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Natural number system

Peano Axioms for natural number system

Exercise 1. The relation < on N is not reflexive.

Proof. Since 1 ∈ N and 1 6< 1, then the relation < is not reflexive on N.

Exercise 2. The relation < on N is not symmetric.

Proof. Since 1 < 2 and 2 6< 1, then 1 < 2 does not imply 2 < 1.
Therefore, the relation < is not symmetric on N.

Exercise 3. The relation ≤ on N is not symmetric.

Proof. Since 2 6< 1 and 2 6= 1, then neither 2 < 1 nor 2 = 1, so 2 6≤ 1.
Hence, 1 ≤ 2 does not imply 2 ≤ 1.
Therefore, ≤ is not symmetric.

Proposition 4. The set N is inductive.

Solution. To prove N is inductive we must show that
1. N ⊂ N.
2. (∀m ∈ Z+)(m ∈ N→ m + 1 ∈ N).
To prove 2:
We let m ∈ N be arbitrary.
We must prove m + 1 ∈ N.

Proof. Since every set is a subset of itself and N is a set, then N ⊂ N.
Since 1 ∈ N, then N is not empty.
Since N is not empty, then there exists an element in N.
Therefore, let m be an arbitrary element of N.
We must prove m + 1 ∈ N.
Since N is closed under addition and m, 1 ∈ N, then it follows that the

element m + 1 is in N.
Hence, m + 1 ∈ N, as desired.

Proposition 5. The empty set is inductive.



Solution. To prove ∅ is inductive we must show that
1. ∅ ⊂ N.
2. (∀n ∈ N)(n ∈ N→ n + 1 ∈ N).
To prove 2:
We let m ∈ ∅ be arbitrary.
We must prove m + 1 ∈ ∅.

Proof. Since the empty set is a subset of every set, then ∅ ⊂ N.
Let m be an arbitrary natural number.
Since ∅ is empty, then m 6∈ ∅, so m ∈ ∅ is false.
Hence, the conditional m ∈ ∅ → m + 1 ∈ ∅ is vacuously true.
Since m is arbitrary, then n ∈ ∅ → n + 1 ∈ ∅ is true for every n ∈ N.
Therefore, ∅ is inductive.

Proposition 6. Let n ∈ Z+.
The set {n, n + 1, n + 2, ...} is inductive.

Solution.
Let S = {n, n + 1, n + 2, ...}.
To prove S is inductive we must show that
1. S ⊂ N.
2. (∀m ∈ Z+)(m ∈ S → m + 1 ∈ S).
To prove 2:
We let m ∈ N be arbitrary.
We must prove m + 1 ∈ S.

Proof. Let n ∈ Z+.
Let S = {n, n + 1, n + 2, ...}.
Then S = {k : k ≥ n}.
Since n is a natural number and k ≥ n, then each k is a natural number.
Hence, S is a set of natural numbers, so S ⊂ N.
Observe that n ∈ S.
Hence, S is not empty.
Since S is not empty, then there exists an element in S.
Therefore, let m be an arbitrary element of S.
To prove m + 1 ∈ S, we must prove m + 1 ∈ N and m + 1 ≥ n.
Since m ∈ S, then m ∈ N and m ≥ n.
Since m ∈ N and 1 ∈ N, then by closure of N under addition, m + 1 ∈ N.
Since m + 1 > m and m ≥ n, then m + 1 > n.
Therefore, m + 1 ∈ N and m + 1 > n, as desired.

Proposition 7. Every nonempty inductive set has the form {m,m + 1,m +
2, ...}.

Solution. The statement to prove is:
for all nonempty sets S, if S is inductive, then there exists m ∈ N such that

S = {m,m + 1,m + 2, ...}.
We can use well ordering principle of N and previously proved theorems.
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Proof. Let S be a nonempty inductive set.
Since S is inductive, then S is a subset of N.
Since S is not empty and S ⊂ N, then S has a least element, by the well

ordering principle of N.
Let m ∈ N be the least element of S.
Since S is inductive and m ∈ S, then we know {m,m + 1,m + 2, ...} ⊂ S.
Since m is the least element contained in S, then there is no natural number

smaller than m that is contained in S.
Hence, S = {m,m + 1,m + 2, ...}, as desired.

Exercise 8. Show that n2 ≥ n for every n ∈ N.

Proof. Let n ∈ N be arbitrary.
Then n ≥ 1.
Since 1 > 0, then n > 0.
Since n ≥ 1 and n > 0, then n2 = nn ≥ 1n = n, so n2 ≥ n, as desired.

Exercise 9. The natural numbers are well ordered.

Solution. We know that the pair 〈N,≤〉 is a poset.
By definition of well ordering N is well ordered iff every nonempty subset of

N has a least element.
Thus our proposition to prove is:
Every nonempty subset of natural numbers has a least element.
Let S be a nonempty subset of N.
We must prove S has a least element.
Let’s think of what we can deduce if we assume S is a nonempty subset of

N.
We can use mathematical induction to prove the proposition.
Our statement Pn is:
If S ⊂ N and S is nonempty, then S has a least element.
How do we describe an arbitrary subset S of N that has a least element in

such a way so that it becomes a statement about N?
We need to specify precisely what it means for a subset of N to have a least

element.
Let S ⊂ N be nonempty.
Let s ∈ S be the smallest element of S.
What can we deduce about s?
Well, we know 1 is the least positive natural number, so s ≥ 1.
In order to make this into a statement about N, we can let s ≤ n where

n ∈ N is arbitrary.
Thus, our revised statement is:
Pn : If S ⊂ N is nonempty and ∃s ∈ S such that 1 ≤ s ≤ n, then S has a

least element.
To summarize we must prove the proposition ∀n ∈ N, Pn where the statement

Pn is If S ⊂ N is nonempty and ∃s ∈ S such that 1 ≤ s ≤ n, then S has a least
element.
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Our basis is n0 = 1 and we must prove P1.
For induction we must prove Pk → Pk+1 for any k ≥ 1.
We need to prove Pk implies Pk+1.
We use direct proof so we assume the statement: if S ⊂ N is nonempty and

∃s ∈ S such that 1 ≤ s ≤ k, then S has a least element is true.
We must prove:
if ∃t ∈ S such that 1 ≤ t ≤ k + 1, then S has a least element.
In order to prove this we assume: ∃t ∈ S such that 1 ≤ t ≤ k + 1.

Proof. We know 〈N,≤〉 is a total order.
We must prove N is well ordered.
We prove the proposition ∀n ∈ N, Pn where the statement Pn is If S ⊂ N is

nonempty and ∃s ∈ S such that 1 ≤ s ≤ n, then S has a least element.
We prove using mathematical induction(weak).
Basis:
For n = 1 the statement P1 is:
If S ⊂ N is nonempty and ∃s ∈ S such that 1 ≤ s ≤ 1, then S has a least

element.
Let S ⊂ N be nonempty.
Suppose there exists s ∈ S such that 1 ≤ s ≤ 1.
Then s = 1, so 1 ∈ S.
Since 1 is the smallest natural number, then 1 is the least element of S, so

S has a least element.
Therefore the statement P1 is true.
Induction:
Suppose it is true that if there is some s ∈ S such that 1 ≤ s ≤ k for any

k ≥ 1, then S has a least element.
We must prove: if there is some integer in S that is less than or equal to

k + 1, then S has a least element.
Let k ≥ 1.
Observe that S either contains an element less than k + 1 or it does not.
We consider these cases separately.
Case 1: Suppose S does not contain an element that is less than k + 1.
Since S is not empty, let s ∈ S.
Since ¬∃s ∈ S such that s < k + 1, then ∀s ∈ S.s ≥ k + 1.
Hence every element of S must be greater than or equal to k + 1.
Since S is not empty, let t ∈ S.
Suppose t ≤ k + 1.
Since every element of S must be greater than or equal to k+1, then t ≥ k+1.
Since t ≥ k + 1 then k + 1 ≤ t.
Since t ≤ k + 1 and k + 1 ≤ t then by the antisymmetric property of ≤,

t = k + 1.
Since every element of S must be greater than or equal to k + 1 and t ∈ S

is k + 1, then t is the least element of S.
Hence, S has a least element.
Case 2: Suppose S does contain an element that is less than k + 1.
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Then ∃t ∈ S such that t < k + 1.
Since S is nonempty, choose t ∈ S to be the element less than k + 1.
Then t < k + 1.
Since 1 is the least element of N then any element of N is greater than or

equal to 1.
Since S ⊂ N and t ∈ S then t ∈ N.
Hence, t ≥ 1.
Thus 1 ≤ t and t < k + 1, so 1 ≤ t < k + 1.
Therefore, 1 ≤ t ≤ k.
Thus, there is some element t ∈ S such that 1 ≤ t ≤ k.
By the induction hypothesis, this implies S has a least element.
Both cases show for any nonempty S ⊂ N if there is some s ∈ S such that

1 ≤ s ≤ k for any k ≥ 1, then S has a smallest element.
Hence, by induction, if S ⊂ N is nonempty and there is some s ∈ S such

that 1 ≤ s ≤ n, then S has a least element for every n ∈ N.
Therefore, every nonempty subset of N has a least element, so N is well

ordered.

Construction of Z
Exercise 10. There is no integer between 0 and 1.

Proof. Suppose there exists an integer n between 0 and 1.
Let S = {n ∈ Z : 0 < n < 1}.
Since n ∈ S, then S 6= ∅.
If x ∈ S, the x ∈ Z and 0 < x < 1, so 0 < x.
Since x ∈ Z and x > 0, then x ∈ Z+, so S ⊂ Z+.
Since S ⊂ Z+ and S 6= ∅, then by the well-ordering principle of Z+, S has a

least element m ∈ S.
Thus, m ≤ x for all x ∈ S.
Since m ∈ S, then m ∈ Z and 0 < m < 1, so 0 < m and m < 1.
Since m > 0 and 0 < m < 1, then we multiply by m to obtain 0 < m2 < m,

so 0 < m2 < m < 1.
Since m ∈ Z, then m2 ∈ Z.
Since m2 ∈ Z and 0 < m2 < 1, then m2 ∈ S.
Thus, m2 ∈ S and m2 < m.
But, this contradicts that m is the least element of S.
Hence, S does not have a least element, so S must be empty.
Therefore, there does not exist an integer between 0 and 1.

Proposition 11. Let S be an inductive subset of N containing a positive integer
m0.

Then S contains m for every positive integer m greater than m0; that is,
{m0,m0 + 1,m0 + 2, ...} ⊂ S.
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Solution.
The hypothesis is:
1. S ⊂ N
2. S is inductive.
3. m ∈ Z+ is arbitrary.
4. m0 ∈ S.
The conclusion is:
1. {m0,m0 + 1,m0 + 2, ...} ⊂ S
To prove the conclusion:
Let R = {m0,m0 + 1,m0 + 2, ...}.
Assume x ∈ R.
We must prove x ∈ S.
Now, how do we prove x ∈ S?
Since S is inductive, then we know (∀n ∈ Z+)(n ∈ S → n + 1 ∈ S).
Since m0 ∈ S, then this implies any natural number greater than or equal

to m0 must be in S.
However, S could possibly contain some natural numbers less than m0, so

we need a precise way to completely describe S.
We should think about how S is related to m0.
The key idea is to partition N into a set of numbers less than m0.
Consider T = {1, 2, ...m0 − 1} ∪ S.
What can we deduce about T?
Well, intuitively, it appears T = N.
So, let’s prove that T = N.
Observe that T = {t : t ∈ {1, 2, ...m0 − 1} ∨ t ∈ S}.
Since {1, 2, ...m0 − 1} ⊂ N and S ⊂ N, then t ∈ N.
Hence, T ⊂ N.
To prove T = N, we can use the principle of mathematical induction.
Thus, we must prove:
1. 1 ∈ T .
2. T is an inductive set.
To prove 2, we let m ∈ Z+ be arbitrary such that m ∈ T .
We must prove m + 1 ∈ T .
Basis:
Observe that 1 ∈ T .
Induction:
Since T is not empty, then there exists an element in T .
Let m ∈ T be arbitrary.
We must prove m + 1 ∈ T .
Since m ∈ T and T ⊂ N, then m ∈ N.
Hence, either m < m0 − 1 or m = m0 − 1 or m > m0 − 1, by trichotomy of

N.
We consider each case separately.
Case 1: Suppose m < m0 − 1.
Then m + 1 < m0, so m + 1 ∈ {1, 2, ...,m0 − 1}.
Thus, m + 1 ∈ T .
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Case 2: Suppose m = m0 − 1.
Then m + 1 = m0.
Since m0 ∈ S, then m0 ∈ T .
Hence, m + 1 ∈ T .
Case 3: Suppose m > m0 − 1.
Then m + 1 > m0.
Since S is inductive and m0 ∈ S, then any natural number greater than m0

is in S.
Thus, m + 1 ∈ S.
Hence, m + 1 ∈ T .
Therefore, in all cases, m + 1 ∈ T , so m ∈ T implies m + 1 ∈ T .
Thus, T is inductive.
Consequently, by the principle of induction, it follows that T = N.
To prove x ∈ S, let x ∈ N such that x ∈ R.
Then either x = m0 or x > m0.
We consider each case separately.
Case 1: Suppose x = m0.
By hypothesis, we know m0 ∈ S and m0 ∈ R, so the conditional m0 ∈ S →

m0 ∈ R is true.
Hence, m0 ∈ S ⇒ m0 ∈ R.
Case 2: Suppose x > m0.
Since x ∈ N and N = T , then either x ∈ {1, 2, ...,m0 − 1} or x ∈ S.
Since x > m0, then x cannot be in {1, 2, ...,m0 − 1}.
Hence, x ∈ S.
Therefore, in all cases, x ∈ S, so that x ∈ R implies x ∈ S.
Consequently, R ⊂ S, as desired.

Exercise 12. Prove (∀n ∈ Z+)(n < 2n).

