Number Theory Exercises 2

Jason Sass

July 17, 2023

Divisibility and greatest common divisor

Exercise 1. Let $a, b \in \mathbb{Z}$.
Then $a>b$ implies $a \nmid b$ is false.
Proof. Observe that $1>0$ and $1 \mid 0$.
Exercise 2. Let $a, b, c \in \mathbb{Z}$.
If $a+b=c$ and $d \mid a$ and $d \mid c$, then $d \mid b$.
Proof. Suppose $a+b=c$ and $d \mid a$ and $d \mid c$.
Since $a+b=c$, then $b=c-a=-a+c=(-1) a+(1) c$ is a linear combination of a and c.

Since $d \mid a$ and $d \mid c$, then d divides any linear combination of a and c.
In particular, d divides b, so $d \mid b$.
Exercise 3. Let x, y, z, w be integers.
If $3 x+81 y+6 z+363=w$, then $3 \mid w$.
Proof. Since $w=3 x+81 y+6 z+363=3(x+27 y+2 z+121)$ and $x+27 y+2 z+121$ is an integer, then 3 divides w.

Proof. Since $3 \mid 3$ and $3 \mid 81$ and $3 \mid 6$ and $3 \mid 363$, then 3 divides any linear combination of $3,81,6,363$.

Since w is a linear combination of $3,81,6,363$, then this implies 3 divides w, so $3 \mid w$.

Exercise 4. Let x, y be integers.
If $3 x^{2}+15 x y+5 y^{2}=0$, then $3 \mid 5 y^{2}$ and $5 \mid 3 x^{2}$.
Proof. Suppose $3 x^{2}+15 x y+5 y^{2}=0$.
Then $3 x^{2}=-15 x y-5 y^{2}$ and $5 y^{2}=-3 x^{2}-15 x y$.
Since $3 \mid-3$ and $3 \mid-15$, then 3 divides any linear combination of -3 and -15 .

Since $5 y^{2}$ is a linear combination of -3 and -15 , then this implies $3 \mid 5 y^{2}$.
Since $5 \mid-15$ and $5 \mid-5$, then 5 divides any linear combination of -15 and -5 .

Since $3 x^{2}$ is a linear combination of -15 and -5 , then this implies $5 \mid 3 x^{2}$.

Exercise 5. Let $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{Z}$.
If $N=n_{1} * n_{2} * * * n_{k}+1$, then $\operatorname{gcd}\left(n_{i}, N\right)=1$ for $i=1,2, \ldots, k$.
Proof. Suppose $N=n_{1} * n_{2} * * * n_{k}+1$.
Then $1=N-n_{1} * n_{2} * * * n_{k}=(1) * N-n_{1} * n_{2} * * * n_{k}$.
Since 1 is a linear combination of n_{1} and N and any linear combination of n_{1} and N is a multiple of $\operatorname{gcd}\left(n_{1}, N\right)$, then 1 is a multiple of $\operatorname{gcd}\left(n_{1}, N\right)$, so $\operatorname{gcd}\left(n_{1}, N\right)$ divides 1 .

The only positive integer that divides 1 is 1 , so this implies $\operatorname{gcd}\left(n_{1}, N\right)=1$.
Similar reasoning shows that $\operatorname{gcd}\left(n_{2}, N\right)=1$ and $\ldots \operatorname{gcd}\left(n_{k}, N\right)=1$.
Exercise 6. Let $d \in \mathbb{Z}^{+}$and $n \in \mathbb{Z}$.
Then $\operatorname{gcd}(d, n d)=d$.
Proof. Since every integer divides itself, then $d \mid d$.
Since d divides any multiple of d, then $d \mid n d$.
Therefore, d is a common divisor of d and $n d$.

Let c be any common divisor of d and $n d$.
Then $c \mid d$ and $c \mid n d$, so $c \mid d$.
Hence, any common divisor of d and $n d$ divides d.
Since $d \in \mathbb{Z}^{+}$and d is a common divisor of d and $n d$ and any common divisor of d and $n d$ divides d, then $d=\operatorname{gcd}(d, n d)$.

Exercise 7. Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$.
If $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
Proof. Suppose $a \mid b$ and $b \mid a$.
Then $b=a k_{1}$ and $a=b k_{2}$ for some integers k_{1} and k_{2}.
Thus, $b=\left(b k_{2}\right) k_{1}=b\left(k_{1} k_{2}\right)$, so $b\left(k_{1} k_{2}\right)-b=0$.
Hence, $b\left(k_{1} k_{2}-1\right)=0$.
Either $b=0$ or $b \neq 0$.
We consider these cases separately.
Case 1: Suppose $b=0$.
Since $b \mid a$, then $0 \mid a$, so $a=0 k_{3}=0$ for some integer k_{3}.
Hence, $a=0=b$, so $a=b$.
Case 2: Suppose $b \neq 0$.
Then $k_{1} k_{2}-1=0$, so $k_{1} k_{2}=1$.
Since k_{1} and k_{2} are integers such that $k_{1} k_{2}=1$, then either $k_{1}=k_{2}=1$ or $k_{1}=k_{2}=-1$.

Hence, either $b=a\left(k_{1}\right)=a(1)=a$ or $b=a\left(k_{1}\right)=a(-1)=-a$, so either $b=a$ or $b=-a$.

Therefore, either $a=b$ or $a=-b$.
Exercise 8. Let $a \in \mathbb{Z}^{+}$and $b \in \mathbb{Z}$.
If $a \mid b$, then $\operatorname{gcd}(a, b)=a$.

Proof. Suppose $a \mid b$.
Since every integer divides itself, then $a \mid a$.
Since $a \mid a$ and $a \mid b$, then a is a common divisor of a and b.

Let c be any common divisor of a and b.
Then $c \mid a$ and $c \mid b$, so $c \mid a$.
Hence, any common divisor of a and b divides a.
Since $a \in \mathbb{Z}^{+}$and a is a common divisor of a and b, and any common divisor of a and b divides a, then $a=\operatorname{gcd}(a, b)$.

Exercise 9. Let $x \in \mathbb{R}$ and $a, b \in \mathbb{Z}$.
I. If $x^{2}+a x+b=0$ has an integer root, then the root divides b.
II. If $x^{2}+a x+b=0$ has a rational root, then the root is an integer.

Proof. We prove I.
Suppose the equation $x^{2}+a x+b=0$ has an integer root.
Let r be an integer root of $x^{2}+a x+b=0$.
Then $r \in \mathbb{Z}$ and $r^{2}+a r+b=0$, so $b=-r^{2}-a r=r(-r-a)$.
Since $-r-a \in \mathbb{Z}$, then r divides b.
Proof. We prove II.
Suppose the equation $x^{2}+a x+b=0$ has a rational root.
Let q be a rational root of $x^{2}+a x+b=0$.
Then $q \in \mathbb{Q}$ and $q^{2}+a q+b=0$.
Since $q \in \mathbb{Q}$, then there exist integers r, s with $s \neq 0$ such that $q=\frac{r}{s}$.
Assume q is in lowest terms. That is, assume $\operatorname{gcd}(r, s)=1$, so $1=\operatorname{gcd}(s, r)$.
Since $\left(\frac{r}{s}\right)^{2}+a * \frac{r}{s}+b=0$, then $r^{2}+a r s+b s^{2}=0$, so $r^{2}=-a r s-b s^{2}=$ $s(-a r-b s)$.

Since $s \mid s(-a r-b s)$, then s divides r^{2}.
Since $s \mid r^{2}$ and $\operatorname{gcd}(s, r)=1$, then $s \mid r$.
Thus, $r=s t$ for some integer t, so $q=\frac{r}{s}=\frac{s t}{s}=t$.
Therefore, q is an integer.
Exercise 10. Let $a, b \in \mathbb{Z}$.
For every $c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then $c \mid \operatorname{gcd}(a, b)$.
Proof. Let $c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$.
Then c is a common divisor of a and b.
By definition of gcd, any common divisor of a and b must divide $\operatorname{gcd}(a, b)$.
Therefore, c divides $\operatorname{gcd}(a, b)$.
Exercise 11. Let a and b be nonzero integers.
If there exist integers r and s such that $a r+b s=1$, then a and b are relatively prime.

Proof. Suppose there exist integers r and s such that $a r+b s=1$.
Then $1=r a+s b$ is a linear combination of a and b.
Since any common divisor of a and b divides any linear combination of a and b, then $\operatorname{gcd}(a, b)$ divides 1 .

The only positive integer that divides 1 is 1 .
Since $\operatorname{gcd}(a, b)$ is a positive integer, then this implies $\operatorname{gcd}(a, b)=1$.
Therefore, a and b are relatively prime.
Exercise 12. Let $a, b, c \in \mathbb{Z}$.
If $\operatorname{gcd}(a, b)=1$ and $c \mid a$, then $\operatorname{gcd}(c, b)=1$.
Proof. Suppose $\operatorname{gcd}(a, b)=1$ and $c \mid a$.
Since $\operatorname{gcd}(a, b)=1$, then $m a+n b=1$ for some integers m, n.
Since $c \mid a$, then $a=c k$ for some integer k.
Thus, $1=m a+n b=m(c k)+n b=m(k c)+n b=(m k) c+n b$ is a linear combination of c and b.

Since any linear combination of c and b is a multiple $\operatorname{fcd}(c, b)$, then 1 is a multiple of $\operatorname{gcd}(c, b)$, so $\operatorname{gcd}(c, b)$ divides 1 .

The only positive integer that divides 1 is 1 , so $\operatorname{gcd}(c, b)=1$.
Proof. Suppose $\operatorname{gcd}(a, b)=1$ and $c \mid a$.
Since 1 divides every integer, then $1 \mid c$ and $1 \mid b$, so 1 is a common divisor of c and b.

Let d be any common divisor of c and b.
Then $d \mid c$ and $d \mid b$.
Since $d \mid c$ and $c \mid a$, then $d \mid a$.
Since $\operatorname{gcd}(a, b)=1$, then $m a+n b=1$ for some integers m and n.
Since $d \mid a$ and $d \mid b$, then d divides any linear combination of a and b, so d divides $m a+n b=1$,

Hence, $d \mid 1$.
Therefore, any common divisor of c and b divides 1 .
Since 1 is a common divisor of c and b and any common divisor of c and b divides 1 , then by definition of $\operatorname{gcd}, 1=\operatorname{gcd}(c, b)$.

Exercise 13. Let $a, b, d \in \mathbb{Z}$.
If $d \mid a$ and $d \mid b$, then $d^{2} \mid a b$.
Proof. Suppose $d \mid a$ and $d \mid b$.
Then $a=d k_{1}$ and $b=d k_{2}$ for some integers k_{1} and k_{2}.
Hence, $a b=\left(d k_{1}\right)\left(d k_{2}\right)=d^{2}\left(k_{1} k_{2}\right)$.
Since $k_{1} k_{2} \in \mathbb{Z}$, then this implies $d^{2} \mid a b$.
Exercise 14. Let $a, b, c, d \in \mathbb{Z}$.
If $c \mid a b$ and $\operatorname{gcd}(c, a)=d$, then $c \mid d b$.

Proof. Suppose $c \mid a b$ and $\operatorname{gcd}(c, a)=d$.
Since $\operatorname{gcd}(c, a)=d$, then $d=x c+y a$ for some integers x and y.
Hence, $d b=(x c+y a) b=x c b+y a b=(x b) c+y a b$ is a linear combination of c and $a b$.

Since $c \mid c$ and $c \mid a b$, then c divides any linear combination of c and $a b$, so $c \mid d b$.

Exercise 15. Let $a, b \in \mathbb{Z}$.
Disprove: If $a \nmid b$, then $\operatorname{gcd}(a, b)=1$.
Proof. Let $a=4$ and $b=10$.
Then $4 \nmid 10$, but $\operatorname{gcd}(4,10)=2 \neq 1$.
Exercise 16. Let $a, b, d \in \mathbb{Z}$.
If d is odd and $d \mid(a+b)$ and $d \mid(a-b)$, then $d \mid \operatorname{gcd}(a, b)$.
Proof. Suppose d is odd and $d \mid(a+b)$ and $d \mid(a-b)$.
Since $d \mid(a+b)$ and $d \mid(a-b)$, then d divides the sum $(a+b)+(a-b)=2 a$ and d divides the difference $(a+b)-(a-b)=2 b$, so $d \mid 2 a$ and $d \mid 2 b$.

Since d is odd, then $2 \not \backslash d$, so $\operatorname{gcd}(d, 2)=1$.
Since $d \mid 2 a$ and $\operatorname{gcd}(d, 2)=1$, then we know $d \mid a$.
Since $d \mid 2 b$ and $\operatorname{gcd}(d, 2)=1$, then we know $d \mid b$.
Hence, d divides any linear combination of a and b.
Since $\operatorname{gcd}(a, b)$ is the least positive linear combination of a and b, then this implies d divides $\operatorname{gcd}(a, b)$.

Therefore, $d \mid \operatorname{gcd}(a, b)$.
Exercise 17. Let $a, b, c, d, p \in \mathbb{Z}$.
If $p \mid(10 a-b)$ and $p \mid(10 c-d)$, then $p \mid(a d-b c)$.
Proof. Suppose $p \mid(10 a-b)$ and $p \mid(10 c-d)$.
Since $p \mid(10 a-b)$, then p divides any multiple of $10 a-b$, so $p \mid c(10 a-b)$.
Hence, $p \mid(10 a c-b c)$.
Since $p \mid(10 c-d)$, then p divides any multiple of $10 c-d$, so $p \mid a(10 c-d)$.
Hence, $p \mid(10 a c-a d)$.
Thus, p divides the difference $(10 a c-b c)-(10 a c-a d)=10 a c-b c-10 a c+a d=$ $a d-b c$.

Therefore, $p \mid(a d-b c)$.
Exercise 18. Let $a, b, c \in \mathbb{Z}$.
Then $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$ iff $\operatorname{gcd}(a b, c)=1$.
Proof. Suppose $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.
Since $\operatorname{gcd}(a, c)=1$, then $m_{1} a+n_{1} c=1$ for some integers m_{1} and n_{1}.
Since $\operatorname{gcd}(b, c)=1$, then $m_{2} b+n_{2} c=1$ for some integers m_{2} and n_{2}.
Thus, $b=1 b=\left(m_{1} a+n_{1} c\right) b=m_{1} a b+n_{1} b c$, so $m_{2}\left(m_{1} a b+n_{1} b c\right)+n_{2} c=1$.
Hence, $1=m_{1} m_{2} a b+m_{2} n_{1} b c+n_{2} c=\left(m_{1} m_{2}\right)(a b)+\left(m_{2} n_{1} b+n_{2}\right) c$.
Since there exist integers $m_{1} m_{2}$ and $m_{2} n_{1} b+n_{2}$ such that $\left(m_{1} m_{2}\right)(a b)+$ $\left(m_{2} n_{1} b+n_{2}\right) c=1$, then $\operatorname{gcd}(a b, c)=1$.

Proof. Conversely, suppose $\operatorname{gcd}(a b, c)=1$.
Then $x a b+y c=1$ for some integers x and y.
Hence, $1=x a b+y c=(x b) a+y c=(a x) b+y c$.
Since there exist integers $x b$ and y such that $(x b) a+y c=1$, then $\operatorname{gcd}(a, c)=$ 1.

Since there exist integers $a x$ and y such that $(a x) b+y c=1$, then $\operatorname{gcd}(b, c)=$ 1.

Therefore, $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.
Exercise 19. If $10 \mid\left(3^{m}+1\right)$ for some integer m, then $10 \mid\left(3^{m+4 n}+1\right)$ for all $n \in \mathbb{Z}^{+}$.

For which m does $10 \mid\left(3^{m}+1\right)$?
Proof.
Theorem 20. Let S be a nonempty set of integers that is closed under addition and subtraction.

Then either S consists of zero alone or S contains a smallest positive element, in which case S consists of all multiples of its smallest positive element.

Solution. Since S is not empty, then there exists some element in S.
Let a be some element of S.
Since $a \in S$ and $S \subset \mathbb{Z}$, then $a \in \mathbb{Z}$.
By closure of S under addition, we have $a+a=2 a \in S$ and $2 a+a=3 a \in S$ and $3 a+a=4 a \in S$, and so on.

Thus, it appears $k a \in S$ for all positive integers k.
By closure of S under subtraction, we have $a-a=0 \in S$ so $0-a=-a \in S$, so $-a-a=-2 a \in S$, so $-2 a-a=-3 a \in S$, so $-3 a-a=-4 a \in S$, and so on.

Thus, it appears $k a \in S$ for all negative integers k.
Hence, it appears $k a \in S$ for all integers k, so it appears that $\{k a: k \in \mathbb{Z}\} \subset$ S.

We showed that if $a \in S$, then $0 \in S$ and $-a \in S$.
Since S is not empty, then S contains at least one element, so either S contains exactly one element or it contains more than one element.

Proof. Since S is a nonempty subset of integers, then there is some element in S, say a.

Since $a \in S$ and $S \subset \mathbb{Z}$, then $a \in \mathbb{Z}$.
By closure of S under subtraction, $a-a \in S$, so $0 \in S$.
Since S is not empty, then S contains at least one element, so either S contains exactly one element or S contains more than one element.

We consider these cases separately.
Case 1: Suppose S contains exactly one element.
Since S contains exactly one element and $0 \in S$, then S must contain zero only.

Therefore, $S=\{0\}$.

Case 2: Suppose S contains more than one element.
Then S contains at least two elements.
One of the elements must be zero and the other element is not zero.
Let a be some element of S that is not equal to zero.
Since $a \in S$ and $S \subset \mathbb{Z}$, then $a \in \mathbb{Z}$.
Since $a \neq 0$, then either $a>0$ or $a<0$.
Suppose $a>0$.
Then $0-a \in S$, so $-a \in S$.
Suppose $a<0$.
Then $0-a \in S$, so $-a \in S$.
Hence, in either case S will always contain both $-a$ and a.
Therefore, without loss of generality, assume $a>0$.
Then $-a \in S$.
We must prove a is the least positive element of S and that $S=\{n a: n \in \mathbb{Z}\}$.
Let $T=\{n a: n \in \mathbb{Z}\}$.
To prove $S=T$, we prove $S \subset T$ and $T \subset S$.
To prove $T \subset S$, we must prove every element of T is in S.
Hence, we must prove every multiple of a is in S, so we must prove $(\forall n \in$ $\mathbb{Z})(n a \in S)$.

To prove $(\forall n \in \mathbb{Z})(n a \in S)$, we prove $\left(\forall n \in \mathbb{Z}^{+}\right)(n a \in S)$ and $0 \in S$ and $\left(\forall n \in \mathbb{Z}^{+}\right)(-n a \in S)$.

We've already shown that $0 \in S$.
We prove $\left(\forall n \in \mathbb{Z}^{+}\right)(n a \in S)$ by induction on n.
Let $p(n): n a \in S$.
For $n=1$, we have $1 * a=a \in S$, so $p(1)$ holds.
Suppose m is an arbitrary integer such that $p(m)$ holds.
To prove $p(m+1)$ holds, we must prove $(m+1) a \in S$.
Since $p(m)$ holds, then $m a \in S$.
Thus, by closure under addition, $m a+a \in S$.
Hence, $m a+a=(m+1) a \in S$, as desired.
Therefore, by induction, $n a \in S$ for all positive integers n.
We now prove $\left(\forall n \in \mathbb{Z}^{+}\right)(-n a \in S)$ by induction on n.
Let $q(n):-n a \in S$.
For $n=1$, we have $-(1 * a)=-a \in S$, so $q(1)$ holds.
Suppose m is an arbitrary integer such that $q(m)$ holds.
To prove $q(m+1)$ holds, we must prove $-(m+1) a \in S$.
Since $q(m)$ holds, then $-m a \in S$.
Thus, by closure under subtraction, $-m a-a \in S$.
Hence, $-m a-a=-(m a+a)=-(m+1) a \in S$, as desired.
Therefore, by induction, $-n a \in S$ for all positive integers n.
Hence, $n a \in S$ for all integers n, so every multiple of a is in S.
Thus, every element of T is in S, so $T \subset S$.
We prove a is the least positive element of S.
Either $a=1$ or $a \neq 1$.
We consider these cases separately.
Case 1: Suppose $a=1$.

The least positive integer is 1 .
Since $a=1$, then 1 is the least positive element of S.
Hence, a is the least positive element of S.
Case 2: Suppose $a \neq 1$.
Since $a>0$ and $a \neq 1$, then $a>1$.
Let W be the set of all positive elements of S.
Then $W=\{x \in S: x>0\}$, so $W \subset S$.
Since $W \subset S$ and $S \subset \mathbb{Z}$, then $W \subset \mathbb{Z}$.
Since each element of W is positive, then $W \subset \mathbb{Z}^{+}$.
By the well ordering principle of \mathbb{Z}^{+}, W must contain a least element, say $b \in W$.

We prove $b=a$.
Or, we could prove there is no element of W that is less than a by contradiction?

Since $b \in W$ and $W \subset S$, then $b \in S$.
Suppose $b \neq a$.
Since b is the least element of W, then $b<a$.
By closure of S under subtraction, $a-b \in S$.
Since $b<a$, then $a-b>0$, so $a-b \in W$.
Suppose $a / 2<b$.
Then $a<2 b$, so $a-b<b$.
Thus, $a-b \in W$ and $a-b<b$, so $a-b$ is less than the least positive element of W, a contradiction.

Hence, $a / 2$ cannot be less than b.
Thus, either $a / 2=b$ or $a / 2>b$, so either $b=a / 2$ or $b<a / 2$.
Suppose for the sake of contradiction that a is not the least positive element of S.

Then there exists some element other than a that is the least positive element of S.

Let c be some positive element of S that is the least positive element of S.
Then $c \in S$ and $c>0$ and $c \neq a$ and $(\forall x \in S)(x>0 \rightarrow c \leq x)$.
Since $a \in S$ and $a>0$, then $c \leq a$, so either $c<a$ or $c=a$.
Since $c \neq a$, then $c<a$.
Thus, $0<c<a$.
Since $c \in S$ and $S \subset \mathbb{Z}$, then $c \in \mathbb{Z}$, so $1 \leq c \leq a-1$.
Since $c>0$, then we divide a by c.
By the division algorithm, there are unique integers q and r such that $a=$ $c q+r$ and $0 \leq r<c$.

Thus, $r=a-c q$.
Every multiple of an element of S is in S.
Since $c \in S$, then every multiple of c is in S, so in particular, $q c \in S$.
Since $a \in S$ and $q c \in S$ and S is closed under subtraction, then $a-c q \in S$, so $r \in S$.

Either a is a multiple of c or not.
Suppose a is not a multiple of c.
Then $r>0$.

Thus, r is a positive element of S and c is the least positive element of S and $r<c$.

Hence, there exists some positive element of S that is less than the least positive element of S, a contradiction.

Therefore, a must be a multiple of c.
Thus, there is some integer k such that $a=c k$.
Since a and c are positive, then k must be positive.
Either k is a multiple of c or it is not.
Suppose k is a multiple of c.
Since $c \in S$ and every multiple of an element in S is in S, then $k \in S$.
Now, either $k=c$ or $k \neq c$.
Suppose $k \neq c$.
Then either $k>c$ or $k<c$, so $|k-c|>0$.
$k=c$ or $k \neq c$.
If $k=c$, then $k \in S$, since $c \in S$.
If $k \neq c$, then either $k<c$ or $k>c$.
But, is $k \in S$?
We're stuck here in trying to figure out how to devise a suitable contradiction.
To prove $S \subset T$, we must prove every element of S is a multiple of a.
Hence, we must prove $(\forall b \in S)(a \mid b)$.
Suppose b is some element of S such that b is not a multiple of a.
We divide b by a.
Since $a>0$, then by the division algorithm, there are unique integers q, r such that $b=a q+r$ and $0<r<a$.

Thus, $r=b-q a$.
Every multiple of an element of S is in S.
Since $a \in S$, then every multiple of a is in S, so in particular, $q a \in S$.
Since $b \in S$ and $q a \in S$ and S is closed under subtraction, then $b-q a \in S$, so $r \in S$.

Hence, r is a positive element of S and a is the least positive element of S and $r<a$.

Thus, there exists some positive element of S that is less than the least positive element of S, a contradiction.

