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Peano Axioms for natural number system

Proposition 1. The successor of a natural number is unique.

Proof. Let n ∈ N.
Each natural number has a successor, by the axiom for N, so n has a suc-

cessor.

Suppose a′ ∈ N and b′ ∈ N are successors of n.
Then a′ is the concatenation of n and 1 and b′ is the concatenation of n and

1.
The concatenation of 1 to n is n followed by 1 and this occurs in exactly one

way.
So, any concatenation of n by 1 must be the same.
Therefore, a′ = b′, so the successor is unique.

Theorem 2. Laws of addition
Let k,m, n be natural numbers.
1. m+ n = n+m. (addition is commutative)
2. (k +m) + n = k + (m+ n). (addition is associative)
3. Let s be the successor operation on a natural number n.
Then s(n) = n+ 1.

Proof. We prove 1.
If we combine m ones and n ones, then the order in which we combine doesn’t

matter if we’re interested in just the total number of ones.
Therefore, m+ n = n+m.

Proof. We prove 2.
The total number of ones is the same whether we concatenate the ones of

the first two numbers and then concatenate the ones from the third number, or
whether we concatenate the ones of the second two numbers and then concate-
nate the ones from the first number.

Therefore, (k +m) + n = k + (m+ n).



Proof. We prove 3.
The successor of n is the natural number formed by the concatenation of n

with |.
Therefore, s(n) = n+ 1.

Theorem 3. Laws of multiplication
Let k,m, n be natural numbers.
1. mn = nm. (multiplication is commutative)
2. (km)n = k(mn). (multiplication is associative)
3. n× 1 = n (multiplicative identity)

Proof. We prove 1.
TODO

Proposition 4. relation < over N is transitive
Let a, b, c ∈ N.
If a < b and b < c, then a < c.

Proof. Suppose a < b and b < c.
Then there exists x ∈ N such that a + x = b and there exists y ∈ N such

that b+ y = c.
Thus, c = b+ y = (a+ x) + y = a+ (x+ y).
Since N is closed under + and x, y ∈ N then x+ y ∈ N.
Hence a < c, by definition of <.
Therefore, < is transitive.

Construction of Z
Theorem 5. Algebraic properties of addition and multiplication in Z

1. For all a, b, c ∈ Z, (a+ b) + c = a+ (b+ c). Addition is associative.
2. For all a, b ∈ Z, a+ b = b+ a. Addition is commutative.
3. For all a, b, c ∈ Z, (ab)c = a(bc). Multiplication is associative.
4. For all a, b ∈ Z, ab = ba. Multiplication is commutative.
5. For all a, b, c ∈ Z, a(b + c) = ab + ac. Multiplication is distributive over

addition.

Proof. TODO

Proposition 6. Zero is additive identity in Z
For all a ∈ Z, a+ 0 = a.

Proof. TODO

Proposition 7. One is multiplicative identity in Z
For all a ∈ Z, 1 · a = a.

Proof. TODO
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Proposition 8. Additive inverse of a is −a in Z
Let a ∈ Z.
Then there exists −a ∈ Z such that a+ (−a) = 0.

Proof. TODO

Proposition 9. The only integers whose product is one are one and
negative one.

Let a, b ∈ Z.
If ab = 1, then either a = b = 1 or a = b = −1.

Proof. TODO

Proposition 10. Cancellation law for Z
Let a, b, c ∈ Z.
If c 6= 0 and ac = bc, then a = b.

Proof. TODO

Proposition 11. For all a, b ∈ Z
1. a > 0 iff a ∈ Z+

2. a < 0 iff −a ∈ Z+.
3. a < b iff b− a > 0.

Proof. We prove 1.
Let a ∈ Z.
Observe that

a > 0 ⇔ 0 < a

⇔ a− 0 ∈ Z+

⇔ a+ (−0) ∈ Z+

⇔ a+ 0 ∈ Z+

⇔ a ∈ Z+.

Therefore, a > 0 iff a ∈ Z+.

Proof. We prove 2.
Let a ∈ Z.
Observe that a < 0 iff 0− a ∈ Z+ iff 0 + (−a) ∈ Z+ iff −a ∈ Z+.
Therefore, a < 0 iff −a ∈ Z+.

Proof. We prove 3.
Let a ∈ Z.
Observe that a < b iff b− a ∈ Z+ iff b− a > 0.
Therefore, a < b iff b− a > 0.
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Theorem 12. Z satisfies transitivity and trichotomy laws
1. a < a is false for all a ∈ Z. (Therefore, < is not reflexive.)
2. For all a, b, c ∈ Z, if a < b and b < c, then a < c. (< is transitive)
3. For every a ∈ Z, exactly one of the following is true (trichotomy):
i. a > 0
ii. a = 0
iii. a < 0
4. For every a, b ∈ Z, exactly one of the following is true (trichotomy):
i. a > b
ii. a = b
iii. a < b

Proof. We prove 1.
Let a ∈ Z.
By the trichotomy axiom for Z+, 0 6∈ Z+, so a− a 6∈ Z+.
Therefore, a 6< a, by definition of <.

Proof. We prove 2.
Suppose a < b and b < c.
Then b− a ∈ Z+ and c− b ∈ Z+.
Since the sum of positive integers is positive, then (c− b) + (b− a) ∈ Z+.
Observe that

(c− b) + (b− a) = (c+ (−b)) + (b+ (−a))

= c+ ((−b) + b) + (−a)

= c+ 0 + (−a)

= c+ (−a)

= c− a.

Therefore, c− a ∈ Z+, so a < c.

Proof. We prove 3.
Let a ∈ Z.
By trichotomy, exactly one of the following is true: a ∈ Z+, a = 0, −a ∈ Z+.
Observe that a ∈ Z+ iff a > 0 and −a ∈ Z+ iff a < 0.
Therefore, exactly one of the following is true: a > 0, a = 0, a < 0.

Proof. We prove 4.
Let a, b ∈ Z.
Since Z is a ring, then Z is closed under subtraction, so a− b ∈ Z.
By the trichotomy law for axioms of Z+, exactly one of the following is true:

a− b ∈ Z+, a− b = 0, −(a− b) ∈ Z+.
Observe that a− b ∈ Z+ iff b < a iff a > b.
Observe that a− b = 0 iff a = b.
Observe that −(a− b) ∈ Z+ iff −a+ b ∈ Z+ iff b− a ∈ Z+ iff a < b.
Therefore, exactly one of the following is true: a > b, a = b, a < b.
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Theorem 13. order is preserved by the ring operations in Z
Let a, b, c ∈ Z.
1. If a < b, then a+ c < b+ c. (preserves order for addition)
2. If a < b, then a− c < b− c. (preserves order for subtraction)
3. If a < b and c > 0, then ac < bc. (preserves order for multiplication by a

positive integer)
4. If a < b and c < 0, then ac > bc. (reverses order for multiplication by a

negative integer)

Proof. We prove 1.
Suppose a < b.
Then b− a ∈ Z+.
Let c ∈ Z.
Observe that

b− a = b+ (−a)

= b+ 0 + (−a)

= b+ (c+ (−c)) + (−a)

= (b+ c) + (−c+ (−a))

= (b+ c) + (−a+ (−c))
= (b+ c)− (a+ c).

Therefore, (b+ c)− (a+ c) ∈ Z+, so a+ c < b+ c.

Proof. We prove 2.
Suppose a < b.
Then b− a ∈ Z+.
Let c ∈ Z.
Observe that

b− a = b+ (−a)

= b+ 0 + (−a)

= b+ (−c+ c) + (−a)

= (b+−c) + (c+ (−a))

= (b+−c) + (−a+ c)

= (b− c) + (−a+ c)

= (b− c)− (a− c).

Therefore, (b− c)− (a− c) ∈ Z+, so a− c < b− c.

Proof. We prove 3.
Suppose a < b and c > 0.
Then b− a ∈ Z+ and c ∈ Z+.
Since the product of positive integers is a positive integer, then (b−a)c ∈ Z+.
Therefore, (b− a)c = bc− ac ∈ Z+, so ac < bc.
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Proof. We prove 4.
Suppose a < b and c < 0.
Then b− a ∈ Z+ and −c ∈ Z+.
Since the product of positive integers is a positive integer, then (b−a)(−c) ∈

Z+.
Observe that

(b− a)(−c) = (b+ (−a))(−c)
= b(−c) + (−a)(−c)
= −bc+ ac

= ac− bc.

Hence, ac− bc ∈ Z+, so bc < ac.
Therefore, ac > bc.

Theorem 14. Principle of Mathematical Induction
Let S be a subset of Z+ such that
1. 1 ∈ S (basis)
2. for all k ∈ Z+, if k ∈ S, then k + 1 ∈ S. (induction hypothesis)
Then S = Z+.

Proof. We prove by contradiction.
Assume Z+ − S 6= ∅.
Since Z+ − S 6= ∅ and Z+ − S ⊂ Z+, then by the well ordering property of

Z+, the set Z+ − S has a least element m, so m ∈ Z+ − S and m ≤ x for each
x ∈ Z+ − S.

Since m ∈ Z+ − S, then m ∈ Z+ and m 6∈ S.
Since m ∈ Z+, then m ∈ Z and m ≥ 1.
Since 1 ∈ S and m 6∈ S, then m 6= 1.
Since m ≥ 1 and m 6= 1, then m > 1, so m− 1 > 0.
Since m ∈ Z, then m− 1 ∈ Z.
Since m− 1 ∈ Z and m− 1 > 0, then m− 1 ∈ Z+.
By hypothesis, if m− 1 ∈ S, then m ∈ S, so if m 6∈ S, then m− 1 6∈ S.
Since m 6∈ S, then we conclude m− 1 6∈ S.
Since m− 1 ∈ Z+ and m− 1 6∈ S, then m− 1 ∈ Z+ − S.
Since m−m = 0 < 1, then m < m+ 1, so m− 1 < m.
Thus, there exists m− 1 ∈ Z+ − S such that m− 1 < m.
This contradicts the assumption that m is the least element of Z+ − S.
Hence, Z+ − S = ∅.

Since Z+ = S ∪ (Z+ − S) = S ∪ ∅ = S, then S = Z+, as desired.

Theorem 15. Principle of Mathematical Induction(strong)
Let S be a subset of Z+ such that
1. 1 ∈ S (basis)
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2. for all k ∈ Z+, if 1, 2, ..., k ∈ S, then k + 1 ∈ S. (strong induction
hypothesis)

Then S = Z+.

Proof. We prove by contradiction.
Assume Z+ − S 6= ∅.
Since Z+ − S 6= ∅ and Z+ − S ⊂ Z+, then by the well ordering property of

Z+, the set Z+ − S has a least element m, so m ∈ Z+ − S and m ≤ x for all
x ∈ Z+ − S.

Since m ∈ Z+ − S, then m ∈ Z+ and m 6∈ S.
Since m ∈ Z+, then m ∈ Z and m ≥ 1.
Since 1 ∈ S and m 6∈ S, then m 6= 1.
Since m ≥ 1 and m 6= 1, then m > 1, so m− 1 > 0.
Since m ∈ Z, then m− 1 ∈ Z.
Since m− 1 ∈ Z and m− 1 > 0, then m− 1 ∈ Z+.
Since m ≤ x for all x ∈ Z+−S, then if x ∈ Z+−S, then m ≤ x, so if x < m,

then x 6∈ Z+ − S.
Since x ∈ Z+ − S iff x ∈ Z+ and x 6∈ S, then x 6∈ Z+ − S iff either x 6∈ Z+

or x ∈ S.
Thus, if x 6∈ Z+ − S, then either x 6∈ Z+ or x ∈ S.
Hence, if x ∈ Z+ and x 6∈ Z+ − S, then x ∈ S.
Since 1, 2, ...,m− 1 are positive integers, then 1, 2, ...,m− 1 ∈ Z+.
Since 1 < m and 2 < m and ... and m−1 < m, then 1, 2, ...,m−1 6∈ Z+−S.
Thus, 1, 2, ...,m− 1 ∈ S.
Since m− 1 ∈ Z+, then by hypothesis, if 1, 2, ...,m− 1 ∈ S, then m ∈ S.
Therefore, m ∈ S.
Thus, we have m ∈ S and m 6∈ S, a contradiction
Hence, Z+ − S − ∅.

Since Z+ = S ∪ (Z+ − S) = S ∪ ∅ = S, then S = Z+, as desired.

Theorem 16. Archimedean Property of Z+

Let a, b ∈ Z+.
Then there exists n ∈ Z+ such that nb ≥ a.

Proof. We prove by contradiction.
Suppose nb < a for all n ∈ Z+.
Let S = {a− nb : n ∈ Z+}.
Since 1 ∈ Z+, then a− (1)b = a− b ∈ S, so S 6= ∅.

We prove S ⊂ Z+.
Let x ∈ S.
Then x = a− nb for some n ∈ Z+.
Since n ∈ Z+, then nb < a, so a > nb.
Hence, a− nb > 0.
Since a, b, n ∈ Z and Z is closed under subtraction and multiplication, then

a− nb ∈ Z.
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Since a− nb ∈ Z and a− nb > 0, then a− nb ∈ Z+, so x ∈ Z+.
Therefore, S ⊂ Z+.

Since S ⊂ Z+ and S 6= ∅, then by WOP, S has a least element m.
Thus, m ∈ S and m ≤ x for all x ∈ S.

Since m ∈ S, then m = a− kb for some k ∈ Z+.
Since k ∈ Z+, then k + 1 ∈ Z+, so a− (k + 1)b ∈ S.
Since b ∈ Z+, then b ∈ Z and b > 0, so −b < 0.
Hence, a− (k + 1)b = a− kb− b < a− kb = m, so a− (k + 1)b < m.
Thus, there exists a− (k + 1)b ∈ S such that a− (k + 1)b < m.
This contradicts the fact that m ≤ x for all x ∈ S.
Therefore, the assumption is false, so there exists n ∈ Z+ such that nb ≥

a.

Proposition 17. For all n ∈ N, n ≥ 1.

Proof. We prove the statement n ≥ 1 for all n ∈ N by induction on n.
Let S = {n ∈ N : n ≥ 1}.
Basis:
Since 1 ∈ N and 1 = 1, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ N and k ≥ 1.
The successor of k is k + 1 ∈ N.
Since 1, k ∈ N and 1 + k = k + 1 then 1 < k + 1 by definition of <.
Since k + 1 ∈ N and k + 1 > 1 then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S.
Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for any k ∈ S, then n ∈ S for any

n ∈ N by induction.
Therefore, by PMI, n ≥ 1 for all n ∈ N.

Proposition 18. There is no greatest natural number.

Proof. Suppose g ∈ N is a greatest natural number.
Then g + 1 ∈ N is the unique successor of g.
Since 1 ∈ N and g + 1 = g + 1 then g < g + 1 by definition of <.
Therefore g + 1 > g.
Hence there exists a natural number that is larger than a greatest natural

number, a contradiction.
Therefore there is no greatest natural number.

Proposition 19. Let a, b, c, d ∈ Z+.
If a < b and c < d, then ac < bd.
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Proof. Suppose a < b and c < d.
Then there exists a′ ∈ Z+ such that a+a′ = b and there exists c′ ∈ Z+ such

that c+ c′ = d.
Let e = ac′ + a′c+ a′c′.
Since a, a′, c, c′ are positive integers and Z+ is closed under addition and

multiplication, then e is a positive integer.
Observe that

ac+ e = ac+ (ac′ + a′c+ a′c′)

= (ac+ ac′) + (a′c+ a′c′)

= a(c+ c′) + a′(c+ c′)

= (a+ a′)(c+ c′)

= bd.

Since there exists a positive integer e such that ac+e = bd, then ac < bd.

Lemma 20. Let a, b ∈ N.
If a < b then b 6≤ a.

Proof. Suppose for the sake of contradiction b ≤ a.
Then either b < a or b = a by defn of ≤.
We consider these cases separately.
Case 1: Suppose b < a.
Then ∃c ∈ N such that b+ c = a, by defn of <.
Since a < b then ∃d ∈ N such that a+ d = b, by defn of <.
Choose c, d ∈ N such that b+ c = a and a+ d = b.
Then b+ c+ d = b.
Set m = c+ d.
Then b+m = b.
Since N is closed under + and c, d ∈ N then c+ d ∈ N, so m ∈ N.
The only solution to b+m = b is m = 0.
But 0 6∈ N, so m 6∈ N.
Thus we have m ∈ N and m 6∈ N, a contradiction.
Hence, b 6< a.
Case 2: Suppose b = a.
Since a < b then ∃c ∈ N such that a+ c = b.
Choose c ∈ N such that a+ c = b.
Since b = a then a+ c = a.
The only solution to a+ c = a is c = 0.
But, 0 6∈ N so c 6∈ N.
Thus we have c ∈ N and c 6∈ N, a contradiction.
Hence, b 6= a.
Both cases show that b 6< a and b 6= a.
Thus neither b < a nor b = a, so b 6≤ a.
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Theorem 21. ≤ is a partial order on Z
1. For all a ∈ Z, a ≤ a. (Reflexive)
2. For all a, b ∈ Z, if a ≤ b and b ≤ a, then a = b. (Anti-symmetric)
3. For all a, b, c ∈ Z, if a ≤ b and b ≤ c, then a ≤ c. (Transitive)

Proof. To prove ≤ is reflexive, let a ∈ Z.
Then a = a, so either a = a or a < a.
Hence, either a < a or a = a, so a ≤ a.
Therefore, ≤ is reflexive.