Proof. We prove by induction.
Basis:
If n = 1, then 1 < 2 = 21, so the statement is true for n = 1.
Induction:
Suppose k ∈ Z+ such that k < 2k.
Since k ∈ Z+, then k ∈ Z and k ≥ 1.
Since 1 ≤ k and k < 2k, then 1 < 2k.
Since k < 2k and 1 < 2k, then k + 1 < 2k + 2k = 2 · 2k = 2k+1.
Hence, k + 1 < 2k+1.
It follows by induction that n ≤ n2 for every positive integer n.

Exercise 13. For all n ∈ N, 2n + 1 ≤ 3n2.

Proof. Let n ∈ N be arbitrary.
Then n ≥ 1, so 3n ≥ 3.
Thus, 3n− 2 ≥ 1.
Since n ≥ 1 and 3n− 2 ≥ 1, then n(3n− 2) ≥ 1.
Hence, 3n2 − 2n ≥ 1, so 3n2 ≥ 2n + 1.
Therefore, 2n + 1 ≤ 3n2.
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Exercise 14. For all integers n ≥ 3, n2 + 5 < n3.

Proof. Let n ∈ N with n ≥ 3.
Then n2 ≥ 9 and n− 1 ≥ 2.
Since n2 ≥ 9 > 5, then n2 > 5.
Since n− 1 ≥ 2 > 1, then n− 1 > 1.
Thus, n2(n− 1) > 5, so n3 − n2 > 5.
Therefore, n3 > n2 + 5, so n2 + 5 < n3, as desired.

Exercise 15. For all n ∈ N, 2n2 − 1 ≤ n3.

Proof. Let n ∈ N be arbitrary.
Then either n = 1 or n = 2 or n > 2.
We consider these cases separately.
Case 1: Suppose n = 1.
Then 2n2 − 1 = 2(1)2 − 1 = 2− 1 = 1 = 13 = n3.
Case 2: Suppose n = 2.
Then 2n2 − 1 = 2(22)− 1 = 7 < 8 = 23 = n3.
Case 3: Suppose n > 2.
Then n− 2 > 0.
Since n > 2 > 0, then n > 0, so n2 > 0.
Since n2 > 0 and n− 2 > 0, then n2(n− 2) > 0, so n3 − 2n2 > 0.
Since n3 − 2n2 > 0 > −1, then n3 − 2n2 > −1, so n3 > 2n2 − 1.
Thus, 2n2 − 1 < n3.
Therefore, in all cases, either 2n2 − 1 < n3 or 2n2 − 1 = n3, so 2n2 − 1 ≤

n3.

Exercise 16. For all integers n ≥ 4, n! > 2n.

Proof. Let p(n) be the predicate n! > 2n defined over N.
We prove p(n) is true for all n ≥ 4 by induction on n.
Basis:
Since 4! = 24 > 16 = 24, then p(4) is true.
Induction:
Suppose p(k) is true for any natural number k ≥ 4.
Then k! > 2k.
Since k + 1 > k ≥ 4 > 2, then k + 1 > 2.
Since k + 1 > 2 > 0, then k + 1 > 0.
Since k ≥ 4 > 0, then k > 0, so 2k > 0.
Observe that

(k + 1)! = (k + 1)k!

> (k + 1)2k

> 2 · 2k

= 2k+1.

Since (k + 1)! > 2k+1, then p(k + 1) is true.

8



Thus, p(k) implies p(k + 1) for any natural number k ≥ 4.
Since p(4) is true and p(k) implies p(k + 1) for any natural number k ≥ 4,

then by PMI, p(n) is true for any natural number n ≥ 4.

Exercise 17. For all integers n ≥ 3, 2n > n + 4.

Proof. Let p(n) be the predicate 2n > n + 4 defined over N.
We prove p(n) is true for all n ≥ 3 by induction on n.
Basis:
Since 23 = 8 > 7 = 3 + 4, then p(3) is true.
Induction:
Let k ∈ N with k ≥ 3 such that p(k) is true.
Then 2k > k + 4.
To prove p(k + 1) is true, we must prove 2k+1 > (k + 1) + 4.
Since k ≥ 3, then k + 4 ≥ 7 > 1, so k + 4 > 1.
Since 2k > k + 4 > 1, then 2k > 1.
Observe that

2k+1 = 2k · 2
= 2k + 2k

> (k + 4) + 1

= (k + 1) + 4.

Therefore, 2k+1 > (k + 1) + 4, as desired.

Exercise 18. For all integers n ≥ 3, 2n + 1 < 2n.

Proof. Let p(n) be the predicate 2n + 1 < 2n defined over N.
We prove p(n) is true for all natural numbers n ≥ 3 by induction on n.
Basis:
Since 2 · 3 + 1 = 7 < 8 = 23, then p(3) is true.
Induction:
Let k ∈ N with k ≥ 3 such that p(k) is true.
Then 2k + 1 < 2k.
Since k ≥ 3 > 1, then k > 1, so 2k > 2.
Thus, 2 < 2k.
Observe that

2(k + 1) + 1 = 2k + 2 + 1

= (2k + 1) + 2

< 2k + 2k

= 2 · 2k

= 2k+1.

Since 2(k + 1) + 1 < 2k+1, then p(k + 1) is true.
Thus, p(k) implies p(k + 1) for k ≥ 3.
Therefore, by PMI, p(n) is true for all n ≥ 3.
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Exercise 19. For all natural numbers n ≥ 5, n2 < 2n.

Proof. Let p(n) be the predicate n2 < 2n defined over N.
We prove p(n) is true for all natural numbers n ≥ 5 by induction on n.
Basis:
Since 52 = 25 < 32 = 25, then p(5) is true.
Induction:
Let k ∈ N with k ≥ 5 such that p(k) is true.
Since k ≥ 5 > 1, then k > 1.
Since k ≥ 5, then k − 2 ≥ 3 > 1, so k − 2 > 1.
Since k > 1 and k − 2 > 1, then k(k − 2) > 1, so k2 − 2k > 1.
Thus, k2 > 2k + 1, so 2k + 1 < k2.
Since p(k) is true, then k2 < 2k.
Observe that

(k + 1)2 = k2 + 2k + 1

< k2 + k2

= 2k2

< 2 · 2k

= 2k+1.

Hence, (k + 1)2 < 2k+1, so p(k + 1) is true.
Thus, p(k) implies p(k + 1) for all natural numbers k ≥ 5.
Since p(5) is true and p(k) implies p(k + 1) for all natural numbers k ≥ 5,

then by PMI, p(n) is true for all natural numbers n ≥ 5, as desired.

Exercise 20. Prove that 2n > (n + 1)2 for all integers n ≥ 6.

Proof. We prove the statement 2n > (n+ 1)2 for all integers n ≥ 6 by induction
on n.

Let S = {n ∈ N : 2n > (n + 1)2, n ≥ 6}.
Basis:
Since 26 = 64 > 49 = (6 + 1)2, then 6 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z and k ≥ 6 and 2k > (k + 1)2.
Since k ≥ 6, then k2 ≥ 36 > 2, so k2 > 2.
Thus, (k2 + 4k + 2) + k2 > (k2 + 4k + 2) + 2, so 2k2 + 4k + 2 > k2 + 4k + 4.
Hence, 2(k + 1)2 = 2(k2 + 2k + 1) = 2k2 + 4k + 2 > k2 + 4k + 4 = (k + 2)2,

so 2(k + 1)2 > (k + 2)2.
Since 2k+1 = 21+k = 2 · 2k > 2(k + 1)2 > (k + 2)2, then 2k+1 > (k + 2)2, so

k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S.
Therefore, by PMI, 2n > (n + 1)2 for all integers n ≥ 6.

Exercise 21. For all n ∈ N, if n ≥ 17, then n4 < 2n.
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Proof. Let p(n) be the predicate n4 < 2n defined over the domain of discourse,
the set {n ∈ N : n ≥ 17}.

To prove p(n) is true for all n ≥ 17, we prove by induction on n.
Basis:
Since 174 = 83521 < 131072 = 217, then p(17) is true.
Induction:
Let k ∈ N with k ≥ 17 such that p(k) is true.
Then k4 < 2k.
To prove p(k + 1) is true, we must prove (k + 1)4 < 2k+1.

Since k ≥ 17 > 16, then k > 16, so k
4 > 4.

Since k ≥ 17 > 0, then k > 0, so k3 > 0.

Thus, k4

4 > 4k3.
Since k ≥ 17, then k2 ≥ 172 = 289 > 24, so k2 > 24.

Thus, k2

4 > 6.

Since k > 0, then k2 > 0, so k4

4 > 6k2.
Since k ≥ 17, then k3 ≥ 173 = 4913 > 16, so k3 > 16.

Thus, k3

4 > 4.

Since k > 0, then k4

4 > 4k.
Since k ≥ 17, then k4 ≥ 174 = 83521 > 4, so k4 > 4.

Thus, k4

4 > 1.

Hence, 4k3 < k4

4 and 6k2 < k4

4 and 4k < k4

4 and 1 < k4

4 .
Observe that

(k + 1)4 = k4 + 4k3 + 6k2 + 4k + 1

< k4 +
k4

4
+

k4

4
+

k4

4
+

k4

4

= 2k4

< 2 · 2k

= 2k+1.

Therefore, (k + 1)4 < 2k+1, as desired.

Elementary Aspects of Integers

Exercise 22. The square of an odd integer is odd.

Proof. Let n ∈ Z.
Suppose n is odd.
Since the product of two odd integers is odd, then n2 = n · n is odd.

Exercise 23. For every natural number n, 2n + 1 ≤ 3n.
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Proof. Let p(n) be the predicate 2n + 1 ≤ 3n defined over N.
We prove p(n) is true for all n ∈ N by induction on n.
Basis:
Since 21 + 1 = 3 = 31 ≤ 31, then p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then k ≥ 1 and 2k + 1 ≤ 3k.
To prove p(k + 1), we must prove 2k+1 + 1 ≤ 3k+1.
Since k ≥ 1 > 0, then k > 0, so 3k > 0.
Observe that

2k+1 + 1 = 2 · 2k + 1

< 2 · 2k + 2

= 2(2k + 1)

≤ 2 · 3k

< 3 · 3k

= 3k+1.

Thus, 2k+1 + 1 < 3k+1, so 2k+1 + 1 ≤ 3k+1.
It follows by induction that 2n + 1 ≤ 3n for every n ∈ N.

Exercise 24. For each n ∈ N, 2n ≤ 2n+1 − 2n−1 − 1.

Proof. Let p(n) be the predicate 2n ≤ 2n+1 − 2n−1 − 1 defined over N.
We prove p(n) is true for all n ∈ N by induction on n.
Basis:
Since 21 = 2 ≤ 2 = 4− 1− 1 = 21+1 − 21−1 − 1, then the statement p(1) is

true.
Induction:
Let k ∈ N such that p(k) is true.
Then k ≥ 1 and 2k ≤ 2k+1 − 2k−1 − 1.
To prove p(k + 1), we must prove 2k+1 ≤ 2k+2 − 2k − 1.
Observe that

2k+1 = 2 · 2k

≤ 2(2k+1 − 2k−1 − 1)

= 2k+2 − 2k − 2

< 2k+2 − 2k − 1.

Thus, 2k+1 < 2k+2 − 2k − 1, so 2k+1 ≤ 2k+2 − 2k − 1.
Hence, p(k) implies p(k + 1) for any k ≥ 1.
It follows by induction that 2n ≤ 2n+1 − 2n−1 − 1 for each n ∈ N.

Exercise 25. For all n ∈ N,
∑n

k=1 k(k + 1) = n(n+1)(n+2)
3 .
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Proof. We prove by induction on n.

Let S = {n ∈ N :
∑n

k=1 k(k + 1) = n(n+1)(n+2)
3 }.

Basis:
Since 1 ∈ N and 1 · 2 = 2 = 1·2·3

3 , then 1 ∈ S.
Induction:
Suppose m ∈ S.

Then m ∈ N and
∑m

k=1 k(k + 1) = m(m+1)(m+2)
3 .

Thus,

m+1∑
k=1

k(k + 1) =

m∑
k=1

k(k + 1) + (m + 1)(m + 2)

=
m(m + 1)(m + 2)

3
+ (m + 1)(m + 2)

= (m + 1)(m + 2)(
m

3
+ 1)

=
(m + 1)(m + 2)(m + 3)

3
.

Since m + 1 ∈ N and
∑m+1

k=1 k(k + 1) = (m+1)(m+2)(m+3)
3 , then m + 1 ∈ S.

Therefore, m ∈ S implies m+1 ∈ S, so by PMI,
∑n

k=1 k(k+1) = n(n+1)(n+2)
3

for all n ∈ N, as desired.

Exercise 26. For all n ∈ N,
∑n

k=1
1

k(k+1) = n
n+1 .

Proof. We prove by induction on n.
Let S = {n ∈ N :

∑n
k=1

1
k(k+1) = n

n+1}.
Basis:
Since 1 ∈ N and

∑1
k=1

1
k(k+1) = 1

1·(1+1) = 1
1·2 = 1

2 = 1
1+1 , then 1 ∈ S.

Induction:
Suppose m ∈ S.
Then m ∈ N and

∑m
k=1

1
k(k+1) = m

m+1 .
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Thus,

m+1∑
k=1

1

k(k + 1)
=

m∑
k=1

1

k(k + 1)
+

1

(m + 1)(m + 2)

=
m

m + 1
+

1

(m + 1)(m + 2)

=
1

m + 1
· (m +

1

m + 2
)

=
1

m + 1
· m

2 + 2m + 1

m + 2

=
(m + 1)2

(m + 1)(m + 2)

=
m + 1

m + 2

=
m + 1

(m + 1) + 1
.

Since m + 1 ∈ N and
∑m+1

k=1
1

k(k+1) = m+1
(m+1)+1 , then m + 1 ∈ S.