Hence, there is no element of S that is not a multiple of a.
Therefore, every element of S is a multiple of a.
Hence, $S \subset T$.
Since $S \subset T$ and $T \subset S$, then we conclude $S=T$.
Proposition 21. Let $a, b \in \mathbb{Z}$.
Then $a-b$ divides $a^{n}-b^{n}$ for all $n \in \mathbb{N}$.
Proof. We prove by induction on n.
Let $S=\left\{n \in \mathbb{N}: a-b \mid a^{n}-b^{n}\right\}$.
Basis:
Since $a, b \in \mathbb{Z}$, then $a-b \in \mathbb{Z}$.
Since $a-b$ divides $a-b=a^{1}-b^{1}$, then $a-b$ divides $a^{1}-b^{1}$.

Since $1 \in \mathbb{N}$ and $a-b$ divides $a^{1}-b^{1}$, then $1 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $a-b$ divides $a^{k}-b^{k}$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $a-b$ divides $a^{k}-b^{k}$, then $a-b$ divides any multiple of $a^{k}-b^{k}$.
Since $a \in \mathbb{Z}$, then $a-b$ divides $a\left(a^{k}-b^{k}\right)$.
Since $a-b$ divides $a-b$, then $a-b$ divides any multiple of $a-b$.
Since $k \in \mathbb{N}$, then $k \geq 1>0$, so $k>0$.
Since $b \in \mathbb{Z}$ and $k>0$ and $k \in \mathbb{Z}$, then $b^{k} \in \mathbb{Z}$.
Hence, $a-b$ divides $b^{k}(a-b)$.
Thus, $a-b$ divides the sum $a\left(a^{k}-b^{k}\right)+b^{k}(a-b)=a^{k+1}-a b^{k}+a b^{k}-b^{k+1}=$ $a^{k+1}-b^{k+1}$.

Since $k+1 \in \mathbb{N}$ and $a-b$ divides $a^{k+1}-b^{k+1}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
Therefore, by the principle of mathematical induction, $a-b$ divides $a^{n}-b^{n}$ for all $n \in \mathbb{N}$, as desired.

Exercise 22. 1 and -1 are the only divisors of 1

Let $n \in \mathbb{Z}$.
If $n \mid 1$, then $n=1$ or $n=-1$.
Proof. Suppose $n \mid 1$.
Then $1=n m$ for some integer m.
Since $n m=1$, then by axiom of \mathbb{Z}, either $n=m=1$ or $n=m=-1$.
Therefore, either $n=1$ or $n=-1$.

Exercise 23. zero divides only zero

Let $n \in \mathbb{Z}$.
If $0 \mid n$, then $n=0$.
Proof. Suppose 0|n.
Then $n=0 m$ for some $m \in \mathbb{Z}$.
Therefore, $n=0 m=0$, so $n=0$.
Exercise 24. Let $a, b, c, d \in \mathbb{Z}$.
If $a+b=c$ and $d \mid a$ and $d \mid c$, then $d \mid b$.
Proof. Suppose $a+b=c$ and $d \mid a$ and $d \mid c$.
Since $d \mid c$ and $d \mid a$, then d divides their difference $c-a$, so $d \mid b$.
Exercise 25. Let $x, y \in \mathbb{Z}$.
If $3 x^{2}+15 x y+5 y^{2}=0$, then $3 \mid 5 y^{2}$ and $5 \mid 3 x^{2}$.
Proof. Suppose $3 x^{2}+15 x y+5 y^{2}=0$.
Then $5 y^{2}=-3 x^{2}-15 x y$ and $3 x^{2}=-15 x y-5 y^{2}$.
Since $5 y^{2}=-3 x^{2}-15 x y=3\left(-x^{2}-5 x y\right)$ and $-x^{2}-5 x y \in \mathbb{Z}$, then $3 \mid 5 y^{2}$.
Since $3 x^{2}=-15 x y-5 y^{2}=5\left(-3 x y-y^{2}\right)$ and $-3 x y-y^{2} \in \mathbb{Z}$, then $5 \mid 3 x^{2}$.

Exercise 26. Let $d, a, b \in \mathbb{Z}$.
Disprove: If $d \mid a b$, then $d \mid a$ and $d \mid b$.
Solution. Let $d=5$ and $a=10$ and $b=6$.
Observe that $5 \mid(10 \cdot 6)$ and $5 \mid 10$, but $5 \nless 6$.
Exercise 27. Let $d, a, b \in \mathbb{Z}$.
Disprove: If $d \mid a b$, then $d \mid a$ or $d \mid b$.
Solution. Let $d=6$ and $a=4$ and $b=9$.
Observe that $6 \mid(4 \cdot 9)$, but $6 \nmid 8$ and $6 \nmid 9$.
Exercise 28. Let $a, b, n \in \mathbb{Z}$.
Disprove: If $a \mid n$ and $b \mid n$, then $a b \mid n$.
Solution. Let $n=12$ and $a=4$ and $b=6$.
Observe that $4 \mid 12$ and $6 \mid 12$, but $(4 * 6) \times 12$.
Exercise 29. Let $d, n \in \mathbb{Z}^{+}$.
Then $\operatorname{gcd}(d, n d)=d$.
Solution. Observe that

$$
\begin{aligned}
\operatorname{gcd}(d, n d) & =d \cdot \operatorname{gcd}(1, n) \\
& =d \cdot 1 \\
& =d
\end{aligned}
$$

Exercise 30. Let $a, b, c \in \mathbb{Z}$.
If $\operatorname{gcd}(a, b)=1$ and $c \mid a$, then $\operatorname{gcd}(c, b)=1$.
Proof. Suppose $\operatorname{gcd}(a, b)=1$ and $c \mid a$.
Since $\operatorname{gcd}(a, b)=1$, then there exist integers x and y such that $x a+y b=1$.
Since $c \mid a$, then $a=c k$ for some integer k.
Thus, $1=x a+y b=x(c k)+y b=x(k c)+y b=(x k) c+y b$, so 1 is a linear combination of c and b.

Therefore, $\operatorname{gcd}(c, b)=1$.
Exercise 31. There exists an $n \in \mathbb{N}$ for which $11 \mid\left(2^{n}-1\right)$.
Solution. The statement is $(\exists n \in \mathbb{N})\left(11 \mid 2^{n}-1\right)$.
We can use computer or calculator to determine some value for n.
Proof. Let $n=10$.
Then $2^{10}-1=1023=11 \cdot 93$, so $11 \mid 2^{10}-1$.
Exercise 32. Let $a, b \in \mathbb{Z}$.
If $a \mid b$, then $a^{2} \mid b^{2}$.

Proof. Suppose $a \mid b$.
Then $b=a k$ for some integer k.
Thus, $b^{2}=(a k)^{2}=a^{2} k^{2}$.
Since $k^{2} \in \mathbb{Z}$, then $a^{2} \mid b^{2}$.
Exercise 33. Suppose $x, y \in \mathbb{Z}$. If $5 \not \backslash x y$, then $5 \not \backslash x$ and $5 \not \backslash y$.
Solution. We use proof by contrapositive since we have alot of negative statements and direct proof leads us nowhere.

Proof. Suppose it is not true that $5 \not x x$ and $5 \chi y$.
Then $5 \mid x$ or $5 \mid y$.
There are two cases to consider.
Case 1: Suppose $5 \mid x$.
Then $x=5 a$ for some $a \in \mathbb{Z}$.
Multiply both sides by y to get $x y=5 a y$.
Thus $x y=5(a y)$, and this means $5 \mid x y$.
Case 2: Suppose $5 \mid y$.
Then $y=5 a$ for some $a \in \mathbb{Z}$.
Multiply both sides by x to get $x y=5 a x$.
Thus $x y=5(a x)$, and this means $5 \mid x y$.
Both of these cases show that $5 \mid x y$, so it is not true that $5 \chi x y$.
Exercise 34. Let $n \in \mathbb{Z}$.
If $5 \mid 2 n$, then $5 \mid n$.
Proof. Suppose 5| $2 n$.
Then $2 n=5 a$ for some integer a.
Observe that

$$
\begin{aligned}
n & =5 n-4 n \\
& =5 n-2(2 n) \\
& =5 n-2(5 a) \\
& =5(n-2 a) .
\end{aligned}
$$

Since $n-2 a$ is an integer, then $5 \mid n$.
Proof. Suppose $5 \mid 2 n$.
Then $2 n=5 a$ for some integer a.
Thus, $5 a$ is a multiple of 2 , so $5 a$ is even.
Since 5 is odd and $5 a$ is even, then a must be even.
Hence, $a=2 b$ for some integer b.
Thus, $2 n=5(2 b)$, so $n=5 b$.
Therefore, $5 \mid n$.
Exercise 35. Let $n \in \mathbb{Z}$.
If $7 \mid 4 n$, then $7 \mid n$.

Proof. Suppose $7 \mid 4 n$.
Then $4 n=7 a$ for some integer a.
Observe that

$$
\begin{aligned}
n & =8 n-7 n \\
& =2(4 n)-7 n \\
& =2(7 a)-7 n \\
& =7(2 a-n)
\end{aligned}
$$

Since $2 a-n$ is an integer, then $7 \mid n$.
Proof. Suppose $7 \mid 4 n$.
Then $4 n=7 a$ for some integer a.
Thus, $2(2 n)=7 a$, so $7 a$ is even.
Since 7 is odd and $7 a$ is even, then a must be even.
Hence, $a=2 b$ for some integer b.
Thus, $4 n=7(2 b)$, so $2 n=7 b$.
Hence, $7 b$ is even.
Since 7 is odd and $7 b$ is even, then b must be even.
Hence, $b=2 c$ for some integer c.
Thus, $2 n=7(2 c)$, so $n=7 c$.
Therefore, $7 \mid n$.
Exercise 36. Let $a, b \in \mathbb{Z}$.
If $a \mid b$, then $(-a) \mid b$ and $a \mid(-b)$ and $(-a) \mid(-b)$.
Proof. Suppose $a \mid b$.
Then $b=a n$ for some integer n.
Thus, $b=a n=(-a)(-n)$ and $-b=-a n=a(-n)$.
Since $b=(-a)(-n)$ and $-n \in \mathbb{Z}$, then $(-a) \mid b$.
Since $-b=a(-n)$ and $-n \in \mathbb{Z}$, then $a \mid(-b)$.
Since $-b=-a n$ and $n \in \mathbb{Z}$, then $(-a) \mid(-b)$.
Exercise 37. Let $a, b, c \in \mathbb{Z}$.
If $a \mid b$ and $a \mid c$, then $a^{2} \mid b c$.
Proof. Suppose $a \mid b$ and $a \mid c$.
Then $b=a m$ and $c=a n$ for some integers m and n.
Thus, $b c=(a m)(a n)=a(m a) n=a(a m) n=(a a)(m n)=a^{2}(m n)$.
Since $m, n \in \mathbb{Z}$, then $m n \in \mathbb{Z}$, so $a^{2} \mid b c$.
Exercise 38. Let $a, b, c \in \mathbb{Z}$.
Disprove: If $a \mid(b+c)$, then either $a \mid b$ or $a \mid c$.
Proof. Let $a=3$ and $b=4$ and $c=5$.
Since $3 \mid 9$, then $3 \mid(4+5)$, but $3 \nmid 4$ and 3×5.
Exercise 39. If $n \in \mathbb{N}$, then $1+(-1)^{n}(2 n-1)$ is a multiple of 4 .

Solution. We can make a table of values by plugging in various values to determine if the expression is really a multiple of 4 .

n	$1+(-1)^{n}(2 n-1)$
1	0
2	4
3	-4
4	8
5	-8
6	12
7	-12

We see that for even n, the expression $1+(-1)^{n}(2 n-1)=1+(1)(2 n-1)=2 n$.
For odd $n, 1+(-1)^{n}(2 n-1)=1-(1)(2 n-1)=1-2 n+1=2-2 n$.
Proof. Suppose $n \in \mathbb{N}$.
Then n is either even or odd. We consider these two cases separately.
Case 1. Suppose n is even.
Then $n=2 k$ for some $k \in \mathbb{Z}$, and $(-1)^{n}=1$.
Thus $1+(-1)^{n}(2 n-1)=1+(1)(2 \cdot 2 k-1)=4 k$, which is a multiple of 4 .
Case 2. Suppose n is odd.
Then $n=2 k+1$ for some $k \in \mathbb{Z}$, and $(-1)^{n}=-1$.
Thus $1+(-1)^{n}(2 n-1)=1+(-1)(2(2 k+1)-1)=1-(4 k+1)=-4 k$, which is a multiple of 4 .

These two cases show that $1+(-1)^{n}(2 n-1)$ is always a multiple of 4 .
Exercise 40. Every multiple of 4 has form $1+(-1)^{n}(2 n-1)$ for some $n \in \mathbb{N}$.
Proof. In conditional form, the proposition is as follows:
If k is a multiple of 4 , then there is an $n \in \mathbb{N}$ for which $1+(-1)^{n}(2 n-1)=k$.
What follows is a proof of this conditional statement.
Suppose k is a multiple of 4 . Then $k=4 a$ for some integer a.
We must produce an $n \in \mathbb{N}$ for which $1+(-1)^{n}(2 n-1)=k$.
We consider three cases, depending on whether a is zero, positive, or negative.

Case 1. Suppose $a=0$.
Let $n=1$. Then $1+(-1)^{n}(2 n-1)=1+(-1)(2 \cdot 1-1)=0=4 \cdot 0=4 a=k$.
Case 2. Suppose $a>0$.
Let $n=2 a$, which is an element of \mathbb{N} because a is positive, making n positive. Also n is even, so $(-1)^{n}=1$. Thus $1+(-1)^{n}(2 n-1)=1+(1)(2 \cdot 2 a-1)=$ $4 a=k$.

Case 3. Suppose $a<0$.
Let $n=1-2 a$, which is an element of \mathbb{N} because a is negative, making $1-2 a$ positive.

Also n is odd, so $(-1)^{n}=-1$. Thus $1+(-1)^{n}(2 n-1)=1+(-1)(2(1-$ $2 a)-1)=1-(1-4 a)=4 a=k$.

These three cases show that no matter whether a multiple $k=4 a$ is zero, positive, or negative, it always equals $1+(-1)^{n}(2 n-1)$ for some natural number n.

Exercise 41. If $n \in \mathbb{N}$, then $n^{2}=2\binom{n}{2}+\binom{n}{1}$.
Solution. By definition of binomial coefficient we know $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
In particular, for $n>1,\binom{n}{1}=n$ and $\binom{n}{2}=\frac{n(n-1)}{2}$.
Proof. Suppose n is an integer.
We consider two cases.
Case 1: Suppose $n=1$.
Then $2\binom{1}{2}+\binom{1}{1}=2 \cdot 0+1=1=1^{2}$.
Case 2: Suppose $n>1$.
Then $2\binom{n}{2}+\binom{n}{1}=2 \frac{n(n-1)}{2}+n=n(n-1)+n=n^{2}$.
Both cases show $n^{2}=2\binom{n}{2}+\binom{n}{1}$.
Exercise 42. Let $a \in \mathbb{Z}$.
Then either a or $a+2$ or $a+4$ is divisible by 3 .
Proof. By the division algorithm, there exist unique integers q and r such that $a=3 q+r$ with $0 \leq r<3$.

Thus, either $a=3 q$ or $a=3 q+1$ or $a=3 q+2$.
We consider these cases separately.
Case 1: Suppose $a=3 q$.
Since $a=3 q$ and $q \in \mathbb{Z}$, then $3 \mid a$, so a is divisible by 3 .
Case 2: Suppose $a=3 q+1$.
Then $a+2=(3 q+1)+2=3 q+3=3(q+1)$.
Since $a+2=3(q+1)$ and $q+1 \in \mathbb{Z}$, then $3 \mid(a+2)$, so $a+2$ is divisible by
3.

Case 3: Suppose $a=3 q+2$.
Then $a+4=(3 q+2)+4=3 q+6=3(q+2)$.
Since $a+4=3(q+2)$ and $q+2 \in \mathbb{Z}$, then $3 \mid(a+4)$, so $a+4$ is divisible by
3.

Exercise 43. A product of 3 consecutive integers is divisible by 3

Let $a \in \mathbb{Z}$.
Then $3 \mid a(a+1)(a+2)$.
Proof. By the division algorithm, either $a=3 k$ or $a=3 k+1$ or $a=3 k+2$ for some integer k.

We consider these cases separately.
Case 1: Suppose $a=3 k$.
Then $3 \mid a$, so 3 divides any multiple of a.
Hence, $3 \mid a(a+1)(a+2)$.
Case 2: Suppose $a=3 k+1$.
Then $a+2=(3 k+1)+2=3 k+3=3(k+1)$, so $3 \mid(a+2)$.

Hence, 3 divides any multiple of $a+2$, so $3 \mid a(a+1)(a+2)$.
Case 3: Suppose $a=3 k+2$.
Then $a+1=(3 k+2)+1=3 k+3=3(k+1)$, so $3 \mid(a+1)$.
Hence, 3 divides any multiple of $a+1$, so $3 \mid a(a+1)(a+2)$.
Therefore, in all cases, $3 \mid a(a+1)(a+2)$.
Exercise 44. Let $a \in \mathbb{Z}$.
Then $4 \times\left(a^{2}+2\right)$.
Proof. By the division algorithm, there exist unique integers q and r such that $a=4 q+r$ with $0 \leq r<4$.

Thus, either $a=4 q$ or $a=4 q+1$ or $a=4 q+2$ or $a=4 q+3$.
We consider these cases separately.
Case 1: Suppose $a=4 q$.
Then $a^{2}+2=(4 q)^{2}+2=4^{2} q^{2}+2=4\left(4 q^{2}\right)+2$.
Let $k=4 q^{2}$.
Then $k \in \mathbb{Z}$ and $a^{2}+2=4 k+2$.
Case 2: Suppose $a=4 q+1$.
Then $a^{2}+2=(4 q+1)^{2}+2=\left(16 q^{2}+8 q+1\right)+2=16 q^{2}+8 q+3=4\left(4 q^{2}+2 q\right)+3$.
Let $k=4 q^{2}+2 q$.
Then $k \in \mathbb{Z}$ and $a^{2}+2=4 k+3$.
Case 3: Suppose $a=4 q+2$.
Then $a^{2}+2=(4 q+2)^{2}+2=\left(16 q^{2}+16 q+4\right)+2=4\left(4 q^{2}+4 q+1\right)+2$.
Let $k=4 q^{2}+4 q+1$.
Then $k \in \mathbb{Z}$ and $a^{2}+2=4 k+2$.
Case 4: Suppose $a=4 q+3$.
Then $a^{2}+2=(4 q+3)^{2}+2=\left(16 q^{2}+24 q+9\right)+2=16 q^{2}+24 q+11=$ $16 q^{2}+24 q+(4 * 2+3)=4\left(4 q^{2}+6 q+2\right)+3$.

Let $k=4 q^{2}+6 q+2$.
Then $k \in \mathbb{Z}$ and $a^{2}+2=4 k+3$.
Therefore, in all cases, either $a^{2}+2=4 k+2$ or $a^{2}+2=4 k+3$ for some integer k.

Hence, 4 cannot divide $a^{2}+2$.
Exercise 45. Let $n \in \mathbb{Z}$.
If $2 \mid n$ and $3 \mid n$, then $6 \mid n$.
Proof. Suppose $2 \mid n$ and $3 \mid n$.
Since $2 \mid n$, then $n=2 a$ for some integer a.
Since $3 \mid n$, then $n=3 b$ for some integer b.

Observe that

$$
\begin{aligned}
n & =3 n-2 n \\
& =3(2 a)-2(3 b) \\
& =6 a-6 b \\
& =6(a-b) .
\end{aligned}
$$

Since $a-b$ is an integer, then $6 \mid n$.
Proof. Suppose $2 \mid n$ and $3 \mid n$.
Since $2 \mid n$, then $3 * 2 \mid 3 n$, so $6 \mid 3 n$.
Since $3 \mid n$, then $2 * 3 \mid 2 n$, so $6 \mid 2 n$.
Thus, 6 is a common divisor of $2 n$ and $3 n$, so $6 \mid \operatorname{gcd}(2 n, 3 n)$.
Hence, $6 \mid n * \operatorname{gcd}(2,3)$, so $6 \mid n * 1$.
Therefore, $6 \mid n$.
Exercise 46. Let n be an integer.
If $3 \mid n$ and $5 \mid n$, then $15 \mid n$.
Proof. Suppose $3 \mid n$ and $5 \mid n$.
Since $3 \mid n$, then $n=3 a$ for some integer a.
Since $5 \mid n$, then $n=5 b$ for some integer b.
Observe that

$$
\begin{aligned}
n & =6 n-5 n \\
& =6(5 b)-5(3 a) \\
& =30 b-15 a \\
& =15(2 b-a) .
\end{aligned}
$$

Since $2 b-a$ is an integer, then $15 \mid n$.
Exercise 47. Let $n \in \mathbb{Z}$.
Then $14 \mid n$ if and only if $7 \mid n$ and $2 \mid n$.
Proof. We first prove: if $14 \mid n$ then $7 \mid n$ and $2 \mid n$.
Suppose $14 \mid n$.
Then $n=14 k$ for some $k \in \mathbb{Z}$.
Since $n=7(2 k)$ and $2 k \in \mathbb{Z}$, then $7 \mid n$.
Since $n=2(7 k)$ and $7 k \in \mathbb{Z}$, then $2 \mid n$.
Therefore, $7 \mid n$ and $2 \mid n$.
Conversely, we prove: if $7 \mid n$ and $2 \mid n$, then $14 \mid n$.
Suppose $7 \mid n$ and $2 \mid n$.
Since $7 \mid n$, then $n=7 a$ for some integer a.
Since $2 \mid n$, then $n=2 b$ for some integer b.

Observe that

$$
\begin{aligned}
n & =7 n-6 n \\
& =7(2 b)-6(7 a) \\
& =14 b-42 a \\
& =14(b-3 a)
\end{aligned}
$$

Since $b-3 a$ is an integer, then $14 \mid n$.
Exercise 48. Let a, b, d be integers.
If $d \mid(d a+b)$, then $d \mid b$.
Proof. Suppose $d \mid(d a+b)$.
Then $d a+b=d n$ for some integer n.
Hence, $b=d n-d a=d(n-a)$.
Since $n-a$ is an integer, then this implies $d \mid b$.
Exercise 49. Let a, b, d be integers.
If $d \mid(a+b)$ and $d \mid a$, then $d \mid b$.
Proof. Suppose $d \mid(a+b)$ and $d \mid a$.
Then $a+b=d k$ and $a=d m$ for some integers k and m.
Thus, $b=d k-a=d k-d m=d(k-m)$.
Since $k-m$ is an integer, then this implies $d \mid b$.
Exercise 50. Let $x, y \in \mathbb{Z}$.
If $x \mid y$ and y is odd, then x is odd.
Proof. Suppose $x \mid y$ and y is odd.
Since $x \mid y$, then $y=x k$ for some integer k.
Since y is odd, then this implies $x k$ is odd.
Hence, x must be odd.
Exercise 51. If a is an integer and $a^{2} \mid a$, then $a \in\{-1,0,1\}$.
Proof. Suppose a is an integer and $a^{2} \mid a$.
Then $a=a^{2} k$ for some integer k.
Thus, $0=a-a^{2} k=a(1-a k)$, so either a is zero or a is not zero.
We consider these cases separately.
Case 1: Suppose a is zero.
Then $a=0$, so $a \in\{0\}$.
Case 2: Suppose a is not zero.
Then $1-a k=0$, so $1=a k$.
Since a and k are both integers, then $k= \pm 1$.
If $k=1$, then $1=a(1)=a$.
If $k=-1$, then $-1=-a k=-a(-1)=a$.
Thus, either $a=1$ or $a=-1$, so $a \in\{1,-1\}$.

Therefore, in all cases, either $a \in\{0\}$ or $a \in\{1,-1\}$, so $a \in\{0,1,-1\}=$ $\{-1,0,1\}$.

