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Divisibility and greatest common divisor

Exercise 1. Let a,b € Z.
Then a > b implies a fb is false.

Proof. Observe that 1 > 0 and 1]0. O

Exercise 2. Let a,b,c € Z.
If a+ b= c and d|a and d|e, then d|b.

Proof. Suppose a + b = ¢ and d|a and d|c.

Since a+b = ¢, then b = ¢c—a = —a+c = (—1)a+(1)c is a linear combination
of a and c.

Since d|a and d|c, then d divides any linear combination of a and c.

In particular, d divides b, so d|b. O

Exercise 3. Let x,y, 2, w be integers.
If 3z + 81y + 62 + 363 = w, then 3|w.

Proof. Since w = 3z+81y+62+363 = 3(x+27y+22+121) and z+27y+22+121
is an integer, then 3 divides w. O

Proof. Since 3|3 and 3|81 and 3|6 and 3|363, then 3 divides any linear combi-
nation of 3,81, 6, 363.

Since w is a linear combination of 3,81, 6,363, then this implies 3 divides w,
so 3|w. O

Exercise 4. Let x,y be integers.
If 322 + 152y + 5y? = 0, then 3|5y and 5|322.

Proof. Suppose 3z2 + 15zy + 5y = 0.

Then 322 = —15zy — 5y? and 5y = —322 — 15zy.

Since 3| — 3 and 3| — 15, then 3 divides any linear combination of —3 and
—15.

Since 5y? is a linear combination of —3 and —15, then this implies 3|5y2.

Since 5| — 15 and 5| — 5, then 5 divides any linear combination of —15 and
—5.

Since 322 is a linear combination of —15 and —5, then this implies 5/3z2. [



Exercise 5. Let ni,no,...,ng € Z.
If N =mnq *ng**%xng+ 1, then ged(n;, N) =1fori=1,2,..., k.

Proof. Suppose N = nq *ng % x % ng + 1.

Then 1 =N —ng xng xxxng, = (1) * N — ng x ng * * x ng.

Since 1 is a linear combination of n; and N and any linear combination of
ny and N is a multiple of ged(ny, N), then 1 is a multiple of ged(ny, N), so
ged(ng, N) divides 1.

The only positive integer that divides 1 is 1, so this implies ged(ny, N) = 1.

Similar reasoning shows that ged(ne, N) =1 and ... ged(ng, N) = 1. O

Exercise 6. Let d € Z1 and n € Z.
Then ged(d, nd) = d.

Proof. Since every integer divides itself, then d|d.
Since d divides any multiple of d, then d|nd.
Therefore, d is a common divisor of d and nd.

Let ¢ be any common divisor of d and nd.
Then c|d and c|nd, so c|d.
Hence, any common divisor of d and nd divides d.
Since d € ZT and d is a common divisor of d and nd and any common divisor
of d and nd divides d, then d = ged(d, nd). O

Exercise 7. Let a € Z and b € Z.
If a|b and b|a, then a = b or a = —b.

Proof. Suppose a|b and bla.

Then b = ak; and a = bk, for some integers ki and ks.

ThU.S, b= (bk‘g)kl = b(k‘lk‘g), SO b(klkg) —-b=0.

Hence, b(kikes — 1) = 0.

Either b =0 or b # 0.

We consider these cases separately.

Case 1: Suppose b = 0.

Since bla, then 0|a, so a = 0k3z = 0 for some integer ks.

Hence, a =0=15b, s0 a =b.

Case 2: Suppose b # 0.

Then klkg —1= O, SO klkg = 1.

Since k1 and ko are integers such that k1ke = 1, then either ky = ko =1 or
k1 =k =—1.

Hence, either b = a(k1) = a(1l) = a or b = a(k1) = a(—1) = —a, so either
b=aorb=—a.

Therefore, either a = b or a = —b. O

Exercise 8. Let a € Z1 and b € Z.
If a|b, then ged(a,b) = a.



Proof. Suppose alb.
Since every integer divides itself, then ala.
Since ala and alb, then a is a common divisor of a and b.

Let ¢ be any common divisor of a and b.
Then c|a and c|b, so c|a.
Hence, any common divisor of a and b divides a.
Since a € Z* and a is a common divisor of a and b, and any common divisor
of a and b divides a, then a = ged(a, b). O

Exercise 9. Let x € R and a,b € Z.
L. If 22 4+ ax + b = 0 has an integer root, then the root divides b.
IL. If 22 4+ ax + b = 0 has a rational root, then the root is an integer.

Proof. We prove 1.
Suppose the equation z2 + az + b = 0 has an integer root.
Let r be an integer root of 22 + ax + b = 0.
Then r € Z and 2 +ar +b=0,s0 b= —1r? —ar =r(—r — a).
Since —r — a € Z, then r divides b. O

Proof. We prove 11.
Suppose the equation z? + ax + b = 0 has a rational root.
Let g be a rational root of 22 + azx 4+ b = 0.
Then g € Q and ¢® + ag + b = 0.
Since q € Q, then there exist integers 7, s with s # 0 such that ¢ = .
Assume ¢ is in lowest terms. That is, assume ged(r, s) = 1, so 1 = ged(s, ).
Since (2)2 +ax % +b=0, then r? +ars+bs? =0, so r? = —ars — bs? =
s(—ar — bs).
Since s|s(—ar — bs), then s divides r2.
Since s|r? and ged(s,r) = 1, then s|r.
Thus, r = st for some integer ¢,s0 ¢ = £ = &£ = ¢.

S S
Therefore, ¢ is an integer. U

Exercise 10. Let a,b € Z.
For every ¢ € Z, if c|a and ¢|b, then c| ged(a, b).

Proof. Let ¢ € Z such that c|a and c|b.
Then c is a common divisor of a and b.
By definition of ged, any common divisor of a and b must divide ged(a, b).
Therefore, ¢ divides ged(a, b). O

Exercise 11. Let a and b be nonzero integers.
If there exist integers r and s such that ar+bs = 1, then a and b are relatively
prime.



Proof. Suppose there exist integers r and s such that ar + bs = 1.
Then 1 = ra + sb is a linear combination of ¢ and b.
Since any common divisor of a and b divides any linear combination of @ and
b, then ged(a, b) divides 1.
The only positive integer that divides 1 is 1.
Since gecd(a, b) is a positive integer, then this implies ged(a,b) = 1.
Therefore, a and b are relatively prime. O

Exercise 12. Let a,b,c € Z.
If ged(a,b) =1 and c|a, then ged(c,b) = 1.

Proof. Suppose ged(a,b) =1 and ca.

Since ged(a, b) = 1, then ma + nb = 1 for some integers m, n.

Since c|a, then a = ck for some integer k.

Thus, 1 = ma + nb = m(ck) + nb = m(kc) + nb = (mk)c + nb is a linear
combination of ¢ and b.

Since any linear combination of ¢ and b is a multiple of ged(c, b), then 1 is a
multiple of ged(c, b), so ged(e, b) divides 1.

The only positive integer that divides 1 is 1, so ged(c, b) = 1. O

Proof. Suppose ged(a,b) =1 and c|a.
Since 1 divides every integer, then 1|c and 1|b, so 1 is a common divisor of
c and b.

Let d be any common divisor of ¢ and b.

Then d|c and d|b.

Since d|c and cl|a, then d|a.

Since ged(a, b) = 1, then ma + nb = 1 for some integers m and n.

Since d|a and d|b, then d divides any linear combination of a and b, so d
divides ma +nb =1,

Hence, d|1.

Therefore, any common divisor of ¢ and b divides 1.

Since 1 is a common divisor of ¢ and b and any common divisor of ¢ and b
divides 1, then by definition of ged, 1 = ged(e, b). O

Exercise 13. Let a,b,d € Z.
If d|a and d|b, then d?|ab.

Proof. Suppose d|a and d|b.
Then a = dk; and b = dks for some integers ki and k.
Hence, ab = (dk1)(dks) = d?(k1kz).
Since kiks € Z, then this implies d?|ab. O

Exercise 14. Let a,b,c,d € Z.
If c|ab and ged(c, a) = d, then c¢|db.



Proof. Suppose clab and ged(c,a) = d.

Since ged(e, a) = d, then d = x¢ + ya for some integers = and y.

Hence, db = (xc+ ya)b = xcb + yab = (xb)c + yab is a linear combination of
c and ab.

Since c|c and c|ab, then ¢ divides any linear combination of ¢ and ab, so
c|db. O

Exercise 15. Let a,b € Z.
Disprove: If a fb, then ged(a,b) = 1.

Proof. Let a =4 and b = 10.
Then 4 f10, but ged(4,10) =2 # 1. O

Exercise 16. Let a,b,d € Z.
If d is odd and d|(a + b) and d|(a — b), then d| gcd(a, b).

Proof. Suppose d is odd and d|(a + b) and d|(a — b).

Since d|(a + b) and d|(a — b), then d divides the sum (a + b) + (a — b) = 2a
and d divides the difference (a +b) — (a — b) = 2b, so d|2a and d|2b.

Since d is odd, then 2 fd, so ged(d,2) = 1.

Since d|2a and ged(d, 2) = 1, then we know d|a.

Since d|2b and ged(d, 2) = 1, then we know d|b.

Hence, d divides any linear combination of a and b.

Since ged(a, b) is the least positive linear combination of a and b, then this
implies d divides ged(a, b).

Therefore, d| ged(a, b). O

Exercise 17. Let a,b,c,d,p € Z.
If p|(10a — b) and p|(10c — d), then p|(ad — bc).

Proof. Suppose p|(10a — b) and p|(10c — d).
Since p|(10a — b), then p divides any multiple of 10a — b, so p|c(10a — b).
Hence, p|(10ac — bc).
Since p|(10c — d), then p divides any multiple of 10¢ — d, so p|a(10c — d).
Hence, p|(10ac — ad).
Thus, p divides the difference (10ac—bc)—(10ac—ad) = 10ac—bc—10ac+ad =
ad — be.
Therefore, p|(ad — bc). O

Exercise 18. Let a,b,c € Z.
Then ged(a, c¢) = ged(b, ¢) = 1 iff ged(ad,c) = 1.

Proof. Suppose ged(a, ¢) = ged(b, ¢) = 1.
Since ged(a, ¢) = 1, then mya + nic = 1 for some integers m; and n;.
Since ged(b, ¢) = 1, then mob + noc = 1 for some integers mq and no.
Thus, b = 1b = (mya + nic)b = myab+nibe, so ma(miab+ nibe) +noc = 1.
Hence, 1 = mymaab + manibe + nac = (myms)(ab) + (manib + na)c.
Since there exist integers mims and manib + ne such that (myms)(ab) +
(man1b 4 ng)e =1, then ged(ab, ¢) = 1. O



Proof. Conversely, suppose ged(ab, ¢) = 1.
Then zab + yc = 1 for some integers x and y.
Hence, 1 = zab + yc = (xb)a + yc = (ax)b + ye.
Since there exist integers xzb and y such that (zb)a+yc = 1, then ged(a, c) =

Since there exist integers az and y such that (az)b+yc = 1, then ged(b, c) =

Therefore, ged(a, ¢) = ged(b, ¢) = 1. O

Exercise 19. If 10|(3™ + 1) for some integer m, then 10[(3™*" + 1) for all
nezZr.
For which m does 10|(3™ + 1)?

Proof. O

Theorem 20. Let S be a nonempty set of integers that is closed under addition
and subtraction.

Then either S consists of zero alone or S contains a smallest positive ele-
ment, in which case S consists of all multiples of its smallest positive element.

Solution. Since S is not empty, then there exists some element in S.

Let a be some element of S.

Since a € S and S C Z, then a € Z.

By closure of S under addition, we have a+a = 2a € S and 2a+a =3a € S
and 3a + a = 4a € S, and so on.

Thus, it appears ka € S for all positive integers k.

By closure of S under subtraction, we havea—a=0€ Sso0—a=—a € S5,
S0 —a—a=—2a€ 8,50 —2a—a=—-3a € S5,s0 —3a—a=—4a € 5, and so
on.

Thus, it appears ka € S for all negative integers k.

Hence, it appears ka € S for all integers k, so it appears that {ka : k € Z} C

S.

We showed that if a € .S, then 0 € S and —a € S.

Since S is not empty, then S contains at least one element, so either S
contains exactly one element or it contains more than one element. O

Proof. Since S is a nonempty subset of integers, then there is some element in
S, say a.

Since a € S and S C Z, then a € Z.

By closure of S under subtraction, a —a € S, s00 € S.

Since S is not empty, then S contains at least one element, so either S
contains exactly one element or S contains more than one element.

We consider these cases separately.

Case 1: Suppose S contains exactly one element.

Since S contains exactly one element and 0 € S, then S must contain zero
only.

Therefore, S = {0}.



Case 2: Suppose S contains more than one element.

Then S contains at least two elements.

One of the elements must be zero and the other element is not zero.

Let a be some element of S that is not equal to zero.

Since a € S and S C Z, then a € Z.

Since a # 0, then either a > 0 or a < 0.

Suppose a > 0.

Then 0 —a € 5,80 —a € S.

Suppose a < 0.

Then 0 —a € S,s0 —a € S.

Hence, in either case S will always contain both —a and a.

Therefore, without loss of generality, assume a > 0.

Then —a € S.

We must prove a is the least positive element of S and that S = {na : n € Z}.

Let T = {na:n € Z}.

To prove S =T, we prove S C T and T C S.

To prove T' C S, we must prove every element of T is in S.

Hence, we must prove every multiple of a is in S, so we must prove (Vn €
Z)(na € 9).

To prove (Vn € Z)(na € S), we prove (Vn € Z1)(na € S) and 0 € S and
(Vn € ZT)(—na € 9).

We’ve already shown that 0 € S.

We prove (Vn € Z*)(na € S) by induction on n.

Let p(n) : na € S.

For n =1, we have 1 xa =a € S, so p(1) holds.

Suppose m is an arbitrary integer such that p(m) holds.

To prove p(m + 1) holds, we must prove (m + 1)a € S.

Since p(m) holds, then ma € S.

Thus, by closure under addition, ma 4+ a € S.

Hence, ma +a = (m + 1)a € S, as desired.

Therefore, by induction, na € S for all positive integers n.

We now prove (Vn € Z*)(—na € S) by induction on n.

Let ¢(n) : —na € S.

For n =1, we have —(1*a) = —a € S, so ¢(1) holds.

Suppose m is an arbitrary integer such that g(m) holds.

To prove ¢(m + 1) holds, we must prove —(m + 1)a € S.

Since g(m) holds, then —ma € S.

Thus, by closure under subtraction, —ma —a € S.

Hence, —ma —a = —(ma+a) = —(m+1)a € S, as desired.

Therefore, by induction, —na € S for all positive integers n.

Hence, na € S for all integers n, so every multiple of a is in S.

Thus, every element of T'is in .S, so T C S.

We prove a is the least positive element of S.

Either a =1 or a # 1.

We consider these cases separately.

Case 1: Suppose a = 1.



The least positive integer is 1.

Since a = 1, then 1 is the least positive element of S.

Hence, a is the least positive element of S.

Case 2: Suppose a # 1.

Since a > 0 and a # 1, then a > 1.

Let W be the set of all positive elements of S.

Then W={zxeS:2>0}soWcCS.

Since W C S and S C Z, then W C Z.

Since each element of W is positive, then W C Z¥.

By the well ordering principle of Z™, W must contain a least element, say
beW.

We prove b = a.

Or, we could prove there is no element of W that is less than a by contra-
diction?

Since be W and W C S, thenb e S.

Suppose b # a.

Since b is the least element of W, then b < a.

By closure of S under subtraction, a —b € S.

Since b < a,thena—b>0,s0a—be W.

Suppose a/2 < b.

Then a < 2b,s0a —b < b.

Thus, a—b € W and a—b < b, so a—1b is less than the least positive element
of W, a contradiction.

Hence, a/2 cannot be less than b.

Thus, either a/2 = b or a/2 > b, so either b = a/2 or b < a/2.

Suppose for the sake of contradiction that a is not the least positive element
of S.

Then there exists some element other than a that is the least positive element
of S.

Let ¢ be some positive element of S that is the least positive element of S.

Then ¢ € S and ¢ > 0 and ¢ # a and (Vz € S)(z > 0 = ¢ < z).

Since a € S and a > 0, then ¢ < a, so either ¢ < a or ¢ = a.

Since ¢ # a, then ¢ < a.

Thus, 0 < ¢ < a.

Sincece Sand S CZ,thenceZ,s01 <c<a-1.

Since ¢ > 0, then we divide a by c.

By the division algorithm, there are unique integers ¢ and r such that a =
cg+rand 0<r<ec.

Thus, r = a — cq.

Every multiple of an element of S is in S.

Since ¢ € S, then every multiple of ¢ is in S, so in particular, gc € S.

Since a € S and qc € S and S is closed under subtraction, then a —cq € S,
sore€Ss.

Either a is a multiple of ¢ or not.

Suppose a is not a multiple of c.

Then r > 0.



Thus, r is a positive element of S and ¢ is the least positive element of S
and r < c.

Hence, there exists some positive element of S that is less than the least
positive element of S, a contradiction.

Therefore, a must be a multiple of c.

Thus, there is some integer k such that a = ck.

Since a and ¢ are positive, then k must be positive.

Either k is a multiple of ¢ or it is not.

Suppose k is a multiple of c.

Since ¢ € S and every multiple of an element in S is in S, then k € S.

Now, either kK = c or k # c.

Suppose k # c.

Then either k > c or k < ¢, so |k —¢| > 0.

k=cork#ec.

If k=c, then k € S, since c € S.

If k # ¢, then either k < cor k > c.

But, is k € S?

We're stuck here in trying to figure out how to devise a suitable contradiction.

To prove S C T, we must prove every element of S is a multiple of a.

Hence, we must prove (Vb € S)(alb).

Suppose b is some element of S such that b is not a multiple of a.

We divide b by a.

Since @ > 0, then by the division algorithm, there are unique integers ¢, r
such that b =ag+r and 0 < r < a.

Thus, r = b — qa.

Every multiple of an element of S is in S.

Since a € S, then every multiple of a is in S, so in particular, ga € S.

Since b € S and ga € S and S is closed under subtraction, then b — ga € S,
sores.

Hence, r is a positive element of S and a is the least positive element of S
and r < a.

Thus, there exists some positive element of S that is less than the least
positive element of S, a contradiction.

Hence, there is no element of S that is not a multiple of a.

Therefore, every element of S is a multiple of a.

Hence, S C T.

Since S C T and T' C S, then we conclude S =T. O

Proposition 21. Let a,b € Z.
Then a — b divides a™ — b™ for all n € N.

Proof. We prove by induction on n.
Let S={neN:a—bla™—b"}.
Basis:
Since a,b € Z, then a — b € Z.
Since a — b divides a — b = a' — b', then a — b divides a® — b!.



Since 1 € N and a — b divides a' — b', then 1 € S.

Induction:

Suppose k € S.

Then k € N and a — b divides a* — b*.
Since k € N, then k+1 € N.

Since a — b divides a* — b*, then a — b divides any multiple of a* — b*.

Since a € Z, then a — b divides a(a* — b¥).

Since a — b divides a — b, then a — b divides any multiple of a — b.

Since k € N, then £ > 1> 0, so k > 0.
Since b € Z and k > 0 and k € Z, then b* € Z.
Hence, a — b divides b*(a — b).

Thus, a— b divides the sum a(a® —b*) +b*(a—b) = a**+! —ab* +ab® —bF+! =

ak+1 _ bk+1.

Since k + 1 € N and a — b divides a**t! — v**! then k +1 € S.