Therefore, m ∈ S implies m + 1 ∈ S, so by PMI,
∑n

k=1
1

k(k+1) = n
n+1 for all

n ∈ N, as desired.

Exercise 27. The sum of the squares of the first n odd natural numbers is
n(4n2−1)

3 .

Proof. We must prove
∑n

k=1(2k − 1)2 = n(4n2−1)
3 for all n ∈ N.

Let n ∈ N.

14



Then

n∑
k=1

(2k − 1)2 =

n∑
k=1

(4k2 − 4k + 1)

=

n∑
k=1

4k2 −
n∑

k=1

4k +

n∑
k=1

1

= 4

n∑
k=1

k2 − 4

n∑
k=1

k +

n∑
k=1

1

= 4 · n(n + 1)(2n + 1)

6
− 4 · n(n + 1)

2
+ n

=
2n(n + 1)(2n + 1)

3
− 2n(n + 1) + n

=
n

3
[2(n + 1)(2n + 1)− 6(n + 1) + 3]

=
n

3
[2(2n2 + 3n + 1)− 6(n + 1) + 3]

=
n

3
(4n2 + 6n + 2− 6n− 6 + 3)

=
n

3
(4n2 − 1).

Therefore,
∑n

k=1(2k − 1)2 = 4n3−n
3 , as desired.

Exercise 28. The cube of any positive integer can be written as the difference
of two squares.

Proof. We prove for every n ∈ Z+, there exist integers k and m such that
n3 = k2 −m2.

Let n ∈ Z+.
Let k = n(n+1)

2 .

Let m = (n−1)n
2 .

Since n and n+1 are consecutive integers, then the product n(n+1) is even,
so k is an integer.

Since n−1 and n are consecutive integers, then the product (n−1)n is even,
so m is an integer.

Observe that

15



n3 = n3 + 0

= n3 + [13 + 23 + ... + (n− 1)3]− [13 + 23 + ... + (n− 1)3]

= [13 + 23 + ... + (n− 1)3] + n3 − [13 + 23 + ... + (n− 1)3]

= [13 + 23 + ... + (n− 1)3 + n3]− [13 + 23 + ... + (n− 1)3]

=

n∑
k=1

k3 −
n−1∑
k=1

k3

= (
n(n + 1)

2
)2 − (

(n− 1)n

2
)2

= k2 −m2.

Exercise 29. For all n ∈ N,
∑n

k=1
1

(2k−1)(2k+1) = n
2n+1 .

Proof. We prove by induction on n.
Let S = {n ∈ N :

∑n
k=1

1
(2k−1)(2k+1) = n

2n+1}.
Basis:
Since 1 ∈ N and

∑1
k=1

1
(2k−1)(2k+1) = 1

(2·1−1)(2·1+1) = 1
1·3 = 1

3 = 1
2·1+1 , then

1 ∈ S.
Induction:
Suppose m ∈ S.
Then m ∈ N and

∑m
k=1

1
(2k−1)(2k+1) = m

2m+1 .

Thus,

m+1∑
k=1

1

(2k − 1)(2k + 1)
=

m∑
k=1

1

(2k − 1)(2k + 1)
+

1

[2(m + 1)− 1][2(m + 1) + 1]

=
m

2m + 1
+

1

(2m + 1)(2m + 3)

=
1

2m + 1
(m +

1

2m + 3
)

=
1

2m + 1
· m(2m + 3) + 1

2m + 3

=
2m2 + 3m + 1

(2m + 1)(2m + 3)

=
(2m + 1)(m + 1)

(2m + 1)(2m + 3)

=
m + 1

2m + 3

=
m + 1

2(m + 1) + 1
.
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Since m + 1 ∈ N and
∑m+1

k=1
1

(2k−1)(2k+1) = m+1
2(m+1)+1 , then m + 1 ∈ S.

Therefore, m ∈ S implies m + 1 ∈ S, so by PMI,
∑n

k=1
1

(2k−1)(2k+1) = n
2n+1

for all n ∈ N, as desired.

Exercise 30. For all n ∈ Z+,
∑n−1

k=0 2k = 2n − 1.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ :

∑n−1
k=0 2k = 2n − 1}.

Basis:
Since 1 ∈ Z+ and

∑1−1
k=0 2k =

∑0
k=0 2k = 1 = 21 − 1, then 1 ∈ S.

Induction:
Let m ∈ S.
Then m ∈ Z+ and

∑m−1
k=0 2k = 2m − 1.

Since m ∈ Z+, then m + 1 ∈ Z+.
Observe that

(m+1)−1∑
k=0

2k =

m∑
k=0

2k

=

m−1∑
k=0

2k + 2m

= (2m − 1) + 2m

= 2 · 2m − 1

= 2m+1 − 1.

Since m + 1 ∈ Z+ and
∑(m+1)−1

k=0 2k = 2m+1 − 1, then m + 1 ∈ S.

Therefore, m ∈ S implies m + 1 ∈ S, so by PMI,
∑n−1

k=0 2k = 2n − 1 for all
n ∈ Z+.

Exercise 31. If n ∈ N, then 20 + 21 + 22 + 23 + ... + 2n = 2n+1 − 1.

Proof. Suppose n ∈ N.
Let Sn be the number

Sn = 20 + 21 + 22 + · · ·+ 2n−1 + 2n (1)

We must show that Sn = 2n+1 − 1.
Multiply both sides of Equation 1 by 2 to get

2Sn = 21 + 22 + 23 + · · ·+ 2n + 2n+1 (2)

Now subtract 1 from both sides of Equation 2 to get

2Sn − 1 = 21 + 22 + 23 + · · ·+ 2n + 2n+1 − 1 (3)

From Equation 1 we know that Sn − 1 = 21 + 22 + 23 + · · ·+ 2n so we can
substitute this fact into Equation 3 to get

2Sn − 1 = (Sn − 1) + 2n+1 − 1 (4)
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Now add 1 to both sides of Equation 4 to get

2Sn = Sn + 2n+1 − 1 (5)

Now subtract Sn from both sides of Equation 5 to get

Sn = 2n+1 − 1

Exercise 32. For all integers n ≥ 4, n! > n2.

Proof. We prove n! > n2 for all n ∈ Z+ with n ≥ 4 by induction on n.
Let S = {n ∈ Z+, n ≥ 4 : n! > n2}.
Basis:
Since 4 ∈ Z+ and 4! = 24 > 16 = 42, then 4 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and k ≥ 4 and k! > k2.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since k + 1 > k and k ≥ 4 and 4 > 0, then k + 1 > 4 and k + 1 > 0.
Since k ≥ 4 > 1, then k > 1.
Since k ≥ 4, then k − 1 ≥ 3.
Since k − 1 ≥ 3 > 1, then k − 1 > 1.
Since k > 1 and k − 1 > 1, then k(k − 1) > 1, so k2 − k > 1.
Hence, k2 > k + 1.
Observe that

(k + 1)! = (k + 1)k!

> (k + 1)k2

> (k + 1)(k + 1)

= (k + 1)2.

Since k + 1 ∈ Z+ and k + 1 > 4 and (k + 1)! > (k + 1)2, then k + 1 ∈ S.
Therefore, k ∈ S implies k + 1 ∈ S, so by PMI, n! > n2 for all n ∈ Z+ with

n ≥ 4, as desired.

Exercise 33. For all integers n ≥ 6, n! > n3.

Proof. We prove n! > n3 for all n ∈ Z+ with n ≥ 6 by induction on n.
Let S = {n ∈ Z+, n ≥ 6 : n! > n3}.
Basis:
Since 6 ∈ Z+ and 6! = 720 > 216 = 63, then 6 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and k ≥ 6 and k! > k3.
Since k ∈ Z+, then k > 0 and k + 1 ∈ Z+, so k + 1 > 0.
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Since k + 1 > k ≥ 6, then k + 1 > 6.
Since k ≥ 6, then k3 ≥ 63 = 216 > 3, so k3 > 3.

Hence, k3

3 > 1.
Since k ≥ 6, then k2 ≥ 62 = 36 > 6, so k2 > 6.

Since k > 0, then k3 > 6k, so k3

3 > 2k.
Since k ≥ 6 > 3, then k > 3.
Since k > 0, then k2 > 0, so k3 > 3k2.

Hence, k3

3 > k2.

Since k3

3 > k2 and k3

3 > 2k and k3

3 > 1, then k3 = k3

3 + k3

3 + k3

3 > k2+2k+1 =
(k + 1)2, so k3 > (k + 1)2.

Observe that

(k + 1)! = (k + 1)k!

> (k + 1)k3

> (k + 1) · (k + 1)2

= (k + 1)3.

Since k + 1 ∈ Z+ and k + 1 > 6 and (k + 1)! > (k + 1)3, then k + 1 ∈ S.
Therefore, k ∈ S implies k + 1 ∈ S, so by PMI, n! > n3 for all n ∈ Z+ with

n ≥ 6, as desired.

Exercise 34. For each n ∈ N, 2n ≤ 2n+1 − 2n−1 − 1.

Solution. We prove by induction(weak).
The statement Sn is 2n ≤ 2n+1 − 2n−1 − 1.
The statement Sk is 2k ≤ 2k+1 − 2k−1 − 1.
The statement Sk+1 is 2k+1 ≤ 2(k+1)+1 − 2(k+1)−1 − 1.
The trick here is to add inequalities so if for example a ≤ b and 0 < 1, then

a ≤ b + 1.

Proof. We prove by induction.
Basis:
If n = 1, then the statement is 21 ≤ 21+1 − 21−1 − 1, which simplifies to

2 ≤ 4− 1− 1, which is obviously true.
Induction:
Suppose k ≥ 1.
We must prove 2k ≤ 2k+1−2k−1−1 implies 2k+1 ≤ 2(k+1)+1−2(k+1)−1−1.
We use direct proof.
Suppose 2k ≤ 2k+1 − 2k−1 − 1.
Then we have:

2k ≤ 2k+1 − 2k−1 − 1

2k+1 ≤ 2k+2 − 2k − 2 multiply both sides by 2

2k+1 ≤ 2k+2 − 2k − 1 add 1 to the larger side

2k+1 ≤ 2(k+1)+1 − 2(k+1)−1 − 1
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It follows by induction that 2n ≤ 2n+1 − 2n−1 − 1 for each n ∈ N.

Exercise 35. Let (an) be the sequence defined by a1 = 1 and an = an−1 +nn!
for all positive integers n > 1.

Then an = (n + 1)!− 1 for all n ∈ Z+.

Proof. We prove (∀n ∈ Z+)(an = (n + 1)!− 1) by induction on n.
Let S = {n ∈ Z+ : an = (n + 1)!− 1}.
Basis:
Since 1 ∈ Z+ and a1 = 1 = 2− 1 = (1 + 1)!− 1, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and ak = (k + 1)!− 1.
Since k ∈ Z+, then k > 0 and k + 1 ∈ Z+.
Since k > 0, then k + 1 > 1.
Observe that

ak+1 = ak + (k + 1)(k + 1)!

= [(k + 1)!− 1] + (k + 1)(k + 1)!

= (k + 1)!− 1 + (k + 1)(k + 1)!

= (k + 2)(k + 1)!− 1

= (k + 2)!− 1

= [(k + 1) + 1]!− 1.

Since k + 1 ∈ Z+ and ak+1 = [(k + 1) + 1]!− 1, then k + 1 ∈ S.
Therefore, k ∈ S implies k + 1 ∈ S, so by PMI, an = (n + 1)! − 1 for all

n ∈ Z+, as desired.

Exercise 36. Let (an) be the Lucas sequence defined by a1 = 1 and a2 = 3
and an = an−1 + an−2 for n ≥ 3.

Then an < ( 7
4 )n for all n ∈ Z+.

Proof. Let p(n) be the predicate an < ( 7
4 )n defined over Z+.

We prove p(n) is true for all positive integers n by strong induction on n.
Basis:
Since a1 = 1 < 7

4 = ( 7
4 )1, then p(1) is true.

Since a2 = 3 < 49
16 = ( 7

4 )2, then p(2) is true.
Induction:
For an integer k ≥ 3, assume p(n) is true for n = 1, 2, ..., k − 1.
In particular, p(k − 2) and p(k − 1) are true, so ak−2 < ( 7

4 )k−2 and ak−1 <
( 7
4 )k−1.
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Observe that

ak = ak−1 + ak−2

< (
7

4
)k−1 + (

7

4
)k−2

= (
7

4
)k−2(

7

4
+ 1)

= (
7

4
)k−2(

11

4
)

< (
7

4
)k−2(

49

16
)

= (
7

4
)k−2(

7

4
)2

= (
7

4
)k.

Thus, ak < ( 7
4 )k, so p(k) is true.

Therefore, by strong PMI, p(n) is true for any positive integer n, so an <
( 7
4 )n for all n ∈ Z+.

Exercise 37. For every natural number n, it follows that 2n + 1 ≤ 3n.

Solution. We prove by induction.
The statement Sn is 2n + 1 ≤ 3n.
The statement Sk is 2k + 1 ≤ 3k.
The statement Sk+1 is 2k+1 + 1 ≤ 3k+1.

Proof. We prove by induction(weak).
Basis:
If n = 1 then the statement is 21 + 1 ≤ 31. This simplifies to 3 ≤ 3, which

is true.

Induction: Suppose k ≥ 1.

We must prove 2k + 1 ≤ 3k implies 2k+1 + 1 ≤ 3k+1.
We use direct proof.
Suppose 2k + 1 ≤ 3k for any integer k ≥ 1.
Observe the following inequalities:

2k + 1 ≤ 3k induction hypothesis

2k+1 + 2 ≤ 2 ∗ 3k multiply by 2

2k+1 + 1 ≤ 2 ∗ 3k − 1 subtract 1

2k+1 + 1 ≤ 2 ∗ 3k add the inequality 0 ≤ 1

2k+1 + 1 ≤ 3 ∗ 3k transitive property of inequalities since 2 ∗ 3k ≤ 3 ∗ 3k

2k+1 + 1 ≤ 3k+1

It follows by induction that 2n + 1 ≤ 3n for every n ∈ N.
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Exercise 38. For every natural number n,
∑n

i=1
1
i2 ≤ 2− 1

n .