Exercise 52. Let $a, b, d \in \mathbb{Z}$.
If $d \mid a$ or $d \mid b$, then $d \mid a b$.
Proof. Suppose $d \mid a$ or $d \mid b$.
We consider each case separately.
Case 1: Suppose $d \mid a$.
Then $a=d k$ for some $k \in \mathbb{Z}$.
Thus, $a b=(d k) b=d(k b)$, so $d \mid a b$.
Case 2: Suppose $d \mid b$.
Then $b=d m$ for some $m \in \mathbb{Z}$.
Thus, $a b=a(d m)=(d m) a=d(m a)$, so $d \mid a b$.
Both of these cases show that $d \mid a b$.
Exercise 53. Let $a, b, d \in \mathbb{Z}$.
Disprove: If $d \mid a b$, then $d \mid a$ or $d \mid b$.
Proof. Here is a counter example.
Let $d=6$ and $a=8$ and $b=9$.
Observe that $6 \mid(8 \cdot 9)$, but $6 \nless 8$ and $6 \nmid 9$.
Exercise 54. Let $a, b, m \in \mathbb{Z}$.
If $a b \mid m$, then $a \mid m$ and $b \mid m$.
Proof. Suppose $a b \mid m$.
Then $m=a b k$ for some integer k.
Since $m=a b k=a(b k)$ and $b k \in \mathbb{Z}$, then $a \mid m$.
Since $m=a b k=b a k=b(a k)$ and $a k \in \mathbb{Z}$, then $b \mid m$.
Therefore, $a \mid m$ and $b \mid m$.
Exercise 55. Let $a, b, m \in \mathbb{Z}$.
Disprove: if $a \mid m$ and $b \mid m$, then $a b \mid m$.
Proof. Here is a counter example.
Let $a=4$ and $b=10$ and $m=60$.
Then $4 \mid 60$ and $10 \mid 60$, but, $40 \backslash 60$.
Exercise 56. Let $m, n \in \mathbb{Z}^{+}$such that $n>1$.
If $n \mid m$, then $n \nmid m+1$.
Proof. Suppose $n \mid m$.
Then there exists an integer a such that $m=n a$.
Suppose for the sake of contradiction that $n \mid(m+1)$.
Then there exists an integer b such that $m+1=n b$.
Hence, $n a+1=n b$, so $1=n b-n a=n(b-a)$.
Since $b-a$ is an integer, then this implies $n \mid 1$.
Hence, either $n=1$ or $n=-1$.

Thus, n is not greater than 1 .
Therefore, we have $n>1$ and $n \ngtr 1$, a contradiction.
Consequently, n cannot divide $m+1$, so $n \nmid(m+1)$, as desired.
Exercise 57. If n is an integer, then $n^{2}+2$ is not divisible by 4 .
Proof. Let n be an arbitrary integer.
We prove by contradiction.
Suppose $n^{2}+2$ is divisible by 4 .
Then there is an integer k such that $n^{2}+2=4 k$.
Either n is even or not.
We consider these cases separately.
Case 1: Suppose n is even.
Then $n=2 m$ for some integer m.
Thus, $4 k=n^{2}+2=(2 m)^{2}+2=4 m^{2}+2=2\left(2 m^{2}+1\right)$.
Hence, $2 k=2 m^{2}+1$.
But, this equation implies the even integer $2 k$ equals the odd integer $2 m^{2}+1$, a contradiction.

Case 2: Suppose n is odd.
Then n^{2} is odd, so $n^{2}+2$ is odd.
Since $2(2 k)=4 k=n^{2}+2$ and $2 k$ is an integer, then $n^{2}+2$ is even.
But, this contradicts the fact that $n^{2}+2$ is odd.
Exercise 58. For any integer $n \geq 0$, it follows that $24 \mid\left(5^{2 n}-1\right)$.
Solution. The statement to prove is:
$(\forall n \in \mathbb{Z}, n \geq 0)\left(24 \mid 5^{2 n}-1\right)$.
Define predicate $p(n): 24 \mid 5^{2 n}-1$ over $\mathbb{N} \cup\{0\}$.
Observe that $24 \mid 5^{2 n}-1$ is equivalent to $(25-1) \mid 25^{n}-1$.
Since we know $x-1$ divides $x^{n}-1$, for every $x \in \mathbb{Z}$ and every $n \in \mathbb{N}$, then we know, in particular, $24 \mid 25^{n}-1$ for every $n \in \mathbb{N}$.

Thus, we need only prove $24 \mid 25^{n}-1$ when $n=0$.
But, $25^{0}-1=0$ and $24 \mid 0$.
Hence, $p(0)$ is true.
Proof. We prove by induction(weak).

Basis:

If $n=0$ then the statement is $24 \mid\left(5^{2 \cdot 0}-1\right)$.
This simplifies to $24 \mid 0$, which is true.
If $n=1$ then the statement is $24 \mid\left(5^{2 \cdot 1}-1\right)$.
This simplifies to $24 \mid 24$, which is true.

Induction:

We must prove $24 \mid\left(5^{2 k}-1\right)$ implies $24 \mid\left(5^{2(k+1)}-1\right)$.
Suppose $24 \mid\left(5^{2 k}-1\right)$ for any integer $k \geq 1$.
Then $5^{2 k}-1=24 a$ for some integer a, by definition of divisibility.
Thus $5^{2 k}=24 a+1$.

Observe the following equalities:

$$
\begin{aligned}
5^{2(k+1)}-1 & =5^{2 k+2}-1 \\
& =5^{2} 5^{2 k}-1 \\
& =25(24 a+1)-1 \\
& =25 \cdot 24 a+25-1 \\
& =24(25 a+1)
\end{aligned}
$$

This shows that $5^{2(k+1)}-1=24(25 a+1)$, which means $24 \mid 5^{2(k+1)}-1$.
It follows by induction that $24 \mid\left(5^{2 n}-1\right)$ for any integer $n \geq 0$.
Exercise 59. Let $n \in \mathbb{Z}$.
Then $5 \mid n^{5}-n$.
Solution. Note that the statement $5 \mid n^{5}-n$ is equivalent to the statement $n^{5} \equiv n(\bmod 5)$.

We just showed that any integer of the form $n^{5}-n$ is even. We now must show that such an integer is divisible by 5 .

We factor $n^{5}-n=n\left(n^{4}-1\right)=n\left(n^{2}-1\right)\left(n^{2}+1\right)=n(n-1)(n+1)\left(n^{2}+1\right)=$ $(n-1) n(n+1)\left(n^{2}+1\right)$. Thus $n^{5}-n$ is a product of 3 consecutive integers and another factor. If $n=0$, then $5 \mid 0^{5}-0$ since $0=5 \cdot 0$.

Suppose n is a natural number.
We consider n divided by 5 .
By the Division Algorithm, we know that $n=5 q+r$, where $0 \leq r<5$.
Thus we have the set of congruence classes modulo 5 .
For example, if $r=0$, then $n=5 q$.
If $r=1$, then $n=5 q+1$.
If $r=2$, then $n=5 q+2$.
If $r=3$, then $n=5 q+3$.
If $r=4$, then $n=5 q+4$.
We observe the following partition of natural numbers under congruence modulo 5 for any integer $q \geq 0$:

If $n \in\{2,7,12,17,22,27, \ldots\}=\{5 q+2\}$, then $5 \mid n^{2}+1$.
This set is really the set of all natural numbers which are congruent to 2 $(\bmod 5)$.

Thus if $n \in[2]_{5}$, then $5 \mid n^{2}+1$. This is because if n is an arbitrary element of this set, then $n=5 q+2$, so $n^{2}+1=(5 q+2)^{2}+1=25 q^{2}+20 q+5=5\left(5 q^{2}+4 q+1\right)$.

If $n \in\{3,8,13,18,23,28, \ldots\}=\{5 q+3\}$, then $5 \mid n^{2}+1$.
This set is really the set of all natural numbers which are congruent to 3 $(\bmod 5)$.

Thus if $n \in[3]_{5}$, then $5 \mid n^{2}+1$.This is because if n is an arbitrary element of this set, then $n=5 q+3$, so $n^{2}+1=(5 q+3)^{2}+1=25 q^{2}+30 q+10=$ $5\left(5 q^{2}+6 q+2\right)$.

If $n \in\{4,9,14,19,24,29,34, \ldots\}=\{5 q+4\}$, then $5 \mid n+1$.
This set is really the set of all natural numbers which are congruent to 4 $(\bmod 5)$.

Thus if $n \in[4]_{5}$, then $5 \mid n+1$. This is because if n is an arbitrary element of this set, then $n=5 q+4$, so $n+1=(5 q+4)+1=5 q+5=5(q+1)$.

If $n \in\{5,10,15,20,25,30, \ldots\}=\{5 q\}$, then $5 \mid n$.
This set is really the set of all natural numbers which are multiples of 5 .
Thus if $n \in[0]_{5}$, then $5 \mid n$. This is because if n is an arbitrary element of this set, then $n=5 q$.

If $n \in\{1,6,11,16,21,26,31,36, \ldots\}=\{5 q+1\}$, then $5 \mid n-1$.
This set is really the set of all natural numbers which are congruent to 1 $(\bmod 5)$.

Thus if $n \in[1]_{5}$, then $5 \mid n-1$.This is because if n is an arbitrary element of this set, then $n=5 q+1$, so $n-1=(5 q+1)-1=5 q$.

Thus, regardless of what value n is, one of the factors $n, n-1, n+1$, or $n^{2}+1$ is always divisible by 5 .

Hence, $n^{5}-n$ is divisible by 5 .
Now, we can also prove this by induction(weak form). The statement to prove is: for all non-negative integers $n, 5 \mid n^{5}-n$.

Thus the statement is $S_{n}: 5 \mid n^{5}-n$.
The statement S_{k} is $5 \mid k^{5}-k$.
The statement S_{k+1} is $5 \mid(k+1)^{5}-(k+1)$.
Proof. Let $p=n^{5}-n$
Then $p=n\left(n^{4}-1\right)=n\left(n^{2}-1\right)\left(n^{2}+1\right)=n(n-1)(n+1)\left(n^{2}+1\right)$.
We must prove $5 \mid p$.
By the division algorithm either $n=5 k$ or $n=5 k+1$ or $n=5 k+2$ or $n=5 k+3$ or $n=5 k+4$ for some integer k.

We consider each case separately.
Case 1: Suppose $n=5 k$.
Then $5 \mid n$, so 5 divides any multiple of n.
Hence, $5 \mid p$.
Case 2: Suppose $n=5 k+1$.
Since $n-1=5 k$, then $5 \mid(n-1)$.
Hence, 5 divides any multiple of $n-1$, so $5 \mid p$.
Case 3: Suppose $n=5 k+2$.
Since $n^{2}+1=(5 k+2)^{2}+1=25 k^{2}+20 k+4+1=25 k^{2}+20 k+5=$ $5\left(5 k^{2}+4 k+1\right)$, then $5 \mid\left(n^{2}+1\right)$.

Hence, 5 divides any multiple of $n^{2}+1$, so $5 \mid p$.
Case 4: Suppose $n=5 k+3$.
Since $n^{2}+1=(5 k+3)^{2}+1=25 k^{2}+30 k+9+1=25 k^{2}+30 k+10=$ $5\left(5 k^{2}+6 k+2\right)$, then $5 \mid\left(n^{2}+1\right)$.

Hence, 5 divides any multiple of $n^{2}+1$, so $5 \mid p$.
Case 5: Suppose $n=5 k+4$.
Since $n+1=(5 k+4)+1=5 k+5=5(k+1)$, then $5 \mid(n+1)$.
Hence, 5 divides any multiple of $n+1$, so $5 \mid p$.
Proof. The statement is $S_{n}: 5 \mid n^{5}-n$.
We prove by induction.

Basis:

If $n=0$, then the statement is $5 \mid 0^{5}-0$, or $5 \mid 0$, which is obviously true. If $n=1$, then the statement is $5 \mid 1^{5}-1$, or $5 \mid 0$, which is obviously true.

Induction:

We must prove $S_{k} \rightarrow S_{k+1}$ for $k \geq 1$.
This means we must prove if $5 \mid\left(k^{5}-k\right)$, then $5 \mid(k+1)^{5}-(k+1)$ for $k \geq 1$.
Suppose $5 \mid\left(k^{5}-k\right)$ for $k \geq 1$.
Then $k^{5}-k=5 a$ for some $a \in \mathbb{Z}$, by definition of divisibility.
Observe the following equalities:

$$
\begin{aligned}
(k+1)^{5}-(k+1) & =\left(k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1\right)-k-1 \\
& =\left(k^{5}-k\right)+\left(5 k^{4}+10 k^{3}+10 k^{2}+5 k\right) \\
& =5 a+5\left(k^{4}+2 k^{3}+2 k^{2}+k\right) \\
& =5\left(a+k^{4}+2 k^{3}+2 k^{2}+k\right)
\end{aligned}
$$

Thus, $5 \mid(k+1)^{5}-(k+1)$.
It follows by induction that $5 \mid\left(n^{5}-n\right)$ for all non-negative integers.
Exercise 60. The sum of the cubes of three consecutive natural numbers is divisible by 9 .

Proof. We must prove $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n \in \mathbb{N}$.
Let $p(n)$ be the predicate $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ defined over \mathbb{N}.
We prove $p(n)$ is true for all $n \in \mathbb{N}$ by induction on n.

Basis:

Since $1^{3}+2^{3}+3^{3}=36$ and $9 \mid 36$, then $p(1)$ is true.

Induction:

Let $k \in \mathbb{N}$ such that $p(k)$ is true.
Then 9 divides $k^{3}+(k+1)^{3}+(k+2)^{3}$.
Since $(k+3)^{3}-k^{3}=\left(k^{3}+9 k^{2}+27 k+27\right)-k^{3}=9 k^{2}+27 k+27=9\left(k^{2}+3 k+3\right)$
and $k^{2}+3 k+3$ is an integer, then 9 divides $(k+3)^{3}-k^{3}$.
Since 9 divides $k^{3}+(k+1)^{3}+(k+2)^{3}$ and 9 divides $(k+3)^{3}-k^{3}$, then 9 divides the sum $k^{3}+(k+1)^{3}+(k+2)^{3}+(k+3)^{3}-k^{3}=(k+1)^{3}+(k+2)^{3}+(k+3)^{3}$.

Hence, $p(k+1)$ is true, so $p(k)$ implies $p(k+1)$ for any $k \geq 1$.
It follows by induction that $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n \in \mathbb{N}$.
Exercise 61. For every $n \in \mathbb{Z}^{+}, 6 \mid n(n+1)(2 n+1)$.
Proof. Let $n \in \mathbb{Z}^{+}$.
By the division algorithm, there exist unique integers q, r such that $n=6 q+r$ with $0 \leq r<6$.

Thus, either $n=6 q$ or $n=6 q+1$ or $n=6 q+2$ or $n=6 q+3$ or $n=6 q+4$ or $n=6 q+5$.

We consider each case separately.
Case 1: Suppose $n=6 q$.
Then $6 \mid n$, so 6 divides any multiple of n.
Thus, $6 \mid n(n+1)(2 n+1)$.

Case 2: Suppose $n=6 q+1$.
Since $n+1=(6 q+1)+1=6 q+2=2(3 q+1)$, then $2 \mid(n+1)$.
Since $2 n+1=2(6 q+1)+1=12 q+2+1=12 q+3=3(4 q+1)$, then $3 \mid(2 n+1)$.

Since $2 \mid(n+1)$ and $3 \mid(2 n+1)$, then $(2 * 3) \mid(n+1)(2 n+1)$, so $6 \mid(n+1)(2 n+1)$.
Hence, 6 divides any multiple of $(n+1)(2 n+1)$, so $6 \mid n(n+1)(2 n+1)$.
Case 3: Suppose $n=6 q+2$.
Since $n=2(3 q+1)$, then $2 \mid n$.
Since $n+1=(6 q+2)+1=6 q+3=3(2 q+1)$, then $3 \mid(n+1)$.
Since $2 \mid n$ and $3 \mid(n+1)$, then $(2 * 3) \mid n(n+1)$, so $6 \mid n(n+1)$.
Hence, 6 divides any multiple of $n(n+1)$, so $6 \mid n(n+1)(2 n+1)$.
Case 4: Suppose $n=6 q+3$.
Since $n=3(2 q+1)$, then $3 \mid n$.
Since $n+1=(6 q+3)+1=6 q+4=2(3 q+2)$, then $2 \mid(n+1)$.
Since $3 \mid n$ and $2 \mid(n+1)$, then $(3 * 2) \mid n(n+1)$, so $6 \mid n(n+1)$.
Hence, 6 divides any multiple of $n(n+1)$, so $6 \mid n(n+1)(2 n+1)$.
Case 5: Suppose $n=6 q+4$.
Since $n=2(3 q+2)$, then $2 \mid n$.
Since $2 n+1=2(6 q+4)+1=12 q+9=3(4 q+3)$, then $3 \mid(2 n+1)$.
Since $2 \mid n$ and $3 \mid(2 n+1)$, then $6 \mid n(2 n+1)$.
Hence, 6 divides any multiple of $n(2 n+1)$, so $6 \mid n(n+1)(2 n+1)$.
Case 6: Suppose $n=6 q+5$.
Since $n+1=(6 q+5)+1=6 q+6=6(q+1)$, then $6 \mid(n+1)$.
Hence, 6 divides any multiple of $n+1$, so $6 \mid n(n+1)(2 n+1)$.
Therefore, in all cases, $6 \mid n(n+1)(2 n+1)$.
Proof. Let S be the truth set of $p(n): 6 \mid n(n+1)(2 n+1)$.
To prove $S=\mathbb{Z}^{+}$, we use induction.

Basis:

Since $1(1+1)(2 * 1+1)=6$ and $6 \mid 6$, then $p(1)$ is true.
Hence, $1 \in S$.

Induction:

Suppose $k \in S$.
To prove $k+1 \in S$, we must prove $6 \mid(k+1)(k+2)(2 k+3)$.
Since $k \in S$, then $6 \mid k(k+1)(2 k+1)$.
Observe that $(k+1)(k+2)(2 k+3)=k(k+1)(2 k+1)+6(k+1)^{2}$.
Since $6 \mid 6$, then 6 divides any multiple of 6 .
Hence, $6 \mid 6(k+1)^{2}$.
Since 6 divides $k(k+1)(2 k+1)$ and 6 divides $6(k+1)^{2}$, then 6 divides the $\operatorname{sum} k(k+1)(2 k+1)+6(k+1)^{2}$.

Thus, 6 divides $(k+1)(k+2)(2 k+3)$, as desired.
Exercise 62. The product of $\mathbf{3}$ consecutive integers is a multiple of 6. $\forall n \in \mathbb{Z}, 6 \mid n(n+1)(n+2)$.

Proof. Let $n \in \mathbb{Z}$.
Let $p=n(n+1)(n+2)$.
We must prove $6 \mid p$.
By the division algorithm, either $n=6 k$ or $n=6 k+1$ or $n=6 k+2$ or $n=6 k+3$ or $n=6 k+4$ or $n=6 k+5$ for some integer k.

We consider these cases separately.
Case 1: Suppose $n=6 k$.
Then $6 \mid n$, so 6 divides any multiple of n.
Therefore, $6 \mid p$.
Case 2: Suppose $n=6 k+1$.
Since $n+1=(6 k+1)+1=6 k+2=2(3 k+1)$, then $2 \mid(n+1)$.
Since $n+2=(6 k+1)+2=6 k+3=3(2 k+1)$, then $3 \mid(n+2)$.
Since $2 \mid(n+1)$ and $3 \mid(n+2)$, then $6 \mid(n+1)(n+2)$.
Hence, 6 divides any multiple of $(n+1)(n+2)$, so $6 \mid p$.
Case 3: Suppose $n=6 k+2$.
Since $n=2(3 k+1)$, then $2 \mid n$.
Since $n+1=(6 k+2)+1=6 k+3=3(2 k+1)$, then $3 \mid(n+1)$.
Since $2 \mid n$ and $3 \mid(n+1)$, then $6 \mid n(n+1)$.
Hence, 6 divides any multiple of $n(n+1)$, so $6 \mid p$.
Case 4: Suppose $n=6 k+3$.
Since $n=3(2 k+1)$, then $3 \mid n$.
Since $n+1=(6 k+3)+1=6 k+4=2(3 k+2)$, then $2 \mid(n+1)$.
Since $3 \mid n$ and $2 \mid(n+1)$, then $6 \mid n(n+1)$.
Hence, 6 divides any multiple of $n(n+1)$, so $6 \mid p$.
Case 5: Suppose $n=6 k+4$.
Since $n+2=(6 k+4)+2=6 k+6=6(k+1)$, then $6 \mid(n+2)$.
Hence, 6 divides any multiple of $n+2$, so $6 \mid p$.
Case 6: Suppose $n=6 k+5$.
Since $n+1=(6 k+5)+1=6 k+6=6(k+1)$, then $6 \mid(n+1)$.
Hence, 6 divides any multiple of $n+1$, so $6 \mid p$.
In all cases, $6 \mid p$.
Proof. We prove by induction(strong).

Basis:

If $n=1$ then the statement S_{1} is $6 \mid 1 * 2 * 3$. This simplifies to $6 \mid 6$, which is true because $6=6^{*} 1$.

If $n=2$ then the statement S_{2} is $6 \mid 2 * 3 * 4$. This simplifies to $6 \mid 24$, which is true because $24=6{ }^{*} 4$.

Induction:

We must prove $S_{1} \wedge S_{2} \wedge \ldots \wedge S_{k} \Rightarrow S_{k+1}$ for $k \geq 2$.
This implies we must prove $S_{k-1} \wedge S_{k} \Rightarrow S_{k+1}$ for $k \geq 2$.
For simplicity, let $m=k-1$.
Then $S_{k-1} \wedge S_{k} \Rightarrow S_{k+1}$ for $k \geq 2$ becomes
$S_{m} \wedge S_{m+1} \Rightarrow S_{m+2}$ for $m \geq 1$.
We prove the latter statement using direct proof.

Suppose $S_{m} \wedge S_{m+1}$ for $m \geq 1$.
We must prove that these assumptions together imply S_{m+2}.
Since $S_{m} \wedge S_{m+1}$ is true by assumption, then S_{m} is certainly true.
This implies $6 \mid m(m+1)(m+2)$ which implies $m(m+1)(m+2)=6 a, a \in \mathbb{Z}$, by definition of divisibility.

Thus $m(m+1)(m+2)=m\left(m^{2}+3 m+2\right)=m^{3}+3 m^{2}+2 m=6 a$.
Observe the following equalities:

$$
\begin{aligned}
(m+2)(m+3)(m+4) & =(m+2)\left(m^{2}+7 m+12\right) \\
& =m^{3}+9 m^{2}+26 m+24 \\
& =\left(m^{3}+3 m^{2}+2 m\right)+\left(6 m^{2}+24 m+24\right) \\
& =6 a+6\left(m^{2}+4 m+4\right) \\
& =6\left(a+m^{2}+4 m+4\right)
\end{aligned}
$$

Since $a+m^{2}+4 m+4 \in \mathbb{Z}$, then by definition of divisibility, $6 \mid(m+2)(m+$ 3) $(m+4)$.

Hence $S_{m} \wedge S_{m+1} \Rightarrow S_{m+2}$ for $m \geq 1$.
Thus, $S_{k-1} \wedge S_{k} \Rightarrow S_{k+1}$ for $k \geq 2$.
It follows by strong induction that $6 \mid n(n+1)(n+2)$ for all $n \in \mathbb{N}$.
Exercise 63. The number 6 is the largest natural number that divides $n^{3}-n$ for all $n \in \mathbb{N}$.

Proof. We must prove

1. For all natural numbers $n, 6 \mid\left(n^{3}-n\right)$.
2. If $m \in \mathbb{N}$ and $m>6$, then there exists $n \in \mathbb{N}$ such that m does not divide $n^{3}-n$.

We first prove $6 \mid\left(n^{3}-n\right)$ for all $n \in \mathbb{N}$ by induction on n.
Let $p(n)$ be the predicate $6 \mid\left(n^{3}-n\right)$ defined over \mathbb{N}.
We prove $p(n)$ is true for all $n \in \mathbb{N}$ by induction on n.

Basis:

Since $1^{3}-1=0$ and $6 \mid 0$, then $p(1)$ is true.

Induction:

Let $k \in \mathbb{N}$ such that $p(k)$ is true.
Then 6 divides $k^{3}-k$.
Observe that $(k+1)^{3}-(k+1)=\left(k^{3}+3 k^{2}+3 k+1\right)-k-1=k^{3}+3 k^{2}+3 k-k=$ $\left(k^{3}-k\right)+\left(3 k^{2}+3 k\right)=\left(k^{3}-k\right)+3 k(k+1)$.

Since the product of two consecutive integers is even and $k(k+1)$ is the product of two consecutive integers, then $k(k+1)$ is even, so $2 \mid k(k+1)$.

Hence, $3 \cdot 2 \mid 3 k(k+1)$, so $6 \mid 3 k(k+1)$.
Since 6 divides $k^{3}-k$ and 6 divides $3 k(k+1)$, then 6 divides the sum $\left(k^{3}-k\right)+3 k(k+1)=(k+1)^{3}-(k+1)$.

Thus, $p(k+1)$ is true, so $p(k)$ implies $p(k+1)$ for any $k \geq 1$.
It follows by induction that $6 \mid\left(n^{3}-n\right)$ for all $n \in \mathbb{N}$.
Proof. We next prove:
If $m \in \mathbb{N}$ and $m>6$, then there exists $n \in \mathbb{N}$ such that m does not divide $n^{3}-n$.

