then d € Z* and d|a and d|b and if ¢ is any integer such that c|a and c|b,
then ¢|d.

We prove ged(a,b) = ged(—a, b).

Since d|a, then d divides any multiple of a, so d divides (—1)a = —a.

Hence, d|(—a).

Since d|(—a) and d|b, then d is a common divisor of —a and b.

Suppose ¢ is an arbitrary common divisor of —a and b.

Then c|(—a) and c|b.

Since ¢|(—a), then ¢ divides any multiple of —a, so ¢ divides (—1)(—a) = a.

Hence, c|a.

Since cla and ¢|b, then c|d.

Hence, any common divisor of —a and b divides d.

Since d € ZT and d is a common divisor of —a and b and any common divisor
of —a and b divides d, then d = ged(—a, b).

We prove ged(a,b) = ged(a, —b).

Since d|b, then d divides any multiple of b, so d divides (—1)b = —b.

Hence, d|(—b).

Since d|a and d|(—b), then d is a common divisor of a and —b.

Suppose ¢ is an arbitrary common divisor of @ and —b.

Then c|a and ¢|(-b).

Since ¢|(—b), then ¢ divides any multiple of —b, so ¢ divides (—1)(—b) = b.

Hence, c|b.

Since cla and ¢|b, then c|d.

Hence, any common divisor of @ and —b divides d.

Since d € ZT and d is a common divisor of a and —b and any common divisor
of a and —b divides d, then d = ged(a, —b).

We prove ged(a, b) = ged(—a, —b).

Since d|a, then d divides any multiple of a, so d divides (—1)a = —a.

Since d|b, then d divides any multiple of b, so d divides (—1)b = —b.

Hence, d|(—a) and d|(—=b), so d is a common divisor of —a and —b.

Suppose ¢ is an arbitrary common divisor of —a and —b.

Then ¢|(—a) and c|(-b).

Since ¢|(—a), then ¢ divides any multiple of —a, so ¢ divides (—1)(—a) = a.

Hence, cla

Since ¢|(—b), then ¢ divides any multiple of —b, so ¢ divides (—1)(—b) = b.

Hence, c|b.

Since c|a and c|b, then c|d.

Hence, any common divisor of —a and —b divides d.

Since d € Z" and d is a common divisor of —a and —b and any common
divisor of —a and —b divides d, then d = ged(—a, —b). O
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Proof. We prove 6.
Let k € Z+.
Let d = ged(a, b).
Then d € Z" and d|a and d|b.
Since k € Z™ and d € Z*, then kd € Z*.
Since d|a and d|b, then kd|ka and kd|kb.
Therefore, kd is a common divisor of ka and kb.

Suppose ¢ is an arbitrary common divisor of ka and kb.

Then clka and c|kb.

Since d = ged(a, b), then there exist integers m and n such that d = ma-+nb.

Thus, kd = k(ma + nb) = kma + knb = mka + nkb, so kd is a linear
combination of ka and kb.

Since c|ka and c|kb, then ¢ divides any linear combination of ka and kb, so
clkd.

Thus, any common divisor of ka and kb divides kd.

Since kd € Z™ and kd is a common divisor of ka and kb and any common
divisor of ka and kb divides kd, then kd = ged(ka, kb).

Therefore, ged(ka, kb) = kd = k ged(a, b). O

Theorem 47. Let a,b € Z*.
Let c € Z.
Then ¢ is a linear combination of a and b iff ¢ is a multiple of ged(a,b).

Proof. We prove if ¢ is a linear combination of a and b, then ¢ is a multiple of
ged(a, b).

Suppose c is a linear combination of a and b.

By theorem 42, any common divisor of ¢ and b divides any linear combination
of a and b.

Since ged(a,b) is a common divisor of a and b, then ged(a,b) divides any
linear combination of a and b.

Hence, ged(a,b) divides ¢, so ¢ is a multiple of ged(a, b).

Conversely, we prove if ¢ is a multiple of ged(a,b), then ¢ is a linear combi-

nation of a and b.

Suppose ¢ is a multiple of ged(a, b).

Then there exists an integer k such that ¢ = k ged(a, b).

Since ged(a, b) is the least positive linear combination of a and b, then there
exist integers m and n such that ged(a, b) = ma + nb.

Thus, ¢ = k(ma + nb) = kma + knb = (km)a + (kn)b.

Since km and kn are integers, then c is a linear combination of ¢ and . [

Corollary 48. Let a,b € Z*.
Then ged(a,b) = 1 iff there exist m,n € Z such that ma + nb = 1.
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Proof. Suppose ged(a,b) = 1.
Then 1 is the least positive linear combination of a and b.
Hence, there exist integers m and n such that 1 = ma + nb, as desired.

Conversely, suppose there exist integers m and n such that ma + nb = 1.
Then 1 is a linear combination of a and b.
Since 1 is a linear combination of a and b iff 1 is a multiple of ged(a, b), then
1 is a multiple of ged(a, b).
Therefore, ged(a, b)|1.
The only positive integer that divides 1 is 1, so ged(a,b) = 1, as desired. [0

Corollary 49. Leta,b€ Z* and d € Z™.

If ged(a,b) = d, then ged(%, %) = 1.

Proof. Suppose ged(a,b) = d.
Then d € Z" and d|a and d|b.
Since d € Z™, then d > 0, so d # 0.
Since d|a and d|b, then a = dr and b = ds for some integers r and s.
Since%zrand%zs,then%EZandgeZ.
Since d is the least positive linear combination of a and b, then there exist
integers m and n such that ma + nb = d.

Since d # 0, we divide by d to get m(%) +n(2) = 1.
t

Theorem 50. Let a,b,d € Z.
If dlab and (d,a) = 1, then d|b.

Proof. Suppose d|ab and ged(d, a) = 1.
Since ged(d, a) = 1, then there exist integers k and m such that kd+ma = 1.
Thus, b = b-1 = b(kd + ma) = bkd + bma = (bk)d + m(ab) is a linear
combination of d and ab.

Since d|d and d|ab, then d divides any linear combination of d and ab, so
d|b. O

Proposition 51. Let a,b,m € Z.
If alm and blm and ged(a,b) = 1, then ablm.

Proof. Suppose a|lm and b|m and ged(a,b) = 1.
Since a|m, then m = ak; for some ky € Z.
Since b|m, then m = bk for some ko € Z.
Since ged(a, b) = 1, then 1 = za + yb for some z,y € Z.
Observe that
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m = m-1
= m(za+ yb)
= mxa+ mybd
= (bke)za + (ak1)yb
= ab(kaz) + ab(k1y)
= ab(kazx + k1y).

Since z,y, k1, ko € Z, then kox + kiy € Z, so ab|m. O

Proof. Suppose a|lm and b|m and ged(a,b) = 1.
Since blm, then there exists an integer &k such that m = bk.
Since a|m, then a|bk.
Since a|bk and ged(a, b) = 1, then alk.
Hence, ab|kb, so ab|bk.
Therefore, ab|m. O

Euclidean Algorithm

Lemma 52. Let a,b € Z and b > 0.
If a is divided by b with remainder r, then ged(a,b) = ged(b, 7).

Proof. Suppose a is divided by b.

By the division algorithm, there exist unique integers ¢ and r such that
a=bg+rand 0 <r <b.

Let d = ged(b, r).

Then d € ZT and d|b and d|r and if ¢ is any integer such that ¢|b and c|r,
then c|d.
Since d|b and d|r, then d divides any linear combination of b and r.
Since @ = bq + r is a linear combination of b and r, then d|a.
Since d|a and d|b, then d is a common divisor of a and b.

Let ¢ be an arbitrary common divisor of a and b.
Then c|a and ¢|b, so ¢ divides any linear combination of a and b.
Since r = a — bq is a linear combination of a and b, then c|r.
Since ¢|b and ¢|r, then ¢|d, so any common divisor of a and b divides d.

Since d € Z* and d is a common divisor of a and b and any common divisor
of a and b divides d, then d = ged(a, b).
Therefore, ged(a,b) = d = ged(b, r). O
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Theorem 53. Euclidean Algorithm
Let a,b € Z and b > 0.
Let n be the number of iterative steps and

a = bqy+ry, where0<ry <b
b = rige+re, where 0 <ro <1y
rr = Toq3+ 13, where 0 <13 < 1o
Th—o = Tk_1qr + Tk, where 0 <1 < rp_1
Tn-3 = Tp—2Qn—1+Tn-1, where 0 <7,_1 <7p_2
Tn—2 = Tp—1¢n +0.

Then ged(a,b) = rp—1.

Solution. By the division algorithm, a = bg; +7r1 and 0 < 1 < b, so ged(a,b) =
ged(b, 1) by lemma 52.

By the division algorithm, b = r1g2 + 72 and 0 < r9 < 71, so ged(b,r1) =
ged(ry,m2) by lemma 52.

We repeat this process a finite number of times.

By the division algorithm, r,,_o = r,,_1¢n+7, and 7, = 0, so ged(ry—2, rp—1) =
ged(rp—1,7n) = ged(rn-1,0) = rp_1. O

Proof. Let a,b € Z*.

On the n** step, the remainder r,, = 0, S0 Tp_2 = Tn_1qn.

Hence 7y, _1|rn—2.

On the (n — 1) step rp—3 = rn—2qn_1 + Tn_1-

Since ry,—1|rp—1 and r,_1|rp—2, then r,_1 divides any linear combination of
Trn—1 and 7,_2, SO Typ_1|rn_3.

Similarly, 7,_1|rn_4 since r,_4 = Tp_3Gn—2 + rn—2 and r,_q|r,_2 and
Tn—1 |rn—3-

This continues all the way back to b = r1¢ga + 72 and a = bgy + r1, 80 7—1|b
and r,_1|a.

Thus 7,,_1 is a common divisor of a and b.