Proof. Let p(n) be the predicate
∑n

i=1
1
i2 ≤ 2− 1

n defined over N.
We prove p(n) is true for all n ∈ N by induction on n.
Basis:
Since

∑n
i=1

1
i2 = 1

12 = 1 = 2− 1
1 ≤ 2− 1

1 , then p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.

Then k ≥ 1 and
∑k

i=1
1
i2 ≤ 2− 1

k .

To prove p(k + 1) is true, we must prove
∑k+1

i=1
1
i2 ≤ 2− 1

k+1 .
Since k ≥ 1 > 0, then k > 0.
Since 0 < k < k + 1, then 0 < 1

k+1 < 1
k , so 1

(k+1)2 < 1
k(k+1) = 1

k −
1

k+1 .

Thus, 1
(k+1)2 < 1

k −
1

k+1 , so −1k + 1
(k+1)2 < −1

k+1 .

Observe that

k+1∑
i=1

1

i2
=

k∑
i=1

1

i2
+

1

(k + 1)2

≤ (2− 1

k
) +

1

(k + 1)2

< 2− 1

k + 1
.

Hence,
∑k+1

i=1
1
i2 < 2− 1

k+1 , so
∑k+1

i=1
1
i2 ≤ 2− 1

k+1 , as desired.

Exercise 39. If n ∈ N, then n2 = 2
(
n
2

)
+
(
n
1

)
.

Solution. By definition of binomial coefficient we know
(
n
k

)
= n!

k!(n−k)! .

In particular, for n > 1,
(
n
1

)
= n and

(
n
2

)
= n(n−1)

2 .

Proof. Since n ∈ N, then n ≥ 1, so either n > 1 or n = 1.
We consider each case separately.
Case 1: Suppose n = 1.
Then 2

(
1
2

)
+
(
1
1

)
= 2 · 0 + 1 = 1 = 12.

Case 2: Suppose n > 1.

Then 2
(
n
2

)
+
(
n
1

)
= 2n(n−1)

2 + n = n(n− 1) + n = n2.

Both cases show n2 = 2
(
n
2

)
+
(
n
1

)
.

Exercise 40. Let m,n ∈ Z+.
Is (mn)! = m!n! ?
Is (m + n)! = m! + n!?

Proof. Let m = 4 and n = 5.
Then (mn)! = (4 ∗ 5)! = 20! = 2432902008176640000 6= 22880 = 24 ∗ 120 =

(4!)(5!) = m!n!, so (mn)! 6= m!n!.
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Let m = 3 and n = 7.
Then (m + n)! = (3 + 7)! = 10! = 3628800 6= 5046 = 6 + 5040 = 3! + 7! =

m! + n!, so (m + n)! 6= m! + n!.

Exercise 41. Why is the argument below not valid?
Old MacDonald claims that all cows have the same color.
First, if you have just one cow, it certainly has the same color as itself.
Now, using PMI, assume that all cows in any collection of k cows have the

same color.
Consider a collection of k + 1 cows.
Removing one cow leaves a collection of k cows, which must therefore all

have the same color.
Put back the removed cow.
Remove a different cow and this leaves another collection of k cows which

all have the same color.
Certainly then, the original collection of k + 1 cows must all have the same

color.
By PMI, all cows in any finite collection of cows have the same color.

Solution. Let k represent the number of cows in the collection.
The error results from assuming k > 1 only.
However, to use PMI properly, k ∈ N can be any natural number, including

1.
Suppose that k = 1.
By PMI, the argument claims that a collection of k + 1 = 2 cows must all

have the same color.
But, if you remove one cow from a collection of 2 cows, then you end up

with two collections, each containing one cow.
Thus, there are two collections of 1 cow each.
So, the cows in each collection have the same color.
However, that does not imply that the color of the cow in one collection is

the same as the color of the cow in the other collection.
Thus, we can not deduce that if a collection of k = 1 cows have the same

color, then a collection of k + 1 = 2 cows also have the same color.

Exercise 42. Let f : N → N be a function defined by f(1) = 1 and f(2) = 2
and f(3) = 3 and f(n) = f(n− 1) + f(n− 2) + f(n− 3) for all n ≥ 4.

Then f(n) < 2n for all n ∈ N.

Proof. To prove f(n) < 2n for all n ∈ N, let p(n) be the predicate f(n) < 2n

defined over N.
Since f(1) = 1 < 2 = 21, then p(1) is true.
Since f(2) = 2 < 4 = 22, then p(2) is true.
Since f(3) = 3 < 8 = 23, then p(3) is true.
We prove p(n) for all natural numbers n ≥ 4 by strong induction on n.
Basis:
Since f(4) = f(3) + f(2) + f(1) = 3 + 2 + 1 = 6 < 16 = 24, then p(4) is true.
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Induction:
Let k ∈ N with k ≥ 4.
Suppose p(i) is true for each natural number i with 1 ≤ i ≤ k.
To prove p(k + 1) is true, we must prove f(k + 1) < 2k+1.
Since k+1 > k ≥ 4, then k+1 > 4, so f(k+1) = f(k)+f(k−1)+f(k−2).
Since k = k, then p(k) is true, so f(k) < 2k.
Since k ≥ 4, then k − 1 ≥ 3.
Since 1 < 3 ≤ k − 1 < k, then 1 < k − 1 < k, so p(k − 1) is true.
Hence, f(k − 1) < 2k−1.
Since k ≥ 4, then k − 2 ≥ 2.
Since 1 < 2 ≤ k − 2 < k, then 1 < k − 2 < k, so p(k − 2) is true.
Hence, f(k − 2) < 2k−2.
Since k ≥ 4 > 0, then k > 0, so 2k > 0.
Observe that

f(k + 1) = f(k) + f(k − 1) + f(k − 2)

< 2k + 2k−1 + 2k−2

= (1 + 2−1 + 2−2)2k

<
7

4
· 2k

< 2 · 2k

= 2k+1.

Thus, f(k + 1) < 2k+1, so p(k + 1) is true.
Hence, by strong induction, p(n) is true for all natural numbers n ≥ 4, as

desired.

Exercise 43. Let f : N→ N be the function defined by f(1) = 2 and f(2) = −8
and f(n) = 8f(n− 1)− 15f(n− 2) + 6 · 2n for n ≥ 3.

Then f(n) = −5 · 3n + 5n−1 + 2n+3 for all n ∈ N.

Proof. Let p(n) be the predicate f(n) = −5 · 3n + 5n−1 + 2n+3 defined over N.
We must prove p(n) is true for all n ∈ N.

Since f(1) = 2 = −15 + 1 + 16 = −5 · 31 + 51−1 + 21+3, then p(1) is true.

We prove p(n) is true for all n ≥ 2 by strong induction on n.
Basis:
Since f(2) = −8 = −45 + 5 + 32 = −5 · 32 + 52−1 + 22+3, then p(2) is true.
Induction:
Let k ∈ N with k ≥ 2.
Suppose p(i) is true for each natural number i with 1 ≤ i ≤ k.
To prove p(k + 1) is true, we must prove f(k + 1) = −5 · 3k+1 + 5k + 2k+4.
Since k ≥ 2, then k + 1 ≥ 3, so f(k + 1) = 8f(k)− 15f(k − 1) + 6 · 2k+1.
Since k ≥ 2 > 1, then k > 1.
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Since 1 < k = k, then p(k) is true, so f(k) = −5 · 3k + 5k−1 + 2k+3.
Since k ≥ 2, then k − 1 ≥ 1.
Since 1 ≤ k−1 < k, then p(k−1) is true, so f(k−1) = −5·3k−1+5k−2+2k+2.
Observe that

f(k + 1) = 8f(k)− 15f(k − 1) + 6 · 2k+1

= 8(−5 · 3k + 5k−1 + 2k+3)− 15(−5 · 3k−1 + 5k−2 + 2k+2) + 6 · 2k+1

= −40 · 3k + 8 · 5k−1 + 8 · 2k+3 + 75 · 3k−1 − 15 · 5k−2 − 15 · 2k+2 + 6 · 2k+1

= −40 · 3k + 75 · 3k−1 + 8 · 5k−1 − 15 · 5k−2 + 8 · 2k+3 − 15 · 2k+2 + 6 · 2k+1

= 3k+1(−40 · 3−1 + 75 · 3−2) + 5k(8 · 5−1 − 15 · 5−2) + 2k+4(8 · 2−1 − 15 · 2−2 + 6 · 2−3)

= −5 · 3k+1 + 5k + 2k+4.

Thus, f(k + 1) = −5 · 3k+1 + 5k + 2k+4, so p(k + 1) is true.
Therefore, by strong induction, p(n) is true for all natural numbers n ≥

4.

Exercise 44. Let f : Z+ ∪ {0} → N be the function defined by f(0) = 7 and
f(1) = 4 and f(n) = 6f(n− 2)− f(n− 1) for n ≥ 2.

Then f(n) = 5 · 2n + 2(−3)n for all n ≥ 0.

Proof. Let p(n) be the predicate f(n) = 5 · 2n + 2 · (−3)n defined over Z+ ∪{0}.
We must prove p(n) is true for all n ≥ 0.

Since f(0) = 7 = 5 · 1 + 2 · 1 = 5 · 20 + 2 · (−3)0, then p(0) is true.
Since f(1) = 4 = 5 · 2 + 2 · (−3) = 5 · 21 + 2(−3)1, then p(1) is true.

We prove p(n) is true for all n ≥ 2 by strong induction on n.
Basis:
Since f(2) = 6f(0)− f(1) = 6 · 7− 4 = 38 = 20 + 18 = 5 · 22 + 2(−3)2, then

p(2) is true.
Induction:
Let k ∈ N with k ≥ 2.
Suppose p(i) is true for each natural number i with 1 ≤ i ≤ k.
To prove p(k + 1) is true, we must prove f(k + 1) = 5 · 2k+1 + 2(−3)k+1.
Since k ≥ 2, then k + 1 ≥ 3 > 2, so k + 1 > 2.
Hence, f(k + 1) = 6f(k − 1)− f(k).
Since k ≥ 2 > 1, then k > 1.
Since 1 < k = k, then p(k) is true, so f(k) = 5 · 2k + 2(−3)k.
Since k ≥ 2, then k − 1 ≥ 1.
Since 1 ≤ k− 1 < k, then p(k− 1) is true, so f(k− 1) = 5 · 2k−1 + 2(−3)k−1.
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Observe that

f(k + 1) = 6f(k − 1)− f(k)

= 6[5 · 2k−1 + 2(−3)k−1]− [5 · 2k + 2(−3)k]

= 30 · 2k−1 + 12(−3)k−1 − 5 · 2k − 2(−3)k

= 30 · 2k−1 − 5 · 2k + 12(−3)k−1 − 2(−3)k

= 2k+1(30 · 2−2 − 5 · 2−1) + (−3)k+1[12(−3)−2 − 2(−3)−1]

= 2k+1(
30

4
− 5

2
) + (−3)k+1(

12

9
+

2

3
)

= 2k+1(
15

2
− 5

2
) + (−3)k+1(

4

3
+

2

3
)

= 5 · 2k+1 + 2(−3)k+1.

Thus, f(k + 1) = 5 · 2k+1 + 2(−3)k+1, so p(k + 1) is true.
Therefore, by strong induction, p(n) is true for all integers n ≥ 2.

Exercise 45. There is no n ∈ N such that 0 < n < 1.

Proof. Suppose there is n ∈ N such that 0 < n < 1.
Let S = {n ∈ N : 0 < n < 1}.
Then n ∈ S, so S 6= ∅.
Since S ⊂ N and S 6= ∅, then by WOP, S has a least element m.
Thus, m ∈ S and m ≤ s for all s ∈ S.
Since m ∈ S, then m ∈ N and 0 < m < 1.
Since 0 < m < 1, then 0 < m and m < 1 and 0 < m2 < 1 .
Since m ∈ N, then m2 ∈ N.
Since m2 ∈ N and 0 < m2 < 1, then m2 ∈ S.
Since m < 1 and m > 0, then m2 = m ·m < m · 1 = m, so m2 < m.
Thus, there is m2 ∈ S such that m > m2.
This contradicts the fact that m is the least element of S.
Therefore, there is no n ∈ N such that 0 < n < 1.

Exercise 46. Let k ∈ Z.
Then

(
n
k

)
<
(

n
k+1

)
iff 0 ≤ k < n−1

2 for all n ∈ Z+.

Proof. Let n ∈ Z+.
We must prove

(
n
k

)
<
(

n
k+1

)
iff 0 ≤ k < n−1

2 .

We first prove if
(
n
k

)
<
(

n
k+1

)
, then 0 ≤ k < n−1

2 .

Suppose
(
n
k

)
<
(

n
k+1

)
.

Then n!
(n−k)!k! <

n!
(n−k−1)!(k+1)! .

Since n ∈ Z+, then n > 0, so 1
(n−k)!k! <

1
(n−k−1)!(k+1)! .

By definition of factorial, (k+1)! > 0 and (n−k)! > 0, so (k+1)!
k! < (n−k)!

(n−k−1)! .

Since k! exists, then k ≥ 0, by definition of factorial.
Since k + 1 > k ≥ 0, then k + 1 > 0.

Thus, (k+1)k!
k! < (n−k)!

(n−k−1)! , so k + 1 < (n−k)!
(n−k−1)! .
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Since (n− k − 1)! exists, then n− k − 1 ≥ 0, by definition of factorial.
Hence, n− k ≥ 1 > 0, so n− k > 0.

Thus, k + 1 < (n−k)(n−k−1)!
(n−k−1)! , so k + 1 < n− k.