Let $m \in \mathbb{N}$ with $m>6$.
Let n be the natural number 2 .
Then $n^{3}-n=2^{3}-2=6$.
If $m \in \mathbb{N}$ and $m \mid 6$, then $m \leq 6$, so if $m \in \mathbb{N}$ and $m>6$, then m does not divide 6 .

Since $m \in \mathbb{N}$ and $m>6$, then we conclude m does not divide 6 , so m does not divide $n^{3}-n$.

Therefore, there does exist $n \in \mathbb{N}$ such that m does not divide $n^{3}-n$, as desired.

Exercise 64. Let $x, y \in \mathbb{Z}$.
If $17 \mid(2 x+3 y)$, then $17 \mid(9 x+5 y)$.
Proof. Suppose $17 \mid(2 x+3 y)$.
Then $2 x+3 y=17 m$ for some integer m.
To prove $17 \mid(9 x+5 y)$, we must prove there exists $n \in \mathbb{Z}$ such that $9 x+5 y=$ $17 n$.

Let $n=-4 m+x+y$.
Since $m, x, y \in \mathbb{Z}$, then $n \in \mathbb{Z}$.
Observe that

$$
\begin{aligned}
17 n & =17(-4 m+x+y) \\
& =17(-4 m)+17(x+y) \\
& =(-4)(17 m)+17(x+y) \\
& =(-4)(2 x+3 y)+17(x+y) \\
& =-8 x-12 y+17 x+17 y \\
& =9 x+5 y .
\end{aligned}
$$

Since $17 n=9 x+5 y$, then $17 \mid(9 x+5 y)$.
Exercise 65. Let $a, b \in \mathbb{Z}$ with $b>0$.
Then there exist unique integers q and r such that $a=b q+r$ with $2 b \leq r<$ $3 b$.

Proof. Since $a, b \in \mathbb{Z}$ and $b>0$, then by the division algorithm, there exist unique integers q and r such that $a=b q+r$ with $0 \leq r<b$.

Since $b, q, r \in \mathbb{Z}$, then $b(q+2)+(r-2 b) \in \mathbb{Z}$.
Since $b(q+2)+(r-2 b) \in \mathbb{Z}$ and $b \in \mathbb{Z}$ and $b>0$, then by the division algorithm, when $b(q+2)+(r-2 b)$ is divided by b, the remainder is $r-2 b$ with $0 \leq r-2 b<b$.

Observe that $b(q+2)+(r-2 b)=b q+2 b+r-2 b=b q+r=a$.

Since $0 \leq r-2 b<b$, then $2 b \leq r<3 b$.
Therefore, there exist unique integers q and r such that $a=b q+r$ and $2 b \leq r<3 b$.

Exercise 66. Any integer of the form $6 k+5$ is also of the form $3 k+2$, but not conversely.

Proof. Let $k \in \mathbb{Z}$.
Then $6 k+5=6 k+3+2=3(2 k+1)+2$.
Let $m=2 k+1$.
Since $k \in \mathbb{Z}$, then $m \in \mathbb{Z}$, so $6 k+5=3 m+2$.
Therefore, any integer of the form $6 k+5$ is also of the form $3 m+2$ for some integer m.

Conversely, consider the integer 14.
Since $14=3 \cdot 4+2$, then 14 is of the form $3 m+2$ with $m=4$.
If $14=6 k+5$, then $9=6 k$, so $k=\frac{3}{2} \notin \mathbb{Z}$.
Thus, there is no integer k such that $14=6 k+5$.
Therefore, 14 is of the form $3 m+2$, but not of the form $6 k+5$.
Exercise 67. Every odd integer is either of the form $4 k+1$ or $4 k+3$.
Proof. Let n be any odd integer.
By the division algorithm, there exist unique integers q and r such that $n=4 q+r$ with $0 \leq r<4$.

Thus, either $n=4 q$ or $n=4 q+1$ or $n=4 q+2$ or $n=4 q+3$.
Since n is odd, then this implies either $n=4 q+1$ or $n=4 q+3$.
Exercise 68. The square of any integer is either of the form $3 k$ or $3 k+1$.
Proof. Let $n \in \mathbb{Z}$.
By the division algorithm, there exist unique integers q and r such that $n=3 q+r$ with $0 \leq r<3$.

Thus, either $n=3 q$ or $n=3 q+1$ or $n=3 q+2$.
We consider these cases separately.
Case 1: Suppose $n=3 q$.
Then $n^{2}=(3 q)^{2}=3^{2} q^{2}=3\left(3 q^{2}\right)$.
Let $k=3 q^{2}$.
Then $k \in \mathbb{Z}$ and $n^{2}=3 k$.
Case 2: Suppose $n=3 q+1$.
Then $n^{2}=(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1$.
Let $k=3 q^{2}+2 q$.
Then $k \in \mathbb{Z}$ and $n^{2}=3 k+1$.
Case 3: Suppose $n=3 q+2$.
Then $n^{2}=(3 q+2)^{2}=9 q^{2}+12 q+4=3\left(3 q^{2}+4 q+1\right)+1$.
Let $k=3 q^{2}+4 q+1$.
Then $n^{2}=3 k+1$.

Therefore, in all cases, either $n^{2}=3 k$ or $n^{2}=3 k+1$ for some integer k.
Exercise 69. The cube of any integer is either of the form $9 k, 9 k+1$, or $9 k+8$.
Proof. Let $n \in \mathbb{Z}$.
By the division algorithm, there exist unique integers q and r such that $n=3 q+r$ with $0 \leq r<3$.

Thus, either $n=3 q$ or $n=3 q+1$ or $n=3 q+2$.
We consider these cases separately.
Case 1: Suppose $n=3 q$.
Then $n^{3}=(3 q)^{3}=27 q^{3}=9\left(3 q^{3}\right)=9 k$ for integer $k=3 q^{3}$.
Case 2: Suppose $n=3 q+1$.
Then $n^{3}=(3 q+1)^{3}=27 q^{3}+27 q^{2}+9 q+1=9 q\left(3 q^{2}+3 q+1\right)+1=9 k+1$
for integer $k=q\left(3 q^{2}+3 q+1\right)$.
Case 3: Suppose $n=3 q+2$.
Then $n^{3}=(3 q+2)^{3}=27 q^{3}+54 q^{2}+36 q+8=9 q\left(3 q^{2}+6 q+4\right)+8=9 k+8$ for integer $k=q\left(3 q^{2}+6 q+4\right)$.

Exercise 70. If an integer is both a square and a cube, then it must be either of the form $7 k$ or $7 k+1$.

Solution. We prove:

1. Every square is of the form $7 k, 7 k+1,7 k+2,7 k+4$.
2. Every cube is of the form $7 k, 7 k+1,7 k+6$.

So, this would imply any integer that is both a square and a cube must be of a form that it common to both squares and cubes.

We observe that if n is a square and a cube, then $n=a^{6}$ for $a \in \mathbb{Z}^{+}$.
Proof. We first prove every square is of the form $7 k, 7 k+1,7 k+2$ or $7 k+4$ for some integer k.

Let $n \in \mathbb{Z}$.
Suppose n is a square.
Then $n=a^{2}$ for some integer a.
By the division algorithm, there exist unique integers q and r such that $a=7 q+r$ with $0 \leq r<7$.

Thus, either $r=0$ or $r=1$ or $r=2$ or $r=3$ or $r=4$ or $r=5$ or $r=6$.
We consider these cases separately.
Case 1: Suppose $r=0$.
Then $a=7 q$.
Therefore, $n=(7 q)^{2}=7^{2} q^{2}=7\left(7 q^{2}\right)=7 k$ for integer $k=7 q^{2}$.
Case 2: Suppose $r=1$.
Then $a=7 q+1$.
Therefore, $n=(7 q+1)^{2}=49 q^{2}+14 q+1=7 q(7 q+2)+1=7 k+1$ for integer $k=q(7 q+2)$.

Case 3: Suppose $r=2$.
Then $a=7 q+2$.

Therefore, $n=(7 q+2)^{2}=49 q^{2}+28 q+4=7 q(7 q+4)+4=7 k+4$ for integer $k=q(7 q+4)$.

Case 4: Suppose $r=3$.
Then $a=7 q+3$.
Therefore, $n=(7 q+3)^{2}=49 q^{2}+42 q+9=7\left(7 q^{2}\right)+7(6 q)+(7 * 1+2)=$ $7\left(7 q^{2}+6 q+1\right)+2=7 k+2$ for integer $k=7 q^{2}+6 q+1$.

Case 5: Suppose $r=4$.
Then $a=7 q+4$.
Therefore, $n=(7 q+4)^{2}=49 q^{2}+56 q+16=7\left(7 q^{2}\right)+7 * 8 q+(7 * 2+2)=$ $7\left(7 q^{2}+8 q+2\right)+2=7 k+2$ for integer $k=7 q^{2}+8 q+2$.

Case 6: Suppose $r=5$.
Then $a=7 q+5$.
Therefore, $n=(7 q+5)^{2}=49 q^{2}+70 q+25=7\left(7 q^{2}\right)+7 * 10 q+(7 * 3+4)=$ $7\left(7 q^{2}+10 q+3\right)+4=7 k+4$ for integer $k=7 q^{2}+10 q+3$.

Case 7: Suppose $r=6$.
Then $a=7 q+6$.
Therefore, $n=(7 q+6)^{2}=49 q^{2}+84 q+36=7\left(7 q^{2}\right)+7 * 12 q+(7 * 5+1)=$ $7\left(7 q^{2}+12 q+5\right)+1=7 k+1$ for integer $k=7 q^{2}+12 q+5$.

Therefore, in all cases, either $n=7 k$ or $n=7 k+1$ or $n=7 k+2$ or $n=7 k+4$ for some integer k.

Proof. We next prove every cube is of the form $7 k, 7 k+1$, or $7 k+6$ for some integer k.

Let $n \in \mathbb{Z}$.
Suppose n is a cube.
Then $n=a^{3}$ for some integer a.
We must prove either $n=7 k$ or $n=7 k+1$ or $n=7 k+6$.
By the division algorithm, there exist unique integers q and r such that $a=7 q+r$ with $0 \leq r<7$.

Thus, either $r=0$ or $r=1$ or $r=2$ or $r=3$ or $r=4$ or $r=5$ or $r=6$.
We consider these cases separately.
Case 1: Suppose $r=0$.
Then $a=7 q$.
Therefore, $n=(7 q)^{3}=7^{3} q^{3}=7\left(7^{2} q^{3}\right)=7\left(49 q^{3}\right)=7 k$ for integer $k=49 q^{3}$.
Case 2: Suppose $r=1$.
Then $a=7 q+1$.
Observe that

$$
\begin{aligned}
n & =(7 q+1)^{3} \\
& =\sum_{k=0}^{3}\binom{3}{k}(7 q)^{3-k} \\
& =\binom{3}{0}(7 q)^{3}+\binom{3}{1}(7 q)^{2}+\binom{3}{2}(7 q)+\binom{3}{3} \\
& =(7 q)^{3}+3(7 q)^{2}+3(7 q)+1 \\
& =\left(7^{3} q^{3}\right)+3\left(7^{2} q^{2}\right)+3(7 q)+1 \\
& =7\left(7^{2} q^{3}+3 * 7 q^{2}+3 q\right)+1 \\
& =7\left(49 q^{3}+21 q^{2}+3 q\right)+1
\end{aligned}
$$

Therefore, $n=7\left(49 q^{3}+21 q^{2}+3 q\right)+1=7 k+1$ for integer $k=49 q^{3}+21 q^{2}+3 q$.
Case 3: Suppose $r=2$.
Then $a=7 q+2$.
Observe that

$$
\begin{aligned}
n & =(7 q+2)^{3} \\
& =\sum_{k=0}^{3}\binom{3}{k}(7 q)^{3-k}\left(2^{k}\right) \\
& =\binom{3}{0}(7 q)^{3}+\binom{3}{1}(7 q)^{2}\left(2^{1}\right)+\binom{3}{2}(7 q)\left(2^{2}\right)+\binom{3}{3}\left(2^{3}\right) \\
& =(7 q)^{3}+3(7 q)^{2}(2)+3(7 q)\left(2^{2}\right)+8 \\
& =\left(7^{3} q^{3}\right)+(3)(2)\left(7^{2} q^{2}\right)+(3)\left(2^{2}\right)(7 q)+(7 * 1+1) \\
& =7\left(7^{2} q^{3}+(3)(2) * 7 q^{2}+(3)\left(2^{2}\right) q+1\right)+1 \\
& =7\left(49 q^{3}+42 q^{2}+12 q+1\right)+1
\end{aligned}
$$

Therefore, $n=7 k+1$ for integer $k=49 q^{3}+42 q^{2}+12 q$.
Case 4: Suppose $r=3$.
Then $a=7 q+3$.
Observe that

$$
\begin{aligned}
n & =(7 q+3)^{3} \\
& =\sum_{k=0}^{3}\binom{3}{k}(7 q)^{3-k}\left(3^{k}\right) \\
& =\binom{3}{0}(7 q)^{3}+\binom{3}{1}(7 q)^{2}\left(3^{1}\right)+\binom{3}{2}(7 q)\left(3^{2}\right)+\binom{3}{3}\left(3^{3}\right) \\
& =(7 q)^{3}+3(7 q)^{2}(3)+3(7 q)\left(3^{2}\right)+27 \\
& =\left(7^{3} q^{3}\right)+(3)(3)\left(7^{2} q^{2}\right)+(3)\left(3^{2}\right)(7 q)+(7 * 3+6) \\
& =7\left(7^{2} q^{3}+(3)(3) * 7 q^{2}+(3)\left(3^{2}\right) q+3\right)+6 \\
& =7\left(49 q^{3}+63 q^{2}+27 q+3\right)+6
\end{aligned}
$$

Therefore, $n=7 k+6$ for integer $k=49 q^{3}+63 q^{2}+27 q+3$.
Case 5: Suppose $r=4$.
Then $a=7 q+4$.
Observe that

$$
\begin{aligned}
n & =(7 q+4)^{3} \\
& =\sum_{k=0}^{3}\binom{3}{k}(7 q)^{3-k}\left(4^{k}\right) \\
& =\binom{3}{0}(7 q)^{3}+\binom{3}{1}(7 q)^{2}\left(4^{1}\right)+\binom{3}{2}(7 q)\left(4^{2}\right)+\binom{3}{3}\left(4^{3}\right) \\
& =(7 q)^{3}+3(7 q)^{2}(4)+3(7 q)\left(4^{2}\right)+64 \\
& =\left(7^{3} q^{3}\right)+(3)(4)\left(7^{2} q^{2}\right)+(3)\left(4^{2}\right)(7 q)+(7 * 9+1) \\
& =7\left(7^{2} q^{3}+(3)(4) * 7 q^{2}+(3)\left(4^{2}\right) q+9\right)+1 \\
& =7\left(49 q^{3}+108 q^{2}+48 q+9\right)+1
\end{aligned}
$$

Therefore, $n=7 k+1$ for integer $k=49 q^{3}+108 q^{2}+48 q+9$.
Case 6: Suppose $r=5$.
Then $a=7 q+5$.
Observe that

$$
\begin{aligned}
n & =(7 q+5)^{3} \\
& =\sum_{k=0}^{3}\binom{3}{k}(7 q)^{3-k}\left(5^{k}\right) \\
& =\binom{3}{0}(7 q)^{3}+\binom{3}{1}(7 q)^{2}\left(5^{1}\right)+\binom{3}{2}(7 q)\left(5^{2}\right)+\binom{3}{3}\left(5^{3}\right) \\
& =(7 q)^{3}+3(7 q)^{2}(5)+3(7 q)\left(5^{2}\right)+125 \\
& =\left(7^{3} q^{3}\right)+(3)(5)\left(7^{2} q^{2}\right)+(3)\left(5^{2}\right)(7 q)+(7 * 17+6) \\
& =7\left(7^{2} q^{3}+(3)(5) * 7 q^{2}+(3)\left(5^{2}\right) q+17\right)+6 \\
& =7\left(49 q^{3}+105 q^{2}+75 q+17\right)+6 .
\end{aligned}
$$

Therefore, $n=7 q+6$ for integer $k=49 q^{3}+105 q^{2}+75 q+17$.
Case 7: Suppose $r=6$.
Then $a=7 q+6$.
Observe that

$$
\begin{aligned}
n & =(7 q+6)^{3} \\
& =\sum_{k=0}^{3}\binom{3}{k}(7 q)^{3-k}\left(6^{k}\right) \\
& =\binom{3}{0}(7 q)^{3}+\binom{3}{1}(7 q)^{2}\left(6^{1}\right)+\binom{3}{2}(7 q)\left(6^{2}\right)+\binom{3}{3}\left(6^{3}\right) \\
& =(7 q)^{3}+3(7 q)^{2}(6)+3(7 q)\left(6^{2}\right)+216 \\
& =\left(7^{3} q^{3}\right)+(3)(6)\left(7^{2} q^{2}\right)+(3)\left(6^{2}\right)(7 q)+(7 * 30+6) \\
& =7\left(7^{2} q^{3}+(3)(6) * 7 q^{2}+(3)\left(6^{2}\right) q+30\right)+6 \\
& =7\left(49 q^{3}+126 q^{2}+108 q+30\right)+6
\end{aligned}
$$

Therefore, $n=7 k+6$ for integer $k=49 q^{3}+126 q^{2}+108 q+30$.
Therefore, in all cases, either $n=7 k$ or $n=7 k+1$ or $n=7 k+6$ for some integer k.

Proof. Let $n \in \mathbb{Z}$.
Suppose n is a square and a cube.
Then n is a square and n is a cube.
Since every square is of the form $7 k, 7 k+1,7 k+2,7 k+4$ for some integer k and n is a square, then n is of the form $7 k, 7 k+1,7 k+2,7 k+4$ for some integer k.

Since every cube is of the form $7 m, 7 m+1,7 m+6$ for some integer m and n is a cube, then n is of the form $7 k, 7 k+1,7 k+6$.

Since n is both a square and a cube, then this implies n is of the form that is common to both a square and a cube, so n is of the form $7 k$ or $7 k+1$.

Exercise 71. There is no integer in the sequence $11,111,1111,11111, \ldots$ that is a perfect square.

Proof. Let $\left(a_{n}\right)$ be the sequence $11,111,1111,11111, \ldots$.
Then $a_{n}=10 * a_{n-1}+1$ for positive integers $n>1$ and $a_{1}=11$.
We first prove each term of the sequence has the form $4 k+3$ for some integer k.

Thus, we must prove for all $n \in \mathbb{Z}^{+}$, there exists $k \in \mathbb{Z}$ such that $a_{n}=4 k+3$.
We prove by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}:(\exists k \in \mathbb{Z})\left(a_{n}=4 k+3\right)\right\}$.

Basis:

Since $1 \in \mathbb{Z}^{+}$and $2 \in \mathbb{Z}$ and $a_{1}=11=4 * 2+3$, then $1 \in S$.
Since $2 \in \mathbb{Z}^{+}$and $27 \in \mathbb{Z}$ and $a_{2}=10 * a_{1}+1=10 * 11+1=111=4 * 27+3$, then $2 \in S$.

Induction:

Suppose $m \in S$ and $m \geq 2$.
Then $m \in \mathbb{Z}^{+}$and there exists $k \in \mathbb{Z}$ such that $a_{m}=4 k+3$.
Since $m \in \mathbb{Z}^{+}$, then $m+1 \in \mathbb{Z}^{+}$.
Since $m+1>m \geq 2>1$, then $m+1>1$.
Observe that

$$
\begin{aligned}
a_{m+1} & =10 a_{m}+1 \\
& =10(4 k+3)+1 \\
& =40 k+31 \\
& =4 * 10 k+(4 * 7+3) \\
& =4(10 k+7)+3
\end{aligned}
$$

Let $p=10 k+7$.
Since $k \in \mathbb{Z}$, then $p \in \mathbb{Z}$ and $a_{m+1}=4 p+3$.
Since $m+1 \in \mathbb{Z}^{+}$and there exists $p \in \mathbb{Z}$ such that $a_{m+1}=4 p+3$, then $m+1 \in S$.

Hence, $m \in S$ for $m \geq 2$ implies $m+1 \in S$.
Therefore, by PMI, for all $n \in \mathbb{Z}^{+}$, there exists $k \in \mathbb{Z}$ such that $a_{n}=$ $4 k+3$.

Proof. We next prove every perfect square is either of the form $4 k$ or $4 k+1$.
Let n be a perfect square.
Then $n \in \mathbb{Z}$ and $n=a^{2}$ for some integer a.
From a previous exercise we know that the square of an integer leaves remainder 0 or 1 upon division by 4 .

Hence, a^{2} leaves remainder 0 or 1 upon division by 4 , so either $a^{2}=4 k$ or $a^{2}=4 k+1$ for some integer k.

Therefore, either $n=4 k$ or $n=4 k+1$ for some integer k.

Proof. We prove the term a_{n} cannot be a perfect square.
Let a_{n} be a term of the sequence $11,111,1111, \ldots$.
Then a_{n} has the form $4 k+3$ for some integer k, so a_{n} is of the form $4 k+3$.
Every perfect square is either of the form $4 k$ or $4 k+1$, so if n is a perfect square, then either $n=4 k$ or $n=4 k+1$.

Hence, if $n \neq 4 k$ and $n \neq 4 k+1$, then n is not a perfect square.
Since $4 k+3 \neq 4 k$ and $4 k+3 \neq 4 k+1$, then $4 k+3$ is not a perfect square, so a_{n} is not a perfect square.

Therefore, every term of the sequence $11,111,1111, \ldots$ is not a perfect square, so there is no term of the sequence that is a perfect square.

Exercise 72. For all $n \in \mathbb{Z}^{+}, 7$ divides $2^{3 n}-1$.
Proof. We prove by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}: 7 \mid\left(2^{3 n}-1\right)\right\}$.

Basis:

Since $2^{3 * 1}-1=7=7 * 1$, then 7 divides $2^{3 * 1}-1$, so $1 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $7 \mid\left(2^{3 k}-1\right)$.
Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
Since $7 \mid\left(2^{3 k}-1\right)$, then $2^{3 k}-1=7 x$ for some integer x.
Observe that

$$
\begin{aligned}
2^{3(k+1)}-1 & =2^{3 k+3}-1 \\
& =2^{3 k} * 2^{3}-1 \\
& =8 * 2^{3 k}-1 \\
& =8\left(2^{3 k}-1\right)+8-1 \\
& =8(7 x)+7 \\
& =7(8 x+1)
\end{aligned}
$$

Since $x \in \mathbb{Z}$, then $8 x+1 \in \mathbb{Z}$, so 7 divides $2^{3(k+1)}-1$.
Since $k+1 \in \mathbb{Z}^{+}$and 7 divides $2^{3(k+1)}-1$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$.
Therefore, by PMI, $7 \mid\left(2^{3 n}-1\right)$ for all $n \in \mathbb{Z}^{+}$.
Exercise 73. For all $n \in \mathbb{Z}^{+}, 8$ divides $3^{2 n}+7$.
Proof. We prove by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}: 8 \mid 3^{2 n}+7\right\}$.

Basis:

Since $3^{2 * 1}+7=16=8 * 2$, then 8 divides $3^{2 * 1}+7$, so $1 \in S$.
Induction:
Suppose $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $8 \mid\left(3^{2 k}+7\right)$.

Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
Since $8 \mid\left(3^{2 k}+7\right)$, then $3^{2 k}+7=8 x$ for some integer x.
Observe that

$$
\begin{aligned}
3^{2(k+1)}+7 & =3^{2 k+2}+7 \\
& =3^{2 k} * 3^{2}+7 \\
& =9 * 3^{2 k}+7 \\
& =(8+1) 3^{2 k}+7 \\
& =8\left(3^{2 k}\right)+3^{2 k}+7 \\
& =8\left(3^{2 k}\right)+8 x \\
& =8\left(3^{2 k}+x\right) \\
& =8\left(9^{k}+x\right)
\end{aligned}
$$

Since $k, x \in \mathbb{Z}$, then $9^{k}+x \in \mathbb{Z}$, so 8 divides $3^{2(k+1)}+7$.
Since $k+1 \in \mathbb{Z}^{+}$and 8 divides $3^{2(k+1)}+7$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$.
Therefore, by PMI, $8 \mid\left(3^{2 n}+7\right)$ for all $n \in \mathbb{Z}^{+}$.
Exercise 74. For all $n \in \mathbb{Z}^{+}, 2^{n}+(-1)^{n+1}$ is divisible by 3 .
Proof. We prove by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}: 3 \mid 2^{n}+(-1)^{n+1}\right\}$.