Thus, k € S implies k+1 € S.

Therefore, by the principle of mathematical induction, a — b divides a™ — b™

for all n € N, as desired.

Exercise 22. 1 and —1 are the only divisors of 1

Let n € Z.
If n|]1, thenn=1o0rn = -1.

Proof. Suppose n|1.
Then 1 = nm for some integer m.

Since nm = 1, then by axiom of Z, either n=m =1orn=m = —1.

Therefore, either n =1 or n = —1.

Exercise 23. zero divides only zero
Let n € Z.
If 0|n, then n = 0.

Proof. Suppose 0|n.
Then n = 0m for some m € Z.
Therefore, n = 0m = 0, so n = 0.

Exercise 24. Let a,b,c¢,d € Z.
If a + b = c and d|a and d|c, then d|b.

Proof. Suppose a + b = ¢ and d|a and d|c.

Since d|c and dla, then d divides their difference ¢ — a, so d|b.

Exercise 25. Let z,y € Z.
If 322 + 152y + 5y? = 0, then 3|5y and 5|322.

Proof. Suppose 3z2 + 152y + 5y = 0.

Then 5y2 = —3z2 — 152y and 322 = —152y — 59/°.

O

Since 5y? = —3x2 — 152y = 3(—22 — 5zy) and —x? — 5ay € Z, then 3 | 5y°.

Since 322 = —15xy—5y? = 5(—3xy—y?) and —3zy—1y? € Z, then 5 | 3z°.

10

O



Exercise 26. Let d,a,b € Z.
Disprove: If d|ab, then d|a and d|b.

Solution. Let d =5 and a = 10 and b = 6.
Observe that 5[(10 - 6) and 5|10, but 5 /6. O

Exercise 27. Let d,a,b € Z.
Disprove: If d|ab, then d|a or d|b.

Solution. Let d =6 and a =4 and b = 9.
Observe that 6 | (4-9), but 6 /8 and 6 /9. O

Exercise 28. Let a,b,n € Z.
Disprove: If a|n and b|n, then ab|n.

Solution. Let n =12 and a =4 and b = 6.
Observe that 4|12 and 6|12, but (4 % 6) f12. O

Exercise 29. Let d,n € Z™.
Then ged(d, nd) = d.

Solution. Observe that

ged(d,nd) = d-ged(l,n)

Exercise 30. Let a,b,c € Z.
If ged(a,b) =1 and c|a, then ged(c,b) = 1.

Proof. Suppose ged(a,b) =1 and ca.
Since ged(a,b) = 1, then there exist integers x and y such that xa 4+ yb = 1.
Since c|a, then a = ck for some integer k.
Thus, 1 = za + yb = z(ck) + yb = xz(kc) + yb = (xk)c + yb, so 1 is a linear
combination of ¢ and b.
Therefore, ged(c,b) = 1. O

Exercise 31. There exists an n € N for which 11|(2" — 1).

Solution. The statement is (In € N)(11]2" — 1).
We can use computer or calculator to determine some value for n. O

Proof. Let n = 10.
Then 210 —1=1023 =11-93, s0 11 | 210 — 1. O

Exercise 32. Let a,b € Z.
If a | b, then a? | b°.

11



Proof. Suppose a | b.
Then b = ak for some integer k.
Thus, b = (ak)? = a?k>.
Since k? € Z, then a? | b?. O

Exercise 33. Suppose z,y € Z. If 5 fxy, then 5 fr and 5 fy.

Solution. We use proof by contrapositive since we have alot of negative state-
ments and direct proof leads us nowhere. O

Proof. Suppose it is not true that 5 fz and 5 fy.
Then 5|x or 5y.
There are two cases to consider.
Case 1: Suppose 5 | .
Then x = 5a for some a € Z.
Multiply both sides by y to get xy = Say.
Thus zy = 5(ay), and this means 5 | zy.
Case 2: Suppose 5 | y.
Then y = 5a for some a € Z.
Multiply both sides by = to get zy = bax.
Thus zy = 5(az), and this means 5 | zy.

Both of these cases show that 5 | 2y, so it is not true that 5 fxy. O

Exercise 34. Let n € Z.
If 5| 2n, then 5 | n.

Proof. Suppose 5 | 2n.
Then 2n = 5a for some integer a.
Observe that

n = 5n—4n
= b5n—2(2n)
= b5n —2(5a)
= 5(n—2a).
Since n — 2a is an integer, then 5 | n. O

Proof. Suppose 5 | 2n.
Then 2n = 5a for some integer a.
Thus, 5a is a multiple of 2, so 5a is even.
Since 5 is odd and 5a is even, then a must be even.
Hence, a = 2b for some integer b.
Thus, 2n = 5(2b), so n = 5b.
Therefore, 5 | n. O

Exercise 35. Let n € Z.
If 7| 4n, then 7| n.

12



Proof. Suppose 7 | 4n.
Then 4n = 7a for some integer a.
Observe that

n = 8n—Tn
= 2(4n) —Tn
= 2(7a)—Tn
= 7(2a —n).

Since 2a — n is an integer, then 7 | n.

Proof. Suppose 7 | 4n.
Then 4n = Ta for some integer a.
Thus, 2(2n) = 7a, so 7a is even.
Since 7 is odd and 7a is even, then a must be even.
Hence, a = 2b for some integer b.
Thus, 4n = 7(2b), so 2n = 7b.
Hence, 7b is even.
Since 7 is odd and 7b is even, then b must be even.
Hence, b = 2¢ for some integer c.
Thus, 2n = 7(2¢), so n = Tc.
Therefore, 7|n.

Exercise 36. Let a,b € Z.
If a|b, then (—a)|b and a|(—b) and (—a)|(-b).

Proof. Suppose alb.
Then b = an for some integer n.
Thus, b = an = (—a)(—n) and —b = —an = a(—n).
Since b = (—a)(—n) and —n € Z, then (—a)|b.
Since —b = a(—n) and —n € Z, then a|(-b).
Since —b = —an and n € Z, then (—a)|(—b).

Exercise 37. Let a,b,c € Z.
If a|b and alc, then a?|be.

Proof. Suppose a|b and alc.
Then b = am and ¢ = an for some integers m and n.
Thus, be = (am)(an) = a(ma)n = a(am)n = (aa)(mn) = a®(mn).
Since m, n € Z, then mn € Z, so a?|be.

Exercise 38. Let a,b,c € Z.
Disprove: If a|(b+ ¢), then either a|b or alc.

Proof. Let a =3 and b =4 and ¢ = 5.
Since 39, then 3|(4 +5), but 3 4 and 3 /5.

Exercise 39. If n € N, then 1+ (—1)"(2n — 1) is a multiple of 4.

13



Solution. We can make a table of values by plugging in various values to
determine if the expression is really a multiple of 4.
n|l4+(-=1)"2n-1)

0
4
-4
8
-8
12

7 -12
We see that for even n, the expression 14+(—1)"(2n—1) = 1+(1)(2n—1) = 2n.
Foroddn, 1+ (-1)"2n—-1)=1-(1)2n—-1)=1-2n+1=2-2n. O

O UL W N

Proof. Suppose n € N.
Then n is either even or odd. We consider these two cases separately.
Case 1. Suppose n is even.
Then n = 2k for some k € Z, and (—1)" = 1.
Thus 14+ (=1)"(2n — 1) =14 (1)(2- 2k — 1) = 4k, which is a multiple of 4.
Case 2. Suppose n is odd.
Then n = 2k + 1 for some k € Z, and (—1)" = —1.
Thus 14+ (-1)"(2n—1) =1+ (-1)(2(2k+1) —1) =1 — (4dk + 1) = —4k,
which is a multiple of 4.

These two cases show that 1+ (—1)"(2n — 1) is always a multiple of 4. O
Exercise 40. Every multiple of 4 has form 1+ (—1)"(2n — 1) for some n € N.

Proof. In conditional form, the proposition is as follows:

If k is a multiple of 4, then there is an n € N for which 1+(—1)"(2n—1) = k.

What follows is a proof of this conditional statement.

Suppose k is a multiple of 4. Then k = 4a for some integer a.

We must produce an n € N for which 1+ (=1)"(2n — 1) = k.

We consider three cases, depending on whether a is zero, positive, or nega-
tive.

Case 1. Suppose a = 0.

Letn =1. Then 1+ (-1)"(2n—1) =14+(-1)(2-1-1)=0=4-0=4a = k.

Case 2. Suppose a > 0.

Let n = 2a, which is an element of N because a is positive, making n positive.

Alsoniseven,so (—1)" =1. Thus 1+ (-1)"(2n—1) =14+ (1)(2-2a—1) =
da = k.

Case 3. Suppose a < 0.

Let n = 1—2a, which is an element of N because a is negative, making 1—2a
positive.

Also n is odd, so (—1)" = —1. Thus 14+ (—-1)"(2n — 1) = 1+ (—-1)(2(1 —
2a) —1)=1—(1—4a) =4a=k.

14



These three cases show that no matter whether a multiple k£ = 4a is zero,
positive, or negative, it always equals 14 (—1)"(2n—1) for some natural number
n. U

Exercise 41. If n € N, then n? = 2(3) + (7) .

n!
kl(n—k)!"

In particular, for n > 1, (Tll) =n and (Z) = % -

Solution. By definition of binomial coefficient we know (2) =

Proof. Suppose n is an integer.
We consider two cases.
Case 1: Suppose n = 1.
Then 2(}) + (}) =2-0+1=1=12
Case 2: Suppose n > 1.
Then 2(%) + (}) :2w+n:n(n— 1) +n=n%

Both cases show n? = 2(;”) + (?) O

Exercise 42. Let a € Z.
Then either a or a 4+ 2 or a + 4 is divisible by 3.

Proof. By the division algorithm, there exist unique integers ¢ and r such that
a=3q+r with 0 <r < 3.

Thus, either a = 3qgora=3¢g+ 1 or a = 3q + 2.

We consider these cases separately.

Case 1: Suppose a = 3q.

Since a = 3¢ and ¢ € Z, then 3|a, so a is divisible by 3.

Case 2: Suppose a = 3¢ + 1.

Thena+2=(3¢+1)+2=3¢+3=3(¢+1).

Since a +2 =3(¢+ 1) and ¢+ 1 € Z, then 3|(a + 2), so a + 2 is divisible by

Case 3: Suppose a = 3q + 2.

Then a+4=(3¢+2) +4=3¢+6=3(q+2).

Since a +4 = 3(q + 2) and ¢+ 2 € Z, then 3|(a +4), so a + 4 is divisible by
3. U

Exercise 43. A product of 3 consecutive integers is divisible by 3
Let a € Z.
Then 3la(a + 1)(a + 2).

Proof. By the division algorithm, either a = 3k or a = 3k + 1 or a = 3k + 2 for
some integer k.

We consider these cases separately.

Case 1: Suppose a = 3k.

Then 3|a, so 3 divides any multiple of a.

Hence, 3la(a + 1)(a + 2).

Case 2: Suppose a = 3k + 1.

Thena+2=3k+1)+2=3k+3=3(k+1), so 3|(a+2).
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Hence, 3 divides any multiple of a + 2, so 3|a(a + 1)(a + 2).
Case 3: Suppose a = 3k + 2.

Thena+ 1= (3k+2)+1=3k+3=3(k+1),s03|(at1).
Hence, 3 divides any multiple of a + 1, so 3|a(a + 1)(a + 2).

Therefore, in all cases, 3la(a + 1)(a + 2). O

Exercise 44. Let a € Z.
Then 4 f(a? + 2).

Proof. By the division algorithm, there exist unique integers ¢ and r such that
a=4q+r with 0 <r < 4.

Thus, either a =4qora=4g+1ora=4q+ 2 or a = 4q + 3.

We consider these cases separately.

Case 1: Suppose a = 4q.

Then a? + 2 = (4¢)? + 2 = 42¢> + 2 = 4(44¢?) + 2.

Let k = 4¢>.

Then k € Z and a® + 2 = 4k + 2.

Case 2: Suppose a = 4q + 1.

Then a?+2 = (4q+1)?4+2 = (16¢*>+8¢+1)+2 = 16¢*>+8¢+3 = 4(4¢*+2q)+3.

Let k = 4¢° + 2q.

Then k € Z and a® + 2 = 4k + 3.

Case 3: Suppose a = 4q + 2.

Then a? + 2 = (4g +2)* + 2 = (16¢* + 16q + 4) + 2 = 4(4¢* + 4¢ + 1) + 2.

Let k = 4q¢® +4q + 1.

Then k € Z and a? 4 2 = 4k + 2.

Case 4: Suppose a = 4q + 3.

Then a®? + 2 = (4q+ 3)2 + 2 = (164> +24qg +9) + 2 = 16¢®> +24q + 11 =
16¢> + 24q + (4% 2 + 3) = 4(4¢*> + 69 + 2) + 3.

Let k = 4q¢% + 6q + 2.

Then k € Z and a? + 2 = 4k + 3.

Therefore, in all cases, either a? + 2 = 4k + 2 or a® + 2 = 4k + 3 for some
integer k.
Hence, 4 cannot divide a? + 2. O

Exercise 45. Let n € Z.
If 2| n and 3 | n, then 6 | n.

Proof. Suppose 2 | n and 3 | n.
Since 2 | n, then n = 2a for some integer a.
Since 3 | n, then n = 3b for some integer b.
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Observe that

n = 3n—2n
= 3(2a) —2(3b)
= 6a—6b
= 6(a—0).

Since a — b is an integer, then 6 | n.

Proof. Suppose 2 | n and 3 | n.
Since 2 | n, then 3% 2 | 3n, so 6 | 3n.
Since 3 | n, then 2 % 3 | 2n, so 6 | 2n.
Thus, 6 is a common divisor of 2n and 3n, so 6 | ged(2n, 3n).
Hence, 6 | n x ged(2,3), s0 6 | nx 1.
Therefore, 6 | n.

Exercise 46. Let n be an integer.
If 3| n and 5 | n, then 15 | n.

Proof. Suppose 3 | n and 5 | n.
Since 3 | n, then n = 3a for some integer a.
Since 5 | n, then n = 5b for some integer b.
Observe that

n = 6n—5n
= 6(5b) — 5(3a)
= 30b— 15a
= 15(20 —a).

Since 2b — a is an integer, then 15 | n.

Exercise 47. Let n € Z.
Then 14 | n if and only if 7 | n and 2 | n.

Proof. We first prove: if 14 | n then 7 | n and 2 | n.
Suppose 14 | n.
Then n = 14k for some k € Z.
Since n = 7(2k) and 2k € Z, then 7|n.
Since n = 2(7k) and 7k € Z, then 2|n.
Therefore, 7| n and 2 | n.

Conversely, we prove: if 7 | n and 2 | n, then 14 | n.
Suppose 7 | n and 2 | n.
Since 7 | n, then n = 7a for some integer a.
Since 2 | n, then n = 2b for some integer b.
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Observe that

n = Tn—6n
= 7(2b) —6(7a)
= 14b—42a
= 14(b - 3a).

Since b — 3a is an integer, then 14 | n.

Exercise 48. Let a, b, d be integers.
If d|(da + 1), then d|b.

Proof. Suppose d|(da + b).
Then da + b = dn for some integer n.
Hence, b = dn — da = d(n — a).
Since n — a is an integer, then this implies d|b.

Exercise 49. Let a, b, d be integers.
If d|(a + b) and d|a, then d|b.

Proof. Suppose d|(a +b) and d|a.
Then a + b = dk and a = dm for some integers k and m.
Thus, b = dk —a = dk — dm = d(k — m).
Since k — m is an integer, then this implies d|b.

Exercise 50. Let z,y € Z.
If 2|y and y is odd, then x is odd.

Proof. Suppose x|y and y is odd.
Since x|y, then y = xk for some integer k.
Since y is odd, then this implies xk is odd.
Hence, x must be odd.

Exercise 51. If a is an integer and a?|a, then a € {—1,0,1}.

Proof. Suppose a is an integer and a?|a.
Then a = a?k for some integer k.
Thus, 0 = a — a?k = a(1 — ak), so either a is zero or a is not zero.
We consider these cases separately.

Case 1: Suppose a is zero.

Then a = 0, so a € {0}.

Case 2: Suppose a is not zero.

Then 1 —ak =0, s0o 1 = ak.

Since a and k are both integers, then k = £1.
If k=1, then 1 = a(1) = a.

If k= -1, then —1 = —ak = —a(-1) = a.
Thus, either a =1 or a = -1, s0 a € {1,—1}.
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Therefore, in all cases, either a € {0} or a € {1,-1}, so a € {0,1,-1} =

{-1,0,1}.

Exercise 52. Let a,b,d € Z.
If d|aord|b, then d | ab.

Proof. Suppose d | a or d | b.
We consider each case separately.
Case 1: Suppose d | a.
Then a = dk for some k € Z.
Thus, ab = (dk)b = d(kb), so d | ab.
Case 2: Suppose d | b.
Then b = dm for some m € Z.
Thus, ab = a(dm) = (dm)a = d(ma), so d | ab.
Both of these cases show that d | ab.

Exercise 53. Let a,b,d € Z.
Disprove: If d | ab, then d | a or d | b.

Proof. Here is a counter example.
Let d=6 and a =8 and b = 9.
Observe that 6 | (8-9), but 6 /8 and 6 /9.

Exercise 54. Let a,b,m € Z.
If ab|m, then a|lm and b|m.

Proof. Suppose ab|m.
Then m = abk for some integer k.
Since m = abk = a(bk) and bk € Z, then a|m.
Since m = abk = bak = b(ak) and ak € Z, then bjm.
Therefore, alm and b|m.

Exercise 55. Let a,b,m € Z.
Disprove: if alm and b|m, then ab|m.

Proof. Here is a counter example.
Let a =4 and b = 10 and m = 60.
Then 4|60 and 10|60, but, 40 /60.

Exercise 56. Let m,n € Z* such that n > 1.
If nlm, then n fm + 1.

Proof. Suppose n|m.
Then there exists an integer a such that m = na.

Suppose for the sake of contradiction that n|(m + 1).
Then there exists an integer b such that m 4+ 1 = nb.

Hence, na +1 =mnb, so 1 = nb — na =n(b — a).
Since b — a is an integer, then this implies n|1.
Hence, either n =1 or n = —1.
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Thus, n is not greater than 1.
Therefore, we have n > 1 and n # 1, a contradiction.
Consequently, n cannot divide m + 1, so n f(m + 1), as desired. O

Exercise 57. If n is an integer, then n? + 2 is not divisible by 4.

Proof. Let n be an arbitrary integer.

We prove by contradiction.

Suppose n? 4 2 is divisible by 4.

Then there is an integer k such that n? 4+ 2 = 4k.

Either n is even or not.

We consider these cases separately.

Case 1: Suppose n is even.

Then n = 2m for some integer m.

Thus, 4k = n? +2 = (2m)? + 2 = 4m? + 2 = 2(2m? + 1).

Hence, 2k = 2m? + 1.

But, this equation implies the even integer 2k equals the odd integer 2m?+1,
a contradiction.

Case 2: Suppose n is odd.

Then n? is odd, so n? + 2 is odd.

Since 2(2k) = 4k = n? + 2 and 2k is an integer, then n? + 2 is even.

But, this contradicts the fact that n? + 2 is odd. O

Exercise 58. For any integer n > 0, it follows that 24[(5%" — 1).

Solution. The statement to prove is:

(Vn € Z,n > 0)(24/5%" — 1).

Define predicate p(n) : 24|5%" — 1 over NU {0}.

Observe that 24[52" — 1 is equivalent to (25 — 1)|25™ — 1.

