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Divisibility and greatest common divisor

Exercise 1. Let a, b ∈ Z.
Then a > b implies a 6 |b is false.

Proof. Observe that 1 > 0 and 1|0.

Exercise 2. Let a, b, c ∈ Z.
If a + b = c and d|a and d|c, then d|b.

Proof. Suppose a + b = c and d|a and d|c.
Since a+b = c, then b = c−a = −a+c = (−1)a+(1)c is a linear combination

of a and c.
Since d|a and d|c, then d divides any linear combination of a and c.
In particular, d divides b, so d|b.

Exercise 3. Let x, y, z, w be integers.
If 3x + 81y + 6z + 363 = w, then 3|w.

Proof. Since w = 3x+81y+6z+363 = 3(x+27y+2z+121) and x+27y+2z+121
is an integer, then 3 divides w.

Proof. Since 3|3 and 3|81 and 3|6 and 3|363, then 3 divides any linear combi-
nation of 3, 81, 6, 363.

Since w is a linear combination of 3, 81, 6, 363, then this implies 3 divides w,
so 3|w.

Exercise 4. Let x, y be integers.
If 3x2 + 15xy + 5y2 = 0, then 3|5y2 and 5|3x2.

Proof. Suppose 3x2 + 15xy + 5y2 = 0.
Then 3x2 = −15xy − 5y2 and 5y2 = −3x2 − 15xy.
Since 3| − 3 and 3| − 15, then 3 divides any linear combination of −3 and

−15.
Since 5y2 is a linear combination of −3 and −15, then this implies 3|5y2.
Since 5| − 15 and 5| − 5, then 5 divides any linear combination of −15 and

−5.
Since 3x2 is a linear combination of −15 and −5, then this implies 5|3x2.



Exercise 5. Let n1, n2, ..., nk ∈ Z.
If N = n1 ∗ n2 ∗ ∗ ∗ nk + 1, then gcd(ni, N) = 1 for i = 1, 2, ..., k.

Proof. Suppose N = n1 ∗ n2 ∗ ∗ ∗ nk + 1.
Then 1 = N − n1 ∗ n2 ∗ ∗ ∗ nk = (1) ∗N − n1 ∗ n2 ∗ ∗ ∗ nk.
Since 1 is a linear combination of n1 and N and any linear combination of

n1 and N is a multiple of gcd(n1, N), then 1 is a multiple of gcd(n1, N), so
gcd(n1, N) divides 1.

The only positive integer that divides 1 is 1, so this implies gcd(n1, N) = 1.
Similar reasoning shows that gcd(n2, N) = 1 and ... gcd(nk, N) = 1.

Exercise 6. Let d ∈ Z+ and n ∈ Z.
Then gcd(d, nd) = d.

Proof. Since every integer divides itself, then d|d.
Since d divides any multiple of d, then d|nd.
Therefore, d is a common divisor of d and nd.

Let c be any common divisor of d and nd.
Then c|d and c|nd, so c|d.
Hence, any common divisor of d and nd divides d.
Since d ∈ Z+ and d is a common divisor of d and nd and any common divisor

of d and nd divides d, then d = gcd(d, nd).

Exercise 7. Let a ∈ Z and b ∈ Z.
If a|b and b|a, then a = b or a = −b.

Proof. Suppose a|b and b|a.
Then b = ak1 and a = bk2 for some integers k1 and k2.
Thus, b = (bk2)k1 = b(k1k2), so b(k1k2)− b = 0.
Hence, b(k1k2 − 1) = 0.
Either b = 0 or b 6= 0.
We consider these cases separately.
Case 1: Suppose b = 0.
Since b|a, then 0|a, so a = 0k3 = 0 for some integer k3.
Hence, a = 0 = b, so a = b.
Case 2: Suppose b 6= 0.
Then k1k2 − 1 = 0, so k1k2 = 1.
Since k1 and k2 are integers such that k1k2 = 1, then either k1 = k2 = 1 or

k1 = k2 = −1.
Hence, either b = a(k1) = a(1) = a or b = a(k1) = a(−1) = −a, so either

b = a or b = −a.
Therefore, either a = b or a = −b.

Exercise 8. Let a ∈ Z+ and b ∈ Z.
If a|b, then gcd(a, b) = a.
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Proof. Suppose a|b.
Since every integer divides itself, then a|a.
Since a|a and a|b, then a is a common divisor of a and b.

Let c be any common divisor of a and b.
Then c|a and c|b, so c|a.
Hence, any common divisor of a and b divides a.
Since a ∈ Z+ and a is a common divisor of a and b, and any common divisor

of a and b divides a, then a = gcd(a, b).

Exercise 9. Let x ∈ R and a, b ∈ Z.
I. If x2 + ax + b = 0 has an integer root, then the root divides b.
II. If x2 + ax + b = 0 has a rational root, then the root is an integer.

Proof. We prove I.
Suppose the equation x2 + ax + b = 0 has an integer root.
Let r be an integer root of x2 + ax + b = 0.
Then r ∈ Z and r2 + ar + b = 0, so b = −r2 − ar = r(−r − a).
Since −r − a ∈ Z, then r divides b.

Proof. We prove II.
Suppose the equation x2 + ax + b = 0 has a rational root.
Let q be a rational root of x2 + ax + b = 0.
Then q ∈ Q and q2 + aq + b = 0.
Since q ∈ Q, then there exist integers r, s with s 6= 0 such that q = r

s .
Assume q is in lowest terms. That is, assume gcd(r, s) = 1, so 1 = gcd(s, r).
Since ( rs )2 + a ∗ rs + b = 0, then r2 + ars + bs2 = 0, so r2 = −ars − bs2 =

s(−ar − bs).
Since s|s(−ar − bs), then s divides r2.
Since s|r2 and gcd(s, r) = 1, then s|r.
Thus, r = st for some integer t, so q = r

s = st
s = t.

Therefore, q is an integer.

Exercise 10. Let a, b ∈ Z.
For every c ∈ Z, if c|a and c|b, then c| gcd(a, b).

Proof. Let c ∈ Z such that c|a and c|b.
Then c is a common divisor of a and b.
By definition of gcd, any common divisor of a and b must divide gcd(a, b).
Therefore, c divides gcd(a, b).

Exercise 11. Let a and b be nonzero integers.
If there exist integers r and s such that ar+bs = 1, then a and b are relatively

prime.

3



Proof. Suppose there exist integers r and s such that ar + bs = 1.
Then 1 = ra + sb is a linear combination of a and b.
Since any common divisor of a and b divides any linear combination of a and

b, then gcd(a, b) divides 1.
The only positive integer that divides 1 is 1.
Since gcd(a, b) is a positive integer, then this implies gcd(a, b) = 1.
Therefore, a and b are relatively prime.

Exercise 12. Let a, b, c ∈ Z.
If gcd(a, b) = 1 and c|a, then gcd(c, b) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a.
Since gcd(a, b) = 1, then ma + nb = 1 for some integers m,n.
Since c|a, then a = ck for some integer k.
Thus, 1 = ma + nb = m(ck) + nb = m(kc) + nb = (mk)c + nb is a linear

combination of c and b.
Since any linear combination of c and b is a multiple of gcd(c, b), then 1 is a

multiple of gcd(c, b), so gcd(c, b) divides 1.
The only positive integer that divides 1 is 1, so gcd(c, b) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a.
Since 1 divides every integer, then 1|c and 1|b, so 1 is a common divisor of

c and b.

Let d be any common divisor of c and b.
Then d|c and d|b.
Since d|c and c|a, then d|a.
Since gcd(a, b) = 1, then ma + nb = 1 for some integers m and n.
Since d|a and d|b, then d divides any linear combination of a and b, so d

divides ma + nb = 1,
Hence, d|1.
Therefore, any common divisor of c and b divides 1.
Since 1 is a common divisor of c and b and any common divisor of c and b

divides 1, then by definition of gcd, 1 = gcd(c, b).

Exercise 13. Let a, b, d ∈ Z.
If d|a and d|b, then d2|ab.

Proof. Suppose d|a and d|b.
Then a = dk1 and b = dk2 for some integers k1 and k2.
Hence, ab = (dk1)(dk2) = d2(k1k2).
Since k1k2 ∈ Z, then this implies d2|ab.

Exercise 14. Let a, b, c, d ∈ Z.
If c|ab and gcd(c, a) = d, then c|db.
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Proof. Suppose c|ab and gcd(c, a) = d.
Since gcd(c, a) = d, then d = xc + ya for some integers x and y.
Hence, db = (xc + ya)b = xcb + yab = (xb)c + yab is a linear combination of

c and ab.
Since c|c and c|ab, then c divides any linear combination of c and ab, so

c|db.

Exercise 15. Let a, b ∈ Z.
Disprove: If a 6 |b, then gcd(a, b) = 1.

Proof. Let a = 4 and b = 10.
Then 4 6 |10, but gcd(4, 10) = 2 6= 1.

Exercise 16. Let a, b, d ∈ Z.
If d is odd and d|(a + b) and d|(a− b), then d| gcd(a, b).

Proof. Suppose d is odd and d|(a + b) and d|(a− b).
Since d|(a + b) and d|(a− b), then d divides the sum (a + b) + (a− b) = 2a

and d divides the difference (a + b)− (a− b) = 2b, so d|2a and d|2b.
Since d is odd, then 2 6 |d, so gcd(d, 2) = 1.
Since d|2a and gcd(d, 2) = 1, then we know d|a.
Since d|2b and gcd(d, 2) = 1, then we know d|b.
Hence, d divides any linear combination of a and b.
Since gcd(a, b) is the least positive linear combination of a and b, then this

implies d divides gcd(a, b).
Therefore, d| gcd(a, b).

Exercise 17. Let a, b, c, d, p ∈ Z.
If p|(10a− b) and p|(10c− d), then p|(ad− bc).

Proof. Suppose p|(10a− b) and p|(10c− d).
Since p|(10a− b), then p divides any multiple of 10a− b, so p|c(10a− b).
Hence, p|(10ac− bc).
Since p|(10c− d), then p divides any multiple of 10c− d, so p|a(10c− d).
Hence, p|(10ac− ad).
Thus, p divides the difference (10ac−bc)−(10ac−ad) = 10ac−bc−10ac+ad =

ad− bc.
Therefore, p|(ad− bc).

Exercise 18. Let a, b, c ∈ Z.
Then gcd(a, c) = gcd(b, c) = 1 iff gcd(ab, c) = 1.

Proof. Suppose gcd(a, c) = gcd(b, c) = 1.
Since gcd(a, c) = 1, then m1a + n1c = 1 for some integers m1 and n1.
Since gcd(b, c) = 1, then m2b + n2c = 1 for some integers m2 and n2.
Thus, b = 1b = (m1a+n1c)b = m1ab+n1bc, so m2(m1ab+n1bc) +n2c = 1.
Hence, 1 = m1m2ab + m2n1bc + n2c = (m1m2)(ab) + (m2n1b + n2)c.
Since there exist integers m1m2 and m2n1b + n2 such that (m1m2)(ab) +

(m2n1b + n2)c = 1, then gcd(ab, c) = 1.
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Proof. Conversely, suppose gcd(ab, c) = 1.
Then xab + yc = 1 for some integers x and y.
Hence, 1 = xab + yc = (xb)a + yc = (ax)b + yc.
Since there exist integers xb and y such that (xb)a+yc = 1, then gcd(a, c) =

1.
Since there exist integers ax and y such that (ax)b+yc = 1, then gcd(b, c) =

1.
Therefore, gcd(a, c) = gcd(b, c) = 1.

Exercise 19. If 10|(3m + 1) for some integer m, then 10|(3m+4n + 1) for all
n ∈ Z+.

For which m does 10|(3m + 1)?

Proof.

Theorem 20. Let S be a nonempty set of integers that is closed under addition
and subtraction.

Then either S consists of zero alone or S contains a smallest positive ele-
ment, in which case S consists of all multiples of its smallest positive element.

Solution. Since S is not empty, then there exists some element in S.
Let a be some element of S.
Since a ∈ S and S ⊂ Z, then a ∈ Z.
By closure of S under addition, we have a+a = 2a ∈ S and 2a+a = 3a ∈ S

and 3a + a = 4a ∈ S, and so on.
Thus, it appears ka ∈ S for all positive integers k.
By closure of S under subtraction, we have a−a = 0 ∈ S so 0−a = −a ∈ S,

so −a − a = −2a ∈ S, so −2a − a = −3a ∈ S, so −3a − a = −4a ∈ S, and so
on.

Thus, it appears ka ∈ S for all negative integers k.
Hence, it appears ka ∈ S for all integers k, so it appears that {ka : k ∈ Z} ⊂

S.
We showed that if a ∈ S, then 0 ∈ S and −a ∈ S.
Since S is not empty, then S contains at least one element, so either S

contains exactly one element or it contains more than one element.

Proof. Since S is a nonempty subset of integers, then there is some element in
S, say a.

Since a ∈ S and S ⊂ Z, then a ∈ Z.
By closure of S under subtraction, a− a ∈ S, so 0 ∈ S.
Since S is not empty, then S contains at least one element, so either S

contains exactly one element or S contains more than one element.
We consider these cases separately.
Case 1: Suppose S contains exactly one element.
Since S contains exactly one element and 0 ∈ S, then S must contain zero

only.
Therefore, S = {0}.
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Case 2: Suppose S contains more than one element.
Then S contains at least two elements.
One of the elements must be zero and the other element is not zero.
Let a be some element of S that is not equal to zero.
Since a ∈ S and S ⊂ Z, then a ∈ Z.
Since a 6= 0, then either a > 0 or a < 0.
Suppose a > 0.
Then 0− a ∈ S, so −a ∈ S.
Suppose a < 0.
Then 0− a ∈ S, so −a ∈ S.
Hence, in either case S will always contain both −a and a.
Therefore, without loss of generality, assume a > 0.
Then −a ∈ S.
We must prove a is the least positive element of S and that S = {na : n ∈ Z}.
Let T = {na : n ∈ Z}.
To prove S = T , we prove S ⊂ T and T ⊂ S.
To prove T ⊂ S, we must prove every element of T is in S.
Hence, we must prove every multiple of a is in S, so we must prove (∀n ∈

Z)(na ∈ S).
To prove (∀n ∈ Z)(na ∈ S), we prove (∀n ∈ Z+)(na ∈ S) and 0 ∈ S and

(∀n ∈ Z+)(−na ∈ S).
We’ve already shown that 0 ∈ S.
We prove (∀n ∈ Z+)(na ∈ S) by induction on n.
Let p(n) : na ∈ S.
For n = 1, we have 1 ∗ a = a ∈ S, so p(1) holds.
Suppose m is an arbitrary integer such that p(m) holds.
To prove p(m + 1) holds, we must prove (m + 1)a ∈ S.
Since p(m) holds, then ma ∈ S.
Thus, by closure under addition, ma + a ∈ S.
Hence, ma + a = (m + 1)a ∈ S, as desired.
Therefore, by induction, na ∈ S for all positive integers n.
We now prove (∀n ∈ Z+)(−na ∈ S) by induction on n.
Let q(n) : −na ∈ S.
For n = 1, we have −(1 ∗ a) = −a ∈ S, so q(1) holds.
Suppose m is an arbitrary integer such that q(m) holds.
To prove q(m + 1) holds, we must prove −(m + 1)a ∈ S.
Since q(m) holds, then −ma ∈ S.
Thus, by closure under subtraction, −ma− a ∈ S.
Hence, −ma− a = −(ma + a) = −(m + 1)a ∈ S, as desired.
Therefore, by induction, −na ∈ S for all positive integers n.
Hence, na ∈ S for all integers n, so every multiple of a is in S.
Thus, every element of T is in S, so T ⊂ S.
We prove a is the least positive element of S.
Either a = 1 or a 6= 1.
We consider these cases separately.
Case 1: Suppose a = 1.
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The least positive integer is 1.
Since a = 1, then 1 is the least positive element of S.
Hence, a is the least positive element of S.
Case 2: Suppose a 6= 1.
Since a > 0 and a 6= 1, then a > 1.
Let W be the set of all positive elements of S.
Then W = {x ∈ S : x > 0}, so W ⊂ S.
Since W ⊂ S and S ⊂ Z, then W ⊂ Z.
Since each element of W is positive, then W ⊂ Z+.
By the well ordering principle of Z+, W must contain a least element, say

b ∈W .
We prove b = a.
Or, we could prove there is no element of W that is less than a by contra-

diction?
Since b ∈W and W ⊂ S, then b ∈ S.
Suppose b 6= a.
Since b is the least element of W , then b < a.
By closure of S under subtraction, a− b ∈ S.
Since b < a, then a− b > 0, so a− b ∈W .
Suppose a/2 < b.
Then a < 2b, so a− b < b.
Thus, a−b ∈W and a−b < b, so a−b is less than the least positive element

of W , a contradiction.
Hence, a/2 cannot be less than b.
Thus, either a/2 = b or a/2 > b, so either b = a/2 or b < a/2.
Suppose for the sake of contradiction that a is not the least positive element

of S.
Then there exists some element other than a that is the least positive element

of S.
Let c be some positive element of S that is the least positive element of S.
Then c ∈ S and c > 0 and c 6= a and (∀x ∈ S)(x > 0→ c ≤ x).
Since a ∈ S and a > 0, then c ≤ a, so either c < a or c = a.
Since c 6= a, then c < a.
Thus, 0 < c < a.
Since c ∈ S and S ⊂ Z, then c ∈ Z, so 1 ≤ c ≤ a− 1.
Since c > 0, then we divide a by c.
By the division algorithm, there are unique integers q and r such that a =

cq + r and 0 ≤ r < c.
Thus, r = a− cq.
Every multiple of an element of S is in S.
Since c ∈ S, then every multiple of c is in S, so in particular, qc ∈ S.
Since a ∈ S and qc ∈ S and S is closed under subtraction, then a− cq ∈ S,

so r ∈ S.
Either a is a multiple of c or not.
Suppose a is not a multiple of c.
Then r > 0.
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Thus, r is a positive element of S and c is the least positive element of S
and r < c.

Hence, there exists some positive element of S that is less than the least
positive element of S, a contradiction.

Therefore, a must be a multiple of c.
Thus, there is some integer k such that a = ck.
Since a and c are positive, then k must be positive.
Either k is a multiple of c or it is not.
Suppose k is a multiple of c.
Since c ∈ S and every multiple of an element in S is in S, then k ∈ S.
Now, either k = c or k 6= c.
Suppose k 6= c.
Then either k > c or k < c, so |k − c| > 0.
k = c or k 6= c.
If k = c, then k ∈ S, since c ∈ S.
If k 6= c, then either k < c or k > c.
But, is k ∈ S?
We’re stuck here in trying to figure out how to devise a suitable contradiction.
To prove S ⊂ T , we must prove every element of S is a multiple of a.
Hence, we must prove (∀b ∈ S)(a|b).
Suppose b is some element of S such that b is not a multiple of a.
We divide b by a.
Since a > 0, then by the division algorithm, there are unique integers q, r

such that b = aq + r and 0 < r < a.
Thus, r = b− qa.
Every multiple of an element of S is in S.
Since a ∈ S, then every multiple of a is in S, so in particular, qa ∈ S.
Since b ∈ S and qa ∈ S and S is closed under subtraction, then b− qa ∈ S,

so r ∈ S.
Hence, r is a positive element of S and a is the least positive element of S

and r < a.
Thus, there exists some positive element of S that is less than the least

positive element of S, a contradiction.
Hence, there is no element of S that is not a multiple of a.
Therefore, every element of S is a multiple of a.
Hence, S ⊂ T .
Since S ⊂ T and T ⊂ S, then we conclude S = T .

Proposition 21. Let a, b ∈ Z.
Then a− b divides an − bn for all n ∈ N.

Proof. We prove by induction on n.
Let S = {n ∈ N : a− b|an − bn}.
Basis:
Since a, b ∈ Z, then a− b ∈ Z.
Since a− b divides a− b = a1 − b1, then a− b divides a1 − b1.

9



Since 1 ∈ N and a− b divides a1 − b1, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ N and a− b divides ak − bk.
Since k ∈ N, then k + 1 ∈ N.
Since a− b divides ak − bk, then a− b divides any multiple of ak − bk.
Since a ∈ Z, then a− b divides a(ak − bk).
Since a− b divides a− b, then a− b divides any multiple of a− b.
Since k ∈ N, then k ≥ 1 > 0, so k > 0.
Since b ∈ Z and k > 0 and k ∈ Z, then bk ∈ Z.
Hence, a− b divides bk(a− b).
Thus, a−b divides the sum a(ak−bk)+bk(a−b) = ak+1−abk+abk−bk+1 =

ak+1 − bk+1.
Since k + 1 ∈ N and a− b divides ak+1 − bk+1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
Therefore, by the principle of mathematical induction, a− b divides an− bn

for all n ∈ N, as desired.