Proof. To prove ≤ is anti-symmetric, we must prove a ≤ b and b ≤ a implies
a = b for all a, b ∈ Z.

We shall prove the logically equivalent statement a ≤ b and a 6= b implies
b 6≤ a for all a, b ∈ Z.

Let a, b ∈ Z such that a ≤ b and a 6= b.
Since a ≤ b, then either a < b or a = b.
Since a 6= b, then we conclude a < b.
By trichotomy of Z, we have a 6= b and a 6> b, so b 6< a and b 6= a.
Therefore, b 6≤ a, so ≤ is anti-symmetric.

Proof. To prove ≤ is transitive, let a, b, c ∈ Z such that a ≤ b and b ≤ c.
Then

(a ≤ b) ∧ (b ≤ c) →
(a ≤ b) ∧ (b < c ∨ b = c) →

(a ≤ b ∧ b < c) ∨ (a ≤ b ∧ b = c) →
((a < b ∨ a = b) ∧ b < c) ∨ ((a < b ∨ a = b) ∧ b = c) →

((a < b ∧ b < c) ∨ (a = b ∧ b < c)) ∨ ((a < b ∧ b = c) ∨ (a = b ∧ b = c)) →
((a < c) ∨ (a < c)) ∨ ((a < c) ∨ (a = c)) →

(a < c) ∨ (a < c) ∨ (a = c) →
(a < c) ∨ (a = c) →

a ≤ c

Therefore, ≤ is transitive.

Since ≤ is reflexive, anti-symmetric, and transitive, then ≤ is a partial order.

Proposition 22. No natural number exists between two consecutive
natural numbers.

Let n be a natural number.
There is no m ∈ N such that n < m < n+ 1.

Proof. Suppose there is m ∈ N such that n < m < n+ 1.
Then n < m and m < n+ 1.
Since n < m, then there exists p ∈ N such that n+ p = m.
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Thus, p = m− n, so m− n ∈ N.
Since every natural number is greater than or equal to one, then m−n ≥ 1.
Since m < n+ 1, then m− n < 1.
Since m− n ∈ N and m− n < 1 and m− n ≥ 1, then we have a violation of

trichotomy.
Therefore, there is no m ∈ N such that n < m < n+ 1.

Elementary Aspects of Integers

Lemma 23. Every positive integer is either even or odd.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : n is even or n is odd}.
Basis:
Since 1 = 2 · 0 + 1 and 0 is an integer, then 1 is odd.
Since 1 ∈ Z+ and 1 is odd, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and k is even or k is odd.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since k is either even or odd, we consider these cases separately.
Case 1: Suppose k is even.
Then k = 2a for some integer a.
Thus, k + 1 = 2a+ 1, so k + 1 is odd.
Case 2: Suppose k is odd.
Then k = 2b+ 1 for some integer b.
Thus, k + 1 = (2b+ 1) + 1 = 2b+ 2 = 2(b+ 2).
Since b+ 2 is an integer, then this implies k + 1 is even.
Hence, in all cases, either k + 1 is even or k + 1 is odd.
Since k + 1 ∈ Z+ and k + 1 is either even or odd, then k + 1 ∈ S.
Therefore, by PMI, S = Z+.

Lemma 24. An integer is not both even and odd.

Proof. Let n be an integer.
We prove by contradiction.
Suppose n is both even and odd.
Then n is even and n is odd.
Since n is even, then n = 2k for some integer k.
Since n is odd, then n = 2m+ 1 for some integer m.
Thus, 2k = n = 2m+ 1, so 2k = 2m+ 1.
Hence, 1 = 2k − 2m = 2(k −m), so k −m = 1

2 .
Since k and m are integers, then k −m is an integer.
Thus, 1

2 is an integer, a contradiction.
Therefore, n is not both even and odd.

Proposition 25. A positive integer is either even or odd, but not both.
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Proof. Let n be a positive integer.
Then either n is even or n is odd.
Since n is an integer, then n is not both even and odd.
Therefore, n is either even or odd, but not both.

Proposition 26. A product of two consecutive integers is even.
If n ∈ Z, then n(n+ 1) is even.

Proof. Let n ∈ Z be given.
Either n is even or n is not even.
We consider these cases separately.
Case 1: Suppose n is even.
Then there exists m ∈ Z such that n = 2m.
Thus, n(n+ 1) = 2m(n+ 1).
Since m ∈ Z and n+ 1 ∈ Z, then m(n+ 1) ∈ Z.
Therefore, n(n+ 1) is even.
Case 2: Suppose n is not even.
Then n is odd, so there exists m ∈ Z such that n = 2m+ 1.
Thus, n(n+1) = (2m+1)(2m+2) = (2m+1)(2)(m+1) = 2(2m+1)(m+1).
Since m ∈ Z, then 2m+ 1 ∈ Z and m+ 1 ∈ Z, so (2m+ 1)(m+ 1) ∈ Z.
Therefore, n(n+ 1) is even.
Hence, in all cases, n(n+ 1) is even, as desired.

Natural Number Formulae

Proposition 27. The sum of the first n natural numbers is n(n+1)
2 .

Solution. We let Sn = 1 + 2 + 3 + ...+ n.
We can reverse the sum of terms and add each pair of corresponding terms

of the equation.
Each pair of terms add up to n+ 1. Since we have a total of n terms, then

the sum is n(n+ 1) if we add both equations as below

Sn = 1 + 2 + 3 + · · ·+ (n)

Sn = n+ (n− 1) + (n− 2) + · · ·+ 1

Thus we get

2Sn = (n+ 1)n

Sn =
n(n+ 1)

2

So, we’ve shown that the sum is n(n+1)
2 .

Proof. We prove (∀n ∈ N)(
∑n
k=1 k = n(n+1)

2 ) by induction on n.

Let S = {n ∈ N :
∑n
k=1 k = n(n+1)

2 }.
Basis:
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Since 1 ∈ N and
∑1
k=1 k = 1 = 1(1+1)

2 , then 1 ∈ S.
Induction:
Suppose m ∈ S.

Then m ∈ N and
∑m
k=1 k = m(m+1)

2 .
Since m ∈ N, then m+ 1 ∈ N.
Observe that

m+1∑
k=1

k =

m∑
k=1

k + (m+ 1)

=
m(m+ 1)

2
+ (m+ 1)

= (m+ 1)(
m

2
+ 1)

= (m+ 1)
(m+ 2)

2

=
(m+ 1)[(m+ 1) + 1]

2
.

Since m+ 1 ∈ N and
∑m+1
k=1 = (m+1)[(m+1)+1]

2 , then m+ 1 ∈ S.

Therefore, by PMI,
∑n
k=1 k = n(n+1)

2 for all n ∈ N.

Proposition 28. The sum of the first n odd natural numbers is n2.

Solution. Let Sodd = the set of odd natural numbers = {1, 3, 5, 7, 9, ...}.

The first odd number 1 occurs for n = 1, the second odd number 3 occurs
for n = 2, the third odd number 5 occurs for n = 3, the fourth odd number 7
occurs for n = 4.

So we see a pattern in which the nth odd number is simply 2n − 1 using
inductive reasoning.

Therefore we really have a sequence (1, 3, 5, 7, ..., 2n − 1) whose nth term is
2n− 1.

Let (an) be the sequence in R defined by an = 2n− 1 for all n ∈ Z+.
We can make a table of values by plugging in various values to determine if

a pattern emerges.
n sum of first n odd natural numbers
1 1 = 12

2 1 + 3 = 4 = 22

3 1 + 3 + 5 = 9 = 32

4 1 + 3 + 5 + 7 = 16 = 42

5 1 + 3 + 5 + 7 + 9 = 25 = 52

... ...
n 1 + 3 + 5 + 7 + 9 + ...+ (2n− 1) =

∑n
i=1 (2i− 1) = n2

Thus our proposition is really asserting that

∀(n ∈ N),

n∑
i=1

(2i− 1) = n2.
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Let

Sn =

n∑
i=1

(2i− 1).

We expand this sum to show the terms

Sn =

n∑
i=1

(2i− 1) = 1 + 3 + 5 + 7 + · · ·+ (2n− 1) (1)

We can reverse the sum of terms and add each pair of corresponding terms of
Equation 1. Each pair of terms add up to 2n. Since we have a total of n terms,
then the sum is 2n(n) if we add both equations as below

Sn = 1 + 3 + 5 + 7 + · · ·+ (2n− 1)

Sn = (2n− 1) + (2n− 3) + (2n− 5) + (2n− 7) + · · ·+ 1

Thus we get

2Sn = 2n(n)

Sn = n2

So, we’ve shown that the sum is n2. Now we will prove this result using
mathematical induction since we have an infinite set of statements to prove
(since we’re asserting the sum holds true for all natural numbers).

Note that the universally quantified statement ∀(n ∈ N),
∑n
i=1(2i−1) = n2 is

logically equivalent to the conditional implication if n ∈ N, then
∑n
i=1(2i−1) =

n2.

Proof. We must prove
∑n
k=1(2k − 1) = n2 for all n ∈ N.

We prove
∑n
k=1(2k − 1) = n2 for all n ∈ N by induction on n.

Let S = {n ∈ N :
∑n
k=1(2k − 1) = n2}.

Basis:
Since 1 ∈ N and

∑1
k=1(2k − 1) = 2 · 1− 1 = 2− 1 = 1 = 12, then 1 ∈ S.

Induction:
Suppose m ∈ S.
Then m ∈ N and

∑m
k=1(2k − 1) = m2.

Since m ∈ N, then m+ 1 ∈ N.
To prove m+ 1 ∈ S, we must prove

∑m+1
k=1 (2k − 1) = (m+ 1)2.

Observe that

m+1∑
k=1

(2k − 1) =

m∑
k=1

(2k − 1) + [2(m+ 1)− 1]

= m2 + (2m+ 2− 1)

= m2 + (2m+ 1)

= (m+ 1)2, as desired.
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Proposition 29. The sum of the squares of the first n natural numbers is
n(n+1)(2n+1)

6 .

Proof. We must prove
∑n
k=1 k

2 = n(n+1)(2n+1)
6 for all n ∈ N.

We prove by induction on n.

Let S = {n ∈ N :
∑n
k=1 k

2 = n(n+1)(2n+1)
6 }.

Basis:
Since 1 ∈ N and

∑1
k=1 k

2 = 12 = 1 = 1(1+1)(2·1+1)
6 , then 1 ∈ S.

Induction:
Suppose m ∈ S.

Then m ∈ N and
∑m
k=1 k

2 = m(m+1)(2m+1)
6 .

Since m ∈ N, then m+ 1 ∈ N.

To prove m+ 1 ∈ S, we must prove
∑m+1
k=1 k

2 = (m+1)[(m+1)+1][2(m+1)+1]
6 .

Observe that

m+1∑
k=1

k2 =

m∑
k=1

k2 + (m+ 1)2

=
m(m+ 1)(2m+ 1)

6
+ (m+ 1)2

= (m+ 1) · [m(2m+ 1)

6
+ (m+ 1)]

= (m+ 1) · (2m2 +m+ 6m+ 6)

6

= (m+ 1) · (2m2 + 7m+ 6)

6

= (m+ 1) · (m+ 2)(2m+ 3)

6

=
(m+ 1)[(m+ 1) + 1][2(m+ 1) + 1]

6
, as desired.

Proposition 30. The sum of the cubes of the first n natural numbers is (n(n+1)
2 )2.

Proof. We must prove
∑n
k=1 k

3 = n2(n+1)2

4 for all n ∈ N.
We prove by induction on n.

Let S = {n ∈ N :
∑n
k=1 k

3 = n2(n+1)2

4 }.
Basis:
Since 1 ∈ N and

∑1
k=1 k

3 = 13 = 1 = 12(1+1)2

4 , then 1 ∈ S.
Induction:
Suppose m ∈ S.

Then m ∈ N and
∑m
k=1 k

3 = m2(m+1)2

4 .
Since m ∈ N, then m+ 1 ∈ N.

To prove m+ 1 ∈ S, we must prove
∑m+1
k=1 k

3 = (m+1)2([m+1)+1]2

4 .
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Observe that

m+1∑
k=1

k3 =

m∑
k=1

k3 + (m+ 1)3

=
m2(m+ 1)2

4
+ (m+ 1)3

= (m+ 1)2 · [m
2

4
+ (m+ 1)]

= (m+ 1)2 · (m2 + 4m+ 4)

4

= (m+ 1)2 · (m+ 2)2

4

=
(m+ 1)2[(m+ 1) + 1]2

4
, as desired.

Divisibility and greatest common divisor

Proposition 31. Every integer divides zero. (∀n ∈ Z)(n|0).

Proof. Let n be an arbitrary integer.
Since 0 is an integer and 0 = n · 0, then n|0.

Proposition 32. The number 1 divides every integer. (∀n ∈ Z)(1|n).

Proof. Let n be an arbitrary integer.
Since n is an integer and n = 1 · n, then 1|n.

Proposition 33. Every integer divides itself. (∀n ∈ Z)(n|n).

Proof. Let n be an arbitrary integer.
Since 1 is an integer and n = n · 1, then n|n.

Proposition 34. Let a, b, c, d ∈ Z.
If a|b and c|d, then ac|bd.

Proof. Suppose a|b and c|d.
Then b = am and d = cn for some integers m and n.
We multiply to obtain bd = (am)(cn) = a(mc)n = a(cm)n = (ac)(mn).
Since mn is an integer, then ac|bd.

Proposition 35. (∀a, b ∈ Z∗)(a|b ∧ b|a→ a = ±b).

Proof. Let a and b be arbitrary nonzero integers such that a|b and b|a.
Since a|b, then b = an1 for some integer n1.
Since b|a, then a = bn2 for some integer n2.
Since a = bn2 = (an1)n2 = a(n1n2), then 0 = a(n1n2)− a = a(n1n2 − 1).
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Thus, either a = 0 or n1n2 − 1 = 0.
Since a 6= 0, then n1n2 − 1 = 0, so n1n2 = 1.
The only integers whose product is one are one and negative one.
Therefore, either n1 = n2 = 1 or n1 = n2 = −1.
We consider these cases separately.
Case 1: Suppose n1 = n2 = 1.
Then a = bn2 = b(1) = b.
Case 2: Suppose n1 = n2 = −1.
Then a = bn2 = b(−1) = −b.
Therefore, in all cases, either a = b or a = −b, so a = ±b.

Theorem 36. divides relation is transitive
For any integers a, b and c, if a|b and b|c, then a|c.

Proof. Let a, b, and c be arbitrary integers such that a|b and b|c.
Then b = am and c = bn for some integers m and n.
Thus, c = (am)n = a(mn).
Since mn is an integer, then a|c.

Theorem 37. The divides relation defined on Z+ is a partial order.

Proof. To prove the divides relation is reflexive, we must prove a|a.
Let a ∈ Z+ be arbitrary.
Since a ∈ Z+ and Z+ ⊂ Z, then a ∈ Z.
By proposition 33, every integer divides itself, so a|a.
Therefore, | is reflexive.

Proof. To prove the divides relation is antisymmetric, we must prove a|b and
b|a implies a = b.

Let a, b ∈ Z+.
Then a > 0 and b > 0.
Suppose a|b and b|a.
Then there exist integers k1 and k2 such that b = ak1 and a = bk2.
Hence, a = (ak1)k2 = a(k1k2).
Since a > 0, then a 6= 0, so we divide by a to get 1 = k1k2.
The only integers whose product is one are one and negative one.
Therefore, either k1 = k2 = 1 or k1 = k2 = −1.

Since a > 0 and b > 0 and b = ak1, then k1 > 0.
Since a > 0 and b > 0 and a = bk2, then k2 > 0.
Hence, k1 = k2 = 1.
Therefore, a = b(1) = b, so a = b.

Proof. To prove the divides relation is transitive, we must prove a|b and b|c
implies a|c.

Let a, b, c ∈ Z+.
The divides relation defined on Z is transitive.
Hence, x|y and y|z implies x|z for all integers x, y, z.
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Since a, b, c ∈ Z+ and Z+ ⊂ Z, then a, b, c ∈ Z.
Therefore, a|b and b|c implies a|c.

Since the divides relation is reflexive, antisymmetric, and transitive on Z+,
then the divides relation | is a partial order over Z+.

Proposition 38. Let a, b ∈ Z+.
If a|b, then a ≤ b.

Proof. Suppose a|b.
Then b = an for some integer n.
Since a, b ∈ Z+, then a > 0 and b > 0.
Since b = an and a > 0 and b > 0, then n > 0.
Since n ∈ Z and n > 0, then n ≥ 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then a = a · 1 = an = b, so a = b.
Case 2: Suppose n > 1.
Then 0 > 1− n.
Since a > 0 and 1− n < 0, then a(1− n) < 0.
Since a− b = a− an = a(1− n) < 0, then a− b < 0, so a < b.
Therefore, in all cases, a ≤ b.