Since we know x — 1 divides ™ — 1, for every x € Z and every n € N, then
we know, in particular, 24|25™ — 1 for every n € N.

Thus, we need only prove 24|25™ — 1 when n = 0.

But, 25° — 1 = 0 and 24/0.

Hence, p(0) is true. O

Proof. We prove by induction(weak).
Basis:
If n = 0 then the statement is 24|(5%° — 1).
This simplifies to 24|0, which is true.
If n = 1 then the statement is 24|(5%'! — 1).
This simplifies to 24|24, which is true.
Induction:
We must prove 24|(5%% — 1) implies 24|(52(FT1) —1).
Suppose 24|(5%% — 1) for any integer k > 1.
Then 52¢ — 1 = 24a for some integer a, by definition of divisibility.
Thus 52 = 24a + 1.
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Observe the following equalities:

52(k+1) o 1 o 52k+2 _ 1

= 5% -1

= 25(24a+1) -1
= 25-24a+25—1
= 24(25a +1)

This shows that 52*+1) — 1 = 24(25a + 1), which means 24|5%(*+1) — 1.
It follows by induction that 24[(5%" — 1) for any integer n > 0. O

Exercise 59. Let n € Z.
Then 5[n° — n.

Solution. Note that the statement 5/n° — n is equivalent to the statement
n® =n (mod 5).

We just showed that any integer of the form n
show that such an integer is divisible by 5.

We factor n° —n =n(n*—1) = n(n?—-1)(n?+1) = n(n—-1)(n+1)(n’>+1) =
(n—1)n(n+1)(n? +1). Thus n® —n is a product of 3 consecutive integers and
another factor. If n = 0, then 5/0° — 0 since 0 =5 - 0.

Suppose n is a natural number.

We consider n divided by 5.

By the Division Algorithm, we know that n = 5¢ + r, where 0 < r < 5.

Thus we have the set of congruence classes modulo 5.

For example, if r = 0, then n = 5q.

If r =1, then n = 5¢g + 1.

If r =2, then n = 5q + 2.

If r = 3, then n = 5g + 3.

If r =4, then n = 5q + 4.

We observe the following partition of natural numbers under congruence
modulo 5 for any integer ¢ > 0:

If n € {2,7,12,17,22,27, ...} = {5q + 2}, then 5[n? + 1.

This set is really the set of all natural numbers which are congruent to 2
(mod 5).

Thus if n € [2]5, then 5|n?+1. This is because if n is an arbitrary element of
this set, then n = 5¢+2, son?+1 = (5¢+2)2+1 = 25¢°+20¢+5 = 5(5¢>+4q+1).

If n € {3,8,13,18,23,28, ...} = {5q + 3}, then 5|n? + 1.

This set is really the set of all natural numbers which are congruent to 3
(mod 5).

Thus if n € [3]5, then 5|n? + 1.This is because if n is an arbitrary element
of this set, then n = 5¢ 4+ 3, so n2 +1 = (5¢ + 3)? + 1 = 25¢*> 4+ 30¢ + 10 =
5(5¢% + 6q + 2).

If ne{4,9,14,19,24,29,34, ...} = {5q + 4}, then 5|n + 1.

This set is really the set of all natural numbers which are congruent to 4
(mod 5).

5 _n is even. We now must
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Thus if n € [4]5, then 5n + 1.This is because if n is an arbitrary element of
this set, then n =5¢+4,son+1=(5g+4)+1=5q+5=>5(qg+1).

If n € {5,10, 15,20, 25,30, ...} = {5q}, then 5|n.

This set is really the set of all natural numbers which are multiples of 5.

Thus if n € [0]5, then 5n. This is because if n is an arbitrary element of
this set, then n = 5q.

If n € {1,6,11,16,21,26,31,36,...} = {5¢ + 1}, then 5n — 1.

This set is really the set of all natural numbers which are congruent to 1
(mod 5).

Thus if n € [1]5, then 5|n — 1.This is because if n is an arbitrary element of
this set, then n =5¢+1,s0n—1=(5¢+ 1) — 1 = bq.

Thus, regardless of what value n is, one of the factors n,n—1,n+1, or n2+1
is always divisible by 5.

Hence, n® — n is divisible by 5.

Now, we can also prove this by induction(weak form). The statement to
prove is: for all non-negative integers n, 5/n° — n.

Thus the statement is S, : 5n° —n.

The statement Sy, is 5k — k.

The statement Sy1 is 5|(k +1)% — (k + 1). O

Proof. Let p=n® —n

Then p = n(n* —1) =n(n? = 1)(n? + 1) = n(n — 1)(n + 1)(n? + 1).

We must prove 5p.

By the division algorithm either n = 5k or n = 5k + 1 or n = 5k + 2 or
n = bk 4+ 3 or n = 5k + 4 for some integer k.

We consider each case separately.

Case 1: Suppose n = 5k.

Then 5|n, so 5 divides any multiple of n.

Hence, 5|p.

Case 2: Suppose n = 5k + 1.

Since n — 1 = 5k, then 5|(n — 1).

Hence, 5 divides any multiple of n — 1, so 5|p.

Case 3: Suppose n = 5k + 2.

Since n? + 1 = (5k + 2)? + 1 = 25k + 20k + 4 + 1 = 25k + 20k + 5
5(5k% + 4k + 1), then 5|(n? + 1).

Hence, 5 divides any multiple of n? + 1, so 5|p.

Case 4: Suppose n = 5k + 3.

Since n? +1 = (5k +3)2 + 1 = 25k? + 30k + 9 + 1 = 25k? + 30k + 10 =
5(5k% + 6k + 2), then 5|(n? + 1).

Hence, 5 divides any multiple of n? + 1, so 5|p.

Case 5: Suppose n = 5k + 4.

Since n+ 1= (bk+4) +1 =5k + 5 = 5(k + 1), then 5|(n + 1).

Hence, 5 divides any multiple of n + 1, so 5|p. O

Proof. The statement is S,, : 5|n® — n.
We prove by induction.
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Basis:

If n = 0, then the statement is 5|0° — 0, or 5|0, which is obviously true.

If n = 1, then the statement is 5[1° — 1, or 5|0, which is obviously true.
Induction:

We must prove Sy — Sg41 for k > 1.

This means we must prove if 5/(k% — k), then 5|(k +1)> — (k + 1) for k > 1.
Suppose 5|(k® — k) for k > 1.

Then k° — k = 5a for some a € Z, by definition of divisibility.

Observe the following equalities:

(k+1)° —(k+1) = (k°+5k* +10k> + 10k + 5k +1) -k — 1
= (K° — k) + (5k* + 10K® + 10k* + 5k)
= 5a+5(k* + 2k + 2k + k)
= 5(a+ k" +2k3 +2k% + k)

Thus, 5|(k +1)° — (k+ 1).
It follows by induction that 5|(n®> — n) for all non-negative integers. O

Exercise 60. The sum of the cubes of three consecutive natural numbers is
divisible by 9.

Proof. We must prove 9|(n® + (n 4+ 1)® 4+ (n 4 2)3) for all n € N.

Let p(n) be the predicate 9|(n + (n 4+ 1)% + (n + 2)3) defined over N.

We prove p(n) is true for all n € N by induction on n.

Basis:

Since 13 + 23 + 33 = 36 and 9|36, then p(1) is true.

Induction:

Let k € N such that p(k) is true.

Then 9 divides & + (k 4+ 1)® + (k + 2)3.

Since (k+3)%—k® = (K3 +9k>+27k+27)— k3 = 9k*>+27k+27 = 9(k?+3k+3)
and k? + 3k + 3 is an integer, then 9 divides (k + 3)3 — k3.

Since 9 divides k% + (k +1)3 + (k + 2)® and 9 divides (k + 3)3 — k3, then 9
divides the sum k3+ (k+1)3+(k+2)%+(k+3)* —k* = (k+1)3+ (k+2)%+(k+3)3.

Hence, p(k + 1) is true, so p(k) implies p(k 4+ 1) for any k > 1.

It follows by induction that 9|(n® + (n +1)3 + (n+2)3) foralln e N. O

Exercise 61. For every n € Z*, 6|n(n + 1)(2n + 1).

Proof. Let n € Z*.

By the division algorithm, there exist unique integers ¢, r such that n = 6q+r
with 0 < r < 6.

Thus, either n =6gorn=6g+1orn=6¢g+2o0orn=6g+3orn=>06q+4
or n = 6q + 5.

We consider each case separately.

Case 1: Suppose n = 6q.

Then 6|n, so 6 divides any multiple of n.

Thus, 6|n(n + 1)(2n + 1).
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Case 2: Suppose n = 6¢g + 1.

Since n+1=(6¢+1)+1=06g+2=2(3¢+ 1), then 2|(n +1).

Since 2n +1 =2(6g+1)+1=12¢+2+1 = 12¢ + 3 = 3(4q + 1), then
3|(2n + 1).

Since 2|(n+1) and 3|(2n+1), then (2%3)|(n+1)(2n+1), so 6|(n+1)(2n+1).

Hence, 6 divides any multiple of (n+ 1)(2n + 1), so 6|n(n +1)(2n + 1).

Case 3: Suppose n = 6q + 2.

Since n = 2(3¢q + 1), then 2|n.

Since n +1 = (6¢+2) + 1 =6g + 3 = 3(2¢ + 1), then 3|(n + 1).

Since 2|n and 3|(n + 1), then (2 * 3)|n(n + 1), so 6|n(n + 1).

Hence, 6 divides any multiple of n(n + 1), so 6|n(n + 1)(2n + 1).

Case 4: Suppose n = 6¢g + 3.

Since n = 3(2¢ + 1), then 3|n.

Since n+ 1= (6¢+3) +1 = 6¢g + 4 = 2(3¢ + 2), then 2|(n + 1).

Since 3|n and 2|(n + 1), then (3 x 2)|n(n + 1), so 6n(n + 1).

Hence, 6 divides any multiple of n(n + 1), so 6|n(n + 1)(2n + 1).

Case 5: Suppose n = 6q + 4.

Since n = 2(3¢q + 2), then 2|n.

Since 2n +1=2(6g +4) + 1 =12¢ + 9 = 3(4q + 3), then 3|(2n + 1).

Since 2|n and 3|(2n + 1), then 6|n(2n + 1).

Hence, 6 divides any multiple of n(2n + 1), so 6|n(n + 1)(2n + 1).

Case 6: Suppose n = 6q + 5.

Since n+ 1= (6¢+5)+1=06¢+6 =6(q+ 1), then 6|(n + 1).

Hence, 6 divides any multiple of n + 1, so 6|n(n + 1)(2n + 1).

Therefore, in all cases, 6|n(n + 1)(2n + 1). O

Proof. Let S be the truth set of p(n) : 6|n(n + 1)(2n + 1).

To prove S = Z*, we use induction.

Basis:

Since 1(1+1)(2% 1+ 1) = 6 and 6|6, then p(1) is true.

Hence, 1 € S.

Induction:

Suppose k € S.

To prove k + 1 € S, we must prove 6|(k + 1)(k + 2)(2k + 3).

Since k € S, then 6|k(k + 1)(2k + 1).

Observe that (k4 1)(k+2)(2k +3) = k(k+1)(2k + 1) + 6(k + 1)%.

Since 6|6, then 6 divides any multiple of 6.

Hence, 6|6(k + 1)2.

Since 6 divides k(k + 1)(2k + 1) and 6 divides 6(k + 1)?, then 6 divides the
sum k(k+ 1)(2k + 1) + 6(k + 1)%.

Thus, 6 divides (k + 1)(k + 2)(2k 4+ 3), as desired. O

Exercise 62. The product of 3 consecutive integers is a multiple of 6.
Vn € Z,6ln(n+1)(n +2).
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Proof. Let n € Z.
Let p =n(n+1)(n + 2).
We must prove 6/p.
By the division algorithm, either n = 6k or n = 6k + 1 or n = 6k + 2 or
n = 6k + 3 or n = 6k + 4 or n = 6k + 5 for some integer k.
We consider these cases separately.
Case 1: Suppose n = 6k.
Then 6|n, so 6 divides any multiple of n.
Therefore, 6|p.
Case 2: Suppose n = 6k + 1.
Since n +1=(6k+1) +1 =6k +2=2(3k+ 1), then 2|(n + 1).
Since n+2 = (6k + 1) +2 = 6k + 3 = 3(2k + 1), then 3|(n + 2).
Since 2|(n + 1) and 3|(n + 2), then 6|(n + 1)(n + 2).
Hence, 6 divides any multiple of (n + 1)(n + 2), so 6|p.
Case 3: Suppose n = 6k + 2.
Since n = 2(3k + 1), then 2|n.
Since n+1 = (6k +2) + 1 = 6k + 3 = 3(2k + 1), then 3|(n + 1).
Since 2|n and 3|(n + 1), then 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6]p.
Case 4: Suppose n = 6k + 3.
Since n = 3(2k + 1), then 3|n.
Since n+ 1= (6k + 3) + 1 = 6k + 4 = 2(3k + 2), then 2|(n + 1).
Since 3|n and 2|(n + 1), then 6|n(n + 1).
Hence, 6 divides any multiple of n(n + 1), so 6]p.
Case 5: Suppose n = 6k + 4.
Since n + 2 = (6k +4) +2 = 6k + 6 = 6(k + 1), then 6|(n + 2).
Hence, 6 divides any multiple of n + 2, so 6|p.
Case 6: Suppose n = 6k + 5.
Since n+ 1= (6k+5) +1 =6k + 6 = 6(k + 1), then 6|(n + 1).
Hence, 6 divides any multiple of n + 1, so 6|p.

In all cases, 6|p. O

Proof. We prove by induction(strong).

Basis:

If n =1 then the statement S is 6|1 * 2 * 3. This simplifies to 6|6, which is
true because 6 = 6 * 1.

If n = 2 then the statement S5 is 6|2 * 3 x 4. This simplifies to 6|24, which
is true because 24 = 6 * 4.

Induction:

We must prove S1 A So A ... A Sk = Sk for k> 2.

This implies we must prove Si_1 A Sy, = Sk for k > 2.

For simplicity, let m =k — 1.

Then Si_1 A Sy = Sk41 for kE > 2 becomes

S A Sm_t,_l = Sm+2 for m > 1.

We prove the latter statement using direct proof.
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Suppose Sy, A Sp41 for m > 1.
We must prove that these assumptions together imply Sy, 2.
Since Sy, A Spa1 is true by assumption, then S, is certainly true.

This implies 6|m(m + 1)(m + 2) which implies m(m+1)(m+2) = 6a,a € Z,
by definition of divisibility.

Thus m(m + 1)(m + 2) = m(m? + 3m + 2) = m® + 3m? + 2m = 6a.

Observe the following equalities:

(m+2)(m+3)(m+4) = (m+2)(m?+7Tm+12)
= m>+9m? +26m + 24
= (m®+3m? +2m) + (6m? + 24m + 24)
= 6a+6(m?+4m +4)
6(a +m? +4m +4)

Since a +m? + 4m + 4 € Z, then by definition of divisibility, 6|(m + 2)(m +
3)(m +4).

Hence S, A Si41 = Smgo form > 1.

Thus, Sx_1 A S = Sk for k > 2.

It follows by strong induction that 6|n(n + 1)(n + 2) for all n € N. O

Exercise 63. The number 6 is the largest natural number that divides n® —n
for all n € N.

Proof. We must prove
1. For all natural numbers n, 6|(n® — n).
2. If m € N and m > 6, then there exists n € N such that m does not divide

n3—n.

We first prove 6|(n® — n) for all n € N by induction on n.
Let p(n) be the predicate 6|(n® — n) defined over N.
We prove p(n) is true for all n € N by induction on n.

Basis:
Since 13 — 1 = 0 and 6|0, then p(1) is true.
Induction:

Let k € N such that p(k) is true.

Then 6 divides k3 — k.

Observe that (k+1)3—(k+1) = (k3+3k*>+3k+1)—k—1 = k3+3k*+3k—k =
(k3 — k) + (3k% + 3k) = (k® — k) + 3k(k + 1).

Since the product of two consecutive integers is even and k(k + 1) is the
product of two consecutive integers, then k(k + 1) is even, so 2|k(k + 1).

Hence, 3 - 2|3k(k + 1), so 6[3k(k + 1).

Since 6 divides k3 — k and 6 divides 3k(k + 1), then 6 divides the sum
(k3 —k)+3k(k+1)=(k+1)3 — (k+1).
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Thus, p(k + 1) is true, so p(k) implies p(k + 1) for any k > 1.
It follows by induction that 6|(n® — n) for all n € N. O

Proof. We next prove:

If m € N and m > 6, then there exists n € N such that m does not divide
n3 —n.

Let m € N with m > 6.

Let n be the natural number 2.

Then n® —n =23 —-2=6.

If m € N and m|6, then m < 6, so if m € N and m > 6, then m does not
divide 6.

Since m € N and m > 6, then we conclude m does not divide 6, so m does
not divide n® — n.

Therefore, there does exist n € N such that m does not divide n® — n, as
desired. O

Exercise 64. Let z,y € Z.
If 17|(2z + 3y), then 17|(92 + 5y).

Proof. Suppose 17|(2z + 3y).

Then 2z + 3y = 17m for some integer m.

To prove 17|(9z + 5y), we must prove there exists n € Z such that 9z + 5y =
17n.

Let n=—-4m+x +y.

Since m, z,y € Z, then n € Z.

Observe that

17n = 17(—4dm+2x +y)
17(—4m) + 17(x + y)
(=4)(17m) + 17(x + y)

= (—-4)2z+3y)+17(z+y)
= —8xr—12y+17x+ 1Ty

= 9z + 5y.

Since 17n = 9x + 5y, then 17|(9z + 5y). O

Exercise 65. Let a,b € Z with b > 0.
Then there exist unique integers g and r such that a = bg+r with 2b < r <
3b.

Proof. Since a,b € Z and b > 0, then by the division algorithm, there exist
unique integers ¢ and r such that a = bg + r with 0 < r < b.

Since b, q,r € Z, then b(q + 2) + (r — 2b) € Z.

Since b(¢+2) + (r —2b) € Z and b € Z and b > 0, then by the division
algorithm, when b(q + 2) + (r — 2b) is divided by b, the remainder is r — 2b with
0<r—2b<hb.

Observe that b(qg+2) + (r —2b) =bg+2b+r—2b=bg+r = a.
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Since 0 < r — 2b < b, then 2b < r < 3b.
Therefore, there exist unique integers ¢ and r such that a = bg + r and
2b < r < 3b. O

Exercise 66. Any integer of the form 6k + 5 is also of the form 3k + 2, but not
conversely.

Proof. Let k € Z.

Then 6k +5 =6k +3+2=3(2k+1)+2.

Let m =2k + 1.

Since k € Z, then m € Z, so 6k +5 = 3m + 2.

Therefore, any integer of the form 6k + 5 is also of the form 3m + 2 for some
integer m.

Conversely, consider the integer 14.
Since 14 = 3 -4 + 2, then 14 is of the form 3m + 2 with m = 4.
If 14 = 6k + 5, then 9 = 6k, sok:% ¢ 7.
Thus, there is no integer k such that 14 = 6k + 5.
Therefore, 14 is of the form 3m + 2, but not of the form 6k + 5. O

Exercise 67. Every odd integer is either of the form 4k 4+ 1 or 4k + 3.

Proof. Let n be any odd integer.

By the division algorithm, there exist unique integers ¢ and r such that
n=4q+r with 0 <r < 4.

Thus, either n =4gorn =49+ 1orn=4q¢g+2 orn=4q+ 3.