Exercise 22. 1 and −1 are the only divisors of 1
Let n ∈ Z.
If n|1, then n = 1 or n = −1.

Proof. Suppose n|1.
Then 1 = nm for some integer m.
Since nm = 1, then by axiom of Z, either n = m = 1 or n = m = −1.
Therefore, either n = 1 or n = −1.

Exercise 23. zero divides only zero
Let n ∈ Z.
If 0|n, then n = 0.

Proof. Suppose 0|n.
Then n = 0m for some m ∈ Z.
Therefore, n = 0m = 0, so n = 0.

Exercise 24. Let a, b, c, d ∈ Z.
If a + b = c and d|a and d|c, then d|b.

Proof. Suppose a + b = c and d|a and d|c.
Since d|c and d|a, then d divides their difference c− a, so d|b.

Exercise 25. Let x, y ∈ Z.
If 3x2 + 15xy + 5y2 = 0, then 3|5y2 and 5|3x2.

Proof. Suppose 3x2 + 15xy + 5y2 = 0.
Then 5y2 = −3x2 − 15xy and 3x2 = −15xy − 5y2.
Since 5y2 = −3x2 − 15xy = 3(−x2 − 5xy) and −x2 − 5xy ∈ Z, then 3 | 5y2.
Since 3x2 = −15xy−5y2 = 5(−3xy−y2) and−3xy−y2 ∈ Z, then 5 | 3x2.
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Exercise 26. Let d, a, b ∈ Z.
Disprove: If d|ab, then d|a and d|b.

Solution. Let d = 5 and a = 10 and b = 6.
Observe that 5|(10 · 6) and 5|10, but 5 6 |6.

Exercise 27. Let d, a, b ∈ Z.
Disprove: If d|ab, then d|a or d|b.

Solution. Let d = 6 and a = 4 and b = 9.
Observe that 6 | (4 · 9), but 6 6 |8 and 6 6 |9.

Exercise 28. Let a, b, n ∈ Z.
Disprove: If a|n and b|n, then ab|n.

Solution. Let n = 12 and a = 4 and b = 6.
Observe that 4|12 and 6|12, but (4 ∗ 6) 6 |12.

Exercise 29. Let d, n ∈ Z+.
Then gcd(d, nd) = d.

Solution. Observe that

gcd(d, nd) = d · gcd(1, n)

= d · 1
= d.

Exercise 30. Let a, b, c ∈ Z.
If gcd(a, b) = 1 and c|a, then gcd(c, b) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a.
Since gcd(a, b) = 1, then there exist integers x and y such that xa + yb = 1.
Since c|a, then a = ck for some integer k.
Thus, 1 = xa + yb = x(ck) + yb = x(kc) + yb = (xk)c + yb, so 1 is a linear

combination of c and b.
Therefore, gcd(c, b) = 1.

Exercise 31. There exists an n ∈ N for which 11|(2n − 1).

Solution. The statement is (∃n ∈ N)(11|2n − 1).
We can use computer or calculator to determine some value for n.

Proof. Let n = 10.
Then 210 − 1 = 1023 = 11 · 93, so 11 | 210 − 1.

Exercise 32. Let a, b ∈ Z.
If a | b, then a2 | b2.
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Proof. Suppose a | b.
Then b = ak for some integer k.
Thus, b2 = (ak)2 = a2k2.
Since k2 ∈ Z, then a2 | b2.

Exercise 33. Suppose x, y ∈ Z. If 5 6 |xy, then 5 6 |x and 5 6 |y.

Solution. We use proof by contrapositive since we have alot of negative state-
ments and direct proof leads us nowhere.

Proof. Suppose it is not true that 5 6 |x and 5 6 |y.
Then 5|x or 5|y.
There are two cases to consider.
Case 1: Suppose 5 | x.
Then x = 5a for some a ∈ Z.
Multiply both sides by y to get xy = 5ay.
Thus xy = 5(ay), and this means 5 | xy.
Case 2: Suppose 5 | y.
Then y = 5a for some a ∈ Z.
Multiply both sides by x to get xy = 5ax.
Thus xy = 5(ax), and this means 5 | xy.

Both of these cases show that 5 | xy, so it is not true that 5 6 |xy.

Exercise 34. Let n ∈ Z.
If 5 | 2n, then 5 | n.

Proof. Suppose 5 | 2n.
Then 2n = 5a for some integer a.
Observe that

n = 5n− 4n

= 5n− 2(2n)

= 5n− 2(5a)

= 5(n− 2a).

Since n− 2a is an integer, then 5 | n.

Proof. Suppose 5 | 2n.
Then 2n = 5a for some integer a.
Thus, 5a is a multiple of 2, so 5a is even.
Since 5 is odd and 5a is even, then a must be even.
Hence, a = 2b for some integer b.
Thus, 2n = 5(2b), so n = 5b.
Therefore, 5 | n.

Exercise 35. Let n ∈ Z.
If 7 | 4n, then 7 | n.
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Proof. Suppose 7 | 4n.
Then 4n = 7a for some integer a.
Observe that

n = 8n− 7n

= 2(4n)− 7n

= 2(7a)− 7n

= 7(2a− n).

Since 2a− n is an integer, then 7 | n.

Proof. Suppose 7 | 4n.
Then 4n = 7a for some integer a.
Thus, 2(2n) = 7a, so 7a is even.
Since 7 is odd and 7a is even, then a must be even.
Hence, a = 2b for some integer b.
Thus, 4n = 7(2b), so 2n = 7b.
Hence, 7b is even.
Since 7 is odd and 7b is even, then b must be even.
Hence, b = 2c for some integer c.
Thus, 2n = 7(2c), so n = 7c.
Therefore, 7|n.

Exercise 36. Let a, b ∈ Z.
If a|b, then (−a)|b and a|(−b) and (−a)|(−b).

Proof. Suppose a|b.
Then b = an for some integer n.
Thus, b = an = (−a)(−n) and −b = −an = a(−n).
Since b = (−a)(−n) and −n ∈ Z, then (−a)|b.
Since −b = a(−n) and −n ∈ Z, then a|(−b).
Since −b = −an and n ∈ Z, then (−a)|(−b).

Exercise 37. Let a, b, c ∈ Z.
If a|b and a|c, then a2|bc.

Proof. Suppose a|b and a|c.
Then b = am and c = an for some integers m and n.
Thus, bc = (am)(an) = a(ma)n = a(am)n = (aa)(mn) = a2(mn).
Since m,n ∈ Z, then mn ∈ Z, so a2|bc.

Exercise 38. Let a, b, c ∈ Z.
Disprove: If a|(b + c), then either a|b or a|c.

Proof. Let a = 3 and b = 4 and c = 5.
Since 3|9, then 3|(4 + 5), but 3 6 |4 and 3 6 |5.

Exercise 39. If n ∈ N, then 1 + (−1)n(2n− 1) is a multiple of 4.
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Solution. We can make a table of values by plugging in various values to
determine if the expression is really a multiple of 4.

n 1 + (−1)n(2n− 1)
1 0
2 4
3 -4
4 8
5 -8
6 12
7 -12

We see that for even n, the expression 1+(−1)n(2n−1) = 1+(1)(2n−1) = 2n.
For odd n, 1 + (−1)n(2n− 1) = 1− (1)(2n− 1) = 1− 2n + 1 = 2− 2n.

Proof. Suppose n ∈ N.
Then n is either even or odd. We consider these two cases separately.
Case 1. Suppose n is even.
Then n = 2k for some k ∈ Z, and (−1)n = 1.
Thus 1 + (−1)n(2n− 1) = 1 + (1)(2 · 2k − 1) = 4k, which is a multiple of 4.
Case 2. Suppose n is odd.
Then n = 2k + 1 for some k ∈ Z, and (−1)n = −1.
Thus 1 + (−1)n(2n − 1) = 1 + (−1)(2(2k + 1) − 1) = 1 − (4k + 1) = −4k,

which is a multiple of 4.

These two cases show that 1 + (−1)n(2n− 1) is always a multiple of 4.

Exercise 40. Every multiple of 4 has form 1 + (−1)n(2n− 1) for some n ∈ N.

Proof. In conditional form, the proposition is as follows:
If k is a multiple of 4, then there is an n ∈ N for which 1+(−1)n(2n−1) = k.
What follows is a proof of this conditional statement.
Suppose k is a multiple of 4. Then k = 4a for some integer a.
We must produce an n ∈ N for which 1 + (−1)n(2n− 1) = k.
We consider three cases, depending on whether a is zero, positive, or nega-

tive.
Case 1. Suppose a = 0.
Let n = 1. Then 1+(−1)n(2n−1) = 1+(−1)(2 ·1−1) = 0 = 4 ·0 = 4a = k.
Case 2. Suppose a > 0.
Let n = 2a, which is an element of N because a is positive, making n positive.
Also n is even, so (−1)n = 1. Thus 1 + (−1)n(2n− 1) = 1 + (1)(2 · 2a− 1) =

4a = k.
Case 3. Suppose a < 0.
Let n = 1−2a, which is an element of N because a is negative, making 1−2a

positive.
Also n is odd, so (−1)n = −1. Thus 1 + (−1)n(2n − 1) = 1 + (−1)(2(1 −

2a)− 1) = 1− (1− 4a) = 4a = k.
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These three cases show that no matter whether a multiple k = 4a is zero,
positive, or negative, it always equals 1+(−1)n(2n−1) for some natural number
n.

Exercise 41. If n ∈ N, then n2 = 2
(
n
2

)
+
(
n
1

)
.

Solution. By definition of binomial coefficient we know
(
n
k

)
= n!

k!(n−k)! .

In particular, for n > 1,
(
n
1

)
= n and

(
n
2

)
= n(n−1)

2 .

Proof. Suppose n is an integer.
We consider two cases.
Case 1: Suppose n = 1.
Then 2

(
1
2

)
+
(
1
1

)
= 2 · 0 + 1 = 1 = 12.

Case 2: Suppose n > 1.

Then 2
(
n
2

)
+
(
n
1

)
= 2n(n−1)2 + n = n(n− 1) + n = n2.

Both cases show n2 = 2
(
n
2

)
+
(
n
1

)
.

Exercise 42. Let a ∈ Z.
Then either a or a + 2 or a + 4 is divisible by 3.

Proof. By the division algorithm, there exist unique integers q and r such that
a = 3q + r with 0 ≤ r < 3.

Thus, either a = 3q or a = 3q + 1 or a = 3q + 2.
We consider these cases separately.
Case 1: Suppose a = 3q.
Since a = 3q and q ∈ Z, then 3|a, so a is divisible by 3.
Case 2: Suppose a = 3q + 1.
Then a + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1).
Since a + 2 = 3(q + 1) and q + 1 ∈ Z, then 3|(a + 2), so a + 2 is divisible by

3.
Case 3: Suppose a = 3q + 2.
Then a + 4 = (3q + 2) + 4 = 3q + 6 = 3(q + 2).
Since a + 4 = 3(q + 2) and q + 2 ∈ Z, then 3|(a + 4), so a + 4 is divisible by

3.

Exercise 43. A product of 3 consecutive integers is divisible by 3
Let a ∈ Z.
Then 3|a(a + 1)(a + 2).

Proof. By the division algorithm, either a = 3k or a = 3k + 1 or a = 3k + 2 for
some integer k.

We consider these cases separately.
Case 1: Suppose a = 3k.
Then 3|a, so 3 divides any multiple of a.
Hence, 3|a(a + 1)(a + 2).
Case 2: Suppose a = 3k + 1.
Then a + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1), so 3|(a + 2).
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Hence, 3 divides any multiple of a + 2, so 3|a(a + 1)(a + 2).
Case 3: Suppose a = 3k + 2.
Then a + 1 = (3k + 2) + 1 = 3k + 3 = 3(k + 1), so 3|(a + 1).
Hence, 3 divides any multiple of a + 1, so 3|a(a + 1)(a + 2).

Therefore, in all cases, 3|a(a + 1)(a + 2).

Exercise 44. Let a ∈ Z.
Then 4 6 |(a2 + 2).

Proof. By the division algorithm, there exist unique integers q and r such that
a = 4q + r with 0 ≤ r < 4.

Thus, either a = 4q or a = 4q + 1 or a = 4q + 2 or a = 4q + 3.
We consider these cases separately.
Case 1: Suppose a = 4q.
Then a2 + 2 = (4q)2 + 2 = 42q2 + 2 = 4(4q2) + 2.
Let k = 4q2.
Then k ∈ Z and a2 + 2 = 4k + 2.
Case 2: Suppose a = 4q + 1.
Then a2+2 = (4q+1)2+2 = (16q2+8q+1)+2 = 16q2+8q+3 = 4(4q2+2q)+3.
Let k = 4q2 + 2q.
Then k ∈ Z and a2 + 2 = 4k + 3.
Case 3: Suppose a = 4q + 2.
Then a2 + 2 = (4q + 2)2 + 2 = (16q2 + 16q + 4) + 2 = 4(4q2 + 4q + 1) + 2.
Let k = 4q2 + 4q + 1.
Then k ∈ Z and a2 + 2 = 4k + 2.
Case 4: Suppose a = 4q + 3.
Then a2 + 2 = (4q + 3)2 + 2 = (16q2 + 24q + 9) + 2 = 16q2 + 24q + 11 =

16q2 + 24q + (4 ∗ 2 + 3) = 4(4q2 + 6q + 2) + 3.
Let k = 4q2 + 6q + 2.
Then k ∈ Z and a2 + 2 = 4k + 3.

Therefore, in all cases, either a2 + 2 = 4k + 2 or a2 + 2 = 4k + 3 for some
integer k.

Hence, 4 cannot divide a2 + 2.

Exercise 45. Let n ∈ Z.
If 2 | n and 3 | n, then 6 | n.

Proof. Suppose 2 | n and 3 | n.
Since 2 | n, then n = 2a for some integer a.
Since 3 | n, then n = 3b for some integer b.
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Observe that

n = 3n− 2n

= 3(2a)− 2(3b)

= 6a− 6b

= 6(a− b).

Since a− b is an integer, then 6 | n.

Proof. Suppose 2 | n and 3 | n.
Since 2 | n, then 3 ∗ 2 | 3n, so 6 | 3n.
Since 3 | n, then 2 ∗ 3 | 2n, so 6 | 2n.
Thus, 6 is a common divisor of 2n and 3n, so 6 | gcd(2n, 3n).
Hence, 6 | n ∗ gcd(2, 3), so 6 | n ∗ 1.
Therefore, 6 | n.

Exercise 46. Let n be an integer.
If 3 | n and 5 | n, then 15 | n.

Proof. Suppose 3 | n and 5 | n.
Since 3 | n, then n = 3a for some integer a.
Since 5 | n, then n = 5b for some integer b.
Observe that

n = 6n− 5n

= 6(5b)− 5(3a)

= 30b− 15a

= 15(2b− a).

Since 2b− a is an integer, then 15 | n.

Exercise 47. Let n ∈ Z.
Then 14 | n if and only if 7 | n and 2 | n.

Proof. We first prove: if 14 | n then 7 | n and 2 | n.
Suppose 14 | n.
Then n = 14k for some k ∈ Z.
Since n = 7(2k) and 2k ∈ Z, then 7|n.
Since n = 2(7k) and 7k ∈ Z, then 2|n.
Therefore, 7 | n and 2 | n.

Conversely, we prove: if 7 | n and 2 | n, then 14 | n.
Suppose 7 | n and 2 | n.
Since 7 | n, then n = 7a for some integer a.
Since 2 | n, then n = 2b for some integer b.
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Observe that

n = 7n− 6n

= 7(2b)− 6(7a)

= 14b− 42a

= 14(b− 3a).

Since b− 3a is an integer, then 14 | n.

Exercise 48. Let a, b, d be integers.
If d|(da + b), then d|b.

Proof. Suppose d|(da + b).
Then da + b = dn for some integer n.
Hence, b = dn− da = d(n− a).
Since n− a is an integer, then this implies d|b.

Exercise 49. Let a, b, d be integers.
If d|(a + b) and d|a, then d|b.

Proof. Suppose d|(a + b) and d|a.
Then a + b = dk and a = dm for some integers k and m.
Thus, b = dk − a = dk − dm = d(k −m).
Since k −m is an integer, then this implies d|b.

Exercise 50. Let x, y ∈ Z.
If x|y and y is odd, then x is odd.

Proof. Suppose x|y and y is odd.
Since x|y, then y = xk for some integer k.
Since y is odd, then this implies xk is odd.
Hence, x must be odd.

Exercise 51. If a is an integer and a2|a, then a ∈ {−1, 0, 1}.

Proof. Suppose a is an integer and a2|a.
Then a = a2k for some integer k.
Thus, 0 = a− a2k = a(1− ak), so either a is zero or a is not zero.
We consider these cases separately.

Case 1: Suppose a is zero.
Then a = 0, so a ∈ {0}.
Case 2: Suppose a is not zero.
Then 1− ak = 0, so 1 = ak.
Since a and k are both integers, then k = ±1.
If k = 1, then 1 = a(1) = a.
If k = −1, then −1 = −ak = −a(−1) = a.
Thus, either a = 1 or a = −1, so a ∈ {1,−1}.
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Therefore, in all cases, either a ∈ {0} or a ∈ {1,−1}, so a ∈ {0, 1,−1} =
{−1, 0, 1}.

Exercise 52. Let a, b, d ∈ Z.
If d | a or d | b, then d | ab.

Proof. Suppose d | a or d | b.
We consider each case separately.
Case 1: Suppose d | a.
Then a = dk for some k ∈ Z.
Thus, ab = (dk)b = d(kb), so d | ab.
Case 2: Suppose d | b.
Then b = dm for some m ∈ Z.
Thus, ab = a(dm) = (dm)a = d(ma), so d | ab.
Both of these cases show that d | ab.

Exercise 53. Let a, b, d ∈ Z.
Disprove: If d | ab, then d | a or d | b.

Proof. Here is a counter example.
Let d = 6 and a = 8 and b = 9.
Observe that 6 | (8 · 9), but 6 6 |8 and 6 6 |9.

Exercise 54. Let a, b,m ∈ Z.
If ab|m, then a|m and b|m.

Proof. Suppose ab|m.
Then m = abk for some integer k.
Since m = abk = a(bk) and bk ∈ Z, then a|m.
Since m = abk = bak = b(ak) and ak ∈ Z, then b|m.
Therefore, a|m and b|m.

Exercise 55. Let a, b,m ∈ Z.
Disprove: if a|m and b|m, then ab|m.

Proof. Here is a counter example.
Let a = 4 and b = 10 and m = 60.
Then 4|60 and 10|60, but, 40 6 |60.

Exercise 56. Let m,n ∈ Z+ such that n > 1.
If n|m, then n 6 |m + 1.

Proof. Suppose n|m.
Then there exists an integer a such that m = na.
Suppose for the sake of contradiction that n|(m + 1).
Then there exists an integer b such that m + 1 = nb.
Hence, na + 1 = nb, so 1 = nb− na = n(b− a).
Since b− a is an integer, then this implies n|1.
Hence, either n = 1 or n = −1.

19



Thus, n is not greater than 1.
Therefore, we have n > 1 and n 6> 1, a contradiction.
Consequently, n cannot divide m + 1, so n 6 |(m + 1), as desired.

Exercise 57. If n is an integer, then n2 + 2 is not divisible by 4.

Proof. Let n be an arbitrary integer.
We prove by contradiction.
Suppose n2 + 2 is divisible by 4.
Then there is an integer k such that n2 + 2 = 4k.
Either n is even or not.
We consider these cases separately.
Case 1: Suppose n is even.
Then n = 2m for some integer m.
Thus, 4k = n2 + 2 = (2m)2 + 2 = 4m2 + 2 = 2(2m2 + 1).
Hence, 2k = 2m2 + 1.
But, this equation implies the even integer 2k equals the odd integer 2m2+1,

a contradiction.
Case 2: Suppose n is odd.
Then n2 is odd, so n2 + 2 is odd.
Since 2(2k) = 4k = n2 + 2 and 2k is an integer, then n2 + 2 is even.
But, this contradicts the fact that n2 + 2 is odd.

Exercise 58. For any integer n ≥ 0, it follows that 24|(52n − 1).