Proposition 39. Let a, d ∈ Z.
If d | a, then d | ma for all m ∈ Z.

Proof. Let m ∈ Z be arbitrary.
Suppose d | a.
Then a = dk for some integer k.
Thus, ma = m(dk) = (md)k = (dm)k = d(mk).
Since m, k ∈ Z and Z is closed under multiplication, then mk ∈ Z.
Therefore, d | ma.

Proposition 40. Let a, b, n ∈ Z.
1. If a|b, then na|nb.
2. If n 6= 0, then na|nb implies a|b.

Proof. We prove 1.
Suppose a|b.
Then b = ak for some integer k.
Thus, nb = n(ak) = (na)k.
Since k is an integer, then na|nb.

Proof. We prove 2.
Suppose n 6= 0 and na|nb.
Since na|nb, then nb = (na)m for some integer m.
Thus, 0 = nb − (na)m = nb − n(am) = n(b − am), so either n = 0 or

b− am = 0.
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Since n 6= 0, then b− am = 0, so b = am.
Since m ∈ Z, then a|b.

Theorem 41. Division Algorithm
Let a, b ∈ Z with b > 0.
Then there exist unique integers q and r such that a = bq+r, with 0 ≤ r < b.

Solution. We must prove the statement:
(∀a, b ∈ Z, b > 0)(∃!q, r ∈ Z)(a = bq + r ∧ 0 ≤ r < b).
Let a, b ∈ Z be arbitrary with b > 0.
We must prove (∃!q, r ∈ Z)(a = bq + r ∧ 0 ≤ r < b).
To prove existence we can think about a set of integers for which r could be

an element of; ie, let r = a−bq. Thus, let us define a set S = {a−bk : k ∈ Z}. If
we drew a number line of this sequence of integers: ...,a− 3b, a− 2b, a− b, a, a+
b, a+ 2b, a+ 3b,..., then we would see that we would want r to be such that r is
non-negative( ie, r ≥ 0) and we want r to be the smallest such number in this
subset of integers. The well ordered principle says that any subset of natural
numbers has a smallest element.

The set S is really an arithmetic sequence of integers whose common differ-
ence is b; ie, the next element in order from smallest to largest is always the
previous element plus b. Thus, any subset can be arranged from smallest to
largest. Thus we can apply the Well Ordering Principle to set S if we can show
that S ⊂ N.

Then we let r be the least integer in S.
Note that there exists non-negative integers in set S because we can choose

k ∈ Z such that a ≥ kb which causes a− kb ≥ 0.
Note that q + 1 > q, so if we multiply by b > 0, we get (q + 1)b > qb. If we

then multiply by -1 we get −(q + 1)b < −qb.
If we then add a to both sides we get a − (q + 1)b < a − qb. This simply

shows that a − qb is the next element in the sequence following the element
a− (q + 1)b. We easily see that this is the case by simply drawing the number
line and it becomes obvious that the element a − (q + 1)b is to the left of the
element a− qb.

Proof. Existence:
Let a and b be arbitrary integers and b > 0.
We must prove there exist integers q and r such that a = bq+r and 0 ≤ r < b.
Let S = {a− bk : (∃k ∈ Z)(a− bk ≥ 0)}.
Suppose there exists k ∈ Z such that a− bk ≥ 0.
Since a, b, k ∈ Z, then a− bk ∈ Z.
Since a− bk ∈ Z and a− bk ≥ 0, then a− bk is a non-negative integer, so S

is a subset of non-negative integers.
Either 0 ∈ S or 0 6∈ S.
We consider these cases separately.
Case 1: Suppose 0 ∈ S.
Then there is some integer q such that a− bq = 0, so a = bq.
Let r = 0.
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Then q and r are integers and a = bq = bq + 0 = bq + r, so a = bq + r.
Since r = 0 and 0 < b, then r = 0 < b, so 0 = r < b.
Case 2: Suppose 0 6∈ S.
We show that S is not empty.
By the trichotomy property of Z, either a > 0 or a = 0 or a < 0.
We consider these cases separately.
Let x = a− bk for some integer k.
Case 2a: Suppose a = 0.
Let k = −1.
Then x = a− bk = 0− b(−1) = 0 + b = b > 0.
Since x = a− bk and x > 0, then x ∈ S, so S 6= ∅.
Case 2b: Suppose a > 0.
Let k = 0.
Then x = a− bk = a− b(0) = a− 0 = a > 0.
Since x = a− bk and x > 0, then x ∈ S, so S 6= ∅.
Case 2c: Suppose a < 0.
Let k = 2a.
Since a ∈ Z, then k ∈ Z.
Observe that x = a− bk = a− b(2a) = a(1− 2b).
Since b ∈ Z and b > 0, then b ≥ 1.
Hence, −2b ≤ −2, so 1− 2b ≤ −1 < 0.
Since a < 0 and 1− 2b < 0, then x = a(1− 2b) > 0.
Since x = a− bk and x > 0, then x ∈ S, so S 6= ∅.

Hence, in all cases there is an integer k such that S 6= ∅.

Since S is a set of non-negative integers and 0 6∈ S, then S is a set of positive
integers, so S ⊂ Z+.

Since S 6= ∅ and S ⊂ Z+, then by the well ordering principle of Z+, S has a
least element r.

Therefore, r ∈ S and r ≤ x for all x ∈ S.
Since r ∈ S, then there is some integer q such that r = a− bq and r ≥ 0.
Since r ≥ 0, then either r > 0 or r = 0.
Since 0 6∈ S and r ∈ S, then r 6= 0, so r > 0.
Since r = a− bq, then a = bq + r.

Suppose r ≥ b.
Observe that a− b(q + 1) = a− bq − b = r − b.
Since r ≥ b, then r − b ≥ 0, so a− b(q + 1) ≥ 0.
Since q ∈ Z, then q + 1 ∈ Z.
Since q + 1 ∈ Z and a− b(q + 1) ≥ 0, then a− b(q + 1) ∈ S.
Since b > 0, then −b < 0, so a− bq − b < a− bq.
Thus, a− b(q + 1) < a− bq, so a− b(q + 1) < r.
Hence, a− b(q+ 1) is an element of S that is smaller than the least element

r ∈ S, a contradiction.
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Therefore, r cannot be greater than or equal to b, so r < b.
Since 0 < r and r < b, then 0 < r < b.

Hence, in all cases we have shown the existence of integers q and r such that
a = bq + r and 0 ≤ r < b.

Proof. Uniqueness:
Suppose there are integers q1, q2, r1, and r2 such that a = bq1 + r1 and

a = bq2 + r2 and 0 ≤ r1 < b and 0 ≤ r2 < b.
Since a = bq1 + r1 and a = bq2 + r2, then bq1 + r1 = bq2 + r2, so b(q1− q2) =

r2 − r1.
Thus, b divides r2 − r1, so r2 − r1 is a multiple of b.

Since r2 < b and 0 ≤ r1, then by adding these inequalities we obtain r2 <
b+ r1, so r2 − r1 < b.

Since r1 < b and 0 ≤ r2, then by adding these inequalities we obtain r1 <
b+ r2, so −b < r2 − r1.

Thus, −b < r2 − r1 < b.
The only multiple of b between −b and b is zero, so r2 − r1 = 0.
Therefore, r1 = r2.

Observe that b(q1 − q2) = r2 − r1 = 0, so b(q1 − q2) = 0.
Since Z is an integral domain, then either b = 0 or q1 − q2 = 0.
Since b > 0, then b 6= 0.
Thus, q1 − q2 = 0, so q1 = q2.
Therefore, r is unique and q is unique.

Theorem 42. Any common divisor of a and b divides any linear com-
bination of a and b.

Let a, b, d ∈ Z.
If d|a and d|b, then d|(ma+ nb) for all integers m and n.

Proof. Suppose d|a and d|b.
Then there exist integers x and y such that a = dx and b = dy.
Let m and n be arbitrary integers.
Then ma + nb = m(dx) + n(dy) = m(xd) + n(yd) = (mx)d + (ny)d =

(mx+ ny)d = d(mx+ ny).
Since mx+ ny is an integer, then d|(ma+ nb), as desired.

Corollary 43. Let a, b, d ∈ Z.
If d|a and d|b, then d|(a+ b) and d|(a− b).

Proof. Suppose d|a and d|b.
Then d is a common divisor of a and b, so d divides any linear combination

of a and b.
Hence, d|(ma+ nb) for all integers m and n.
In particular, if m = 1 and n = 1, then d|(1 · a+ 1 · b), so d|(a+ b).
If m = 1 and n = −1, then d|(1 · a+ (−1)b), so d|(a− b).
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Corollary 44. Any common divisor of a finite number of integers
divides any linear combination of those integers.

Let a1, a2, ..., an, d ∈ Z.
If d|a1, d|a2, ..., d|an, then d|(c1a1 + c2a2 + ... + cnan) for any integers

c1, c2, ..., cn.

Proof. Suppose d|a1 and d|a2 and ... d|an.
Since d|a1, then d divides any multiple of a1, so d|c1a1 for any integer c1.
By similar reasoning, d|c2a2 for any integer c2 and ... and d|cnan for any

integer cn.
Since d|c1a1, then c1a1 = dk1 for some integer k1.
By similar reasoning, c2a2 = dk2 for some integer k2 and ... and cnan = dkn

for some integer kn.
Observe that

c1a1 + c2a2 + ...+ cnan = dk1 + dk2 + ...+ dkn

= d(k1 + k2 + ...+ kn).

Since k1 +k2 + ...+kn is an integer, then this implies d divides c1a1 + c2a2 +
...+ cnan.

Theorem 45. existence and uniqueness of greatest common divisor
Let a, b ∈ Z∗.
Then gcd(a, b) exists and is unique.
Moreover, gcd(a, b) is the least positive linear combination of a and b.

Proof. Existence:
Let a, b ∈ Z∗.
We prove there exists a positive integer d such that d|a and d|b.
Let S be the set of all positive linear combinations of a and b.
Then S = {ma+ nb : ma+ nb > 0,m, n ∈ Z}.
Let m = a and n = 0.
Then ma+ nb = a2 + 0 = a2.
Since a 6= 0, then a2 > 0.
Thus, a2 ∈ S, so S 6= ∅.
Since S ⊂ Z+ and S 6= ∅, then by the well ordering principle of Z+, S

contains a least element.
Let d be the least element of S.
Then there exist integers m0, n0 such that d = m0a+n0b and d > 0 and for

every x ∈ S, d ≤ x.
We prove d|a and d|b.
By the Division Algorithm there exist unique integers q and r such that

a = dq + r and 0 ≤ r < d.
Either r > 0 or r = 0.
Suppose r > 0.
Then r = a−dq = a−(m0a+n0b)q = a−m0aq−n0bq = a(1−m0q)+b(−n0q).
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Since 1−m0q and −n0q are integers, then r is a linear combination of a and
b.

Hence, r ∈ S.
Thus, d ≤ r, so r ≥ d.
Consequently, we have r < d and r ≥ d, a contradiction.
Therefore, r cannot be greater than zero.
Since either r > 0 or r = 0, and r 6> 0, then r = 0.
Therefore, a = dq, so d|a.
By similar reasoning, d|b.
Hence d|a and d|b, so d is a common divisor of a and b.

Suppose c is an arbitrary common divisor of a and b.
Then c|a and c|b.
Thus there are integers k1 and k2 such that a = ck1 and b = ck2.
Hence d = m0(ck1) + n0(ck2) = c(m0k1) + c(n0k2) = c(m0k1 + n0k2).
Since m0k1 + n0k2 is an integer, then c|d.
Thus, any common divisor of a and b divides d.
Since d is a common divisor of a and b and any common divisor of a and b

divides d, then d is a greatest common divisor of a and b.
Hence, a greatest common divisor of a and b exists.

Proof. Uniqueness:
Suppose d1 = gcd(a, b) and d2 = gcd(a, b).
Any common divisor of a and b divides a greatest common divisor of a and

b.
Since d1 is a common divisor of a and b and d2 is a greatest common divisor

of a and b, then d1|d2.
Since d2 is a common divisor of a and b and d1 is a greatest common divisor

of a and b, then d2|d1.
Since d1 and d2 are positive integers and d1|d2 and d2|d1, then by the anti-

symmetric property of divisibility, d1 = d2.
Therefore, a greatest common divisor of a and b is unique.

Proposition 46. Properties of gcd
Let a, b ∈ Z+.
Then
1. gcd(a, 0) = a.
2. gcd(a, 1) = 1.
3. gcd(a, a) = a.
4. gcd(a, b) = gcd(b, a).
5. gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).
6. gcd(ka, kb) = k gcd(a, b) for all k ∈ Z+.

Proof. We prove 1.
Since a ∈ Z+ and Z+ ⊂ Z, then a ∈ Z.
By proposition 33, every integer divides itself, so a|a.
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By proposition 31, every integer divides zero, so a|0.
Hence, a|a and a|0, so a is a common divisor of a and 0.
Suppose c is an arbitrary common divisor of a and 0.
Then c|a and c|0, so c|a.
Hence, any common divisor of a and 0 divides a.
Since a ∈ Z+ and a is a common divisor of a and 0 and any common divisor

of a and 0 divides a, then a = gcd(a, 0).

Proof. We prove 2.
Since a ∈ Z+ and Z+ ⊂ Z, then a ∈ Z.
By proposition 32, one divides every integer, so 1|a.
Since 1|a and 1|1, then 1 is a common divisor of a and 1.
Suppose c is an arbitrary common divisor of a and 1.
Then c|a and c|1, so c|1.
Hence, any common divisor of a and 1 divides 1.
Since 1 ∈ Z+ and 1 is a common divisor of a and 1 and any common divisor

of a and 1 divides 1, then 1 = gcd(a, 1).

Proof. We prove 3.
Since a ∈ Z+ and Z+ ⊂ Z, then a ∈ Z.
By proposition 33, every integer divides itself, so a|a.
Since a|a and a|a, then a is a common divisor of a and a.
Suppose c is an arbitrary common divisor of a and a.
Then c|a and c|a, so c|a.
Hence, any common divisor of a and a divides a.
Since a ∈ Z+ and a is a common divisor of a and a and any common divisor

of a and a divides a, then a = gcd(a, a).

Proof. We prove 4.
Since a, b ∈ Z+, then gcd(a, b) exists and is unique.
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b and if c is any integer such that c|a and c|b,

then c|d.

We prove gcd(a, b) = gcd(b, a).
Since d|a and d|b, then d|b and d|a, so d is a common divisor of b and a.
Suppose c is an arbitrary divisor of b and a.
Then c|b and c|a, so c|a and c|b.
Hence, c|d.
Thus, any common divisor of b and a divides d.
Since d ∈ Z+ and d is a common divisor of b and a and any common divisor

of b and a divides d, then d = gcd(b, a).

Proof. We prove 5.
Since a, b ∈ Z+, then gcd(a, b) exists and is unique.
Let d = gcd(a, b).
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Then d ∈ Z+ and d|a and d|b and if c is any integer such that c|a and c|b,
then c|d.

We prove gcd(a, b) = gcd(−a, b).
Since d|a, then d divides any multiple of a, so d divides (−1)a = −a.
Hence, d|(−a).
Since d|(−a) and d|b, then d is a common divisor of −a and b.
Suppose c is an arbitrary common divisor of −a and b.
Then c|(−a) and c|b.
Since c|(−a), then c divides any multiple of −a, so c divides (−1)(−a) = a.
Hence, c|a.
Since c|a and c|b, then c|d.
Hence, any common divisor of −a and b divides d.
Since d ∈ Z+ and d is a common divisor of −a and b and any common divisor

of −a and b divides d, then d = gcd(−a, b).

We prove gcd(a, b) = gcd(a,−b).
Since d|b, then d divides any multiple of b, so d divides (−1)b = −b.
Hence, d|(−b).
Since d|a and d|(−b), then d is a common divisor of a and −b.
Suppose c is an arbitrary common divisor of a and −b.
Then c|a and c|(−b).
Since c|(−b), then c divides any multiple of −b, so c divides (−1)(−b) = b.
Hence, c|b.
Since c|a and c|b, then c|d.
Hence, any common divisor of a and −b divides d.
Since d ∈ Z+ and d is a common divisor of a and −b and any common divisor

of a and −b divides d, then d = gcd(a,−b).