Let d be any common divisor of a and b.
Then d|a and d|b, so d divides any linear combination of a and b.
In particular, d|(a — bq).
Since r1 = a — bqy, then this implies d|r;.
Since d|b and d|r1, then d divides any linear combination of b and ;.
Since ro = b — 11¢2, then this implies d|rs.
Similarly, r3 = r1 — rags, so d|rs.
This continues all the way to r,_; since r, = 0.
Therefore, d|r,_1, so any common divisor of a and b divides r,_1.
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Since 7,_1 € ZT and r,_; is a common divisor of @ and b and any common
divisor of a and b divides 7,_1, then by definition of ged, r,,—1 = ged(a, b).

TODO
We prove the algorithm terminates by induction on the number of remaining
steps to finish the computation. O

Least common multiple

Theorem 54. existence and uniqueness of least common multiple
Let a,be Z™.
The least common multiple of a and b exists and is unique.
Moreover, lem(a,b) - ged(a, b) = ab.

Proof. Existence:
Since a # 0 and b # 0, then ged(a, b) exists.
Let d = ged(a, b).
Then d € Z" and d|a and d|b, so a = dr and b = ds for some integers r and
a

Let m = <.

Then as = a(%) =m = (%)b = rb.

Since there exist integers s and r such that m = as and m = rb, then m is
a common multiple of a and b.

Let ¢ € Z be any common multiple of a and b.
Then a|c and b|e¢, so ¢ = au and ¢ = bv for some integers u and v.
Since ged(a, b) = d, then there exist integers « and y such that d = xza + yb.
Since m = %b and d # 0, then dm = ab.
Since a # 0 and b # 0, then ‘fl—'g =1.
Observe that

Since v, z,u,y € Z, then vax + uy € Z, so m|c.
Thus, any common multiple of a and b is a multiple of m.
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Since m is a common multiple of @ and b and any common multiple of a and
b is a multiple of m, then m = lcm(a, b).
Observe that ged(a, b) * lem(a, b) = dm = ab. O

Proof. Uniqueness:

Let m, and mo be least common multiples of a and b.

Since m is a least common multiple of @ and b, then m; is a positive integer
and a|my and bjm, and for every integer ¢, if alc and b|c, then mq]ec.

Since my is a least common multiple of a and b, then ms is a positive integer
and a|lmg and b|lms and for every integer ¢, if a|c and blc, then mas|c.

If ¢ = my, then we have a|m and bjm; implies mo|m;.

Since a|m; and b|my, then mo|m;.

If ¢ = mg, then we have a|mgy and bjmsy implies mq|mo.

Since a|msg and b|ms, then mq|meo.

Since m; and mg are positive integers and m|ms and ma|my, then m; = mo
by the antisymmetric property of the divides relation over ZT.

Therefore, a least common multiple of a and b is unique. O

Corollary 55. Let a,b € Z+.
Then lem(a, b) = ab iff ged(a,b) = 1.

Proof. Suppose lem(a,b) = ab.
Since ged(a, b) - lem(a, b) = ab, then ged(a, b) = 1594
Observe that
ab

lem(a, b)

ab

ab
= 1.

ged(a,b) =

Therefore, ged(a,b) = 1, as desired.

Conversely, suppose ged(a, b) = 1.
Since ged(a,b) - lem(a, b) = ab, then lem(a,b) = ﬁib)'
Observe that

ab
l b)) = ——
e = el
_ab
1
= ab.
Therefore, lem(a,b) = ab, as desired. O
Proposition 56. Properties of lem
Leta,bc Z7T.
Then
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ged(a, b) = lem(a,d) iff a = b.
alb iff ged(a,b) = a iff lem(a,b) = 0.

1. lem(a,0) =0

2. lem(a,1) =a

3. lem(a,a) = a

4. lem(a,b) = lem(b, a)

5. lem(ka, kb) =k - lem(a,b) for allk € Z7".
6.

7.

8.

Proof. We prove 1.

Since every integer divides zero, then a|0.

Since every integer divides itself, then 0]0.

Thus, a|0 and 0]0, so 0 is a multiple of a and 0.

Let m € Z such that alm and 0|m.

Then 0|m, so any multiple of a and 0 is a multiple of 0.

Since 0 is a multiple of @ and 0 and any multiple of a and 0 is a multiple of
0, then 0 = lem(a, 0). O

Proof. We prove 2.

Since every integer divides itself, then a|a.

Since one divides every integer, then 1|a.

Thus, ala and 1|a, so a is a multiple of a and 1.

Let m € Z such that a|m and 1|m.

Then a|m, so any multiple of @ and 1 is a multiple of a.

Since a is a multiple of @ and 1 and any multiple of a and 1 is a multiple of
a, then a = lem(a, 1). O

Proof. We prove 3.

Since every integer divides itself, then ala.

Since ala and ala, then a is a multiple of ¢ and a.

Let m € Z such that alm and a|m.

Then a|m, so any multiple of @ and «a is a multiple of a.

Since a is a multiple of a and a and any multiple of a and a is a multiple of
a, then a = lem(a, a). O

Proof. We prove 4.

Let m = lem(a,b).

Since m = lem(a,b), then alm and blm and for every ¢ € Z, if a|c and b]c,
then m|c.

Since a|lm and bjm, then blm and a|m, so m is a multiple of b and a.

Let ¢ be any multiple of b and a.

Then b|c and ale, so alc and b|e.

Hence, m|c.
Thus, any multiple of b and «a is a multiple of m.
Therefore, m = lem(b, a). O
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Proof. We prove 5.
Let k € Z+.
Observe that

lem(ka, kb)

Therefore, lem(ka, kb) = k - lem(a, b).

Proof. We prove 6.
Let d = ged(a, b).
Let m = lem(a,b).
We must prove d | m.

(ka) (kb)
ged(ka, kb)
kakb
kged(a,b)
akb
ged(a, b)
kab
ged(a, b)

k-lem(a,b).

Since d = ged(a, b), then d is a common divisor of a and b, so d is a divisor

of a.
Thus, d|a.

Since m = lem(a, b), then m is a multiple of a and b, so m is a multiple of a.

Hence, a|m.

Since d|a and a|m, then d|m, as desired.

Proof. We prove 7.

We prove if a = b, then ged(a, b) = lem(a, b).

Suppose a = b.
Then

ged(a,b) =

Therefore, ged(a,b) = lem(a, b).

Conversely, we prove if ged(a,b) = lem(a,b), then a = b.

Suppose ged(a, b) = lem(a, b).
Let d = ged(a, b).
Then d = lem(a, b).

Since d = ged(a, b), then d is a common divisor of a and b, so d|a and d|b.
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lem(a, a)
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Since d = lem(a, b), then d is a common multiple of a and b, so a|d and b|d.

Since a,d € Z* and ald and d|a, then by the antisymmetric property of |,
a=d.

Since b,d € Z* and b|d and d|b, then by the antisymmetric property of |,
b=d.

Therefore, a =d = b, so a = b. O

Proof. We prove 8.
We prove alb iff ged(a,b) = a.

Suppose alb.

Since every integer divides itself, then a|a.

Since ala and alb, then a is a common divisor of a and b.

Let ¢ be an arbitrary common divisor of a and b.

Then cla and c|b, so c|a.

Hence, any common divisor of a and b divides a.

Since a € Z* and a is a common divisor of a and b and any common divisor
of a and b divides a, then a = ged(a, b).

Conversely, suppose ged(a, b) = a.
Then a is a common divisor of a and b, so a is a divisor of b.
Therefore, alb.

We prove ged(a, b) = a iff lem(a, b) = b.
Suppose ged(a, b) = a.

Then
ab
lcm(a,b) = m
_w
a
= b
Therefore, lem(a, b) = b.
Conversely, suppose lem(a,b) = b.
Then
ab
d(a,b) = —F—
ged(a,b) lem(a,b)
_a
b
= a.

Therefore, ged(a,b) = a.
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We prove alb iff lem(a, b) = b.
Since a|b iff ged(a,b) = a and ged(a,b) = a iff lem(a,b) = b, then alb iff
lem(a,b) = 0. O

Prime Numbers and Fundamental Theorem of
Arithmetic

Lemma 57. A composite number has a positive divisor other than 1
or itself.

LetneZ™.

Then n is composite iff there exists d € Zt with 1 < d < n such that d|n.

Proof. Suppose n is composite.
Then n # 1 and n is not prime.
Since n is not prime, then there is some positive divisor of n other than 1 or

Hence, there exists d € Z* such that dln and d # 1 and d # n.

Since d € Z™ and d # 1, then d > 1.

Since d,n € ZT and d|n, then d < n by proposition 38.

Since d < n and d # n, then d < n.

Since 1 < d and d < n, then 1 <d < n.

Therefore, there exists d € Z* with 1 < d < n such that d|n. 0

Proof. Conversely, suppose there exists d € ZT with 1 < d < n such that d|n.

Since 0 <1 <d<mn,thenl<dandd<nand1l<nand0<d.

Since d > 1, then d # 1.

Since d < n, then d # n.

Since n > 1, then n # 1.

Since n € Z* and n # 1, then n is a positive integer other than 1.

Since d € Z* and d|n and d # 1 and d # n, then there is a positive divisor
of n other than 1 or n.

Since n is a positive integer other than 1 and there is a positive divisor of n
other than 1 or n, then n is not prime.

Since n is a positive integer other than 1 and n is not prime, then n is
composite. O

Proposition 58. A composite number is composed of smaller positive
factors.

LetneZ7.

Then n is composite iff there exist a,b € Z1t with1 <a<n and 1 <b<n
such that n = ab.

Proof. Suppose n is composite.
Then there exists a € ZT with 1 < a < n such that a|n by lemma 57.
Since0 <1 <a<n,thenl<aanda<mnandl<nand0<aandO0<n.
Since a|n, then there exists b € Z such that n = ab.
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Since n > 0 and a > 0, then b > 0.
Since b € Z and b > 0, then b € ZT.

Since a > 1 and b > 0, then n = ab > b, son > b.
Since ab =n > a, then ab > a.
Since a > 0, then we divide to obtain b > 1.