Basis:

Since $2^{1}+(-1)^{1+1}=2+1=3=3 \cdot 1$, then 3 divides $2^{1}+(-1)^{1+1}$, so $1 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $3 \mid 2^{k}+(-1)^{k+1}$.
Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
Since $3 \mid 2^{k}+(-1)^{k+1}$, then $2^{k}+(-1)^{k+1}=3 x$ for some integer x.
Observe that

$$
\begin{aligned}
2^{k+1}+(-1)^{(k+1)+1} & =2^{k} \cdot 2+(-1)^{k+1}(-1) \\
& =2^{k}+2^{k}-(-1)^{k+1} \\
& =2^{k}+(2-1) 2^{k}-(-1)^{k+1} \\
& =2^{k}+2\left(2^{k}\right)-2^{k}-(-1)^{k+1} \\
& =3\left(2^{k}\right)-\left[2^{k}+(-1)^{k+1}\right] \\
& =3\left(2^{k}\right)-3 x \\
& =3\left(2^{k}-x\right)
\end{aligned}
$$

Since $k, x \in \mathbb{Z}$, then $2^{k}-x \in \mathbb{Z}$, so 3 divides $2^{k+1}+(-1)^{(k+1)+1}$.
Since $k+1 \in \mathbb{Z}^{+}$and 3 divides $2^{k+1}+(-1)^{(k+1)+1}$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$.
Therefore, by PMI, $3 \mid\left(2^{n}+(-1)^{n+1}\right)$ for all $n \in \mathbb{Z}^{+}$.

Lemma 75. Every perfect square is of the form $4 k$ or $4 k+1$ for some integer k.

Proof. Let $n \in \mathbb{Z}$.
By the division algorithm, there exist unique integers q and r such that $n=2 q+r$ with $0 \leq r<2$.

Thus, either $n=2 q$ or $n=2 q+1$.
We consider these cases separately.
Case 1: Suppose $n=2 q$.
Then, $n^{2}=(2 q)^{2}=4 q^{2}=4 k^{2}$ for integer $k=q$.
Case 2: Suppose $n=2 q+1$.
Then $n^{2}=(2 q+1)^{2}=4 q^{2}+4 q+1=4\left(q^{2}+q\right)+1=4 k+1$ for integer $k=q^{2}+q$.

Therefore either $n^{2}=4 k$ or $n^{2}=4 k+1$ for some integer k.
Lemma 76. Let $n \in \mathbb{Z}$.
If n is odd, then $8 \mid\left(n^{2}-1\right)$.
Proof. Suppose n is odd.
By the division algorithm, there are unique integers q and r such that $n=$ $4 q+r$ with $0 \leq r<4$.

Thus, either $n=4 q$ or $n=4 q+1$ or $n=4 q+2$ or $n=4 q+3$.
Hence, either $n=2(2 q)$ or $n=2(2 q)+1$ or $n=2(2 q+1)$ or $n=2(2 q+1)+1$.
Since n is odd, then this implies either $n=4 q+1$ or $n=4 q+3$.
We consider each case separately.
Case 1: Suppose $n=4 q+1$.
Then $n^{2}-1=(4 q+1)^{2}-1=16 q^{2}+8 q+1-1=16 q^{2}+8 q=8\left(2 q^{2}+q\right)$.
Since $2 q^{2}+q \in \mathbb{Z}$, then this implies $8 \mid\left(n^{2}-1\right)$.
Case 2: Suppose $n=4 q+3$.
Then $n^{2}-1=(4 q+3)^{2}-1=16 q^{2}+24 q+9-1=16 q^{2}+24 q+8=$ $8\left(2 q^{2}+3 q+1\right)$.

Since $2 q^{2}+3 q+1 \in \mathbb{Z}$, then this implies $8 \mid\left(n^{2}-1\right)$.
Therefore, in all cases, $8 \mid\left(n^{2}-1\right)$.
Proof. Suppose n is odd.
Then $n=2 a+1$ for some integer a.
Thus $n^{2}-1=(2 a+1)^{2}-1=4 a^{2}+4 a=4 a(a+1)$.
Since a and $a+1$ have opposite parity we know that their product must be even by proposition ??.

Thus $a(a+1)=2 b$ for some integer b.
Consequently $n^{2}-1=4(2 b)=8 b$, and so $8 \mid\left(n^{2}-1\right)$.
Exercise 77. Let $a \in \mathbb{Z}$.
If $2 \not \backslash a$ and $3 \nmid a$, then $24 \mid\left(a^{2}-1\right)$.
Proof. Suppose $2 \not \backslash a$ and $3 \nless a$.
Since $2 \nless a$, then a is odd.
Hence, we know that $8 \mid\left(a^{2}-1\right)$.

Since $3 \npreceq a$, then by the division algorithm, either $a=3 m+1$ or $a=3 m+2$ for some integer m.

If $a=3 m+1$, then $a^{2}-1=(3 m+1)^{2}-1=9 m^{2}+6 m+1-1=9 m^{2}+6 m=$ $3 m(3 m+2)$, so $3 \mid\left(a^{2}-1\right)$.

If $a=3 m+2$, then $a^{2}-1=(3 m+2)^{2}-1=9 m^{2}+12 m+4-1=$ $9 m^{2}+12 m+3=3\left(3 m^{2}+4 m+1\right)$, so $3 \mid\left(a^{2}-1\right)$.

In either case, $3 \mid\left(a^{2}-1\right)$.
Since $8 \mid\left(a^{2}-1\right)$ and $3 \mid\left(a^{2}-1\right)$ and $\operatorname{gcd}(8,3)=1$, then $(8 * 3)$ divides $a^{2}-1$, so 24 divides $a^{2}-1$.

Exercise 78. Let a and b be odd integers.
Then $8 \mid\left(a^{2}-b^{2}\right)$.
Proof. Since a is odd, then we know $8 \mid\left(a^{2}-1\right)$, so $a^{2}-1=8 k$ for some integer k.

Since b is odd, then we know $8 \mid\left(b^{2}-1\right)$, so $b^{2}-1=8 m$ for some integer m. Thus, $a^{2}-b^{2}=(8 k+1)-(8 m+1)=8 k+1-8 m-1=8 k-8 m=8(k-m)$. Since $k, m \in \mathbb{Z}$, then $k-m \in \mathbb{Z}$, so $8 \mid\left(a^{2}-b^{2}\right)$.

Exercise 79. If m and n are odd integers, then $m^{2}-n^{2}$ is divisible by 8 .
Proof. Suppose m and n are odd integers.
We prove if x is an odd integer, then $x^{2} \equiv 1(\bmod 8)$.
Suppose x is an odd integer.
Then $x=2 k+1$ for some integer k.
Thus, $x^{2}=4 k^{2}+4 k+1$.
The product of consecutive integers is even, so in particular, $k(k+1)$ is even.
Hence, $2 \mid k(k+1)$, so $4 * 2 \mid 4 k(k+1)$.
Thus, $8 \mid\left(4 k^{2}+4 k\right)$, so $4 k^{2}+4 k \equiv 0(\bmod 8)$.
Hence, $4 k^{2}+4 k+1 \equiv 1(\bmod 8)$, so $x^{2} \equiv 1(\bmod 8)$.
Therefore, $m^{2} \equiv 1(\bmod 8)$ and $n^{2} \equiv 1(\bmod 8)$.
Thus, $1 \equiv n^{2}(\bmod 8)$.
Since $m^{2} \equiv 1(\bmod 8)$ and $1 \equiv n^{2}(\bmod 8)$, then $m^{2} \equiv n^{2}(\bmod 8)$.
Hence, $8 \mid\left(m^{2}-n^{2}\right)$.
Exercise 80. Let a be an odd integer.
Then 24|a($\left.a^{2}-1\right)$.
Proof. Since $a\left(a^{2}-1\right)=a(a-1)(a+1)=(a-1) a(a+1)$, then $a\left(a^{2}-1\right)$ is a product of three consecutive integers.

Since the product of three consecutive integers is divisible by 3 , then this implies $3 \mid a\left(a^{2}-1\right)$.

Since a is odd, then we know $a^{2}=8 k+1$ for some integer k, so $a^{2}-1=8 k$.
Hence, $8 \mid\left(a^{2}-1\right)$, so 8 divides any multiple of $a^{2}-1$.
Thus, $8 \mid a\left(a^{2}-1\right)$.
Since $3 \mid a\left(a^{2}-1\right)$ and $8 \mid a\left(a^{2}-1\right)$ and $\operatorname{gcd}(3,8)=1$, then $(3 * 8)$ divides $a\left(a^{2}-1\right)$, so $24 \mid a\left(a^{2}-1\right)$.

Exercise 81. The sum of the squares of two odd integers cannot be a perfect square.

Proof. Let x and y be two odd integers.
Then $x=2 a+1$ and $y=2 b+1$ for some integers a and b.
Thus,

$$
\begin{aligned}
x^{2}+y^{2} & =(2 a+1)^{2}+(2 b+1)^{2} \\
& =4 a^{2}+4 a+1+4 b^{2}+4 b+1 \\
& =4 a^{2}+4 b^{2}+4 a+4 b+2 \\
& =4\left(a^{2}+b^{2}+a+b\right)+2
\end{aligned}
$$

Let $k=a^{2}+b^{2}+a+b$.
Then $x^{2}+y^{2}=4 k+2$ and $k \in \mathbb{Z}$.
Every perfect square is of the form $4 k$ or $4 k+1$, so if x is a perfect square, then either $x=4 k$ or $x=4 k+1$ for some integer k.

Hence, if $x \neq 4 k$ and $x \neq 4 k+1$ for some integer k, then x cannot be a perfect square.

Since $x^{2}+y^{2}=4 k+2$ and $4 k+2 \neq 4 k$ and $4 k+2 \neq 4 k+1$, then $x^{2}+y^{2}$ cannot be a perfect square.

Exercise 82. The square of any odd integer is of the form $8 k+1$ for some integer k.

Proof. Let n be any odd integer.
By the division algorithm there exist unique integers q, r such that $n=4 q+r$ with $0 \leq r<4$.

Thus, either $n=4 q$ or $n=4 q+1$ or $n=4 q+2$ or $n=4 q+3$, so either $n=2(2 q)$ or $n=2(2 q)+1$ or $n=2(2 q+1)$ or $n=2(2 q+1)+1$.

Since n is odd, then this implies either $n=4 q+1$ or $n=4 q+3$.
We consider each case separately.
Case 1: Suppose $n=4 q+1$.
Then $n^{2}=(4 q+1)^{2}=16 q^{2}+8 q+1=8\left(2 q^{2}+2 q\right)+1=8 k+1$ for integer $k=2 q^{2}+2 q$.

Case 2: Suppose $n=4 q+3$.
Then $n^{2}=(4 q+3)^{2}=16 q^{2}+24 q+9=16 q^{2}+24 q+8+1=8\left(2 q^{2}+3 q+1\right)+1=$ $8 k+1$ for integer $k=2 q^{2}+3 q+1$.

Exercise 83. The product of four consecutive integers is one less than a perfect square.

Proof. Let $n \in \mathbb{Z}$.
We must prove there exists $m \in \mathbb{Z}$ such that $n(n+1)(n+2)(n+3)=m^{2}-1$.
Let $m=(n+1)(n+2)-1$.
Since $n \in \mathbb{Z}$, then $m \in \mathbb{Z}$.
Observe that

$$
\begin{aligned}
m^{2}-1 & =[(n+1)(n+2)-1]^{2}-1 \\
& =\left(n^{2}+3 n+1\right)^{2}-1 \\
& =\left(n^{2}+3 n+1-1\right)\left(n^{2}+3 n+1+1\right) \\
& =\left(n^{2}+3 n\right)\left(n^{2}+3 n+2\right) \\
& =n(n+3)(n+2)(n+1) \\
& =n(n+1)(n+2)(n+3)
\end{aligned}
$$

Exercise 84. Let $a \in \mathbb{Z}$.
If $2 \nmid a$ and $3 \nmid a$, then $24 \mid\left(a^{2}+23\right)$.
Proof. Suppose $2 \not \backslash a$ and $3 \not \backslash a$.
Since $2 \not \backslash a$, then a is odd, so we know $8 \mid\left(a^{2}-1\right)$.
Since $8 \mid\left(a^{2}-1\right)$ and $8 \mid 24$, then 8 divides the sum $\left(a^{2}-1\right)+24=a^{2}+23$, so $8 \mid\left(a^{2}+23\right)$.

Since $3 \not \backslash a$, then by the division algorithm, either $a=3 q+1$ or $a=3 q+2$ for some integer q.

If $a=3 q+1$, then $a^{2}+23=(3 q+1)^{2}+23=9 q^{2}+6 q+1+23=9 q^{2}+6 q+24=$ $3\left(3 q^{2}+2 q+8\right)$, so $3 \mid\left(a^{2}+23\right)$.

If $a=3 q+2$, then $a^{2}+23=(3 q+2)^{2}+23=9 q^{2}+12 q+4+23=$ $9 q^{2}+12 q+27=3\left(3 q^{2}+4 q+9\right)$, so $3 \mid\left(a^{2}+23\right)$.

Thus, in either case, $3 \mid\left(a^{2}+23\right)$.
Since $8 \mid\left(a^{2}+23\right)$ and $3 \mid\left(a^{2}+23\right)$ and $\operatorname{gcd}(8,3)=1$, then $(8 * 3) \mid\left(a^{2}+23\right)$, so $24 \mid\left(a^{2}+23\right)$.

Lemma 85. The product of 5 consecutive integers is divisible by 5.
Proof. Let $n \in \mathbb{Z}$.
Let $p=n(n+1)(n+2)(n+3)(n+4)$.
We must prove $5 \mid p$.
By the division algorithm, either $p=5 q$ or $p=5 q+1$ or $p=5 q+2$ or $p=5 q+3$ or $p=5 q+4$ for some integer q.

We consider each case separately.
Case 1: Suppose $n=5 q$.
Then $5 \mid n$, so 5 divides any multiple of n.
Hence, $5 \mid p$.
Case 2: Suppose $n=5 q+1$.
Then $n+4=(5 q+1)+4=5 q+5=5(q+1)$, so $5 \mid(n+4)$.
Thus, 5 divides any multiple of $n+4$, so $5 \mid p$.
Case 3: Suppose $n=5 q+2$.
Then $n+3=(5 q+2)+3=5 q+5=5(q+1)$, so $5 \mid(n+3)$.
Thus, 5 divides any multiple of $n+3$, so $5 \mid p$.

Case 4: Suppose $n=5 q+3$.
Then $n+2=(5 q+3)+2=5 q+5=5(q+1)$, so $5 \mid(n+2)$.
Thus, 5 divides any multiple of $n+2$, so $5 \mid p$.
Case 5: Suppose $n=5 q+4$.
Then $n+1=(5 q+4)+1=5 q+5=5(q+1)$, so $5 \mid(n+1)$.
Thus, 5 divides any multiple of $n+1$, so $5 \mid p$.

Therefore, in all cases, $5 \mid p$.
Exercise 86. Let $n \in \mathbb{Z}$.
Then $360 \mid n^{2}\left(n^{2}-1\right)\left(n^{2}-4\right)$.
Proof. Let $p=n^{2}\left(n^{2}-1\right)\left(n^{2}-4\right)$.
Then $p=n^{2}(n-1)(n+1)(n-2)(n+2)$.
We prove $5 \mid p$ and $8 \mid p$ and $9 \mid p$.
Proof. We prove $5 \mid p$.
Observe that $p=(n-2)(n-1) n(n+1)(n+2) n$.
Let $a=(n-2)(n-1) n(n+1)(n+2)$.
Then $p=a n$.
Since a is a product of 5 consecutive integers and the product of 5 consecutive integers is divisible by 5 , then $5 \mid a$.

Thus, 5 divides any multiple of a, so $5 \mid p$.
Proof. We prove $8 \mid p$.
Either n is even or n is odd.
We consider each case separately.
Case 1: Suppose n is even.
Then $n=2 k$ for some integer k.
Since $n^{2}=(2 k)^{2}=4 k^{2}$, then $4 \mid n^{2}$.
Since $n+2=2 k+2=2(k+1)$, then $2 \mid(n+2)$.
Since $4 \mid n^{2}$ and $2 \mid(n+2)$, then $(4 * 2) \mid n^{2}(n+2)$, so $8 \mid n^{2}(n+2)$.
Thus, 8 divides any multiple of $n^{2}(n+2)$, so $8 \mid p$.
Case 2: Suppose n is odd.
Then we know 8 divides $n^{2}-1$.
Thus, 8 divides any multiple of $n^{2}-1$, so 8 divides p.
Therefore, in all cases, $8 \mid p$.
Proof. We prove $9 \mid p$.
By the division algorithm, either $n=3 q$ or $n=3 q+1$ or $n=3 q+2$ for some integer q.

We consider each case separately.
Case 1: Suppose $n=3 q$.
Then $n^{2}=(3 q)^{2}=9 q^{2}$, so $9 \mid n^{2}$.
Hence, 9 divides any multiple of n^{2}, so $9 \mid p$.
Case 2: Suppose $n=3 q+1$.

Since $n-1=3 q$, then $3 \mid(n-1)$.
Since $n+2=(3 q+1)+2=3 q+3=3(q+1)$, then $3 \mid(n+2)$.
Since $3 \mid(n-1)$ and $3 \mid(n+2)$, then $(3 * 3) \mid(n-1)(n+2)$, so $9 \mid(n-1)(n+2)$.
Hence, 9 divides any multiple of $(n-1)(n+2)$, so $9 \mid p$.
Case 3: Suppose $n=3 q+2$.
Since $n+1=(3 q+2)+1=3 q+3=3(q+1)$, then $3 \mid(n+1)$.
Since $n-2=3 q$, then $3 \mid(n-2)$.
Since $3 \mid(n+1)$ and $3 \mid(n-2)$, then $(3 * 3) \mid(n+1)(n-2)$, so $9 \mid(n+1)(n-2)$.
Hence, 9 divides any multiple of $(n+1)(n-2)$, so $9 \mid p$.

Therefore, in all cases, $9 \mid p$.
Proof. Since $5 \mid p$ and $8 \mid p$ and $\operatorname{gcd}(5,8)=1$, then $(5 * 8) \mid p$, so $40 \mid p$.
Since $40 \mid p$ and $9 \mid p$ and $\operatorname{gcd}(40,9)=1$, then $(40 * 9) \mid p$, so $360 \mid p$.
Exercise 87. For all $n \in \mathbb{N}, n^{3}+5 n$ is divisible by 6 .
Proof. To prove the statement $n^{3}+5 n$ is divisible by 6 for all $n \in \mathbb{N}$, we prove $6 \mid\left(n^{3}+5 n\right)$ for all $n \in \mathbb{N}$ by induction on n.

Let $p(n): 6 \mid\left(n^{3}+5 n\right)$ be a predicate defined over \mathbb{N}.

Basis:

Since $1^{3}+5 * 1=6$ and $6 \mid 6$, then the statement $p(1)$ is true.

Induction:

Let $k \in \mathbb{N}$ such that $p(k)$ is true.
Then $6 \mid\left(k^{3}+5 k\right)$, so there exists an integer m such that $k^{3}+5 k=6 m$.
Since the product of two consecutive integers is even and $k \in \mathbb{Z}$, then $k(k+1)$ is even, so there exists $n \in \mathbb{Z}$ such that $k(k+1)=2 n$.

Observe that

$$
\begin{aligned}
(k+1)^{3}+5(k+1) & =k^{3}+3 k^{2}+8 k+6 \\
& =k^{3}+8 k+3 k^{2}+6 \\
& =k^{3}+(5 k+3 k)+3 k^{2}+6 \\
& =\left(k^{3}+5 k\right)+\left(3 k+3 k^{2}\right)+6 \\
& =\left(k^{3}+5 k\right)+\left(3 k^{2}+3 k\right)+6 \\
& =6 m+3 k(k+1)+6 \\
& =6 m+3(2 n)+6 \\
& =6 m+6 n+6 \\
& =6(m+n+1)
\end{aligned}
$$

Since $m+n+1 \in \mathbb{Z}$, then $6 \mid\left((k+1)^{3}+5(k+1)\right)$, so $p(k+1)$ is true.
Therefore, by PMI, the statement $6 \mid\left(n^{3}+5 n\right)$ is true for all $n \in \mathbb{N}$.
Exercise 88. For all $n \in \mathbb{Z}^{+}, n(n+1)(2 n+1)$ is divisible by 6 .

Proof. By the division algorithm there exist unique integers q, r such that $n=$ $6 q+r$ with $0 \leq r<6$, so either $n=6 q$ or $n=6 q+1$ or $n=6 q+2$ or $n=6 q+3$ or $n=6 q+4$ or $n=6 q+5$.

We consider each case separately.
Case 1: Suppose $n=6 q$.
Then $6 \mid n$, so 6 divides any multiple of n.
Therefore, $6 \mid n(n+1)(2 n+1)$.
Case 2: Suppose $n=6 q+1$.
Then $n+1=6 q+2=2(3 q+1)$ and $2 n+1=2(6 q+1)+1=12 q+3=3(4 q+1)$, so $(n+1)(2 n+1)=6(3 q+1)(4 q+1)$.

Hence, $6 \mid(n+1)(2 n+1)$, so 6 divides any multiple of $(n+1)(2 n+1)$.
Therefore, $6 \mid n(n+1)(2 n+1)$.
Case 3: Suppose $n=6 q+2$.
Then $n=2(3 q+1)$ and $n+1=6 q+3=3(2 q+1)$, so $n(n+1)=$ $6(3 q+1)(2 q+1)$.

Hence, $6 \mid n(n+1)$, so 6 divides any multiple of $n(n+1)$.
Therefore, $6 \mid n(n+1)(2 n+1)$.
Case 4: Suppose $n=6 q+3$.
The $n=3(2 q+1)$ and $n+1=6 q+4=2(3 q+2)$, so $n(n+1)=6(2 q+1)(3 q+2)$.
Hence, $6 \mid n(n+1)$, so 6 divides any multiple of $n(n+1)$.
Therefore, $6 \mid n(n+1)(2 n+1)$.
Case 5: Suppose $n=6 q+4$.
Then $n=2(3 q+2)$ and $2 n+1=2(6 q+4)+1=12 q+9=3(4 q+3)$, so $n(2 n+1)=6(3 q+2)(4 q+3)$.

Hence, $6 \mid n(2 n+1)$, so 6 divides any multiple of $n(2 n+1)$.
Therefore, $6 \mid n(n+1)(2 n+1)$.
Case 6: Suppose $n=6 q+5$.
Then $n+1=6 q+6=6(q+1)$, so $6 \mid(n+1)$.
Hence, 6 divides any multiple of $n+1$.
Therefore, $6 \mid n(n+1)(2 n+1)$.
Exercise 89. The number 2 is not a square.
Proof. Suppose 2 is a square.
Then $2=n^{2}$ for some integer n, so, $n \mid 2$,
We may assume $n>0$, since $(-n)^{2}=n^{2}$.
Since $2=2 * 1$, then either $n=1$ or $n=2$.
If $n=1$, then $2=n^{2}=1^{2}=1$, a contradiction.
If $n=2$, then $2=n^{2}=2^{2}=4$, a contradiction.
Therefore, 2 is not a square.
Exercise 90. Let k be a positive odd integer.
Then any sum of k consecutive integers is divisible by k.
Solution. Let k be a positive odd integer.
To prove any sum of k consecutive integers is divisible by k, we let $n+1, n+$ $2, \ldots, n+k$ be k consecutive integers for some integer n.

We must prove k divides the sum $(n+1)+(n+2)+\ldots+(n+k)$.
Thus, we must prove there exists an integer a such that $(n+1)+(n+2)+$ $\ldots+(n+k)=k a$.

Proof. Let k be a positive odd integer.
Let $n+1, n+2, \ldots, n+k$ be k consecutive integers for some integer n.
To prove k divides the sum $\sum_{i=1}^{k}(n+i)$, we must find an integer m such that $\sum_{i=1}^{k}(n+i)=k m$.