We prove gcd(a, b) = gcd(−a,−b).
Since d|a, then d divides any multiple of a, so d divides (−1)a = −a.
Since d|b, then d divides any multiple of b, so d divides (−1)b = −b.
Hence, d|(−a) and d|(−b), so d is a common divisor of −a and −b.
Suppose c is an arbitrary common divisor of −a and −b.
Then c|(−a) and c|(−b).
Since c|(−a), then c divides any multiple of −a, so c divides (−1)(−a) = a.
Hence, c|a
Since c|(−b), then c divides any multiple of −b, so c divides (−1)(−b) = b.
Hence, c|b.
Since c|a and c|b, then c|d.
Hence, any common divisor of −a and −b divides d.
Since d ∈ Z+ and d is a common divisor of −a and −b and any common

divisor of −a and −b divides d, then d = gcd(−a,−b).
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Proof. We prove 6.
Let k ∈ Z+.
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b.
Since k ∈ Z+ and d ∈ Z+, then kd ∈ Z+.
Since d|a and d|b, then kd|ka and kd|kb.
Therefore, kd is a common divisor of ka and kb.

Suppose c is an arbitrary common divisor of ka and kb.
Then c|ka and c|kb.
Since d = gcd(a, b), then there exist integers m and n such that d = ma+nb.
Thus, kd = k(ma + nb) = kma + knb = mka + nkb, so kd is a linear

combination of ka and kb.
Since c|ka and c|kb, then c divides any linear combination of ka and kb, so

c|kd.
Thus, any common divisor of ka and kb divides kd.
Since kd ∈ Z+ and kd is a common divisor of ka and kb and any common

divisor of ka and kb divides kd, then kd = gcd(ka, kb).
Therefore, gcd(ka, kb) = kd = k gcd(a, b).

Theorem 47. Let a, b ∈ Z∗.
Let c ∈ Z.
Then c is a linear combination of a and b iff c is a multiple of gcd(a, b).

Proof. We prove if c is a linear combination of a and b, then c is a multiple of
gcd(a, b).

Suppose c is a linear combination of a and b.
By theorem 42, any common divisor of a and b divides any linear combination

of a and b.
Since gcd(a, b) is a common divisor of a and b, then gcd(a, b) divides any

linear combination of a and b.
Hence, gcd(a, b) divides c, so c is a multiple of gcd(a, b).

Conversely, we prove if c is a multiple of gcd(a, b), then c is a linear combi-
nation of a and b.

Suppose c is a multiple of gcd(a, b).
Then there exists an integer k such that c = k gcd(a, b).
Since gcd(a, b) is the least positive linear combination of a and b, then there

exist integers m and n such that gcd(a, b) = ma+ nb.
Thus, c = k(ma+ nb) = kma+ knb = (km)a+ (kn)b.
Since km and kn are integers, then c is a linear combination of a and b.

Corollary 48. Let a, b ∈ Z∗.
Then gcd(a, b) = 1 iff there exist m,n ∈ Z such that ma+ nb = 1.
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Proof. Suppose gcd(a, b) = 1.
Then 1 is the least positive linear combination of a and b.
Hence, there exist integers m and n such that 1 = ma+ nb, as desired.

Conversely, suppose there exist integers m and n such that ma+ nb = 1.
Then 1 is a linear combination of a and b.
Since 1 is a linear combination of a and b iff 1 is a multiple of gcd(a, b), then

1 is a multiple of gcd(a, b).
Therefore, gcd(a, b)|1.
The only positive integer that divides 1 is 1, so gcd(a, b) = 1, as desired.

Corollary 49. Let a, b ∈ Z∗ and d ∈ Z+.
If gcd(a, b) = d, then gcd(ad ,

b
d ) = 1.

Proof. Suppose gcd(a, b) = d.
Then d ∈ Z+ and d|a and d|b.
Since d ∈ Z+, then d > 0, so d 6= 0.
Since d|a and d|b, then a = dr and b = ds for some integers r and s.
Since a

d = r and b
d = s, then a

d ∈ Z and b
d ∈ Z.

Since d is the least positive linear combination of a and b, then there exist
integers m and n such that ma+ nb = d.

Since d 6= 0, we divide by d to get m(ad ) + n( bd ) = 1.

Since a
d ∈ Z and b

d ∈ Z and m(ad ) + n( bd ) = 1, then gcd(ad ,
b
d ) = 1.

Theorem 50. Let a, b, d ∈ Z.
If d|ab and (d, a) = 1, then d|b.

Proof. Suppose d|ab and gcd(d, a) = 1.
Since gcd(d, a) = 1, then there exist integers k and m such that kd+ma = 1.
Thus, b = b · 1 = b(kd + ma) = bkd + bma = (bk)d + m(ab) is a linear

combination of d and ab.
Since d|d and d|ab, then d divides any linear combination of d and ab, so

d|b.

Proposition 51. Let a, b,m ∈ Z.
If a|m and b|m and gcd(a, b) = 1, then ab|m.

Proof. Suppose a|m and b|m and gcd(a, b) = 1.
Since a|m, then m = ak1 for some k1 ∈ Z.
Since b|m, then m = bk2 for some k2 ∈ Z.
Since gcd(a, b) = 1, then 1 = xa+ yb for some x, y ∈ Z.
Observe that
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m = m · 1
= m(xa+ yb)

= mxa+myb

= (bk2)xa+ (ak1)yb

= ab(k2x) + ab(k1y)

= ab(k2x+ k1y).

Since x, y, k1, k2 ∈ Z, then k2x+ k1y ∈ Z, so ab|m.

Proof. Suppose a|m and b|m and gcd(a, b) = 1.
Since b|m, then there exists an integer k such that m = bk.
Since a|m, then a|bk.
Since a|bk and gcd(a, b) = 1, then a|k.
Hence, ab|kb, so ab|bk.
Therefore, ab|m.

Euclidean Algorithm

Lemma 52. Let a, b ∈ Z and b > 0.
If a is divided by b with remainder r, then gcd(a, b) = gcd(b, r).

Proof. Suppose a is divided by b.
By the division algorithm, there exist unique integers q and r such that

a = bq + r and 0 ≤ r < b.
Let d = gcd(b, r).

Then d ∈ Z+ and d|b and d|r and if c is any integer such that c|b and c|r,
then c|d.

Since d|b and d|r, then d divides any linear combination of b and r.
Since a = bq + r is a linear combination of b and r, then d|a.
Since d|a and d|b, then d is a common divisor of a and b.

Let c be an arbitrary common divisor of a and b.
Then c|a and c|b, so c divides any linear combination of a and b.
Since r = a− bq is a linear combination of a and b, then c|r.
Since c|b and c|r, then c|d, so any common divisor of a and b divides d.

Since d ∈ Z+ and d is a common divisor of a and b and any common divisor
of a and b divides d, then d = gcd(a, b).

Therefore, gcd(a, b) = d = gcd(b, r).
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Theorem 53. Euclidean Algorithm
Let a, b ∈ Z and b > 0.
Let n be the number of iterative steps and

a = bq1 + r1, where 0 < r1 < b

b = r1q2 + r2, where 0 < r2 < r1

r1 = r2q3 + r3, where 0 < r3 < r2

· · ·
rk−2 = rk−1qk + rk, where 0 < rk < rk−1

· · ·
rn−3 = rn−2qn−1 + rn−1, where 0 < rn−1 < rn−2

rn−2 = rn−1qn + 0.

Then gcd(a, b) = rn−1.

Solution. By the division algorithm, a = bq1+r1 and 0 < r1 < b, so gcd(a, b) =
gcd(b, r1) by lemma 52.

By the division algorithm, b = r1q2 + r2 and 0 < r2 < r1, so gcd(b, r1) =
gcd(r1, r2) by lemma 52.

We repeat this process a finite number of times.
By the division algorithm, rn−2 = rn−1qn+rn and rn = 0, so gcd(rn−2, rn−1) =

gcd(rn−1, rn) = gcd(rn−1, 0) = rn−1.

Proof. Let a, b ∈ Z∗.
On the nth step, the remainder rn = 0, so rn−2 = rn−1qn.
Hence rn−1|rn−2.
On the (n− 1) step rn−3 = rn−2qn−1 + rn−1.
Since rn−1|rn−1 and rn−1|rn−2, then rn−1 divides any linear combination of

rn−1 and rn−2, so rn−1|rn−3.
Similarly, rn−1|rn−4 since rn−4 = rn−3qn−2 + rn−2 and rn−1|rn−2 and

rn−1|rn−3.
This continues all the way back to b = r1q2 + r2 and a = bq1 + r1, so rn−1|b

and rn−1|a.
Thus rn−1 is a common divisor of a and b.

Let d be any common divisor of a and b.
Then d|a and d|b, so d divides any linear combination of a and b.
In particular, d|(a− bq1).
Since r1 = a− bq1, then this implies d|r1.
Since d|b and d|r1, then d divides any linear combination of b and r1.
Since r2 = b− r1q2, then this implies d|r2.
Similarly, r3 = r1 − r2q3, so d|r3.
This continues all the way to rn−1 since rn = 0.
Therefore, d|rn−1, so any common divisor of a and b divides rn−1.
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Since rn−1 ∈ Z+ and rn−1 is a common divisor of a and b and any common
divisor of a and b divides rn−1, then by definition of gcd, rn−1 = gcd(a, b).

TODO
We prove the algorithm terminates by induction on the number of remaining

steps to finish the computation.

Least common multiple

Theorem 54. existence and uniqueness of least common multiple
Let a, b ∈ Z+.
The least common multiple of a and b exists and is unique.
Moreover, lcm(a, b) · gcd(a, b) = ab.

Proof. Existence:
Since a 6= 0 and b 6= 0, then gcd(a, b) exists.
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b, so a = dr and b = ds for some integers r and

s.
Let m = ab

d .

Then as = a( bd ) = m = (ad )b = rb.
Since there exist integers s and r such that m = as and m = rb, then m is

a common multiple of a and b.

Let c ∈ Z be any common multiple of a and b.
Then a|c and b|c, so c = au and c = bv for some integers u and v.
Since gcd(a, b) = d, then there exist integers x and y such that d = xa+ yb.
Since m = ab

d and d 6= 0, then dm = ab.

Since a 6= 0 and b 6= 0, then dm
ab = 1.

Observe that

c = c · 1

= c(
dm

ab
)

=
c

ab
(dm)

=
c

ab
(xa+ yb)m

= (
cx

b
+
cy

a
)m

= (vx+ uy)m.

Since v, x, u, y ∈ Z, then vx+ uy ∈ Z, so m|c.
Thus, any common multiple of a and b is a multiple of m.
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Since m is a common multiple of a and b and any common multiple of a and
b is a multiple of m, then m = lcm(a, b).

Observe that gcd(a, b) ∗ lcm(a, b) = dm = ab.

Proof. Uniqueness:
Let m1 and m2 be least common multiples of a and b.
Since m1 is a least common multiple of a and b, then m1 is a positive integer

and a|m1 and b|m1 and for every integer c, if a|c and b|c, then m1|c.
Since m2 is a least common multiple of a and b, then m2 is a positive integer

and a|m2 and b|m2 and for every integer c, if a|c and b|c, then m2|c.
If c = m1, then we have a|m1 and b|m1 implies m2|m1.
Since a|m1 and b|m1, then m2|m1.
If c = m2, then we have a|m2 and b|m2 implies m1|m2.
Since a|m2 and b|m2, then m1|m2.
Since m1 and m2 are positive integers and m1|m2 and m2|m1, then m1 = m2

by the antisymmetric property of the divides relation over Z+.
Therefore, a least common multiple of a and b is unique.

Corollary 55. Let a, b ∈ Z+.
Then lcm(a, b) = ab iff gcd(a, b) = 1.

Proof. Suppose lcm(a, b) = ab.
Since gcd(a, b) · lcm(a, b) = ab, then gcd(a, b) = ab

lcm(a,b) .

Observe that

gcd(a, b) =
ab

lcm(a, b)

=
ab

ab
= 1.

Therefore, gcd(a, b) = 1, as desired.

Conversely, suppose gcd(a, b) = 1.
Since gcd(a, b) · lcm(a, b) = ab, then lcm(a, b) = ab

gcd(a,b) .

Observe that

lcm(a, b) =
ab

gcd(a, b)

=
ab

1
= ab.

Therefore, lcm(a, b) = ab, as desired.

Proposition 56. Properties of lcm
Let a, b ∈ Z+.
Then
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1. lcm(a, 0) = 0.
2. lcm(a, 1) = a.
3. lcm(a, a) = a.
4. lcm(a, b) = lcm(b, a).
5. lcm(ka, kb) = k · lcm(a, b) for all k ∈ Z+.
6. gcd(a, b) | lcm(a, b).
7. gcd(a, b) = lcm(a, b) iff a = b.
8. a|b iff gcd(a, b) = a iff lcm(a, b) = b.

Proof. We prove 1.
Since every integer divides zero, then a|0.
Since every integer divides itself, then 0|0.
Thus, a|0 and 0|0, so 0 is a multiple of a and 0.
Let m ∈ Z such that a|m and 0|m.
Then 0|m, so any multiple of a and 0 is a multiple of 0.
Since 0 is a multiple of a and 0 and any multiple of a and 0 is a multiple of

0, then 0 = lcm(a, 0).

Proof. We prove 2.
Since every integer divides itself, then a|a.
Since one divides every integer, then 1|a.
Thus, a|a and 1|a, so a is a multiple of a and 1.
Let m ∈ Z such that a|m and 1|m.
Then a|m, so any multiple of a and 1 is a multiple of a.
Since a is a multiple of a and 1 and any multiple of a and 1 is a multiple of

a, then a = lcm(a, 1).

Proof. We prove 3.
Since every integer divides itself, then a|a.
Since a|a and a|a, then a is a multiple of a and a.
Let m ∈ Z such that a|m and a|m.
Then a|m, so any multiple of a and a is a multiple of a.
Since a is a multiple of a and a and any multiple of a and a is a multiple of

a, then a = lcm(a, a).

Proof. We prove 4.
Let m = lcm(a, b).
Since m = lcm(a, b), then a|m and b|m and for every c ∈ Z, if a|c and b|c,

then m|c.
Since a|m and b|m, then b|m and a|m, so m is a multiple of b and a.
Let c be any multiple of b and a.
Then b|c and a|c, so a|c and b|c.
Hence, m|c.
Thus, any multiple of b and a is a multiple of m.
Therefore, m = lcm(b, a).
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Proof. We prove 5.
Let k ∈ Z+.
Observe that

lcm(ka, kb) =
(ka)(kb)

gcd(ka, kb)

=
kakb

k gcd(a, b)

=
akb

gcd(a, b)

=
kab

gcd(a, b)

= k · lcm(a, b).

Therefore, lcm(ka, kb) = k · lcm(a, b).

Proof. We prove 6.
Let d = gcd(a, b).
Let m = lcm(a, b).
We must prove d | m.
Since d = gcd(a, b), then d is a common divisor of a and b, so d is a divisor

of a.
Thus, d|a.
Since m = lcm(a, b), then m is a multiple of a and b, so m is a multiple of a.
Hence, a|m.
Since d|a and a|m, then d|m, as desired.

Proof. We prove 7.
We prove if a = b, then gcd(a, b) = lcm(a, b).
Suppose a = b.
Then

gcd(a, b) = gcd(a, a)

= a

= lcm(a, a)

= lcm(a, b).

Therefore, gcd(a, b) = lcm(a, b).

Conversely, we prove if gcd(a, b) = lcm(a, b), then a = b.
Suppose gcd(a, b) = lcm(a, b).
Let d = gcd(a, b).
Then d = lcm(a, b).
Since d = gcd(a, b), then d is a common divisor of a and b, so d|a and d|b.
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Since d = lcm(a, b), then d is a common multiple of a and b, so a|d and b|d.
Since a, d ∈ Z+ and a|d and d|a, then by the antisymmetric property of |,

a = d.
Since b, d ∈ Z+ and b|d and d|b, then by the antisymmetric property of |,

b = d.
Therefore, a = d = b, so a = b.

Proof. We prove 8.
We prove a|b iff gcd(a, b) = a.

Suppose a|b.
Since every integer divides itself, then a|a.
Since a|a and a|b, then a is a common divisor of a and b.
Let c be an arbitrary common divisor of a and b.
Then c|a and c|b, so c|a.
Hence, any common divisor of a and b divides a.
Since a ∈ Z+ and a is a common divisor of a and b and any common divisor

of a and b divides a, then a = gcd(a, b).

Conversely, suppose gcd(a, b) = a.
Then a is a common divisor of a and b, so a is a divisor of b.
Therefore, a|b.

We prove gcd(a, b) = a iff lcm(a, b) = b.
Suppose gcd(a, b) = a.
Then

lcm(a, b) =
ab

gcd(a, b)

=
ab

a
= b.

Therefore, lcm(a, b) = b.

Conversely, suppose lcm(a, b) = b.
Then

gcd(a, b) =
ab

lcm(a, b)

=
ab

b
= a.

Therefore, gcd(a, b) = a.
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We prove a|b iff lcm(a, b) = b.
Since a|b iff gcd(a, b) = a and gcd(a, b) = a iff lcm(a, b) = b, then a|b iff

lcm(a, b) = b.

Prime Numbers and Fundamental Theorem of
Arithmetic

Lemma 57. A composite number has a positive divisor other than 1
or itself.

Let n ∈ Z+.
Then n is composite iff there exists d ∈ Z+ with 1 < d < n such that d|n.