Since 1 < b and b < n, then 1 < b < n.
Therefore, there exist a,b € Z* with 1 < a < n and 1 < b < n such that
n = ab. O

Proof. Conversely, suppose there exists a,b € ZT with1 <a<nand1<b<n
such that n = ab.

Since b € ZT and ZT C Z, then b € Z.

Since b € Z and n = ab, then aln.

Since @ € ZT and 1 < a < n and a|n, then n is composite by lemma 57. O

Proposition 59. Every integer greater than 1 has a prime factor.

Proof. Let n € Z and n > 1.
We must prove n has a prime factor.
Either n is prime or n is not prime.
We consider these cases separately.
Case 1: Suppose n is prime.
Since n is prime and n|n, then n is a prime factor of n.
Case 2: Suppose n is not prime.
Since n € Z and n > 1 and n is not prime, then n is composite.
Thus, there exists d € ZT with 1 < d < n and d|n by lemma 57.

Let S={s€Z":1<s<n,sn}.

Since d € ZT and 1 < d < n and d|n, then d € S, so S # 0.

Since S C Z* and S # 0, then by the well-ordering principle of Z*, S has a
least element p.

Thus, p € S and p < sforall seS.

Since p € S, then p € Z* and 1 < p < n and p|n.

Since 1 < p <n, then 1 < p and p < n.

Since p > 1, then p # 1.

Since p € Z* and p # 1, then p is either prime or not prime.

Suppose p is not prime.
Since p € Z* and p # 1 and p is not prime, then p must be composite.
Therefore, there exists a € Z* with 1 < a < p and a|p by lemma 57.
Since 1 < a < p, then 1 < a and a < p.
Since alp and p|n, then a|n.
Since l <aanda<pandp<n,thenl<a<p<n,sol<a<n.
Since a € ZT and 1 < a < n and a|n, then a € S.
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Hence, a € S and a < p.
But, this contradicts the fact that p is the least element of S.
Therefore, p must be prime.

Since p is prime and p|n, then p is a prime factor of n. O

Proof. Let p(n) be the predicate n has a prime factor and n > 1 defined over
A

We prove p(n) is true for all integers n > 1 by strong induction on n.

Basis:

Since 2|2 and 2 is prime, then 2 is a prime factor of 2, so 2 has a prime
factor.

Since 2 € Z* and 2 > 1 and 2 has a prime factor, then p(2) is true.

Induction:

For any integer k > 3, assume p(n) is true for n =2,3,...,k — 1.

Then p(m) is true for any integer m such that 2 <m < k — 1.

Thus, p(m) is true for any integer m such that 1 < m < k.

Since k — 1 € Z, then k € Z.

Since k > 3 > 1, then k£ > 1.

To prove p(k) is true, we must prove k has a prime factor.

Since k € Z* and k > 1, then either k is prime or k is composite.

We consider these cases separately.

Case 1: Suppose k is prime.

Since k is prime and k|k, then k is a prime factor of k, so k has a prime
factor.

Case 2: Suppose k is composite.

Then there exists d € ZT such that d|k and 1 < d < k by lemma 57.

Since d € Z and 1 < d < k, then by the induction hypothesis, p(d) is true,
so d has a prime factor.

Therefore, there exists a prime ¢ such that g¢|d.

Since g|d and d|k, then g|k.

Since ¢ is prime and g|k, then ¢ is a prime factor of k, so k has a prime
factor. O

Theorem 60. Fuclid’s Theorem
There are infinitely many prime numbers.

Proof. Suppose there are finitely many prime numbers.

Let p1,p2, ..., ps be these prime numbers.

Let n =pip2---ps + 1.

Since each prime is positive, then pips -+ ps > 0,0 n =p1py---ps+1 >
0+1=1.

Hence, n > 1, so the integer n has a prime factor p by proposition 59.

This prime factor p must be one of p1,po, ..., ps-

Since p is a factor of n, then p|n.

Since p is one of the factors of the product p1ps---ps, then p divides p1ps---ps.
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Since p|n and p|(p1ps - - - ps), then p divides any linear combination of n and
P2 - - Ds-

Since 1 =n — p1ps - - - ps is a linear combination of n and pips - - - ps, then p
must divide 1.

But, there is no prime that divides 1, since each prime is greater than 1.

Therefore, there are not finitely many prime numbers, so there are infinitely
many prime numbers. O

Proof. Let S = {p1,p2,...,pn} be a finite set of primes.

We show that there exist primes that are not in S.

Let p = p1 #* po * ... x Dy,

Let g=p+ 1.

Either ¢ is prime or not.

We consider these cases separately.

We consider two cases.

Case 1: Suppose q is prime.

Then q is greater than each of the primes in S, so ¢ is not one of the primes
in S.

Hence, there exists some prime that is not in S.

Case 2: Suppose q is not prime.

Then ¢ has some prime factor, say r.

Thus, r|g.

Suppose for the sake of contradiction that r € S.

Then r is one of the factors of p, so r|p.

Since r|p and r|q, then r divides any linear combination of p and g.

Thus, since 1 = g — p, then r|1.

Hence, r = 1.

But, r is prime so r # 1.

Therefore, r ¢ S.

Hence, there exists some prime that is not in S.

Both cases show that for any finite set of primes, there exists some prime
number that is not contained in it.

Therefore, there must be infinitely many prime numbers. O

Proof. Suppose for the sake of contradiction that there are only finitely many
prime numbers.

Then we can list all the prime numbers as p1, p2, p3, ---Pn, Where p; = 2,py =
3,p3 = 5,ps =7, and so on.

Thus p,, is the nth and largest prime number.

Now consider the number a = (p1pa2ps - - - pn) + 1, that is a is the product of
all prime numbers, plus 1.

Now a, like any natural number greater than 1, has at least one prime divisor
(by proposition 59) and that means py, | a for at least one of our n prime numbers

Pk-
Thus there is an integer ¢ for which a = ¢py, which is to say

(P1P2p3 -+ Pk—1PkPk+1 " Pn) + 1 = cpy.
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Dividing both sides of this by py gives us

1
(P1P2p3 **  Ph—1DPk41 - Pn) + o O
SO
1
— = c— (P1P2p3 - Pk—1Pk+1 """ Pn)-
Pk
The expression on the right is an integer, while the expression on the left is
not an integer. These numbers can’t be equal, so this is a contradiction. O

Proof. Suppose for the sake of contradiction that there exist finitely many
primes.

Then we could list all the primes.

Let p1,p2, ..., pn be a listing where each p; is prime.

To derive at a contradiction we construct a number which is not in the list
and which must be prime.

Let p = p1pa xxxp, + 1.

Clearly, p is not in the list and each p; divides the product pips * * * p,,.

Therefore, none of the p; can divide p.

For if a certain p; divided both p and pips * **p,,, then p; would divide their
difference p — p1po * * x p, = 1.

Hence, p;|1 which implies p; = 1.

But, 1 is not prime contradicting the assumption p; is prime.

Hence, p is not divisible by any prime, so p itself must be prime. O

Lemma 61. Let p,n € Z™.
If p is prime, then either p|n or ged(p,n) = 1.

Proof. Suppose p is prime and p [n.

We prove ged(p,n) = 1.

Since p is prime, then p # 1 and the only positive divisors of p are 1 and p.

Since p,n € Z and 1 divides every integer, then 1|p and 1|n, so 1 is a common
divisor of p and n.

Let ¢ be any positive common divisor of p and n.

Then ¢ € Z* and ¢|p and c¢|n.

Since the only positive divisors of p are 1 and p and c is a positive divisor of
p, then either ¢ =1 or ¢ = p.

Since p fn and ¢|n, then ¢ # p, so ¢ = 1.

Since 1|1 and ¢ = 1, then c¢|1, so any common positive divisor of p and n
divides 1.

Since 1 is a common divisor of p and n and any common positive divisor of
p and n divides 1, then ged(p,n) = 1, as desired. O

Lemma 62. Fuclid’s Lemma
Let p,a,bc Z+.
If p is prime and p|ab, then either pla or p|b.
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Proof. Suppose p is prime and p|ab.
Either ged(p,a) =1 or ged(p,a) # 1.
We consider these cases separately.
Case 1: Suppose ged(p,a) = 1.
Since plab and ged(p, a) = 1, then p|b, by proposition 50.
Case 2: Suppose ged(p, a) # 1.
Let d = ged(p, a).
Then d # 1,s0 d > 1.
Since d is a common divisor of p and a, then d|p and d|a.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d|p and d # 1, then this implies d = p.
Since d|a, then this implies p|a. O

Proof. Suppose p is prime and p|ab and p fa.
We prove p|b.
If p is prime, then either p|a or ged(p,a) = 1 by lemma 61.
Thus, if p is prime and p fa, then ged(p,a) = 1.
Since p is prime and p fa, then we conclude ged(p,a) = 1.
Since plab and ged(p, a) = 1, then p|b, by proposition 50. O

Corollary 63. Let p,a1,as,...,a, € ZT.
If p is prime and plaias...an, then play for some integer k with 1 < k < n.

Proof. We prove by induction on n, the number of factors in the product
a1a2...0y.

Let S = {n € Z* : if p is prime and p|aias...a,, then p|a; for some integer k with 1 < k < n}.

Basis:

If p is prime and plaq, then plaj, so play for integer £k = 1 with 1 < k < 1.

Therefore, 1 € S.

If p is prime and p|a;asz, then by Euclid’s lemma, either pla; or plaz, so p|ag
for some integer k with 1 < k < 2.

Therefore, 2 € S.

Induction:

Suppose m € S.

Then m € Z* and if p is prime and p|ajas...a,,, then p|ay for some integer
k with 1 <k <m.

Since m € Z*, then m +1 € Z™.

Suppose p is prime and pla1as...amQmi1-

Since p is prime and p|(aias...am)am+1, then by Euclid’s lemma, either
plaias...am or plam11.

We consider each case separately.

Case 1: Suppose p|am+1-

Let k=m+ 1.

ThenkeZand 1 <k=m+1.

Case 2: Suppose pla1as...an.