Observe that

$$
\begin{aligned}
\sum_{i=1}^{k}(n+i) & =\sum_{i=1}^{k} n+\sum_{i=1}^{k} i \\
& =k n+\frac{k(k+1)}{2} \\
& =k\left(n+\frac{k+1}{2}\right)
\end{aligned}
$$

Since k is odd, then there exists an integer a such that $k=2 a+1$.
Thus, $\frac{k+1}{2}=\frac{2 a+2}{2}=a+1 \in \mathbb{Z}$.
Let $m=n+\frac{k+1}{2}$.
Since n and $\frac{k+1}{2}$ are integers, then m is an integer.
Hence, $\sum_{i=1}^{k}(n+i)=k m$, as desired.
Exercise 91. Let $n \in \mathbb{N}$.
If n is odd, then $(a+b) \mid\left(a^{n}+b^{n}\right)$ for all $a, b, n \in \mathbb{Z}^{+}$.
Proof. Suppose n is odd.
Then $n=2 k+1$ for some integer k.
Let $a, b \in \mathbb{Z}^{+}$.
Observe that

$$
\begin{aligned}
(a+b) \sum_{i=0}^{2 k}(-1)^{i} a^{2 k-i} b^{i} & =a \sum_{i=0}^{2 k}(-1)^{i} a^{2 k-i} b^{i}+b \sum_{i=0}^{2 k}(-1)^{i} a^{2 k-i} b^{i} \\
& =\sum_{i=0}^{2 k}(-1)^{i} a^{2 k+1-i} b^{i}+\sum_{i=0}^{2 k}(-1)^{i} a^{2 k-i} b^{i+1} \\
& =\left(a^{2 k+1}-a^{2 k} b+a^{2 k-1} b^{2}+\ldots+a b^{2 k}\right)+\left(a^{2 k} b-a^{2 k-1} b^{2}+\ldots-a b^{2 k}+b^{2 k+1}\right) \\
& =a^{2 k+1}+b^{2 k+1} \\
& =a^{n}+b^{n}
\end{aligned}
$$

Since $\sum_{i=0}^{2 k}(-1)^{i} a^{2 k-i} b^{i}$ is an integer and $a^{n}+b^{n}=(a+b) \sum_{i=0}^{2 k}(-1)^{i} a^{2 k-i} b^{i}$, then $a+b$ divides $a^{n}+b^{n}$, so $a+b$ divides $a^{n}+b^{n}$ for all $a, b \in \mathbb{Z}^{+}$.

Since n is odd and $a+b$ divides $a^{n}+b^{n}$ for all $a, b \in \mathbb{Z}^{+}$, then we conclude: if n is odd, then $(a+b) \mid\left(a^{n}+b^{n}\right)$ for all $a, b, n \in \mathbb{Z}^{+}$, by conditional introduction.

Exercise 92. Let n be a positive integer.
Let

$$
A=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Then $A^{n}=I$ iff $4 \mid n$.
Solution. We compute values for A^{n} and observe a pattern.
Whenever n is a multiple of 4 we observe that $A^{n}=I$, where I is the identity matrix.

We must prove:

1. if $A^{n}=I$, then $4 \mid n$.

We'll use the division algorithm to prove $A^{n} \neq I$.
2 . if $4 \mid n$, then $A^{n}=I$. Assume $4 \mid n$.
We compute A^{n}.
Proof. Observe that $A^{4}=I$ where I is the identity matrix.
We prove if $4 \mid n$, then $A^{n}=I$.
Suppose $4 \mid n$.
Then there exists an integer k such that $n=4 k$.
Thus, $A^{n}=A^{4 k}=\left(A^{4}\right)^{k}=I^{k}=I$, as desired.

Conversely, we prove if $A^{n}=I$, then $4 \mid n$.
Suppose $A^{n}=I$.
We must prove $4 \mid n$.
By the division algorithm, there are unique integers q and r such that $n=$ $4 q+r$ with $0 \leq r<4$.

Hence, either $r=0$ or $r=1$ or $r=2$ or $r=3$.
Observe that $A^{r}=A^{n-4 q}=A^{n} A^{-4 q}=I A^{-4 q}=A^{-4 q}=\left(A^{4}\right)^{-q}=I^{-q}=I$.
Computation shows that $A^{1} \neq I$ and $A^{2} \neq I$ and $A^{3} \neq I$.
Hence, r cannot be 1,2 or 3 .
Thus, r must be zero.
Therefore, $n=4 q$, so $4 \mid n$, as desired.
Exercise 93. Let $\omega=\frac{-1}{2}+\frac{\sqrt{3}}{2} i$.
Then $\omega^{n}=1$ if and only if $3 \mid n$, for any integer n.
Solution. Observe that $\omega \in \mathbb{C}$.
We must prove $(\forall n \in \mathbb{Z})\left(\omega^{n}=1 \leftrightarrow 3 \mid n\right)$.
Thus, we let $n \in \mathbb{Z}$ be arbitrary.
To prove $\omega^{n}=1 \leftrightarrow 3 \mid n$, we must prove:

1. $\omega^{n}=1 \Rightarrow 3 \mid n$
2. $3 \mid n \Rightarrow \omega^{n}=1$.

Note that $\omega=\operatorname{cis}\left(\frac{2 \pi}{3}\right)$.
We compute ω^{n} for various values of n.
We observe the pattern of repeating powers of ω, namely, $1, \omega, \omega^{2}$ repeat.

Proof. Let n be an arbitrary integer.
To prove $\omega^{n}=1 \Rightarrow 3 \mid n$, assume $\omega^{n}=1$.
We must prove $3 \mid n$.
Using the division algorithm to divide n by 3 , we obtain unique integers q and r such that $n=3 q+r$ and $0 \leq r<3$.

To prove $3 \mid n$, we must prove $r=0$.
Observe that $\omega^{3}=1$ and

$$
\begin{aligned}
1 & =\omega^{n} \\
& =\omega^{3 q+r} \\
& =\omega^{3 q} \omega^{r} \\
& =\left(\omega^{3}\right)^{q} \omega^{r} \\
& =(1)^{q} \omega^{r} \\
& =1 \omega^{r} \\
& =\omega^{r} .
\end{aligned}
$$

Since $0 \leq r<3$, then either $r=0$ or $r=1$ or $r=2$.
A computation shows that $\omega^{1} \neq 1$ and $\omega^{2} \neq 1$.
Thus, r cannot be 1 or 2 .
Hence, r must be zero.
Therefore, $n=3 q$, so $3 \mid n$, as desired.
To prove $3 \mid n \Rightarrow \omega^{n}=1$, assume $3 \mid n$.
We must prove $\omega^{n}=1$.
Since $3 \mid n$, then there exists an integer k such that $n=3 k$.
Thus, $\omega^{n}=\omega^{3 k}=\left(\omega^{3}\right)^{k}=1^{k}=1$, as desired.
Exercise 94. For all $n \in \mathbb{N}, 5^{n}-4 n-1$ is divisible by 16 .
Proof. To prove the statement $5^{n}-4 n-1$ is divisible by 16 for all $n \in \mathbb{N}$, we prove $16 \mid\left(5^{n}-4 n-1\right)$ for all $n \in \mathbb{N}$ by induction on n.

Let $S=\left\{n \in \mathbb{N}:\left(16 \mid\left(5^{n}-4 n-1\right)\right)\right\}$.

Basis:

Since $5^{1}-4 * 1-1=0$ and $16 \mid 0$, then $1 \in S$.
Induction:
Let $k \in S$.
Then $k \in \mathbb{N}$ and $16 \mid\left(5^{k}-4 k-1\right)$.
Since $16 \mid\left(5^{k}-4 k-1\right)$, then $16 \mid 5\left(5^{k}-4 k-1\right)$.
Since $16 \mid 16 k$, then 16 divides the sum $5\left(5^{k}-4 k-1\right)+16 k=5^{k+1}-4 k-5=$ $5^{k+1}-4(k+1)-1$.

Thus, 16 divides $5^{k+1}-4(k+1)-1$, so $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$.
Therefore, by PMI, $5^{n}-4 n-1$ is divisible by 16 for all $n \in \mathbb{N}$.
Exercise 95. For all $n \in \mathbb{N}, 10^{n+1}+10^{n}+1$ is divisible by 3 .

Proof. Let $S=\left\{n \in \mathbb{N}:\left(3 \mid\left(10^{n+1}+10^{n}+1\right)\right)\right\}$.
Basis:
Since $10^{1+1}+10^{1}+1=111=3 \cdot 37$, then $3 \mid\left(10^{1+1}+10^{1}+1\right)$, so $1 \in S$.
Induction:
Let $k \in S$.
Then $k \in \mathbb{N}$ and $3 \mid\left(10^{k+1}+10^{k}+1\right)$, so there exists $m \in \mathbb{Z}$ such that $10^{k+1}+10^{k}+1=3 m$.

Observe that

$$
\begin{aligned}
10^{(k+1)+1}+10^{k+1}+1 & =10 \cdot 10^{k+1}+10 \cdot 10^{k}+1 \\
& =(9+1) \cdot 10^{k+1}+(9+1) \cdot 10^{k}+1 \\
& =9 \cdot 10^{k+1}+10^{k+1}+9 \cdot 10^{k}+10^{k}+1 \\
& =\left(9 \cdot 10^{k+1}+9 \cdot 10^{k}\right)+\left(10^{k+1}+10^{k}+1\right) \\
& =\left(9 \cdot 10^{k+1}+9 \cdot 10^{k}\right)+3 m \\
& =3\left(3 \cdot 10^{k+1}+3 \cdot 10^{k}\right)+3 m \\
& =3\left(3 \cdot 10^{k+1}+3 \cdot 10^{k}+m\right)
\end{aligned}
$$

Since $3 \cdot 10^{k+1}+3 \cdot 10^{k}+m$ is an integer, then this implies 3 divides $10^{(k+1)+1}+$ $10^{k+1}+1$, so $k+1 \in S$.

Hence, $k \in S$ implies $k+1 \in S$.
Therefore, by PMI, $10^{n+1}+10^{n}+1$ is divisible by 3 for all $n \in \mathbb{N}$.
Exercise 96. For all $n \in \mathbb{Z}^{+}, 4 \cdot 10^{2 n}+9 \cdot 10^{2 n-1}+5$ is divisible by 99 .
Proof. Let $S=\left\{n \in \mathbb{Z}^{+}:\left(99 \mid\left(4 \cdot 10^{2 n}+9 \cdot 10^{2 n-1}+5\right)\right)\right\}$.

Basis:

Since $4 \cdot 10^{2(1)}+9 \cdot 10^{2(1)-1}+5=400+90+5=495=99 \cdot 5$, then $99 \mid\left(4 \cdot 10^{2(1)}+9 \cdot 10^{2(1)-1}+5\right)$, so $1 \in S$.

Induction:

Let $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $99 \mid\left(4 \cdot 10^{2 k}+9 \cdot 10^{2 k-1}+5\right)$, so there exists $m \in \mathbb{Z}$ such that $4 \cdot 10^{2 k}+9 \cdot 10^{2 k-1}+5=99 \mathrm{~m}$.

Observe that

$$
\begin{aligned}
4 \cdot 10^{2(k+1)}+9 \cdot 10^{2(k+1)-1}+5 & =4 \cdot 10^{2 k+2}+9 \cdot 10^{2 k+2-1}+5 \\
& =4 \cdot 10^{2 k} \cdot 10^{2}+9 \cdot 10^{2 k-1} \cdot 10^{2}+5 \\
& =4(100) \cdot 10^{2 k}+9(100) \cdot 10^{2 k-1}+5 \\
& =100\left(4 \cdot 10^{2 k}\right)+100\left(9 \cdot 10^{2 k-1}\right)+5 \\
& =100\left(4 \cdot 10^{2 k}\right)+100\left(9 \cdot 10^{2 k-1}\right)+(500-495) \\
& =100\left(4 \cdot 10^{2 k}\right)+100\left(9 \cdot 10^{2 k-1}\right)+100 \cdot 5-99 \cdot 5 \\
& =100\left(4 \cdot 10^{2 k}+9 \cdot 10^{2 k-1}+5\right)-99 \cdot 5 \\
& =100(99 m)-99 \cdot 5 \\
& =99(100 m-5) .
\end{aligned}
$$

Since $100 m-5$ is an integer, then this implies 99 divides $4 \cdot 10^{2(k+1)}+9$. $10^{2(k+1)-1}+5$, so $k+1 \in S$.

Hence, $k \in S$ implies $k+1 \in S$.
Therefore, by PMI, $4 \cdot 10^{2 n}+9 \cdot 10^{2 n-1}+5$ is divisible by 99 for all $n \in \mathbb{Z}^{+}$.
Exercise 97. Every integer $10^{n+1}+3 \cdot 10^{n}+5$ is divisible by 9 for $n \in \mathbb{N}$.
Solution. We re-state this using the definition of divisibility: $\forall(n \in N), 9 \mid 10^{n+1}+$ $3 \cdot 10^{n}+5$.

We must prove the proposition $\forall(n \in N), S_{n}$ where the statement S_{n} is $9 \mid 10^{n+1}+3 \cdot 10^{n}+5$.

We can work backwards to prove $9\left|10^{k+1}+3 \cdot 10^{k}+5 \rightarrow 9\right| 10^{(k+1)+1}+3$. $10^{k+1}+5$.

If $9 \mid 10^{k+1}+3 \cdot 10^{k}+5$ is true, then $10^{k+1}+3 \cdot 10^{k}+5=9 a$ for some integer a.

Thus, $10^{k+1}+3 \cdot 10^{k}=9 a-5$.
If $9 \mid 10^{(k+1)+1}+3 \cdot 10^{k+1}+5$, then $10^{(k+1)+1}+3 \cdot 10^{k+1}+5=9 b$ for some integer b.

Thus, $10^{(k+1)+1}+3 \cdot 10^{k+1}=9 b-5$.
Hence, $10\left(10^{k+1}+3 \cdot 10^{k}\right)=10(9 b-5)$.
So, we can multiply $10^{k+1}+3 \cdot 10^{k}=9 a-5$ by 10 to complete the proof.
Proof. Let $n \in \mathbb{N}$ and let S_{n} be the statement 9 divides $10^{n+1}+3 \cdot 10^{n}+5$.
We prove using mathematical induction.
Basis:
For $n=1$, the statement S_{1} is 9 divides $10^{1+1}+3 \cdot 10+5$.
Since $10^{1+1}+3 \cdot 10+5=135=9 * 15$, then 9 divides $10^{1+1}+3 \cdot 10+5$, so S_{1} is true.

Induction:

Let $k \in \mathbb{N}$.
Suppose $9 \mid 10^{k+1}+3 \cdot 10^{k}+5$ for any $k \geq 1$.
Then $10^{k+1}+3 \cdot 10^{k}+5=9 a$ for some integer a.
Observe that

$$
\begin{aligned}
10^{k+1}+3 \cdot 10^{k}+5 & =9 a \\
10^{k+1}+3 \cdot 10^{k} & =9 a-5 \\
10^{k+2}+3 \cdot 10^{k+1} & =90 a-50 \\
10^{k+2}+3 \cdot 10^{k+1}+5 & =90 a-45 \\
10^{k+2}+3 \cdot 10^{k+1}+5 & =9(10 a-5)
\end{aligned}
$$

Since $a \in \mathbb{Z}$, then $10 a-5 \in \mathbb{Z}$.
Therefore, $9 \mid 10^{(k+1)+1}+3 \cdot 10^{k+1}+5$ for any $k \geq 1$.
Since S_{1} is true and 9 divides $10^{k+1}+3 \cdot 10^{k}+5$ implies 9 divides $10^{(k+1)+1}+$ $3 \cdot 10^{k+1}+5$ for any integer $k \geq 1$, then 9 divides $10^{n+1}+3 \cdot 10^{n}+5$ for every $n \in \mathbb{N}$.

Exercise 98. Each number in the sequence $12,102,1002,10002, \ldots$, is divisible by 6 .

Solution. Let $a=(12,102,1002,10002,100002, \ldots)$. We can find an expression for the $n^{\text {th }}$ term of the sequence a by observing the pattern:

$$
\begin{aligned}
& a_{1}=12=10^{1}+2 \\
& a_{2}=102=10^{2}+2 \\
& a_{3}=1002=10^{3}+2 \\
& \ldots \\
& a_{k}=10^{k}+2
\end{aligned}
$$

Hence the $n^{\text {th }}$ term of the sequence is $a_{n}=10^{n}+2$.
We must prove the proposition $\forall(n \in N), S_{n}$ where the statement S_{n} is $6 \mid 10^{n}+2$.

Since S_{n} is a statement about the natural numbers, we use proof by induction(weak).

Our basis is $n_{0}=1$ and we must prove S_{1}.
For induction we must prove $S_{k} \rightarrow S_{k+1}$ for any $k \geq 1$.
Thus we must prove $6\left|\left(10^{k}+2\right) \rightarrow 6\right|\left(10^{k+1}+2\right)$ for $k \geq 1$.
We use direct proof to assume $6 \mid\left(10^{k}+2\right)$ for any $k \geq 1$.
This is our induction hypothesis.
Proof. Let $n \in \mathbb{N}$ and let S_{n} be the statement $6 \mid 10^{n}+2$.
We prove using mathematical induction(weak).
Basis: For $n=1$, the statement S_{1} is $6 \mid 12$ which is true because $12=6 \cdot 2$.

Induction: Let $k \in \mathbb{N}$.
Suppose $6 \mid 10^{k}+2$ for $k \geq 1$.
Then there is a $b \in \mathbb{Z}$ for which $6 b=10^{k}+2$.
Observe that:

$$
\begin{aligned}
10^{k+1}+2 & =10 \cdot 10^{k}+20-18 \\
& =10\left(10^{k}+2\right)-18 \\
& =10(6 b)-18 \\
& =6(10 b-3)
\end{aligned}
$$

Hence $6 \mid 10^{k+1}+2$.
This completes the proof that $S_{k} \rightarrow S_{k+1}$ for $k \geq 1$.
It follows by induction that $6 \mid 10^{n}+2$ for all natural numbers n.
Exercise 99. Let $n \in \mathbb{Z}$.
Then the only positive divisor of n and $n+1$ is 1 .

Proof. Let S be the set of all positive divisors of n and $n+1$.
Then $S=\left\{d \in \mathbb{Z}^{+}: d|n \wedge d|(n+1)\right\}$.
We must prove $S=\{1\}$.
Since $1 \in \mathbb{Z}^{+}$and $1 \mid n$ and $1 \mid(n+1)$, then $1 \in S$, so $\{1\} \subset S$.

Let $d \in S$.
Then $d \in \mathbb{Z}^{+}$and $d \mid n$ and $d \mid(n+1)$.
Since $d \mid n$ and $d \mid(n+1)$, then d divides any linear combination of n and $n+1$.
In particular, d divides $(-1)(n)+(1)(n+1)=-n+n+1=1$, so $d \mid 1$.
Since $d \in \mathbb{Z}^{+}$and $1 \in \mathbb{Z}^{+}$and $d \mid 1$, then $d \leq 1$.
Since $d \in \mathbb{Z}^{+}$, then $d \geq 1$.
Since $d \leq 1$ and $1 \leq d$, then by the anti-symmetric property of $\mathbb{Z}^{+}, d=1$.
Hence, $d \in\{1\}$, so $S \subset\{1\}$.
Since $S \subset\{1\}$ and $\{1\} \subset S$, then $S=\{1\}$, as desired.
Exercise 100. Let $n \in \mathbb{Z}^{+}$.
Then $\operatorname{gcd}(n, n+1)=1$.
Proof. Since 1 divides any integer, then $1 \mid n$ and $1 \mid(n+1)$, so 1 is a common divisor of n and $n+1$.

Let c be any common divisor of n and $n+1$.
Then $c \mid n$ and $c \mid(n+1)$, so c divides the difference $(n+1)-n=1$.
Hence, $c \mid 1$, so any common divisor of n and $n+1$ divides 1 .
Since $1 \in \mathbb{Z}^{+}$and 1 is a common divisor of n and $n+1$ and any common divisor of n and $n+1$ divides 1 , then by definition of $\operatorname{gcd}, 1=\operatorname{gcd}(n, n+1)$.

Proof. Since $1=(n+1)-n=-n+(n+1)$ is a linear combination of n and $n+1$, then 1 is a multiple of $\operatorname{gcd}(n, n+1)$, $\operatorname{so} \operatorname{gcd}(n, n+1)$ divides 1 .

Since the only positive integer that divides 1 is 1 , then $\operatorname{gcd}(n, n+1)=1$.
Exercise 101. Let $n \in \mathbb{Z}^{+}$.
Then either $\operatorname{gcd}(n, n+2)=1$ or $\operatorname{gcd}(n, n+2)=2$.
Proof. Either n is even or n is odd.
We consider each case separately.
Case 1: Suppose n is even.
Then $n=2 k$ for some integer k.
Thus, $n+2=2 k+2=2(k+1)$, so $n+2$ is even.
Since n is even and $n+2$ is even, then 2 divides n and $n+2$, so 2 is a common divisor of n and $n+2$.

Let c be any common divisor of n and $n+2$.
Then $c \mid n$ and $c \mid(n+2)$, so c divides the difference $(n+2)-n=2$.
Hence, $c \mid 2$, so any common divisor of n and $n+2$ divides 2 .
Since $2 \in \mathbb{Z}^{+}$and 2 is a common divisor of n and $n+2$ and any common divisor of n and $n+2$ divides 2 , then $2=\operatorname{gcd}(n, n+2)$, by definition of gcd.

Case 2: Suppose n is odd.
Since 1 divides any integer, then $1 \mid n$ and $1 \mid(n+2)$.

Let c be any common divisor of n and $n+2$.
Then $c \mid n$ and $c \mid(n+2)$, so c divides the difference $(n+2)-n=2$.
Hence, $c \mid 2$.
Without loss of generality, assume $c>0$.
Then either $c=1$ or $c=2$.
If $c=2$, then $2 \mid n$, so n is even.
But, this contradicts the assumption n is odd.
Therefore, $c \neq 2$, so $c=1$.
Hence, any common divisor of n and $n+2$ must divide 1 .
Since $1 \in \mathbb{Z}^{+}$and 1 is a common divisor of n and $n+2$ and any common divisor of n and $n+2$ divides 1 , then $1=\operatorname{gcd}(n, n+2)$.

Exercise 102. Let $k \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
Then $\operatorname{gcd}(n, n+k) \mid k$.
This means gcd of n and $n+k$ is a factor of k.
Proof. Let $d=\operatorname{gcd}(n, n+k)$.
Then $d \mid n$ and $d \mid(n+k)$, so d divides the difference $(n+k)-n=k$.
Therefore, $d \mid k$.
Exercise 103. Let $k, n \in \mathbb{Z}$.
Then $\operatorname{gcd}(k, n+k)=1$ iff $\operatorname{gcd}(k, n)=1$.
Proof. Suppose $\operatorname{gcd}(k, n)=1$.
Then there exist integers x, y such that $x k+y n=1$.
Thus, $1=x k+y n=x k-y k+y k+y n=k(x-y)+y(k+n)=(x-y) k+$ $y(n+k)$.

Since $x-y$ and y are integers and $(x-y) k+y(n+k)=1$, then $\operatorname{gcd}(k, n+k)=$ 1.

Proof. Conversely, suppose $\operatorname{gcd}(k, n+k)=1$.
Then there exist integers s, t such that $s k+t(n+k)=1$.
Thus, $1=s k+t n+t k=s k+t k+t n=(s+t) k+t n$.
Since $s+t$ and t are integers and $(s+t) k+t n=1$, then $\operatorname{gcd}(k, n)=1$.
Exercise 104. Let $k, n \in \mathbb{Z}$.
Then $\operatorname{gcd}(k, n+k)=d$ iff $\operatorname{gcd}(k, n)=d$.
Proof. Suppose $\operatorname{gcd}(k, n)=d$.
Then $d \in \mathbb{Z}^{+}$and $d \mid k$ and $d \mid n$ and if c is any common divisor of k and n, then $c \mid d$.

Since $d \mid n$ and $d \mid k$, then d divides the sum $n+k$, so $d \mid(n+k)$.
Since $d \mid k$ and $d \mid(n+k)$, then d is a common divisor of k and $n+k$.

Let c be any common divisor k and $n+k$.
Then $c \mid k$ and $c \mid(n+k)$, so c divides the difference $(n+k)-k=n$.
Hence, $c \mid n$.
Since $c \mid k$ and $c \mid n$, then c is a common divisor of k and n, so $c \mid d$.
Therefore, any common divisor of k and $n+k$ divides d.

Since $d \in \mathbb{Z}^{+}$and d is a common divisor of k and $n+k$ and any common divisor of k and $n+k$ divides d, then by definition of $\operatorname{gcd}, d=\operatorname{gcd}(k, n+k)$.

Proof. Conversely, suppose $\operatorname{gcd}(k, n+k)=d$.
Then $d \in \mathbb{Z}^{+}$and $d \mid k$ and $d \mid(n+k)$ and if c is any common divisor of k and $n+k$, then $c \mid d$.