Since n is odd, then this implies either n = 4¢ + 1 or n = 4q + 3. O

Exercise 68. The square of any integer is either of the form 3% or 3k + 1.

Proof. Let n € Z.

By the division algorithm, there exist unique integers ¢ and r such that
n=3q+r with 0 <r < 3.

Thus, either n =3q or n =3¢+ 1 or n = 3¢ + 2.

We consider these cases separately.

Case 1: Suppose n = 3q.

Then n? = (3¢)? = 3%¢*> = 3(3¢?).

Let k = 3¢>.

Then k € Z and n? = 3k.

Case 2: Suppose n = 3¢ + 1.

Then n? = (3¢ +1)%2 = 9¢%> + 6 + 1 = 3(3¢*> +2q) + 1.

Let k = 3¢ + 2q.

Then k € Z and n? = 3k + 1.

Case 3: Suppose n = 3q + 2.

Then n? = (3¢ +2)? = 9¢%> +12¢ +4 = 3(3¢®> + 4q + 1) + 1.

Let k=3¢ +4q+ 1.

Then n? = 3k + 1.
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Therefore, in all cases, either n? = 3k or n? = 3k + 1 for some integer k. O
Exercise 69. The cube of any integer is either of the form 9k, 9k +1, or 9k +38.

Proof. Let n € Z.

By the division algorithm, there exist unique integers ¢ and r such that
n=3q+r with 0 <r < 3.

Thus, either n =3q or n =3¢+ 1 or n = 3¢ + 2.

We consider these cases separately.

Case 1: Suppose n = 3q.

Then n3 = (3¢)® = 27¢% = 9(3¢>) = 9k for integer k = 3¢°.

Case 2: Suppose n = 3q + 1.

Then n® = (3¢+1)% =27¢3 +27¢> +9¢+1=9¢(3¢> + 3¢+ 1) +1 =9k + 1
for integer k = q(3¢> + 3¢ + 1).

Case 3: Suppose n = 3q + 2.

Then n® = (3¢ +2)3 = 27¢% +54¢® + 36 +8 = 9¢(3¢®> +6q+4) +8 = 9k +8
for integer k = q(3¢* + 6q + 4). O

Exercise 70. If an integer is both a square and a cube, then it must be either
of the form 7k or 7k + 1.

Solution. We prove:

1. Every square is of the form 7k, 7k + 1,7k + 2, Tk + 4.

2. Every cube is of the form 7k, 7k + 1,7k + 6.

So, this would imply any integer that is both a square and a cube must be
of a form that it common to both squares and cubes.

We observe that if n is a square and a cube, then n = a8 for a € Z7F. O

Proof. We first prove every square is of the form 7k, 7k + 1,7k + 2 or 7k + 4 for
some integer k.

Let n € Z.

Suppose n is a square.

Then n = a2 for some integer a.

By the division algorithm, there exist unique integers ¢ and r such that
a=Tq+rwith0<r<T7.

Thus, either r=0orr=1orr=2orr=3orr=4orr=5o0rr=06.

We consider these cases separately.

Case 1: Suppose r = 0.

Then a = 7q.

Therefore, n = (7q)? = 7?q® = 7(7¢?) = Tk for integer k = 7¢°.

Case 2: Suppose r = 1.

Then a = 7q + 1.

Therefore, n = (7Tq + 1)2 = 49¢%> + 14q + 1 = 7q(7T¢ +2) + 1 = Tk + 1 for
integer k = q(7q + 2).

Case 3: Suppose r = 2.

Then a = 7q + 2.
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Therefore, n = (7q + 2)? = 49¢®> + 28¢ +4 = 7q(Tq + 4) + 4 = Tk + 4 for
integer k = q(7q + 4).

Case 4: Suppose 7 = 3.

Then a = 7q + 3.

Therefore, n = (7q + 3)% = 49¢> + 42¢ + 9 = 7(7¢%) + 7(6q) + (T* 1+ 2) =
7(7¢% + 6q + 1) +2 = Tk + 2 for integer k = 7¢ + 6q + 1.

Case 5: Suppose r = 4.

Then a = 7q + 4.

Therefore, n = (7q + 4)? = 49¢® + 569 + 16 = 7(7¢?) + Tx8q + (7% 2+2) =
7(7¢% +8q +2) + 2 = Tk + 2 for integer k = 7¢% + 8¢ + 2.

Case 6: Suppose r = 5.

Then a = 7q + 5.

Therefore, n = (7q+5)? = 49¢*> + 70q +25 = 7(7¢?) + T+ 10g + (Tx3+4) =
7(7¢% +10q + 3) + 4 = Tk + 4 for integer k = T¢> + 10q + 3.

Case 7: Suppose 7 = 6.

Then a = 7q + 6.

Therefore, n = (7Tq+6)? = 49¢> + 84q + 36 = 7(7¢*) + Tx 12+ (Tx5+1) =
7(7¢* +12¢ +5) + 1 = Tk + 1 for integer k = 7¢® + 12¢ + 5.

Therefore, in all cases, eithern =7k orn=7k+1orn=T7Tk4+2o0rn ="Tk+4
for some integer k. O

Proof. We next prove every cube is of the form 7k, 7k + 1, or 7k + 6 for some
integer k.

Let n € Z.

Suppose n is a cube.

Then n = a? for some integer a.

We must prove either n =7k or n =7k + 1 or n = 7k + 6.

By the division algorithm, there exist unique integers ¢ and r such that
a=T¢g+rwith0<r<7.

Thus, either r =0orr=1orr=2orr=3orr=4orr=5orr =6.

We consider these cases separately.

Case 1: Suppose r = 0.

Then a = 7q.

Therefore, n = (7q)® = T3¢ = 7(7%¢®) = 7(49¢®) = Tk for integer k = 49¢3.

Case 2: Suppose r = 1.

Then a = 7q + 1.

Observe that
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n = (T¢g+1)3

= 23: (2) (7q)**

k=0

= (§)awr+ ({3 (3)

= (79)* +3(7q)* + 3(7q) + 1

= (7)) +3(7%¢%) + 3(Tq) + 1

= (7@ +3%T¢°+3q)+1
7(49¢% + 21¢% + 3¢) + 1.

Therefore, n = 7(49¢3+21¢*+3q)+1 = Tk+1 for integer k = 49¢>+21¢>+3q.
Case 3: Suppose r = 2.

Then a = 7q + 2.

Observe that

n = (Tg+2)°
3

= 3 ()t

k=0

. (3) (70 + (i’) (702" + (;’) (T9)(2%) + (g) %)

(79)* +3(79)*(2) + 3(7¢)(2°) + 8

(7°¢°) + 3)2)(T*¢*) + (3)(2%)(Tq) + (T 1+ 1)
= 17+ (3)2) *x7¢* + (3)(2°)g + 1) + 1

= 7(49¢° +42¢> + 12¢ + 1) + 1.

Therefore, n = 7k + 1 for integer k = 49¢> + 42¢> + 12q.
Case 4: Suppose 7 = 3.

Then a = 7q + 3.

Observe that
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n = (7q+3)
3

= > (}) e

k=0

- (3) Pt () 31) ¢ (2’) (7)(3%) + (ﬁ)(si*)
* + 3(70)%(3) + 3<7q><32> o

&)+ BT + 3)(3)(7g) + (T3 +6)
(724 + (3)(3) # T¢* + (3)(3%)q + 3) + 6

= 7(49¢> + 63¢*> +27¢ + 3) + 6.

(7
(7
7

Therefore, n = Tk + 6 for integer k = 49¢> + 63¢> + 27¢ + 3.
Case 5: Suppose r = 4.

Then a = 7q + 4.

Observe that

n = (7Tqg+4)

5 (o

- 3 ) <) 41)+<;’)(7q)(42)+(§>(43)

= (79)° +3(79)*(4) + 3(7q) (4*) + 64
= (7°¢°) + B)H)(7T¢*) + (3)(4*)(Tq) + (T* 9 +1)
= (7 + (3)(4) * T¢° +(3)(4)q+9)+1

= 7(49¢> + 108¢* + 48¢ + 9) +

Therefore, n = 7k + 1 for integer k = 49¢> + 108¢> + 48¢ + 9.
Case 6: Suppose r = 5.

Then a = 7q + 5.

Observe that

32



n = (7q+5)>

= > (e

k=0

- (3) (79)° + (?)(7(;)2(51) + (g) (7q)(5%) + @)(53)

(7q) + 3(79)*(5) + 3(7q)(5%) + 125

= (T%q 3) +(3)(B)(7°¢%) + (3)(5°)(7q) + (7% 17 4 6)
= 7(7*¢* + (3)(5) * 7¢*> + (3)(5? )q+17) +6

= 7(49¢> + 105¢* + 75q + 17) +

Therefore, n = 7q + 6 for integer k = 49¢> + 105¢ + 75¢ + 17.
Case 7: Suppose r = 6.

Then a = 7q + 6.

Observe that

n = (7¢+6)3
3

= ()t

k=0

= ()mr+ () mare + (5) e + (5) )

(7q) + 3(79)*(6) + 3(7q)(6%) + 216

(7°¢%) + (3)(6)(7%¢°) + (3)(6°)(7q) + (7 % 30 + 6)
7(7%¢% + (3)(6) * 7¢* + (3)(6%)q + 30) + 6

= 7(49¢° + 1264 + 108¢ + 30) + 6.

Therefore, n = 7Tk + 6 for integer k = 49¢> + 1264 + 108q + 30.

Therefore, in all cases, either n = 7k or n = 7k + 1 or n = 7k + 6 for some
integer k. O

Proof. Let n € Z.

Suppose n is a square and a cube.

Then n is a square and n is a cube.

Since every square is of the form 7k, 7k + 1,7k + 2, 7k + 4 for some integer k
and n is a square, then n is of the form 7k, 7k +1, 7k + 2, Tk + 4 for some integer
k.

Since every cube is of the form 7m,7m + 1,7m + 6 for some integer m and
n is a cube, then n is of the form 7k, 7k + 1,7k + 6.

Since n is both a square and a cube, then this implies n is of the form that
is common to both a square and a cube, so n is of the form 7k or 7k + 1. O
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Exercise 71. There is no integer in the sequence 11,111,1111,11111, ... that
is a perfect square.

Proof. Let (a,) be the sequence 11,111,1111,11111,....
Then a,, = 10 * a,—1 + 1 for positive integers n > 1 and a; = 11.
We first prove each term of the sequence has the form 4%+ 3 for some integer

Thus, we must prove for all n € ZT, there exists k € Z such that a,, = 4k+3.

We prove by induction on n.

Let S={neZ":(3keZ)a, =4k + 3)}.

Basis:

Since 1€ Zt and2€Z anda; =11 =4%2+3,then 1€ S.

Since 2 € ZT and 27 € Z and ay = 10%a; +1 = 10%11+1 = 111 = 4%27+3,
then 2 € S.

Induction:

Suppose m € S and m > 2.

Then m € Z* and there exists k € Z such that a,, = 4k + 3.

Since m € Z*, then m +1 € Z™.

Sincem+1>m>2>1then m+1>1.

Observe that

am+1 = 10a, +1

10(4k +3) +1
40k + 31

4% 10k + (4% 7+3)
= 4(10k +7) + 3.

Let p = 10k + 7.

Since k € Z, then p € Z and a1 = 4p + 3.

Since m + 1 € Z* and there exists p € Z such that a,,.1 = 4p + 3, then
m+1eS.

Hence, m € S for m > 2 implies m+ 1 € S.

Therefore, by PMI, for all n € Z™, there exists k € Z such that a, =
4k + 3. O

Proof. We next prove every perfect square is either of the form 4k or 4k + 1.

Let n be a perfect square.

Then n € Z and n = a? for some integer a.

From a previous exercise we know that the square of an integer leaves re-
mainder 0 or 1 upon division by 4.

Hence, a? leaves remainder 0 or 1 upon division by 4, so either a? = 4k or
a? = 4k + 1 for some integer k.

Therefore, either n = 4k or n = 4k 4+ 1 for some integer k. O
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Proof. We prove the term a,, cannot be a perfect square.

Let a, be a term of the sequence 11,111,1111,....

Then a,, has the form 4k + 3 for some integer k, so a,, is of the form 4k + 3.

Every perfect square is either of the form 4k or 4k + 1, so if n is a perfect
square, then either n = 4k or n = 4k + 1.

Hence, if n # 4k and n # 4k + 1, then n is not a perfect square.

Since 4k 4+ 3 # 4k and 4k + 3 # 4k + 1, then 4k + 3 is not a perfect square,
S0 a,, is not a perfect square.

Therefore, every term of the sequence 11,111,1111, ... is not a perfect square,
so there is no term of the sequence that is a perfect square. O

Exercise 72. For all n € ZT, 7 divides 23" — 1.

Proof. We prove by induction on n.
Let S ={neZ":7)(2>" - 1)}.
Basis:
Since 23*1 — 1 =7 =7=%1, then 7 divides 2%*1 —1,s01 € S.
Induction:
Suppose k € S.
Then k € Z*+ and 7|(23% — 1).
Since k € Z*, then k+1 € Z™.
Since 7|(23F — 1), then 23* — 1 = 7z for some integer x.
Observe that

93(k+1) _ 1 _ 93k+3 _q
= 2%k, 23 1
= 8x2% -1
= 82k —1)+8-1
= 8(Tz)+7
= 78z +1).

Since & € Z, then 8z + 1 € Z, so 7 divides 23(F+1) — 1,

Since k +1 € Z* and 7 divides 23*+1) — 1 then k+1 € S.

Hence, k € S implies k +1 € S.

Therefore, by PMI, 7|(23" — 1) for all n € Z+. O

Exercise 73. For all n € ZT, 8 divides 32" + 7.

Proof. We prove by induction on n.
Let S ={ne€Z":83%" + 7).
Basis:
Since 32*! 4+ 7 = 16 = 8 x 2, then 8 divides 3%*! +7,s01 € S.
Induction:
Suppose k € S.
Then k € Z* and 8|(3%% + 7).
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Since k € Z*, then k+1 € Z™.
Since 8|(32% 4 7), then 32* + 7 = 8z for some integer .
Observe that

32(k+1) 4 7 = 32k+2 + 7

32k 32 47
9%3%% 47
(8+1)3%F 4+ 7
= 8(3%F) + 3% 47
= 8(3%%) 8z

= 8(3% + 1)

= 8(9* + ).

Since k,x € Z, then 9¥ + z € Z, so 8 divides 32(F+1) 4 7.

Since k + 1 € Z* and 8 divides 32(**1) 4 7, then k + 1 € S.

Hence, k € S implies k+1 € S.

Therefore, by PMI, 8|(32" +7) for all n € Z*. O
Exercise 74. For all n € Z*+, 2" + (—1)"*! is divisible by 3.
Proof. We prove by induction on n.

Let S ={ne€Z*":3|2" + (-1)"1}.

Basis:

Since 2! + (=1)*1 =2+1 =3 = 3-1, then 3 divides 2! + (-1)!*1 s0 1 € S.

Induction:

Suppose k € S.

Then k € Z*+ and 3|2F + (—1)k+1.

Since k € Zt, then k+1 € Z™.

Since 3|2% + (=1)%*1 then 2* + (—1)¥*! = 3z for some integer .

Observe that

ok+1 4 (71)(k+1)+1 = 92k.94 (71)1@“(71)
— 9k ok _ (_1)k+1
_ 2k + (2 _ 1)2k _ (_1)k+1
= 2k 4 o(2k) — 2k — (—1)FH!
= 3(2%) - [2° + ()"
3(2%) — 3z
3(2F — z).

Since k,z € Z, then 2¥ — z € Z, so 3 divides 281 4 (—1)F+D+1,

Since k + 1 € Z* and 3 divides 28+ + (—=1)(**D+1 then k+ 1 € S.

Hence, k € S implies £+ 1 € S.

Therefore, by PMI, 3|(2" + (—1)"*!) for all n € Z™. O
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Lemma 75. Every perfect square is of the form 4k or 4k + 1 for some integer

k.

Proof. Let n € Z.

By the division algorithm, there exist unique integers ¢ and r such that
n=2q+r with 0 <r < 2.

Thus, either n = 2q or n = 2¢q + 1.

We consider these cases separately.

Case 1: Suppose n = 2q.

Then, n? = (2q)? = 4¢* = 4k? for integer k = q.

Case 2: Suppose n = 2q + 1.

Then n? = (2 + 1) = 4¢> + 4g + 1 = 4(¢*> + q) + 1 = 4k + 1 for integer
k=q¢>+q.

Therefore either n? = 4k or n? = 4k + 1 for some integer k. O

Lemma 76. Letn € Z.
If n is odd, then 8|(n? —1).

Proof. Suppose n is odd.

By the division algorithm, there are unique integers ¢ and r such that n =
4g +r with 0 <r < 4.

Thus, either n =4gorn =49+ 1orn=4q+2 or n =4q + 3.

Hence, either n = 2(2¢) or n = 2(2¢)+1 or n = 2(2g+1) or n = 2(2g+1)+1.

Since n is odd, then this implies either n = 4¢ 4+ 1 or n = 4q + 3.

We consider each case separately.

Case 1: Suppose n = 4q + 1.

Then n? — 1= (4g+1)2 —1=16¢> + 8¢+ 1 — 1 = 16¢> + 8¢ = 8(2¢> + q).

Since 2¢° + q € Z, then this implies 8|(n? — 1).

Case 2: Suppose n = 4q + 3.

Then n? —1 = (4g+3)2 =1 = 16¢®> + 24+ 9 — 1 = 16¢*> + 24qg + 8 =
8(2¢* + 3¢+ 1).

Since 2¢ + 3¢ + 1 € Z, then this implies 8|(n? — 1).

Therefore, in all cases, 8|(n? — 1). O

Proof. Suppose n is odd.

Then n = 2a + 1 for some integer a.

Thus n? — 1= (2a +1)?> — 1 = 4a® + 4a = 4a(a + 1).

Since a and a + 1 have opposite parity we know that their product must be
even by proposition ?7.

Thus a(a + 1) = 2b for some integer b.

Consequently n? — 1 = 4(2b) = 8b, and so 8|(n? — 1). O

Exercise 77. Let a € Z.
If 2 fa and 3 Ja, then 24|(a® — 1).

Proof. Suppose 2 fa and 3 fa.
Since 2 fa, then a is odd.
Hence, we know that 8|(a? — 1).
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Since 3 fa, then by the division algorithm, either a = 3m + 1 or a = 3m + 2
for some integer m.
Ifa=3m+1,thena?—1= 3m+1)2-1=9m?+6m+1-1=9m?+6m =
3m(3m + 2), so 3|(a® — 1).
Ifa=3m+2 thena?-1=Bm+2?2-1=9m>+12m+4-1 =
9m? + 12m + 3 = 3(3m? + 4m + 1), so 3|(a® — 1).
In either case, 3|(a? — 1).

Since 8|(a? — 1) and 3|(a? — 1) and ged(8,3) = 1, then (8 * 3) divides a? — 1,
so 24 divides a? — 1. O

Exercise 78. Let a and b be odd integers.
Then 8|(a® — b?).

Proof. Since a is odd, then we know 8|(a? — 1), so a® — 1 = 8k for some integer
k.
Since b is odd, then we know 8|(b* — 1), so b*> — 1 = 8m for some integer m.
Thus, a®? —b* = (8k+1)— (8m+1) =8k +1—8m —1 = 8k —8m = 8(k—m).
Since k,m € Z, then k —m € Z, so 8|(a? — b?). O

2

Exercise 79. If m and n are odd integers, then m? — n? is divisible by 8.