Solution. The statement to prove is:
(∀n ∈ Z, n ≥ 0)(24|52n − 1).
Define predicate p(n) : 24|52n − 1 over N ∪ {0}.
Observe that 24|52n − 1 is equivalent to (25− 1)|25n − 1.
Since we know x− 1 divides xn − 1, for every x ∈ Z and every n ∈ N, then

we know, in particular, 24|25n − 1 for every n ∈ N.
Thus, we need only prove 24|25n − 1 when n = 0.
But, 250 − 1 = 0 and 24|0.
Hence, p(0) is true.

Proof. We prove by induction(weak).
Basis:
If n = 0 then the statement is 24|(52·0 − 1).
This simplifies to 24|0, which is true.
If n = 1 then the statement is 24|(52·1 − 1).
This simplifies to 24|24, which is true.
Induction:
We must prove 24|(52k − 1) implies 24|(52(k+1) − 1).
Suppose 24|(52k − 1) for any integer k ≥ 1.
Then 52k − 1 = 24a for some integer a, by definition of divisibility.
Thus 52k = 24a + 1.

20



Observe the following equalities:

52(k+1) − 1 = 52k+2 − 1

= 5252k − 1

= 25(24a + 1)− 1

= 25 · 24a + 25− 1

= 24(25a + 1)

This shows that 52(k+1) − 1 = 24(25a + 1), which means 24|52(k+1) − 1.
It follows by induction that 24|(52n − 1) for any integer n ≥ 0.

Exercise 59. Let n ∈ Z.
Then 5|n5 − n.

Solution. Note that the statement 5|n5 − n is equivalent to the statement
n5 ≡ n (mod 5).

We just showed that any integer of the form n5 − n is even. We now must
show that such an integer is divisible by 5.

We factor n5−n = n(n4−1) = n(n2−1)(n2 +1) = n(n−1)(n+1)(n2 +1) =
(n− 1)n(n+ 1)(n2 + 1). Thus n5 − n is a product of 3 consecutive integers and
another factor. If n = 0, then 5|05 − 0 since 0 = 5 · 0.

Suppose n is a natural number.
We consider n divided by 5.
By the Division Algorithm, we know that n = 5q + r, where 0 ≤ r < 5.
Thus we have the set of congruence classes modulo 5.
For example, if r = 0, then n = 5q.
If r = 1, then n = 5q + 1.
If r = 2, then n = 5q + 2.
If r = 3, then n = 5q + 3.
If r = 4, then n = 5q + 4.
We observe the following partition of natural numbers under congruence

modulo 5 for any integer q ≥ 0:
If n ∈ {2, 7, 12, 17, 22, 27, ...} = {5q + 2}, then 5|n2 + 1.
This set is really the set of all natural numbers which are congruent to 2

(mod 5).
Thus if n ∈ [2]5, then 5|n2 +1. This is because if n is an arbitrary element of

this set, then n = 5q+2, so n2+1 = (5q+2)2+1 = 25q2+20q+5 = 5(5q2+4q+1).
If n ∈ {3, 8, 13, 18, 23, 28, ...} = {5q + 3}, then 5|n2 + 1.
This set is really the set of all natural numbers which are congruent to 3

(mod 5).
Thus if n ∈ [3]5, then 5|n2 + 1.This is because if n is an arbitrary element

of this set, then n = 5q + 3, so n2 + 1 = (5q + 3)2 + 1 = 25q2 + 30q + 10 =
5(5q2 + 6q + 2).

If n ∈ {4, 9, 14, 19, 24, 29, 34, ...} = {5q + 4}, then 5|n + 1.
This set is really the set of all natural numbers which are congruent to 4

(mod 5).

21



Thus if n ∈ [4]5, then 5|n + 1.This is because if n is an arbitrary element of
this set, then n = 5q + 4, so n + 1 = (5q + 4) + 1 = 5q + 5 = 5(q + 1).

If n ∈ {5, 10, 15, 20, 25, 30, ...} = {5q}, then 5|n.
This set is really the set of all natural numbers which are multiples of 5.
Thus if n ∈ [0]5, then 5|n. This is because if n is an arbitrary element of

this set, then n = 5q.
If n ∈ {1, 6, 11, 16, 21, 26, 31, 36, ...} = {5q + 1}, then 5|n− 1.
This set is really the set of all natural numbers which are congruent to 1

(mod 5).
Thus if n ∈ [1]5, then 5|n− 1.This is because if n is an arbitrary element of

this set, then n = 5q + 1, so n− 1 = (5q + 1)− 1 = 5q.
Thus, regardless of what value n is, one of the factors n, n−1, n+1, or n2+1

is always divisible by 5.
Hence, n5 − n is divisible by 5.
Now, we can also prove this by induction(weak form). The statement to

prove is: for all non-negative integers n, 5|n5 − n.
Thus the statement is Sn : 5|n5 − n.
The statement Sk is 5|k5 − k.
The statement Sk+1 is 5|(k + 1)5 − (k + 1).

Proof. Let p = n5 − n
Then p = n(n4 − 1) = n(n2 − 1)(n2 + 1) = n(n− 1)(n + 1)(n2 + 1).
We must prove 5|p.
By the division algorithm either n = 5k or n = 5k + 1 or n = 5k + 2 or

n = 5k + 3 or n = 5k + 4 for some integer k.
We consider each case separately.
Case 1: Suppose n = 5k.
Then 5|n, so 5 divides any multiple of n.
Hence, 5|p.
Case 2: Suppose n = 5k + 1.
Since n− 1 = 5k, then 5|(n− 1).
Hence, 5 divides any multiple of n− 1, so 5|p.
Case 3: Suppose n = 5k + 2.
Since n2 + 1 = (5k + 2)2 + 1 = 25k2 + 20k + 4 + 1 = 25k2 + 20k + 5 =

5(5k2 + 4k + 1), then 5|(n2 + 1).
Hence, 5 divides any multiple of n2 + 1, so 5|p.
Case 4: Suppose n = 5k + 3.
Since n2 + 1 = (5k + 3)2 + 1 = 25k2 + 30k + 9 + 1 = 25k2 + 30k + 10 =

5(5k2 + 6k + 2), then 5|(n2 + 1).
Hence, 5 divides any multiple of n2 + 1, so 5|p.
Case 5: Suppose n = 5k + 4.
Since n + 1 = (5k + 4) + 1 = 5k + 5 = 5(k + 1), then 5|(n + 1).
Hence, 5 divides any multiple of n + 1, so 5|p.

Proof. The statement is Sn : 5|n5 − n.
We prove by induction.

22



Basis:
If n = 0, then the statement is 5|05 − 0, or 5|0, which is obviously true.
If n = 1, then the statement is 5|15 − 1, or 5|0, which is obviously true.
Induction:
We must prove Sk → Sk+1 for k ≥ 1.
This means we must prove if 5|(k5 − k), then 5|(k + 1)5 − (k + 1) for k ≥ 1.
Suppose 5|(k5 − k) for k ≥ 1.
Then k5 − k = 5a for some a ∈ Z, by definition of divisibility.
Observe the following equalities:

(k + 1)5 − (k + 1) = (k5 + 5k4 + 10k3 + 10k2 + 5k + 1)− k − 1

= (k5 − k) + (5k4 + 10k3 + 10k2 + 5k)

= 5a + 5(k4 + 2k3 + 2k2 + k)

= 5(a + k4 + 2k3 + 2k2 + k)

Thus, 5|(k + 1)5 − (k + 1).
It follows by induction that 5|(n5 − n) for all non-negative integers.

Exercise 60. The sum of the cubes of three consecutive natural numbers is
divisible by 9.

Proof. We must prove 9|(n3 + (n + 1)3 + (n + 2)3) for all n ∈ N.
Let p(n) be the predicate 9|(n3 + (n + 1)3 + (n + 2)3) defined over N.
We prove p(n) is true for all n ∈ N by induction on n.
Basis:
Since 13 + 23 + 33 = 36 and 9|36, then p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then 9 divides k3 + (k + 1)3 + (k + 2)3.
Since (k+3)3−k3 = (k3+9k2+27k+27)−k3 = 9k2+27k+27 = 9(k2+3k+3)

and k2 + 3k + 3 is an integer, then 9 divides (k + 3)3 − k3.
Since 9 divides k3 + (k + 1)3 + (k + 2)3 and 9 divides (k + 3)3 − k3, then 9

divides the sum k3+(k+1)3+(k+2)3+(k+3)3−k3 = (k+1)3+(k+2)3+(k+3)3.
Hence, p(k + 1) is true, so p(k) implies p(k + 1) for any k ≥ 1.
It follows by induction that 9|(n3 + (n + 1)3 + (n + 2)3) for all n ∈ N.

Exercise 61. For every n ∈ Z+, 6|n(n + 1)(2n + 1).

Proof. Let n ∈ Z+.
By the division algorithm, there exist unique integers q, r such that n = 6q+r

with 0 ≤ r < 6.
Thus, either n = 6q or n = 6q + 1 or n = 6q + 2 or n = 6q + 3 or n = 6q + 4

or n = 6q + 5.
We consider each case separately.
Case 1: Suppose n = 6q.
Then 6|n, so 6 divides any multiple of n.
Thus, 6|n(n + 1)(2n + 1).
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Case 2: Suppose n = 6q + 1.
Since n + 1 = (6q + 1) + 1 = 6q + 2 = 2(3q + 1), then 2|(n + 1).
Since 2n + 1 = 2(6q + 1) + 1 = 12q + 2 + 1 = 12q + 3 = 3(4q + 1), then

3|(2n + 1).
Since 2|(n+1) and 3|(2n+1), then (2∗3)|(n+1)(2n+1), so 6|(n+1)(2n+1).
Hence, 6 divides any multiple of (n + 1)(2n + 1), so 6|n(n + 1)(2n + 1).
Case 3: Suppose n = 6q + 2.
Since n = 2(3q + 1), then 2|n.
Since n + 1 = (6q + 2) + 1 = 6q + 3 = 3(2q + 1), then 3|(n + 1).
Since 2|n and 3|(n + 1), then (2 ∗ 3)|n(n + 1), so 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6|n(n + 1)(2n + 1).
Case 4: Suppose n = 6q + 3.
Since n = 3(2q + 1), then 3|n.
Since n + 1 = (6q + 3) + 1 = 6q + 4 = 2(3q + 2), then 2|(n + 1).
Since 3|n and 2|(n + 1), then (3 ∗ 2)|n(n + 1), so 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6|n(n + 1)(2n + 1).
Case 5: Suppose n = 6q + 4.
Since n = 2(3q + 2), then 2|n.
Since 2n + 1 = 2(6q + 4) + 1 = 12q + 9 = 3(4q + 3), then 3|(2n + 1).
Since 2|n and 3|(2n + 1), then 6|n(2n + 1).
Hence, 6 divides any multiple of n(2n + 1), so 6|n(n + 1)(2n + 1).
Case 6: Suppose n = 6q + 5.
Since n + 1 = (6q + 5) + 1 = 6q + 6 = 6(q + 1), then 6|(n + 1).
Hence, 6 divides any multiple of n + 1, so 6|n(n + 1)(2n + 1).

Therefore, in all cases, 6|n(n + 1)(2n + 1).

Proof. Let S be the truth set of p(n) : 6|n(n + 1)(2n + 1).
To prove S = Z+, we use induction.
Basis:
Since 1(1 + 1)(2 ∗ 1 + 1) = 6 and 6|6, then p(1) is true.
Hence, 1 ∈ S.
Induction:
Suppose k ∈ S.
To prove k + 1 ∈ S, we must prove 6|(k + 1)(k + 2)(2k + 3).
Since k ∈ S, then 6|k(k + 1)(2k + 1).
Observe that (k + 1)(k + 2)(2k + 3) = k(k + 1)(2k + 1) + 6(k + 1)2.
Since 6|6, then 6 divides any multiple of 6.
Hence, 6|6(k + 1)2.
Since 6 divides k(k + 1)(2k + 1) and 6 divides 6(k + 1)2, then 6 divides the

sum k(k + 1)(2k + 1) + 6(k + 1)2.
Thus, 6 divides (k + 1)(k + 2)(2k + 3), as desired.

Exercise 62. The product of 3 consecutive integers is a multiple of 6.
∀n ∈ Z, 6|n(n + 1)(n + 2).
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Proof. Let n ∈ Z.
Let p = n(n + 1)(n + 2).
We must prove 6|p.
By the division algorithm, either n = 6k or n = 6k + 1 or n = 6k + 2 or

n = 6k + 3 or n = 6k + 4 or n = 6k + 5 for some integer k.
We consider these cases separately.
Case 1: Suppose n = 6k.
Then 6|n, so 6 divides any multiple of n.
Therefore, 6|p.
Case 2: Suppose n = 6k + 1.
Since n + 1 = (6k + 1) + 1 = 6k + 2 = 2(3k + 1), then 2|(n + 1).
Since n + 2 = (6k + 1) + 2 = 6k + 3 = 3(2k + 1), then 3|(n + 2).
Since 2|(n + 1) and 3|(n + 2), then 6|(n + 1)(n + 2).
Hence, 6 divides any multiple of (n + 1)(n + 2), so 6|p.
Case 3: Suppose n = 6k + 2.
Since n = 2(3k + 1), then 2|n.
Since n + 1 = (6k + 2) + 1 = 6k + 3 = 3(2k + 1), then 3|(n + 1).
Since 2|n and 3|(n + 1), then 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6|p.
Case 4: Suppose n = 6k + 3.
Since n = 3(2k + 1), then 3|n.
Since n + 1 = (6k + 3) + 1 = 6k + 4 = 2(3k + 2), then 2|(n + 1).
Since 3|n and 2|(n + 1), then 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6|p.
Case 5: Suppose n = 6k + 4.
Since n + 2 = (6k + 4) + 2 = 6k + 6 = 6(k + 1), then 6|(n + 2).
Hence, 6 divides any multiple of n + 2, so 6|p.
Case 6: Suppose n = 6k + 5.
Since n + 1 = (6k + 5) + 1 = 6k + 6 = 6(k + 1), then 6|(n + 1).
Hence, 6 divides any multiple of n + 1, so 6|p.

In all cases, 6|p.

Proof. We prove by induction(strong).
Basis:
If n = 1 then the statement S1 is 6|1 ∗ 2 ∗ 3. This simplifies to 6|6, which is

true because 6 = 6 * 1.
If n = 2 then the statement S2 is 6|2 ∗ 3 ∗ 4. This simplifies to 6|24, which

is true because 24 = 6 * 4.
Induction:
We must prove S1 ∧ S2 ∧ ... ∧ Sk ⇒ Sk+1 for k ≥ 2.
This implies we must prove Sk−1 ∧ Sk ⇒ Sk+1 for k ≥ 2.
For simplicity, let m = k − 1.
Then Sk−1 ∧ Sk ⇒ Sk+1 for k ≥ 2 becomes
Sm ∧ Sm+1 ⇒ Sm+2 for m ≥ 1.
We prove the latter statement using direct proof.
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Suppose Sm ∧ Sm+1 for m ≥ 1.

We must prove that these assumptions together imply Sm+2.

Since Sm ∧ Sm+1 is true by assumption, then Sm is certainly true.

This implies 6|m(m+ 1)(m+ 2) which implies m(m+ 1)(m+ 2) = 6a, a ∈ Z,
by definition of divisibility.

Thus m(m + 1)(m + 2) = m(m2 + 3m + 2) = m3 + 3m2 + 2m = 6a.
Observe the following equalities:

(m + 2)(m + 3)(m + 4) = (m + 2)(m2 + 7m + 12)

= m3 + 9m2 + 26m + 24

= (m3 + 3m2 + 2m) + (6m2 + 24m + 24)

= 6a + 6(m2 + 4m + 4)

= 6(a + m2 + 4m + 4)

Since a + m2 + 4m + 4 ∈ Z, then by definition of divisibility, 6|(m + 2)(m +
3)(m + 4).

Hence Sm ∧ Sm+1 ⇒ Sm+2 for m ≥ 1.
Thus, Sk−1 ∧ Sk ⇒ Sk+1 for k ≥ 2.
It follows by strong induction that 6|n(n + 1)(n + 2) for all n ∈ N.

Exercise 63. The number 6 is the largest natural number that divides n3 − n
for all n ∈ N.

Proof. We must prove
1. For all natural numbers n, 6|(n3 − n).
2. If m ∈ N and m > 6, then there exists n ∈ N such that m does not divide

n3 − n.

We first prove 6|(n3 − n) for all n ∈ N by induction on n.
Let p(n) be the predicate 6|(n3 − n) defined over N.
We prove p(n) is true for all n ∈ N by induction on n.
Basis:
Since 13 − 1 = 0 and 6|0, then p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then 6 divides k3 − k.
Observe that (k+1)3−(k+1) = (k3+3k2+3k+1)−k−1 = k3+3k2+3k−k =

(k3 − k) + (3k2 + 3k) = (k3 − k) + 3k(k + 1).
Since the product of two consecutive integers is even and k(k + 1) is the

product of two consecutive integers, then k(k + 1) is even, so 2|k(k + 1).
Hence, 3 · 2|3k(k + 1), so 6|3k(k + 1).
Since 6 divides k3 − k and 6 divides 3k(k + 1), then 6 divides the sum

(k3 − k) + 3k(k + 1) = (k + 1)3 − (k + 1).
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Thus, p(k + 1) is true, so p(k) implies p(k + 1) for any k ≥ 1.
It follows by induction that 6|(n3 − n) for all n ∈ N.

Proof. We next prove:
If m ∈ N and m > 6, then there exists n ∈ N such that m does not divide

n3 − n.
Let m ∈ N with m > 6.
Let n be the natural number 2.
Then n3 − n = 23 − 2 = 6.
If m ∈ N and m|6, then m ≤ 6, so if m ∈ N and m > 6, then m does not

divide 6.
Since m ∈ N and m > 6, then we conclude m does not divide 6, so m does

not divide n3 − n.
Therefore, there does exist n ∈ N such that m does not divide n3 − n, as

desired.

Exercise 64. Let x, y ∈ Z.
If 17|(2x + 3y), then 17|(9x + 5y).

Proof. Suppose 17|(2x + 3y).
Then 2x + 3y = 17m for some integer m.
To prove 17|(9x+ 5y), we must prove there exists n ∈ Z such that 9x+ 5y =

17n.
Let n = −4m + x + y.
Since m,x, y ∈ Z, then n ∈ Z.
Observe that

17n = 17(−4m + x + y)

= 17(−4m) + 17(x + y)

= (−4)(17m) + 17(x + y)

= (−4)(2x + 3y) + 17(x + y)

= −8x− 12y + 17x + 17y

= 9x + 5y.

Since 17n = 9x + 5y, then 17|(9x + 5y).

Exercise 65. Let a, b ∈ Z with b > 0.
Then there exist unique integers q and r such that a = bq + r with 2b ≤ r <

3b.

Proof. Since a, b ∈ Z and b > 0, then by the division algorithm, there exist
unique integers q and r such that a = bq + r with 0 ≤ r < b.

Since b, q, r ∈ Z, then b(q + 2) + (r − 2b) ∈ Z.
Since b(q + 2) + (r − 2b) ∈ Z and b ∈ Z and b > 0, then by the division

algorithm, when b(q + 2) + (r− 2b) is divided by b, the remainder is r− 2b with
0 ≤ r − 2b < b.

Observe that b(q + 2) + (r − 2b) = bq + 2b + r − 2b = bq + r = a.
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Since 0 ≤ r − 2b < b, then 2b ≤ r < 3b.
Therefore, there exist unique integers q and r such that a = bq + r and

2b ≤ r < 3b.

Exercise 66. Any integer of the form 6k+ 5 is also of the form 3k+ 2, but not
conversely.

Proof. Let k ∈ Z.
Then 6k + 5 = 6k + 3 + 2 = 3(2k + 1) + 2.
Let m = 2k + 1.
Since k ∈ Z, then m ∈ Z, so 6k + 5 = 3m + 2.
Therefore, any integer of the form 6k+ 5 is also of the form 3m+ 2 for some

integer m.

Conversely, consider the integer 14.
Since 14 = 3 · 4 + 2, then 14 is of the form 3m + 2 with m = 4.
If 14 = 6k + 5, then 9 = 6k, so k = 3

2 6∈ Z.
Thus, there is no integer k such that 14 = 6k + 5.
Therefore, 14 is of the form 3m + 2, but not of the form 6k + 5.

Exercise 67. Every odd integer is either of the form 4k + 1 or 4k + 3.

Proof. Let n be any odd integer.
By the division algorithm, there exist unique integers q and r such that

n = 4q + r with 0 ≤ r < 4.
Thus, either n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.
Since n is odd, then this implies either n = 4q + 1 or n = 4q + 3.