Since p is prime and plajas...a.,, then by the induction hypothesis, p|ay for
some integer k with 1 < k < m.
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Hence, in either case, if p is prime and p|(ayas...am )am1, then plag for some
integer k with 1 <k<m+1,som+1€S.

Since m € S implies m + 1 € S, then by PMI, if p is prime and plajas...an,
then play, for some integer k with 1 <k < n for all n € Z*. O

Corollary 64. Let p,qi,qo,...,qn € Z7.
Ifp,q1,q2, ..., qn are all prime and p|q1qa...qn, then p = qi for some integer
k withl <k<n.

Proof. Suppose p, q1,qa, .., ¢, are all prime and p|q1¢2...qn.

Since p, q1,q2, ..., qn are all prime, then p is prime and ¢1,q2, ..., ¢, are all
prime.

Since p is prime and p|q1gz...qn, then p|g for some integer k with 1 < k < n,
by corollary 63.

Since q¢1, qa, ..., ¢, are all prime and 1 < k < n, then g is prime, so the only
positive divisors of g are 1 and gy.

Since p € Z1 and p|qy, then this implies either p =1 or p = gy.

Since p is prime, then p > 1, so p # 1.

Therefore, p = qi. O

Theorem 65. Fundamental Theorem of Arithmetic(Existence)
Every integer greater than one can be represented as a product of one or
more primes.

Proof. Let n € Z* and n > 1.

Then either n is prime or n is composite.

We consider these cases separately.

Case 1: Suppose n is prime.

Then n is a product of one prime(itself).

Case 2: Suppose n is composite.

Then there exists d € ZT with 1 < d < n such that d|n, by lemma 57.

Let S={de€Z":d>1Ad|n}.

Then S C Z* and S # 0, so S has a least element p; € S, by the well
ordering principle of ZT.

We claim p; must be prime.

Suppose p; is not prime.

Since p; € S, then p; > 1 and py|n.

Since p; is not prime and p; # 1, then p; is composite, so there exists ¢ € ZT
with 1 < ¢ < p; such that ¢|p;, by lemma 57.

Since ¢|p1 and pi|n, then g|n.

Since ¢ € Z* and ¢ > 1 and ¢|n, then ¢ € S.

But ¢ € S and ¢ < p; contradicts the fact that p; is the least element of S.

Therefore, p; is prime.
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Since n is composite and pi|n and a composite number has smaller positive
factors by proposition 58, then there exists n; € Z* such that n = pin; with
1<n <n.

Since n; > 1, then either n; is prime or n; is composite.

If nq is prime, then n = piny is a product of primes.

If n; is composite, we repeat the same argument to produce another prime
number py such that n; = pane with 1 < ny < ny for some ny € Z7.

Since ny > 1, then either ngy is prime or no is composite.

If ny is prime, then n = p1n; = p1(pang) = p1pans is a product of primes.

If ng is composite, then we repeat the same argument to produce another
prime number p3 such that ny, = psns with 1 < n3 < ny for some ng € ZT.

Since nz > 1, then either ng3 is prime or ng is composite.

If n3 is prime, then n = piny = p1(p2n2) = p1p2(pans) = pip2pans is a
product of primes.

If ng is composite, then we repeat the same argument.

Eventually this process must end, since the decreasing sequence n > n; >
ng > ... > 1 cannot continue indefinitely.

Hence, after a finite number of steps, ni_1 is prime, say p.

Therefore, n = pi1ps - - - px is a product of primes. O

Proof. Existence:

We prove every integer greater than one can be represented as a product of
one or more primes.

Let p(n) be the predicate n is a product of one or more primes and n > 1
defined over Z*.

To prove n is a product of one or more primes, we prove p(n) is true for all
positive integers n > 1 by strong induction on n.

Basis:

Since 2 is prime, then 2 is product of one prime(itself).

Since 2 € Z1 and 2 > 1 and 2 is a product of one prime, then p(2) is true.

Induction:

For an integer k > 3, assume p(n) is true for n = 2,3,....k — 1.

Then p(m) is true for any integer m such that 2 <m <k — 1.

Hence, p(m) is true for any integer m such that 1 <m < k.

Since k — 1 € Z, then k € Z.

Since k > 3 > 1, then k& > 1.

To prove p(k) is true, we must prove k is a product of one or more primes.

Since k € Z and k > 1, then either k is prime or k is composite.

We consider these cases separately.

Case 1: Suppose k is prime.

Then k is a product of one prime(itself).

Case 2: Suppose k is composite.

Then there exists a,b € Zt such that k =aband 1 <a<kand 1 <b< k
by lemma 58.
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Since a € Z and 1 < a < k, then by the induction hypothesis, p(a) is true.
Thus, a is a product of one or more primes, so there exist primes p1, pa, ..., Ps
such that a = p1ps...ps.
Since b € Z and 1 < b < k, then by the induction hypothesis, p(b) is true.
Thus, b is a product of one or more primes, so there exist primes q1, go, ..., g
such that b = q1¢2...¢;.

Therefore, k = ab = (p1p2...ps)(q1¢2--.q¢) is a product of primes. O

Theorem 66. Fundamental Theorem of Arithmetic(Unique Factoriza-
tion)

The representation of any integer greater than one as a product of primes is
unique up to the order of the factors.

Proof. Uniqueness:

Let n € ZT and n > 1.

Then n can be represented as a product of primes.

Suppose n is represented as a product of primes in two ways.

Let n = p1ip2...Dr = q1q2...qs, Where p; and g; are all primes and p; <
p2<...<prand ¢1 <q2... < gs and r < s.

Since p; divides n = q1¢2 . . . ¢s and p; and all ¢; are primes, then by corollary
64, p1 = qi for some integer k with 1 <k < s.

Since qx > g1 and p; = qg, then p; > q;.

Since ¢; divides n = p1ps . ..p, and g1 and all p; are primes, then by corollary
64, g1 = py, for some integer m with 1 <m <r.

Since p,, > p1 and g1 = pp,, then ¢ > py.

Since p; < ¢1 and ¢1 < p1, then p; = ¢1, by the anti-symmetric property of
< on Z*t.

Thus, we may cancel the factor p; = g1 to obtain pops...p, = ¢2q3 .. .¢s-

We repeat this process to obtain ps = ¢o, and thus psps...pr = ¢3qs ... qs-

We continue this process.

Since r < s, then either r < s or r = s.

Suppose r < s.
Then eventually we will reach 1 = ¢, 41¢r42 ... ¢s.
Since each ¢; is prime, then each ¢; is greater than one, so the product
Gr+1Gr+2 - - - s Mmust be greater than one.
This contradicts gr41Gr+2...9s = 1.
Hence, r cannot be less than s, so r = s.

Therefore, p; = ¢; and ps = g2 and ... and p,. = ¢s = ¢, so n is represented
as a product of primes in only one way. O

Proof. Uniqueness:
Let a € Z and a > 1.
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Then a can be represented as a product of primes, by FTA existence theorem
65.

Let a = pip2...pn, and a = qiG2...gn, be two such representations where
P1,D2, -y Pn—1 and qi,qa, ...,qn, are all primes and p; < ps < ... < p,, and
a1 < q2 < ... < (n,-

To prove the prime factorization of a is unique, we must prove n; = ng and
Pm = qm for each integer m such that 1 < m < n;.

We prove by strong induction on a.

Let z(a) be the predicate over Z* defined by:

It P1,D2, -+ Pny and q1,92, -5 qn, are€ all primes and P1 § b2 S o < DPny and
1 < q2 < ... < @n, and a = p1p2...pn, and a = q1q2...gn,, then n; = ng and
Pm = @m for each integer m such that 1 < m < n;.

Basis:

Since 2 is prime, then the only prime factor of 2 is 2 itself, so 1 = n; = no
and 2 =p; = q1.

Since p; and ¢; are prime and 2 = p; and 2 = ¢; and n; = ng and p; = ¢,
then x(2) is true.

Induction:

For an integer a > 3, assume x(n) is true for n = 2,3,...,a — 1.

Then z(m) is true for any integer m such that 2 <m < a — 1.

Hence, z(m) is true for any integer m such that 1 < m < a.

Since a — 1 € Z, then a € Z.

To prove z(a) is true, we must prove:

If p1,p2,....,on, and 1,2, ..., ¢n, are all primes and p; < ps < ... < p,, and
1 < q2 < ... < @n, and a = p1ps...pn, and a = q1G2...Gn,, then ny = ny and
Pm = qm for each integer m such that 1 < m < n;.

Suppose p1, P2, ..., Pn, and q1, G2, ..., ¢n, are all primes and p; < p2 < ... < py,
and ¢1 < g2 < ... < g, and a = p1p2...pn, and a = ¢1G2...qn,-

Either a is prime or not.

We consider these cases separately.

Case 1: Suppose a is prime.

Then the only prime factor of a is a itself, so 1 =n; = no and a = p; = q1.

Since p; and ¢; are prime and a = p; and a = ¢; and n; = ny and p; = q1,
then z(a) is true.

Case 2: Suppose a is not prime.

We must prove ny = ns and p,, = g, for each integer m such that 1 < m <
n.

Since a is not prime, then a has at least two prime factors, so n; > 1 and
ng > 1.

Since q1|q192---qn, and q1q2...Gn, = @ = p1P2...Pn,, then qi|p1p2...pn, -

Since ¢; and p1,ps, ..., pn—1 are all prime and ¢;|p1ps...pn,, then by Euclid’s
corollary, ¢ = p, for some integer r with 1 <r < ny.

Since a = p1ps...pn, , then p1]a.

Since pi|a and a = ¢1¢2...qn,, then p1|q1g2...qn, -

Since p; and q1, g2, ..., Gn, are all prime and p1]|q1¢2...¢n,, then by Euclid’s
corollary, p; = g5 for some integer s with 1 < s < ns.
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Since p1 < ps < ... <pp, and 1 <r < ny, then p; < p,.

Since g1 < g2 < ... < ¢@p, and 1 < s < ng, then ¢; < gs.