Proof. Suppose m and n are odd integers.
We prove if z is an odd integer, then 22 =1 (mod 8).
Suppose z is an odd integer.
Then =z = 2k 4 1 for some integer k.
Thus, z? = 4k% + 4k + 1.
The product of consecutive integers is even, so in particular, k(k+1) is even.
Hence, 2|k(k + 1), so 4 2|4k(k + 1).
Thus, 8|(4k? + 4k), so 4k* + 4k =0 (mod 8).
Hence, 4k? + 4k +1=1 (mod 8), so 22 =1 (mod 8).
Therefore, m? =1 (mod 8) and n? =1 (mod 8).
Thus, 1 =n? (mod 8).
Since m?> =1 (mod 8) and 1 =n? (mod 8), then m? = n? (mod 8).
Hence, 8|(m? — n?). O

Exercise 80. Let a be an odd integer.
Then 24|a(a® — 1).

Proof. Since a(a® — 1) = a(a — 1)(a+1) = (a — 1)a(a + 1), then a(a® — 1) is a
product of three consecutive integers.

Since the product of three consecutive integers is divisible by 3, then this
implies 3|a(a? — 1).

Since a is odd, then we know a? = 8k + 1 for some integer k, so a® — 1 = 8k.

Hence, 8|(a® — 1), so 8 divides any multiple of a? — 1.

Thus, 8|a(a® — 1).

Since 3|a(a? — 1) and 8|a(a® — 1) and ged(3,8) = 1, then (3 * 8) divides
a(a? — 1), so 24|a(a® — 1). O
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Exercise 81. The sum of the squares of two odd integers cannot be a perfect
square.

Proof. Let x and y be two odd integers.
Then z = 2a + 1 and y = 2b + 1 for some integers a and b.
Thus,

2+ = (2a+1)2+(20+1)2

40 +4a + 1+ 40> +4b+ 1
4a® + 40 + 4da + 4b + 2
= 4(a®+b*+a+b)+2.

Let k =a’?+ b2 +a+b.

Then 2% +y?> =4k +2 and k € Z.

Every perfect square is of the form 4k or 4k + 1, so if x is a perfect square,
then either x = 4k or x = 4k 4+ 1 for some integer k.

Hence, if © # 4k and = # 4k + 1 for some integer k, then z cannot be a
perfect square.

Since 22 + 3% = 4k + 2 and 4k + 2 # 4k and 4k 4 2 # 4k + 1, then 22 + 32
cannot be a perfect square. O

Exercise 82. The square of any odd integer is of the form 8k + 1 for some
integer k.

Proof. Let n be any odd integer.

By the division algorithm there exist unique integers q, r such that n = 4q+r
with 0 <r < 4.

Thus, either n = 4gorn =4g+ 1 orn = 4qg+ 2 or n = 4q + 3, so either
n=2(2q) orn=2(2¢)+1lorn=22¢+1)orn=22¢+1)+1.

Since n is odd, then this implies either n = 4¢ + 1 or n = 4q + 3.

We consider each case separately.

Case 1: Suppose n = 4q + 1.

Then n? = (4g + 1)? = 16¢® + 8¢ + 1 = 8(2¢® + 2q) + 1 = 8k + 1 for integer
k=2¢%+ 2q.

Case 2: Suppose n = 4q + 3.

Then n? = (4¢+3)? = 16¢%>+24¢+9 = 16¢*>+24¢+8+1 = 8(2¢*+3q+1)+1 =
8k + 1 for integer k = 2¢% + 3¢ + 1. O

Exercise 83. The product of four consecutive integers is one less than a perfect
square.

Proof. Let n € Z.
We must prove there exists m € Z such that n(n+1)(n+2)(n+3) = m? —1.
Let m = (n+1)(n+2) — 1.
Since n € Z, then m € Z.
Observe that
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(n+1)(n+2)—1*-1
(n?*+3n+1)% -1

(N> +3n+1-1)n*+3n+14+1)
(n? +3n)(n* + 3n + 2)
nn+3)(n+2)(n+1)

= n(n+1)(n+2)(n+3).

Exercise 84. Let a € Z.
If 2 fa and 3 fa, then 24|(a? + 23).

Proof. Suppose 2 fa and 3 fa.

Since 2 Ja, then a is odd, so we know 8|(a? — 1).

Since 8|(a? — 1) and 8|24, then 8 divides the sum (a? — 1) + 24 = a? 4 23, so
8|(a2 + 23).

Since 3 fa, then by the division algorithm, either a = 3¢+ 1 or a = 3¢ + 2
for some integer q.

fa = 3g+1, then a?+23 = (3g+1)24+23 = 9¢%+6¢+1+23 = 9¢% +6¢+24 =
3(3¢% + 2q + 8), so 3|(a® + 23).

If @ = 3¢+ 2, then a® +23 = (3¢ +2)2+23 = 9¢> + 12¢ + 4 + 23 =
9¢% 4+ 12¢ + 27 = 3(3¢*> + 4¢ + 9), so 3|(a* + 23).

Thus, in either case, 3|(a® + 23).

Since 8|(a? 4 23) and 3|(a® + 23) and ged(8,3) = 1, then (8 * 3)|(a® + 23), so
24|(a® + 23). O

Lemma 85. The product of 5 consecutive integers is divisible by 5.

Proof. Let n € Z.
Let p=n(n+1)(n+ 2)(n + 3)(n + 4).
We must prove 5p.
By the division algorithm, either p = 5g or p = 5¢ + 1 or p = 5¢+ 2 or
p =5q+ 3 or p=5q+ 4 for some integer q.
We consider each case separately.
Case 1: Suppose n = 5gq.
Then 5|n, so 5 divides any multiple of n.
Hence, 5|p.
Case 2: Suppose n = 5q + 1.
Thenn+4=(5g+1)+4=5¢+5=>5(g+1),s05|(n+4).
Thus, 5 divides any multiple of n 4 4, so 5|p.
Case 3: Suppose n = 5q + 2.
Then n+3 = (5¢+2)+3="5¢+5=>5(¢g+1), so 5/(n+3).
Thus, 5 divides any multiple of n + 3, so 5|p.
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Case 4: Suppose n = 5q + 3.

Then n+2 = (5¢g+3)+2=5¢+5=>5(¢g+1), so 5|(n+2).
Thus, 5 divides any multiple of n 4 2, so 5|p.

Case 5: Suppose n = 5q + 4.
Thenn+1=(5¢+4)+1=>5¢+5=>5(¢+1),s05|(n+1).
Thus, 5 divides any multiple of n + 1, so 5|p.

Therefore, in all cases, 5|p. O

Exercise 86. Let n € Z.
Then 360|n%(n? — 1)(n? — 4).

Proof. Let p=n?*(n? —1)(n? — 4).
Then p =n?(n —1)(n +1)(n —2)(n + 2).
We prove 5|p and 8|p and 9|p. O

Proof. We prove 5|p.

Observe that p = (n — 2)(n — D)n(n + 1)(n + 2)n.

Let a=(n—=2)(n—1)n(n+1)(n+2).

Then p = an.

Since a is a product of 5 consecutive integers and the product of 5 consecutive
integers is divisible by 5, then 5|a.

Thus, 5 divides any multiple of a, so 5|p. O

Proof. We prove 8|p.
Either n is even or n is odd.
We consider each case separately.
Case 1: Suppose n is even.
Then n = 2k for some integer k.
Since n? = (2k)? = 4k?, then 4|n?.
Since n + 2 = 2k + 2 = 2(k + 1), then 2|(n + 2).
Since 4|n? and 2|(n + 2), then (4 x 2)|n?(n + 2), so 8n?(n + 2).
Thus, 8 divides any multiple of n?(n + 2), so 8|p.
Case 2: Suppose n is odd.
Then we know 8 divides n? — 1.
Thus, 8 divides any multiple of n? — 1, so 8 divides p.

Therefore, in all cases, 8|p. O

Proof. We prove 9|p.

By the division algorithm, either n = 3¢ or n = 3¢+ 1 or n = 3¢ + 2 for
some integer q.

We consider each case separately.

Case 1: Suppose n = 3q.

Then n? = (3¢)? = 9¢2, so 9|n?.

Hence, 9 divides any multiple of n?, so 9|p.

Case 2: Suppose n = 3¢ + 1.
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Since n — 1 = 3¢, then 3|(n — 1).
Sincen+2=(3¢+1)+2=3¢+3=3(¢+1), then 3|(n +2).

Since 3|(n — 1) and 3|(n +2), then (3% 3)|(n—1)(n+2), so 9|(n —1)(n+2).
Hence, 9 divides any multiple of (n — 1)(n + 2), so 9|p.

Case 3: Suppose n = 3q + 2.
Sincen+1=(3¢+2)+1=3¢+3=3(¢+1), then 3|(n + 1).

Since n — 2 = 3¢, then 3|(n — 2).

Since 3|(n+ 1) and 3|(n —2), then (3% 3)|(n+1)(n—2), so 9|(n+1)(n —2).
Hence, 9 divides any multiple of (n + 1)(n — 2), so 9|p.

Therefore, in all cases, 9|p. O

Proof. Since 5|p and 8|p and ged(5,8) = 1, then (5 * 8)|p, so 40|p.
Since 40|p and 9|p and ged(40,9) = 1, then (40 x 9)|p, so 360|p. O

Exercise 87. For all n € N, n® + 5n is divisible by 6.

Proof. To prove the statement n® + 5n is divisible by 6 for all n € N, we prove
6/(n3 + 5n) for all n € N by induction on n.

Let p(n) : 6/(n® + 5n) be a predicate defined over N.

Basis:

Since 12 + 5% 1 = 6 and 66, then the statement p(1) is true.

Induction:

Let k € N such that p(k) is true.

Then 6|(k® + 5k), so there exists an integer m such that k® + 5k = 6m.

Since the product of two consecutive integers is even and k € Z, then k(k+1)
is even, so there exists n € Z such that k(k + 1) = 2n.

Observe that

(k+13+5(k+1) = K 4+3k>+8k+6

K+ 8k +3k*>+6

k* + (5k + 3k) + 3k* 4+ 6
= (k*+5k)+ (3k + 3k*) +6
(k® 4 5k) + (3k* + 3k) + 6
6m + 3k(k +1) + 6

6m + 3(2n) + 6

= 6m+6n+6

= 6(m+n+1)

Since m +n + 1 € Z, then 6|((k + 1)® + 5(k + 1)), so p(k + 1) is true.
Therefore, by PMI, the statement 6|(n® + 5n) is true for all n € N. O

Exercise 88. For all n € Z*, n(n + 1)(2n + 1) is divisible by 6.
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Proof. By the division algorithm there exist unique integers ¢, r such that n =
6g+1r with 0 < r < 6, so eithern =6gorn=6qg+1orn=6¢g+2orn=06g+3
orn =06qg+4 or n=06q+5.

We consider each case separately.

Case 1: Suppose n = 6q.

Then 6|n, so 6 divides any multiple of n.

Therefore, 6|n(n +1)(2n + 1).

Case 2: Suppose n = 6q + 1.

Then n+1 = 6¢g+2 = 2(3¢g+1) and 2n+1 = 2(6g+1)+1 = 12¢+3 = 3(4¢+1),
so (n+1)2n+1) =6(3¢+1)(4g + 1).

Hence, 6|(n 4+ 1)(2n + 1), so 6 divides any multiple of (n 4+ 1)(2n + 1).

Therefore, 6|n(n + 1)(2n + 1).

Case 3: Suppose n = 6q + 2.

Then n = 2(3¢+ 1) and n+1 =6g+3 = 3(2¢g+ 1), so n(n+ 1) =
6(3¢+ 1)(2¢ +1).

Hence, 6|n(n + 1), so 6 divides any multiple of n(n + 1).

Therefore, 6|n(n + 1)(2n + 1).

Case 4: Suppose n = 6q + 3.

The n = 3(2¢+1) and n+1 = 6g+4 = 2(3¢+2), son(n+1) = 6(2¢+1)(3¢+2).

Hence, 6|n(n + 1), so 6 divides any multiple of n(n + 1).

Therefore, 6|n(n + 1)(2n + 1).

Case 5: Suppose n = 6q + 4.

Then n = 2(3¢+2) and 2n+ 1 =2(6g+4) +1 = 12¢+ 9 = 3(4¢ + 3), so0
n(2n + 1) = 6(3¢ + 2)(4¢ + 3).

Hence, 6|n(2n + 1), so 6 divides any multiple of n(2n + 1).

Therefore, 6|n(n + 1)(2n + 1).

Case 6: Suppose n = 6q + 5.

Then n+1=6q+6=06(qg+ 1), so 6|(n+1).

Hence, 6 divides any multiple of n 4 1.

Therefore, 6|n(n +1)(2n + 1). O

Exercise 89. The number 2 is not a square.

Proof. Suppose 2 is a square.
Then 2 = n? for some integer n, so, n|2,
We may assume n > 0, since (—n)? = n?.
Since 2 = 2 % 1, then either n =1 or n = 2.
If n =1, then 2 =n? =12 =1, a contradiction.
If n =2, then 2 = n? = 22 = 4, a contradiction.
Therefore, 2 is not a square. U

Exercise 90. Let k be a positive odd integer.
Then any sum of k consecutive integers is divisible by k.

Solution. Let k be a positive odd integer.
To prove any sum of k consecutive integers is divisible by k, we let n+1,n+
2,...,n+ k be k consecutive integers for some integer n.
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We must prove k divides the sum (n+ 1)+ (n+2) + ... + (n + k).
Thus, we must prove there exists an integer a such that (n+1) + (n+2) +
e F (n+ k) = Eka. O

Proof. Let k be a positive odd integer.

Let n+1,n+2,...,n+ k be k consecutive integers for some integer n.

To prove k divides the sum Zle(n + i), we must find an integer m such
that Zle(n +14) = km.

Observe that

k k k
dn+i) = > n+>i
=1 i=1 =1
oy B

2

k+1

Since k is odd, then there exists an integer a such that &k = 2a + 1.
Thus, %:2“—;2:@+1€Z.

Let m=n+ %

Since n and % are integers, then m is an integer.

Hence, E?Zl(n + i) = km, as desired. O

Exercise 91. Let n € N.
If n is odd, then (a + b)|(a™ + b™) for all a,b,n € Z7.

Proof. Suppose n is odd.
Then n = 2k + 1 for some integer k.
Let a,b € Z™.
Observe that

2k 2k 2%k
(a+b)Z(_1)ia2k—ibi — aZ(_l)iGQk—ibi +bZ(_1>ia2k_ibi
=0 i=0 =0
2k 2k
= S ()i S (1) e
1=0 i=0

— (a2k+1 _ a2k‘b+ a2k—1b2 + + ab2k) + (a2k:b_ an—le + = aka) +b2k:+1)

g2kl g 2kt
= a"+b"
Since Z?ﬁo(—l)ia%_ibi is an integer and a™+b" = (a+Db) Z?ﬁo(—l)ia%_ibi,
then a + b divides a™ + b", so a + b divides a™ + b" for all a,b € ZT.

Since n is odd and a+b divides a™+b" for all a, b € Z™, then we conclude: if n
is odd, then (a+b)|(a"™+b") for all a,b,n € Z™, by conditional introduction. [
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Exercise 92. Let n be a positive integer.
Let

Then A™ =T iff 4|n.

Solution. We compute values for A™ and observe a pattern.

Whenever n is a multiple of 4 we observe that A™ = I, where [ is the identity
matrix.

We must prove:

1. if A" =1, then 4|n.

We’ll use the division algorithm to prove A™ # I.

2. if 4|n, then A™ = I. Assume 4|n.

We compute A™. O

Proof. Observe that A* = I where I is the identity matrix.
We prove if 4|n, then A™ = 1.
Suppose 4|n.
Then there exists an integer k such that n = 4k.
Thus, A" = A% = (A%)* = [* = [, as desired.

Conversely, we prove if A™ = I, then 4|n.

Suppose A" = 1.

We must prove 4|n.

By the division algorithm, there are unique integers ¢ and r such that n =
4g+r with 0 <7r < 4.

Hence, either r=0orr=1orr=2or r = 3.

Observe that A” = A" 40 = AnA= 4 = A" = A4 = (AYH)"1=]"9=1],

Computation shows that A # I and A% # I and A3 # I.

Hence, r cannot be 1,2 or 3.

Thus, r must be zero.

Therefore, n = 4q, so 4|n, as desired. O

Exercise 93. Let w = %1 + @z
Then w™ = 1 if and only if 3|n, for any integer n.

Solution. Observe that w € C.
We must prove (Vn € Z)(w"™ =1 < 3|n).
Thus, we let n € Z be arbitrary.
To prove w™ = 1 > 3|n, we must prove:
1L w'=1=3n
2. 3In=>w"=1.
Note that w = cis(2F).
We compute w™ for various values of n.
We observe the pattern of repeating powers of w, namely, 1,w, w? repeat. [
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Proof. Let n be an arbitrary integer.

To prove w™ = 1 = 3|n, assume w™ = 1.

We must prove 3|n.

Using the division algorithm to divide n by 3, we obtain unique integers ¢
and r such that n =3¢ +r and 0 <r < 3.

To prove 3|n, we must prove r = 0.

Observe that w? =1 and

w3q+r

Il
&

(@)
=

T

= lw
= w’.

Since 0 < r < 3, then either r =0 orr=1orr = 2.

A computation shows that w! # 1 and w? # 1.

Thus, r cannot be 1 or 2.

Hence, r must be zero.

Therefore, n = 3¢, so 3|n, as desired.

To prove 3|n = w™ = 1, assume 3|n.

We must prove w™ = 1.

Since 3|n, then there exists an integer k such that n = 3k.

Thus, w" = w3 = (W3)*¥ = 1% = 1, as desired. O

Exercise 94. For all n € N, 5™ — 4n — 1 is divisible by 16.

Proof. To prove the statement 5™ — 4n — 1 is divisible by 16 for all n € N, we
prove 16|(5"™ — 4n — 1) for all n € N by induction on n.

Let S ={n e N: (16/(5" —4n — 1))}.

Basis:

Since 5! —4% 1 —1=0 and 16/|0, then 1 € S.

Induction:

Let k € S.

Then k € N and 16|(5F — 4k — 1).

Since 16|(5F — 4k — 1), then 16[5(5% — 4k — 1).

Since 16/16k, then 16 divides the sum 5(5F — 4k — 1)+ 16k = 5kt — 4k —5 =
5FFL — 4k +1) - 1.

Thus, 16 divides 5¥*! —4(k+1) - 1,50 k+1€ S.

Hence, k € S implies k+1 € S.

Therefore, by PMI, 5™ — 4n — 1 is divisible by 16 for all n € N. O

Exercise 95. For all n € N, 10"+ + 10" + 1 is divisible by 3.
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Proof. Let S = {n € N: (3|(10"*! + 10" + 1))}.

Basis:

Since 101 + 10! + 1 = 111 = 3 - 37, then 3|(10' Tt +10* +1),s0 1 € S.

Induction:

Let £ € S.

Then k € N and 3|(10**! + 10* + 1), so there exists m € Z such that
108+ 4+ 10% + 1 = 3m.

Observe that

10- 10" +10-10% + 1
(941)- 1057 4 (9+1) - 10F + 1
9-10" + 10" +9.10% + 10 +1
(9-10*1 +9.10%) + (10" +10% +1)
(9- 1051 +9-10%) + 3m

3(3- 105 +3-10%) + 3m

= 3(3-10"™ +3.10" + m).

10(k+1)+1 + 10k+1 + 1

Since 3-10%t1+43.10¥+m is an integer, then this implies 3 divides 10*TD+1 4
105t +1,s0 k+1 € S.