Therefore, 2k < n− 1, so k < n−1
2 .

Since 0 ≤ k and k < n−1
2 , then 0 ≤ k < n−1

2 .

Proof. Conversely, we prove if 0 ≤ k < n−1
2 , then

(
n
k

)
<
(

n
k+1

)
.

Suppose 0 ≤ k < n−1
2 .

Then 0 ≤ k and k < n−1
2 .

Since k < n−1
2 , then 2k < n− 1, so k + k < n− 1.

Thus, k + 1 < n− k and k < n− k − 1.
Since n− k − 1 > k and k ≥ 0, then n− k − 1 > k ≥ 0, so n− k − 1 > 0.

Hence, k + 1 < (n−k)(n−k−1)!
(n−k−1)! , so k + 1 < (n−k)!

(n−k−1)! .

Since k ≥ 0, then (k+1)k!
k! < (n−k)!

(n−k−1)! , so (k+1)!
k! < (n−k)!

(n−k−1)! .

Thus, 1
(n−k)!k! <

1
(n−k−1)!(k+1)! .

Since n ∈ Z+, then n > 0, so n!
(n−k)!k! <

n!
(n−k−1)!(k+1)! .

Therefore,
(
n
k

)
<
(

n
k+1

)
.

Exercise 47. Let n, k ∈ Z and 0 ≤ k ≤ n.
Then

(
n
k

)
=
(

n
k+1

)
iff n is odd and k = n−1

2 .

Proof. We prove if
(
n
k

)
=
(

n
k+1

)
, then n is odd and k = n−1

2 .

Suppose
(
n
k

)
=
(

n
k+1

)
.

Since
(

n
k+1

)
exists, then 0 ≤ k + 1 ≤ n.

Since 0 ≤ k < k + 1, then 0 < k + 1, so k + 1 > 0.
Since k < k + 1 ≤ n, then k < n, so n > k.
Hence, n− k > 0.
Observe that

(
n

k

)
=

(
n

k + 1

)
n!

(n− k)!k!
=

n!

(n− k − 1)1(k + 1)!

1

(n− k)!k!
=

1

(n− k − 1)!(k + 1)!

(k + 1)!

k!
=

(n− k)!

(n− k − 1)!

(k + 1)k!

k!
=

(n− k)(n− k − 1)!

(n− k − 1)!

k + 1 = n− k

2k = n− 1

k =
n− 1

2
.
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Since k is an integer and k = n−1
2 , then 2k = n− 1, so 2k + 1 = n.

Hence, n is odd.

Exercise 48. Let k, n ∈ Z.

If 2 ≤ k ≤ n− 2, then

(
n

k

)
=

(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+

(
n− 2

k

)
for all n ≥ 4.

Proof. Suppose 2 ≤ k ≤ n− 2.
We prove the statement

(
n
k

)
=
(
n−2
k−2
)

+ 2
(
n−2
k−1
)

+
(
n−2
k

)
for all n ≥ 4 by

induction on n.
Let S = {n ∈ Z+, n ≥ 4 :

(
n
k

)
=
(
n−2
k−2
)

+ 2
(
n−2
k−1
)

+
(
n−2
k

)
}.

Basis:
Let n = 4.
Then 2 ≤ k ≤ 4− 2 = 2, so 2 ≤ k ≤ 2.
Hence, k = 2.
Since

(
4−2
2−2
)

+ 2
(
4−2
2−1
)

+
(
4−2
2

)
= 6 =

(
4
2

)
, then 4 ∈ S.

Induction:
Suppose m ∈ S.
Then m ∈ Z+ and m ≥ 4 and

(
m
k

)
=
(
m−2
k−2

)
+ 2
(
m−2
k−1

)
+
(
m−2
k

)
.

Observe that(
m + 1

k

)
=

(
m

k − 1

)
+

(
m

k

)
=

(
m

k − 1

)
+ [

(
m− 2

k − 2

)
+ 2

(
m− 2

k − 1

)
+

(
m− 2

k

)
]

=

(
m

k − 1

)
+

(
m− 2

k − 2

)
+

(
m− 2

k − 1

)
+

(
m− 2

k − 1

)
+

(
m− 2

k

)
=

(
m

k − 1

)
+ [

(
m− 2

k − 2

)
+

(
m− 2

k − 1

)
] + [

(
m− 2

k − 1

)
+

(
m− 2

k

)
]

=

(
m

k − 1

)
+

(
m− 1

k − 1

)
+

(
m− 1

k

)
= [

(
m− 1

k − 2

)
+

(
m− 1

k − 1

)
] +

(
m− 1

k − 1

)
+

(
m− 1

k

)
=

(
m− 1

k − 2

)
+ 2

(
m− 1

k − 1

)
+

(
m− 1

k

)
.

Since m ∈ Z+, then m + 1 ∈ Z+.
Since m + 1 > m ≥ 4, then m + 1 > 4.
Since m + 1 ∈ Z+ and m + 1 > 4 and

(
m+1
k

)
=
(
m−1
k−2

)
+ 2
(
m−1
k−1

)
+
(
m−1
k

)
,

then m + 1 ∈ S.
Hence, m ∈ S implies m + 1 ∈ S.
Therefore, by PMI,

(
n
k

)
=
(
n−2
k−2
)

+ 2
(
n−2
k−1
)

+
(
n−2
k

)
for all n ≥ 4.

Exercise 49. For every n ∈ Z+,
∑n

k=0(−1)k
(
n
k

)
= 0.
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Proof. Let n ∈ Z+

Then either n is even or n is odd.
We consider each case separately.
Case 1: Suppose n is even.
Then (−1)n = 1 and n− 1 is odd, so (−1)n−1 = −1.
Observe that

n∑
k=0

(−1)k
(
n

k

)
= (−1)0

(
n

0

)
+ (−1)1

(
n

1

)
+ (−1)2

(
n

2

)
+ ... + (−1)n−1

(
n

n− 1

)
+ (−1)n

(
n

n

)
= 1−

(
n

1

)
+

(
n

2

)
+ ...−

(
n

n− 1

)
+

(
n

n

)
= 1− [

(
n− 1

0

)
+

(
n− 1

1

)
] + [

(
n− 1

1

)
+

(
n− 1

2

)
] + ...− [

(
n− 1

n− 2

)
+

(
n− 1

n− 1

)
] + [

(
n− 1

n− 1

)
+

(
n− 1

n

)
]

= 1−
(
n− 1

0

)
+

(
n− 1

n

)
= 1− 1 + 0

= 0.

Case 2: Suppose n is odd.
Then (−1)n = −1 and n− 1 is even, so (−1)n−1 = 1.
Observe that

n∑
k=0

(−1)k
(
n

k

)
= (−1)0

(
n

0

)
+ (−1)1

(
n

1

)
+ (−1)2

(
n

2

)
+ ... + (−1)n−1

(
n

n− 1

)
+ (−1)n

(
n

n

)
= 1−

(
n

1

)
+

(
n

2

)
+ ... +

(
n

n− 1

)
−
(
n

n

)
= 1− [

(
n− 1

0

)
+

(
n− 1

1

)
] + [

(
n− 1

1

)
+

(
n− 1

2

)
] + ... + [

(
n− 1

n− 2

)
+

(
n− 1

n− 1

)
]− [

(
n− 1

n− 1

)
+

(
n− 1

n

)
]

= 1−
(
n− 1

0

)
−
(
n− 1

n

)
= 1− 1− 0

= 0.

Exercise 50. Show that
∑n

k=1 k
(
n
k

)
= n2n−1 for all n ∈ Z+.

Proof. We prove the statement
∑n

k=1 k
(
n
k

)
= n2n−1 for all n ∈ Z+ by induction

on n.
Let S = {n ∈ Z+ :

∑n
k=1 k

(
n
k

)
= n2n−1}.

Basis:
Since 1 ∈ Z+ and

∑1
k=1 k

(
1
k

)
= 1
(
1
1

)
= 1 = (1)21−1, then 1 ∈ S.
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Induction:
Suppose m ∈ S.
Then m ∈ Z+ and

∑m
k=1 k

(
m
k

)
= m2m−1.

We must prove
∑m+1

k=1 k
(
m+1
k

)
= (m + 1)2m.

TODO
We need to finish this proof!
Hence, m ∈ S implies m + 1 ∈ S.
Therefore, by PMI,

∑n
k=1 k

(
n
k

)
= n2n−1 for all n ∈ Z+.

Exercise 51. Show that
∑n

k=0 2k
(
n
k

)
= 3n for all n ∈ Z+.

Proof. Let n ∈ Z+.
Observe that

n∑
k=0

2k
(
n

k

)
= 20

(
n

0

)
+ 21

(
n

1

)
+ ... + 2n−2

(
n

n− 2

)
+ 2n−1

(
n

n− 1

)
+ 2n

(
n

n

)
=

(
n

0

)
20 +

(
n

1

)
21 + ... +

(
n

n− 2

)
2n−2 +

(
n

n− 1

)
2n−1 +

(
n

n

)
2n

=

(
n

n

)
20 +

(
n

n− 1

)
21 + ... +

(
n

2

)
2n−2 +

(
n

1

)
2n−1 +

(
n

0

)
2n

=

(
n

0

)
2n +

(
n

1

)
2n−1 +

(
n

2

)
2n−2 + ... +

(
n

n− 1

)
21 +

(
n

n

)
20

=

(
n

0

)
2n−0 +

(
n

1

)
2n−1 +

(
n

2

)
2n−2 + ... +

(
n

n− 1

)
2n−(n−1) +

(
n

n

)
2n−n

=

n∑
k=0

(
n

k

)
2n−k

= (2 + 1)n

= 3n.

Proposition 52. The sum of two even integers is even.

Proof. Let a and b be any integers.
Suppose a is even and b is even.
Then a = 2k for some k ∈ Z and b = 2m for some m ∈ Z.
Thus a + b = 2k + 2m = 2(k + m).
Let n = k + m.
Then a + b = 2n.
Since k ∈ Z and m ∈ Z, then k + m ∈ Z, so n ∈ Z.
Therefore, a + b is even.

Proposition 53. The sum of two integers with opposite parity is odd.
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Proof. Let a and b be any integers.
Suppose a and b have opposite parity.
Then either a is even and b is odd, or a is odd and b is even.
We consider these cases separately.
Case 1: Suppose a is even and b is odd.
Then a = 2k for some k ∈ Z and b = 2m + 1 for some m ∈ Z.
Hence, a + b = 2k + (2m + 1) = (2k + 2m) + 1 = 2(k + m) + 1.
Let n = k + m.
Then a + b = 2n + 1.
Since k ∈ Z and m ∈ Z, then k +m ∈ Z because Z is closed under addition.
Thus, n ∈ Z.
Therefore, a + b is odd.
Case 2: Suppose a is odd and b is even.
Then a = 2k + 1 for some k ∈ Z and b = 2m for some m ∈ Z.
Hence, a+b = (2k+1)+2m = 2k+(1+2m) = 2k+(2m+1) = (2k+2m)+1 =

2(k + m) + 1.
Let n = k + m.
Then a + b = 2n + 1.
Since k ∈ Z and m ∈ Z, then k +m ∈ Z because Z is closed under addition.
Thus, n ∈ Z.
Therefore, a + b is odd.

Proposition 54. Let n ∈ Z+.
Then n2 is even iff n is even.

Proof. We prove if n is even, then n2 is even.
Suppose n is even.
Then n = 2a for some integer a.
Thus, n2 = (2a)2 = 4a2 = 2(2a2).
Since 2a2 is an integer, then this implies n2 is even, as desired.

Conversely, we prove if n2 is even, then n is even.
We use proof by contrapositive.
Suppose n is not even.
Then n is odd, so there exists an integer b such that n = 2b + 1.
Thus, n2 = (2b + 1)2 = 4b2 + 4b + 1 = 2(2b2 + 2b) + 1.
Since 2b2 + 2b is an integer, then this implies n2 is odd.
Therefore, n2 is not even, as desired.

Let n ∈ Z+.
Then n2 is even iff n is even.
Thus, n2 is not even iff n is not even.
Therefore, n2 is odd iff n is odd.

Proposition 55. Let m,n ∈ Z. Then m + n is even if and only if m and n
have the same parity.
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Proof. We first show that if m + n is even then m and n have the same parity.
We use proof by contrapositive.
Suppose m and n do not have the same parity.
Then m and n have opposite parity, so we consider two cases.
Case 1: Suppose m is even and n is odd.
Then m = 2a and n = 2b + 1 for some a, b ∈ Z.
Thus m + n = 2a + (2b + 1) = 2(a + b) + 1.
Therefore m + n is odd, implying that m + n is not even.
Case 2: Suppose m is odd and n is even.
Then m = 2a + 1 and n = 2b for some a, b ∈ Z.
Thus m + n = (2a + 1) + 2b = 2(a + b) + 1.
Therefore m + n is odd, so m + n is not even.
Either way both cases show that m + n is not even.

Conversely, we show that if m and n have the same parity then m+n is even.
Suppose m and n have the same parity. Then we have two cases to consider.
Case 1: Suppose m and n are both even.
Then m = 2a and n = 2b for some a, b ∈ Z.
Thus m + n = 2a + 2b = 2(a + b).
Therefore m + n is even.
Case 2: Suppose m and n are both odd.
Then m = 2a + 1 and n = 2b + 1 for some a, b ∈ Z.
Thus m + n = (2a + 1) + (2b + 1) = 2(a + b + 1).
Therefore m + n is even.
Either way both cases show that m + n is even.

Proposition 56. Let a, b ∈ Z. If a + b is odd, then a2 + b2 is odd.

Proof. Suppose a + b is odd.
Then a and b have opposite parity, for if they had the same parity then their

sum would be even. So we consider two cases.
Case 1: Suppose a is even and b is odd.
Since a is even then a2 is even.
Since b is odd then b2 is odd.
Since a2 and b2 have opposite parity then their sum a2 + b2 is odd since we

proved theorem ??.
Case 2: Suppose a is odd and b is even.
Since a is odd then a2 is odd.
Since b is even then b2 is even.
Since a2 and b2 have opposite parity then their sum a2 + b2 is odd.