Since $d \mid k$ and $d \mid(n+k)$, then d divides the difference $(n+k)-k=n$.
Since $d \mid k$ and $d \mid n$, then d is a common divisor of k and n.

Let c be any common divisor of k and n.
Then $c \mid k$ and $c \mid n$, so c divides the sum $n+k$.
Since $c \mid k$ and $c \mid(n+k)$, then c is a common divisor of k and $n+k$, so $c \mid d$.
Hence, any common divisor of k and n divides d.
Since $d \in \mathbb{Z}^{+}$and d is a common divisor k and n and any common divisor of k and n divides d, then by definition of $\operatorname{gcd}, d=\operatorname{gcd}(k, n)$.

Exercise 105. Let $k, n \in \mathbb{Z}$.
Then $\operatorname{gcd}(k, n+r k)=d$ for all $r \in \mathbb{Z}$ iff $\operatorname{gcd}(k, n)=d$.
Proof. Suppose $\operatorname{gcd}(k, n)=d$.
Then $d \in \mathbb{Z}^{+}$and $d \mid k$ and $d \mid n$ and if c is any common divisor of k and n, then $c \mid d$.

Let $r \in \mathbb{Z}$.
Since $d \mid k$, then $d \mid r k$.
Since $d \mid n$ and $d \mid r k$, then d divides the sum $n+r k$.
Since $d \mid k$ and $d \mid(n+r k)$, then d is a common divisor of k and $n+r k$.

Let c be any common divisor of k and $n+r k$.
Then $c \mid k$ and $c \mid(n+r k)$.
Since $c \mid k$, then $c \mid r k$.
Since $c \mid(n+r k)$ and $c \mid r k$, then c divides the difference $(n+r k)-r k=n$, so $c \mid n$.

Since $c \mid k$ and $c \mid n$, then c is a common divisor of k and n, so $c \mid d$.
Hence, any common divisor of k and $n+r k$ divides d.
Since $d \in \mathbb{Z}^{+}$and d is a common divisor of k and $n+r k$ and any common divisor of k and $n+r k$ divides d, then by definition of $\operatorname{gcd}, d=\operatorname{gcd}(k, n+r k)$.

Proof. Conversely, suppose $\operatorname{gcd}(k, n+r k)=d$ for all $r \in \mathbb{Z}$.
Let $r=0$.
Then $d=\operatorname{gcd}(k, n+r k)=\operatorname{gcd}(k, n+0 k)=\operatorname{gcd}(k, n+0)=\operatorname{gcd}(k, n)$.
Therefore, $\operatorname{gcd}(k, n)=d$.
Exercise 106. Find all positive integers d such that d divides $n^{2}+1$ and $(n+1)^{2}+1$ for some integer n.

Solution. Let d be a positive integer such that $d \mid\left(n^{2}+1\right)$ and $d \mid\left[(n+1)^{2}+1\right]$ for some integer n.

Since $d \mid\left(n^{2}+1\right)$ and $d \mid\left[(n+1)^{2}+1\right]$, then d divides any linear combination of $n^{2}+1$ and $(n+1)^{2}+1$.

In particular, d divides the difference $\left[(n+1)^{2}+1\right]-\left(n^{2}+1\right)=\left(n^{2}+2 n+\right.$ 1) $+1-n^{2}-1=2 n+1$.

Since $d \mid(2 n+1)$ and $d \mid\left(n^{2}+1\right)$, then d divides any linear combination of $2 n+1$ and $n^{2}+1$.

In particular, d divides the sum $4\left(n^{2}+1\right)-(2 n+1)^{2}+2(2 n+1)=\left(4 n^{2}+\right.$ 4) $-\left(4 n^{2}+4 n+1\right)+(4 n+2)=5$.

Since $d \in \mathbb{Z}^{+}$and $d \mid 5$, then d must be 1 or 5 .
Exercise 107. If n is a positive integer, find the possible values of $\operatorname{gcd}(n, n+10)$.
Proof. Let $n \in \mathbb{Z}^{+}$.
Let $d=\operatorname{gcd}(n, n+10)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid n$ and $d \mid(n+10)$, so d divides any linear combination of n and $n+10$.

In particular, d divides $-n+(n+10)=10$.
Thus, $d \mid 10$, so d must be one of $1,2,5,10$.
Therefore, $d \in\{1,2,5,10\}$.
Exercise 108. Let $n \in \mathbb{Z}$.
Then $\operatorname{gcd}(n, 1)=1$.
Proof. Since 1 and $1-n$ are integers and $(1)(n)+(1-n)(1)=n+1-n=$ $1+n-n=1+0=1$, then 1 is a linear combination of n and 1 .

Hence, 1 is a multiple of $\operatorname{gcd}(n, 1)$, so $\operatorname{gcd}(n, 1)$ divides 1 .
The only positive integer that divides 1 is 1 , $\operatorname{sog} \operatorname{gcd}(n, 1)=1$.
Exercise 109. Let $n \in \mathbb{Z}^{+}$.
Then $\operatorname{gcd}(3 n+2,5 n+3)=1$.
Proof. Since 5 and -3 are integers and $5(3 n+2)+(-3)(5 n+3)=15 n+10-$ $15 n-9=1$, then $\operatorname{gcd}(3 n+2,5 n+3)=1$.

Exercise 110. Let $a \in \mathbb{Z}$.
Then $\operatorname{gcd}(a, a+n)$ divides n for all $n \in \mathbb{Z}^{+}$.
Therefore, $\operatorname{gcd}(a, a+1)=1$.
Proof. Let $n \in \mathbb{Z}^{+}$.
Let $d=\operatorname{gcd}(a, a+n)$.
Then d is a common divisor of a and $a+n$, so d divides any linear combination of a and $a+n$.

In particular, d divides the difference $(a+n)-a=n$, so $d \mid n$.
Therefore, $\operatorname{gcd}(a, a+n) \mid n$ for any positive integer n.
For $n=1$ this implies $\operatorname{gcd}(a, a+1) \mid 1$.
The only positive integer that divides 1 is 1 , so $\operatorname{gcd}(a, a+1)=1$.

Exercise 111. Let $a, b \in \mathbb{Z}$.
Then there exist integers m, n such that $c=m a+n b$ iff $\operatorname{gcd}(a, b) \mid c$.
Proof. Observe that $\operatorname{gcd}(a, b) \mid c$ iff c is a multiple of $\operatorname{gcd}(a, b)$ iff c is a linear combination of a and b iff there exist integers m and n such that $c=m a+n b$.

Therefore, $\operatorname{gcd}(a, b) \mid c$ iff there exist integers m and n such that $c=m a+$ $n b$.

Exercise 112. Let $a, b \in \mathbb{Z}$.
If there exist integers m, n such that $\operatorname{gcd}(a, b)=m a+n b$, then $\operatorname{gcd}(m, n)=1$.
Proof. Suppose there exist integers m and n such that $\operatorname{gcd}(a, b)=m a+n b$.
Let $d=m a+n b$.
Then $\mathrm{d}=\operatorname{gcd}(a, b)$, so $d \in \mathbb{Z}^{+}$and $d \mid a$ and $d \mid b$.
Hence, $a=d x$ and $b=d y$ for some integers x and y.
Thus, $d=m(d x)+n(d y)=m(x d)+n(y d)=(m x) d+(n y) d=x m d+y n d=$ $(x m+y n) d$.

Since $d \in \mathbb{Z}^{+}$, then $d>0$, so $d \neq 0$.
Hence, $1=x m+y n$.
Since there exist integers x and y such that $x m+y n=1$, then $\operatorname{gcd}(m, n)=$
1.

Proposition 113. Let $a, b \in \mathbb{Z}$.
Then $(a, b)=(a, k a+b)$ for all $k \in \mathbb{Z}$.
Proof. Let $d=\operatorname{gcd}(a, b)$.
Then $d \mid a$ and $d \mid b$ and if c is any integer such that $c \mid a$ and $c \mid b$, then $c \mid d$.
Since $d \mid a$ and $d \mid b$, then d divides any linear combination of a and b, so d divides $k a+b$.

Since $d \mid a$ and $d \mid(k a+b)$, then d is a common divisor of a and $k a+b$.
Let c be an arbitrary integer such that $c \mid a$ and $c \mid(k a+b)$.
Then c divides any linear combination of a and $k a+b$.
In particular, c divides $(-k) a+(1)(k a+b)=-k a+k a+b=0+b=b$, so $c \mid b$.

Since $c \mid a$ and $c \mid b$, then $c \mid d$.
Thus, any common divisor of a and $k a+b$ divides d.
Since d is a common divisor of a and $k a+b$ and any common divisor of a and $k a+b$ divides d, then $d=\operatorname{gcd}(a, k a+b)$.

Exercise 114. Let $a, b \in \mathbb{Z}^{*}$.
For all $d \in \mathbb{Z}^{*}$, if $d \mid a$ and $d \mid b$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=\frac{1}{d} \operatorname{gcd}(a, b)$.
Proof. Let $d \in \mathbb{Z}^{*}$ such that $d \mid a$ and $d \mid b$.
Then $d \neq 0$ and there exist integers k_{1} and k_{2} such that $a=d k_{1}$ and $b=d k_{2}$.
Since $a, b \in \mathbb{Z}^{*}$, then the greatest common divisor of a and b exists and is unique.

Let $c=\operatorname{gcd}(a, b)$.
Then

$$
\begin{aligned}
c & =\operatorname{gcd}\left(d k_{1}, d k_{2}\right) \\
& =d \cdot \operatorname{gcd}\left(k_{1}, k_{2}\right) \\
& =d \cdot \operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right) .
\end{aligned}
$$

Since $c=d \cdot \operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)$ and $d \neq 0$, then $\frac{c}{d}=\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)$.
Therefore, $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=\frac{\operatorname{gcd}(a, b)}{d}=\frac{1}{d} \operatorname{gcd}(a, b)$.
Exercise 115. Let $a, b, c \in \mathbb{Z}$.
If $\operatorname{gcd}(a, b)=1$ and $c \mid a$, then $\operatorname{gcd}(b, c)=1$.
Proof. Suppose $\operatorname{gcd}(a, b)=1$ and $c \mid a$.
Since $\operatorname{gcd}(a, b)=1$, then there exist integers m and n such that $m a+n b=1$.
Since $c \mid a$, then $a=c k$ for some integer k.
Thus, $1=m(c k)+n b=n b+m(c k)=n b+(m k) c$.
Since n and $m k$ are integers and $n b+(m k) c=1$, then $\operatorname{gcd}(b, c)=1$.
Exercise 116. Let $a, b, c \in \mathbb{Z}$.
If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a c, b)=\operatorname{gcd}(c, b)$.
Proof. Suppose $\operatorname{gcd}(a, b)=1$.
Let $d=\operatorname{gcd}(c, b)$.
Then $d \mid c$ and $d \mid b$ and if e is any integer such that $e \mid c$ and $e \mid b$, then $e \mid d$.
We must prove $\operatorname{gcd}(a c, b)=d$.
Since $d \mid c$, then d divides any multiple of c, so $d \mid a c$.
Since $d \mid a c$ and $d \mid b$, then d is a common divisor of $a c$ and b.
Let $e \in \mathbb{Z}$ such that $e \mid a c$ and $e \mid b$.
Since e is a common divisor of $a c$ and b, then e divides any linear combination of $a c$ and b.

Since $\operatorname{gcd}(a, b)=1$, then there exist integers m and n such that $m a+n b=1$.
Thus, $c=c \cdot 1=c(m a+n b)=c m a+c n b=m(a c)+(c n) b$, so c is a linear combination of $a c$ and b.

Hence, $e \mid c$.
Since $e \mid c$ and $e \mid b$, then $e \mid d$, so any common divisor of $a c$ and b divides d.
Since d is a common divisor of $a c$ and b and any common divisor of $a c$ and b divides d, then $d=\operatorname{gcd}(a c, b)$.

Exercise 117. Let $a, b \in \mathbb{Z}$.
Then $\operatorname{gcd}(\operatorname{gcd}(a, b), b)=\operatorname{gcd}(a, b)$.
Proof. Let $d=\operatorname{gcd}(a, b)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid a$ and $d \mid b$ and if c is any common divisor of a and b, then c divides d.

Since $d \mid d$ and $d \mid b$, then d is a common divisor of d and b.
Let c be any common divisor of d and b.
Then $c \mid d$ and $c \mid b$.

Since $c \mid d$ and $d \mid a$, then $c \mid a$.
Since $c \mid a$ and $c \mid b$, then c is a common divisor of a and b, so $c \mid d$.
Hence, any common divisor of d and b divides d.
Since $d \in \mathbb{Z}^{+}$and d is a common divisor of d and b and any common divisor of d and b divides d, then by definition of $\operatorname{gcd}, \operatorname{gcd}(d, b)=d$.

Therefore, $\operatorname{gcd}(\operatorname{gcd}(a, b), b)=\operatorname{gcd}(d, b)=d=\operatorname{gcd}(a, b)$, as desired.
Exercise 118. Let $a, b, c \in \mathbb{Z}$.
If $\operatorname{gcd}(a, b)=1$ and $c \mid(a+b)$, then $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$.
Proof. Suppose $\operatorname{gcd}(a, b)=1$ and $c \mid(a+b)$.
Since $\operatorname{gcd}(a, b)=1$, then there exist integers m and n such that $m a+n b=1$.
Let $d=\operatorname{gcd}(a, c)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid a$ and $d \mid c$.
Since $d \mid c$ and $c \mid(a+b)$, then $d \mid(a+b)$.
Since $d \mid a$ and $d \mid(a+b)$, then d divides any linear combination of a and $a+b$.
Since $(-1) a+(1)(a+b)=-a+a+b=0+b=b$ is a linear combination of a and $a+b$, then this implies $d \mid b$.

Since $d \mid a$ and $d \mid b$, then d divides any linear combination of a and b.
Since $m a+n b=1$ is a linear combination of a and b, then this implies $d \mid 1$.
Since $d \in \mathbb{Z}^{+}$and $d \mid 1$, then this implies $d=1$.
Therefore, $\operatorname{gcd}(a, c)=1$.

Let $e=\operatorname{gcd}(b, c)$.
Then $e \in \mathbb{Z}^{+}$and $e \mid b$ and $e \mid c$.
Since $e \mid c$ and $c \mid(a+b)$, then $e \mid(a+b)$.
Since $e \mid b$ and $e \mid(a+b)$, then e divides any linear combination of b and $a+b$.
Since $(-1) b+(1)(a+b)=-b+a+b=-b+b+a=0+a=a$ is a linear combination of b and $a+b$, then this implies $e \mid a$.

Since $e \mid a$ and $e \mid b$, then e divides any linear combination of a and b.
Since $m a+n b=1$ is a linear combination of a and b, then this implies $e \mid 1$.
Since $e \in \mathbb{Z}^{+}$and $e \mid 1$, then this implies $e=1$.
Therefore, $\operatorname{gcd}(b, c)=1$.
Exercise 119. Let $a, b, d \in \mathbb{Z}$ such that d is a common divisor of a and b.
If $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$, then $d=\operatorname{gcd}(a, b)$.
Proof. Since d is a common divisor of a and b, then $d \mid a$ and $d \mid b$, so $a=d x$ and $b=d y$ for some integers x and y.

Thus, $x=\frac{a}{d} \in \mathbb{Z}$ and $y=\frac{b}{d} \in \mathbb{Z}$.
Suppose $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
Then there exist integers m and n such that $m\left(\frac{a}{d}\right)+n\left(\frac{b}{d}\right)=1$.
Thus, $m a+n b=d$, so d is a linear combination of a and b.
Let $c \in \mathbb{Z}$ such that c is any common divisor of a and b.
Then c divides any linear combination of a and b, so $c \mid d$.

Thus, any common divisor of a and b divides d.
Since d is a common divisor of a and b and any common divisor of a and b divides d, then $d=\operatorname{gcd}(a, b)$.

Exercise 120. Let $a, b \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=1$.
Then $\operatorname{gcd}(a+b, a-b)$ is 1 or 2 .
Proof. Let $d=\operatorname{gcd}(a+b, a-b)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid(a+b)$ and $d \mid(a-b)$.
We must prove either $d=1$ or $d=2$.
Since $\operatorname{gcd}(a, b)=1$, then there exist integers m and n such that $m a+n b=1$. Thus, $2 m a+2 n b=2$, so 2 is a linear combination of $2 a$ and $2 b$.
Since $d \mid(a+b)$ and $d \mid(a-b)$, then d divides the sum $(a+b)+(a-b)=2 a$, so $d \mid 2 a$.

Since $d \mid(a+b)$ and $d \mid(a-b)$, then d divides the difference $(a+b)-(a-b)=2 b$, so $d \mid 2 b$.

Since $d \mid 2 a$ and $d \mid 2 b$, then d divides any linear combination of $2 a$ and $2 b$, so $d \mid 2$.

Since $d \in \mathbb{Z}^{+}$and $d \mid 2$, then either $d=1$ or $d=2$, as desired.
Exercise 121. Let $a, b \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=1$.
Then $\operatorname{gcd}(a+2 b, 2 a+b)$ is 1 or 3 .
Proof. Let $d=\operatorname{gcd}(a+2 b, 2 a+b)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid(a+2 b)$ and $d \mid(2 a+b)$.
We must prove either $d=1$ or $d=3$.
Since $\operatorname{gcd}(a, b)=1$, then there exist integers m and n such that $m a+n b=1$.
Thus, $3 m a+3 n b=3$, so 3 is a linear combination of $3 a$ and $3 b$.
Since $d \mid(a+2 b)$ and $d \mid(2 a+b)$, then d divides any linear combination of $a+2 b$ and $2 a+b$.

Since $(-1)(a+2 b)+2(2 a+b)=-a-2 b+4 a+2 b=3 a$, then $3 a$ is a linear combination of $a+2 b$ and $2 a+b$, so $d \mid 3 a$.

Since $(2)(a+2 b)+(-1)(2 a+b)=2 a+4 b-2 a-b=3 b$, then $3 b$ is a linear combination of $a+2 b$ and $2 a+b$, so $d \mid 3 b$.

Since $d \mid 3 a$ and $d \mid 3 b$, then d divides any linear combination of $3 a$ and $3 b$, so $d \mid 3$.

Since $d \in \mathbb{Z}^{+}$and $d \mid 3$, then either $d=1$ or $d=3$, as desired.
Exercise 122. Let $a, b \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=1$.
Then $\operatorname{gcd}\left(a+b, a^{2}+b^{2}\right)$ is 1 or 2 .
Proof. Let $d=\operatorname{gcd}\left(a+b, a^{2}+b^{2}\right)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid(a+b)$ and $d \mid\left(a^{2}+b^{2}\right)$.
We must prove either $d=1$ or $d=2$.
Since $\operatorname{gcd}(a, b)=1$, then there exist integers m and n such that $m a+n b=1$.
Since $d \mid(a+b)$ and $d \mid\left(a^{2}+b^{2}\right)$, then d divides any linear combination of $a+b$ and $a^{2}+b^{2}$.

Since $\left(a^{2}+b^{2}\right)-(a-b)(a+b)=a^{2}+b^{2}-\left(a^{2}-b^{2}\right)=a^{2}+b^{2}-a^{2}+b^{2}=2 b^{2}$, then $2 b^{2}$ is a linear combination of $a+b$ and $a^{2}+b^{2}$.

Thus, $d \mid 2 b^{2}$.
Since $(a+b)^{2}-\left(a^{2}+b^{2}\right)=\left(a^{2}+2 a b+b^{2}\right)-a^{2}-b^{2}=2 a b$, then $2 a b$ is a linear combination of $a+b$ and $a^{2}+b^{2}$.

Thus, $d \mid 2 a b$.
Since $1=m a+n b$, then $2 b=2 b(m a+n b)=2 b m a+2 b n b=2 a b m+2 b^{2} n$, so $2 b$ is a linear combination of $2 a b$ and $2 b^{2}$.

Since $d \mid 2 a b$ and $d \mid 2 b^{2}$, then d divides any linear combination of $2 a b$ and $2 b^{2}$, so this implies $d \mid 2 b$.

Since $2(a+b)^{2}-4 a b-2 b^{2}=2\left(a^{2}+2 a b+b^{2}\right)-4 a b-2 b^{2}=2 a^{2}+4 a b+2 b^{2}-$ $4 a b-2 b^{2}=2 a^{2}$, then $2 a^{2}$ is a linear combination of $a+b$ and $2 a b$ and $2 b^{2}$.

Since $d \mid(a+b)$ and $d \mid 2 a b$ and $d \mid 2 b^{2}$, then d divides any linear combination of $a+b$ and $2 a b$ and $2 b^{2}$, so $d \mid 2 a^{2}$.

Since $1=m a+n b$, then $2 a=2 a(m a+n b)=2 a m a+2 a n b=2 a^{2} m+2 a b n$, so $2 a$ is a linear combination of $2 a^{2}$ and $2 a b$.

Since $d \mid 2 a^{2}$ and $d \mid 2 a b$, then d divides any linear combination of $2 a^{2}$ and $2 a b$, so $d \mid 2 a$.

Since $1=m a+n b$, then $2=2(m a+n b)=2 m a+2 n b$, so 2 is a linear combination of $2 a$ and $2 b$.

Since $d \mid 2 a$ and $d \mid 2 b$, then d divides any linear combination of $2 a$ and $2 b$, so $d \mid 2$.

Since $d \in \mathbb{Z}^{+}$and $d \mid 2$, then either $d=1$ or $d=2$.
Exercise 123. Let $a, b \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=1$.
Then $\operatorname{gcd}\left(a+b, a^{2}-a b+b^{2}\right)$ is 1 or 3 .
Proof. Let $d=\operatorname{gcd}\left(a+b, a^{2}-a b+b^{2}\right)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid(a+b)$ and $d \mid\left(a^{2}-a b+b^{2}\right)$.
We must prove either $d=1$ or $d=3$.
By the division algorithm, $a^{2}-a b+b^{2}=(a+b)(a-2 b)+3 b^{2}$, so $3 b^{2}=$ $\left(a^{2}-a b+b^{2}\right)-(a+b)(a-2 b)$.

Thus, $3 b^{2}$ is a linear combination of $a^{2}-a b+b^{2}$ and $a+b$.
Since $d \mid(a+b)$ and $d \mid\left(a^{2}-a b+b^{2}\right)$, then d divides any linear combination of $a+b$ and $a^{2}-a b+b^{2}$, so $d \mid 3 b^{2}$.

Since $(a+b)^{2}-\left(a^{2}-a b+b^{2}\right)=\left(a^{2}+2 a b+b^{2}\right)-a^{2}+a b-b^{2}=3 a b$, then $3 a b$ is a linear combination of $a+b$ and $a^{2}-a b+b^{2}$, so $d \mid 3 a b$.

Since $1=m a+n b$, then $3 b=3 b(m a+n b)=3 b m a+3 b n b=3 a b m+3 b^{2} n$, so $3 b$ is a linear combination of $3 a b$ and $3 b^{2}$.

Since $d \mid 3 a b$ and $d \mid 3 b^{2}$, then d divides any linear combination of $3 a b$ and $3 b^{2}$, so $d \mid 3 b$.

Since $2\left(a^{2}-a b+b^{2}\right)+(a+b)^{2}-3 b^{2}=\left(2 a^{2}-2 a b+2 b^{2}\right)+\left(a^{2}+2 a b+b^{2}\right)-3 b^{2}=$ $3 a^{2}$, then $3 a^{2}$ is a linear combination of $a^{2}-a b+b^{2}$ and $a+b$ and $3 b^{2}$.

Since $d \mid\left(a^{2}-a b+b^{2}\right)$ and $d \mid(a+b)$ and $d \mid 3 b^{2}$, then d divides any linear combination of $a^{2}-a b+b^{2}$ and $a+b$ and $3 b^{2}$, so $d \mid 3 a^{2}$.

Since $1=m a+n b$, then $3 a=3 a(m a+n b)=3 a m a+3 a n b=3 a^{2} m+3 a b n$, so $3 a$ is a linear combination of $3 a^{2}$ and $3 a b$.

Since $d \mid 3 a^{2}$ and $d \mid 3 a b$, then d divides any linear combination of $3 a^{2}$ and $3 a b$, so $d \mid 3 a$.

Since $1=m a+n b$, then $3=3(m a+n b)=3 m a+3 n b$, so 3 is a linear combination of $3 a$ and $3 b$.

Since $d \mid 3 a$ and $d \mid 3 b$, then d divides any linear combination of $3 a$ and $3 b$, so $d \mid 3$.