Hence, k € S implies k+1 € S.

Therefore, by PMI, 10"*! + 10" + 1 is divisible by 3 for all n € N. O

Exercise 96. For all n € Z*, 410%™ +9- 10?1 4 5 is divisible by 99.

Proof. Let S ={n € Z* :(99(4-10%" +9-10%"~! + 5))}.

Basis:

Since 4 - 102M 49 .102MW-1 45 = 400+ 90 + 5 = 495 = 99 - 5, then
99/(4- 102 491021 +5) so 1 € S.

Induction:

Let k€ S.

Then k € Z* and 99|(4 - 10%% + 9 - 102*~1 + 5), so there exists m € Z such
that 4 -10%% +9-10%~1 + 5 = 99m.

Observe that

4.102(k+1)+9.102(k+1)71+5 —_ 4.102k+2+9.102k+271+5
= 4-10*%.107 +9-10**71 . 102 +5
= 4(100) - 10%* +9(100) - 10**~ + 5
= 100(4-10%*) 4+ 100(9 - 10%*~1) + 5
= 100(4 - 10%*) +100(9 - 10%*~1) 4 (500 — 495)
= 100(4-10%*) 4+ 100(9 - 10**71) +100-5—-99 -5
100(4-10%* +9-10%*~1 +5) - 995
= 100(99m) — 99 -5
= 99(100m — 5).
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Since 100m — 5 is an integer, then this implies 99 divides 4 - 102(*+1) 4 9.
102k+D)-1 15 so k4+1€ S.

Hence, k € S implies k+1 € S.

Therefore, by PMI, 4-10?"+9-10?"~1 45 is divisible by 99 for alln € Z*. O

Exercise 97. Every integer 10"™! + 310" 4 5 is divisible by 9 for n € N.

Solution. We re-state this using the definition of divisibility: V(n € N), 910714
3-10™ 4 5.

We must prove the proposition V(n € N), S, where the statement S,, is
9[10"*+1 + 3. 10" + 5.

We can work backwards to prove 9|10+ + 3. 10% + 5 — 9[10*k+D+1 1 3.
105+ + 5.

If 9]10F+! 4+ 3.10F +5 is true, then 10**! +3.10F +5 = 9a for some integer
a.

Thus, 105t! 4+ 3 - 10% = 94 — 5.

If 9[10F+D+1 4 3. 10k+1 4+ 5, then 10*+D+1 4 3. 105! 4 5 = 9b for some
integer b.

Thus, 10F+D+1 4 3. 1081 = 9p — 5.

Hence,10(105+! + 3 - 10F) = 10(9 — 5).

So, we can multiply 10**! +3.10* = 9a —5 by 10 to complete the proof. [

Proof. Let n € N and let S,, be the statement 9 divides 10"*! + 3 - 10" + 5.

We prove using mathematical induction.

Basis:

For n = 1, the statement S; is 9 divides 10! + 3. 10 + 5.

Since 101 +3.10+ 5 = 135 = 9 % 15, then 9 divides 10! +3-10 + 5, so
S1 is true.

Induction:

Let k € N.

Suppose 9105+ +3.10* 45 for any k > 1.

Then 10*T! +3-10% + 5 = 9a for some integer a.

Observe that

101 +3.10+5 = 9a
10°+*1 +3.10F = 9a—5
10572 43. 10! = 90a — 50
10°72 £3.10" +5 = 90a — 45
10572 4+3.10" 5 = 9(10a — 5)

Since a € Z, then 10a — 5 € Z.

Therefore, 9|10F+D+1 1 3. 105! 4+ 5 for any k > 1.

Since S is true and 9 divides 105+ +3.10% +5 implies 9 divides 10*+D+1 4
3-10%+1 + 5 for any integer k > 1, then 9 divides 10"+ + 3. 10" + 5 for every
n € N. O
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Exercise 98. Each number in the sequence 12,102,1002,10002,..., is divisible
by 6.

Solution. Let a = (12,102,1002, 10002, 100002, ...). We can find an expression
for the n*" term of the sequence a by observing the pattern:

ap = 12=10"+2

ay = 102=10%>+2
as = 1002 =10%+2
ap = 10F+2

Hence the n*" term of the sequence is a,, = 10" + 2.

We must prove the proposition V(n € N),S,, where the statement S, is
6/10™ + 2.

Since S, is a statement about the natural numbers, we use proof by induc-
tion(weak).

Our basis is ng = 1 and we must prove Sj.

For induction we must prove Sy — Si41 for any k > 1.

Thus we must prove 6/(10% + 2) — 6](10¥*! 4 2) for k > 1.

We use direct proof to assume 6|(10* + 2) for any k > 1.

This is our induction hypothesis. O

Proof. Let n € N and let S,, be the statement 6/10™ + 2.
We prove using mathematical induction(weak).

Basis: For n = 1, the statement S is 6|12 which is true because 12 = 6 - 2.

Induction: Let k € N.

Suppose 6]10% + 2 for k > 1.

Then there is a b € Z for which 6b = 10% + 2.
Observe that:

1071 +2 = 10-10" +20—18
= 10(10% +2) — 18
= 10(6b) — 18
= 6(10b—3)

Hence 6[10F+1 + 2.
This completes the proof that Sy — Sky1 for k> 1.
It follows by induction that 6/10™ + 2 for all natural numbers n. O

Exercise 99. Let n € Z.
Then the only positive divisor of n and n+ 1 is 1.
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Proof. Let S be the set of all positive divisors of n and n + 1.
Then S ={d€Z" :dnAd|(n+1)}.
We must prove S = {1}.
Since 1 € Z* and 1|n and 1|(n + 1), then 1 € S, so {1} C S.

Letd e S.
Then d € Z" and d|n and d|(n + 1).
Since d|n and d|(n+1), then d divides any linear combination of n and n+1.
In particular, d divides (—1)(n) + (1)(n+1) = —n+n+1=1, so d|1.
Since d € ZT and 1 € Z" and d|1, then d < 1.
Since d € Z™, then d > 1.
Since d < 1 and 1 < d, then by the anti-symmetric property of Z*, d = 1.
Hence, d € {1}, s0 S C {1}.
Since S C {1} and {1} C S, then S = {1}, as desired. O

Exercise 100. Let n € Z™.
Then ged(n,n+1) = 1.

Proof. Since 1 divides any integer, then 1|n and 1|(n + 1), so 1 is a common
divisor of n and n + 1.

Let ¢ be any common divisor of n and n + 1.

Then c|n and ¢|(n + 1), so ¢ divides the difference (n +1) —n = 1.

Hence, c|1, so any common divisor of n and n + 1 divides 1.

Since 1 € ZT and 1 is a common divisor of n and n + 1 and any common
divisor of n and n+ 1 divides 1, then by definition of ged, 1 = ged(n,n+1). O

Proof. Since 1 = (n+1) —n = —n+ (n+ 1) is a linear combination of n and
n + 1, then 1 is a multiple of ged(n,n + 1), so ged(n,n + 1) divides 1.
Since the only positive integer that divides 1 is 1, then ged(n,n+1) =1. O

Exercise 101. Let n € Z™.
Then either ged(n,n +2) =1 or ged(n,n +2) = 2.

Proof. Either n is even or n is odd.

We consider each case separately.

Case 1: Suppose n is even.

Then n = 2k for some integer k.

Thus, n+2 =2k +2=2(k+1), son-+2is even.

Since n is even and n + 2 is even, then 2 divides n and n 4+ 2, so 2 is a
common divisor of n and n + 2.

Let ¢ be any common divisor of n and n + 2.

Then c|n and c|(n + 2), so ¢ divides the difference (n +2) —n = 2.

Hence, ¢|2, so any common divisor of n and n + 2 divides 2.

Since 2 € ZT and 2 is a common divisor of n and n + 2 and any common
divisor of n and n + 2 divides 2, then 2 = ged(n,n + 2), by definition of ged.

Case 2: Suppose n is odd.

Since 1 divides any integer, then 1|n and 1|(n + 2).

50



Let ¢ be any common divisor of n and n + 2.

Then c|n and ¢|(n + 2), so ¢ divides the difference (n 4 2) —n = 2.

Hence, c|2.

Without loss of generality, assume ¢ > 0.

Then either c =1 or ¢ = 2.

If ¢ = 2, then 2|n, so n is even.

But, this contradicts the assumption n is odd.

Therefore, ¢ # 2, so ¢ = 1.

Hence, any common divisor of n and n + 2 must divide 1.

Since 1 € Z™ and 1 is a common divisor of n and n + 2 and any common
divisor of n and n + 2 divides 1, then 1 = ged(n,n + 2). O

Exercise 102. Let k € Z and n € Z*.
Then ged(n,n + k)| k.
This means ged of n and n + k is a factor of k.

Proof. Let d = ged(n,n + k).
Then d|n and d|(n + k), so d divides the difference (n + k) —n = k.
Therefore, d|k. O

Exercise 103. Let k,n € Z.
Then ged(k,n + k) = 1 iff ged(k,n) = 1.

Proof. Suppose ged(k,n) = 1.

Then there exist integers x,y such that zk + yn = 1.

Thus, l =zk+yn=azk—yk+yk+yn=k(z—y)+ylk+n)=(z—y)k+
y(n+ k).

Since x—y and y are integers and (x—y)k+y(n+k) = 1, then ged(k, n+k) =
1. O

Proof. Conversely, suppose ged(k,n + k) = 1.
Then there exist integers s, ¢ such that sk 4+ t(n+ k) = 1.
Thus, 1 = sk +tn + tk = sk + tk +tn = (s + t)k + tn.
Since s+t and t are integers and (s + t)k + ¢tn = 1, then ged(k,n) =1. O

Exercise 104. Let k,n € Z.
Then ged(k,n + k) = d iff ged(k,n) = d.

Proof. Suppose ged(k,n) = d.

Then d € Z* and d|k and d|n and if ¢ is any common divisor of k and n,
then c|d.

Since d|n and d|k, then d divides the sum n + k, so d|(n + k).

Since d|k and d|(n + k), then d is a common divisor of k and n + k.

Let ¢ be any common divisor k and n + k.
Then c|k and c|(n + k), so ¢ divides the difference (n + k) — k = n.
Hence, c|n.
Since c|k and ¢|n, then ¢ is a common divisor of k and n, so c|d.
Therefore, any common divisor of k and n + k divides d.
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Since d € Z* and d is a common divisor of k and n + k and any common
divisor of k and n+ k divides d, then by definition of ged, d = ged(k,n+k). O

Proof. Conversely, suppose ged(k,n + k) = d.
Then d € Z" and d|k and d|(n + k) and if ¢ is any common divisor of &k and
n + k, then c|d.
Since d|k and d|(n + k), then d divides the difference (n + k) — k = n.
Since d|k and d|n, then d is a common divisor of k and n.

Let ¢ be any common divisor of k£ and n.
Then c|k and c|n, so ¢ divides the sum n + k.
Since c|k and c|(n + k), then ¢ is a common divisor of k and n + k, so c|d.
Hence, any common divisor of k and n divides d.
Since d € Z* and d is a common divisor k and n and any common divisor
of k and n divides d, then by definition of ged, d = ged(k, n). O

Exercise 105. Let k,n € Z.
Then ged(k,n + rk) = d for all r € Z iff ged(k,n) = d.

Proof. Suppose ged(k,n) = d.
Then d € Z* and d|k and d|n and if ¢ is any common divisor of k and n,
then c|d.

Let r € Z.
Since d|k, then d|rk.
Since d|n and d|rk, then d divides the sum n + rk.
Since d|k and d|(n + rk), then d is a common divisor of k& and n + rk.

Let ¢ be any common divisor of k and n + rk.
Then c|k and ¢|(n + rk).
Since c|k, then c|rk.
Since ¢|(n +rk) and c|rk, then ¢ divides the difference (n+rk) —rk = n, so
cln.
Since c|k and ¢|n, then ¢ is a common divisor of k and n, so c|d.
Hence, any common divisor of k and n + rk divides d.

Since d € ZT and d is a common divisor of k and n + rk and any common
divisor of k and n+rk divides d, then by definition of ged, d = ged(k, n+rk). O

Proof. Conversely, suppose ged(k,n + rk) = d for all r € Z.

Let » = 0.
Then d = ged(k,n + rk) = ged(k,n + 0k) = ged(k,n + 0) = ged(k, n).
Therefore, ged(k,n) = d. O

Exercise 106. Find all positive integers d such that d divides n? + 1 and
(n+1)? + 1 for some integer n.
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Solution. Let d be a positive integer such that d|(n? + 1) and d|[(n + 1)% + 1]
for some integer n.

Since d|(n? + 1) and d|[(n + 1)? + 1], then d divides any linear combination
of 2 +1and (n+1)2+ 1.

In particular, d divides the difference [(n +1)2 +1] — (n? +1) = (n® + 2n +
H+1-n?>—1=2n+1.

Since d|(2n + 1) and d|(n® + 1), then d divides any linear combination of
2n + 1 and n? + 1.

In particular, d divides the sum 4(n? + 1) — (2n+ 1) +2(2n + 1) = (4n® +
4) — (4n* +4n+1) + (4n+2) = 5.

Since d € Z* and d|5, then d must be 1 or 5. O

Exercise 107. If n is a positive integer, find the possible values of ged(n, n+10).

Proof. Let n € Z*.

Let d = ged(n,n + 10).

Then d € Z" and d|n and d|(n + 10), so d divides any linear combination of
n and n + 10.

In particular, d divides —n + (n + 10) = 10.

Thus, d|10, so d must be one of 1,2, 5, 10.

Therefore, d € {1,2,5,10}. O

Exercise 108. Let n € Z.
Then ged(n,1) = 1.

Proof. Since 1 and 1 — n are integers and (1)(n) + (1 —n)(1) =n+1—n =
1+n—n=1+40=1, then 1 is a linear combination of n and 1.

Hence, 1 is a multiple of ged(n, 1), so ged(n, 1) divides 1.

The only positive integer that divides 1 is 1, so ged(n,1) = 1. O

Exercise 109. Let n € Z™.
Then ged(3n +2,5n+3) = 1.

Proof. Since 5 and —3 are integers and 5(3n + 2) 4+ (—3)(5bn+3) = 15n+ 10 —
15n — 9 =1, then ged(3n +2,5n + 3) = 1. O

Exercise 110. Let a € Z.
Then ged(a, a + n) divides n for all n € Z7.
Therefore, ged(a,a + 1) = 1.

Proof. Let n € Z7T.

Let d = ged(a,a + n).

Then d is a common divisor of a and a+n, so d divides any linear combination
of a and a + n.

In particular, d divides the difference (a + n) — a = n, so d|n.

Therefore, ged(a, a + n)|n for any positive integer n.

For n =1 this implies ged(a, a + 1)]1.

The only positive integer that divides 1 is 1, so ged(a,a + 1) = 1. O
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Exercise 111. Let a,b € Z.
Then there exist integers m,n such that ¢ = ma + nb iff ged(a,d)|c.

Proof. Observe that ged(a,b)|c iff ¢ is a multiple of ged(a,d) iff ¢ is a linear
combination of a and b iff there exist integers m and n such that ¢ = ma + nb.

Therefore, ged(a,b)|c iff there exist integers m and n such that ¢ = ma +
nb. O

Exercise 112. Let a,b € Z.
If there exist integers m, n such that ged(a, b) = ma+nb, then ged(m,n) = 1.

Proof. Suppose there exist integers m and n such that ged(a, b) = ma + nb.

Let d = ma + nb.

Then d = ged(a,b), so d € Z" and d|a and d|b.

Hence, a = dz and b = dy for some integers = and y.

Thus, d = m(dz) +n(dy) = m(zd) +n(yd) = (mz)d+ (ny)d = xmd +ynd =
(zm + yn)d.

Since d € ZT, then d > 0, so d # 0.

Hence, 1 = zm + yn.

Since there exist integers x and y such that xm + yn = 1, then ged(m,n) =
1. O

Proposition 113. Let a,b € Z.
Then (a,b) = (a,ka + b) for all k € Z.

Proof. Let d = ged(a, b).

Then d|a and d|b and if ¢ is any integer such that c|a and c¢|b, then c|d.

Since d|a and d|b, then d divides any linear combination of a and b, so d
divides ka + b.

Since d|a and d|(ka 4+ b), then d is a common divisor of a and ka + b.

Let ¢ be an arbitrary integer such that c|a and c|(ka + b).

Then c¢ divides any linear combination of ¢ and ka + b.

In particular, ¢ divides (—k)a + (1)(ka +b) = —ka+ka+b=0+b=10, so
clb.

Since c|a and c¢|b, then c|d.

Thus, any common divisor of a and ka + b divides d.

Since d is a common divisor of a and ka + b and any common divisor of a
and ka + b divides d, then d = ged(a, ka + b). O

Exercise 114. Let a,b € Z*.
For all d € Z*, if d|a and d|b, then ged(%, %) = L ged(a, b).

Proof. Let d € Z* such that d|a and d|b.
Then d # 0 and there exist integers k1 and ko such that a = dk; and b = dks.
Since a,b € Z*, then the greatest common divisor of a and b exists and is
unique.
Let ¢ = ged(a, b).
Then
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¢ = ged(dk,dks)
= d'ng(kl,kQ)

a b
= d-ged(=,-)-
ged(, =)
Since ¢ = d - ged(, %) and d # 0, then § = ged(5, g).
Therefore, ged(%,2) = w = L gcd(a,b). O

Exercise 115. Let a,b,c € Z.
If ged(a,b) =1 and c|a, then ged(b,c) = 1.

Proof. Suppose ged(a,b) =1 and c|a.
Since ged(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Since cla, then a = ck for some integer k.
Thus, 1 = m(ck) + nb = nb+ m(ck) = nb+ (mk)c.
Since n and mk are integers and nb + (mk)c = 1, then ged(b, ¢) = 1. O

Exercise 116. Let a,b,c € Z.
If ged(a, b) = 1, then ged(ac, b) = ged(c, b).

Proof. Suppose ged(a,b) = 1.

Let d = ged(c, b).

Then d|c and d|b and if e is any integer such that e|c and e|b, then el|d.

We must prove ged(ac, b) = d.

Since d|c, then d divides any multiple of ¢, so d|ac.

Since d|ac and d|b, then d is a common divisor of ac and b.

Let e € Z such that e|ac and elb.

Since e is a common divisor of ac and b, then e divides any linear combination
of ac and b.

Since ged(a, b) = 1, then there exist integers m and n such that ma+nb = 1.

Thus, ¢ = ¢+ 1 = ¢(ma + nb) = cma + cnb = m(ac) + (en)b, so ¢ is a linear
combination of ac and b.

Hence, elc.

Since e|c and elb, then e|d, so any common divisor of ac and b divides d.

Since d is a common divisor of ac and b and any common divisor of ac and

b divides d, then d = ged(ac, b). O

Exercise 117. Let a,b € Z.
Then ged(ged(a, b), b) = ged(a, b).

Proof. Let d = ged(a, b).

Then d € Z*1 and d|a and d|b and if ¢ is any common divisor of a and b, then
¢ divides d.

Since d|d and d|b, then d is a common divisor of d and b.

Let ¢ be any common divisor of d and b.
Then c|d and clb.
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Since c|d and d|a, then c|a.

Since c|a and ¢|b, then ¢ is a common divisor of a and b, so c|d.

Hence, any common divisor of d and b divides d.

Since d € Z* and d is a common divisor of d and b and any common divisor
of d and b divides d, then by definition of ged, ged(d,b) = d.