Either way both cases show that a2 + b2 is odd.

Proposition 57. Let m,n ∈ Z.
If m and n are odd, then mn is odd.
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Proof. Suppose m and n are odd integers. Then m = 2a+ 1 and n = 2b+ 1 for
a, b ∈ Z.

Consequently the product mn = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 =
2(2ab + a + b) + 1.

Therefore mn = 2c+1, where c = 2ab+a+b ∈ Z, so mn is odd by definition
of an odd integer.

Proposition 58. Let m,n ∈ Z. If m is even, then mn is even.

Proof. Suppose m and n are integers and m is even. Then m = 2a for some
a ∈ Z.

Thus mn = (2a)n = 2(an) = 2b where b = an ∈ Z.
Therefore mn is even, by definition of an even number.

Exercise 59. Let n be a positive integer.
Then n is even iff n is not odd.

Proof. We prove by contradiction : if n is even, then n is not odd.
Suppose n is even and n is odd.
Then n is both even and odd.
But, this contradicts the fact that n is not both even and odd.
Therefore, if n is even, then n is not odd.

Conversely, we prove: if n is not odd, then n is even.
Suppose n is not odd.
Since n is a positive integer, then either n is even or n is odd.
Since n is not odd, then this implies n is even.
Therefore, if n is not odd, then n is even.

Exercise 60. No natural number is both even and odd.

Proof. Suppose there is a natural number that is both even and odd.
Then there is n ∈ N such that n is even and n is odd.
Since n is even, then n = 2k for some integer k.
Since n is odd, then n = 2m− 1 for some integer m.
Thus, 2k = n = 2m− 1, so 2k = 2m− 1.
Hence, 1 = 2m− 2k = 2(m− k), so 1

2 = m− k.
Since m and k are integers, then m− k is an integer.
Consequently, 1

2 is an integer, a contradiction.
Therefore, there is no natural number that is both even and odd.

Exercise 61. For every pair of odd integers m and n, the sum m + n is even
and the product mn is odd.
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Proof. Let m and n be odd integers.
Since m is odd, then there exists an integer a such that m = 2a + 1.
Since n is odd, then there exists an integer b such that n = 2b + 1.
Observe that m + n = (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2(a + b + 1).
Since a + b + 1 is an integer, then this implies m + n is even.
Observe that mn = (2a+ 1)(2b+ 1) = 4ab+ 2a+ 2b+ 1 = 2(2ab+a+ b) + 1.
Since 2ab + a + b is an integer, then this implies mn is odd.

Exercise 62. The product of two even integers is a multiple of 4.

Solution. We must first translate the English statement into logical symbols.
The English statement means:
If a and b are even integers, then ab is a multiple of 4.
Thus,
a is even and b is even ⇒ (4|ab).
Hence the statement to prove is:
(∀a, b ∈ Z)[a is even ∧ b is even → (4|ab)].
We let a, b ∈ Z be arbitrary such that a is even and b is even.
To prove 4|ab, we must find some n ∈ Z such that ab = 4n.
Since a is even, then a = 2n1 for some n1 ∈ Z.
Since b is even, then b = 2n2 for some n2 ∈ Z.
We want ab = 4n, so we need to find n in terms of n1 and n2.
Thus, (2n1)(2n2) = 4n.
We solve for n to get n = n1n2.
Hence, we let n = n1n2.

Proof. Suppose a and b are arbitrary even integers.
To prove ab is a multiple of 4, we must prove 4|ab; that is, we must find an

integer n such that ab = 4n.
Since a and b are even, then a = 2n1 and b = 2n2 for some integers n1 and

n2.
Let n = n1n2.
Since Z is closed under multiplication, then clearly n is an integer.
Observe that

ab = (2n1)(2n2)

= 4n1n2

= 4(n1n2)

= 4n, as desired.

Exercise 63. Prove or disprove the conjecture: Every odd integer is the sum
of three odd integers.
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Solution. We must either show for any odd integer n there exist three odd
integers that when added yield n, or show that no such integers exist.

For any n we can add n and 1 and -1, or n and 3 and -3, or n and 5 and -5,
etc. We only need choose one example.

Proof. The conjecture is true.
Suppose n is an odd integer.
Then n = n + 1 + (−1).
Since 1 and −1 are odd integers, then n is the sum of three odd integers.

Exercise 64. Every even integer that is the square of an integer is a multiple
of 4.

Solution. We must first translate the English statement into logical symbols.
The statement means:
if a is an even integer that is the square of some integer b, then a is a multiple

of 4.
Thus,
a is even and a = b2 ⇒ 4|a.
Hence, the statement to prove is:
(∀a, b ∈ Z)[a is even ∧ (a = b2)→ (4|a)].
Thus, we let a, b ∈ Z be arbitrary such that a is even and a = b2.
To prove 4|a, we must find some n ∈ Z such that a = 4n.
Since a is even, then a = 2k1 for some k1 ∈ Z.
Work backwards.
Suppose a = 4n for some n ∈ Z.
Then 2k1 = 4n, so n = k1/2.
Since n is an integer, then this implies k1 must be even (otherwise, k1 is odd

which forces n to be a non integer).
Thus, we must find some k2 ∈ Z such that k1 = 2k2.
Since a = b2 and a = 2k1, then 2k1 = b2, so 2(2k2) = b2.
Hence, 4k2 = b2, so (2k3)2 = b2 where k2 = k23.
Thus, b = 2k3, so b is even.
Since a = b2 and a is even, then b2 must be even.
Somehow we must show that b2 is even implies b is even.
Is there an associated theorem?
That is, does b2 is even imply b is even?
Yes, we know that for every x ∈ Z, x2 is even if and only if x is even.
Thus, we use this theorem to devise our proof.
Since a = b2 and a is even, then b2 is even.
We know that for every x ∈ Z, x2 is even if and only if x is even.
Hence, in particular, b2 is even if and only if b is even.
Since b2 is even, then by modus ponens, we conclude b is even.
Thus, b = 2n1 for some n1 ∈ Z.
Hence, a = (2n1)2 = 4n2

1.
Thus, let n = n2

1.
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Proof. Suppose a and b are arbitrary integers such that a is even and a = b2.
To prove a is a multiple of 4, we must prove 4|a; that is, we must find an

integer n such that a = 4n.
Since a = b2 and a is even, then b2 is even.
For every n ∈ Z, n2 is even if and only if n is even.
Hence, in particular, b2 is even if and only if b is even.
Since b2 is even, then we conclude b is even.
Thus, b = 2m for some integer m.
Let n = m2.
Clearly, n is an integer, since Z is closed under multiplication.
Observe that

a = b2

= (2m)2

= 4m2

= 4n, as desired.

Proposition 65. Let n ∈ Z.
If n is odd, then n3 is odd.

Proof. Suppose n is odd.
Then there exists an integer k such that n = 2k + 1.
Hence, n3 = (2k + 1)3 = 8k3 + 12k2 + 6k + 1 = 2(4k3 + 6k2 + 3k) + 1.
Since 4k3 +6k2 +3k is an integer, then this implies n3 is odd, as desired.

Exercise 66. Prove or disprove: Some even numbers are odd.

Solution. Clearly, the statement is false.
Thus, we need to disprove the statement: Some even numbers are odd.
Let P : some even numbers are odd.
Define predicate p(n) : n is even and q(n) : n is odd.
Our domain of discourse is Z.
P has the form some p’s are q’s, so P : (∃n)(p(n) ∧ q(n)).
To disprove P , we must prove ¬P where ¬P : ¬(∃n)(p(n) ∧ q(n)).
We use proof by contradiction.
Hence, we assume (∃n)(p(n) ∧ q(n)).
That is, we assume there exists an integer n such that n is even and odd.
We must derive a contradiction.

Proof. Suppose there exists an integer that is even and odd.
Then there exists an integer n such that n is even and n is odd.
Thus, n = 2a and n = 2b + 1 for some integers a and b.
Hence, 2a = 2b + 1, so 2a− 2b = 1.
Thus, 2(a− b) = 1.
Let c = a− b.
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Then c is an integer and 2c = 1.
Hence, 1 is even.
But, 1 is not even.
Therefore, there is no integer that is even and odd.
Therefore, it is false that some even numbers are odd.
This implies no even numbers are odd. In other words, all even numbers are

not odd.

Exercise 67. Suppose n ∈ Z. If 7n + 9 is even, then n is odd.

Proof. We use proof by contrapositive.
Suppose n is not odd.
Then n is even, so n = 2a for some a ∈ Z.
Thus 7n + 9 = 7(2a) + 9 = 14a + 8 + 1 = 2(7a + 4) + 1.
Therefore 7n + 9 = 2b + 1, where b = 7a + 4 ∈ Z, so 7n + 9 is odd.
Therefore 7n + 9 is not even.

Exercise 68. If n is an odd integer, then n2 + 3n + 5 is odd.

Proof. Suppose n is odd. Then n = 2a + 1 for some a ∈ Z.

Consequently n2+3n+5 = (2a+1)2+3(2a+1)+5 = 4a2+4a+1+6a+8 =
4a2 + 10a + 9 = 2(2a2 + 5a + 4) + 1 = 2b + 1 where b = 2a2 + 5a + 4 ∈ Z.

Therefore n2 + 3n + 5 is odd, by definition of an odd number.

Exercise 69. Let m and n be integers.
If mn is odd, then m is odd and n is odd.

Proof. We prove by contrapositive.
Suppose either m is not odd or n is not odd.
We consider these cases separately.
Case 1: Suppose m is not odd.
Then m is even, so m = 2k for some integer k.
Thus, mn = (2k)n = 2(kn).
Since kn is an integer, then this implies mn is even, so mn is not odd.
Case 2: Suppose n is not odd.
Then n is even, so n = 2k for some integer k.
Thus, mn = m(2k) = 2(km).
Since km is an integer, then this implies mn is even, so mn is not odd.
Therefore, in all cases, mn is not odd, as desired.

Exercise 70. Let n ∈ Z.
If 3n is even, then n is even.

Proof. Suppose 3n is even.
Then 3n = 2k for some integer k.
Since n = 3n − 2n = 2k − 2n = 2(k − n) and k − n is an integer, then n is

even.
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Exercise 71. If n is an even integer, then n2 − 6n + 5 is odd.

Solution. We use direct proof and the definition of odd number. This is an
easy straightforward proof.

Proof. Suppose n is an even integer.
Then n = 2a for some a ∈ Z, by definition of an even integer.
So n2 − 6n + 5 = (2a)2 − 6(2a) + 5 = 2(2a2 − 6a + 2) + 1.
Therefore, n2 − 6n + 5 = 2b + 1, where b = 2a2 − 6a + 2 ∈ Z.
Consequently, n2 − 6n + 5 is odd, by definition of an odd integer.

Exercise 72. Let n be an integer.
If n2 − 6n + 5 is even, then n is odd.

Proof. We prove by contrapositive.
Suppose n is not odd.
Then n is even, so n = 2a for some integer a.
To prove n2 − 6n + 5 is not even, we prove n2 − 6n + 5 is odd.
Thus, we must find an integer b such that n2 − 6n + 5 = 2b + 1.
Let b = 2a2 − 6a + 2.
Then clearly b is an integer.
Observe that

n2 − 6n + 5 = (2a)2 − 6(2a) + 5

= 4a2 − 12a + 5

= 4a2 − 12a + 4 + 1

= 2(2a2 − 6a + 2) + 1

= 2b + 1, as desired.

Exercise 73. There exists an integer that can be expressed as the sum of two
perfect cubes in two different ways.

Proof. Consider the number 1729.
Note that 13 + 123 = 1729 and 93 + 103 = 1729.
Thus the number 1729 can be expressed as the sum of two perfect cubes in

two different ways.

Exercise 74. Suppose n ∈ Z. Then n is even if and only if 3n + 5 is odd.

Proof. We first use direct proof to prove that if n is even then 3n + 5 is odd.
Suppose n is even.
Then there is some integer a for which n = 2a.
Thus 3n + 5 = 3(2a) + 5 = 6a + 5 = 2(3a + 2) + 1, so 3n + 5 is odd because

it has form 2b + 1, where b = 3a + 2 ∈ Z.
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Conversely, we show that if 3n + 5 is odd then n is even.
We will prove this using contrapositive proof.
Suppose n is not even.
Then n is odd, so there is an integer a for which n = 2a + 1.
Thus 3n + 5 = 3(2a + 1) + 5 = 6a + 8 = 2(3a + 4), so 3n + 5 is even.
Therefore 3n + 5 is not odd.

Exercise 75. Given an integer n, then n3 + n2 + n is even if and only if n is
even.

Proof. We first use contrapositive proof to show that if n3 +n2 +n is even then
n is even.

Suppose n is not even.
Then n is odd, so n = 2k + 1 for some k ∈ Z.
Thus n3 + n2 + n = n(n2 + n + 1) = (2k + 1)((2k + 1)2 + (2k + 1) + 1) =

(2k+1)(4k2+4k+1+2k+2) = (2k+1)(4k2+6k+3) = (2k+1)(2(2k2+3k+1)+1).
The first factor 2k + 1 is an odd integer and the second factor (2(2k2 + 3k +

1) + 1) is odd, thus the product n3 + n2 + n is odd.
Therefore n3 + n2 + n is not even.

Conversely, we show that if n is even then n3 + n2 + n is even.
Suppose n is even.
Then n = 2k for some k ∈ Z.
Thus n3+n2+n = n(n2+n+1) = (2k)((2k)2+2k+1) = (2k)(4k2+2k+1).
The first factor 2k is even. Therefore the product n3 + n2 + n is even.

Exercise 76. Suppose a, b ∈ Z. Then (a − 3)b2 is even if and only if a is odd
or b is even.