Since p1 < p, and p, = g1, then p; < ¢1.

Since ¢1 < ¢s and g5 = p1, then g1 < ps.

Since p1 < ¢1 and ¢; < p1, then by the antisymmetric property of <, we
have p1 = q1.

Since p1,a € Z* and pla, then p; < a.
Since p; is prime and a is not prime, then p; # a.
Since p; < a and p; # a, then p; < a.
Since p; is prime, then p; > 1.
Since p1|a, then 1%1 eZ.
Since p; < a and p; > 0, then 1 < p%'
Since p; > 1 and a > 0, then ap; > a, so a > z%'
Since 1 < 1%1 < a and 1%1 = PaP3...Dn, = Q243---Qn,, then 1 < 1%1 =

(P2p3---Pny) = (4243--Gn,) < @

Thus, the products paops...pn, and ¢2gs...gn, are prime decompositions of the
same integer 1%1

Since 1 < pil < a, then by the induction hypothesis, the integer z% has a
unique factorization, so ny = ny and p,, = ¢, for each integer m with 2 < m <
n.

Since p1 = ¢1 and p,, = g, for each integer m with 2 < m < ny, then
Pm = qm for each integer m such that 1 < m < nj.

Therefore, ny = ny and p,, = ¢, for each integer m such that 1 < m < ny,
as desired. O

Corollary 67. FEvery integer greater than one has a unique canonical
prime factorization

Every integer n > 1 can be written uniquely in a canonical form n =
I ps?...pyF, where for each i =1,2,....k, each exponent e; is a positive integer
and each p; is a prime with p1 < pa < ... < pg.

Proof. Let n € Z and n > 1.

By FTA, n can be represented as a product of primes unique up to the order
of the factors of n.

Let S be the set of distinct primes in the prime factorization of n.

Then S = {p1,p2,...,pr}, where each p; is a distinct prime factor in the
prime factorization of n.

Let these distinct prime factors be ordered such that p; < ps < ... < pg.

Let e; be the number of occurrences of prime p; in the prime factorization
of n.

Then e; is a positive integer and n = pi*ps>...pe*. O
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Linear Diophantine Equations

Theorem 68. Existence of a solution to linear Diophantine equation
Let a,b,c € Z with a # 0 and b # 0.
A solution (x,y) € Z x Z to the linear diophantine equation ax + by = ¢
exists if and only if ged(a,b) | c.

Proof. Let d = ged(a, b).

Suppose d|c.

Since c is a linear combination of a and b if and only if d|c, then c is a linear
combination of a and b.

Hence, there exist integers xg and yg such that axg + byg = ¢, as desired.

Conversely, suppose there exist integers xy and yo such that axg + by = c.
Then c is a linear combination of a and b.
Since d|c if and only if ¢ is a linear combination of a and b, then d|c.
Therefore, ged(a,b) | ¢, as desired. O

Corollary 69. Characterization of solution to linear Diophantine equa-
tion

Let a,b,c € Z with a # 0 and b # 0.

If (x0,y0) € Z X Z is a particular solution to the linear Diophantine equation
ax + by = ¢, then a general solution is given by v = xo + (%)t and y = yo — (§)t
fort € Z, where d = ged(a, b).

Proof. Suppose (z9, o) is a particular solution to the linear diophantine equa-
tion ax + by = c.

Then zg € Z and yg € Z and axg + byg = c.

Let (2/,y") be another solution to the equation.

Then 2’ € Z and ¢’ € Z and az’ + by’ = c.

Thus, ax’ + by’ = ¢ = axg + byg, so ax’ + by’ = axy + byo.

Hence, a(z'—x0) = ax’—axy = byo—by’ = b(yo—y’'), so a(a’—x0) = blyo—y’).

Let d = ged(a, b).

Then d € Z" and d|a and d|b, so a = dr and b = ds for some integers r and

Thus, (dr)(a’ — 20) = (ds)(so — o).
Since d # 0, then we divide to obtain r(a’ — z) = s(yo — v'), so r|s(yo — ¥').
Since d = ged(a,b), then 1 = ged(%, %) = ged(r, s).
Since r|s(yo —y') and ged(r, s) = 1, then r|(yo —y'), so yo — 3y’ = rt for some
integer .
Hence, y' = yo — 7t = yo — ($)t.
Thus, r(z’ — o) = s(yo — y') = srt.
Since d > 0 and a > 0 and a = dr, then r > 0, so r # 0.
Hence, we divide by r to obtain ' — x¢ = st, so ¥’ = xg + st = g + (g)t.
Therefore, 2’ = zo + (4)t and y' = yo — (%)t.
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We verify ' and 3y’ satisfy the equation.
Observe that

b
ar’ +by' = aleo+ ()t + blyo — (5)1]
b b
= awo+ ()t +byo — ()t
b ab
= (amo +byo) + (D)t = (4Dt
ab  ab
= (azo +byo) + (7 — )t
= c+0-¢

= C.

Congruences

Theorem 70. Let n € Z7T.

Let a,b e Z.

Then a = b (mod n) if and only if a and b leave the same remainder when
divided by n.

Proof. We first prove if ¢ and b leave the same remainder when divided by n
then a = b (mod n).

By the division algorithm there exist unique integers qi, g2, 71, 2 such that
a=nq+riand 0 <r; <nand b=ngs + 12 and 0 < ry < n.

Suppose r = ro.

Then a —ng; = b—nge, so a —b=ng; —ngz = n(q1 — ¢2).

Since q1 — g2 € Z, then n|(a — b), so a = b (mod n). O

Proof. Conversely, we prove if @ = b (mod n) then a and b leave the same
remainder when divided by n.

Suppose a = b (mod n).

Then n|(a — b), so a — b = nk for some integer k.

Thus, a = nk + b.

By the division algorithm there exist unique integers g, r such that b = ng+r.

Thus, r is the remainder when b is divided by n.

Hence, a = nk + (ng+7r) =nk+ng+r=n(q+ k) +r.

Since @ = n(q + k) + r, then by the division algorithm, r is the unique
remainder when a is divided by n.

Thus, r is the remainder when each of a and b is divided by n.

Therefore, a and b leave the same remainder when divided by n. O

Theorem 71. The congruence modulo relation is an equivalence relation over
7.
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Proof. Let n € Z* and a,b,c € Z.
Let R={(a,b) € ZXZ :n|(a—10)}.
Since R C Z x Z, then R is the congruence modulo n relation over Z.
Since every integer divides zero, then in particular, n|0.
Hence, nla — a, so a = a (mod n).
Therefore, R is reflexive.

Suppose a = b (mod n).
Then n|(a — b), so a — b = nk for some integer k.
Thus, b — a = —(nk) = n(—k).
Since —k is an integer, then n|(b — a), so b = a (mod n).
Hence, a = b (mod n) implies b = a (mod n), so R is symmetric.

Suppose a = b (mod n) and b = ¢ (mod n).

Then n|a—b and n|b—c, so there exist integers k; and ks such that a—b = nk;
and b — ¢ = nks.

Adding these equations we obtain a —c = (a — b) + (b — ¢) = nky + nky =
n(k:l + ]{12)

Since k1 + ko € Z, then this implies nja — ¢, so a = ¢ (mod n).

Therefore, a = b (mod n) and b = ¢ (mod n) imply @ = ¢ (mod n), so R is
transitive.

Since R is reflexive, symmetric, and transitive, then R is an equivalence
relation over Z. O

Theorem 72. Letn € Z™.
Let a,b,c,d € Z.
If a=b (mod n) and c = d (mod n), then
1. a+c=b+d (mod n) (addition)
2. a—c=b—d (mod n) (subtraction)
3. ac = bd (mod n). (multiplication)

Proof. Suppose a =b (mod n) and ¢ =d (mod n).
Then n|a — b and n|c — d.
Thus, there exist integers k1 and ks such that

a—b = nk (2)
c—d = nko (3)

Adding these equations we get (a + ¢) — (b+ d) = n(k1 + k2).
Since k1 + ko is an integer, then n|(a + ¢) — (b + d).

Therefore, a + ¢ = b+ d (mod n).

Subtracting these equations we get (a — ¢) — (b — d) = n(ky — k).
Since k1 — k2 is an integer, then n|(a — ¢) — (b — d).

Therefore, a — ¢ = b —d (mod n).

Multiplying the first equation by ¢ we get ac — bc = nkyc.
Multiplying the second equation by b we get bc — bd = bnks.
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We add these equations to get ac — bd = nkyc + bnks = n(kic + bks).
Since kic + bko is an integer, then nlac — bd.
Therefore, ac = bd (mod n). O

Theorem 73. Letn € Z™.

Let a,b e Z.

1. If a = b (mod n), then a+ ¢ = b+ ¢ (mod n) for all c € Z. (addition
preserves congruence)

2. If a = b (mod n), then ac = be (mod n) for all ¢ € Z. (multiplication
preserves congruence)

3. If a =b (mod n), then a* = b* (mod n) for all k € Z+. (exponentiation
preserves congruence)

Proof. We prove 1.
Suppose a = b (mod n).
Let c € Z.
Since ¢ = b (mod n), then nja — b.
Sincea—b=a—c+c—b=a+c—c—b=a+c—-b—c=(a+c)—(b+0¢),
then n|(a +¢) — (b+ ¢).
Therefore, a + ¢ = b+ ¢ (mod n). O

Proof. We prove 2.
Suppose a = b (mod n).
Let c € Z.
Since a = b (mod n), then n|a — b, so n divides any multiple of a — b.
Thus, n|(a — b)c, so n|(ac — be).
Therefore, ac = be (mod n). O

Proof. We prove 3.
Suppose a = b (mod n).
We prove a* = b* (mod n) for all k € Z* by induction on k.
Let p(k) : be the predicate a* = b* (mod n) defined over Z*.

Basis:
Since a = b (mod n), then a! = b (mod n), so p(1) is true.
Induction:

Let k € Z* such that p(k) is true.

Then a* = b* (mod n).