Proof. Suppose n is composite.
Then n 6= 1 and n is not prime.
Since n is not prime, then there is some positive divisor of n other than 1 or

n.
Hence, there exists d ∈ Z+ such that d|n and d 6= 1 and d 6= n.
Since d ∈ Z+ and d 6= 1, then d > 1.
Since d, n ∈ Z+ and d|n, then d ≤ n by proposition 38.
Since d ≤ n and d 6= n, then d < n.
Since 1 < d and d < n, then 1 < d < n.
Therefore, there exists d ∈ Z+ with 1 < d < n such that d|n.

Proof. Conversely, suppose there exists d ∈ Z+ with 1 < d < n such that d|n.
Since 0 < 1 < d < n, then 1 < d and d < n and 1 < n and 0 < d.
Since d > 1, then d 6= 1.
Since d < n, then d 6= n.
Since n > 1, then n 6= 1.
Since n ∈ Z+ and n 6= 1, then n is a positive integer other than 1.
Since d ∈ Z+ and d|n and d 6= 1 and d 6= n, then there is a positive divisor

of n other than 1 or n.
Since n is a positive integer other than 1 and there is a positive divisor of n

other than 1 or n, then n is not prime.
Since n is a positive integer other than 1 and n is not prime, then n is

composite.

Proposition 58. A composite number is composed of smaller positive
factors.

Let n ∈ Z+.
Then n is composite iff there exist a, b ∈ Z+ with 1 < a < n and 1 < b < n

such that n = ab.

Proof. Suppose n is composite.
Then there exists a ∈ Z+ with 1 < a < n such that a|n by lemma 57.
Since 0 < 1 < a < n, then 1 < a and a < n and 1 < n and 0 < a and 0 < n.
Since a|n, then there exists b ∈ Z such that n = ab.

35



Since n > 0 and a > 0, then b > 0.
Since b ∈ Z and b > 0, then b ∈ Z+.

Since a > 1 and b > 0, then n = ab > b, so n > b.
Since ab = n > a, then ab > a.
Since a > 0, then we divide to obtain b > 1.

Since 1 < b and b < n, then 1 < b < n.
Therefore, there exist a, b ∈ Z+ with 1 < a < n and 1 < b < n such that

n = ab.

Proof. Conversely, suppose there exists a, b ∈ Z+ with 1 < a < n and 1 < b < n
such that n = ab.

Since b ∈ Z+ and Z+ ⊂ Z, then b ∈ Z.
Since b ∈ Z and n = ab, then a|n.
Since a ∈ Z+ and 1 < a < n and a|n, then n is composite by lemma 57.

Proposition 59. Every integer greater than 1 has a prime factor.

Proof. Let n ∈ Z and n > 1.
We must prove n has a prime factor.
Either n is prime or n is not prime.
We consider these cases separately.
Case 1: Suppose n is prime.
Since n is prime and n|n, then n is a prime factor of n.
Case 2: Suppose n is not prime.
Since n ∈ Z and n > 1 and n is not prime, then n is composite.
Thus, there exists d ∈ Z+ with 1 < d < n and d|n by lemma 57.

Let S = {s ∈ Z+ : 1 < s < n, s|n}.
Since d ∈ Z+ and 1 < d < n and d|n, then d ∈ S, so S 6= ∅.
Since S ⊂ Z+ and S 6= ∅, then by the well-ordering principle of Z+, S has a

least element p.
Thus, p ∈ S and p ≤ s for all s ∈ S.
Since p ∈ S, then p ∈ Z+ and 1 < p < n and p|n.
Since 1 < p < n, then 1 < p and p < n.
Since p > 1, then p 6= 1.
Since p ∈ Z+ and p 6= 1, then p is either prime or not prime.

Suppose p is not prime.
Since p ∈ Z+ and p 6= 1 and p is not prime, then p must be composite.
Therefore, there exists a ∈ Z+ with 1 < a < p and a|p by lemma 57.
Since 1 < a < p, then 1 < a and a < p.
Since a|p and p|n, then a|n.
Since 1 < a and a < p and p < n, then 1 < a < p < n, so 1 < a < n.
Since a ∈ Z+ and 1 < a < n and a|n, then a ∈ S.
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Hence, a ∈ S and a < p.
But, this contradicts the fact that p is the least element of S.
Therefore, p must be prime.

Since p is prime and p|n, then p is a prime factor of n.

Proof. Let p(n) be the predicate n has a prime factor and n > 1 defined over
Z+.

We prove p(n) is true for all integers n > 1 by strong induction on n.
Basis:
Since 2|2 and 2 is prime, then 2 is a prime factor of 2, so 2 has a prime

factor.
Since 2 ∈ Z+ and 2 > 1 and 2 has a prime factor, then p(2) is true.
Induction:
For any integer k ≥ 3, assume p(n) is true for n = 2, 3, ..., k − 1.
Then p(m) is true for any integer m such that 2 ≤ m ≤ k − 1.
Thus, p(m) is true for any integer m such that 1 < m < k.
Since k − 1 ∈ Z, then k ∈ Z.
Since k ≥ 3 > 1, then k > 1.
To prove p(k) is true, we must prove k has a prime factor.
Since k ∈ Z+ and k > 1, then either k is prime or k is composite.
We consider these cases separately.
Case 1: Suppose k is prime.
Since k is prime and k|k, then k is a prime factor of k, so k has a prime

factor.
Case 2: Suppose k is composite.
Then there exists d ∈ Z+ such that d|k and 1 < d < k by lemma 57.
Since d ∈ Z and 1 < d < k, then by the induction hypothesis, p(d) is true,

so d has a prime factor.
Therefore, there exists a prime q such that q|d.
Since q|d and d|k, then q|k.
Since q is prime and q|k, then q is a prime factor of k, so k has a prime

factor.

Theorem 60. Euclid’s Theorem
There are infinitely many prime numbers.

Proof. Suppose there are finitely many prime numbers.
Let p1, p2, ..., ps be these prime numbers.
Let n = p1p2 · · · ps + 1.
Since each prime is positive, then p1p2 · · · ps > 0, so n = p1p2 · · · ps + 1 >

0 + 1 = 1.
Hence, n > 1, so the integer n has a prime factor p by proposition 59.
This prime factor p must be one of p1, p2, ..., ps.
Since p is a factor of n, then p|n.
Since p is one of the factors of the product p1p2 ···ps, then p divides p1p2 ···ps.
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Since p|n and p|(p1p2 · · · ps), then p divides any linear combination of n and
p1p2 · · · ps.

Since 1 = n− p1p2 · · · ps is a linear combination of n and p1p2 · · · ps, then p
must divide 1.

But, there is no prime that divides 1, since each prime is greater than 1.
Therefore, there are not finitely many prime numbers, so there are infinitely

many prime numbers.

Proof. Let S = {p1, p2, ..., pn} be a finite set of primes.
We show that there exist primes that are not in S.
Let p = p1 ∗ p2 ∗ ... ∗ pn.
Let q = p+ 1.
Either q is prime or not.
We consider these cases separately.
We consider two cases.
Case 1: Suppose q is prime.
Then q is greater than each of the primes in S, so q is not one of the primes

in S.
Hence, there exists some prime that is not in S.
Case 2: Suppose q is not prime.
Then q has some prime factor, say r.
Thus, r|q.
Suppose for the sake of contradiction that r ∈ S.
Then r is one of the factors of p, so r|p.
Since r|p and r|q, then r divides any linear combination of p and q.
Thus, since 1 = q − p, then r|1.
Hence, r = 1.
But, r is prime so r 6= 1.
Therefore, r 6∈ S.
Hence, there exists some prime that is not in S.
Both cases show that for any finite set of primes, there exists some prime

number that is not contained in it.
Therefore, there must be infinitely many prime numbers.

Proof. Suppose for the sake of contradiction that there are only finitely many
prime numbers.

Then we can list all the prime numbers as p1, p2, p3, ...pn, where p1 = 2, p2 =
3, p3 = 5, p4 = 7, and so on.

Thus pn is the nth and largest prime number.
Now consider the number a = (p1p2p3 · · · pn) + 1, that is a is the product of

all prime numbers, plus 1.
Now a, like any natural number greater than 1, has at least one prime divisor

(by proposition 59) and that means pk | a for at least one of our n prime numbers
pk.

Thus there is an integer c for which a = cpk, which is to say

(p1p2p3 · · · pk−1pkpk+1 · · · pn) + 1 = cpk.

38



Dividing both sides of this by pk gives us

(p1p2p3 · · · pk−1pk+1 · · · pn) +
1

pk
= c,

so
1

pk
= c− (p1p2p3 · · · pk−1pk+1 · · · pn).

The expression on the right is an integer, while the expression on the left is
not an integer. These numbers can’t be equal, so this is a contradiction.

Proof. Suppose for the sake of contradiction that there exist finitely many
primes.

Then we could list all the primes.
Let p1, p2, ..., pn be a listing where each pi is prime.
To derive at a contradiction we construct a number which is not in the list

and which must be prime.
Let p = p1p2 ∗ ∗ ∗ pn + 1.
Clearly, p is not in the list and each pi divides the product p1p2 ∗ ∗ ∗ pn.
Therefore, none of the pi can divide p.
For if a certain pi divided both p and p1p2 ∗∗∗pn, then pi would divide their

difference p− p1p2 ∗ ∗ ∗ pn = 1.
Hence, pi|1 which implies pi = 1.
But, 1 is not prime contradicting the assumption pi is prime.
Hence, p is not divisible by any prime, so p itself must be prime.

Lemma 61. Let p, n ∈ Z+.
If p is prime, then either p|n or gcd(p, n) = 1.

Proof. Suppose p is prime and p 6 |n.
We prove gcd(p, n) = 1.
Since p is prime, then p 6= 1 and the only positive divisors of p are 1 and p.
Since p, n ∈ Z and 1 divides every integer, then 1|p and 1|n, so 1 is a common

divisor of p and n.
Let c be any positive common divisor of p and n.
Then c ∈ Z+ and c|p and c|n.
Since the only positive divisors of p are 1 and p and c is a positive divisor of

p, then either c = 1 or c = p.
Since p 6 |n and c|n, then c 6= p, so c = 1.
Since 1|1 and c = 1, then c|1, so any common positive divisor of p and n

divides 1.
Since 1 is a common divisor of p and n and any common positive divisor of

p and n divides 1, then gcd(p, n) = 1, as desired.

Lemma 62. Euclid’s Lemma
Let p, a, b ∈ Z+.
If p is prime and p|ab, then either p|a or p|b.
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Proof. Suppose p is prime and p|ab.
Either gcd(p, a) = 1 or gcd(p, a) 6= 1.
We consider these cases separately.
Case 1: Suppose gcd(p, a) = 1.
Since p|ab and gcd(p, a) = 1, then p|b, by proposition 50.
Case 2: Suppose gcd(p, a) 6= 1.
Let d = gcd(p, a).
Then d 6= 1, so d > 1.
Since d is a common divisor of p and a, then d|p and d|a.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d|p and d 6= 1, then this implies d = p.
Since d|a, then this implies p|a.

Proof. Suppose p is prime and p|ab and p 6 |a.
We prove p|b.
If p is prime, then either p|a or gcd(p, a) = 1 by lemma 61.
Thus, if p is prime and p 6 |a, then gcd(p, a) = 1.
Since p is prime and p 6 |a, then we conclude gcd(p, a) = 1.
Since p|ab and gcd(p, a) = 1, then p|b, by proposition 50.

Corollary 63. Let p, a1, a2, ..., an ∈ Z+.
If p is prime and p|a1a2...an, then p|ak for some integer k with 1 ≤ k ≤ n.

Proof. We prove by induction on n, the number of factors in the product
a1a2...an.

Let S = {n ∈ Z+ : if p is prime and p|a1a2...an, then p|ak for some integer k with 1 ≤ k ≤ n}.
Basis:
If p is prime and p|a1, then p|a1, so p|ak for integer k = 1 with 1 ≤ k ≤ 1.
Therefore, 1 ∈ S.
If p is prime and p|a1a2, then by Euclid’s lemma, either p|a1 or p|a2, so p|ak

for some integer k with 1 ≤ k ≤ 2.
Therefore, 2 ∈ S.
Induction:
Suppose m ∈ S.
Then m ∈ Z+ and if p is prime and p|a1a2...am, then p|ak for some integer

k with 1 ≤ k ≤ m.
Since m ∈ Z+, then m+ 1 ∈ Z+.
Suppose p is prime and p|a1a2...amam+1.
Since p is prime and p|(a1a2...am)am+1, then by Euclid’s lemma, either

p|a1a2...am or p|am+1.
We consider each case separately.
Case 1: Suppose p|am+1.
Let k = m+ 1.
Then k ∈ Z and 1 ≤ k = m+ 1.
Case 2: Suppose p|a1a2...am.
Since p is prime and p|a1a2...am, then by the induction hypothesis, p|ak for

some integer k with 1 ≤ k ≤ m.
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Hence, in either case, if p is prime and p|(a1a2...am)am+1, then p|ak for some
integer k with 1 ≤ k ≤ m+ 1, so m+ 1 ∈ S.

Since m ∈ S implies m+ 1 ∈ S, then by PMI, if p is prime and p|a1a2...an,
then p|ak for some integer k with 1 ≤ k ≤ n for all n ∈ Z+.

Corollary 64. Let p, q1, q2, ..., qn ∈ Z+.
If p, q1, q2, ..., qn are all prime and p|q1q2...qn, then p = qk for some integer

k with 1 ≤ k ≤ n.

Proof. Suppose p, q1, q2, ..., qn are all prime and p|q1q2...qn.
Since p, q1, q2, ..., qn are all prime, then p is prime and q1, q2, ..., qn are all

prime.
Since p is prime and p|q1q2...qn, then p|qk for some integer k with 1 ≤ k ≤ n,

by corollary 63.
Since q1, q2, ..., qn are all prime and 1 ≤ k ≤ n, then qk is prime, so the only

positive divisors of qk are 1 and qk.
Since p ∈ Z+ and p|qk, then this implies either p = 1 or p = qk.
Since p is prime, then p > 1, so p 6= 1.
Therefore, p = qk.

Theorem 65. Fundamental Theorem of Arithmetic(Existence)
Every integer greater than one can be represented as a product of one or

more primes.

Proof. Let n ∈ Z+ and n > 1.
Then either n is prime or n is composite.
We consider these cases separately.
Case 1: Suppose n is prime.
Then n is a product of one prime(itself).
Case 2: Suppose n is composite.
Then there exists d ∈ Z+ with 1 < d < n such that d|n, by lemma 57.
Let S = {d ∈ Z+ : d > 1 ∧ d|n}.
Then S ⊂ Z+ and S 6= ∅, so S has a least element p1 ∈ S, by the well

ordering principle of Z+.

We claim p1 must be prime.
Suppose p1 is not prime.
Since p1 ∈ S, then p1 > 1 and p1|n.
Since p1 is not prime and p1 6= 1, then p1 is composite, so there exists q ∈ Z+

with 1 < q < p1 such that q|p1, by lemma 57.
Since q|p1 and p1|n, then q|n.
Since q ∈ Z+ and q > 1 and q|n, then q ∈ S.
But q ∈ S and q < p1 contradicts the fact that p1 is the least element of S.
Therefore, p1 is prime.
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Since n is composite and p1|n and a composite number has smaller positive
factors by proposition 58, then there exists n1 ∈ Z+ such that n = p1n1 with
1 < n1 < n.

Since n1 > 1, then either n1 is prime or n1 is composite.
If n1 is prime, then n = p1n1 is a product of primes.
If n1 is composite, we repeat the same argument to produce another prime

number p2 such that n1 = p2n2 with 1 < n2 < n1 for some n2 ∈ Z+.
Since n2 > 1, then either n2 is prime or n2 is composite.
If n2 is prime, then n = p1n1 = p1(p2n2) = p1p2n2 is a product of primes.
If n2 is composite, then we repeat the same argument to produce another

prime number p3 such that n2 = p3n3 with 1 < n3 < n2 for some n3 ∈ Z+.
Since n3 > 1, then either n3 is prime or n3 is composite.
If n3 is prime, then n = p1n1 = p1(p2n2) = p1p2(p3n3) = p1p2p3n3 is a

product of primes.
If n3 is composite, then we repeat the same argument.
Eventually this process must end, since the decreasing sequence n > n1 >

n2 > ... > 1 cannot continue indefinitely.
Hence, after a finite number of steps, nk−1 is prime, say pk.
Therefore, n = p1p2 · · · pk is a product of primes.