Therefore, ged(ged(a,b),b) = ged(d,b) = d = ged(a, b), as desired. O

Exercise 118. Let a,b,c € Z.
If ged(a,b) =1 and ¢|(a + b), then ged(a,¢) = ged(b,c) = 1.

Proof. Suppose ged(a,b) =1 and ¢|(a + b).

Since ged(a, b) = 1, then there exist integers m and n such that ma +nb = 1.

Let d = ged(a, ¢).

Then d € Z" and d|a and d|c.

Since d|c and ¢|(a + b), then d|(a + b).

Since d|a and d|(a+b), then d divides any linear combination of a and a +b.

Since (—1)a+ (1)(a+b) = —a+a+b=0+b=bis a linear combination of
a and a + b, then this implies d|b.

Since d|a and d|b, then d divides any linear combination of a and b.

Since ma + nb =1 is a linear combination of a and b, then this implies d|1.

Since d € Z* and d|1, then this implies d = 1.

Therefore, ged(a, c) = 1.

Let e = ged(b, ¢).

Then e € Z* and e|b and elc.

Since e|c and c|(a + b), then e|(a + b).

Since e|b and e|(a +b), then e divides any linear combination of b and a + b.

Since (-1)b+ (1)(a+b) =-b+a+b=—-b+b+a=0+a=ais a linear
combination of b and a + b, then this implies e|a.

Since ela and e|b, then e divides any linear combination of a and b.

Since ma + nb =1 is a linear combination of a and b, then this implies e|1.

Since e € Z* and e|1, then this implies ¢ = 1.

Therefore, ged(b, ¢) = 1. O

Exercise 119. Let a,b,d € Z such that d is a common divisor of a and b.

If ged(%, %) = 1, then d = ged(a, b).
Proof. Since d is a common divisor of a and b, then d|a and d|b, so a = dz and
b = dy for some integers x and y.

Thus,x:%EZandy:geZ.

Suppose ged (4, g) =1.

Then there exist integers m and n such that m(%) +n(%) = 1.

Thus, ma + nb = d, so d is a linear combination of a and b.

Let ¢ € Z such that ¢ is any common divisor of a and b.

Then c¢ divides any linear combination of a and b, so c|d.
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Thus, any common divisor of a and b divides d.
Since d is a common divisor of ¢ and b and any common divisor of ¢ and b
divides d, then d = ged(a, b). O

Exercise 120. Let a,b € Z such that ged(a,b) = 1.
Then ged(a +b,a —b) is 1 or 2.

Proof. Let d =ged(a+b,a —b).

Then d € Z" and d|(a + b) and d|(a — b).

We must prove either d =1 or d = 2.

Since ged(a, b) = 1, then there exist integers m and n such that ma+nb = 1.

Thus, 2ma + 2nb = 2, so 2 is a linear combination of 2a and 2b.

Since d|(a + b) and d|(a — b), then d divides the sum (a + b) + (a — b) = 2a,
so d|2a.

Since d|(a+b) and d|(a—b), then d divides the difference (a+b)—(a—b) = 20,
so d|2b.

Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so
d|2.

Since d € ZT and d|2, then either d = 1 or d = 2, as desired. O

Exercise 121. Let a,b € Z such that ged(a,b) = 1.
Then ged(a + 2b,2a +b) is 1 or 3.

Proof. Let d = ged(a + 2b,2a + b).

Then d € Z" and d|(a + 2b) and d|(2a + b).

We must prove either d =1 or d = 3.

Since ged(a, b) = 1, then there exist integers m and n such that ma+nb = 1.

Thus, 3ma + 3nb = 3, so 3 is a linear combination of 3a and 3b.

Since d|(a + 2b) and d|(2a + b), then d divides any linear combination of
a + 2b and 2a + b.

Since (—1)(a+ 2b) +2(2a +b) = —a — 2b + 4a + 2b = 3a, then 3a is a linear
combination of a + 2b and 2a + b, so d|3a.

Since (2)(a + 2b) + (—1)(2a + b) = 2a + 4b — 2a — b = 3b, then 3b is a linear
combination of a + 2b and 2a + b, so d|3b.

Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so
d|3.

Since d € ZT and d|3, then either d = 1 or d = 3, as desired. O

Exercise 122. Let a,b € Z such that ged(a,b) = 1.
Then ged(a + b,a? +b?) is 1 or 2.

Proof. Let d = ged(a + b, a? + b?).
Then d € Z" and d|(a + b) and d|(a? + b?).
We must prove either d =1 or d = 2.
Since ged(a, b) = 1, then there exist integers m and n such that ma+nb = 1.
Since d|(a + b) and d|(a® + b?) , then d divides any linear combination of
a-+band a? + b2
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Since (a2 +b%) — (a—b)(a+b) = a®> +b* — (a® —b?) = a®> + b> —a® +b* = 21?,
then 2b? is a linear combination of @ + b and a® + b.

Thus, d|2b%.

Since (a + b)? — (a? + b?) = (a® + 2ab + b*) — a® — b = 2ab, then 2ab is a
linear combination of a + b and a® + b%.

Thus, d|2ab.

Since 1 = ma + nb, then 2b = 2b(ma + nb) = 2bma + 2bnb = 2abm + 2b°n,
so 2b is a linear combination of 2ab and 2b%.

Since d|2ab and d|2b?, then d divides any linear combination of 2ab and 2b2,
so this implies d|2b.

Since 2(a+b)? —4ab — 2b% = 2(a® + 2ab+b?) — 4ab — 2b% = 24 + 4ab+ 2b* —
4ab — 2b% = 2a?, then 2a? is a linear combination of a + b and 2ab and 2b2.

Since d|(a + b) and d|2ab and d|2b?, then d divides any linear combination
of a + b and 2ab and 2b?, so d|2a?.

Since 1 = ma + nb, then 2a = 2a(ma + nb) = 2ama + 2anb = 2a*m + 2abn,
S0 2a is a linear combination of 2a? and 2ab.

Since d|2a® and d|2ab, then d divides any linear combination of 2a? and 2ab,
so d|2a.

Since 1 = ma + nb, then 2 = 2(ma + nb) = 2ma + 2nb, so 2 is a linear
combination of 2a and 2b.

Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so
d|2.

Since d € ZT and d|2, then either d =1 or d = 2. O

Exercise 123. Let a,b € Z such that ged(a,b) = 1.
Then ged(a + b,a? — ab + b?) is 1 or 3.

Proof. Let d = ged(a + b, a? — ab + b?).

Then d € Z* and d|(a + b) and d|(a® — ab + b?).

We must prove either d =1 or d = 3.

By the division algorithm, a? — ab + b* = (a + b)(a — 2b) + 3b2, so 3b* =
(a* — ab+b?) — (a + b)(a — 2b).

Thus, 3b? is a linear combination of a®> — ab + b and a + b.

Since d|(a + b) and d|(a® — ab + b?), then d divides any linear combination
of a+ b and a? — ab + b?, so d|3b°.

Since (a +b)? — (a® — ab+ b?) = (a® + 2ab + b?) — a® + ab — b* = 3ab, then
3ab is a linear combination of a + b and a® — ab + b?, so d|3ab.

Since 1 = ma + nb, then 3b = 3b(ma + nb) = 3bma + 3bnb = 3abm + 3b°n,
so 3b is a linear combination of 3ab and 3b%.

Since d|3ab and d|3b?, then d divides any linear combination of 3ab and 3b2,
so d|3b.

Since 2(a® —ab+b?)+(a+b)? —3b* = (2a® —2ab+2b%) + (a® +2ab+b*) —3b? =
3a?, then 3a? is a linear combination of a? — ab + b? and a + b and 3b2.

Since d|(a? — ab + b*) and d|(a + b) and d|3b?, then d divides any linear
combination of a? — ab + b? and a + b and 3b?, so d|3a?.
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Since 1 = ma + nb, then 3a = 3a(ma + nb) = 3ama + 3anb = 3a*m + 3abn,
so 3a is a linear combination of 3a? and 3ab.

Since d|3a? and d|3ab, then d divides any linear combination of 3a? and 3ab,
so d|3a.

Since 1 = ma + nb, then 3 = 3(ma + nb) = 3ma + 3nb, so 3 is a linear
combination of 3a and 3b.

Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so
d|3.

Since d € ZT and d|3, then this implies either d = 1 or d = 3. O

Exercise 124. Let n be an integer with n > 1.
Then either ged(n —1,n2 +n+1) =1 or ged(n — 1,n? +n+1) = 3.

Proof. Let d = ged(n —1,n% +n+1).

We must prove either d =1 or d = 3.

By the division algorithm, we have n? +n+1 = (n — 1)(n + 2) + 3, so
3=n?’+n+1)—(n—-1)n+2)=-n+2)(n—1)+ (n®>+n+1).

Thus, 3 is a linear combination of n — 1 and n% +n + 1, so 3 is a multiple of
d.

Hence, d|3.

Since d € Z* and d|3, then either d =1 or d = 3. O

Exercise 125. Let a,b be positive integers.
Then ged(a,b) =1 if and only if ged(a + b, ab) = 1.

Proof. We prove if ged(a,b) = 1, then ged(a + b, ab) = 1.

Suppose ged(a, b) = 1.

Since 1 divides every integer, then 1|(a 4+ b) and 1|ab, so 1 is a common
divisor of a + b and ab.

Let ¢ € Z such that c|(a + b) and c|ab.

Since ged(a, b) = 1, then there exist integers m and n such that ma+nb = 1.

Since c|(a + b) and c|ab, then c¢ divides any linear combination of a + b and
ab.

Since a(a + b) — ab = a® + ab — ab = a?, then a? is a linear combination of
a+b and ab, so c|a®.

Since 1 = ma + nb, then a = a(ma + nb) = ama + anb = a*m + abn =
m(a?) + n(ab), so a is a linear combination of a? and ab.

Since c|a® and clab, then ¢ divides any linear combination of a? and ab, so
cla.

Since b(a + b) — ab = ba + b* — ab = ab + b*> — ab = b?, then b? is a linear
combination of a + b and ab, so c|b>.
Since 1 = ma + nb, then b = b(ma + nb) = bma + bnb = abm + b*n =
m(ab) + n(b?), so b is a linear combination of ab and b%.
Since clab and c|b?, then ¢ divides any linear combination of ab and b?, so
clb.
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Since cla and ¢|b, then ¢ divides any linear combination of a and b.

Since ma + nb = 1 is a linear combination of a and b, then this implies ¢|1.

Thus, if ¢|[(a + b) and c|ab, then ¢|1, so any common divisor of a + b and ab
divides 1.

Since 1 is a common divisor of a + b and ab and any common divisor of a + b
and ab divides 1, then 1 = ged(a + b, ab). O

Proof. Conversely, suppose ged(a + b, ab) = 1.
Since 1 divides every integer, then 1|a and 1], so 1 is a common divisor of
a and b.
Let ¢ € Z such that c|a and c|b.
Then ¢ divides any linear combination of a and b, so ¢|(a + b) and c|ab.
Thus, c¢ is a common divisor of a 4+ b and ab, so ¢ divides ged(a + b, ab).
Therefore, c|1, so any divisor of a and b divides 1.

Since 1 is a common divisor of a and b and any divisor of a and b divides 1,
then 1 = ged(a, b). O

Exercise 126. Let a,b,n be nonzero integers.
If a|n and b|n and ged(a,b) = d, then ab|nd.

Proof. Suppose a|n and bln and ged(a,b) = d.

Since a|n and b|n, then there are integers k1 and ko such that n = ak; and
n = ka

Since d = ged(a, b), then d is the least positive linear combination of a and
b, so there are integers x and y such that d = za + yb.

Let e = xky + yky.

Clearly, e is an integer.

Observe that

abe = ab(zke + yk1)
abxks + abyk;
za(bks) + yb(aky)
= xan + ybn

= (za+ybn

= n(xa+ yb)

= nd.

Since e € Z and nd = abe, then ab|nd. O

Exercise 127. Let a, b, c be positive integers.
If ged(a,b) = 1 and ¢|b, then ged(a,c) = 1.
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Proof. Suppose ged(a,b) =1 and c|b.
Since ged(a,b) = 1, then there are integers z and y such that 1 = za + yb.
Since c|b, then b = c¢d for some integer d.
Observe that 1 = za + yb = za + y(cd) = za + y(dc) = za + (yd)c.
Since z € Z and yd € Z and za + (yd)c = 1, then ged(a,c¢) = 1. O

Exercise 128. For all integers n > 1, n — 1 and 2n — 1 are relatively prime.

Solution. We express 1 as a linear combination of n — 1 and 2n — 1.
Using the division algorithm to divide 2n — 1 by n — 1 we obtain 2n — 1 =
2n—1)+1,s01=-2(n—1)4+ (2n —1). O

Proof. Let n be an arbitrary integer greater than one.
Since =2 € Zand 1 € Zand —2(n—1)+(1)(2n—1) = —2n+2+2n—1 =1,
then ged(n — 1,2n — 1) = 1. O

Exercise 129. For all integers n > 1, 2n — 1 and 3n — 1 are relatively prime.

Solution. We express 1 as a linear combination of 2n — 1 and 3n — 1.
So, we want to find integers a and b such that a(2n — 1) +b(3n — 1) = 1.
To have 2an and 3bn cancel each other, we can let a = —3 and b = 2. O

Proof. Let n be an arbitrary integer greater than one.
Since =3 € Z and 2 € Z and —3(2n—1)+2(3n—1) = —6n+3+6n—2 =1,
then ged(2n — 1,3n — 1) = 1. O

Exercise 130. Let m and n be positive integers.
Then ged(2™ —1,2" — 1) = 1 if and only if ged(m, n) = 1.

Solution. We must prove:
1. if ged(2™ — 1,2™ — 1) = 1, then ged(m,n) = 1.
2. if ged(m,n) = 1, then ged(2™ —1,2" — 1) = 1. O

Proof. We prove if ged(m,n) = 1, then ged(2™ —1,2" — 1) = 1.

Suppose ged(m,n) = 1.

Then ma + nb = 1 for some integers a and b.

To prove ged(2™ — 1,2™ — 1) = 1, we must find integers ¢ and d such that
c(2m —1)+d(2"—1)=1.

Observe that 2% —1 = (z — 1)(2* 1 + 2¥=2 + ... + 2+ 1) for any real number
x and positive integer k.

We have a flaw here.

If k is a negative integer, then ¥ — 1 = (z — 1)(2;’“1(—95_1)

Now, couldn’t a or b be a negative integer?

If so, then Z::kl(—:c’i) is not necessarily an integer, but rather a fraction
which implies that x — 1 Jz* — 1.

We have no guarantee that both a and b are always positive, so this proof is
not valid if a or b is negative integer!

Let x = 2m and k = a.
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Then z and k are integers, so 2 — 1, x — 1, and 2F "' + 2F 2 + .+ 2+ 1
are integers.

Hence, = — 1|z% — 1, so 2™ — 1]2m¢ — 1.

Therefore, 2™ — 1 = (2™ — 1)r for some integer r.

Let © = 2n and k = b.

Then 2 and k are integers, so 2 — 1, x — 1, and 2F "' + 252 + .+ 2+ 1
are integers.

Hence, v — 1|z% — 1, so 2" — 1|27 — 1.

Therefore, 2"% — 1 = (2" — 1)s for some integer s.

Observe that

1 = 2'-1
2ma+nb -1

oma y onb _ 1

= 2M(2" —1)s+1] —1
2Mmas(2" — 1) 42Mm — 1

= 2Mag(2" — 1) + (2™ —1).

Let c=17r and d = 2™%s.

Clearly, ¢ and d are integers and 1 = ¢(2™ — 1) 4+ d(2" — 1), as desired.

Suppose ged(2™ —1,2" — 1) = 1.

We must prove ged(m,n) = 1.

Let d = ged(m,n).

Then d|m and d|n.

Thus, m = da and n = db for some integers a and b.

Suppose for the sake of contradiction that ged(m,n) # 1.

Then d # 1,s0 d > 1.

Observe that 2% — 1 = (z — 1)(2* 1 + 2¥=2 + .. + 2+ 1) for any real number
x and positive integer k.

We have a flaw here.

If k is a negative integer, then ¥ — 1 = (z — 1)(2;;1(—x_1)

Now, couldn’t a or b be a negative integer?

If so, then Zz_:kl(—x_l) is not necessarily an integer, but rather a fraction
which implies that = — 1 fz* — 1.

We have no guarantee that both a and b are always positive, so this proof is
not valid if a or b is a negative integer!

Let z = 2% and k = a.

Then 2 and k are integers, so z* — 1, x — 1, and 2F "' + 22 + .+ 2+ 1
are integers.

Hence, z — 1|z% — 1, so 29 — 1|24 — 1.

Thus, 2¢ — 1]2™ — 1, s0 2™ — 1 = (2¢ — 1)r for some integer 7.

Let . = 2% and k = b.

Then 2 and k are integers, so 2 — 1, x — 1, and 2F"' + 22 + 42 +1
are integers.

Hence, z — 1|z%F — 1, so 24 — 1|20 — 1.
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Thus, 2¢ — 12" — 1, s0 2" — 1 = (27 — 1)s for some integer s.

Since ged(2™ — 1,2" — 1) = 1, then there are integers = and y such that
z(2m—-1)4+y(2"-1)=1.

Observe that x(2¢ — 1)r + y(2¢ — 1)s = 1, so (2¢ — 1)(zr + ys) = 1.

Since 2¢ — 1 and xr + ys are integers whose product is one, then 2¢ — 1 is
either 1 or -1.

Since d > 1,then d>2,802¢—1>3,s02¢—1>0.

Hence, 2¢ —1=1,s0d = 1.

But, we have d # 1 and d = 1, a contradiction.

Therefore, ged(m,n) = 1, as desired. O

Exercise 131. Let a,b € Z such that ged(a,b) = 1.
Let r, s € Z such that ar + bs = 1.
Then ged(a, s) = ged(r, b) = ged(r, s) = 1.

Proof. Let m = ged(a, s).
Then m € Z* and m|a and m|s, so m divides any linear combination of a
and s.
Since 1 = ar 4+ bs = ra + bs is a linear combination of a and s, then m|1.
Since m € Z* and m|1, then m = 1, so ged(a, s) = 1.

Let = ged(r, b).
Then z € Z* and z|r and z|b, so x divides any linear combination of r and
b.
Since 1 = ar 4+ bs = ar + sb is a linear combination of r and b, then z|1.
Since x € Z* and z|1, then x = 1, so ged(r,b) = 1.

Let y = ged(r, ).
Then y € Z* and y|r and y|s, so y divides any linear combination of 7 and

Since 1 = ar + bs is a linear combination of r and s, then y|1.
Since y € ZT and y|1, then y = 1, so ged(r, s) = 1. O

Exercise 132. If n has a divisor d with 1 < d < n, then it has a divisor
d with 1 <d < /n.

Let n € Z.

Let d € Z such that djn and 1 < d < n.

Then there exists d’ € Z such that 1 < d’ < /n.

Proof. Suppose there is an integer d such that d|n and 1 < d < n.
Either d < y/n or d > /n.
We consider these cases separately.
Case 1: Suppose d < /n.
Let d' = d.
Then d’' € Z and d' < /n.
Since 1l <d<mn,thenl<d,sol<d.
Thus, 1 < d < /n.
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Therefore, there exists d’ € Z such that 1 < d’ < +/n.

Case 2: Suppose d > \/n.

Since 1l <d<mn,thenl1 <dandd<nand 1 <n.

Since d|n, then there exists d’ € Z such that n = dd’, so d’|n.
Since d > 1 > 0, then d > 0.