Proof. We first prove that if (a− 3)b2 is even then a is odd or b is even.
We use proof by contrapositive.
Suppose it is not the case that a is odd or b is even.
Then a is even and b is odd.
Thus a = 2c and b = 2d + 1 for some c, d ∈ Z.
Thus (a− 3)b2 = (2c− 3)(2d + 1)2 = (2(c− 2) + 1)(2d + 1)2.
The first factor (2(c− 2) + 1) is odd and the second factor (2d + 1)2 is odd

since the square of an odd number is always odd.
Therefore, the product (a− 3)b2 is odd.
Consequently, (a− 3)b2 is not even.

Conversely, we show that if a is odd or b is even then (a− 3)b2 is even.
Suppose a is odd or b is even. There are two cases to consider.
Case 1: Suppose a is odd.
Then a = 2c + 1 for some c ∈ Z.
Thus (a− 3)b2 = (2c + 1− 3)b2 = 2(c− 1)b2.
The first factor 2(c− 1) is even.
Therefore the product (a− 3)b2 is even.
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Case 2: Suppose b is even.
Then b = 2d for some d ∈ Z.
Thus (a− 3)b2 = (a− 3)(2d)2 = (a− 3)(2(2d2)).
The second factor 2(2d2) is even, thus the product (a− 3)b2 is even.
Either way both cases show that (a− 3)b2 is even.

Lemma 77. Let m,n ∈ Z. If mn is even and m is odd, then n is even.

Proof. Let m,n ∈ Z.
Suppose mn is even and m is odd.
Then mn = 2a and m = 2b + 1 for some a, b ∈ Z.
Substitution yields (2b + 1)n = 2a.
It follows that:

2bn + n = 2a

n = 2a− 2bn

n = 2(a− nb).

(6)

Hence n = 2(a− nb) where a− nb ∈ Z.
Therefore n is even, by definition of an even integer.

Exercise 78. Let x and y be integers.
If x(x + y) is odd, then y is even.

Proof. Suppose x(x + y) is odd.
Then x is odd and x + y is odd.
Therefore, y is even.

Exercise 79. Let x be an integer.
If xy is even for any integer y, then x is even.

Proof. Suppose xy is even for any integer y.
Let y = 1.
Then xy = x ∗ 1 = x is even.

Exercise 80. Let y be an integer.
If x(x + y) is even for any integer x, then y is odd.

Proof. Suppose x(x + y) is even for any integer x.
Let x = 1.
Then x(x + y) = 1(1 + y) = 1 + y is even.
Therefore, y is odd.

Exercise 81. The product n(n + 1) is even for every integer n.
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Proof. We prove by contradiction.
Suppose the product n(n + 1) is not even for every integer n.
Then there exists an integer x such that x(x + 1) is not even.
Hence, x(x + 1) is odd.
Thus, x is odd and x + 1 is odd.
Therefore, x = 2k + 1 and x + 1 = 2m + 1 for integers k and m.
Since x + 1 = 2m + 1, then x = 2m, so 2k + 1 = 2m.
Hence, 1 = 2m− 2k = 2(m− k).
Since m− k is an integer, then this implies 1 is even, a contradiction.
Therefore, n(n + 1) is even for every integer n.

Exercise 82. Let a, b ∈ Z. If a2(b2 − 2b) is odd, then a and b are odd.

Solution. We use proof by contrapositive since direct proof doesn’t help much.

Proof. Suppose neither a nor b is odd.
Then a is not odd or b is not odd, so a is even or b is even.
We consider these two cases separately.
Case 1: Suppose a is even.
Then a = 2c for some integer c.
Thus a2(b2 − 2b) = (2c)2(b2 − 2b) = 2(2c2(b2 − 2b)), which is even.
Therefore a2(b2 − 2b) is not odd.
Case 2: Suppose b is even.
Then b = 2c for some integer c.
Thus a2(b2−2b) = a2((2c)2−2(2c)) = a2(4c2−4c) = 2(a2(2c2−2c)), which

is even.
Therefore a2(b2 − 2b) is not odd.
Thus in either case a2(b2 − 2b) is not odd.

Exercise 83. Let a, b ∈ Z.
If both ab and a + b are even, then both a and b are even.

Solution. Direct proof doesn’t help too much. Let’s try proof by contrapositive.

Proof. Suppose it is not the case that both a and b are even.
Then neither a nor b is even, so either a is not even or b is not even.
Hence, either a is odd or b is odd or both are odd.
There are three cases to consider.
Case 1: Suppose a is odd and b is even.
Then there are integers c and d for which a = 2c + 1 and b = 2d.
Therefore ab = (2c + 1)(2d) = 2(d(2c + 1)), which is even; and a + b =

(2c + 1) + 2d = 2(c + d) + 1, which is odd.
Thus it is not the case that both ab and a + b are even.
Case 2: Suppose a is even and b is odd.
Then there are integers c and d for which a = 2c and b = 2d + 1.
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Therefore ab = 2c(2d+1), which is even; and a+b = 2c+(2d+1) = 2(c+d)+1,
which is odd.

Thus it is not the case that both ab and a + b are even.
Case 3: Suppose a is odd and b is odd.
Then there are integers c and d for which a = 2c + 1 and b = 2d + 1.
Therefore ab = (2c + 1)(2d + 1) = 4cd + 2c + 2d + 1 = 2(2cd + c + d) + 1,

which is odd; and a+ b = (2c+ 1) + (2d+ 1) = 2(c+d+ 1), which is even. Thus
it is not the case that both ab and a + b are even.

These cases show that it is not the case that both ab and a+ b are even.

Exercise 84. Let x, y ∈ Z.
If x2(y + 3) is even, then x is even or y is odd.

Solution. Proof by contrapositive seems to be a better approach than direct
proof.

Proof. Suppose it is not the case that x is even or y is odd.
Then x is not even and y is not odd, which implies that x is odd and y is

even.
Thus x = 2a + 1 and y = 2b for some a, b ∈ Z.
Consequently x2(y + 3) = (2a + 1)2(2b + 3) = (4a2 + 4a + 1)(2b + 3) =

8a2b + 12a2 + 8ab + 12a + 2b + 3 = 2(4a2b + 6a2 + 4ab + 6a + b + 1) + 1.
This shows x2(y + 3) = 2c + 1 where c = 4a2b + 6a2 + 4ab + 6a + b + 1 ∈ Z,

so x2(y + 3) is odd.
Therefore x2(y + 3) is not even.

Exercise 85. Let n ∈ Z.
If n3 − 1 is even, then n is odd.

Proof. Suppose n is not odd.
Then n is even, so n = 2a for some integer a.
Thus n3 − 1 = (2a)3 − 1 = 8a3 − 1 = 2(4a3 − 1) + 1.
Therefore n3 − 1 = 2b + 1 where b = 4a3 − 1 ∈ Z, so n3 − 1 is odd.
Thus n3 − 1 is not even.

Exercise 86. If n ∈ Z, then n2 + 3n + 4 is even.

Proof. Let n ∈ Z.
Then n is even or odd. There are two cases to consider.
Case 1. Suppose n is odd.
Then n = 2a + 1 for some a ∈ Z.
Thus n2 + 3n + 4 = (2a + 1)2 + 3(2a + 1) + 4 = 4a2 + 4a + 1 + 6a + 7 =

4a2 + 10a + 8 = 2(2a2 + 5a + 4) = 2b where b = 2a2 + 5a + 4 ∈ Z.
Hence n2 + 3n + 4 is even, by definition of an even number.
Case 2. Suppose n is even.
Then n = 2a for some a ∈ Z.
Thus n2 + 3n+ 4 = (2a)2 + 3(2a) + 4 = 4a2 + 6a+ 4 = 2(2a2 + 3a+ 2) = 2b

where b = 2a2 + 3a + 2 ∈ Z.
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Hence n2 + 3n + 4 is even, by definition of an even number.
In either case n2 + 3n + 4 is even.

Proposition 87. If two integers have opposite parity, then their product is
even.

Proof. Suppose m and n are integers with opposite parity. Then one of them is
odd while the other is even.

Without loss of generality, suppose m is even and n is odd.
Then m = 2a and n = 2b + 1 for some a, b ∈ Z.
It follows that mn = (2a)(2b + 1) = 2(2ab + a) = 2c where c = 2ab + a ∈ Z
Therefore mn is even, by definition of even.

Exercise 88. Prove or disprove the conjecture: If m and n are odd integers,
then m2 − n2 is divisible by 8.

Solution. Let’s try some example values of m,n to get a feel for if this conjecture
looks true or not.

m = 3, n = 5⇒ 32 − 52 = −16 = 8 ∗ (−2)
m = 5, n = 1⇒ 52 − 12 = 24 = 8 ∗ 3
m = 9, n = 7⇒ 92 − 72 = 32 = 8 ∗ 4
m = 17, n = 11⇒ 172 − 112 = 168 = 8 ∗ 21
So, this appears it might be true. So, let’s try to prove this conjecture.
We can translate this conjecture into logical symbols as:
m and n are odd integers ⇒ 8|(m2 − n2).
We can use direct proof strategy and elementary number theory to devise a

proof.

Proof. Suppose m and n are odd integers.
Then the sum m + n is even and the difference m − n is even because the

sum of two odd integers is even and the difference of two odd integers is even.
Thus for some k1, k2 ∈ Z, we have

m− n = 2k1

m + n = 2k2

We can add both equations to get 2m = 2k1 + 2k2 which implies m = k1 + k2.
Since m is odd, then k1 and k2 must have opposite parity, for if both k1 and

k2 were even, or if both k1 and k2 were odd, their sum k1 + k2 would be even.
Thus either k1 is even and k2 is odd, or k1 is odd and k2 is even.
We consider these cases separately.
Case 1: Suppose k1 is even and k2 is odd.
Then k1 = 2k3 and k2 = 2k4 + 1 for some k3, k4 ∈ Z.
Hence m2−n2 = (m−n)(m+n) = (2k1)(2k2) = 4k1k2 = 4(2k3)(2k4 + 1) =

8k3(2k4 + 1).
Consequently 8|m2 − n2.
Case 2: Suppose k1 is odd and k2 is even.
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Then k1 = 2k3 + 1 and k2 = 2k4 for some k3, k4 ∈ Z.
Hence m2−n2 = (m−n)(m+n) = (2k1)(2k2) = 4k1k2 = 4(2k3 + 1)(2k4) =

8k4(2k3 + 1).
Consequently 8|m2 − n2.
Thus both cases show 8|m2 − n2. Therefore this conjecture is a true propo-

sition.

Exercise 89. Let a, b, r, s be coprime and a2 + b2 = r2 and a2 − b2 = s2.
Then a, r, s are odd and b is even.

Proof. We add both equations to obtain 2a2 = r2 + s2.
Since a2 is an integer, then this implies r2 + s2 is even.
For any integers x and y, the sum x + y is even iff either x, y are both even

or x, y are both odd.
Thus, the sum r2 +s2 is even iff either r2, s2 are both even or r2, s2 are both

odd.
Thus, either r2, s2 are both even or r2, s2 are both odd.
For any integer x, x2 is even iff x is even and x2 is odd iff x is odd.
Thus, either r, s are both even or r, s are both odd.

Suppose r, s are both even.
Then 2|r and 2|s, so 2 is a common divisor of r and s.
Every common divisor of r and s divides gcd(r, s).
Thus, 2 divides gcd(r, s).
Since r, s are coprime, then gcd(r, s) = 1.
Hence, 2|1, a contradiction.
Therefore, r and s cannot be both even.
Since either r, s are both even or both odd and r, s are not both even, then

this implies r and s are both odd.

Thus, r = 2k + 1 and s = 2m + 1 for some integers k and m.
Observe that

2a2 = r2 + s2

= (2k + 1)2 + (2m + 1)2

= 4k2 + 4k + 1 + 4m2 + 4m + 1

= 4k2 + 4m2 + 4k + 4m + 2

= 2(2k2 + 2m2 + 2k + 2m + 1).

Thus, a2 = 2k2 + 2m2 + 2k + 2m + 1 = 2(k2 + m2 + k + m) + 1.
Since k2 +m2 + k +m is an integer, then this implies a2 is odd, so a is odd.
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Since a2 + b2 = r2, then b2 = r2 − a2.
Since r is odd, then r2 is odd.
Since a is odd, then a2 is odd.
Thus, the difference r2 − a2 is even, so b2 is even.
Therefore, b is even.

Consequently, a, r, s are odd and b is even, as desired.

Exercise 90. Let a, b, c ∈ Z.
If a2 + b2 = c2, then a or b is even.

Proof. We prove by contradiction.
Suppose a2 + b2 = c2 and neither a nor b is even.
Then a and b are both not even, so a is not even and b is not even.
Thus, a is odd and b is odd, so there are integers k and m such that a = 2k+1

and b = 2m + 1.
Thus,

c2 = a2 + b2

= (2k + 1)2 + (2m + 1)2

= 4k2 + 4k + 1 + 4m2 + 4m + 1

= 4k2 + 4m2 + 4k + 4m + 2

= 2(2k2 + 2m2 + 2k + 2m + 1)

Since 2k2 + 2m2 + 2k + 2m + 1 is an integer, then c2 is even, so c is even.
Thus, there is an integer n such that c = 2n, so c2 = 4n2.

Hence, c2

2 = 2n2, so 2n2 = 2k2 + 2m2 + 2k + 2m + 1.
Therefore, 2(n2 − k2 −m2 − k −m) = 2n2 − 2k2 − 2m2 − 2k − 2m = 1, so

2(n2 − k2 −m2 − k −m) = 1.
Since n2 − k2 − m2 − k − m is an integer, then this implies 1 is even, a

contradiction.
Therefore, if a2 + b2 = c2, then either a is even or b is even, as desired.

Exercise 91. If a, b ∈ Z, then a2 − 4b− 3 6= 0.