Proof. Existence:
We prove every integer greater than one can be represented as a product of

one or more primes.
Let p(n) be the predicate n is a product of one or more primes and n > 1

defined over Z+.
To prove n is a product of one or more primes, we prove p(n) is true for all

positive integers n > 1 by strong induction on n.
Basis:
Since 2 is prime, then 2 is product of one prime(itself).
Since 2 ∈ Z+ and 2 > 1 and 2 is a product of one prime, then p(2) is true.
Induction:
For an integer k ≥ 3, assume p(n) is true for n = 2, 3, ..., k − 1.
Then p(m) is true for any integer m such that 2 ≤ m ≤ k − 1.
Hence, p(m) is true for any integer m such that 1 < m < k.
Since k − 1 ∈ Z, then k ∈ Z.
Since k ≥ 3 > 1, then k > 1.
To prove p(k) is true, we must prove k is a product of one or more primes.
Since k ∈ Z+ and k > 1, then either k is prime or k is composite.
We consider these cases separately.
Case 1: Suppose k is prime.
Then k is a product of one prime(itself).
Case 2: Suppose k is composite.
Then there exists a, b ∈ Z+ such that k = ab and 1 < a < k and 1 < b < k

by lemma 58.
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Since a ∈ Z and 1 < a < k, then by the induction hypothesis, p(a) is true.
Thus, a is a product of one or more primes, so there exist primes p1, p2, ..., ps

such that a = p1p2...ps.
Since b ∈ Z and 1 < b < k, then by the induction hypothesis, p(b) is true.
Thus, b is a product of one or more primes, so there exist primes q1, q2, ..., qt

such that b = q1q2...qt.

Therefore, k = ab = (p1p2...ps)(q1q2...qt) is a product of primes.

Theorem 66. Fundamental Theorem of Arithmetic(Unique Factoriza-
tion)

The representation of any integer greater than one as a product of primes is
unique up to the order of the factors.

Proof. Uniqueness:
Let n ∈ Z+ and n > 1.
Then n can be represented as a product of primes.
Suppose n is represented as a product of primes in two ways.
Let n = p1p2 . . . pr = q1q2 . . . qs, where pi and qj are all primes and p1 ≤

p2 ≤ . . . ≤ pr and q1 ≤ q2 . . . ≤ qs and r ≤ s.
Since p1 divides n = q1q2 . . . qs and p1 and all qj are primes, then by corollary

64, p1 = qk for some integer k with 1 ≤ k ≤ s.
Since qk ≥ q1 and p1 = qk, then p1 ≥ q1.
Since q1 divides n = p1p2 . . . pr and q1 and all pi are primes, then by corollary

64, q1 = pm for some integer m with 1 ≤ m ≤ r.
Since pm ≥ p1 and q1 = pm, then q1 ≥ p1.
Since p1 ≤ q1 and q1 ≤ p1, then p1 = q1, by the anti-symmetric property of

≤ on Z+.
Thus, we may cancel the factor p1 = q1 to obtain p2p3 . . . pr = q2q3 . . . qs.
We repeat this process to obtain p2 = q2, and thus p3p4 . . . pr = q3q4 . . . qs.
We continue this process.
Since r ≤ s, then either r < s or r = s.

Suppose r < s.
Then eventually we will reach 1 = qr+1qr+2 . . . qs.
Since each qj is prime, then each qj is greater than one, so the product

qr+1qr+2 . . . qs must be greater than one.
This contradicts qr+1qr+2 . . . qs = 1.
Hence, r cannot be less than s, so r = s.

Therefore, p1 = q1 and p2 = q2 and ... and pr = qs = qr, so n is represented
as a product of primes in only one way.

Proof. Uniqueness:
Let a ∈ Z and a > 1.
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Then a can be represented as a product of primes, by FTA existence theorem
65.

Let a = p1p2...pn1
and a = q1q2...qn2

be two such representations where
p1, p2, ..., pn−1 and q1, q2, ..., qn2

are all primes and p1 ≤ p2 ≤ ... ≤ pn1
and

q1 ≤ q2 ≤ ... ≤ qn2
.

To prove the prime factorization of a is unique, we must prove n1 = n2 and
pm = qm for each integer m such that 1 ≤ m ≤ n1.

We prove by strong induction on a.
Let x(a) be the predicate over Z+ defined by:
If p1, p2, ..., pn1

and q1, q2, ..., qn2
are all primes and p1 ≤ p2 ≤ ... ≤ pn1

and
q1 ≤ q2 ≤ ... ≤ qn2

and a = p1p2...pn1
and a = q1q2...qn2

, then n1 = n2 and
pm = qm for each integer m such that 1 ≤ m ≤ n1.

Basis:
Since 2 is prime, then the only prime factor of 2 is 2 itself, so 1 = n1 = n2

and 2 = p1 = q1.
Since p1 and q1 are prime and 2 = p1 and 2 = q1 and n1 = n2 and p1 = q1,

then x(2) is true.
Induction:
For an integer a ≥ 3, assume x(n) is true for n = 2, 3, ..., a− 1.
Then x(m) is true for any integer m such that 2 ≤ m ≤ a− 1.
Hence, x(m) is true for any integer m such that 1 < m < a.
Since a− 1 ∈ Z, then a ∈ Z.
To prove x(a) is true, we must prove:
If p1, p2, ..., pn1 and q1, q2, ..., qn2 are all primes and p1 ≤ p2 ≤ ... ≤ pn1 and

q1 ≤ q2 ≤ ... ≤ qn2
and a = p1p2...pn1

and a = q1q2...qn2
, then n1 = n2 and

pm = qm for each integer m such that 1 ≤ m ≤ n1.
Suppose p1, p2, ..., pn1

and q1, q2, ..., qn2
are all primes and p1 ≤ p2 ≤ ... ≤ pn1

and q1 ≤ q2 ≤ ... ≤ qn2 and a = p1p2...pn1 and a = q1q2...qn2 .
Either a is prime or not.
We consider these cases separately.
Case 1: Suppose a is prime.
Then the only prime factor of a is a itself, so 1 = n1 = n2 and a = p1 = q1.
Since p1 and q1 are prime and a = p1 and a = q1 and n1 = n2 and p1 = q1,

then x(a) is true.
Case 2: Suppose a is not prime.
We must prove n1 = n2 and pm = qm for each integer m such that 1 ≤ m ≤

n1.
Since a is not prime, then a has at least two prime factors, so n1 > 1 and

n2 > 1.
Since q1|q1q2...qn2 and q1q2...qn2 = a = p1p2...pn1 , then q1|p1p2...pn1 .
Since q1 and p1, p2, ..., pn−1 are all prime and q1|p1p2...pn1

, then by Euclid’s
corollary, q1 = pr for some integer r with 1 ≤ r ≤ n1.

Since a = p1p2...pn1
, then p1|a.

Since p1|a and a = q1q2...qn2
, then p1|q1q2...qn2

.
Since p1 and q1, q2, ..., qn2 are all prime and p1|q1q2...qn2 , then by Euclid’s

corollary, p1 = qs for some integer s with 1 ≤ s ≤ n2.
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Since p1 ≤ p2 ≤ ... ≤ pn1 and 1 ≤ r ≤ n1, then p1 ≤ pr.
Since q1 ≤ q2 ≤ ... ≤ qn2 and 1 ≤ s ≤ n2, then q1 ≤ qs.
Since p1 ≤ pr and pr = q1, then p1 ≤ q1.
Since q1 ≤ qs and qs = p1, then q1 ≤ p1.
Since p1 ≤ q1 and q1 ≤ p1, then by the antisymmetric property of ≤, we

have p1 = q1.

Since p1, a ∈ Z+ and p1|a, then p1 ≤ a.
Since p1 is prime and a is not prime, then p1 6= a.
Since p1 ≤ a and p1 6= a, then p1 < a.
Since p1 is prime, then p1 > 1.
Since p1|a, then a

p1
∈ Z.

Since p1 < a and p1 > 0, then 1 < a
p1

.
Since p1 > 1 and a > 0, then ap1 > a, so a > a

p1
.

Since 1 < a
p1

< a and a
p1

= p2p3...pn1 = q2q3...qn2 , then 1 < a
p1

=

(p2p3...pn1
) = (q2q3...qn2

) < a.
Thus, the products p2p3...pn1 and q2q3...qn2 are prime decompositions of the

same integer a
p1

.
Since 1 < a

p1
< a, then by the induction hypothesis, the integer a

p1
has a

unique factorization, so n1 = n2 and pm = qm for each integer m with 2 ≤ m ≤
n1.

Since p1 = q1 and pm = qm for each integer m with 2 ≤ m ≤ n1, then
pm = qm for each integer m such that 1 ≤ m ≤ n1.

Therefore, n1 = n2 and pm = qm for each integer m such that 1 ≤ m ≤ n1,
as desired.

Corollary 67. Every integer greater than one has a unique canonical
prime factorization

Every integer n > 1 can be written uniquely in a canonical form n =
pe11 p

e2
2 ...p

ek
k , where for each i = 1, 2, ..., k, each exponent ei is a positive integer

and each pi is a prime with p1 < p2 < ... < pk.

Proof. Let n ∈ Z and n > 1.
By FTA, n can be represented as a product of primes unique up to the order

of the factors of n.
Let S be the set of distinct primes in the prime factorization of n.
Then S = {p1, p2, ..., pk}, where each pi is a distinct prime factor in the

prime factorization of n.
Let these distinct prime factors be ordered such that p1 < p2 < ... < pk.
Let ei be the number of occurrences of prime pi in the prime factorization

of n.
Then ei is a positive integer and n = pe11 p

e2
2 ...p

ek
k .
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Linear Diophantine Equations

Theorem 68. Existence of a solution to linear Diophantine equation
Let a, b, c ∈ Z with a 6= 0 and b 6= 0.
A solution (x, y) ∈ Z × Z to the linear diophantine equation ax + by = c

exists if and only if gcd(a, b) | c.

Proof. Let d = gcd(a, b).
Suppose d|c.
Since c is a linear combination of a and b if and only if d|c, then c is a linear

combination of a and b.
Hence, there exist integers x0 and y0 such that ax0 + by0 = c, as desired.

Conversely, suppose there exist integers x0 and y0 such that ax0 + by0 = c.
Then c is a linear combination of a and b.
Since d|c if and only if c is a linear combination of a and b, then d|c.
Therefore, gcd(a, b) | c, as desired.

Corollary 69. Characterization of solution to linear Diophantine equa-
tion

Let a, b, c ∈ Z with a 6= 0 and b 6= 0.
If (x0, y0) ∈ Z×Z is a particular solution to the linear Diophantine equation

ax+ by = c, then a general solution is given by x = x0 + ( bd )t and y = y0− (ad )t
for t ∈ Z, where d = gcd(a, b).

Proof. Suppose (x0, y0) is a particular solution to the linear diophantine equa-
tion ax+ by = c.

Then x0 ∈ Z and y0 ∈ Z and ax0 + by0 = c.
Let (x′, y′) be another solution to the equation.
Then x′ ∈ Z and y′ ∈ Z and ax′ + by′ = c.
Thus, ax′ + by′ = c = ax0 + by0, so ax′ + by′ = ax0 + by0.
Hence, a(x′−x0) = ax′−ax0 = by0−by′ = b(y0−y′), so a(x′−x0) = b(y0−y′).
Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b, so a = dr and b = ds for some integers r and

s.
Thus, (dr)(x′ − x0) = (ds)(y0 − y′).
Since d 6= 0, then we divide to obtain r(x′−x0) = s(y0− y′), so r|s(y0− y′).
Since d = gcd(a, b), then 1 = gcd(ad ,

b
d ) = gcd(r, s).

Since r|s(y0− y′) and gcd(r, s) = 1, then r|(y0− y′), so y0− y′ = rt for some
integer t.

Hence, y′ = y0 − rt = y0 − (ad )t.
Thus, r(x′ − x0) = s(y0 − y′) = srt.
Since d > 0 and a > 0 and a = dr, then r > 0, so r 6= 0.
Hence, we divide by r to obtain x′ − x0 = st, so x′ = x0 + st = x0 + ( bd )t.

Therefore, x′ = x0 + ( bd )t and y′ = y0 − (ad )t.
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We verify x′ and y′ satisfy the equation.
Observe that

ax′ + by′ = a[x0 + (
b

d
)t] + b[y0 − (

a

d
)t]

= ax0 + (
ab

d
)t+ by0 − (

ab

d
)t

= (ax0 + by0) + (
ab

d
)t− (

ab

d
)t

= (ax0 + by0) + (
ab

d
− ab

d
)t

= c+ 0 · t
= c.

Congruences

Theorem 70. Let n ∈ Z+.
Let a, b ∈ Z.
Then a ≡ b (mod n) if and only if a and b leave the same remainder when

divided by n.

Proof. We first prove if a and b leave the same remainder when divided by n
then a ≡ b (mod n).

By the division algorithm there exist unique integers q1, q2, r1, r2 such that
a = nq1 + r1 and 0 ≤ r1 < n and b = nq2 + r2 and 0 ≤ r2 < n.

Suppose r1 = r2.
Then a− nq1 = b− nq2, so a− b = nq1 − nq2 = n(q1 − q2).
Since q1 − q2 ∈ Z, then n|(a− b), so a ≡ b (mod n).

Proof. Conversely, we prove if a ≡ b (mod n) then a and b leave the same
remainder when divided by n.

Suppose a ≡ b (mod n).
Then n|(a− b), so a− b = nk for some integer k.
Thus, a = nk + b.
By the division algorithm there exist unique integers q, r such that b = nq+r.
Thus, r is the remainder when b is divided by n.
Hence, a = nk + (nq + r) = nk + nq + r = n(q + k) + r.
Since a = n(q + k) + r, then by the division algorithm, r is the unique

remainder when a is divided by n.
Thus, r is the remainder when each of a and b is divided by n.
Therefore, a and b leave the same remainder when divided by n.

Theorem 71. The congruence modulo relation is an equivalence relation over
Z.
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Proof. Let n ∈ Z+ and a, b, c ∈ Z.
Let R = {(a, b) ∈ Z× Z : n|(a− b)}.
Since R ⊂ Z× Z, then R is the congruence modulo n relation over Z.
Since every integer divides zero, then in particular, n|0.
Hence, n|a− a, so a ≡ a (mod n).
Therefore, R is reflexive.

Suppose a ≡ b (mod n).
Then n|(a− b), so a− b = nk for some integer k.
Thus, b− a = −(nk) = n(−k).
Since −k is an integer, then n|(b− a), so b ≡ a (mod n).
Hence, a ≡ b (mod n) implies b ≡ a (mod n), so R is symmetric.

Suppose a ≡ b (mod n) and b ≡ c (mod n).
Then n|a−b and n|b−c, so there exist integers k1 and k2 such that a−b = nk1

and b− c = nk2.
Adding these equations we obtain a − c = (a − b) + (b − c) = nk1 + nk2 =

n(k1 + k2).
Since k1 + k2 ∈ Z, then this implies n|a− c, so a ≡ c (mod n).
Therefore, a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n), so R is

transitive.
Since R is reflexive, symmetric, and transitive, then R is an equivalence

relation over Z.

Theorem 72. Let n ∈ Z+.
Let a, b, c, d ∈ Z.
If a ≡ b (mod n) and c ≡ d (mod n), then
1. a+ c ≡ b+ d (mod n) (addition)
2. a− c ≡ b− d (mod n) (subtraction)
3. ac ≡ bd (mod n). (multiplication)

Proof. Suppose a ≡ b (mod n) and c ≡ d (mod n).
Then n|a− b and n|c− d.
Thus, there exist integers k1 and k2 such that

a− b = nk1 (2)

c− d = nk2 (3)

Adding these equations we get (a+ c)− (b+ d) = n(k1 + k2).
Since k1 + k2 is an integer, then n|(a+ c)− (b+ d).
Therefore, a+ c ≡ b+ d (mod n).
Subtracting these equations we get (a− c)− (b− d) = n(k1 − k2).
Since k1 − k2 is an integer, then n|(a− c)− (b− d).
Therefore, a− c ≡ b− d (mod n).
Multiplying the first equation by c we get ac− bc = nk1c.
Multiplying the second equation by b we get bc− bd = bnk2.

48



We add these equations to get ac− bd = nk1c+ bnk2 = n(k1c+ bk2).
Since k1c+ bk2 is an integer, then n|ac− bd.
Therefore, ac ≡ bd (mod n).

Theorem 73. Let n ∈ Z+.
Let a, b ∈ Z.
1. If a ≡ b (mod n), then a + c ≡ b + c (mod n) for all c ∈ Z. (addition

preserves congruence)
2. If a ≡ b (mod n), then ac ≡ bc (mod n) for all c ∈ Z. (multiplication

preserves congruence)
3. If a ≡ b (mod n), then ak ≡ bk (mod n) for all k ∈ Z+. (exponentiation

preserves congruence)

Proof. We prove 1.
Suppose a ≡ b (mod n).
Let c ∈ Z.
Since a ≡ b (mod n), then n|a− b.
Since a− b = a− c+ c− b = a+ c− c− b = a+ c− b− c = (a+ c)− (b+ c),

then n|(a+ c)− (b+ c).
Therefore, a+ c ≡ b+ c (mod n).

Proof. We prove 2.
Suppose a ≡ b (mod n).
Let c ∈ Z.
Since a ≡ b (mod n), then n|a− b, so n divides any multiple of a− b.
Thus, n|(a− b)c, so n|(ac− bc).
Therefore, ac ≡ bc (mod n).