Since a = b (mod n), then a¥a = b*b (mod n), so a
Thus, p(k + 1) is true, so p(k) implies p(k + 1) for all k € Z*.

By induction, we conclude p(k) is true for all k € Z™T.

Therefore, a¥ = b* (mod n) for all k € Z+. O

k41 = p*+1 (mod n).

Theorem 74. Letn € Z™.

Let a,b,c € Z.

1. Ifa+c=b+c (modn), then a=b (mod n). (cancellation addition)

2. If ac = be (mod n) and d = ged(n, c), then a = b (mod %). (cancellation
multiplication)
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Proof. We prove 1.
Suppose a + ¢ = b+ ¢ (mod n).
Then n|(a + ¢) — (b+ ¢), so nja — b.
Therefore, a = b (mod n). O

Proof. We prove 2.
Suppose ac = be (mod n) and d = ged(n, ¢).
Since ac = be (mod n), then n|ac — be, so ac — be = nk for some integer k.
Thus, nk = (a — b)c.
Since ged(n, ¢) = d, then ged(%, §) = 1, by corollary 49.

Since L_db)c = "% then 2 divides L_db)c.

Since % divides (a%db)c and ged(%, §) = 1, then % divides a — b, by theorem
50.

Therefore, a = b (mod %). O

Corollary 75. Letn € Z*.

Let a,b,c € Z.

If ac = be (mod n) and ged(n,c) = 1, then a = b (mod n). (cancellation
multiplication relatively prime)

Proof. Suppose ac = bc (mod n) and ged(n,c) = 1.

By the previous theorem, part 2, if ac = be (mod n) and ged(n, ¢) = 1, then
a=b (mod 7).

Therefore, if ac = be (mod n) and ged(n,c) = 1, then a = b (mod n). O

Proof. Suppose ac = bc (mod n) and ged(n,c) = 1.
Since ac = be (mod n), then njac — be, so n|c(a —b).
Since n|c(a — b) and ged(n, c) = 1, then n|a — b, by theorem 50.
Therefore, a = b (mod n). O

Corollary 76. Letp € ZT.

Let a,b,c € 7.

If ac = be (mod p) and p is prime and p fc, then a = b (mod p). (cancella-
tion multiplication prime modulus)

Proof. Suppose ac = be (mod p) and p is prime and p Je.
Let d = ged(p, ¢).
Then d|p and d|c.

Suppose d # 1.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d|p, then either d =1 or d = p.
Since d # 1, then d = p, so ple.
But, this contradicts p fe.
Therefore, d = 1.
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Hence, 1 = ged(p, ¢).
Since ac = be (mod p) and ged(p,c) = 1, then by the previous corollary,
a=b (mod p). O

Proposition 77. Let n € Z+.
Let a,b,c € Z.
If ¢ # 0, then ac = be (mod nc) iff a =b (mod n).

Proof. Let ¢ # 0.
Suppose ac = be (mod nc).
Then nc|(ac — be), so en|c(a — b).
Since ¢ # 0 and cn|c(a — b), then n|(a — b), by proposition 40.
Therefore, a = b (mod n).

Conversely, suppose ¢ = b (mod n).
Then n|(a — b), so cn|c(a — b), by proposition 40.
Hence, nc|(a — b)e, so nclac — be.
Therefore, ac = be (mod nc). O

Proposition 78. Letn € ZT.
Let a € ZT.
Then a is invertible modulo n iff ged(a,n) = 1.

Proof. Suppose ged(a,n) = 1.

Since ged is the least positive linear combination of a and n and ged(a,n) =
1, then there exist integers r and s such that ra + sn = 1.

Thus, ra — 1 = —sn, so ar — 1 = n(—s).

Since s € Z, then —s € Z, so n divides ar — 1.

Therefore, ar =1 (mod n).

Since r € Z and ar = 1 (mod n), then r is a multiplicative inverse of a, so
a is invertible. O

Proof. Suppose a is invertible.
Then there is an integer b such that ab =1 (mod n), so n divides ab — 1.
Thus, ab — 1 = nk for some integer k.
Hence, 1 = ab — nk = ba + (—k)n is a linear combination of a and n.
Thus, 1 is a multiple of ged(a, n), so ged(a,n) divides 1.
Therefore, ged(a,n) must be 1, so ged(a,n) = 1. O

Linear Congruences

Proposition 79. Let a,b,z,29 € Z and n € Z™T.
If x¢ is a solution to ax = b (mod n), then so is xg + nk for any integer k.
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Proof. Let k be an arbitrary integer.

Suppose ¢ is a solution to ax = b (mod n).

Then axg = b (mod n).

Since ank = ank (mod n), we add these equations to get axg + ank =
(b+ ank) (mod n).

Thus, a(xzg + nk) = (b+ ank) (mod n).

For any integer m, njnm — 0, so nm =0 (mod n).

Hence, in particular, n(ak) =0 (mod n), so ank =0 (mod n).

Since ank =0 (mod n) and b =b (mod n), then by adding these equations
we get b+ ank = b (mod n).

Since a(xzg + nk) = (b + ank) (mod n) and b + ank = b (mod n), then we
conclude a(zg +nk) =b (mod n), as desired. O

Proof. Let k be an arbitrary integer.
Suppose ¢ is a solution to ax = b (mod n).
Then axg = b (mod n).
Observe that

n|lnk = n|(zg+ nk) — o
= zo+nk=1z9 (modn)
= a(zg+nk) =azg (mod n)
= a(zg+nk)=b (mod n).

Theorem 80. Existence of solution to linear congruence

Leta,b€Z andn € Z+.

A solution exists to the linear congruence ax =b (mod n) if and only if d|b,
where d = ged(a,n).

Moreover, if a solution exists, then there are d distinct solutions modulo n
and these solutions are congruent modulo % .

Solution. We must prove:
1. if a solution exists, then ged(a, n)|b.
2. if ged(a, n)|b, then a solution exists. O

Proof. Let a,b € Z and n € Z*.

Suppose a solution exists to the linear congruence ax = b (mod n).

Then there exists an integer ¢ such that axzg = b (mod n), so n|(axg — b).

Hence, there exists an integer k such that axg — b = nk.

Thus, axg —nk = b, so axg + n(—k) = b.

Since —k is an integer, then b is a linear combination of a and n.

Now, b is a multiple of ged(a, n) if and only if b is a linear combination of a
and n.

Hence, b is a multiple of ged(a,n), so ged(a,n)|b.
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Conversely, suppose ged(a,n)|b.

To prove a solution exists we must prove there exists an integer xy such that
axg =b (mod n).

Let d = ged(a, n).

Then d|b, so there exists some integer k such that b = dk.

Since d is the least positive linear combination of a and n, then there exist
integers r and s such that ra 4+ sn = d.

We multiply this equation by k to obtain rak + snk = dk = b.

Hence, rak — b = —snk, so a(rk) — b = n(—sk).

Let zg = rk.

Then z; is an integer and azy — b = n(—sk).

Since —sk is an integer, then n|(axzg — b), so axg = b (mod n).

Suppose a solution exists to the linear congruence az = b (mod n).

Then ged(a,n)lb.

Since az = b (mod n), then n|(ax —b), so there exists an integer k such that
axr —b = nk.

Hence, ax — nk = b.

Let y = —k.

Then ax + ny = b.

The equation ax + ny = b is a linear diophantine equation.

Since ged(a, n)|b, then a solution exists to the diophantine equation.

Let (x0,yo) be a particular solution to az + ny = b.

Then the solution set has the form (z¢ +t%,y0 — t5) where d = ged(a, n)
and t is any integer, by corollary 69.

Suppose 0 <t < d.

Then = is one of g, zo + 5,20 + 2%, 20 + 35, ..., 20 + (d — 1) 5.

To prove each of these d solutions is a distinct element modulo n, suppose
for the sake of contradiction that there exist a pair of these solutions that are
not distinct modulo n.

Then there exist a pair of these solutions that are congruent modulo n.

Let 2/, 2" be a pair of these solutions such that 2’ = 2”7 (mod n), where
' =xo+t1% and 2”7 = 29 + 125 and 0 < t; <d and 0 <ty < d.

Then n|(z" — "), so n|(xo +t1%) — (xo +125).

Hence, n|(t1 5 —t2%), so n|%(t1 — to).

Thus, n|% (|t — t2|), so n < 5[ty — tof.

Hence, 1 < ‘tl%dhl, so d < |t; — tal.

Since 0 < t; < d and 0 < 3 < d, then 0 < [t; — to| < d, so |t1 — to| < d.

Thus, we have d < |[t; — t2| and |t; — t2] < d, a contradiction.

Therefore, no such pair exists, so each of these d solutions is a distinct
element modulo n.

To prove each of these d solutions is congruent modulo %, let 2’ and z” be

arbitrary solutions such that 2’ = ¢ +t'% and 2" = xo +t"% where 0 <t < d
and 0 <t < d.
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Observe that

n | n
d d
n
| E(tlit//)
n n
tlfftllf
GES
n n
| ($0+t/3)*($0+t”3)
| (.’I,‘/—J,‘N).

Hence, 2’ = 2" (mod %).

Since x and x’ are arbitrary, then each of the d solutions is congruent modulo
n
n O
d

Corollary 81. Let a,b € Z and n € Z+.

There exists an integer b such that ab =1 (mod n) if and only if ged(a,n) =
1.

Moreover, b is the inverse of a and the inverse of a is unique modulo n.

Proof. Existence:
Suppose there exists an integer b such that ab =1 (mod n).
Then b is a solution to the linear congruence axz =1 (mod n).
A solution to the linear congruence ax =1 (mod n) exists iff ged(a,n)|1.
Hence, ged(a,n)|l. Therefore, ged(a,n) = 1.

Conversely, suppose ged(a,n) = 1.

Since ged(a, n)|1, then there exists a solution to the linear congruence azx = 1
(mod n).

Let b be a solution.

Then b is an integer such that ab =1 (mod n).

Therefore, b is an inverse of a.

Uniqueness:

Let b and b be inverses of a modulo n.