Exercise 68. The square of any integer is either of the form 3k or 3k + 1.

Proof. Let n ∈ Z.
By the division algorithm, there exist unique integers q and r such that

n = 3q + r with 0 ≤ r < 3.
Thus, either n = 3q or n = 3q + 1 or n = 3q + 2.
We consider these cases separately.
Case 1: Suppose n = 3q.
Then n2 = (3q)2 = 32q2 = 3(3q2).
Let k = 3q2.
Then k ∈ Z and n2 = 3k.
Case 2: Suppose n = 3q + 1.
Then n2 = (3q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1.
Let k = 3q2 + 2q.
Then k ∈ Z and n2 = 3k + 1.
Case 3: Suppose n = 3q + 2.
Then n2 = (3q + 2)2 = 9q2 + 12q + 4 = 3(3q2 + 4q + 1) + 1.
Let k = 3q2 + 4q + 1.
Then n2 = 3k + 1.
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Therefore, in all cases, either n2 = 3k or n2 = 3k + 1 for some integer k.

Exercise 69. The cube of any integer is either of the form 9k, 9k+1, or 9k+8.

Proof. Let n ∈ Z.
By the division algorithm, there exist unique integers q and r such that

n = 3q + r with 0 ≤ r < 3.
Thus, either n = 3q or n = 3q + 1 or n = 3q + 2.
We consider these cases separately.
Case 1: Suppose n = 3q.
Then n3 = (3q)3 = 27q3 = 9(3q3) = 9k for integer k = 3q3.
Case 2: Suppose n = 3q + 1.
Then n3 = (3q + 1)3 = 27q3 + 27q2 + 9q + 1 = 9q(3q2 + 3q + 1) + 1 = 9k + 1

for integer k = q(3q2 + 3q + 1).
Case 3: Suppose n = 3q + 2.
Then n3 = (3q + 2)3 = 27q3 + 54q2 + 36q + 8 = 9q(3q2 + 6q + 4) + 8 = 9k+ 8

for integer k = q(3q2 + 6q + 4).

Exercise 70. If an integer is both a square and a cube, then it must be either
of the form 7k or 7k + 1.

Solution. We prove:
1. Every square is of the form 7k, 7k + 1, 7k + 2, 7k + 4.
2. Every cube is of the form 7k, 7k + 1, 7k + 6.
So, this would imply any integer that is both a square and a cube must be

of a form that it common to both squares and cubes.
We observe that if n is a square and a cube, then n = a6 for a ∈ Z+.

Proof. We first prove every square is of the form 7k, 7k + 1, 7k + 2 or 7k + 4 for
some integer k.

Let n ∈ Z.
Suppose n is a square.
Then n = a2 for some integer a.
By the division algorithm, there exist unique integers q and r such that

a = 7q + r with 0 ≤ r < 7.
Thus, either r = 0 or r = 1 or r = 2 or r = 3 or r = 4 or r = 5 or r = 6.
We consider these cases separately.
Case 1: Suppose r = 0.
Then a = 7q.
Therefore, n = (7q)2 = 72q2 = 7(7q2) = 7k for integer k = 7q2.
Case 2: Suppose r = 1.
Then a = 7q + 1.
Therefore, n = (7q + 1)2 = 49q2 + 14q + 1 = 7q(7q + 2) + 1 = 7k + 1 for

integer k = q(7q + 2).
Case 3: Suppose r = 2.
Then a = 7q + 2.
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Therefore, n = (7q + 2)2 = 49q2 + 28q + 4 = 7q(7q + 4) + 4 = 7k + 4 for
integer k = q(7q + 4).

Case 4: Suppose r = 3.
Then a = 7q + 3.
Therefore, n = (7q + 3)2 = 49q2 + 42q + 9 = 7(7q2) + 7(6q) + (7 ∗ 1 + 2) =

7(7q2 + 6q + 1) + 2 = 7k + 2 for integer k = 7q2 + 6q + 1.
Case 5: Suppose r = 4.
Then a = 7q + 4.
Therefore, n = (7q + 4)2 = 49q2 + 56q + 16 = 7(7q2) + 7 ∗ 8q + (7 ∗ 2 + 2) =

7(7q2 + 8q + 2) + 2 = 7k + 2 for integer k = 7q2 + 8q + 2.
Case 6: Suppose r = 5.
Then a = 7q + 5.
Therefore, n = (7q + 5)2 = 49q2 + 70q + 25 = 7(7q2) + 7 ∗ 10q + (7 ∗ 3 + 4) =

7(7q2 + 10q + 3) + 4 = 7k + 4 for integer k = 7q2 + 10q + 3.
Case 7: Suppose r = 6.
Then a = 7q + 6.
Therefore, n = (7q + 6)2 = 49q2 + 84q + 36 = 7(7q2) + 7 ∗ 12q + (7 ∗ 5 + 1) =

7(7q2 + 12q + 5) + 1 = 7k + 1 for integer k = 7q2 + 12q + 5.

Therefore, in all cases, either n = 7k or n = 7k+1 or n = 7k+2 or n = 7k+4
for some integer k.

Proof. We next prove every cube is of the form 7k, 7k + 1, or 7k + 6 for some
integer k.

Let n ∈ Z.
Suppose n is a cube.
Then n = a3 for some integer a.
We must prove either n = 7k or n = 7k + 1 or n = 7k + 6.
By the division algorithm, there exist unique integers q and r such that

a = 7q + r with 0 ≤ r < 7.
Thus, either r = 0 or r = 1 or r = 2 or r = 3 or r = 4 or r = 5 or r = 6.
We consider these cases separately.
Case 1: Suppose r = 0.
Then a = 7q.
Therefore, n = (7q)3 = 73q3 = 7(72q3) = 7(49q3) = 7k for integer k = 49q3.
Case 2: Suppose r = 1.
Then a = 7q + 1.
Observe that
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n = (7q + 1)3

=

3∑
k=0

(
3

k

)
(7q)3−k

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2 +

(
3

2

)
(7q) +

(
3

3

)
= (7q)3 + 3(7q)2 + 3(7q) + 1

= (73q3) + 3(72q2) + 3(7q) + 1

= 7(72q3 + 3 ∗ 7q2 + 3q) + 1

= 7(49q3 + 21q2 + 3q) + 1.

Therefore, n = 7(49q3+21q2+3q)+1 = 7k+1 for integer k = 49q3+21q2+3q.
Case 3: Suppose r = 2.
Then a = 7q + 2.
Observe that

n = (7q + 2)3

=

3∑
k=0

(
3

k

)
(7q)3−k(2k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(21) +

(
3

2

)
(7q)(22) +

(
3

3

)
(23)

= (7q)3 + 3(7q)2(2) + 3(7q)(22) + 8

= (73q3) + (3)(2)(72q2) + (3)(22)(7q) + (7 ∗ 1 + 1)

= 7(72q3 + (3)(2) ∗ 7q2 + (3)(22)q + 1) + 1

= 7(49q3 + 42q2 + 12q + 1) + 1.

Therefore, n = 7k + 1 for integer k = 49q3 + 42q2 + 12q.
Case 4: Suppose r = 3.
Then a = 7q + 3.
Observe that
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n = (7q + 3)3

=

3∑
k=0

(
3

k

)
(7q)3−k(3k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(31) +

(
3

2

)
(7q)(32) +

(
3

3

)
(33)

= (7q)3 + 3(7q)2(3) + 3(7q)(32) + 27

= (73q3) + (3)(3)(72q2) + (3)(32)(7q) + (7 ∗ 3 + 6)

= 7(72q3 + (3)(3) ∗ 7q2 + (3)(32)q + 3) + 6

= 7(49q3 + 63q2 + 27q + 3) + 6.

Therefore, n = 7k + 6 for integer k = 49q3 + 63q2 + 27q + 3.
Case 5: Suppose r = 4.
Then a = 7q + 4.
Observe that

n = (7q + 4)3

=

3∑
k=0

(
3

k

)
(7q)3−k(4k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(41) +

(
3

2

)
(7q)(42) +

(
3

3

)
(43)

= (7q)3 + 3(7q)2(4) + 3(7q)(42) + 64

= (73q3) + (3)(4)(72q2) + (3)(42)(7q) + (7 ∗ 9 + 1)

= 7(72q3 + (3)(4) ∗ 7q2 + (3)(42)q + 9) + 1

= 7(49q3 + 108q2 + 48q + 9) + 1.

Therefore, n = 7k + 1 for integer k = 49q3 + 108q2 + 48q + 9.
Case 6: Suppose r = 5.
Then a = 7q + 5.
Observe that
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n = (7q + 5)3

=

3∑
k=0

(
3

k

)
(7q)3−k(5k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(51) +

(
3

2

)
(7q)(52) +

(
3

3

)
(53)

= (7q)3 + 3(7q)2(5) + 3(7q)(52) + 125

= (73q3) + (3)(5)(72q2) + (3)(52)(7q) + (7 ∗ 17 + 6)

= 7(72q3 + (3)(5) ∗ 7q2 + (3)(52)q + 17) + 6

= 7(49q3 + 105q2 + 75q + 17) + 6.

Therefore, n = 7q + 6 for integer k = 49q3 + 105q2 + 75q + 17.
Case 7: Suppose r = 6.
Then a = 7q + 6.
Observe that

n = (7q + 6)3

=

3∑
k=0

(
3

k

)
(7q)3−k(6k)

=

(
3

0

)
(7q)3 +

(
3

1

)
(7q)2(61) +

(
3

2

)
(7q)(62) +

(
3

3

)
(63)

= (7q)3 + 3(7q)2(6) + 3(7q)(62) + 216

= (73q3) + (3)(6)(72q2) + (3)(62)(7q) + (7 ∗ 30 + 6)

= 7(72q3 + (3)(6) ∗ 7q2 + (3)(62)q + 30) + 6

= 7(49q3 + 126q2 + 108q + 30) + 6.

Therefore, n = 7k + 6 for integer k = 49q3 + 126q2 + 108q + 30.

Therefore, in all cases, either n = 7k or n = 7k + 1 or n = 7k + 6 for some
integer k.

Proof. Let n ∈ Z.
Suppose n is a square and a cube.
Then n is a square and n is a cube.
Since every square is of the form 7k, 7k + 1, 7k + 2, 7k + 4 for some integer k

and n is a square, then n is of the form 7k, 7k+1, 7k+2, 7k+4 for some integer
k.

Since every cube is of the form 7m, 7m + 1, 7m + 6 for some integer m and
n is a cube, then n is of the form 7k, 7k + 1, 7k + 6.

Since n is both a square and a cube, then this implies n is of the form that
is common to both a square and a cube, so n is of the form 7k or 7k + 1.
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Exercise 71. There is no integer in the sequence 11, 111, 1111, 11111, ... that
is a perfect square.

Proof. Let (an) be the sequence 11, 111, 1111, 11111, ....
Then an = 10 ∗ an−1 + 1 for positive integers n > 1 and a1 = 11.
We first prove each term of the sequence has the form 4k+3 for some integer

k.
Thus, we must prove for all n ∈ Z+, there exists k ∈ Z such that an = 4k+3.
We prove by induction on n.
Let S = {n ∈ Z+ : (∃k ∈ Z)(an = 4k + 3)}.
Basis:
Since 1 ∈ Z+ and 2 ∈ Z and a1 = 11 = 4 ∗ 2 + 3, then 1 ∈ S.
Since 2 ∈ Z+ and 27 ∈ Z and a2 = 10∗a1+1 = 10∗11+1 = 111 = 4∗27+3,

then 2 ∈ S.
Induction:
Suppose m ∈ S and m ≥ 2.
Then m ∈ Z+ and there exists k ∈ Z such that am = 4k + 3.
Since m ∈ Z+, then m + 1 ∈ Z+.
Since m + 1 > m ≥ 2 > 1, then m + 1 > 1.
Observe that

am+1 = 10am + 1

= 10(4k + 3) + 1

= 40k + 31

= 4 ∗ 10k + (4 ∗ 7 + 3)

= 4(10k + 7) + 3.

Let p = 10k + 7.
Since k ∈ Z, then p ∈ Z and am+1 = 4p + 3.
Since m + 1 ∈ Z+ and there exists p ∈ Z such that am+1 = 4p + 3, then

m + 1 ∈ S.
Hence, m ∈ S for m ≥ 2 implies m + 1 ∈ S.
Therefore, by PMI, for all n ∈ Z+, there exists k ∈ Z such that an =

4k + 3.

Proof. We next prove every perfect square is either of the form 4k or 4k + 1.
Let n be a perfect square.
Then n ∈ Z and n = a2 for some integer a.
From a previous exercise we know that the square of an integer leaves re-

mainder 0 or 1 upon division by 4.
Hence, a2 leaves remainder 0 or 1 upon division by 4, so either a2 = 4k or

a2 = 4k + 1 for some integer k.
Therefore, either n = 4k or n = 4k + 1 for some integer k.
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Proof. We prove the term an cannot be a perfect square.
Let an be a term of the sequence 11, 111, 1111, ....
Then an has the form 4k + 3 for some integer k, so an is of the form 4k + 3.
Every perfect square is either of the form 4k or 4k + 1, so if n is a perfect

square, then either n = 4k or n = 4k + 1.
Hence, if n 6= 4k and n 6= 4k + 1, then n is not a perfect square.
Since 4k + 3 6= 4k and 4k + 3 6= 4k + 1, then 4k + 3 is not a perfect square,

so an is not a perfect square.
Therefore, every term of the sequence 11, 111, 1111, ... is not a perfect square,

so there is no term of the sequence that is a perfect square.

Exercise 72. For all n ∈ Z+, 7 divides 23n − 1.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : 7|(23n − 1)}.
Basis:
Since 23∗1 − 1 = 7 = 7 ∗ 1, then 7 divides 23∗1 − 1, so 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and 7|(23k − 1).
Since k ∈ Z+, then k + 1 ∈ Z+.
Since 7|(23k − 1), then 23k − 1 = 7x for some integer x.
Observe that

23(k+1) − 1 = 23k+3 − 1

= 23k ∗ 23 − 1

= 8 ∗ 23k − 1

= 8(23k − 1) + 8− 1

= 8(7x) + 7

= 7(8x + 1).

Since x ∈ Z, then 8x + 1 ∈ Z, so 7 divides 23(k+1) − 1.
Since k + 1 ∈ Z+ and 7 divides 23(k+1) − 1, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S.
Therefore, by PMI, 7|(23n − 1) for all n ∈ Z+.

Exercise 73. For all n ∈ Z+, 8 divides 32n + 7.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : 8|32n + 7}.
Basis:
Since 32∗1 + 7 = 16 = 8 ∗ 2, then 8 divides 32∗1 + 7, so 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and 8|(32k + 7).
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Since k ∈ Z+, then k + 1 ∈ Z+.
Since 8|(32k + 7), then 32k + 7 = 8x for some integer x.
Observe that

32(k+1) + 7 = 32k+2 + 7

= 32k ∗ 32 + 7

= 9 ∗ 32k + 7

= (8 + 1)32k + 7

= 8(32k) + 32k + 7

= 8(32k) + 8x

= 8(32k + x)

= 8(9k + x).

Since k, x ∈ Z, then 9k + x ∈ Z, so 8 divides 32(k+1) + 7.
Since k + 1 ∈ Z+ and 8 divides 32(k+1) + 7, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S.
Therefore, by PMI, 8|(32n + 7) for all n ∈ Z+.

Exercise 74. For all n ∈ Z+, 2n + (−1)n+1 is divisible by 3.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : 3|2n + (−1)n+1}.
Basis:
Since 21 +(−1)1+1 = 2+1 = 3 = 3 ·1, then 3 divides 21 +(−1)1+1, so 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and 3|2k + (−1)k+1.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since 3|2k + (−1)k+1, then 2k + (−1)k+1 = 3x for some integer x.
Observe that

2k+1 + (−1)(k+1)+1 = 2k · 2 + (−1)k+1(−1)

= 2k + 2k − (−1)k+1

= 2k + (2− 1)2k − (−1)k+1

= 2k + 2(2k)− 2k − (−1)k+1

= 3(2k)− [2k + (−1)k+1]

= 3(2k)− 3x

= 3(2k − x).

Since k, x ∈ Z, then 2k − x ∈ Z, so 3 divides 2k+1 + (−1)(k+1)+1.
Since k + 1 ∈ Z+ and 3 divides 2k+1 + (−1)(k+1)+1, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S.
Therefore, by PMI, 3|(2n + (−1)n+1) for all n ∈ Z+.
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Lemma 75. Every perfect square is of the form 4k or 4k + 1 for some integer
k.

Proof. Let n ∈ Z.
By the division algorithm, there exist unique integers q and r such that

n = 2q + r with 0 ≤ r < 2.
Thus, either n = 2q or n = 2q + 1.
We consider these cases separately.
Case 1: Suppose n = 2q.
Then, n2 = (2q)2 = 4q2 = 4k2 for integer k = q.
Case 2: Suppose n = 2q + 1.
Then n2 = (2q + 1)2 = 4q2 + 4q + 1 = 4(q2 + q) + 1 = 4k + 1 for integer

k = q2 + q.
Therefore either n2 = 4k or n2 = 4k + 1 for some integer k.

Lemma 76. Let n ∈ Z.
If n is odd, then 8|(n2 − 1).

Proof. Suppose n is odd.
By the division algorithm, there are unique integers q and r such that n =

4q + r with 0 ≤ r < 4.
Thus, either n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.
Hence, either n = 2(2q) or n = 2(2q)+1 or n = 2(2q+1) or n = 2(2q+1)+1.
Since n is odd, then this implies either n = 4q + 1 or n = 4q + 3.
We consider each case separately.
Case 1: Suppose n = 4q + 1.
Then n2 − 1 = (4q + 1)2 − 1 = 16q2 + 8q + 1− 1 = 16q2 + 8q = 8(2q2 + q).
Since 2q2 + q ∈ Z, then this implies 8|(n2 − 1).
Case 2: Suppose n = 4q + 3.
Then n2 − 1 = (4q + 3)2 − 1 = 16q2 + 24q + 9 − 1 = 16q2 + 24q + 8 =

8(2q2 + 3q + 1).
Since 2q2 + 3q + 1 ∈ Z, then this implies 8|(n2 − 1).

Therefore, in all cases, 8|(n2 − 1).

Proof. Suppose n is odd.
Then n = 2a + 1 for some integer a.
Thus n2 − 1 = (2a + 1)2 − 1 = 4a2 + 4a = 4a(a + 1).
Since a and a + 1 have opposite parity we know that their product must be

even by proposition ??.
Thus a(a + 1) = 2b for some integer b.
Consequently n2 − 1 = 4(2b) = 8b, and so 8|(n2 − 1).

Exercise 77. Let a ∈ Z.
If 2 6 |a and 3 6 |a, then 24|(a2 − 1).

Proof. Suppose 2 6 |a and 3 6 |a.
Since 2 6 |a, then a is odd.
Hence, we know that 8|(a2 − 1).
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Since 3 6 |a, then by the division algorithm, either a = 3m + 1 or a = 3m + 2
for some integer m.

If a = 3m+1, then a2−1 = (3m+1)2−1 = 9m2 +6m+1−1 = 9m2 +6m =
3m(3m + 2), so 3|(a2 − 1).

If a = 3m + 2, then a2 − 1 = (3m + 2)2 − 1 = 9m2 + 12m + 4 − 1 =
9m2 + 12m + 3 = 3(3m2 + 4m + 1), so 3|(a2 − 1).

In either case, 3|(a2 − 1).

Since 8|(a2 − 1) and 3|(a2 − 1) and gcd(8, 3) = 1, then (8 ∗ 3) divides a2 − 1,
so 24 divides a2 − 1.

Exercise 78. Let a and b be odd integers.
Then 8|(a2 − b2).

Proof. Since a is odd, then we know 8|(a2 − 1), so a2 − 1 = 8k for some integer
k.

Since b is odd, then we know 8|(b2 − 1), so b2 − 1 = 8m for some integer m.
Thus, a2−b2 = (8k+1)− (8m+1) = 8k+1−8m−1 = 8k−8m = 8(k−m).
Since k,m ∈ Z, then k −m ∈ Z, so 8|(a2 − b2).

Exercise 79. If m and n are odd integers, then m2 − n2 is divisible by 8.