Proof. We prove 3.
Suppose a ≡ b (mod n).
We prove ak ≡ bk (mod n) for all k ∈ Z+ by induction on k.
Let p(k) : be the predicate ak ≡ bk (mod n) defined over Z+.
Basis:
Since a ≡ b (mod n), then a1 ≡ b1 (mod n), so p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then ak ≡ bk (mod n).
Since a ≡ b (mod n), then aka ≡ bkb (mod n), so ak+1 ≡ bk+1 (mod n).
Thus, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ Z+.
By induction, we conclude p(k) is true for all k ∈ Z+.
Therefore, ak ≡ bk (mod n) for all k ∈ Z+.

Theorem 74. Let n ∈ Z+.
Let a, b, c ∈ Z.
1. If a+ c ≡ b+ c (mod n), then a ≡ b (mod n). (cancellation addition)
2. If ac ≡ bc (mod n) and d = gcd(n, c), then a ≡ b (mod n

d ). (cancellation
multiplication)
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Proof. We prove 1.
Suppose a+ c ≡ b+ c (mod n).
Then n|(a+ c)− (b+ c), so n|a− b.
Therefore, a ≡ b (mod n).

Proof. We prove 2.
Suppose ac ≡ bc (mod n) and d = gcd(n, c).
Since ac ≡ bc (mod n), then n|ac− bc, so ac− bc = nk for some integer k.
Thus, nk = (a− b)c.
Since gcd(n, c) = d, then gcd(nd ,

c
d ) = 1, by corollary 49.

Since (a−b)c
d = nk

d , then n
d divides (a−b)c

d .

Since n
d divides (a−b)c

d and gcd(nd ,
c
d ) = 1, then n

d divides a− b, by theorem
50.

Therefore, a ≡ b (mod n
d ).

Corollary 75. Let n ∈ Z+.
Let a, b, c ∈ Z.
If ac ≡ bc (mod n) and gcd(n, c) = 1, then a ≡ b (mod n). (cancellation

multiplication relatively prime)

Proof. Suppose ac ≡ bc (mod n) and gcd(n, c) = 1.
By the previous theorem, part 2, if ac ≡ bc (mod n) and gcd(n, c) = 1, then

a ≡ b (mod n
1 ).

Therefore, if ac ≡ bc (mod n) and gcd(n, c) = 1, then a ≡ b (mod n).

Proof. Suppose ac ≡ bc (mod n) and gcd(n, c) = 1.
Since ac ≡ bc (mod n), then n|ac− bc, so n|c(a− b).
Since n|c(a− b) and gcd(n, c) = 1, then n|a− b, by theorem 50.
Therefore, a ≡ b (mod n).

Corollary 76. Let p ∈ Z+.
Let a, b, c ∈ Z.
If ac ≡ bc (mod p) and p is prime and p 6 |c, then a ≡ b (mod p). (cancella-

tion multiplication prime modulus)

Proof. Suppose ac ≡ bc (mod p) and p is prime and p 6 |c.
Let d = gcd(p, c).
Then d|p and d|c.

Suppose d 6= 1.
Since p is prime, then the only positive divisors of p are 1 and p.
Since d|p, then either d = 1 or d = p.
Since d 6= 1, then d = p, so p|c.
But, this contradicts p 6 |c.
Therefore, d = 1.
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Hence, 1 = gcd(p, c).
Since ac ≡ bc (mod p) and gcd(p, c) = 1, then by the previous corollary,

a ≡ b (mod p).

Proposition 77. Let n ∈ Z+.
Let a, b, c ∈ Z.
If c 6= 0, then ac ≡ bc (mod nc) iff a ≡ b (mod n).

Proof. Let c 6= 0.
Suppose ac ≡ bc (mod nc).
Then nc|(ac− bc), so cn|c(a− b).
Since c 6= 0 and cn|c(a− b), then n|(a− b), by proposition 40.
Therefore, a ≡ b (mod n).

Conversely, suppose a ≡ b (mod n).
Then n|(a− b), so cn|c(a− b), by proposition 40.
Hence, nc|(a− b)c, so nc|ac− bc.
Therefore, ac ≡ bc (mod nc).

Proposition 78. Let n ∈ Z+.
Let a ∈ Z+.
Then a is invertible modulo n iff gcd(a, n) = 1.

Proof. Suppose gcd(a, n) = 1.
Since gcd is the least positive linear combination of a and n and gcd(a, n) =

1, then there exist integers r and s such that ra+ sn = 1.
Thus, ra− 1 = −sn, so ar − 1 = n(−s).
Since s ∈ Z, then −s ∈ Z, so n divides ar − 1.
Therefore, ar ≡ 1 (mod n).
Since r ∈ Z and ar ≡ 1 (mod n), then r is a multiplicative inverse of a, so

a is invertible.

Proof. Suppose a is invertible.
Then there is an integer b such that ab ≡ 1 (mod n), so n divides ab− 1.
Thus, ab− 1 = nk for some integer k.
Hence, 1 = ab− nk = ba+ (−k)n is a linear combination of a and n.
Thus, 1 is a multiple of gcd(a, n), so gcd(a, n) divides 1.
Therefore, gcd(a, n) must be 1, so gcd(a, n) = 1.

Linear Congruences

Proposition 79. Let a, b, x, x0 ∈ Z and n ∈ Z+.
If x0 is a solution to ax ≡ b (mod n), then so is x0 + nk for any integer k.
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Proof. Let k be an arbitrary integer.
Suppose x0 is a solution to ax ≡ b (mod n).
Then ax0 ≡ b (mod n).
Since ank ≡ ank (mod n), we add these equations to get ax0 + ank ≡

(b+ ank) (mod n).
Thus, a(x0 + nk) ≡ (b+ ank) (mod n).
For any integer m, n|nm− 0, so nm ≡ 0 (mod n).
Hence, in particular, n(ak) ≡ 0 (mod n), so ank ≡ 0 (mod n).
Since ank ≡ 0 (mod n) and b ≡ b (mod n), then by adding these equations

we get b+ ank ≡ b (mod n).
Since a(x0 + nk) ≡ (b + ank) (mod n) and b + ank ≡ b (mod n), then we

conclude a(x0 + nk) ≡ b (mod n), as desired.

Proof. Let k be an arbitrary integer.
Suppose x0 is a solution to ax ≡ b (mod n).
Then ax0 ≡ b (mod n).
Observe that

n|nk ⇒ n|(x0 + nk)− x0
⇒ x0 + nk ≡ x0 (mod n)

⇒ a(x0 + nk) ≡ ax0 (mod n)

⇒ a(x0 + nk) ≡ b (mod n).

Theorem 80. Existence of solution to linear congruence
Let a, b ∈ Z and n ∈ Z+.
A solution exists to the linear congruence ax ≡ b (mod n) if and only if d|b,

where d = gcd(a, n).
Moreover, if a solution exists, then there are d distinct solutions modulo n

and these solutions are congruent modulo n
d .

Solution. We must prove:
1. if a solution exists, then gcd(a, n)|b.
2. if gcd(a, n)|b, then a solution exists.

Proof. Let a, b ∈ Z and n ∈ Z+.
Suppose a solution exists to the linear congruence ax ≡ b (mod n).
Then there exists an integer x0 such that ax0 ≡ b (mod n), so n|(ax0 − b).
Hence, there exists an integer k such that ax0 − b = nk.
Thus, ax0 − nk = b, so ax0 + n(−k) = b.
Since −k is an integer, then b is a linear combination of a and n.
Now, b is a multiple of gcd(a, n) if and only if b is a linear combination of a

and n.
Hence, b is a multiple of gcd(a, n), so gcd(a, n)|b.
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Conversely, suppose gcd(a, n)|b.
To prove a solution exists we must prove there exists an integer x0 such that

ax0 ≡ b (mod n).
Let d = gcd(a, n).
Then d|b, so there exists some integer k such that b = dk.
Since d is the least positive linear combination of a and n, then there exist

integers r and s such that ra+ sn = d.
We multiply this equation by k to obtain rak + snk = dk = b.
Hence, rak − b = −snk, so a(rk)− b = n(−sk).
Let x0 = rk.
Then x0 is an integer and ax0 − b = n(−sk).
Since −sk is an integer, then n|(ax0 − b), so ax0 ≡ b (mod n).

Suppose a solution exists to the linear congruence ax ≡ b (mod n).
Then gcd(a, n)|b.
Since ax ≡ b (mod n), then n|(ax− b), so there exists an integer k such that

ax− b = nk.
Hence, ax− nk = b.
Let y = −k.
Then ax+ ny = b.
The equation ax+ ny = b is a linear diophantine equation.
Since gcd(a, n)|b, then a solution exists to the diophantine equation.
Let (x0, y0) be a particular solution to ax+ ny = b.
Then the solution set has the form (x0 + tnd , y0 − t

a
d ) where d = gcd(a, n)

and t is any integer, by corollary 69.
Suppose 0 ≤ t < d.
Then x is one of x0, x0 + n

d , x0 + 2nd , x0 + 3nd , ..., x0 + (d− 1)nd .
To prove each of these d solutions is a distinct element modulo n, suppose

for the sake of contradiction that there exist a pair of these solutions that are
not distinct modulo n.

Then there exist a pair of these solutions that are congruent modulo n.
Let x′, x′′ be a pair of these solutions such that x′ ≡ x′′ (mod n), where

x′ = x0 + t1
n
d and x′′ = x0 + t2

n
d and 0 ≤ t1 < d and 0 ≤ t2 < d.

Then n|(x′ − x′′), so n|(x0 + t1
n
d )− (x0 + t2

n
d ).

Hence, n|(t1 nd − t2
n
d ), so n|nd (t1 − t2).

Thus, n|nd (|t1 − t2|), so n ≤ n
d |t1 − t2|.

Hence, 1 ≤ |t1−t2|d , so d ≤ |t1 − t2|.
Since 0 ≤ t1 < d and 0 ≤ t2 < d, then 0 ≤ |t1 − t2| < d, so |t1 − t2| < d.
Thus, we have d ≤ |t1 − t2| and |t1 − t2| < d, a contradiction.
Therefore, no such pair exists, so each of these d solutions is a distinct

element modulo n.

To prove each of these d solutions is congruent modulo n
d , let x′ and x′′ be

arbitrary solutions such that x′ = x0 + t′ nd and x′′ = x0 + t′′ nd where 0 ≤ t′ < d
and 0 ≤ t′′ < d.
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Observe that

n

d
| n

d

| n

d
(t′ − t′′)

| (t′
n

d
− t′′n

d
)

| (x0 + t′
n

d
)− (x0 + t′′

n

d
)

| (x′ − x′′).

Hence, x′ ≡ x′′ (mod n
d ).

Since x and x′ are arbitrary, then each of the d solutions is congruent modulo
n
d .

Corollary 81. Let a, b ∈ Z and n ∈ Z+.
There exists an integer b such that ab ≡ 1 (mod n) if and only if gcd(a, n) =

1.
Moreover, b is the inverse of a and the inverse of a is unique modulo n.

Proof. Existence:
Suppose there exists an integer b such that ab ≡ 1 (mod n).
Then b is a solution to the linear congruence ax ≡ 1 (mod n).
A solution to the linear congruence ax ≡ 1 (mod n) exists iff gcd(a, n)|1.
Hence, gcd(a, n)|1. Therefore, gcd(a, n) = 1.

Conversely, suppose gcd(a, n) = 1.
Since gcd(a, n)|1, then there exists a solution to the linear congruence ax ≡ 1

(mod n).
Let b be a solution.
Then b is an integer such that ab ≡ 1 (mod n).
Therefore, b is an inverse of a.
Uniqueness:
Let b and b′ be inverses of a modulo n.
Since b is an inverse of a, then ab ≡ 1 (mod n).
Since b′ is an inverse of a, then ab′ ≡ 1 (mod n).
Hence, b and b′ are solutions to the linear congruence ax ≡ 1 (mod n).
Therefore, gcd(a, n) = 1.
Since ab ≡ 1 (mod n), then 1 ≡ ab (mod n).
Since ab′ ≡ 1 (mod n) and 1 ≡ ab (mod n), then ab′ ≡ ab (mod n).
Since gcd(a, n) = 1, then we may cancel to obtain b′ ≡ b (mod n), by

corollary 75.
Therefore, the inverse is unique modulo n.
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Integers Modulo n

Lemma 82. addition modulo n is well-defined
Let [a], [b] ∈ Zn.
Let x, x′ ∈ [a]n and y, y′ ∈ [b]n.
Then [x+ y] = [x′ + y′].

Proof. Let a, b ∈ Z and n ∈ Z+.
Suppose x, x′ ∈ [a]n and y, y′ ∈ [b]n.
Then [a]n = {x ∈ Z : x ≡ a (mod n)} and [b]n = {x ∈ Z : x ≡ b (mod n)}.
Since x, x′ ∈ [a], then x, x′ ∈ Z and x ≡ a (mod n) and x′ ≡ a (mod n).
Since y, y′ ∈ [b], then y, y′ ∈ Z and y ≡ b (mod n) and y′ ≡ b (mod n).
Since x′ ≡ a (mod n), then a ≡ x′ (mod n).
Since x ≡ a (mod n) and a ≡ x′ (mod n), then x ≡ x′ (mod n).
Since y′ ≡ b (mod n), then b ≡ y′ (mod n).
Since y ≡ b (mod n) and b ≡ y′ (mod n), then y ≡ y′ (mod n).
Adding the congruences x ≡ x′ (mod n) and y ≡ y′ (mod n), we obtain

x+ x′ ≡ (y + y′) (mod n).
Therefore, [x+ x′] = [y + y′].
Notes:
We observe that if x, x′ ∈ [a] and y, y′ ∈ [b], then [x+ y] = [x′ + y′].

Proposition 83. Addition modulo n is a binary operation.
Let +n : Zn × Zn → Zn be a binary relation defined by [a] + [b] = [a+ b] for

all [a], [b] ∈ Zn.
Then +n is a binary operation on Zn.

Solution. To prove +n is a binary operation on Zn, we must prove:
1. Closure: (∀[a], [b] ∈ Zn)([a] + [b] ∈ Zn).
2. Uniqueness: (∀[a], [b] ∈ Zn)([a] + [b]) is unique.
To prove [a] + [b] is unique, we must prove:
if ([a], [b]), ([a′], [b′]) ∈ Zn×Zn such that ([a], [b]) = ([a′], [b′]), then [a]+[b] =

[a′] + [b′].
Thus, assume ([a], [b]) = ([a′], [b′]). Prove [a] + [b] = [a′] + [b′].
Suppose ([a], [b]) = ([a′], [b′]).
Then [a] = [a′] and [b] = [b′].
Thus, a ≡ a′ (mod n) and b ≡ b′ (mod n).
Thus, we must prove the result does not depend on the choice of a particular

representative of the equivalence class.

Proof. Let [x], [y] ∈ Zn.
Then x and y are integers.
Since x+ y is an integer, then [x+ y] ∈ Zn.
Observe that [x+ y] = [x] + [y].
Hence, [x] + [y] ∈ Zn.
Therefore, Zn is closed under addition modulo n.
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We prove addition modulo n is well defined.
Let ([a], [b]), ([a′], [b′]) ∈ Zn × Zn such that ([a], [b]) = ([a′], [b′]).
Then [a] = [a′] and [b] = [b′].
Hence, a ≡ a′ (mod n) and b ≡ b′ (mod n).
Adding these congruences, we obtain a+ b ≡ (a′ + b′) (mod n).
Hence, [a+ b] = [a′ + b′].
Therefore,

[a] + [b] = [a+ b]

= [a′ + b′]

= [a′] + [b′].

Hence, [a] + [b] = [a′] + [b′], so addition modulo n is well defined.

Theorem 84. algebraic properties of addition modulo n
1. [a] + ([b] + [c]) = ([a] + [b]) + [c] for all [a], [b], [c] ∈ Zn.(associative)
2. [a] + [b] = [b] + [a] for all [a], [b] ∈ Zn.(commutative)
3. [a] + [0] = [0] + [a] = [a] for all [a] ∈ Zn. (additive identity)
4. [a] + [−a] = [−a] + [a] = [0] for all [a] ∈ Zn. (additive inverses)

Proof. We prove 1.
Let [a], [b], [c] ∈ Zn.
Then [a]+([b]+[c]) = [a]+[b+c] = [a+(b+c)] = [(a+b)+c] = [a+b]+[c] =

([a] + [b]) + [c].

Proof. We prove 2.
Let [a], [b] ∈ Zn.
Then [a] + [b] = [a+ b] = [b+ a] = [b] + [a].

Proof. We prove 3.
Let [a] ∈ Zn.
Then [a] + [0] = [a+ 0] = [a] = [0 + a] = [0] + [a].

Proof. We prove 4.
Let [a] ∈ Zn.
Then [a] + [−a] = [a+ (−a)] = [0] = [−a+ a] = [−a] + [a].

Proposition 85. Multiplication modulo n is a binary operation.
Let ∗n : Zn × Zn → Zn be a binary relation defined by [a][b] = [ab] for all

[a], [b] ∈ Zn.
Then ∗n is a binary operation on Zn.