Since b is an inverse of a, then ab =1 (mod n).

Since b is an inverse of a, then ab’ =1 (mod n).

Hence, b and b’ are solutions to the linear congruence axz =1 (mod n).

Therefore, ged(a,n) = 1.

Since ab =1 (mod n), then 1 = ab (mod n).

Since ab’ =1 (mod n) and 1 = ab (mod n), then ab’ = ab (mod n).

Since ged(a,m) = 1, then we may cancel to obtain ¥ = b (mod n), by
corollary 75.

Therefore, the inverse is unique modulo n. O
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Integers Modulo n

Lemma 82. addition modulo n is well-defined
Let [a], [b] € Zy,.
Let z,z' € [a], and y,y’ € [b],.
Then [x +y] = [z' + V']

Proof. Let a,b € Z and n € Z+.
Suppose z, 2’ € [a], and y,y’ € [b],.
Then [a], ={z €Z:2=a (mod n)} and [b], ={zx €Z: 2 =b (mod n)}.
Since z,z’ € [a], then z,7’ € Z and x = a (mod n) and ' = a (mod n).
Since y,y’ € [b], then y,y’ € Z and y = b (mod n) and ¥’ = b (mod n).
Since 2’ = a (mod n), then a = 2’ (mod n).
Since z = a (mod n) and a = 2’ (mod n), then z = 2’ (mod n).
Since ¥y’ =b (mod n), then b =3y’ (mod n).
Since y = b (mod n) and b =19y’ (mod n), then y =y’ (mod n).
Adding the congruences * = 2’ (mod n) and y = 3’ (mod n), we obtain
z+2' = (y+y) (modn).
Therefore, [z + 2'] = [y + ¢'].
Notes:
We observe that if z, 2’ € [a] and y,y’ € [b], then [z + y] = [2' + V'] O

Proposition 83. Addition modulo n is a binary operation.
Let +,, : Zp X Ly, — Ly, be a binary relation defined by [a] + [b] = [a + b] for
all [a], [b] € Zy,.

Then +,, is a binary operation on Z,,.

Solution. To prove +,, is a binary operation on Z,, we must prove:

1. Closure: (Y[a], [b] € Zy)([a] + [b] € Zy,).

2. Uniqueness: (V[a], [0] € Zy)([a] + [b]) is unique.

To prove [a] + [b] is unique, we must prove:

if ([al, [b]), ([@'], [V']) € Zy, X Z,, such that ([a], [b])
[a'] + [b'].

Thus, assume ([a], [b]) = ([¢'], [b]). Prove [a] 4 [b] = [d] + [V'].

Suppose ([a], [b]) = ([a], [t']).

Then [a] = [ /] and [b] = [V'].

Thus, a = o’ (mod n) and b=V (mod n).

Thus, we must prove the result does not depend on the choice of a particular
representative of the equivalence class. O

I
=
=
=

-+

=

@

=

+
=

I

Proof. Let [z], ly] € Zp.
Then x and y are integers.
Since x + y is an integer, then [z + y| € Z,.
Observe that [z + y] = [z] + [y].
Hence, [z] + [y] € Zy,.
Therefore, Z,, is closed under addition modulo n.
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We prove addition modulo n is well defined.
Let ([a], [B]), ([a'], [']) € Zn X Zy such that ([a], [b]) = ([a'], ['])-
Then [a] = [a] and [b] = [V].
Hence, a = a’ (mod n) and b =" (mod n).
Adding these congruences, we obtain a + b = (a’ + ') (mod n).
Hence, [a + b] = [a' + V'].

Therefore,
[a] +[b] = [a+b]
= [d+V]
= W]+
Hence, [a] 4 [b] = [a'] 4+ [b'], so addition modulo n is well defined. O

Theorem 84. algebraic properties of addition modulo n
1. [a] + ([b] + [€]) = ([a] + [B]) + [c] for all [a], [b], [c] € Zy,.(associative)

2. [a] + [b] = [b] + [a] for all [a], [b] € Zy,.(commutative)
3. [a] +[0] = [0] + [a] = [a] for all [a] € Z,,. (additive identity)
4. la] + [—a] = [—a] + [a] = [0] for all [a] € Z,,. (additive inverses)

Proof. We prove 1.

Let [a], [0], [c] € Zn.

Then [a]+ ([b]+]c]) = [a]+[b+¢c] = [a+ (b+c)] = [(a+b)+c] = [a+b]+]c] =
(la] + [0]) + [c]. O

Proof. We prove 2.
Let [a], [b] € Z,,.
Then [a] + [b] = [a + b] = [b+ a] = [b] + [a]. O

Proof. We prove 3.
Let [a] € Zy,.
Then [a] 4+ [0] = [a + 0] = [a] = [0+ a] = [0] + [a]. O

Proof. We prove 4.
Let [a] € Z,,.
Then [a] +[—a] = [a + (=a)] = [0] = [-a + a] = [-a] + [a]. O

Proposition 85. Multiplication modulo n is a binary operation.

Let *p, 2 Zp, X L, — Ly, be a binary relation defined by [a][b] = [ab] for all
[al,[b] € Z,,.

Then *,, is a binary operation on Z.,.

Solution. To prove x*, is a binary operation on Z,,, we must prove:
1. Closure: (V[a],[b] € Zy)([a][b] € Zy,).
2. Uniqueness: (V[a], [b] € Z,)([a][b]) is unique.
To prove [a][b] is unique, we must prove:
o B0 ) € 2 2 s that ) = () 1), then ] =
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Thus, assume ([a], [b]) = ([a], []). Prove [a][b] = [a/][V].

Suppose ([a], [b]) = ([a'], [t']).

Then [a] = [o') and [8] = [¢].

Thus, a = a’ (mod n) and b =¥ (mod n).

Thus, we must prove the result does not depend on the choice of a particular
representative of the equivalence class. O

Proof. Let [z], [y] € Zy,.
Then z and y are integers.
Since zy is an integer, then [xy] € Z,.
Observe that [zy] = [z][y].
Hence, [2]ly] € Zy.
Therefore, Z,, is closed under multiplication modulo n.
We prove multiplication modulo n is well defined.
Let ([al, [b]), ([a'], [']) € Zn X Zy, such that ([a], [b]) = ([a'], [t']).
Then [a] = [a] and [b] = [V].
Hence, a = a’ (mod n) and b =b" (mod n).
Multiplying these congruences, we obtain ab = o'’ (mod n).

Hence, [ab] = [a'V].
Therefore,
[a][b] = [ab]
— (@]
= [][b].
Hence, [a][b] = [a][b'], so multiplication modulo n is well defined. O

Theorem 86. algebraic properties of multiplication modulo n

1. [a]([b][e]) = ([a][b])[c] for all [a],[b],[c] € Zn,. (associative)

2. [a][b] = [b][a] for all [a], [b] € Z,. (commutative)

3. [a][1] = [1][a] = [a] for all [a] € Zn (multiplicative identity)

4 [a][0] = [0][a] = [0] for all [a] €

5. [a)([b] + [c]) = [a][b] + [a][c] for all [a], (0], [c] € Zy. (left distributive)
6. ([a] + [b])[c] = [al[c] + [b][¢] for all [a],[b],[c] € Z. (right distributive)

Proof. We prove 1.

Let [a], [], [c] € Zy,.

Then [a]([b][c]) = [a][be] = [a(be)] = [(ab)c] = [ab][c] = ([a][b])[¢]- O
Proof. We prove 2.

Let [al,[b] € Zp,.

Then [a][b] = [ab] = [ba] = [b][a]. O

Proof. We prove 3.
Let [a] € Zy,.
Then [a][1] = [a1] = [a] = [1a] = [1][a]. O
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Proof. We prove 4.
Let [a] € Z,,.
Then [a][0] = [a0] = [0] = [0a] = [0][a]. O

Proof. We prove 5.

Let [a], [b], [c] € Zp,.

Then [a]([b] + [c]) = [allb + ¢] = [a(b+ ¢)] = [ab + ac] = [ab] + [ac] =
[a][b] + [a][c]. O

Proof. We prove 6.

Let [a], [b], [c] € Zp.

Then ([a] + [b])[c] = [a + bllc] = [(a + b)c] = [ac + bc] = [ac] + [bc] =
[a][c] + [b][c]- O

Theorem 87. Existence of multiplicative inverse of [a] modulo n
LetneZ™".
Let [a] € Zy,.
Then [a] has a multiplicative inverse in Z, iff ged(a,n) = 1.

Proof. Let n be a positive integer.

Let [a] € Zy,.

Suppose [a] has a multiplicative inverse.

Then there exists [b] € Z,, such that [a][b] = [1], so [ab] = [1].

Hence, ab =1 (mod n), so n|(ab—1).

Thus, ab — 1 = nk for some integer k.

Consequently, 1 = ab — nk = ba — nk = ba — kn = ba + (—k)n is a linear
combination of a and n.

Let d = ged(a,n).

Any common divisor of a and n divides any linear combination of a and n.

Hence, d divides any linear combination of a and n, so d divides 1.

Since d € Z* and d|1, then d = 1, so ged(a,n) = 1.

Conversely, suppose ged(a,n) = 1.
Then there exists x,y € Z such that za +yn =1, so za — 1 = —yn.
Since —y € Z, then this implies n divides za — 1, so za =1 (mod n).
Thus, 1 = za, so [1] = [za] = [z][a] = [a][z].
Since [z] € Z,, and [a][z] = [1], then [a] has a multiplicative inverse. O

Corollary 88. The inverse of [0] in Z; is [0].
Letn e Z*.
If n > 1, then [0] has no multiplicative inverse.

Proof. Let n € Z+.
Then either n =1 or n > 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then Z; = {[0]}.
Since 0 =1 (mod 1), then [0] = [1].
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Hence, [1] € Z;.

Since [1] = [0] = [0 % 0] = [0][0], then there exists [0] € Z; such that
0]0] = [1].

Therefore, [0] has a multiplicative inverse in Z; and [0]~ = [0].