Suppose d’ < 1.
Since d > 0, thenn=dd' <d-1=4d,son <d.
Thus, we have d < n and d > n, a contradiction.
Hence, d’ > 1.

Suppose d’ > \/n.
Since n > 1 > 0, then n > 0, so \/n > 0.
Since v/n < d’ and /n > 0, then \/n\/n < /n-d'.
Since d’ > 1 > 0, then d’ > 0.
Since v/n < d and d' > 0, then /n -d’ < dd'.
Thus, n = (v/n)? = Vnyn < /n-d < dd =n.
Hence, n < v/n-d < n, son < n, a contradiction.
Therefore, d’ < \/n.

Since 1 < d’ and d’ < /n, then 1 < d’' < /n.
Therefore, there exists d’ € Z such that 1 < d’ < +/n. O

Lemma 133. Let a,b,c € Z.
Then (a,be) =1 iff (a,b) = (a,¢) = 1.

Proof. We prove if (a,bc) = 1, then (a,b) = (a,c) = 1.

Suppose (a, bc) = 1.

Then there are integers m and n such that ma 4+ n(bc) = 1.

Since 1 = ma + nbc = ma + ncb = ma + (nc)b and m and nc are integers,
then (a,b) = 1.

Since 1 = ma+nbc = ma+ (nb)c and m and nb are integers, then (a,c) = 1.

Conversely, suppose (a,b) = (a,c) = 1.
Then there are integers z, y, u, v such that xa + yb =1 and ua + ve = 1.
Multiplying these equations we obtain (za + yb)(ua +ve) =1-1=1.
Hence, zua® + xave + ybua + ybve = 1, so (zua+ zve+ybu)a + (yv)(be) = 1.
Since zua + zvc + ybu and yv are integers, then (a,bc) = 1, as desired. [

Exercise 134. Let a,b € Z™T.
If ged(a, b) = 1, then ged(a?,b?) = 1.

Proof. Suppose (a,b) = 1.

Since (a,bc) = 1 iff (a,b) = (a,c) = 1 for all a,b,¢ € Z, then in particular
(a2,bb) = 1 iff (a?,b) = (a?,b) = 1 and (b, a?) = 1 iff (b,a) = (b,a) = 1.
Thus, (a?,b?) = 1iff (a®,b) =1 and (b,a®) = 1 iff (b,a) = 1.
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Since 1 = (a,b) = (b,a), then (b,a) = 1.
Since (b,a?) = 1 iff (b,a) = 1, then we conclude (b,a?) =1, so (a?,b) = 1.
Since (a?,b?) = 1 iff (a?,b) = 1, then we conclude (a2, b?) = 1. O

Lemma 135. Let a,b € Z™T.
If (a,b) = 1, then (a,b") =1 for alln € Z*.

Proof. Suppose (a,b) = 1.

We prove (a,b™) =1 for all n € Z" by induction on n.

Let S={neZ":(a,b") =1}.

Basis:

Since 1 € Z* and (a,b') = (a,b) = 1, then 1 € S.

Induction:

Suppose k € S.

Then k € Z* and (a,b*) = 1.

Since k € Z*, then k+1 € Z™.

From a previous lemma we know that (a,bc) = 1 iff (a,b) = (a,c) =1 for all
a,b,c e .

In particular, (a,b*b) = 1 iff (a,b*) = (a,b) = 1.

Since (a,b*) = 1 and (a,b) = 1, then we conclude (a, b*b) = 1.

Thus, (a,b**1) = 1.

Since k +1 € Z* and (a,b*™!) =1, then k +1 € S.

Therefore, by PMI, S = Z™, so (a,b") =1 for all n € Z7. O

Lemma 136. Let a,b € Z™T.
If ged(a,b) = 1, then ged(a™, b™) = 1 for alln € ZT.

Proof. Suppose (a,b) = 1.

We prove (a™,b™) = 1 for all n € Z* by induction on n.

Let S={neZ":(a",b") =1}.

Basis:

Since 1 € Z* and (a',b') = (a,b) = 1, then 1 € S.

Induction:

Suppose k € S.

Then k € Z* and (a*,b*) = 1.

Since k € Z*, then k+1€ Z™.

Since (a,bc) = 1 iff (a,b) = (a,c¢) =1 for all a,b,c € Z, then in particular,
(ak*+1b%b) = 1 iff (a*T1,0%) = (a¥*1,b) = 1 and (b,a*a) = 1 iff (b,a*) =
(b,a) =1 and (b*,a*a) = 1 iff (b*,a*) = (b*,a) = 1.

From a previous lemma we know that if (a,b) = 1, then (a,b™) = 1 for all
ne€Zr.

Since (a,b) = 1 and k € Z*, then (a,b*) =1, so (b¥,a) = 1.

Since 1 = (a*,b*) = (b*,a*), then (V*,a*) = 1.

Since (b*,a*) = 1 and (b¥,a) = 1, and (b*,a*a) = 1 iff (b*,a*) = (V*,a) = 1,
then we conclude (b*,a*a) = 1.

Thus, 1 = (b*,a"*1) = (aF*1,bF).
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From a previous lemma, we know that if (a,b) = 1, then (a,b"™) = 1 for all
neZt.

Hence, if (b,a) = 1, then (b,a™) =1 for all n € Z+.

Since 1 = (a,b) = (b,a) and k + 1 € ZT, then we conclude (b, a**1) =1, so
(ak*+1b) = 1.

Since (a*1,0%) = 1 and (a**1,b) = 1, and (a*+1,0Fb) = 1 iff (a*F1,0F) =
(a**1,b) = 1, then we conclude (a**!, b¥b) = 1.

Thus, (a*+1,pF 1) = 1.

Since k +1 € Z* and (a**1,b**1) =1, then k+1 € S.

Therefore, by PMI, S = Z™, so (a™,b") =1 for all n € Z™*. O

Exercise 137. Let a,b € Z™T.
If @™ | b", then a | b for all n € Z7.

Proof. Let n € Z*.

Suppose a™ | b™.

Let d = ged(a, b).

Then d € Z* and d | a and d | b, so a = dr and b = ds for some integers r
and s.

Thus, d = ged(dr,ds) = d - ged(r, s).

Since d > 0, then we divide to obtain 1 = ged(r, ).

From a previous lemma, we know that if ged(a,b) = 1, then ged(a™,d™) =1
for all n € Z7T.

Thus, if ged(r, s) = 1, then ged(r™,s™) =1 for all n € Z+.

Since ged(r, s) = 1, then we conclude ged(r™, s") =1 for all n € Z7.

In particular, ged(r™, s™) = 1.

Hence, there exist integers x and y such that xr” 4+ ys™ = 1.

Since a™ | b™, then (dr)™|(ds)™, so d™r™|d™s™.

Since d # 0, then we have r™[s™, so s = r™t for some integer t.

Thus, 1 = xr™ + y(r™t) = r"(x + yt), so r"|1.

Since d > 0 and a > 0 and a = dr, then 7 > 0.

Since n > 0, then r™ > 0.

Since r € Z, then ™ € Z, so r™ € ZT.

Since r™ € Z* and r™|1 and the only positive integer that divides 1 is 1,
then 7" =1,s0r = 1.

Thus, a = dr =d(1) =d.

Hence, ged(a,b) = d = a.

Since alb iff ged(a, b) = a, then we conclude alb, as desired. O

The Euclidean Algorithm

Exercise 138. Express gcd(12378,3054) as a linear combination of 12378 and
3054.

Solution. We use the Euclidean algorithm to obtain the equations below.

66



12378
3054
162
138
24

18

3054 + 4 + 162
162 x 18 + 138
1381+ 24
24 x5+ 18
18x1+6
6*3+0.

Thus, ged(12378,3054) = ged(3054,162) = ged(162,138) = ged(138,24) =

ged(24,18) = ged(18, 6) = 6.

We backtrack through the equations to find the linear combination.

6 = 24—18x1
24 — (138 — 24 % 5) x 1
6% 24 — 138

= 6(162—138x1) — 138

6+ 162 — 7+ 138
6+ 162 — 7(3054 — 162 * 18)
132 162 — 7(3054)
= 132(12378 — 3054 % 4) — 7(3054)

= 13212378 — 535 * 3054.

Therefore, gcd(12378,3054) = 6 = 132(12378) — 535(3054).

O

Exercise 139. Compute gcd(314, 159) as a linear combination of 314 and 159.

Solution. We use the Euclidean algorithm to obtain the equations below.

314
159
155
4
3

159 % 1 + 155
155%x1+4
4%38+3
3x1+1
1%x3+0.

Thus, ged(314,159) = ged (159, 155) = ged(155,4) = ged(4, 3) = ged(3,1) =

1.

We backtrack through the equations to find the linear combination.
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4-3%1

4— (155 — 4% 38) x 1

—155 + 39(4)

—155 + 39(159 — 155 % 1)
39 % 159 — 40(155)

39 % 159 — 40(314 — 159 * 1)
(—40)(314) + 79(159).

Therefore, ged(314,159) = 1 = —40(314) + 79(159).
Hence, a solution to the equation 314z + 159y = 1 is © = —40 and y = 79
since 314(—40) + 159(79) = 1. O

Exercise 140. Compute gcd(3141,1592) as a linear combination of 3141 and

1592.

Solution. We use the Euclidean algorithm to obtain the equations below.

3141 = 1592x 1+ 1549
1592 = 1549%1+43
1549 = 43*x36+1

43 = 1x43+0.

Thus, ged (3141, 1592) = ged (1592, 1549) = ged (1549, 43) = ged(43,1) = 1.
We backtrack through the equations to find the linear combination.

1 =

1549 — 43 36

1549 — (1592 — 1549 * 1)36

37 % 1549 — 1592 * 36

37(3141 — 1592 % 1) — 1592 % 36
37(3141) — 73(1592).

Therefore, ged(3141,1592) = 1 = 37(314) — 73(1592).
Hence, a solution to the equation 3141x 4+ 1592y = 1 is x = 37 and y = —73,
since 3141(37) + 1592(—73) = 1. O

Exercise 141. Compute gcd(4144,7696) as a linear combination of 4144 and

7696.

Solution. We use the Euclidean algorithm to obtain the equations below.

7696 = 41441+ 3552

4144

3552 % 1+ 592

3552 = 59264 0.

68



Thus, ged(4144,7696) = ged(4144, 3552) = ged (3552, 592) = 592.
We backtrack through the equations to find the linear combination.

592 = 4144 —3552x1
= 4144 — (7696 — 4144 % 1) % 1
= 2(4144) — 7696.

Therefore, ged(4144, 7696) = 592 = 2(4144) — 7696.
Hence, a solution to the equation 4144x 4 7696y = 592 is x =2 and y = —1,
since 4144(2) 4+ 7696(—1) = 592. O

Exercise 142. Compute gcd(10001,100083) as a linear combination of 10001
and 100083.

Solution. We use the Euclidean algorithm to obtain the equations below.

100083 = 10001 %10+ 73
10001 = 73 *13740.

Thus, ged(10001,100083) = ged (10001, 73) = 73.
We backtrack through the equations to find the linear combination.

73 = 100083 — 10001 * 10
—10(10001) + 100083.

Therefore, ged(10001,100083) = 73 = —10(10001) + 100083.
Hence, a solution to the equation 10001z + 100083y = 73 is x = —10 and
y = 1, since 10001(—10) + 100083(1) = 73. O

Exercise 143. Find integers x,y such that 299z + 247y = 13.

Solution. Since ged(299,247) = 13, then we know there exist integers z and y
such that 299x 4247y = 13. Hence, there is at least one solution to the equation
299x + 247y = 13.

We use the Euclidean algorithm to express gcd as a linear combination of
integers.

299 = 247x1+52
247 = 52x4439
52 = 39x1413
39 = 13x3+0.

Thus, ged(299,247) = ged (247, 52) = ged(52,39) = ged (39, 13) = 13.
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We backtrack through the equations to express ged as a linear combination.

13 = 52-39
= 52— (247 — 52 4)
= —247+5%52

= 247+ 5(299 — 247)
= (—6)(247) + 5 * 299.

Therefore, x = 5 and y = —6.
Since 299(5) + 247(—6) = 1495 — 1482 = 13, then z = 5 and y = —6 is one
solution to the equation 299z + 247y = 13.

There may be other solutions as well.

Let’s find another solution to this equation.

Since ged(299,247) = 13, then 13]|299 and 13]247, so 299 = 13 % 23 and
247 =13 % 19.

Thus, 13 = 299z + 247y = (13 % 23)z + (13 % 19)y.

Dividing by 13 we obtain the equation 1 = 23z + 19y.

Since 23 and 19 are relatively prime, then ged(23,19) = 1, so there must
exist integers x and y such that 23z + 19y = 1, so we know that this equation
has at least one solution.

This equation has the same solution as the equation 299z + 247y = 13.

Thus, one solution to the equation 23z + 19y = 1is ¢ = 5 and y = —6, since
23(5) +19(—6) = 115 — 114 = 1.

We will write a computer program to find other pair of integers « and y that
are solutions to the equation 23z + 19y = 1.

There are many solutions to this equation.

Examples are z = —14 and y = 17 and = = 24 and y = —29.

If x = —14 and y = 17, then 23(—14) + 19(17) = —322 4+ 323 = 1 and
299(—14) + 247(17) = —4186 + 4199 = 13.

If = 24 and y = —29, then 23(24) + 19(—29) = 552 — 551 = 1 and
299(24) + 247(—29) = 7176 — 7163 = 13.

The equation 299z + 247y = 52 can be reduced since ged(299,247) = 13 by
dividing by 13.

Thus, we obtain 23z + 19y = 4. Since ged(23,19) = 1, then this equation is
saying that 4 is a linear combination of gcd(23,19). We know that any linear
combination of 23 and 19 is a multiple of ged(23,19). In this case, 4 is a multiple
of 1 since 4 =4x%1.

We will write a computer program to find x, y such that 23z + 19y = 4 and
the pair (z,y) will also be a solution to the equation 299z + 247y = 52.

Example solutions are: © =1,y = —land x = 20,y = —24and x = —18,y =
22. There are many more solutions as well.

If x =1and y = —1, then 23(1) + 19(—1) = 4 and 299(1) + 247(—1) = 52.

70



If x = 20 and y = —24, then 23(20) +19(—24) = 4 and 299(20) +247(—24) =
52.

Ifz = —18 and y = 22, then 23(—18) + 19(22) = 4 and 209(—18) + 247(22) =
52. O

Exercise 144. Which of the integers 0,1, ...,10 can be expressed in the form
12m + 20n where m and n are integers?

Solution. Let m and n be arbitrary integers.
Let a = 12m + 20n.
Let S = {0,1,2,...,10}.
The integer a is a linear combination of 12 and 20.
We know that every linear combination of 12 and 20 is a multiple of ged (12, 20).
Since ged(12,20) = 4, then every linear combination of 12 and 20 must be a
multiple of 4.
Hence, the only integers in S which satisfy this criteria are 0,4, 8.
Concretely, we can use Euclidean algorithm:
4=12(2) 4+ 20(-1).
Thus, 8 =2%4=2(12%2—20) = 12 x4 — 2 % 20.
Also, 0 =120+ 20 * 0. O

Exercise 145. For all integers n > 1, ged(2n? + 4n — 3,2n% +6n — 4) = 1.

Proof. Let n be an arbitrary integer such that n > 1.
By the Euclidean algorithm, we have

2?4+ 6n—4 = (2n®+4n—-3)(1)+ (2n—1)
2m*4+4n -3 = (2n—1)n+2)+(n—1)
-1 = (n—1)(2)+1
n—1 = 1(n—1)+0.

Therefore, by the Euclidean algorithm, ged(2n?+4n—3,2n2+6n—4) = 1. O

Exercise 146. Find integers x, y, z such that gcd(198,288,512) = 198z+288y+
512z.

Solution. Let d = gcd(198, 288).
To compute ged(198,288) we use the Euclidean algorithm.
Observe that

288 = 1981490
198 = 90%2418
90 = 18x540.
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Thus,

d = ged(198,288)
= 18
= 198 — (90) % 2

— 198 — (288 — 198 % 1) % 2
= 198 — 288 %2+ 198 # 2
= 198 %3+ 288(—2).

Since 198z + 288y is a linear combination of 198 and 288, then 198z + 288y

is a multiple of ged (198, 288).

Hence, 198z + 288y = du for some integer wu.

Observe that

gcd(198, 288, 512)

= ged(ged(198, 288), 512)
ged(d, 512)
= gecd(18,512).

To compute ged(18,512) we use the Euclidean algorithm.

Observe that

512 = 18x28+8
18 = 8x%x2+42
8 = 2x4+0.
Thus,
ged(18,512) = 2
= 18— (8)2
= 18— (512 — 18 %28)2
= 18—-512%2418(28 % 2)
= 18(57) 4+ 512(-2).
Therefore,
gcd(198,288,512) = 2
= gcd(18,512)
= 18(57) +512(—2)
= [198(3) 4 288(—2)](57) + 512(—2)
= 198(3)(57) + 288(—2)(57) + 512(—2)
= 198(171) 4 288(—114) + 512(—2).
Therefore, x = 171 and y = —114 and z = —2. O
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Least common multiple

Exercise 147. Compute lem(143,227) and lem(306,657) and lem(272,1479).

Solution. Since ged(143,227) = 1, then lem(143,227) = 143 % 227 = 32461.
Since ged(306,657) = 9, then lem(306, 657) = 3962657 — 22338,
Since ged(272,1479) = 17, then lem(272,1479) = 221479 — 23664. O

Exercise 148. If n € N, then 1 + (—1)"(2n — 1) is a multiple of 4.

Proof. Suppose n € N.

Then n is either even or odd.

We consider these two cases separately.

Case 1. Suppose n is even.

Then n = 2k for some k € Z and (—1)" = 1.

Thus 1+ (=1)"(2n—1) =1+ (1)(2-2k — 1) = 1+ 4k — 1 = 4k is a multiple
of 4.

Case 2. Suppose n is odd.

Then n = 2k + 1 for some k € Z and (—1)" = —1.

Thus 1+ (-1)"(2n—1) =1+ (-1)(22k+1)—1)=1—-(2(2k+1)—1) =
1-(4k+2-1)=1—-(4k+1)=1—-4k — 1 = —4k = 4(—k) is a multiple of
4. O

Exercise 149. Every multiple of 4 has form 1+ (—1)"(2n — 1) for some n € N.

Proof. In conditional form, the proposition is as follows:

If k is a multiple of 4, then there is an n € N for which 1+(—1)"(2n—1) = k.

What follows is a proof of this conditional statement.

Suppose k is a multiple of 4. Then k = 4a for some integer a.

We must produce an n € N for which 1 + (—=1)"(2n — 1) = k.

We consider three cases, depending on whether a is zero, positive, or nega-
tive.

Case 1. Suppose a = 0.

Let n = 1.

Then 14+ (-1)"(2n—1)=14+(-1)(2-1-1)=0=4-0=4a =k.

Case 2. Suppose a > 0.

Let n = 2a, which is an element of N because a is positive, making n positive.

Also n is even, so (—1)" = 1.

Thus 1+ (-1)"2n—-1) =1+ (1)(2-2a — 1) =4a = k.

Case 3. Suppose a < 0.

Let n = 1—2a, which is an element of N because a is negative, making 1 —2a
positive.

Also n is odd, so (—1)" = —1. Thus 1+ (-1)"(2n — 1) = 1+ (-1)(2(1 —
2a) —1)=1—-(1—-4a) =4a=k.

These three cases show that no matter whether a multiple k£ = 4a is zero,

positive, or negative, it always equals 14 (—1)"(2n—1) for some natural number
n. O
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