Solution. To prove ∗n is a binary operation on Zn, we must prove:
1. Closure: (∀[a], [b] ∈ Zn)([a][b] ∈ Zn).
2. Uniqueness: (∀[a], [b] ∈ Zn)([a][b]) is unique.
To prove [a][b] is unique, we must prove:
if ([a], [b]), ([a′], [b′]) ∈ Zn × Zn such that ([a], [b]) = ([a′], [b′]), then [a][b] =

[a′][b′].
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Thus, assume ([a], [b]) = ([a′], [b′]). Prove [a][b] = [a′][b′].
Suppose ([a], [b]) = ([a′], [b′]).
Then [a] = [a′] and [b] = [b′].
Thus, a ≡ a′ (mod n) and b ≡ b′ (mod n).
Thus, we must prove the result does not depend on the choice of a particular

representative of the equivalence class.

Proof. Let [x], [y] ∈ Zn.
Then x and y are integers.
Since xy is an integer, then [xy] ∈ Zn.
Observe that [xy] = [x][y].
Hence, [x][y] ∈ Zn.
Therefore, Zn is closed under multiplication modulo n.
We prove multiplication modulo n is well defined.
Let ([a], [b]), ([a′], [b′]) ∈ Zn × Zn such that ([a], [b]) = ([a′], [b′]).
Then [a] = [a′] and [b] = [b′].
Hence, a ≡ a′ (mod n) and b ≡ b′ (mod n).
Multiplying these congruences, we obtain ab ≡ a′b′ (mod n).
Hence, [ab] = [a′b′].
Therefore,

[a][b] = [ab]

= [a′b′]

= [a′][b′].

Hence, [a][b] = [a′][b′], so multiplication modulo n is well defined.

Theorem 86. algebraic properties of multiplication modulo n
1. [a]([b][c]) = ([a][b])[c] for all [a], [b], [c] ∈ Zn. (associative)
2. [a][b] = [b][a] for all [a], [b] ∈ Zn. (commutative)
3. [a][1] = [1][a] = [a] for all [a] ∈ Zn. (multiplicative identity)
4. [a][0] = [0][a] = [0] for all [a] ∈ Zn.
5. [a]([b] + [c]) = [a][b] + [a][c] for all [a], [b], [c] ∈ Zn. (left distributive)
6. ([a] + [b])[c] = [a][c] + [b][c] for all [a], [b], [c] ∈ Zn. (right distributive)

Proof. We prove 1.
Let [a], [b], [c] ∈ Zn.
Then [a]([b][c]) = [a][bc] = [a(bc)] = [(ab)c] = [ab][c] = ([a][b])[c].

Proof. We prove 2.
Let [a], [b] ∈ Zn.
Then [a][b] = [ab] = [ba] = [b][a].

Proof. We prove 3.
Let [a] ∈ Zn.
Then [a][1] = [a1] = [a] = [1a] = [1][a].
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Proof. We prove 4.
Let [a] ∈ Zn.
Then [a][0] = [a0] = [0] = [0a] = [0][a].

Proof. We prove 5.
Let [a], [b], [c] ∈ Zn.
Then [a]([b] + [c]) = [a][b + c] = [a(b + c)] = [ab + ac] = [ab] + [ac] =

[a][b] + [a][c].

Proof. We prove 6.
Let [a], [b], [c] ∈ Zn.
Then ([a] + [b])[c] = [a + b][c] = [(a + b)c] = [ac + bc] = [ac] + [bc] =

[a][c] + [b][c].

Theorem 87. Existence of multiplicative inverse of [a] modulo n
Let n ∈ Z+.
Let [a] ∈ Zn.
Then [a] has a multiplicative inverse in Zn iff gcd(a, n) = 1.

Proof. Let n be a positive integer.
Let [a] ∈ Zn.
Suppose [a] has a multiplicative inverse.
Then there exists [b] ∈ Zn such that [a][b] = [1], so [ab] = [1].
Hence, ab ≡ 1 (mod n), so n|(ab− 1).
Thus, ab− 1 = nk for some integer k.
Consequently, 1 = ab − nk = ba − nk = ba − kn = ba + (−k)n is a linear

combination of a and n.
Let d = gcd(a, n).
Any common divisor of a and n divides any linear combination of a and n.
Hence, d divides any linear combination of a and n, so d divides 1.
Since d ∈ Z+ and d|1, then d = 1, so gcd(a, n) = 1.

Conversely, suppose gcd(a, n) = 1.
Then there exists x, y ∈ Z such that xa+ yn = 1, so xa− 1 = −yn.
Since −y ∈ Z, then this implies n divides xa− 1, so xa ≡ 1 (mod n).
Thus, 1 ≡ xa, so [1] = [xa] = [x][a] = [a][x].
Since [x] ∈ Zn and [a][x] = [1], then [a] has a multiplicative inverse.

Corollary 88. The inverse of [0] in Z1 is [0].
Let n ∈ Z+.
If n > 1, then [0] has no multiplicative inverse.

Proof. Let n ∈ Z+.
Then either n = 1 or n > 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then Z1 = {[0]}.
Since 0 ≡ 1 (mod 1), then [0] = [1].
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Hence, [1] ∈ Z1.
Since [1] = [0] = [0 ∗ 0] = [0][0], then there exists [0] ∈ Z1 such that

[0][0] = [1].
Therefore, [0] has a multiplicative inverse in Z1 and [0]−1 = [0].
Case 2: Suppose n > 1.
Then gcd(0, n) = n > 1, so gcd(0, n) > 1.
Thus, gcd(0, n) 6= 1.
Since [0] has a multiplicative inverse in Zn iff gcd(0, n) = 1, then [0] does

not have a multiplicative inverse in Zn.

Theorem 89. Let n ∈ Z+.
A nonzero element of Zn either has a multiplicative inverse or is a divisor

of zero.

Solution. Let [a] ∈ Zn, [a] 6= [0].
We must prove: Either [a] has a multiplicative inverse or [a] is a divisor of

zero.
Either a and n are relatively prime or not.

Proof. Let n be a positive integer.
Let [a] ∈ Zn and [a] 6= [0].
Since [a] ∈ Zn, then a is an integer.
Either a and n are relatively prime or not.
We consider these cases separately.
Case 1: Suppose a and n are relatively prime.
Then gcd(a, n) = 1.
The element [a] has a multiplicative inverse in Zn iff gcd(a, n) = 1.
Hence, [a] has a multiplicative inverse in Zn.
Case 2: Suppose a and n are not relatively prime.
Then gcd(a, n) 6= 1, so gcd(a, n) > 1.
Let d = gcd(a, n).
Then d > 1.
Consider the equation [a][x] = [0].
Observe that [a][x] = [ax] = [0].
Hence, ax ≡ 0 (mod n).
The linear congruence has a solution iff gcd(a, n)|0.
Hence, a solution exists iff d|0.
Any integer divides zero, so d|0.
Hence, a solution exists and there are d distinct solutions modulo n.
Zero is a solution since a ∗ 0 ≡ 0 (mod n).
Thus, there are d− 1 distinct nonzero solutions modulo n.
Since d > 1, then d− 1 > 0, so d− 1 ≥ 1.
Hence, there exists at least one nonzero solution modulo n, say b.
Thus, b is a nonzero positive integer that is less than n and is a solution to

ax ≡ 0 (mod n).
Hence, [b] ∈ Zn and [b] 6= [0] and ab ≡ 0 (mod n).
Since ab ≡ 0 (mod n), then [ab] = [0], so [a][b] = [0].
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Since [b] ∈ Zn and [b] 6= [0] and [a][b] = [0], then [a] is a divisor of zero.

Proposition 90. If p is prime, then φ(p) = p− 1.

Proof. Suppose p is a prime number.
Then p is a positive integer and p > 1.
Let S = {1, 2, ..., p− 1, p}.
Let a ∈ S.
Since a ∈ S and S ⊂ Z+, then a ∈ Z+.
Either a < p or a = p.
We consider these cases separately.
Case 1: Suppose a < p.
Since a and p are positive integers and a < p, then p 6 |a.
Since p is prime, then either p|a or gcd(p, a) = 1.
Since p 6 |a, then gcd(p, a) = 1.
Hence, a is relatively prime to p.
Thus, there are p − 1 positive integers less than p that are relatively prime

to p.
Case 2: Suppose a = p.
Then gcd(p, a) = gcd(p, p) = p > 1.
Thus, gcd(p, a) 6= 1, so p and a are not relatively prime.
Hence, in all cases, there are exactly p−1 positive integers less than or equal

to p that are relatively prime to p.
Therefore, φ(p) = p− 1.

Fermat’s Theorem

Theorem 91. Fermat’s Little Theorem
Let p, a ∈ Z+.
If p is prime and p 6 |a, then p|ap−1 − 1.

Proof. Suppose p is prime and p 6 |a.
By the division algorithm, a = pq+r for some integers q and r with 0 ≤ r < p.
Since p 6 |a, then r 6= 0, so 0 < r < p.
Hence, 1 ≤ r ≤ p− 1.

Let s ∈ Z such that 1 ≤ s ≤ p− 1.
We prove if r 6= s then ra 6≡ sa (mod p) by contrapositive.
Suppose ra ≡ sa (mod p).
Then p divides ra− sa = (r − s)a.
Since p is prime and p divides (r − s)a, then by Euclid’s lemma, either

p|(r − s) or p|a.
By assumption, p 6 |a, so we conclude p|r − s.
Hence, r ≡ s (mod p).
Therefore, ra ≡ sa (mod p) implies r ≡ s (mod p), so r 6≡ s (mod p) implies

ra 6≡ sa (mod p).
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Thus, any distinct pair of these integers sa, 2a, 3a, ..., (p − 1)a are not con-
gruent (mod p), so a, 2a, 3a, ..., (p− 1)a are all distinct.

Hence, the congruence classes [a], [2a], [3a], ..., [(p− 1)a] are all distinct.
Let S be the set of these elements.
Then S = {[ra] : 1 ≤ r ≤ p− 1} = {[a], [2a], ..., [(p− 1)a]}.

We prove [0] 6∈ S.
Suppose [0] ∈ S.
Then [0] = [ra] for 1 ≤ r ≤ p− 1.
Thus, 0 ≡ ra (mod p), so ra ≡ 0 (mod p).
Hence, p divides ra− 0 = ra.
Since p is prime and p divides ra, then by Euclid’s lemma, either p|r or p|a.
By assumption, p 6 |a, so we conclude p|r.
Since p and r are positive integers and p|r, then p ≤ r.
Since r ≤ p− 1 < p,then r < p, so p > r.
Thus, we have p > r and p ≤ r, a contradiction.
Therefore, [0] 6∈ S.

Let T = {[k] : 1 ≤ k ≤ p− 1}.
Then T = {[1], [2], ..., [p− 1]}.

We prove S ⊂ T .
Let x ∈ S.
Then x = [ra] and 1 ≤ r ≤ p− 1.
By the division algorithm, ra = pq′ + r′ for integers q′, r′ with 0 ≤ r′ < p.
Since r′ ∈ Z and r′ < p, then r′ ≤ p− 1, so 0 ≤ r′ ≤ p− 1.
Observe that

x = [ra]

= [pq′ + r′]

= [pq′] + [r′]

= [p][q′] + [r′]

= [0][q′] + [r′]

= [0q′] + [r′]

= [0] + [r′]

= [0 + r′]

= [r′].

Since x = [r′] and x ∈ S and [0] 6∈ S, then [r′] 6= [0], so r′ 6= 0.
Since 0 ≤ r′ ≤ p− 1 and r′ 6= 0, then 0 < r′ ≤ p− 1, so 1 ≤ r′ ≤ p− 1.
Since x = [r′] and 1 ≤ r′ ≤ p− 1, then x ∈ T , so S ⊂ T .
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We prove T ⊂ S.
Let y ∈ T .
Then y = [k] for some integer k with 1 ≤ k ≤ p− 1.
The linear congruence ar ≡ k (mod p) has a solution iff gcd(a, p) divides k

and there are gcd(a, p) distinct solutions modulo p.
Since p is prime, then either p|a or gcd(p, a) = 1.
By assumption, p 6 |a, so we conclude gcd(p, a) = 1.
Since gcd(p, a) = 1 and 1 divides integer k, then we conclude the linear

congruence ar ≡ k (mod p) has 1 distinct solution modulo p.
Hence, there exists an integer r with 0 ≤ r < p such that ar ≡ k (mod p),

so k ≡ ar (mod p).
Thus, k ≡ ra (mod p), so [k] = [ra].
Since k ≥ 1, the k 6= 0.
Since k 6= 0 and ar ≡ k (mod p), then ar 6≡ 0 (mod p), so r 6= 0.
Since 0 ≤ r < p and r 6= 0, then 0 < r < p, so 1 ≤ r ≤ p− 1.
Hence, y = [ra] and 1 ≤ r ≤ p− 1, so y ∈ S.
Therefore, y ∈ T implies y ∈ S, so T ⊂ S.
Since S ⊂ T and T ⊂ S, then S = T .

Observe that
[a] · [2a] · ... · [(p− 1)a] = [1] · [2] · ... · [p− 1]
[a · 2a · ... · (p− 1)a] = [1 · 2 · ... · (p− 1)]
[a · 2a · ... · (p− 1)a] = [(p− 1)!]
[1 · 2 · ...(p− 1) · ap−1] = [(p− 1)!]
[(p− 1)! · ap−1] = [(p− 1)!]
[ap−1] = [1]

Therefore, ap−1 ≡ 1 (mod p), so p divides ap−1 − 1.

Corollary 92. Let p, a ∈ Z.
If p is prime, then ap ≡ a (mod p).

Proof. Suppose p is prime.
Either p|a or p 6 |a.
We consider these cases separately.
Case 1: Suppose p|a.
Then p|a− 0, so a ≡ 0 (mod p).
Since p is prime, then p ∈ Z+.
Since p ∈ Z+ and exponentiation preserves congruences and a ≡ 0 (mod p),

then we raise to the p power to obtain ap ≡ 0p = 0 ≡ a, so ap ≡ a (mod p).
Case 2: Suppose p 6 |a.
Since p is prime and p 6 |a, then by Fermat’s Little theorem, p divides ap−1−1,

so ap−1 ≡ 1 (mod p).
Since a ≡ a (mod p), we multiply these congruences to obtain ap = ap−1·a ≡

1 · a = a, so ap ≡ a (mod p).

62



Theorem 93. Euler’s Theorem
Let a ∈ Z and n ∈ Z+.
If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Proof. Let Z∗n be the group of units of Zn.
Then Z∗n = {[a] ∈ Zn : gcd(a, n) = 1}.
Let [a] ∈ Z∗n.
Then [a] ∈ Zn and gcd(a, n) = 1.
Let m = |Z∗n| = φ(n).
Then m is a positive integer, so Z∗n is a finite group of order m.
Hence, gm = e for all g ∈ Z∗n.
Thus, [a]m = [1], so [1] = [a]m = [am].
Hence, 1 ≡ am (mod n), so am ≡ 1 (mod n).
Therefore, aφ(n) ≡ 1 (mod n).
Thus, gcd(a, n) = 1 and aφ(n) ≡ 1 (mod n), so gcd(a, n) = 1 implies aφ(n) ≡

1 (mod n).

Corollary 94. Fermat’s Little Theorem
Let a ∈ Z.
If p is prime, then ap ≡ a (mod p).

Proof. Suppose p is prime.
Then either p divides a, or p and a are relatively prime.
We consider these cases separately.
Case 1: Suppose p|a.
Then there exists an integer k such that a = pk.
Hence, ap − a = a(ap−1 − 1) = pk(ap−1 − 1).
Since p > 1, then p− 1 > 0, so p− 1 is a positive integer.
Consequently, ap−1 is an integer, so k(ap−1 − 1) is an integer.
Thus, p divides ap − a, so ap ≡ a (mod p).
Case 2: Suppose p and a are relatively prime.
Then gcd(a, p) = 1.
By Euler’s thm, aφ(p) ≡ 1 (mod p).
Since p is prime, then φ(p) = p− 1, so ap−1 ≡ 1 (mod p).
Multiplying the congruence by a, we obtain ap ≡ a (mod p).

Miscellaneous Stuff

Proposition 95. Every integer is congruent modulo n to exactly one
of the integers 0, 1, 2, ..., n− 1.

Proof. Let a ∈ Z and n ∈ Z+.
By the division algorithm, when a is divided by n, then there exist unique

integers q and r such that a = nq + r and 0 ≤ r < n.
Thus, a− r = nq, so n|(a− r).
Therefore, a ≡ r (mod n).
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Since 0 ≤ r < n, then either r = 0 or r = 1 or r = 2 or ... or r = n − 1, so
r ∈ {0, 1, 2, ..., n− 1}.

Hence, a is congruent modulo n to either 0 or 1 or 2 or ... or n− 1.
Therefore, every integer is congruent modulo n to exactly one of the integers

in {0, 1, 2, ..., n− 1}.

Proposition 96. Any set of n integers is a complete set of residues
modulo n iff no two of the integers are congruent modulo n.

Proof. TODO
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