Proof. Suppose m and n are odd integers.
We prove if x is an odd integer, then x2 ≡ 1 (mod 8).
Suppose x is an odd integer.
Then x = 2k + 1 for some integer k.
Thus, x2 = 4k2 + 4k + 1.
The product of consecutive integers is even, so in particular, k(k+1) is even.
Hence, 2|k(k + 1), so 4 ∗ 2|4k(k + 1).
Thus, 8|(4k2 + 4k), so 4k2 + 4k ≡ 0 (mod 8).
Hence, 4k2 + 4k + 1 ≡ 1 (mod 8), so x2 ≡ 1 (mod 8).
Therefore, m2 ≡ 1 (mod 8) and n2 ≡ 1 (mod 8).
Thus, 1 ≡ n2 (mod 8).
Since m2 ≡ 1 (mod 8) and 1 ≡ n2 (mod 8), then m2 ≡ n2 (mod 8).
Hence, 8|(m2 − n2).

Exercise 80. Let a be an odd integer.
Then 24|a(a2 − 1).

Proof. Since a(a2 − 1) = a(a− 1)(a + 1) = (a− 1)a(a + 1), then a(a2 − 1) is a
product of three consecutive integers.

Since the product of three consecutive integers is divisible by 3, then this
implies 3|a(a2 − 1).

Since a is odd, then we know a2 = 8k + 1 for some integer k, so a2− 1 = 8k.
Hence, 8|(a2 − 1), so 8 divides any multiple of a2 − 1.
Thus, 8|a(a2 − 1).
Since 3|a(a2 − 1) and 8|a(a2 − 1) and gcd(3, 8) = 1, then (3 ∗ 8) divides

a(a2 − 1), so 24|a(a2 − 1).
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Exercise 81. The sum of the squares of two odd integers cannot be a perfect
square.

Proof. Let x and y be two odd integers.
Then x = 2a + 1 and y = 2b + 1 for some integers a and b.
Thus,

x2 + y2 = (2a + 1)2 + (2b + 1)2

= 4a2 + 4a + 1 + 4b2 + 4b + 1

= 4a2 + 4b2 + 4a + 4b + 2

= 4(a2 + b2 + a + b) + 2.

Let k = a2 + b2 + a + b.
Then x2 + y2 = 4k + 2 and k ∈ Z.
Every perfect square is of the form 4k or 4k + 1, so if x is a perfect square,

then either x = 4k or x = 4k + 1 for some integer k.
Hence, if x 6= 4k and x 6= 4k + 1 for some integer k, then x cannot be a

perfect square.
Since x2 + y2 = 4k + 2 and 4k + 2 6= 4k and 4k + 2 6= 4k + 1, then x2 + y2

cannot be a perfect square.

Exercise 82. The square of any odd integer is of the form 8k + 1 for some
integer k.

Proof. Let n be any odd integer.
By the division algorithm there exist unique integers q, r such that n = 4q+r

with 0 ≤ r < 4.
Thus, either n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3, so either

n = 2(2q) or n = 2(2q) + 1 or n = 2(2q + 1) or n = 2(2q + 1) + 1.
Since n is odd, then this implies either n = 4q + 1 or n = 4q + 3.
We consider each case separately.
Case 1: Suppose n = 4q + 1.
Then n2 = (4q + 1)2 = 16q2 + 8q + 1 = 8(2q2 + 2q) + 1 = 8k + 1 for integer

k = 2q2 + 2q.
Case 2: Suppose n = 4q + 3.
Then n2 = (4q+3)2 = 16q2+24q+9 = 16q2+24q+8+1 = 8(2q2+3q+1)+1 =

8k + 1 for integer k = 2q2 + 3q + 1.

Exercise 83. The product of four consecutive integers is one less than a perfect
square.

Proof. Let n ∈ Z.
We must prove there exists m ∈ Z such that n(n+1)(n+2)(n+3) = m2−1.
Let m = (n + 1)(n + 2)− 1.
Since n ∈ Z, then m ∈ Z.
Observe that
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m2 − 1 = [(n + 1)(n + 2)− 1]2 − 1

= (n2 + 3n + 1)2 − 1

= (n2 + 3n + 1− 1)(n2 + 3n + 1 + 1)

= (n2 + 3n)(n2 + 3n + 2)

= n(n + 3)(n + 2)(n + 1)

= n(n + 1)(n + 2)(n + 3).

Exercise 84. Let a ∈ Z.
If 2 6 |a and 3 6 |a, then 24|(a2 + 23).

Proof. Suppose 2 6 |a and 3 6 |a.
Since 2 6 |a, then a is odd, so we know 8|(a2 − 1).
Since 8|(a2− 1) and 8|24, then 8 divides the sum (a2− 1) + 24 = a2 + 23, so

8|(a2 + 23).
Since 3 6 |a, then by the division algorithm, either a = 3q + 1 or a = 3q + 2

for some integer q.
If a = 3q+1, then a2+23 = (3q+1)2+23 = 9q2+6q+1+23 = 9q2+6q+24 =

3(3q2 + 2q + 8), so 3|(a2 + 23).
If a = 3q + 2, then a2 + 23 = (3q + 2)2 + 23 = 9q2 + 12q + 4 + 23 =

9q2 + 12q + 27 = 3(3q2 + 4q + 9), so 3|(a2 + 23).
Thus, in either case, 3|(a2 + 23).

Since 8|(a2 + 23) and 3|(a2 + 23) and gcd(8, 3) = 1, then (8 ∗ 3)|(a2 + 23), so
24|(a2 + 23).

Lemma 85. The product of 5 consecutive integers is divisible by 5.

Proof. Let n ∈ Z.
Let p = n(n + 1)(n + 2)(n + 3)(n + 4).
We must prove 5|p.
By the division algorithm, either p = 5q or p = 5q + 1 or p = 5q + 2 or

p = 5q + 3 or p = 5q + 4 for some integer q.
We consider each case separately.
Case 1: Suppose n = 5q.
Then 5|n, so 5 divides any multiple of n.
Hence, 5|p.
Case 2: Suppose n = 5q + 1.
Then n + 4 = (5q + 1) + 4 = 5q + 5 = 5(q + 1), so 5|(n + 4).
Thus, 5 divides any multiple of n + 4, so 5|p.
Case 3: Suppose n = 5q + 2.
Then n + 3 = (5q + 2) + 3 = 5q + 5 = 5(q + 1), so 5|(n + 3).
Thus, 5 divides any multiple of n + 3, so 5|p.
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Case 4: Suppose n = 5q + 3.
Then n + 2 = (5q + 3) + 2 = 5q + 5 = 5(q + 1), so 5|(n + 2).
Thus, 5 divides any multiple of n + 2, so 5|p.
Case 5: Suppose n = 5q + 4.
Then n + 1 = (5q + 4) + 1 = 5q + 5 = 5(q + 1), so 5|(n + 1).
Thus, 5 divides any multiple of n + 1, so 5|p.

Therefore, in all cases, 5|p.

Exercise 86. Let n ∈ Z.
Then 360|n2(n2 − 1)(n2 − 4).

Proof. Let p = n2(n2 − 1)(n2 − 4).
Then p = n2(n− 1)(n + 1)(n− 2)(n + 2).
We prove 5|p and 8|p and 9|p.

Proof. We prove 5|p.
Observe that p = (n− 2)(n− 1)n(n + 1)(n + 2)n.
Let a = (n− 2)(n− 1)n(n + 1)(n + 2).
Then p = an.
Since a is a product of 5 consecutive integers and the product of 5 consecutive

integers is divisible by 5, then 5|a.
Thus, 5 divides any multiple of a, so 5|p.

Proof. We prove 8|p.
Either n is even or n is odd.
We consider each case separately.
Case 1: Suppose n is even.
Then n = 2k for some integer k.
Since n2 = (2k)2 = 4k2, then 4|n2.
Since n + 2 = 2k + 2 = 2(k + 1), then 2|(n + 2).
Since 4|n2 and 2|(n + 2), then (4 ∗ 2)|n2(n + 2), so 8|n2(n + 2).
Thus, 8 divides any multiple of n2(n + 2), so 8|p.
Case 2: Suppose n is odd.
Then we know 8 divides n2 − 1.
Thus, 8 divides any multiple of n2 − 1, so 8 divides p.

Therefore, in all cases, 8|p.

Proof. We prove 9|p.
By the division algorithm, either n = 3q or n = 3q + 1 or n = 3q + 2 for

some integer q.
We consider each case separately.
Case 1: Suppose n = 3q.
Then n2 = (3q)2 = 9q2, so 9|n2.
Hence, 9 divides any multiple of n2, so 9|p.
Case 2: Suppose n = 3q + 1.
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Since n− 1 = 3q, then 3|(n− 1).
Since n + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1), then 3|(n + 2).
Since 3|(n− 1) and 3|(n+ 2), then (3 ∗ 3)|(n− 1)(n+ 2), so 9|(n− 1)(n+ 2).
Hence, 9 divides any multiple of (n− 1)(n + 2), so 9|p.
Case 3: Suppose n = 3q + 2.
Since n + 1 = (3q + 2) + 1 = 3q + 3 = 3(q + 1), then 3|(n + 1).
Since n− 2 = 3q, then 3|(n− 2).
Since 3|(n+ 1) and 3|(n− 2), then (3 ∗ 3)|(n+ 1)(n− 2), so 9|(n+ 1)(n− 2).
Hence, 9 divides any multiple of (n + 1)(n− 2), so 9|p.

Therefore, in all cases, 9|p.

Proof. Since 5|p and 8|p and gcd(5, 8) = 1, then (5 ∗ 8)|p, so 40|p.
Since 40|p and 9|p and gcd(40, 9) = 1, then (40 ∗ 9)|p, so 360|p.

Exercise 87. For all n ∈ N, n3 + 5n is divisible by 6.

Proof. To prove the statement n3 + 5n is divisible by 6 for all n ∈ N, we prove
6|(n3 + 5n) for all n ∈ N by induction on n.

Let p(n) : 6|(n3 + 5n) be a predicate defined over N.
Basis:
Since 13 + 5 ∗ 1 = 6 and 6|6, then the statement p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then 6|(k3 + 5k), so there exists an integer m such that k3 + 5k = 6m.
Since the product of two consecutive integers is even and k ∈ Z, then k(k+1)

is even, so there exists n ∈ Z such that k(k + 1) = 2n.
Observe that

(k + 1)3 + 5(k + 1) = k3 + 3k2 + 8k + 6

= k3 + 8k + 3k2 + 6

= k3 + (5k + 3k) + 3k2 + 6

= (k3 + 5k) + (3k + 3k2) + 6

= (k3 + 5k) + (3k2 + 3k) + 6

= 6m + 3k(k + 1) + 6

= 6m + 3(2n) + 6

= 6m + 6n + 6

= 6(m + n + 1)

Since m + n + 1 ∈ Z, then 6|((k + 1)3 + 5(k + 1)), so p(k + 1) is true.
Therefore, by PMI, the statement 6|(n3 + 5n) is true for all n ∈ N.

Exercise 88. For all n ∈ Z+, n(n + 1)(2n + 1) is divisible by 6.
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Proof. By the division algorithm there exist unique integers q, r such that n =
6q+ r with 0 ≤ r < 6, so either n = 6q or n = 6q+ 1 or n = 6q+ 2 or n = 6q+ 3
or n = 6q + 4 or n = 6q + 5.

We consider each case separately.
Case 1: Suppose n = 6q.
Then 6|n, so 6 divides any multiple of n.
Therefore, 6|n(n + 1)(2n + 1).
Case 2: Suppose n = 6q + 1.
Then n+1 = 6q+2 = 2(3q+1) and 2n+1 = 2(6q+1)+1 = 12q+3 = 3(4q+1),

so (n + 1)(2n + 1) = 6(3q + 1)(4q + 1).
Hence, 6|(n + 1)(2n + 1), so 6 divides any multiple of (n + 1)(2n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 3: Suppose n = 6q + 2.
Then n = 2(3q + 1) and n + 1 = 6q + 3 = 3(2q + 1), so n(n + 1) =

6(3q + 1)(2q + 1).
Hence, 6|n(n + 1), so 6 divides any multiple of n(n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 4: Suppose n = 6q + 3.
The n = 3(2q+1) and n+1 = 6q+4 = 2(3q+2), so n(n+1) = 6(2q+1)(3q+2).
Hence, 6|n(n + 1), so 6 divides any multiple of n(n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 5: Suppose n = 6q + 4.
Then n = 2(3q + 2) and 2n + 1 = 2(6q + 4) + 1 = 12q + 9 = 3(4q + 3), so

n(2n + 1) = 6(3q + 2)(4q + 3).
Hence, 6|n(2n + 1), so 6 divides any multiple of n(2n + 1).
Therefore, 6|n(n + 1)(2n + 1).
Case 6: Suppose n = 6q + 5.
Then n + 1 = 6q + 6 = 6(q + 1), so 6|(n + 1).
Hence, 6 divides any multiple of n + 1.
Therefore, 6|n(n + 1)(2n + 1).

Exercise 89. The number 2 is not a square.

Proof. Suppose 2 is a square.
Then 2 = n2 for some integer n, so, n|2,
We may assume n > 0, since (−n)2 = n2.
Since 2 = 2 ∗ 1, then either n = 1 or n = 2.
If n = 1, then 2 = n2 = 12 = 1, a contradiction.
If n = 2, then 2 = n2 = 22 = 4, a contradiction.
Therefore, 2 is not a square.

Exercise 90. Let k be a positive odd integer.
Then any sum of k consecutive integers is divisible by k.

Solution. Let k be a positive odd integer.
To prove any sum of k consecutive integers is divisible by k, we let n+1, n+

2, ..., n + k be k consecutive integers for some integer n.
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We must prove k divides the sum (n + 1) + (n + 2) + ... + (n + k).
Thus, we must prove there exists an integer a such that (n + 1) + (n + 2) +

... + (n + k) = ka.

Proof. Let k be a positive odd integer.
Let n + 1, n + 2, ..., n + k be k consecutive integers for some integer n.
To prove k divides the sum

∑k
i=1(n + i), we must find an integer m such

that
∑k
i=1(n + i) = km.

Observe that

k∑
i=1

(n + i) =

k∑
i=1

n +

k∑
i=1

i

= kn +
k(k + 1)

2

= k(n +
k + 1

2
).

Since k is odd, then there exists an integer a such that k = 2a + 1.
Thus, k+1

2 = 2a+2
2 = a + 1 ∈ Z.

Let m = n + k+1
2 .

Since n and k+1
2 are integers, then m is an integer.

Hence,
∑k
i=1(n + i) = km, as desired.

Exercise 91. Let n ∈ N.
If n is odd, then (a + b)|(an + bn) for all a, b, n ∈ Z+.

Proof. Suppose n is odd.
Then n = 2k + 1 for some integer k.
Let a, b ∈ Z+.
Observe that

(a + b)

2k∑
i=0

(−1)ia2k−ibi = a

2k∑
i=0

(−1)ia2k−ibi + b

2k∑
i=0

(−1)ia2k−ibi

=

2k∑
i=0

(−1)ia2k+1−ibi +

2k∑
i=0

(−1)ia2k−ibi+1

= (a2k+1 − a2kb + a2k−1b2 + ... + ab2k) + (a2kb− a2k−1b2 + ...− ab2k + b2k+1)

= a2k+1 + b2k+1

= an + bn.

Since
∑2k
i=0(−1)ia2k−ibi is an integer and an+bn = (a+b)

∑2k
i=0(−1)ia2k−ibi,

then a + b divides an + bn, so a + b divides an + bn for all a, b ∈ Z+.
Since n is odd and a+b divides an+bn for all a, b ∈ Z+, then we conclude: if n

is odd, then (a+b)|(an+bn) for all a, b, n ∈ Z+, by conditional introduction.
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Exercise 92. Let n be a positive integer.
Let

A =

 0 0 −1
0 1 0
1 0 0


Then An = I iff 4|n.

Solution. We compute values for An and observe a pattern.
Whenever n is a multiple of 4 we observe that An = I, where I is the identity

matrix.
We must prove:
1. if An = I, then 4|n.
We’ll use the division algorithm to prove An 6= I.
2. if 4|n, then An = I. Assume 4|n.
We compute An.

Proof. Observe that A4 = I where I is the identity matrix.
We prove if 4|n, then An = I.
Suppose 4|n.
Then there exists an integer k such that n = 4k.
Thus, An = A4k = (A4)k = Ik = I, as desired.

Conversely, we prove if An = I, then 4|n.
Suppose An = I.
We must prove 4|n.
By the division algorithm, there are unique integers q and r such that n =

4q + r with 0 ≤ r < 4.
Hence, either r = 0 or r = 1 or r = 2 or r = 3.
Observe that Ar = An−4q = AnA−4q = IA−4q = A−4q = (A4)−q = I−q = I.
Computation shows that A1 6= I and A2 6= I and A3 6= I.
Hence, r cannot be 1, 2 or 3.
Thus, r must be zero.
Therefore, n = 4q, so 4|n, as desired.

Exercise 93. Let ω = −1
2 +

√
3
2 i.

Then ωn = 1 if and only if 3|n, for any integer n.

Solution. Observe that ω ∈ C.
We must prove (∀n ∈ Z)(ωn = 1↔ 3|n).
Thus, we let n ∈ Z be arbitrary.
To prove ωn = 1↔ 3|n, we must prove:
1. ωn = 1⇒ 3|n
2. 3|n⇒ ωn = 1.
Note that ω = cis( 2π

3 ).
We compute ωn for various values of n.
We observe the pattern of repeating powers of ω, namely, 1, ω, ω2 repeat.
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Proof. Let n be an arbitrary integer.
To prove ωn = 1⇒ 3|n, assume ωn = 1.
We must prove 3|n.
Using the division algorithm to divide n by 3, we obtain unique integers q

and r such that n = 3q + r and 0 ≤ r < 3.
To prove 3|n, we must prove r = 0.
Observe that ω3 = 1 and

1 = ωn

= ω3q+r

= ω3qωr

= (ω3)qωr

= (1)qωr

= 1ωr

= ωr.

Since 0 ≤ r < 3, then either r = 0 or r = 1 or r = 2.
A computation shows that ω1 6= 1 and ω2 6= 1.
Thus, r cannot be 1 or 2.
Hence, r must be zero.
Therefore, n = 3q, so 3|n, as desired.
To prove 3|n⇒ ωn = 1, assume 3|n.
We must prove ωn = 1.
Since 3|n, then there exists an integer k such that n = 3k.
Thus, ωn = ω3k = (ω3)k = 1k = 1, as desired.

Exercise 94. For all n ∈ N, 5n − 4n− 1 is divisible by 16.

Proof. To prove the statement 5n − 4n − 1 is divisible by 16 for all n ∈ N, we
prove 16|(5n − 4n− 1) for all n ∈ N by induction on n.

Let S = {n ∈ N : (16|(5n − 4n− 1))}.
Basis:
Since 51 − 4 ∗ 1− 1 = 0 and 16|0, then 1 ∈ S.
Induction:
Let k ∈ S.
Then k ∈ N and 16|(5k − 4k − 1).
Since 16|(5k − 4k − 1), then 16|5(5k − 4k − 1).
Since 16|16k, then 16 divides the sum 5(5k−4k−1)+16k = 5k+1−4k−5 =

5k+1 − 4(k + 1)− 1.
Thus, 16 divides 5k+1 − 4(k + 1)− 1, so k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S.
Therefore, by PMI, 5n − 4n− 1 is divisible by 16 for all n ∈ N.

Exercise 95. For all n ∈ N, 10n+1 + 10n + 1 is divisible by 3.
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Proof. Let S = {n ∈ N : (3|(10n+1 + 10n + 1))}.
Basis:
Since 101+1 + 101 + 1 = 111 = 3 · 37, then 3|(101+1 + 101 + 1), so 1 ∈ S.
Induction:
Let k ∈ S.
Then k ∈ N and 3|(10k+1 + 10k + 1), so there exists m ∈ Z such that

10k+1 + 10k + 1 = 3m.
Observe that

10(k+1)+1 + 10k+1 + 1 = 10 · 10k+1 + 10 · 10k + 1

= (9 + 1) · 10k+1 + (9 + 1) · 10k + 1

= 9 · 10k+1 + 10k+1 + 9 · 10k + 10k + 1

= (9 · 10k+1 + 9 · 10k) + (10k+1 + 10k + 1)

= (9 · 10k+1 + 9 · 10k) + 3m

= 3(3 · 10k+1 + 3 · 10k) + 3m

= 3(3 · 10k+1 + 3 · 10k + m).

Since 3·10k+1+3·10k+m is an integer, then this implies 3 divides 10(k+1)+1+
10k+1 + 1, so k + 1 ∈ S.

Hence, k ∈ S implies k + 1 ∈ S.
Therefore, by PMI, 10n+1 + 10n + 1 is divisible by 3 for all n ∈ N.