Proof. Suppose for the sake of contradiction that a, b ∈ Z, but a2 − 4b− 3 = 0.
Then a2 = 4b+ 3 = 2(2b+ 1) + 1, which means a2 is odd. Therefore a is odd

also (since we previously proved that if a is even, then a2 is even), so a = 2c+ 1
for some integer c.

Substitution gives

(2c + 1)2 − 4b− 3 = 0

4c2 + 4c + 1− 4b− 3 = 0

4c2 + 4c− 4b = 2

2c2 + 2c− 2b = 1

2(c2 + c− b) = 1.
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From this last equation we conclude that 1 is an even number, a contradiction.

Exercise 92. There exist no integers a and b for which 18a + 6b = 1.

Proof. Suppose for the sake of contradiction that there exist integers a and b
for which 18a + 6b = 1.

Then 2(9a + 3b) = 1, which means 1 is even, a contradiction.

Exercise 93. If a, b ∈ Z , then a2 − 4b− 2 6= 0.

Proof. Suppose for the sake of contradiction that a, b ∈ Z, but a2 − 4b− 2 = 0.
Then a2 = 4b + 2 = 2(2b + 1), so a2 is even. Consequently a is even.
Thus there is an integer c for which a = 2c.
Substitution gives

(2c)2 = 4b + 2

4c2 = 4b + 2

2c2 = 2b + 1

2c2 − 2b = 1

2(c2 − b) = 1

Since c2− b ∈ Z the last equation means that 1 is even, a contradiction.

Exercise 94. Prove or disprove the conjecture: There exist three integers a, b, c,
all greater than 1 and no two equal, for which ab = bc.

Solution. We deduce that if b is odd, then a is odd based on the equation
ab = bc by considering what must be true if b is odd.

Also, we can deduce that if b is even, then a is even and c is even.
So we substitute various values of a, b, and c into the equation that fit these

criteria.
There are many examples that demonstrate such integers exist that satisfy

the equation.
For example: 93 = 36, 82 = 26, 162 = 28, 322 = 210, 84 = 46, 164 = 48, 324 =

410, 644 = 412, 366 = 612, 2166 = 618, etc.
Of course one example suffices to prove the conjecture since this is an exis-

tence assertion, so the proof below works.

Proof. The conjecture is true.
Note that if a = 9, b = 3, and c = 6, then ab = 93 = (32)3 = 36 = bc.

Exercise 95. Prove or disprove the conjecture: If n ∈ Z and n5 − n is even,
then n is even.
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Solution. We can factor n5 − n = n(n4 − 1) = n(n2 − 1)(n2 + 1).
The integer n is either odd or even.
If n is odd, then we know n2 is odd.
Thus n2 − 1 is even and n2 + 1 is even.
Therefore the product n(n2 − 1)(n2 + 1) is even since at least one of the

factors is even.
Hence, n5 − n is even.
If n is even, then n(n2 − 1)(n2 + 1) is even, since at least one of the factors

is even.
Hence, n5 − n is even.
So, n5 − n is always even, but n can be either even or odd.
Consequently, the conjecture is false.
One counterexample suffices to disprove the conjecture since this is a uni-

versal quantification ∀(n ∈ Z)(2|n5 − n)→ 2|n, so the proof below works.

Proof. The conjecture is false.
Here is a counterexample: Let n = 1. Then n5 − n = 15 − 1 = 0 which is

even, but n = 1 is not even.

Exercise 96. For every integer n ≥ 0,
∑n

i=0 i · i! = (n + 1)!− 1.

Solution. We prove by induction(weak).
The statement Sn is

∑n
i=0 i · i! = (n + 1)!− 1.

The statement Sk is
∑k

i=0 i · i! = (k + 1)!− 1.

The statement Sk+1 is
∑k+1

i=0 i · i! = [(k + 1) + 1]!− 1.

Proof. We prove by induction.
Basis:
If n = 0, then the statement is

∑0
i=0 i · i! = (0 + 1)!− 1.

The left-hand side is 0 · 0! = 0 and the right-hand side is 1! − 1 = 0, so the
statement is obviously true for n = 0.

Induction:
Suppose k ≥ 0.
We must prove if

∑k
i=0 i · i! = (k+1)!−1, then

∑k+1
i=0 i · i! = [(k+1)+1]!−1.

We use direct proof.
Suppose

∑k
i=0 i · i! = (k + 1)!− 1.

Observe that

k+1∑
i=0

i · i! =

k∑
i=0

i · i! + (k + 1)(k + 1)!

= [(k + 1)!− 1] + (k + 1)(k + 1)!

= (k + 1)!(1 + k + 1)− 1

= (k + 1)!(k + 2)− 1

= (k + 2)!− 1

= [(k + 1) + 1]!− 1
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It follows by induction that
∑n

i=0 i · i! = (n + 1)! − 1 for every integer n ≥
0.

Exercise 97. Define the sequence of Fibonacci numbers by f1 = 1 and
f2 = 1 and fn+2 = fn+1 + fn for all n ∈ Z+.

Then fn < 2n for all n ∈ Z+.

Proof. Let p(n) be the predicate defined by p(n) : fn < 2n for n ∈ Z+.
To prove p(n) is true for all n ∈ Z+, we prove by strong induction on n.
Basis:
Let n = 1. Then f(1) = 1 < 2 = 21, so p(1) is true.
Let n = 2. Then f(2) = 1 < 4 = 22, so p(2) is true.
Induction:
Let k ∈ Z+ such that p(1) and p(2) and ... and p(k) are all true for k ≥ 2.
Then p(k − 1) and p(k) are true, so fk−1 < 2k−1 and fk < 2k.
Since k ∈ Z+, then k > 0, so 2k > 0.
Observe that fk+1 = fk +fk−1 < 2k +2k−1 = 2k(1+2−1) = 2k( 3

2 ) < 2k(2) =
2k+1.

Hence, fk+1 < 2k+1, so p(k + 1) is true.
Therefore, by strong induction, fn < 2n for all n ∈ Z+.

Exercise 98. Define the sequence of Fibonacci numbers by f1 = 1 and
f2 = 1 and fn+2 = fn+1 + fn for all n ∈ Z+.

Then fn < ( 7
4 )n for all n ∈ Z+.

Proof. Let p(n) be the predicate defined by p(n) : fn < ( 7
4 )n for n ∈ Z+.

To prove p(n) is true for all n ∈ Z+, we prove by strong induction on n.
Basis:
Let n = 1. Then f(1) = 1 < 7

4 = ( 7
4 )1, so p(1) is true.

Let n = 2. Then f(2) = 1 < 3 < 49
16 = ( 7

4 )2, so p(2) is true.
Induction:
Let k ∈ Z+ such that p(1) and p(2) and ... and p(k) are all true for k ≥ 2.
Then p(k − 1) and p(k) are true, so fk−1 < ( 7

4 )k−1 and fk < ( 7
4 )k.

Since k ∈ Z+, then k > 0, so ( 7
4 )k > 0.
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Observe that

fk+1 = fk + fk−1

< (
7

4
)k + (

7

4
)k−1

= (
7

4
)k−1(

7

4
+ 1)

= (
7

4
)k−1(

11

4
)

< (
7

4
)k−1(3)

< (
7

4
)k−1(

49

16
)

= (
7

4
)k−1(

7

4
)2

= (
7

4
)k+1.

Hence, fk+1 < ( 7
4 )k+1, so p(k + 1) is true.

Therefore, by strong induction, fn < ( 7
4 )n for all n ∈ Z+.

Exercise 99. Define the sequence of Fibonacci numbers by f1 = 1 and
f2 = 1 and fn+2 = fn+1 + fn for all n ∈ Z+.

For all positive integers n ≥ 2, fn+1fn−1 = f2
n + (−1)n.

Proof. Let p(n) be the predicate defined by p(n) : fn+1fn−1 = f2
n + (−1)n for

n ∈ Z+.
To prove p(n) is true for n ≥ 2, we prove by induction on n.
Basis:
Let n = 2. Then f3f1 = 2 · 1 = 2 and (f2)2 + (−1)2 = 12 + 1 = 2, so p(2) is

true.
Induction:
Let k ∈ Z+ such that p(k) is true for k ≥ 2.
Then fk+1fk−1 = f2

k + (−1)k.
Observe that

fk+2fk = (fk+1 + fk)fk

= fk+1fk + f2
k

= fk+1fk + (fk+1fk−1 − (−1)k)

= fk+1(fk + fk−1)− (−1)k

= fk+1fk+1 − (−1)k

= (fk+1)2 − (−1)k

= (fk+1)2 + (−1)(−1)k

= (fk+1)2 + (−1)k+1.

Hence, fk+2fk = (fk+1)2 + (−1)k+1, so p(k + 1) is true.
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Therefore, by induction, p(n) is true for all integers n ≥ 2, so fn+1fn−1 =
f2
n + (−1)n for all integers n ≥ 2.

Exercise 100. Define the sequence of Fibonacci numbers by f1 = 1 and
f2 = 1 and fn+2 = fn+1 + fn for all n ∈ Z+.

Let fn be the nth Fibonacci number.
Then fn and fn+1 have no common factor greater than 1 for all n ∈ Z+.
(Therefore, gcd(fn, fn+1) = 1, so that fn and fn+1 are relatively prime.)

Proof. Let p(n) be the statement: fn and fn+1 have no common factor greater
than 1.

To prove p(n) is true for all n ∈ Z+, we prove by induction on n.
Basis:
Let n = 1.
Since f1 = 1 and f2 = 1, then f1 and f2 have 1 as the greatest common

factor, so f1 and f2 have no common factor greater than 1.
Therefore, p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then fk and fk+1 have no common factor greater than 1.
Suppose fk+1 and fk+2 have a common factor greater than 1, say d > 1.
Then d divides both fk+1 and fk+2, so d divides any linear combination of

fk+1 and fk+2.
Since fk+2 = fk+1 + fk, then fk = fk+2 − fk+1 is a linear combination of

fk+1 and fk+2, so d divides fk.
Since d divides fk and d divides fk+1, then fk and fk+1 have a common

divisor greater than 1.
But, this contradicts the induction hypothesis.
Thus, fk+1 and fk+2 have no common factor greater than 1, so p(k + 1) is

true.
Hence, by the principle of induction, p(n) is true for all n ∈ Z+.
Therefore, fn and fn+1 have no common factor greater than 1 for all n ∈

Z+.

Proposition 101. Let fn be the nth Fibonacci number.
Then

fn =
( 1+
√
5

2 )
n
− ( 1−

√
5

2 )
n

√
5

Solution. Let A = 1+
√
5

2 . We note that 1+
√
5

2 is the Golden ratio.

Let B = 1−
√
5

2 .
We must prove: ∀n ∈ N, Sn where Sn is the statement:

fn =
An −Bn

√
5

The trick to this proof is to work backwards to find the appropriate relationships
among the terms.
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Proof. Let A = 1+
√
5

2 .

Let B = 1−
√
5

2 .

Observe that A + B = 1 and A−B =
√

5 and A2 = A + 1 and B2 = B + 1.
Let S = {n ∈ Z+ : fn = An−Bn

√
5
}.

We must prove S = Z+.
We prove by strong induction on n.
Basis:
If n = 1, the statement is f1 = A1−B1

√
5

.

The left hand side is f1 = 1 and the right hand side is A−B√
5

=
√
5√
5

= 1.

Therefore, this statement is true, so 1 ∈ S.

If n = 2, the statement is f2 = A2−B2
√
5

.

The left hand side is f2 = 1 and the right hand side is A2−B2
√
5

= (A−B)(A+B)√
5

=
√
5·1√
5

= 1.

Therefore, this statement is true, so 2 ∈ S.
Induction:
Suppose k − 1 ∈ S and k ∈ S for k ≥ 2.

Then fk−1 = Ak−1−Bk−1
√
5

and fk = Ak−Bk
√
5

.

To prove k + 1 ∈ S, we must prove fk+1 = Ak+1−Bk+1
√
5

.

Since fk+1 = fk + fk−1 then

fk+1 =
Ak −Bk

√
5

+
Ak−1 −Bk−1

√
5

=
(Ak + Ak−1)− (Bk + Bk−1)√

5
.

Since A2 = A + 1, we multiply both sides of the equation by Ak−1 to get
Ak+1 = Ak + Ak−1.

Since B2 = B + 1, we multiply both sides of the equation by Bk−1 to get
Bk+1 = Bk + Bk−1.

Substituting these into the previous equation we get fk+1 = Ak+1−Bk+1
√
5

.

It follows by induction that fn = An−Bn
√
5

for all n ∈ Z+.

Exercise 102. Let x ∈ R.
For all n ∈ N, x + 4x + 7x + ... + (3n− 2)x = n(3n−1)x

2 .

Proof. Let p(n) be the predicate x+4x+7x+ ...+(3n−2)x = n(3n−1)x
2 defined

over Z+.
We prove p(n) is true for all positive integers n by induction on n.
Basis:
Since x = 1(3∗1−1)x

2 = x, then p(1) is true.
Induction:
Suppose p(k) is true for k ≥ 1.
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Then x + 4x + 7x + ... + (3k − 2)x = k(3k−1)x
2 .

Observe that

x + 4x + 7x + ... + (3k − 2)x + [3(k + 1)− 2]x =
k(3k − 1)x

2
+ [3(k + 1)− 2]x

=
(3k2 − k)x

2
+ (3k + 1)x

=
3k2x− kx + 2(3k + 1)x

2

=
3k2x− kx + 6kx + 2x

2

=
3k2x + 5kx + 2x

2

=
(3k2 + 5k + 2)x

2

=
(k + 1)(3k + 2)x

2

=
(k + 1)[3(k + 1)− 1]x

2
.

Thus, p(k + 1) is true.
Therefore, by PMI, p(n) is true for any positive integer n, so x + 4x + 7x +

... + (3n− 2)x = n(3n−1)x
2 for all n ∈ Z+.
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