Case 2: Suppose n > 1.

Then ged(0,n) =n > 1, so ged(0,n) > 1.

Thus, ged(0,n) # 1.

Since [0] has a multiplicative inverse in Z,, iff gcd(0,n) = 1, then [0] does
not have a multiplicative inverse in Z,,. ]

Theorem 89. Letn € ZT.
A nonzero element of Z,, either has a multiplicative inverse or is a divisor
of zero.

Solution. Let [a] € Z,, [a] # [0].

We must prove: Either [a] has a multiplicative inverse or [a] is a divisor of
ZETO.

Either a and n are relatively prime or not. O

Proof. Let n be a positive integer.
Let [a] € Z,, and [a] # [0].
Since [a] € Zy, then a is an integer.
Either a and n are relatively prime or not.
We consider these cases separately.
Case 1: Suppose a and n are relatively prime.
Then ged(a,n) = 1.
The element [a] has a multiplicative inverse in Z,, iff gcd(a,n) = 1.
Hence, [a] has a multiplicative inverse in Z,.
Case 2: Suppose a and n are not relatively prime.
Then ged(a,n) # 1, so ged(a,n) > 1.
Let d = ged(a, n).

Then d > 1.
Consider the equation [a][z] = [0].
Observe that [a][z] = [ax] = [0].

Hence, ax =0 (mod n).

The linear congruence has a solution iff ged(a,n)|0.

Hence, a solution exists iff d|0.

Any integer divides zero, so d|0.

Hence, a solution exists and there are d distinct solutions modulo n.

Zero is a solution since a * 0 =0 (mod n).

Thus, there are d — 1 distinct nonzero solutions modulo 7.

Sinced >1,thend—1>0,s0d—12> 1.

Hence, there exists at least one nonzero solution modulo n, say b.

Thus, b is a nonzero positive integer that is less than n and is a solution to
ax =0 (mod n).

Hence, [b] € Z,, and [b] # [0] and ab =0 (mod n).

Since ab = 0 (mod n), then [ab] = [0], so [a][b] = [0].

99



Since [b] € Z,, and [b] # [0] and [a][b] = [0], then [a] is a divisor of zero. [
Proposition 90. If p is prime, then ¢(p) =p — 1.

Proof. Suppose p is a prime number.

Then p is a positive integer and p > 1.

Let S={1,2,..,p— 1,p}.

Let a € S.

Since @ € S and S C Z*, then a € Z*.

Either a < p or a = p.

We consider these cases separately.

Case 1: Suppose a < p.

Since a and p are positive integers and a < p, then p fa.

Since p is prime, then either p|a or ged(p,a) = 1.

Since p fa, then ged(p,a) = 1.

Hence, a is relatively prime to p.

Thus, there are p — 1 positive integers less than p that are relatively prime
to p.

Case 2: Suppose a = p.

Then ged(p, a) = ged(p,p) =p > 1.

Thus, ged(p, a) # 1, so p and a are not relatively prime.

Hence, in all cases, there are exactly p—1 positive integers less than or equal
to p that are relatively prime to p.

Therefore, ¢(p) = p — 1. O

Fermat’s Theorem

Theorem 91. Fermat’s Little Theorem
Let p,a € ZT.
If p is prime and p fa, then plaP~! — 1.

Proof. Suppose p is prime and p fa.
By the division algorithm, a = pg+r for some integers ¢ and r with 0 < r < p.
Since p fa, then r # 0, so 0 < r < p.
Hence, 1 <r <p-—1.

Let s € Z such that 1 <s<p—1.

We prove if r # s then ra Z sa (mod p) by contrapositive.

Suppose ra = sa (mod p).

Then p divides ra — sa = (r — s)a.

Since p is prime and p divides (r — s)a, then by Euclid’s lemma, either
p|(r — s) or pla.

By assumption, p fa, so we conclude p|r — s.

Hence, r = s (mod p).

Therefore, ra = sa (mod p) implies r = s (mod p), sor # s (mod p) implies
ra # sa (mod p).
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Thus, any distinct pair of these integers sa, 2a, 3a, ..., (p — 1)a are not con-
gruent (mod p), so a,2a, 3a,...,(p — 1)a are all distinct.

Hence, the congruence classes [a], [2a], [3a], ..., [(p — 1)a] are all distinct.

Let S be the set of these elements.

Then S ={[ra]: 1 <r <p—1} = {[a],[2qa],...,[(p — 1)a]}.

We prove [0] € S.
Suppose [0] € S.
Then [0] = [ra] for 1 <r <p—1.
Thus, 0 = ra (mod p), so ra =0 (mod p).
Hence, p divides ra — 0 = ra.
Since p is prime and p divides ra, then by Euclid’s lemma, either p|r or p|a.
By assumption, p fa, so we conclude p|r.
Since p and r are positive integers and p|r, then p < r.
Since r <p—1< pithen r <p,sop>r.
Thus, we have p > r and p < r, a contradiction.
Therefore, [0] € S.

Let T ={[k]: 1<k <p-—1}.
Then T = {[1],[2], ..., [p — 1]}

We prove S C T.
Let z € S.
Then z =[raj and 1 <r <p-—1.
By the division algorithm, ra = pg’ + 7’ for integers ¢’, " with 0 <7/ < p.
Since v’ € Z and ' <p, thenr <p—1,s00 <7 <p—1.
Observe that

|
RS

Since z = [r'] and z € S and [0] ¢ S, then [r'] # [0], so ' # 0.
Since 0 <r'<p—1landr #0,then0<r' <p—1,801 <7 <p-—1.
Since z =[r']and 1 <7’ <p-—1,thenx €T,s0o S CT.
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We prove T C S.

Let yeT.

Then y = [k] for some integer k with 1 <k <p—1.

The linear congruence ar = k (mod p) has a solution iff ged(a,p) divides k
and there are ged(a,p) distinct solutions modulo p.

Since p is prime, then either pla or ged(p,a) = 1.

By assumption, p fa, so we conclude ged(p,a) = 1.

Since ged(p,a) = 1 and 1 divides integer k, then we conclude the linear
congruence ar = k (mod p) has 1 distinct solution modulo p.

Hence, there exists an integer r with 0 < r < p such that ar = k (mod p),
so k = ar (mod p).

Thus, k = ra (mod p), so [k] = [ra].

Since k > 1, the k # 0.

Since k # 0 and ar = k (mod p), then ar £ 0 (mod p), so r # 0.

Since 0 <r<pandr#0,then0<r<p,sol<r<p-1.

Hence, y =[rajand 1 <r<p-—-1,s0y € S.

Therefore, y € T implies y € S, so T C S.

Since SCT and T'C S, then S=T.

Observe that

Therefore, a?~* = 1 (mod p), so p divides a?~! — 1. 0

Corollary 92. Let p,a € Z.
If p is prime, then a? = a (mod p).

Proof. Suppose p is prime.

Either pla or p fa.

We consider these cases separately.

Case 1: Suppose pla.

Then pla — 0, so a =0 (mod p).

Since p is prime, then p € Z™.

Since p € Z* and exponentiation preserves congruences and a = 0 (mod p),
then we raise to the p power to obtain a? = 0? =0 = a, so a? = a (mod p).

Case 2: Suppose p fa.

Since p is prime and p fa, then by Fermat’s Little theorem, p divides a?~1 —1,
so a?~1 =1 (mod p).

Since @ = a (mod p), we multiply these congruences to obtain a? = a?~t.a =
1-a=a,soa’ =a (mod p). O
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Theorem 93. Fuler’s Theorem
Leta€Z andn € Z+.
If ged(a,n) = 1, then a®™ =1 (mod n).

Proof. Let Z7 be the group of units of Z,.

Then Z! = {[a] € Zy, : gcd(a,n) = 1}.

Let [a] € Z},.

Then [a] € Z,, and ged(a,n) = 1.

Let m = |Z%| = ¢(n).

Then m is a positive integer, so Z;, is a finite group of order m.

Hence, g™ = e for all g € Z7.

Thus, [a]™ = [1], 5o [1] = [a]™ = [a™].

Hence, 1 = a™ (mod n), so a™ =1 (mod n).

Therefore, a®™ =1 (mod n).

Thus, ged(a,n) = 1 and a®™ =1 (mod n), so ged(a,n) = 1 implies a®™) =
1 (mod n). O

Corollary 94. Fermat’s Little Theorem
Let a € Z.
If p is prime, then a? = a (mod p).

Proof. Suppose p is prime.
Then either p divides a, or p and a are relatively prime.
We consider these cases separately.
Case 1: Suppose pla.
Then there exists an integer k such that a = pk.
Hence, a? — a = a(a?~! — 1) = pk(aP~1 — 1).
Since p > 1, then p — 1 > 0, so p — 1 is a positive integer.
Consequently, a?~! is an integer, so k(a?~! — 1) is an integer.
Thus, p divides a? — a, so a? = a (mod p).
Case 2: Suppose p and a are relatively prime.
Then ged(a,p) = 1.
By Euler’s thm, a®®) =1 (mod p).
Since p is prime, then ¢(p) =p — 1,50 a?~! =1 (mod p).
Multiplying the congruence by a, we obtain a? = a (mod p). O

Miscellaneous Stuff

Proposition 95. FEvery integer is congruent modulo n to exactly one
of the integers 0,1,2,...n — 1.

Proof. Let a € Z and n € Z+.

By the division algorithm, when a is divided by n, then there exist unique
integers ¢ and r such that a =ng+rand 0 <r < n.

Thus, a — r = nq, so n|(a — r).

Therefore, a = r (mod n).
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Since 0 < r < n, then either r =0orr=1orr=2o0r .. orr=n—1, so
re{0,1,2,...,n—1}.

Hence, a is congruent modulo n to either O or 1 or 2 or ... or n — 1.

Therefore, every integer is congruent modulo n to exactly one of the integers
in {0,1,2,....,n—1}. O

Proposition 96. Any set of n integers is a complete set of residues
modulo n iff no two of the integers are congruent modulo n.

Proof. TODO O
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