Exercise 96. For all n ∈ Z+, 4 · 102n + 9 · 102n−1 + 5 is divisible by 99.

Proof. Let S = {n ∈ Z+ : (99|(4 · 102n + 9 · 102n−1 + 5))}.
Basis:
Since 4 · 102(1) + 9 · 102(1)−1 + 5 = 400 + 90 + 5 = 495 = 99 · 5, then

99|(4 · 102(1) + 9 · 102(1)−1 + 5), so 1 ∈ S.
Induction:
Let k ∈ S.
Then k ∈ Z+ and 99|(4 · 102k + 9 · 102k−1 + 5), so there exists m ∈ Z such

that 4 · 102k + 9 · 102k−1 + 5 = 99m.
Observe that

4 · 102(k+1) + 9 · 102(k+1)−1 + 5 = 4 · 102k+2 + 9 · 102k+2−1 + 5

= 4 · 102k · 102 + 9 · 102k−1 · 102 + 5

= 4(100) · 102k + 9(100) · 102k−1 + 5

= 100(4 · 102k) + 100(9 · 102k−1) + 5

= 100(4 · 102k) + 100(9 · 102k−1) + (500− 495)

= 100(4 · 102k) + 100(9 · 102k−1) + 100 · 5− 99 · 5
= 100(4 · 102k + 9 · 102k−1 + 5)− 99 · 5
= 100(99m)− 99 · 5
= 99(100m− 5).
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Since 100m − 5 is an integer, then this implies 99 divides 4 · 102(k+1) + 9 ·
102(k+1)−1 + 5, so k + 1 ∈ S.

Hence, k ∈ S implies k + 1 ∈ S.
Therefore, by PMI, 4·102n+9·102n−1+5 is divisible by 99 for all n ∈ Z+.

Exercise 97. Every integer 10n+1 + 3 · 10n + 5 is divisible by 9 for n ∈ N.

Solution. We re-state this using the definition of divisibility: ∀(n ∈ N), 9|10n+1+
3 · 10n + 5.

We must prove the proposition ∀(n ∈ N), Sn where the statement Sn is
9|10n+1 + 3 · 10n + 5.

We can work backwards to prove 9|10k+1 + 3 · 10k + 5 → 9|10(k+1)+1 + 3 ·
10k+1 + 5.

If 9|10k+1 + 3 · 10k + 5 is true, then 10k+1 + 3 · 10k + 5 = 9a for some integer
a.

Thus, 10k+1 + 3 · 10k = 9a− 5.
If 9|10(k+1)+1 + 3 · 10k+1 + 5, then 10(k+1)+1 + 3 · 10k+1 + 5 = 9b for some

integer b.
Thus, 10(k+1)+1 + 3 · 10k+1 = 9b− 5.
Hence,10(10k+1 + 3 · 10k) = 10(9b− 5).
So, we can multiply 10k+1 +3 ·10k = 9a−5 by 10 to complete the proof.

Proof. Let n ∈ N and let Sn be the statement 9 divides 10n+1 + 3 · 10n + 5.
We prove using mathematical induction.
Basis:
For n = 1, the statement S1 is 9 divides 101+1 + 3 · 10 + 5.
Since 101+1 + 3 · 10 + 5 = 135 = 9 ∗ 15, then 9 divides 101+1 + 3 · 10 + 5, so

S1 is true.
Induction:
Let k ∈ N.
Suppose 9|10k+1 + 3 · 10k + 5 for any k ≥ 1.
Then 10k+1 + 3 · 10k + 5 = 9a for some integer a.
Observe that

10k+1 + 3 · 10k + 5 = 9a

10k+1 + 3 · 10k = 9a− 5

10k+2 + 3 · 10k+1 = 90a− 50

10k+2 + 3 · 10k+1 + 5 = 90a− 45

10k+2 + 3 · 10k+1 + 5 = 9(10a− 5)

Since a ∈ Z, then 10a− 5 ∈ Z.
Therefore, 9|10(k+1)+1 + 3 · 10k+1 + 5 for any k ≥ 1.
Since S1 is true and 9 divides 10k+1+3 ·10k+5 implies 9 divides 10(k+1)+1+

3 · 10k+1 + 5 for any integer k ≥ 1, then 9 divides 10n+1 + 3 · 10n + 5 for every
n ∈ N.
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Exercise 98. Each number in the sequence 12,102,1002,10002,..., is divisible
by 6.

Solution. Let a = (12, 102, 1002, 10002, 100002, ...). We can find an expression
for the nth term of the sequence a by observing the pattern:

a1 = 12 = 101 + 2

a2 = 102 = 102 + 2

a3 = 1002 = 103 + 2

...

ak = 10k + 2

Hence the nth term of the sequence is an = 10n + 2.
We must prove the proposition ∀(n ∈ N), Sn where the statement Sn is

6|10n + 2.
Since Sn is a statement about the natural numbers, we use proof by induc-

tion(weak).
Our basis is n0 = 1 and we must prove S1.
For induction we must prove Sk → Sk+1 for any k ≥ 1.
Thus we must prove 6|(10k + 2)→ 6|(10k+1 + 2) for k ≥ 1.
We use direct proof to assume 6|(10k + 2) for any k ≥ 1.
This is our induction hypothesis.

Proof. Let n ∈ N and let Sn be the statement 6|10n + 2.
We prove using mathematical induction(weak).

Basis: For n = 1, the statement S1 is 6|12 which is true because 12 = 6 · 2.

Induction: Let k ∈ N.
Suppose 6|10k + 2 for k ≥ 1.
Then there is a b ∈ Z for which 6b = 10k + 2.
Observe that:

10k+1 + 2 = 10 · 10k + 20− 18

= 10(10k + 2)− 18

= 10(6b)− 18

= 6(10b− 3)

Hence 6|10k+1 + 2.
This completes the proof that Sk → Sk+1 for k ≥ 1.
It follows by induction that 6|10n + 2 for all natural numbers n.

Exercise 99. Let n ∈ Z.
Then the only positive divisor of n and n + 1 is 1.
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Proof. Let S be the set of all positive divisors of n and n + 1.
Then S = {d ∈ Z+ : d|n ∧ d|(n + 1)}.
We must prove S = {1}.
Since 1 ∈ Z+ and 1|n and 1|(n + 1), then 1 ∈ S, so {1} ⊂ S.

Let d ∈ S.
Then d ∈ Z+ and d|n and d|(n + 1).
Since d|n and d|(n+1), then d divides any linear combination of n and n+1.
In particular, d divides (−1)(n) + (1)(n + 1) = −n + n + 1 = 1, so d|1.
Since d ∈ Z+ and 1 ∈ Z+ and d|1, then d ≤ 1.
Since d ∈ Z+, then d ≥ 1.
Since d ≤ 1 and 1 ≤ d, then by the anti-symmetric property of Z+, d = 1.
Hence, d ∈ {1}, so S ⊂ {1}.
Since S ⊂ {1} and {1} ⊂ S, then S = {1}, as desired.

Exercise 100. Let n ∈ Z+.
Then gcd(n, n + 1) = 1.

Proof. Since 1 divides any integer, then 1|n and 1|(n + 1), so 1 is a common
divisor of n and n + 1.

Let c be any common divisor of n and n + 1.
Then c|n and c|(n + 1), so c divides the difference (n + 1)− n = 1.
Hence, c|1, so any common divisor of n and n + 1 divides 1.
Since 1 ∈ Z+ and 1 is a common divisor of n and n + 1 and any common

divisor of n and n+ 1 divides 1, then by definition of gcd, 1 = gcd(n, n+ 1).

Proof. Since 1 = (n + 1) − n = −n + (n + 1) is a linear combination of n and
n + 1, then 1 is a multiple of gcd(n, n + 1), so gcd(n, n + 1) divides 1.

Since the only positive integer that divides 1 is 1, then gcd(n, n+1) = 1.

Exercise 101. Let n ∈ Z+.
Then either gcd(n, n + 2) = 1 or gcd(n, n + 2) = 2.

Proof. Either n is even or n is odd.
We consider each case separately.
Case 1: Suppose n is even.
Then n = 2k for some integer k.
Thus, n + 2 = 2k + 2 = 2(k + 1), so n + 2 is even.
Since n is even and n + 2 is even, then 2 divides n and n + 2, so 2 is a

common divisor of n and n + 2.
Let c be any common divisor of n and n + 2.
Then c|n and c|(n + 2), so c divides the difference (n + 2)− n = 2.
Hence, c|2, so any common divisor of n and n + 2 divides 2.
Since 2 ∈ Z+ and 2 is a common divisor of n and n + 2 and any common

divisor of n and n + 2 divides 2, then 2 = gcd(n, n + 2), by definition of gcd.
Case 2: Suppose n is odd.
Since 1 divides any integer, then 1|n and 1|(n + 2).

50



Let c be any common divisor of n and n + 2.
Then c|n and c|(n + 2), so c divides the difference (n + 2)− n = 2.
Hence, c|2.
Without loss of generality, assume c > 0.
Then either c = 1 or c = 2.
If c = 2, then 2|n, so n is even.
But, this contradicts the assumption n is odd.
Therefore, c 6= 2, so c = 1.
Hence, any common divisor of n and n + 2 must divide 1.
Since 1 ∈ Z+ and 1 is a common divisor of n and n + 2 and any common

divisor of n and n + 2 divides 1, then 1 = gcd(n, n + 2).

Exercise 102. Let k ∈ Z and n ∈ Z+.
Then gcd(n, n + k)|k.
This means gcd of n and n + k is a factor of k.

Proof. Let d = gcd(n, n + k).
Then d|n and d|(n + k), so d divides the difference (n + k)− n = k.
Therefore, d|k.

Exercise 103. Let k, n ∈ Z.
Then gcd(k, n + k) = 1 iff gcd(k, n) = 1.

Proof. Suppose gcd(k, n) = 1.
Then there exist integers x, y such that xk + yn = 1.
Thus, 1 = xk + yn = xk− yk + yk + yn = k(x− y) + y(k + n) = (x− y)k +

y(n + k).
Since x−y and y are integers and (x−y)k+y(n+k) = 1, then gcd(k, n+k) =

1.

Proof. Conversely, suppose gcd(k, n + k) = 1.
Then there exist integers s, t such that sk + t(n + k) = 1.
Thus, 1 = sk + tn + tk = sk + tk + tn = (s + t)k + tn.
Since s + t and t are integers and (s + t)k + tn = 1, then gcd(k, n) = 1.

Exercise 104. Let k, n ∈ Z.
Then gcd(k, n + k) = d iff gcd(k, n) = d.

Proof. Suppose gcd(k, n) = d.
Then d ∈ Z+ and d|k and d|n and if c is any common divisor of k and n,

then c|d.
Since d|n and d|k, then d divides the sum n + k, so d|(n + k).
Since d|k and d|(n + k), then d is a common divisor of k and n + k.

Let c be any common divisor k and n + k.
Then c|k and c|(n + k), so c divides the difference (n + k)− k = n.
Hence, c|n.
Since c|k and c|n, then c is a common divisor of k and n, so c|d.
Therefore, any common divisor of k and n + k divides d.
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Since d ∈ Z+ and d is a common divisor of k and n + k and any common
divisor of k and n+k divides d, then by definition of gcd, d = gcd(k, n+k).

Proof. Conversely, suppose gcd(k, n + k) = d.
Then d ∈ Z+ and d|k and d|(n+ k) and if c is any common divisor of k and

n + k, then c|d.
Since d|k and d|(n + k), then d divides the difference (n + k)− k = n.
Since d|k and d|n, then d is a common divisor of k and n.

Let c be any common divisor of k and n.
Then c|k and c|n, so c divides the sum n + k.
Since c|k and c|(n + k), then c is a common divisor of k and n + k, so c|d.
Hence, any common divisor of k and n divides d.
Since d ∈ Z+ and d is a common divisor k and n and any common divisor

of k and n divides d, then by definition of gcd, d = gcd(k, n).

Exercise 105. Let k, n ∈ Z.
Then gcd(k, n + rk) = d for all r ∈ Z iff gcd(k, n) = d.

Proof. Suppose gcd(k, n) = d.
Then d ∈ Z+ and d|k and d|n and if c is any common divisor of k and n,

then c|d.

Let r ∈ Z.
Since d|k, then d|rk.
Since d|n and d|rk, then d divides the sum n + rk.
Since d|k and d|(n + rk), then d is a common divisor of k and n + rk.

Let c be any common divisor of k and n + rk.
Then c|k and c|(n + rk).
Since c|k, then c|rk.
Since c|(n+ rk) and c|rk, then c divides the difference (n+ rk)− rk = n, so

c|n.
Since c|k and c|n, then c is a common divisor of k and n, so c|d.
Hence, any common divisor of k and n + rk divides d.

Since d ∈ Z+ and d is a common divisor of k and n + rk and any common
divisor of k and n+rk divides d, then by definition of gcd, d = gcd(k, n+rk).

Proof. Conversely, suppose gcd(k, n + rk) = d for all r ∈ Z.
Let r = 0.
Then d = gcd(k, n + rk) = gcd(k, n + 0k) = gcd(k, n + 0) = gcd(k, n).
Therefore, gcd(k, n) = d.

Exercise 106. Find all positive integers d such that d divides n2 + 1 and
(n + 1)2 + 1 for some integer n.
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Solution. Let d be a positive integer such that d|(n2 + 1) and d|[(n + 1)2 + 1]
for some integer n.

Since d|(n2 + 1) and d|[(n + 1)2 + 1], then d divides any linear combination
of n2 + 1 and (n + 1)2 + 1.

In particular, d divides the difference [(n + 1)2 + 1]− (n2 + 1) = (n2 + 2n +
1) + 1− n2 − 1 = 2n + 1.

Since d|(2n + 1) and d|(n2 + 1), then d divides any linear combination of
2n + 1 and n2 + 1.

In particular, d divides the sum 4(n2 + 1)− (2n + 1)2 + 2(2n + 1) = (4n2 +
4)− (4n2 + 4n + 1) + (4n + 2) = 5.

Since d ∈ Z+ and d|5, then d must be 1 or 5.

Exercise 107. If n is a positive integer, find the possible values of gcd(n, n+10).

Proof. Let n ∈ Z+.
Let d = gcd(n, n + 10).
Then d ∈ Z+ and d|n and d|(n+ 10), so d divides any linear combination of

n and n + 10.
In particular, d divides −n + (n + 10) = 10.
Thus, d|10, so d must be one of 1, 2, 5, 10.
Therefore, d ∈ {1, 2, 5, 10}.

Exercise 108. Let n ∈ Z.
Then gcd(n, 1) = 1.

Proof. Since 1 and 1 − n are integers and (1)(n) + (1 − n)(1) = n + 1 − n =
1 + n− n = 1 + 0 = 1, then 1 is a linear combination of n and 1.

Hence, 1 is a multiple of gcd(n, 1), so gcd(n, 1) divides 1.
The only positive integer that divides 1 is 1, so gcd(n, 1) = 1.

Exercise 109. Let n ∈ Z+.
Then gcd(3n + 2, 5n + 3) = 1.

Proof. Since 5 and −3 are integers and 5(3n + 2) + (−3)(5n + 3) = 15n + 10−
15n− 9 = 1, then gcd(3n + 2, 5n + 3) = 1.

Exercise 110. Let a ∈ Z.
Then gcd(a, a + n) divides n for all n ∈ Z+.
Therefore, gcd(a, a + 1) = 1.

Proof. Let n ∈ Z+.
Let d = gcd(a, a + n).
Then d is a common divisor of a and a+n, so d divides any linear combination

of a and a + n.
In particular, d divides the difference (a + n)− a = n, so d|n.
Therefore, gcd(a, a + n)|n for any positive integer n.
For n = 1 this implies gcd(a, a + 1)|1.
The only positive integer that divides 1 is 1, so gcd(a, a + 1) = 1.
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Exercise 111. Let a, b ∈ Z.
Then there exist integers m,n such that c = ma + nb iff gcd(a, b)|c.

Proof. Observe that gcd(a, b)|c iff c is a multiple of gcd(a, b) iff c is a linear
combination of a and b iff there exist integers m and n such that c = ma + nb.

Therefore, gcd(a, b)|c iff there exist integers m and n such that c = ma +
nb.

Exercise 112. Let a, b ∈ Z.
If there exist integers m,n such that gcd(a, b) = ma+nb, then gcd(m,n) = 1.

Proof. Suppose there exist integers m and n such that gcd(a, b) = ma + nb.
Let d = ma + nb.
Then d = gcd(a, b), so d ∈ Z+ and d|a and d|b.
Hence, a = dx and b = dy for some integers x and y.
Thus, d = m(dx)+n(dy) = m(xd)+n(yd) = (mx)d+(ny)d = xmd+ynd =

(xm + yn)d.
Since d ∈ Z+, then d > 0, so d 6= 0.
Hence, 1 = xm + yn.
Since there exist integers x and y such that xm + yn = 1, then gcd(m,n) =

1.

Proposition 113. Let a, b ∈ Z.
Then (a, b) = (a, ka + b) for all k ∈ Z.

Proof. Let d = gcd(a, b).
Then d|a and d|b and if c is any integer such that c|a and c|b, then c|d.
Since d|a and d|b, then d divides any linear combination of a and b, so d

divides ka + b.
Since d|a and d|(ka + b), then d is a common divisor of a and ka + b.
Let c be an arbitrary integer such that c|a and c|(ka + b).
Then c divides any linear combination of a and ka + b.
In particular, c divides (−k)a + (1)(ka + b) = −ka + ka + b = 0 + b = b, so

c|b.
Since c|a and c|b, then c|d.
Thus, any common divisor of a and ka + b divides d.
Since d is a common divisor of a and ka + b and any common divisor of a

and ka + b divides d, then d = gcd(a, ka + b).

Exercise 114. Let a, b ∈ Z∗.
For all d ∈ Z∗, if d|a and d|b, then gcd(ad ,

b
d ) = 1

d gcd(a, b).

Proof. Let d ∈ Z∗ such that d|a and d|b.
Then d 6= 0 and there exist integers k1 and k2 such that a = dk1 and b = dk2.
Since a, b ∈ Z∗, then the greatest common divisor of a and b exists and is

unique.
Let c = gcd(a, b).
Then
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c = gcd(dk1, dk2)

= d · gcd(k1, k2)

= d · gcd(
a

d
,
b

d
).

Since c = d · gcd(ad ,
b
d ) and d 6= 0, then c

d = gcd(ad ,
b
d ).

Therefore, gcd(ad ,
b
d ) = gcd(a,b)

d = 1
d gcd(a, b).

Exercise 115. Let a, b, c ∈ Z.
If gcd(a, b) = 1 and c|a, then gcd(b, c) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Since c|a, then a = ck for some integer k.
Thus, 1 = m(ck) + nb = nb + m(ck) = nb + (mk)c.
Since n and mk are integers and nb + (mk)c = 1, then gcd(b, c) = 1.

Exercise 116. Let a, b, c ∈ Z.
If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).

Proof. Suppose gcd(a, b) = 1.
Let d = gcd(c, b).
Then d|c and d|b and if e is any integer such that e|c and e|b, then e|d.
We must prove gcd(ac, b) = d.
Since d|c, then d divides any multiple of c, so d|ac.
Since d|ac and d|b, then d is a common divisor of ac and b.
Let e ∈ Z such that e|ac and e|b.
Since e is a common divisor of ac and b, then e divides any linear combination

of ac and b.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Thus, c = c · 1 = c(ma + nb) = cma + cnb = m(ac) + (cn)b, so c is a linear

combination of ac and b.
Hence, e|c.
Since e|c and e|b, then e|d, so any common divisor of ac and b divides d.
Since d is a common divisor of ac and b and any common divisor of ac and

b divides d, then d = gcd(ac, b).

Exercise 117. Let a, b ∈ Z.
Then gcd(gcd(a, b), b) = gcd(a, b).

Proof. Let d = gcd(a, b).
Then d ∈ Z+ and d|a and d|b and if c is any common divisor of a and b, then

c divides d.
Since d|d and d|b, then d is a common divisor of d and b.
Let c be any common divisor of d and b.
Then c|d and c|b.
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Since c|d and d|a, then c|a.
Since c|a and c|b, then c is a common divisor of a and b, so c|d.
Hence, any common divisor of d and b divides d.
Since d ∈ Z+ and d is a common divisor of d and b and any common divisor

of d and b divides d, then by definition of gcd, gcd(d, b) = d.
Therefore, gcd(gcd(a, b), b) = gcd(d, b) = d = gcd(a, b), as desired.

Exercise 118. Let a, b, c ∈ Z.
If gcd(a, b) = 1 and c|(a + b), then gcd(a, c) = gcd(b, c) = 1.

Proof. Suppose gcd(a, b) = 1 and c|(a + b).

Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Let d = gcd(a, c).
Then d ∈ Z+ and d|a and d|c.
Since d|c and c|(a + b), then d|(a + b).
Since d|a and d|(a+ b), then d divides any linear combination of a and a+ b.
Since (−1)a+ (1)(a+ b) = −a+ a+ b = 0 + b = b is a linear combination of

a and a + b, then this implies d|b.
Since d|a and d|b, then d divides any linear combination of a and b.
Since ma + nb = 1 is a linear combination of a and b, then this implies d|1.
Since d ∈ Z+ and d|1, then this implies d = 1.
Therefore, gcd(a, c) = 1.

Let e = gcd(b, c).
Then e ∈ Z+ and e|b and e|c.
Since e|c and c|(a + b), then e|(a + b).
Since e|b and e|(a+ b), then e divides any linear combination of b and a+ b.
Since (−1)b + (1)(a + b) = −b + a + b = −b + b + a = 0 + a = a is a linear

combination of b and a + b, then this implies e|a.
Since e|a and e|b, then e divides any linear combination of a and b.
Since ma + nb = 1 is a linear combination of a and b, then this implies e|1.
Since e ∈ Z+ and e|1, then this implies e = 1.
Therefore, gcd(b, c) = 1.

Exercise 119. Let a, b, d ∈ Z such that d is a common divisor of a and b.
If gcd(ad ,

b
d ) = 1, then d = gcd(a, b).

Proof. Since d is a common divisor of a and b, then d|a and d|b, so a = dx and
b = dy for some integers x and y.

Thus, x = a
d ∈ Z and y = b

d ∈ Z.

Suppose gcd(ad ,
b
d ) = 1.

Then there exist integers m and n such that m(ad ) + n( bd ) = 1.
Thus, ma + nb = d, so d is a linear combination of a and b.
Let c ∈ Z such that c is any common divisor of a and b.
Then c divides any linear combination of a and b, so c|d.
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Thus, any common divisor of a and b divides d.
Since d is a common divisor of a and b and any common divisor of a and b

divides d, then d = gcd(a, b).

Exercise 120. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(a + b, a− b) is 1 or 2.

Proof. Let d = gcd(a + b, a− b).
Then d ∈ Z+ and d|(a + b) and d|(a− b).
We must prove either d = 1 or d = 2.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Thus, 2ma + 2nb = 2, so 2 is a linear combination of 2a and 2b.
Since d|(a + b) and d|(a− b), then d divides the sum (a + b) + (a− b) = 2a,

so d|2a.
Since d|(a+b) and d|(a−b), then d divides the difference (a+b)−(a−b) = 2b,

so d|2b.
Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so

d|2.
Since d ∈ Z+ and d|2, then either d = 1 or d = 2, as desired.

Exercise 121. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(a + 2b, 2a + b) is 1 or 3.

Proof. Let d = gcd(a + 2b, 2a + b).
Then d ∈ Z+ and d|(a + 2b) and d|(2a + b).
We must prove either d = 1 or d = 3.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Thus, 3ma + 3nb = 3, so 3 is a linear combination of 3a and 3b.
Since d|(a + 2b) and d|(2a + b), then d divides any linear combination of

a + 2b and 2a + b.
Since (−1)(a + 2b) + 2(2a + b) = −a− 2b + 4a + 2b = 3a, then 3a is a linear

combination of a + 2b and 2a + b, so d|3a.
Since (2)(a + 2b) + (−1)(2a + b) = 2a + 4b− 2a− b = 3b, then 3b is a linear

combination of a + 2b and 2a + b, so d|3b.
Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so

d|3.
Since d ∈ Z+ and d|3, then either d = 1 or d = 3, as desired.

Exercise 122. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(a + b, a2 + b2) is 1 or 2.

Proof. Let d = gcd(a + b, a2 + b2).
Then d ∈ Z+ and d|(a + b) and d|(a2 + b2).
We must prove either d = 1 or d = 2.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Since d|(a + b) and d|(a2 + b2) , then d divides any linear combination of

a + b and a2 + b2.
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Since (a2 + b2)− (a− b)(a+ b) = a2 + b2− (a2− b2) = a2 + b2−a2 + b2 = 2b2,
then 2b2 is a linear combination of a + b and a2 + b2.

Thus, d|2b2.
Since (a + b)2 − (a2 + b2) = (a2 + 2ab + b2) − a2 − b2 = 2ab, then 2ab is a

linear combination of a + b and a2 + b2.
Thus, d|2ab.
Since 1 = ma + nb, then 2b = 2b(ma + nb) = 2bma + 2bnb = 2abm + 2b2n,

so 2b is a linear combination of 2ab and 2b2.
Since d|2ab and d|2b2, then d divides any linear combination of 2ab and 2b2,

so this implies d|2b.
Since 2(a+ b)2−4ab−2b2 = 2(a2 + 2ab+ b2)−4ab−2b2 = 2a2 + 4ab+ 2b2−

4ab− 2b2 = 2a2, then 2a2 is a linear combination of a + b and 2ab and 2b2.
Since d|(a + b) and d|2ab and d|2b2, then d divides any linear combination

of a + b and 2ab and 2b2, so d|2a2.
Since 1 = ma + nb, then 2a = 2a(ma + nb) = 2ama + 2anb = 2a2m + 2abn,

so 2a is a linear combination of 2a2 and 2ab.
Since d|2a2 and d|2ab, then d divides any linear combination of 2a2 and 2ab,

so d|2a.
Since 1 = ma + nb, then 2 = 2(ma + nb) = 2ma + 2nb, so 2 is a linear

combination of 2a and 2b.
Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so

d|2.
Since d ∈ Z+ and d|2, then either d = 1 or d = 2.

Exercise 123. Let a, b ∈ Z such that gcd(a, b) = 1.
Then gcd(a + b, a2 − ab + b2) is 1 or 3.

Proof. Let d = gcd(a + b, a2 − ab + b2).
Then d ∈ Z+ and d|(a + b) and d|(a2 − ab + b2).
We must prove either d = 1 or d = 3.
By the division algorithm, a2 − ab + b2 = (a + b)(a − 2b) + 3b2, so 3b2 =

(a2 − ab + b2)− (a + b)(a− 2b).
Thus, 3b2 is a linear combination of a2 − ab + b2 and a + b.
Since d|(a + b) and d|(a2 − ab + b2), then d divides any linear combination

of a + b and a2 − ab + b2, so d|3b2.
Since (a + b)2 − (a2 − ab + b2) = (a2 + 2ab + b2)− a2 + ab− b2 = 3ab, then

3ab is a linear combination of a + b and a2 − ab + b2, so d|3ab.
Since 1 = ma + nb, then 3b = 3b(ma + nb) = 3bma + 3bnb = 3abm + 3b2n,

so 3b is a linear combination of 3ab and 3b2.
Since d|3ab and d|3b2, then d divides any linear combination of 3ab and 3b2,

so d|3b.
Since 2(a2−ab+b2)+(a+b)2−3b2 = (2a2−2ab+2b2)+(a2+2ab+b2)−3b2 =

3a2, then 3a2 is a linear combination of a2 − ab + b2 and a + b and 3b2.
Since d|(a2 − ab + b2) and d|(a + b) and d|3b2, then d divides any linear

combination of a2 − ab + b2 and a + b and 3b2, so d|3a2.
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Since 1 = ma + nb, then 3a = 3a(ma + nb) = 3ama + 3anb = 3a2m + 3abn,
so 3a is a linear combination of 3a2 and 3ab.

Since d|3a2 and d|3ab, then d divides any linear combination of 3a2 and 3ab,
so d|3a.

Since 1 = ma + nb, then 3 = 3(ma + nb) = 3ma + 3nb, so 3 is a linear
combination of 3a and 3b.

Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so
d|3.

Since d ∈ Z+ and d|3, then this implies either d = 1 or d = 3.

Exercise 124. Let n be an integer with n > 1.
Then either gcd(n− 1, n2 + n + 1) = 1 or gcd(n− 1, n2 + n + 1) = 3.

Proof. Let d = gcd(n− 1, n2 + n + 1).
We must prove either d = 1 or d = 3.
By the division algorithm, we have n2 + n + 1 = (n − 1)(n + 2) + 3, so

3 = (n2 + n + 1)− (n− 1)(n + 2) = −(n + 2)(n− 1) + (n2 + n + 1).
Thus, 3 is a linear combination of n− 1 and n2 + n+ 1, so 3 is a multiple of

d.
Hence, d|3.
Since d ∈ Z+ and d|3, then either d = 1 or d = 3.

Exercise 125. Let a, b be positive integers.
Then gcd(a, b) = 1 if and only if gcd(a + b, ab) = 1.

Proof. We prove if gcd(a, b) = 1, then gcd(a + b, ab) = 1.
Suppose gcd(a, b) = 1.
Since 1 divides every integer, then 1|(a + b) and 1|ab, so 1 is a common

divisor of a + b and ab.

Let c ∈ Z such that c|(a + b) and c|ab.
Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Since c|(a + b) and c|ab, then c divides any linear combination of a + b and

ab.
Since a(a + b) − ab = a2 + ab − ab = a2, then a2 is a linear combination of

a + b and ab, so c|a2.
Since 1 = ma + nb, then a = a(ma + nb) = ama + anb = a2m + abn =

m(a2) + n(ab), so a is a linear combination of a2 and ab.
Since c|a2 and c|ab, then c divides any linear combination of a2 and ab, so

c|a.

Since b(a + b) − ab = ba + b2 − ab = ab + b2 − ab = b2, then b2 is a linear
combination of a + b and ab, so c|b2.

Since 1 = ma + nb, then b = b(ma + nb) = bma + bnb = abm + b2n =
m(ab) + n(b2), so b is a linear combination of ab and b2.

Since c|ab and c|b2, then c divides any linear combination of ab and b2, so
c|b.
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Since c|a and c|b, then c divides any linear combination of a and b.
Since ma + nb = 1 is a linear combination of a and b, then this implies c|1.
Thus, if c|(a + b) and c|ab, then c|1, so any common divisor of a + b and ab

divides 1.

Since 1 is a common divisor of a+ b and ab and any common divisor of a+ b
and ab divides 1, then 1 = gcd(a + b, ab).

Proof. Conversely, suppose gcd(a + b, ab) = 1.
Since 1 divides every integer, then 1|a and 1|b, so 1 is a common divisor of

a and b.
Let c ∈ Z such that c|a and c|b.
Then c divides any linear combination of a and b, so c|(a + b) and c|ab.
Thus, c is a common divisor of a + b and ab, so c divides gcd(a + b, ab).
Therefore, c|1, so any divisor of a and b divides 1.

Since 1 is a common divisor of a and b and any divisor of a and b divides 1,
then 1 = gcd(a, b).

Exercise 126. Let a, b, n be nonzero integers.
If a|n and b|n and gcd(a, b) = d, then ab|nd.

Proof. Suppose a|n and b|n and gcd(a, b) = d.
Since a|n and b|n, then there are integers k1 and k2 such that n = ak1 and

n = bk2.
Since d = gcd(a, b), then d is the least positive linear combination of a and

b, so there are integers x and y such that d = xa + yb.
Let e = xk2 + yk1.
Clearly, e is an integer.
Observe that

abe = ab(xk2 + yk1)

= abxk2 + abyk1

= xa(bk2) + yb(ak1)

= xan + ybn

= (xa + yb)n

= n(xa + yb)

= nd.

Since e ∈ Z and nd = abe, then ab|nd.

Exercise 127. Let a, b, c be positive integers.
If gcd(a, b) = 1 and c|b, then gcd(a, c) = 1.
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Proof. Suppose gcd(a, b) = 1 and c|b.
Since gcd(a, b) = 1, then there are integers x and y such that 1 = xa + yb.
Since c|b, then b = cd for some integer d.
Observe that 1 = xa + yb = xa + y(cd) = xa + y(dc) = xa + (yd)c.
Since x ∈ Z and yd ∈ Z and xa + (yd)c = 1, then gcd(a, c) = 1.

Exercise 128. For all integers n > 1, n− 1 and 2n− 1 are relatively prime.

Solution. We express 1 as a linear combination of n− 1 and 2n− 1.
Using the division algorithm to divide 2n − 1 by n − 1 we obtain 2n − 1 =

2(n− 1) + 1, so 1 = −2(n− 1) + (2n− 1).

Proof. Let n be an arbitrary integer greater than one.
Since −2 ∈ Z and 1 ∈ Z and −2(n−1)+(1)(2n−1) = −2n+2+2n−1 = 1,

then gcd(n− 1, 2n− 1) = 1.

Exercise 129. For all integers n > 1, 2n− 1 and 3n− 1 are relatively prime.

Solution. We express 1 as a linear combination of 2n− 1 and 3n− 1.
So, we want to find integers a and b such that a(2n− 1) + b(3n− 1) = 1.
To have 2an and 3bn cancel each other, we can let a = −3 and b = 2.

Proof. Let n be an arbitrary integer greater than one.
Since −3 ∈ Z and 2 ∈ Z and −3(2n− 1) + 2(3n− 1) = −6n+ 3 + 6n− 2 = 1,

then gcd(2n− 1, 3n− 1) = 1.

Exercise 130. Let m and n be positive integers.
Then gcd(2m − 1, 2n − 1) = 1 if and only if gcd(m,n) = 1.

Solution. We must prove:
1. if gcd(2m − 1, 2n − 1) = 1, then gcd(m,n) = 1.
2. if gcd(m,n) = 1, then gcd(2m − 1, 2n − 1) = 1.

Proof. We prove if gcd(m,n) = 1, then gcd(2m − 1, 2n − 1) = 1.
Suppose gcd(m,n) = 1.
Then ma + nb = 1 for some integers a and b.
To prove gcd(2m − 1, 2n − 1) = 1, we must find integers c and d such that

c(2m − 1) + d(2n − 1) = 1.
Observe that xk− 1 = (x− 1)(xk−1 +xk−2 + ...+x+ 1) for any real number

x and positive integer k.
We have a flaw here.
If k is a negative integer, then xk − 1 = (x− 1)(

∑−k
i=1(−x−i).

Now, couldn’t a or b be a negative integer?
If so, then

∑−k
i=1(−x−i) is not necessarily an integer, but rather a fraction

which implies that x− 1 6 |xk − 1.
We have no guarantee that both a and b are always positive, so this proof is

not valid if a or b is negative integer!
Let x = 2m and k = a.
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Then x and k are integers, so xk − 1, x − 1, and xk−1 + xk−2 + ... + x + 1
are integers.

Hence, x− 1|xk − 1, so 2m − 1|2ma − 1.
Therefore, 2ma − 1 = (2m − 1)r for some integer r.
Let x = 2n and k = b.
Then x and k are integers, so xk − 1, x − 1, and xk−1 + xk−2 + ... + x + 1

are integers.
Hence, x− 1|xk − 1, so 2n − 1|2nb − 1.
Therefore, 2nb − 1 = (2n − 1)s for some integer s.
Observe that

1 = 21 − 1

= 2ma+nb − 1

= 2ma ∗ 2nb − 1

= 2ma[(2n − 1)s + 1]− 1

= 2mas(2n − 1) + 2ma − 1

= 2mas(2n − 1) + r(2m − 1).

Let c = r and d = 2mas.
Clearly, c and d are integers and 1 = c(2m − 1) + d(2n − 1), as desired.
Suppose gcd(2m − 1, 2n − 1) = 1.
We must prove gcd(m,n) = 1.
Let d = gcd(m,n).
Then d|m and d|n.
Thus, m = da and n = db for some integers a and b.
Suppose for the sake of contradiction that gcd(m,n) 6= 1.
Then d 6= 1, so d > 1.
Observe that xk− 1 = (x− 1)(xk−1 +xk−2 + ...+x+ 1) for any real number

x and positive integer k.
We have a flaw here.
If k is a negative integer, then xk − 1 = (x− 1)(

∑−k
i=1(−x−i).

Now, couldn’t a or b be a negative integer?
If so, then

∑−k
i=1(−x−i) is not necessarily an integer, but rather a fraction

which implies that x− 1 6 |xk − 1.
We have no guarantee that both a and b are always positive, so this proof is

not valid if a or b is a negative integer!
Let x = 2d and k = a.
Then x and k are integers, so xk − 1, x − 1, and xk−1 + xk−2 + ... + x + 1

are integers.
Hence, x− 1|xk − 1, so 2d − 1|2da − 1.
Thus, 2d − 1|2m − 1, so 2m − 1 = (2d − 1)r for some integer r.
Let x = 2d and k = b.
Then x and k are integers, so xk − 1, x − 1, and xk−1 + xk−2 + ... + x + 1

are integers.
Hence, x− 1|xk − 1, so 2d − 1|2db − 1.
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Thus, 2d − 1|2n − 1, so 2n − 1 = (2d − 1)s for some integer s.
Since gcd(2m − 1, 2n − 1) = 1, then there are integers x and y such that

x(2m − 1) + y(2n − 1) = 1.
Observe that x(2d − 1)r + y(2d − 1)s = 1, so (2d − 1)(xr + ys) = 1.
Since 2d − 1 and xr + ys are integers whose product is one, then 2d − 1 is

either 1 or -1.
Since d > 1, then d ≥ 2, so 2d − 1 ≥ 3, so 2d − 1 > 0.
Hence, 2d − 1 = 1, so d = 1.
But, we have d 6= 1 and d = 1, a contradiction.
Therefore, gcd(m,n) = 1, as desired.

Exercise 131. Let a, b ∈ Z such that gcd(a, b) = 1.
Let r, s ∈ Z such that ar + bs = 1.
Then gcd(a, s) = gcd(r, b) = gcd(r, s) = 1.

Proof. Let m = gcd(a, s).
Then m ∈ Z+ and m|a and m|s, so m divides any linear combination of a

and s.
Since 1 = ar + bs = ra + bs is a linear combination of a and s, then m|1.
Since m ∈ Z+ and m|1, then m = 1, so gcd(a, s) = 1.

Let x = gcd(r, b).
Then x ∈ Z+ and x|r and x|b, so x divides any linear combination of r and

b.
Since 1 = ar + bs = ar + sb is a linear combination of r and b, then x|1.
Since x ∈ Z+ and x|1, then x = 1, so gcd(r, b) = 1.

Let y = gcd(r, s).
Then y ∈ Z+ and y|r and y|s, so y divides any linear combination of r and

s.
Since 1 = ar + bs is a linear combination of r and s, then y|1.
Since y ∈ Z+ and y|1, then y = 1, so gcd(r, s) = 1.

Exercise 132. If n has a divisor d with 1 < d < n, then it has a divisor
d′ with 1 < d′ ≤

√
n.

Let n ∈ Z.
Let d ∈ Z such that d|n and 1 < d < n.
Then there exists d′ ∈ Z such that 1 < d′ ≤

√
n.

Proof. Suppose there is an integer d such that d|n and 1 < d < n.
Either d ≤

√
n or d >

√
n.

We consider these cases separately.
Case 1: Suppose d ≤

√
n.

Let d′ = d.
Then d′ ∈ Z and d′ ≤

√
n.

Since 1 < d < n, then 1 < d, so 1 < d′.
Thus, 1 < d′ ≤

√
n.
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Therefore, there exists d′ ∈ Z such that 1 < d′ ≤
√
n.

Case 2: Suppose d >
√
n.

Since 1 < d < n, then 1 < d and d < n and 1 < n.
Since d|n, then there exists d′ ∈ Z such that n = dd′, so d′|n.
Since d > 1 > 0, then d > 0.

Suppose d′ ≤ 1.
Since d > 0, then n = dd′ ≤ d · 1 = d, so n ≤ d.
Thus, we have d < n and d ≥ n, a contradiction.
Hence, d′ > 1.

Suppose d′ >
√
n.

Since n > 1 > 0, then n > 0, so
√
n > 0.

Since
√
n < d′ and

√
n > 0, then

√
n
√
n <
√
n · d′.

Since d′ > 1 > 0, then d′ > 0.
Since

√
n < d and d′ > 0, then

√
n · d′ < dd′.

Thus, n = (
√
n)2 =

√
n
√
n <
√
n · d′ < dd′ = n.

Hence, n <
√
n · d′ < n, so n < n, a contradiction.

Therefore, d′ ≤
√
n.

Since 1 < d′ and d′ ≤
√
n, then 1 < d′ ≤

√
n.

Therefore, there exists d′ ∈ Z such that 1 < d′ ≤
√
n.

Lemma 133. Let a, b, c ∈ Z.
Then (a, bc) = 1 iff (a, b) = (a, c) = 1.

Proof. We prove if (a, bc) = 1, then (a, b) = (a, c) = 1.
Suppose (a, bc) = 1.
Then there are integers m and n such that ma + n(bc) = 1.
Since 1 = ma + nbc = ma + ncb = ma + (nc)b and m and nc are integers,

then (a, b) = 1.
Since 1 = ma+nbc = ma+(nb)c and m and nb are integers, then (a, c) = 1.

Conversely, suppose (a, b) = (a, c) = 1.
Then there are integers x, y, u, v such that xa + yb = 1 and ua + vc = 1.
Multiplying these equations we obtain (xa + yb)(ua + vc) = 1 · 1 = 1.
Hence, xua2 +xavc+ybua+ybvc = 1, so (xua+xvc+ybu)a+ (yv)(bc) = 1.
Since xua + xvc + ybu and yv are integers, then (a, bc) = 1, as desired.

Exercise 134. Let a, b ∈ Z+.
If gcd(a, b) = 1, then gcd(a2, b2) = 1.

Proof. Suppose (a, b) = 1.
Since (a, bc) = 1 iff (a, b) = (a, c) = 1 for all a, b, c ∈ Z, then in particular

(a2, bb) = 1 iff (a2, b) = (a2, b) = 1 and (b, a2) = 1 iff (b, a) = (b, a) = 1.
Thus, (a2, b2) = 1 iff (a2, b) = 1 and (b, a2) = 1 iff (b, a) = 1.
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Since 1 = (a, b) = (b, a), then (b, a) = 1.
Since (b, a2) = 1 iff (b, a) = 1, then we conclude (b, a2) = 1, so (a2, b) = 1.
Since (a2, b2) = 1 iff (a2, b) = 1, then we conclude (a2, b2) = 1.

Lemma 135. Let a, b ∈ Z+.
If (a, b) = 1, then (a, bn) = 1 for all n ∈ Z+.

Proof. Suppose (a, b) = 1.
We prove (a, bn) = 1 for all n ∈ Z+ by induction on n.
Let S = {n ∈ Z+ : (a, bn) = 1}.
Basis:
Since 1 ∈ Z+ and (a, b1) = (a, b) = 1, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and (a, bk) = 1.
Since k ∈ Z+, then k + 1 ∈ Z+.
From a previous lemma we know that (a, bc) = 1 iff (a, b) = (a, c) = 1 for all

a, b, c ∈ Z.
In particular, (a, bkb) = 1 iff (a, bk) = (a, b) = 1.
Since (a, bk) = 1 and (a, b) = 1, then we conclude (a, bkb) = 1.
Thus, (a, bk+1) = 1.
Since k + 1 ∈ Z+ and (a, bk+1) = 1, then k + 1 ∈ S.
Therefore, by PMI, S = Z+, so (a, bn) = 1 for all n ∈ Z+.

Lemma 136. Let a, b ∈ Z+.
If gcd(a, b) = 1, then gcd(an, bn) = 1 for all n ∈ Z+.

Proof. Suppose (a, b) = 1.
We prove (an, bn) = 1 for all n ∈ Z+ by induction on n.
Let S = {n ∈ Z+ : (an, bn) = 1}.
Basis:
Since 1 ∈ Z+ and (a1, b1) = (a, b) = 1, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and (ak, bk) = 1.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since (a, bc) = 1 iff (a, b) = (a, c) = 1 for all a, b, c ∈ Z, then in particular,

(ak+1, bkb) = 1 iff (ak+1, bk) = (ak+1, b) = 1 and (b, aka) = 1 iff (b, ak) =
(b, a) = 1 and (bk, aka) = 1 iff (bk, ak) = (bk, a) = 1.

From a previous lemma we know that if (a, b) = 1, then (a, bn) = 1 for all
n ∈ Z+.

Since (a, b) = 1 and k ∈ Z+, then (a, bk) = 1, so (bk, a) = 1.
Since 1 = (ak, bk) = (bk, ak), then (bk, ak) = 1.
Since (bk, ak) = 1 and (bk, a) = 1, and (bk, aka) = 1 iff (bk, ak) = (bk, a) = 1,

then we conclude (bk, aka) = 1.
Thus, 1 = (bk, ak+1) = (ak+1, bk).
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From a previous lemma, we know that if (a, b) = 1, then (a, bn) = 1 for all
n ∈ Z+.

Hence, if (b, a) = 1, then (b, an) = 1 for all n ∈ Z+.
Since 1 = (a, b) = (b, a) and k + 1 ∈ Z+, then we conclude (b, ak+1) = 1, so

(ak+1, b) = 1.
Since (ak+1, bk) = 1 and (ak+1, b) = 1, and (ak+1, bkb) = 1 iff (ak+1, bk) =

(ak+1, b) = 1, then we conclude (ak+1, bkb) = 1.
Thus, (ak+1, bk+1) = 1.
Since k + 1 ∈ Z+ and (ak+1, bk+1) = 1, then k + 1 ∈ S.
Therefore, by PMI, S = Z+, so (an, bn) = 1 for all n ∈ Z+.

Exercise 137. Let a, b ∈ Z+.
If an | bn, then a | b for all n ∈ Z+.

Proof. Let n ∈ Z+.
Suppose an | bn.
Let d = gcd(a, b).
Then d ∈ Z+ and d | a and d | b, so a = dr and b = ds for some integers r

and s.
Thus, d = gcd(dr, ds) = d · gcd(r, s).
Since d > 0, then we divide to obtain 1 = gcd(r, s).
From a previous lemma, we know that if gcd(a, b) = 1, then gcd(an, bn) = 1

for all n ∈ Z+.
Thus, if gcd(r, s) = 1, then gcd(rn, sn) = 1 for all n ∈ Z+.
Since gcd(r, s) = 1, then we conclude gcd(rn, sn) = 1 for all n ∈ Z+.
In particular, gcd(rn, sn) = 1.
Hence, there exist integers x and y such that xrn + ysn = 1.
Since an | bn, then (dr)n|(ds)n, so dnrn|dnsn.
Since d 6= 0, then we have rn|sn, so sn = rnt for some integer t.
Thus, 1 = xrn + y(rnt) = rn(x + yt), so rn|1.
Since d > 0 and a > 0 and a = dr, then r > 0.
Since n > 0, then rn > 0.
Since r ∈ Z, then rn ∈ Z, so rn ∈ Z+.
Since rn ∈ Z+ and rn|1 and the only positive integer that divides 1 is 1,

then rn = 1, so r = 1.
Thus, a = dr = d(1) = d.
Hence, gcd(a, b) = d = a.
Since a|b iff gcd(a, b) = a, then we conclude a|b, as desired.

The Euclidean Algorithm

Exercise 138. Express gcd(12378, 3054) as a linear combination of 12378 and
3054.

Solution. We use the Euclidean algorithm to obtain the equations below.
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12378 = 3054 ∗ 4 + 162

3054 = 162 ∗ 18 + 138

162 = 138 ∗ 1 + 24

138 = 24 ∗ 5 + 18

24 = 18 ∗ 1 + 6

18 = 6 ∗ 3 + 0.

Thus, gcd(12378, 3054) = gcd(3054, 162) = gcd(162, 138) = gcd(138, 24) =
gcd(24, 18) = gcd(18, 6) = 6.

We backtrack through the equations to find the linear combination.

6 = 24− 18 ∗ 1

= 24− (138− 24 ∗ 5) ∗ 1

= 6 ∗ 24− 138

= 6(162− 138 ∗ 1)− 138

= 6 ∗ 162− 7 ∗ 138

= 6 ∗ 162− 7(3054− 162 ∗ 18)

= 132 ∗ 162− 7(3054)

= 132(12378− 3054 ∗ 4)− 7(3054)

= 132 ∗ 12378− 535 ∗ 3054.

Therefore, gcd(12378, 3054) = 6 = 132(12378)− 535(3054).

Exercise 139. Compute gcd(314, 159) as a linear combination of 314 and 159.

Solution. We use the Euclidean algorithm to obtain the equations below.

314 = 159 ∗ 1 + 155

159 = 155 ∗ 1 + 4

155 = 4 ∗ 38 + 3

4 = 3 ∗ 1 + 1

3 = 1 ∗ 3 + 0.

Thus, gcd(314, 159) = gcd(159, 155) = gcd(155, 4) = gcd(4, 3) = gcd(3, 1) =
1.

We backtrack through the equations to find the linear combination.
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1 = 4− 3 ∗ 1

= 4− (155− 4 ∗ 38) ∗ 1

= −155 + 39(4)

= −155 + 39(159− 155 ∗ 1)

= 39 ∗ 159− 40(155)

= 39 ∗ 159− 40(314− 159 ∗ 1)

= (−40)(314) + 79(159).

Therefore, gcd(314, 159) = 1 = −40(314) + 79(159).
Hence, a solution to the equation 314x + 159y = 1 is x = −40 and y = 79

since 314(−40) + 159(79) = 1.

Exercise 140. Compute gcd(3141, 1592) as a linear combination of 3141 and
1592.

Solution. We use the Euclidean algorithm to obtain the equations below.

3141 = 1592 ∗ 1 + 1549

1592 = 1549 ∗ 1 + 43

1549 = 43 ∗ 36 + 1

43 = 1 ∗ 43 + 0.

Thus, gcd(3141, 1592) = gcd(1592, 1549) = gcd(1549, 43) = gcd(43, 1) = 1.
We backtrack through the equations to find the linear combination.

1 = 1549− 43 ∗ 36

= 1549− (1592− 1549 ∗ 1)36

= 37 ∗ 1549− 1592 ∗ 36

= 37(3141− 1592 ∗ 1)− 1592 ∗ 36

= 37(3141)− 73(1592).

Therefore, gcd(3141, 1592) = 1 = 37(314)− 73(1592).
Hence, a solution to the equation 3141x+ 1592y = 1 is x = 37 and y = −73,

since 3141(37) + 1592(−73) = 1.

Exercise 141. Compute gcd(4144, 7696) as a linear combination of 4144 and
7696.

Solution. We use the Euclidean algorithm to obtain the equations below.

7696 = 4144 ∗ 1 + 3552

4144 = 3552 ∗ 1 + 592

3552 = 592 ∗ 6 + 0.
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Thus, gcd(4144, 7696) = gcd(4144, 3552) = gcd(3552, 592) = 592.
We backtrack through the equations to find the linear combination.

592 = 4144− 3552 ∗ 1

= 4144− (7696− 4144 ∗ 1) ∗ 1

= 2(4144)− 7696.

Therefore, gcd(4144, 7696) = 592 = 2(4144)− 7696.
Hence, a solution to the equation 4144x+ 7696y = 592 is x = 2 and y = −1,

since 4144(2) + 7696(−1) = 592.

Exercise 142. Compute gcd(10001, 100083) as a linear combination of 10001
and 100083.

Solution. We use the Euclidean algorithm to obtain the equations below.

100083 = 10001 ∗ 10 + 73

10001 = 73 ∗ 137 + 0.

Thus, gcd(10001, 100083) = gcd(10001, 73) = 73.
We backtrack through the equations to find the linear combination.

73 = 100083− 10001 ∗ 10

= −10(10001) + 100083.

Therefore, gcd(10001, 100083) = 73 = −10(10001) + 100083.
Hence, a solution to the equation 10001x + 100083y = 73 is x = −10 and

y = 1, since 10001(−10) + 100083(1) = 73.

Exercise 143. Find integers x, y such that 299x + 247y = 13.

Solution. Since gcd(299, 247) = 13, then we know there exist integers x and y
such that 299x+247y = 13. Hence, there is at least one solution to the equation
299x + 247y = 13.

We use the Euclidean algorithm to express gcd as a linear combination of
integers.

299 = 247 ∗ 1 + 52

247 = 52 ∗ 4 + 39

52 = 39 ∗ 1 + 13

39 = 13 ∗ 3 + 0.

Thus, gcd(299, 247) = gcd(247, 52) = gcd(52, 39) = gcd(39, 13) = 13.
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We backtrack through the equations to express gcd as a linear combination.

13 = 52− 39

= 52− (247− 52 ∗ 4)

= −247 + 5 ∗ 52

= −247 + 5(299− 247)

= (−6)(247) + 5 ∗ 299.

Therefore, x = 5 and y = −6.
Since 299(5) + 247(−6) = 1495 − 1482 = 13, then x = 5 and y = −6 is one

solution to the equation 299x + 247y = 13.

There may be other solutions as well.
Let’s find another solution to this equation.
Since gcd(299, 247) = 13, then 13|299 and 13|247, so 299 = 13 ∗ 23 and

247 = 13 ∗ 19.
Thus, 13 = 299x + 247y = (13 ∗ 23)x + (13 ∗ 19)y.
Dividing by 13 we obtain the equation 1 = 23x + 19y.
Since 23 and 19 are relatively prime, then gcd(23, 19) = 1, so there must

exist integers x and y such that 23x + 19y = 1, so we know that this equation
has at least one solution.

This equation has the same solution as the equation 299x + 247y = 13.
Thus, one solution to the equation 23x+ 19y = 1 is x = 5 and y = −6, since

23(5) + 19(−6) = 115− 114 = 1.
We will write a computer program to find other pair of integers x and y that

are solutions to the equation 23x + 19y = 1.
There are many solutions to this equation.
Examples are x = −14 and y = 17 and x = 24 and y = −29.
If x = −14 and y = 17, then 23(−14) + 19(17) = −322 + 323 = 1 and

299(−14) + 247(17) = −4186 + 4199 = 13.
If x = 24 and y = −29, then 23(24) + 19(−29) = 552 − 551 = 1 and

299(24) + 247(−29) = 7176− 7163 = 13.

The equation 299x + 247y = 52 can be reduced since gcd(299, 247) = 13 by
dividing by 13.

Thus, we obtain 23x + 19y = 4. Since gcd(23, 19) = 1, then this equation is
saying that 4 is a linear combination of gcd(23, 19). We know that any linear
combination of 23 and 19 is a multiple of gcd(23, 19). In this case, 4 is a multiple
of 1 since 4 = 4 ∗ 1.

We will write a computer program to find x, y such that 23x + 19y = 4 and
the pair (x, y) will also be a solution to the equation 299x + 247y = 52.

Example solutions are: x = 1, y = −1 and x = 20, y = −24 and x = −18, y =
22. There are many more solutions as well.

If x = 1 and y = −1, then 23(1) + 19(−1) = 4 and 299(1) + 247(−1) = 52.
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If x = 20 and y = −24, then 23(20)+19(−24) = 4 and 299(20)+247(−24) =
52.

If x = −18 and y = 22, then 23(−18)+19(22) = 4 and 299(−18)+247(22) =
52.

Exercise 144. Which of the integers 0, 1, ..., 10 can be expressed in the form
12m + 20n where m and n are integers?

Solution. Let m and n be arbitrary integers.
Let a = 12m + 20n.
Let S = {0, 1, 2, ..., 10}.
The integer a is a linear combination of 12 and 20.
We know that every linear combination of 12 and 20 is a multiple of gcd(12, 20).
Since gcd(12, 20) = 4, then every linear combination of 12 and 20 must be a

multiple of 4.
Hence, the only integers in S which satisfy this criteria are 0, 4, 8.
Concretely, we can use Euclidean algorithm:
4 = 12(2) + 20(−1).
Thus, 8 = 2 ∗ 4 = 2(12 ∗ 2− 20) = 12 ∗ 4− 2 ∗ 20.
Also, 0 = 12 ∗ 0 + 20 ∗ 0.

Exercise 145. For all integers n > 1, gcd(2n2 + 4n− 3, 2n2 + 6n− 4) = 1.

Proof. Let n be an arbitrary integer such that n > 1.
By the Euclidean algorithm, we have

2n2 + 6n− 4 = (2n2 + 4n− 3)(1) + (2n− 1)

2n2 + 4n− 3 = (2n− 1)(n + 2) + (n− 1)

2n− 1 = (n− 1)(2) + 1

n− 1 = 1(n− 1) + 0.

Therefore, by the Euclidean algorithm, gcd(2n2+4n−3, 2n2+6n−4) = 1.

Exercise 146. Find integers x, y, z such that gcd(198, 288, 512) = 198x+288y+
512z.

Solution. Let d = gcd(198, 288).
To compute gcd(198, 288) we use the Euclidean algorithm.
Observe that

288 = 198 ∗ 1 + 90

198 = 90 ∗ 2 + 18

90 = 18 ∗ 5 + 0.
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Thus,

d = gcd(198, 288)

= 18

= 198− (90) ∗ 2

= 198− (288− 198 ∗ 1) ∗ 2

= 198− 288 ∗ 2 + 198 ∗ 2

= 198 ∗ 3 + 288(−2).

Since 198x + 288y is a linear combination of 198 and 288, then 198x + 288y
is a multiple of gcd(198, 288).

Hence, 198x + 288y = du for some integer u.
Observe that

gcd(198, 288, 512) = gcd(gcd(198, 288), 512)

= gcd(d, 512)

= gcd(18, 512).

To compute gcd(18, 512) we use the Euclidean algorithm.
Observe that

512 = 18 ∗ 28 + 8

18 = 8 ∗ 2 + 2

8 = 2 ∗ 4 + 0.

Thus,

gcd(18, 512) = 2

= 18− (8)2

= 18− (512− 18 ∗ 28)2

= 18− 512 ∗ 2 + 18(28 ∗ 2)

= 18(57) + 512(−2).

Therefore,

gcd(198, 288, 512) = 2

= gcd(18, 512)

= 18(57) + 512(−2)

= [198(3) + 288(−2)](57) + 512(−2)

= 198(3)(57) + 288(−2)(57) + 512(−2)

= 198(171) + 288(−114) + 512(−2).

Therefore, x = 171 and y = −114 and z = −2.
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Least common multiple

Exercise 147. Compute lcm(143, 227) and lcm(306, 657) and lcm(272, 1479).

Solution. Since gcd(143, 227) = 1, then lcm(143, 227) = 143 ∗ 227 = 32461.
Since gcd(306, 657) = 9, then lcm(306, 657) = 306∗657

9 = 22338.
Since gcd(272, 1479) = 17, then lcm(272, 1479) = 272∗1479

17 = 23664.

Exercise 148. If n ∈ N, then 1 + (−1)n(2n− 1) is a multiple of 4.

Proof. Suppose n ∈ N.
Then n is either even or odd.
We consider these two cases separately.
Case 1. Suppose n is even.
Then n = 2k for some k ∈ Z and (−1)n = 1.
Thus 1 + (−1)n(2n− 1) = 1 + (1)(2 · 2k− 1) = 1 + 4k− 1 = 4k is a multiple

of 4.
Case 2. Suppose n is odd.
Then n = 2k + 1 for some k ∈ Z and (−1)n = −1.
Thus 1 + (−1)n(2n− 1) = 1 + (−1)(2(2k + 1)− 1) = 1− (2(2k + 1)− 1) =

1 − (4k + 2 − 1) = 1 − (4k + 1) = 1 − 4k − 1 = −4k = 4(−k) is a multiple of
4.

Exercise 149. Every multiple of 4 has form 1 + (−1)n(2n− 1) for some n ∈ N.

Proof. In conditional form, the proposition is as follows:
If k is a multiple of 4, then there is an n ∈ N for which 1+(−1)n(2n−1) = k.
What follows is a proof of this conditional statement.
Suppose k is a multiple of 4. Then k = 4a for some integer a.
We must produce an n ∈ N for which 1 + (−1)n(2n− 1) = k.
We consider three cases, depending on whether a is zero, positive, or nega-

tive.
Case 1. Suppose a = 0.
Let n = 1.
Then 1 + (−1)n(2n− 1) = 1 + (−1)(2 · 1− 1) = 0 = 4 · 0 = 4a = k.
Case 2. Suppose a > 0.
Let n = 2a, which is an element of N because a is positive, making n positive.
Also n is even, so (−1)n = 1.
Thus 1 + (−1)n(2n− 1) = 1 + (1)(2 · 2a− 1) = 4a = k.
Case 3. Suppose a < 0.
Let n = 1−2a, which is an element of N because a is negative, making 1−2a

positive.
Also n is odd, so (−1)n = −1. Thus 1 + (−1)n(2n − 1) = 1 + (−1)(2(1 −

2a)− 1) = 1− (1− 4a) = 4a = k.
These three cases show that no matter whether a multiple k = 4a is zero,

positive, or negative, it always equals 1+(−1)n(2n−1) for some natural number
n.
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