Since $d \in \mathbb{Z}^{+}$and $d \mid 3$, then this implies either $d=1$ or $d=3$.
Exercise 124. Let n be an integer with $n>1$.
Then either $\operatorname{gcd}\left(n-1, n^{2}+n+1\right)=1$ or $\operatorname{gcd}\left(n-1, n^{2}+n+1\right)=3$.
Proof. Let $d=\operatorname{gcd}\left(n-1, n^{2}+n+1\right)$.
We must prove either $d=1$ or $d=3$.
By the division algorithm, we have $n^{2}+n+1=(n-1)(n+2)+3$, so $3=\left(n^{2}+n+1\right)-(n-1)(n+2)=-(n+2)(n-1)+\left(n^{2}+n+1\right)$.

Thus, 3 is a linear combination of $n-1$ and $n^{2}+n+1$, so 3 is a multiple of d.

Hence, $d \mid 3$.
Since $d \in \mathbb{Z}^{+}$and $d \mid 3$, then either $d=1$ or $d=3$.
Exercise 125. Let a, b be positive integers.
Then $\operatorname{gcd}(a, b)=1$ if and only if $\operatorname{gcd}(a+b, a b)=1$.
Proof. We prove if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a+b, a b)=1$.
Suppose $\operatorname{gcd}(a, b)=1$.
Since 1 divides every integer, then $1 \mid(a+b)$ and $1 \mid a b$, so 1 is a common divisor of $a+b$ and $a b$.

Let $c \in \mathbb{Z}$ such that $c \mid(a+b)$ and $c \mid a b$.
Since $\operatorname{gcd}(a, b)=1$, then there exist integers m and n such that $m a+n b=1$.
Since $c \mid(a+b)$ and $c \mid a b$, then c divides any linear combination of $a+b$ and $a b$.

Since $a(a+b)-a b=a^{2}+a b-a b=a^{2}$, then a^{2} is a linear combination of $a+b$ and $a b$, so $c \mid a^{2}$.

Since $1=m a+n b$, then $a=a(m a+n b)=a m a+a n b=a^{2} m+a b n=$ $m\left(a^{2}\right)+n(a b)$, so a is a linear combination of a^{2} and $a b$.

Since $c \mid a^{2}$ and $c \mid a b$, then c divides any linear combination of a^{2} and $a b$, so $c \mid a$.

Since $b(a+b)-a b=b a+b^{2}-a b=a b+b^{2}-a b=b^{2}$, then b^{2} is a linear combination of $a+b$ and $a b$, so $c \mid b^{2}$.

Since $1=m a+n b$, then $b=b(m a+n b)=b m a+b n b=a b m+b^{2} n=$ $m(a b)+n\left(b^{2}\right)$, so b is a linear combination of $a b$ and b^{2}.

Since $c \mid a b$ and $c \mid b^{2}$, then c divides any linear combination of $a b$ and b^{2}, so $c \mid b$.

Since $c \mid a$ and $c \mid b$, then c divides any linear combination of a and b.
Since $m a+n b=1$ is a linear combination of a and b, then this implies $c \mid 1$.
Thus, if $c \mid(a+b)$ and $c \mid a b$, then $c \mid 1$, so any common divisor of $a+b$ and $a b$ divides 1.

Since 1 is a common divisor of $a+b$ and $a b$ and any common divisor of $a+b$ and $a b$ divides 1 , then $1=\operatorname{gcd}(a+b, a b)$.

Proof. Conversely, suppose $\operatorname{gcd}(a+b, a b)=1$.
Since 1 divides every integer, then $1 \mid a$ and $1 \mid b$, so 1 is a common divisor of a and b.

Let $c \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$.
Then c divides any linear combination of a and b, so $c \mid(a+b)$ and $c \mid a b$.
Thus, c is a common divisor of $a+b$ and $a b$, so c divides $\operatorname{gcd}(a+b, a b)$.
Therefore, $c \mid 1$, so any divisor of a and b divides 1 .

Since 1 is a common divisor of a and b and any divisor of a and b divides 1 , then $1=\operatorname{gcd}(a, b)$.

Exercise 126. Let a, b, n be nonzero integers.
If $a \mid n$ and $b \mid n$ and $\operatorname{gcd}(a, b)=d$, then $a b \mid n d$.
Proof. Suppose $a \mid n$ and $b \mid n$ and $\operatorname{gcd}(a, b)=d$.
Since $a \mid n$ and $b \mid n$, then there are integers k_{1} and k_{2} such that $n=a k_{1}$ and $n=b k_{2}$.

Since $d=\operatorname{gcd}(a, b)$, then d is the least positive linear combination of a and b, so there are integers x and y such that $d=x a+y b$.

Let $e=x k_{2}+y k_{1}$.
Clearly, e is an integer.
Observe that

$$
\begin{aligned}
a b e & =a b\left(x k_{2}+y k_{1}\right) \\
& =a b x k_{2}+a b y k_{1} \\
& =x a\left(b k_{2}\right)+y b\left(a k_{1}\right) \\
& =x a n+y b n \\
& =(x a+y b) n \\
& =n(x a+y b) \\
& =n d .
\end{aligned}
$$

Since $e \in \mathbb{Z}$ and $n d=a b e$, then $a b \mid n d$.
Exercise 127. Let a, b, c be positive integers.
If $\operatorname{gcd}(a, b)=1$ and $c \mid b$, then $\operatorname{gcd}(a, c)=1$.

Proof. Suppose $\operatorname{gcd}(a, b)=1$ and $c \mid b$.
Since $\operatorname{gcd}(a, b)=1$, then there are integers x and y such that $1=x a+y b$.
Since $c \mid b$, then $b=c d$ for some integer d.
Observe that $1=x a+y b=x a+y(c d)=x a+y(d c)=x a+(y d) c$.
Since $x \in \mathbb{Z}$ and $y d \in \mathbb{Z}$ and $x a+(y d) c=1$, then $\operatorname{gcd}(a, c)=1$.
Exercise 128. For all integers $n>1, n-1$ and $2 n-1$ are relatively prime.
Solution. We express 1 as a linear combination of $n-1$ and $2 n-1$.
Using the division algorithm to divide $2 n-1$ by $n-1$ we obtain $2 n-1=$ $2(n-1)+1$, so $1=-2(n-1)+(2 n-1)$.

Proof. Let n be an arbitrary integer greater than one.
Since $-2 \in \mathbb{Z}$ and $1 \in \mathbb{Z}$ and $-2(n-1)+(1)(2 n-1)=-2 n+2+2 n-1=1$, then $\operatorname{gcd}(n-1,2 n-1)=1$.

Exercise 129. For all integers $n>1,2 n-1$ and $3 n-1$ are relatively prime.
Solution. We express 1 as a linear combination of $2 n-1$ and $3 n-1$.
So, we want to find integers a and b such that $a(2 n-1)+b(3 n-1)=1$.
To have $2 a n$ and $3 b n$ cancel each other, we can let $a=-3$ and $b=2$.
Proof. Let n be an arbitrary integer greater than one.
Since $-3 \in \mathbb{Z}$ and $2 \in \mathbb{Z}$ and $-3(2 n-1)+2(3 n-1)=-6 n+3+6 n-2=1$, then $\operatorname{gcd}(2 n-1,3 n-1)=1$.

Exercise 130. Let m and n be positive integers.
Then $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=1$ if and only if $\operatorname{gcd}(m, n)=1$.
Solution. We must prove:

1. if $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=1$, then $\operatorname{gcd}(m, n)=1$.
2. if $\operatorname{gcd}(m, n)=1$, then $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=1$.

Proof. We prove if $\operatorname{gcd}(m, n)=1$, then $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=1$.
Suppose $\operatorname{gcd}(m, n)=1$.
Then $m a+n b=1$ for some integers a and b.
To prove $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=1$, we must find integers c and d such that $c\left(2^{m}-1\right)+d\left(2^{n}-1\right)=1$.

Observe that $x^{k}-1=(x-1)\left(x^{k-1}+x^{k-2}+\ldots+x+1\right)$ for any real number x and positive integer k.

We have a flaw here.
If k is a negative integer, then $x^{k}-1=(x-1)\left(\sum_{i=1}^{-k}\left(-x^{-i}\right)\right.$.
Now, couldn't a or b be a negative integer?
If so, then $\sum_{i=1}^{-k}\left(-x^{-i}\right)$ is not necessarily an integer, but rather a fraction which implies that $x-1 \nmid x^{k}-1$.

We have no guarantee that both a and b are always positive, so this proof is not valid if a or b is negative integer!

Let $x=2 m$ and $k=a$.

Then x and k are integers, so $x^{k}-1, x-1$, and $x^{k-1}+x^{k-2}+\ldots+x+1$ are integers.

Hence, $x-1 \mid x^{k}-1$, so $2^{m}-1 \mid 2^{m a}-1$.
Therefore, $2^{m a}-1=\left(2^{m}-1\right) r$ for some integer r.
Let $x=2 n$ and $k=b$.
Then x and k are integers, so $x^{k}-1, x-1$, and $x^{k-1}+x^{k-2}+\ldots+x+1$ are integers.

Hence, $x-1 \mid x^{k}-1$, so $2^{n}-1 \mid 2^{n b}-1$.
Therefore, $2^{n b}-1=\left(2^{n}-1\right) s$ for some integer s.
Observe that

$$
\begin{aligned}
1 & =2^{1}-1 \\
& =2^{m a+n b}-1 \\
& =2^{m a} * 2^{n b}-1 \\
& =2^{m a}\left[\left(2^{n}-1\right) s+1\right]-1 \\
& =2^{m a} s\left(2^{n}-1\right)+2^{m a}-1 \\
& =2^{m a} s\left(2^{n}-1\right)+r\left(2^{m}-1\right)
\end{aligned}
$$

Let $c=r$ and $d=2^{m a} s$.
Clearly, c and d are integers and $1=c\left(2^{m}-1\right)+d\left(2^{n}-1\right)$, as desired.
Suppose $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=1$.
We must prove $\operatorname{gcd}(m, n)=1$.
Let $d=\operatorname{gcd}(m, n)$.
Then $d \mid m$ and $d \mid n$.
Thus, $m=d a$ and $n=d b$ for some integers a and b.
Suppose for the sake of contradiction that $\operatorname{gcd}(m, n) \neq 1$.
Then $d \neq 1$, so $d>1$.
Observe that $x^{k}-1=(x-1)\left(x^{k-1}+x^{k-2}+\ldots+x+1\right)$ for any real number x and positive integer k.

We have a flaw here.
If k is a negative integer, then $x^{k}-1=(x-1)\left(\sum_{i=1}^{-k}\left(-x^{-i}\right)\right.$.
Now, couldn't a or b be a negative integer?
If so, then $\sum_{i=1}^{-k}\left(-x^{-i}\right)$ is not necessarily an integer, but rather a fraction which implies that $x-1 \nmid x^{k}-1$.

We have no guarantee that both a and b are always positive, so this proof is not valid if a or b is a negative integer!

Let $x=2^{d}$ and $k=a$.
Then x and k are integers, so $x^{k}-1, x-1$, and $x^{k-1}+x^{k-2}+\ldots+x+1$ are integers.

Hence, $x-1 \mid x^{k}-1$, so $2^{d}-1 \mid 2^{d a}-1$.
Thus, $2^{d}-1 \mid 2^{m}-1$, so $2^{m}-1=\left(2^{d}-1\right) r$ for some integer r.
Let $x=2^{d}$ and $k=b$.
Then x and k are integers, so $x^{k}-1, x-1$, and $x^{k-1}+x^{k-2}+\ldots+x+1$ are integers.

Hence, $x-1 \mid x^{k}-1$, so $2^{d}-1 \mid 2^{d b}-1$.

Thus, $2^{d}-1 \mid 2^{n}-1$, so $2^{n}-1=\left(2^{d}-1\right) s$ for some integer s.
Since $\operatorname{gcd}\left(2^{m}-1,2^{n}-1\right)=1$, then there are integers x and y such that $x\left(2^{m}-1\right)+y\left(2^{n}-1\right)=1$.

Observe that $x\left(2^{d}-1\right) r+y\left(2^{d}-1\right) s=1$, so $\left(2^{d}-1\right)(x r+y s)=1$.
Since $2^{d}-1$ and $x r+y s$ are integers whose product is one, then $2^{d}-1$ is either 1 or -1 .

Since $d>1$, then $d \geq 2$, so $2^{d}-1 \geq 3$, so $2^{d}-1>0$.
Hence, $2^{d}-1=1$, so $d=1$.
But, we have $d \neq 1$ and $d=1$, a contradiction.
Therefore, $\operatorname{gcd}(m, n)=1$, as desired.
Exercise 131. Let $a, b \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=1$.
Let $r, s \in \mathbb{Z}$ such that $a r+b s=1$.
Then $\operatorname{gcd}(a, s)=\operatorname{gcd}(r, b)=\operatorname{gcd}(r, s)=1$.
Proof. Let $m=\operatorname{gcd}(a, s)$.
Then $m \in \mathbb{Z}^{+}$and $m \mid a$ and $m \mid s$, so m divides any linear combination of a and s.

Since $1=a r+b s=r a+b s$ is a linear combination of a and s, then $m \mid 1$.
Since $m \in \mathbb{Z}^{+}$and $m \mid 1$, then $m=1$, so $\operatorname{gcd}(a, s)=1$.

Let $x=\operatorname{gcd}(r, b)$.
Then $x \in \mathbb{Z}^{+}$and $x \mid r$ and $x \mid b$, so x divides any linear combination of r and b.

Since $1=a r+b s=a r+s b$ is a linear combination of r and b, then $x \mid 1$.
Since $x \in \mathbb{Z}^{+}$and $x \mid 1$, then $x=1$, so $\operatorname{gcd}(r, b)=1$.

Let $y=\operatorname{gcd}(r, s)$.
Then $y \in \mathbb{Z}^{+}$and $y \mid r$ and $y \mid s$, so y divides any linear combination of r and s.

Since $1=a r+b s$ is a linear combination of r and s, then $y \mid 1$.
Since $y \in \mathbb{Z}^{+}$and $y \mid 1$, then $y=1$, so $\operatorname{gcd}(r, s)=1$.
Exercise 132. If n has a divisor d with $1<d<n$, then it has a divisor d^{\prime} with $1<d^{\prime} \leq \sqrt{n}$.

Let $n \in \mathbb{Z}$.
Let $d \in \mathbb{Z}$ such that $d \mid n$ and $1<d<n$.
Then there exists $d^{\prime} \in \mathbb{Z}$ such that $1<d^{\prime} \leq \sqrt{n}$.
Proof. Suppose there is an integer d such that $d \mid n$ and $1<d<n$.
Either $d \leq \sqrt{n}$ or $d>\sqrt{n}$.
We consider these cases separately.
Case 1: Suppose $d \leq \sqrt{n}$.
Let $d^{\prime}=d$.
Then $d^{\prime} \in \mathbb{Z}$ and $d^{\prime} \leq \sqrt{n}$.
Since $1<d<n$, then $1<d$, so $1<d^{\prime}$.
Thus, $1<d^{\prime} \leq \sqrt{n}$.

Therefore, there exists $d^{\prime} \in \mathbb{Z}$ such that $1<d^{\prime} \leq \sqrt{n}$.
Case 2: Suppose $d>\sqrt{n}$.
Since $1<d<n$, then $1<d$ and $d<n$ and $1<n$.
Since $d \mid n$, then there exists $d^{\prime} \in \mathbb{Z}$ such that $n=d d^{\prime}$, so $d^{\prime} \mid n$.
Since $d>1>0$, then $d>0$.

Suppose $d^{\prime} \leq 1$.
Since $d>0$, then $n=d d^{\prime} \leq d \cdot 1=d$, so $n \leq d$.
Thus, we have $d<n$ and $d \geq n$, a contradiction.
Hence, $d^{\prime}>1$.

Suppose $d^{\prime}>\sqrt{n}$.
Since $n>1>0$, then $n>0$, so $\sqrt{n}>0$.
Since $\sqrt{n}<d^{\prime}$ and $\sqrt{n}>0$, then $\sqrt{n} \sqrt{n}<\sqrt{n} \cdot d^{\prime}$.
Since $d^{\prime}>1>0$, then $d^{\prime}>0$.
Since $\sqrt{n}<d$ and $d^{\prime}>0$, then $\sqrt{n} \cdot d^{\prime}<d d^{\prime}$.
Thus, $n=(\sqrt{n})^{2}=\sqrt{n} \sqrt{n}<\sqrt{n} \cdot d^{\prime}<d d^{\prime}=n$.
Hence, $n<\sqrt{n} \cdot d^{\prime}<n$, so $n<n$, a contradiction.
Therefore, $d^{\prime} \leq \sqrt{n}$.
Since $1<d^{\prime}$ and $d^{\prime} \leq \sqrt{n}$, then $1<d^{\prime} \leq \sqrt{n}$.
Therefore, there exists $d^{\prime} \in \mathbb{Z}$ such that $1<d^{\prime} \leq \sqrt{n}$.
Lemma 133. Let $a, b, c \in \mathbb{Z}$.
Then $(a, b c)=1$ iff $(a, b)=(a, c)=1$.
Proof. We prove if $(a, b c)=1$, then $(a, b)=(a, c)=1$.
Suppose $(a, b c)=1$.
Then there are integers m and n such that $m a+n(b c)=1$.
Since $1=m a+n b c=m a+n c b=m a+(n c) b$ and m and $n c$ are integers, then $(a, b)=1$.

Since $1=m a+n b c=m a+(n b) c$ and m and $n b$ are integers, then $(a, c)=1$.
Conversely, suppose $(a, b)=(a, c)=1$.
Then there are integers x, y, u, v such that $x a+y b=1$ and $u a+v c=1$.
Multiplying these equations we obtain $(x a+y b)(u a+v c)=1 \cdot 1=1$.
Hence, $x u a^{2}+x a v c+y b u a+y b v c=1$, so $(x u a+x v c+y b u) a+(y v)(b c)=1$.
Since $x u a+x v c+y b u$ and $y v$ are integers, then $(a, b c)=1$, as desired.
Exercise 134. Let $a, b \in \mathbb{Z}^{+}$.
If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.
Proof. Suppose $(a, b)=1$.
Since $(a, b c)=1$ iff $(a, b)=(a, c)=1$ for all $a, b, c \in \mathbb{Z}$, then in particular $\left(a^{2}, b b\right)=1 \operatorname{iff}\left(a^{2}, b\right)=\left(a^{2}, b\right)=1$ and $\left(b, a^{2}\right)=1 \mathrm{iff}(b, a)=(b, a)=1$.

Thus, $\left(a^{2}, b^{2}\right)=1 \mathrm{iff}\left(a^{2}, b\right)=1$ and $\left(b, a^{2}\right)=1 \mathrm{iff}(b, a)=1$.

Since $1=(a, b)=(b, a)$, then $(b, a)=1$.
Since $\left(b, a^{2}\right)=1$ iff $(b, a)=1$, then we conclude $\left(b, a^{2}\right)=1$, so $\left(a^{2}, b\right)=1$.
Since $\left(a^{2}, b^{2}\right)=1$ iff $\left(a^{2}, b\right)=1$, then we conclude $\left(a^{2}, b^{2}\right)=1$.
Lemma 135. Let $a, b \in \mathbb{Z}^{+}$.
If $(a, b)=1$, then $\left(a, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.
Proof. Suppose $(a, b)=1$.
We prove $\left(a, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}:\left(a, b^{n}\right)=1\right\}$.

Basis:

Since $1 \in \mathbb{Z}^{+}$and $\left(a, b^{1}\right)=(a, b)=1$, then $1 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $\left(a, b^{k}\right)=1$.
Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
From a previous lemma we know that $(a, b c)=1$ iff $(a, b)=(a, c)=1$ for all $a, b, c \in \mathbb{Z}$.

In particular, $\left(a, b^{k} b\right)=1$ iff $\left(a, b^{k}\right)=(a, b)=1$.
Since $\left(a, b^{k}\right)=1$ and $(a, b)=1$, then we conclude $\left(a, b^{k} b\right)=1$.
Thus, $\left(a, b^{k+1}\right)=1$.
Since $k+1 \in \mathbb{Z}^{+}$and $\left(a, b^{k+1}\right)=1$, then $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{Z}^{+}$, so $\left(a, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.
Lemma 136. Let $a, b \in \mathbb{Z}^{+}$.
If $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a^{n}, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.
Proof. Suppose $(a, b)=1$.
We prove $\left(a^{n}, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}:\left(a^{n}, b^{n}\right)=1\right\}$.
Basis:
Since $1 \in \mathbb{Z}^{+}$and $\left(a^{1}, b^{1}\right)=(a, b)=1$, then $1 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $\left(a^{k}, b^{k}\right)=1$.
Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
Since $(a, b c)=1$ iff $(a, b)=(a, c)=1$ for all $a, b, c \in \mathbb{Z}$, then in particular, $\left(a^{k+1}, b^{k} b\right)=1$ iff $\left(a^{k+1}, b^{k}\right)=\left(a^{k+1}, b\right)=1$ and $\left(b, a^{k} a\right)=1$ iff $\left(b, a^{k}\right)=$ $(b, a)=1$ and $\left(b^{k}, a^{k} a\right)=1 \operatorname{iff}\left(b^{k}, a^{k}\right)=\left(b^{k}, a\right)=1$.

From a previous lemma we know that if $(a, b)=1$, then $\left(a, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.

Since $(a, b)=1$ and $k \in \mathbb{Z}^{+}$, then $\left(a, b^{k}\right)=1$, so $\left(b^{k}, a\right)=1$.
Since $1=\left(a^{k}, b^{k}\right)=\left(b^{k}, a^{k}\right)$, then $\left(b^{k}, a^{k}\right)=1$.
Since $\left(b^{k}, a^{k}\right)=1$ and $\left(b^{k}, a\right)=1$, and $\left(b^{k}, a^{k} a\right)=1$ iff $\left(b^{k}, a^{k}\right)=\left(b^{k}, a\right)=1$, then we conclude $\left(b^{k}, a^{k} a\right)=1$.

Thus, $1=\left(b^{k}, a^{k+1}\right)=\left(a^{k+1}, b^{k}\right)$.

From a previous lemma, we know that if $(a, b)=1$, then $\left(a, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.

Hence, if $(b, a)=1$, then $\left(b, a^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.
Since $1=(a, b)=(b, a)$ and $k+1 \in \mathbb{Z}^{+}$, then we conclude $\left(b, a^{k+1}\right)=1$, so $\left(a^{k+1}, b\right)=1$.

Since $\left(a^{k+1}, b^{k}\right)=1$ and $\left(a^{k+1}, b\right)=1$, and $\left(a^{k+1}, b^{k} b\right)=1 \operatorname{iff}\left(a^{k+1}, b^{k}\right)=$ $\left(a^{k+1}, b\right)=1$, then we conclude $\left(a^{k+1}, b^{k} b\right)=1$.

Thus, $\left(a^{k+1}, b^{k+1}\right)=1$.
Since $k+1 \in \mathbb{Z}^{+}$and $\left(a^{k+1}, b^{k+1}\right)=1$, then $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{Z}^{+}$, so $\left(a^{n}, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.
Exercise 137. Let $a, b \in \mathbb{Z}^{+}$.
If $a^{n} \mid b^{n}$, then $a \mid b$ for all $n \in \mathbb{Z}^{+}$.
Proof. Let $n \in \mathbb{Z}^{+}$.
Suppose $a^{n} \mid b^{n}$.
Let $d=\operatorname{gcd}(a, b)$.
Then $d \in \mathbb{Z}^{+}$and $d \mid a$ and $d \mid b$, so $a=d r$ and $b=d s$ for some integers r and s.

Thus, $d=\operatorname{gcd}(d r, d s)=d \cdot \operatorname{gcd}(r, s)$.
Since $d>0$, then we divide to obtain $1=\operatorname{gcd}(r, s)$.
From a previous lemma, we know that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a^{n}, b^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.

Thus, if $\operatorname{gcd}(r, s)=1$, then $\operatorname{gcd}\left(r^{n}, s^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.
Since $\operatorname{gcd}(r, s)=1$, then we conclude $\operatorname{gcd}\left(r^{n}, s^{n}\right)=1$ for all $n \in \mathbb{Z}^{+}$.
In particular, $\operatorname{gcd}\left(r^{n}, s^{n}\right)=1$.
Hence, there exist integers x and y such that $x r^{n}+y s^{n}=1$.
Since $a^{n} \mid b^{n}$, then $(d r)^{n} \mid(d s)^{n}$, so $d^{n} r^{n} \mid d^{n} s^{n}$.
Since $d \neq 0$, then we have $r^{n} \mid s^{n}$, so $s^{n}=r^{n} t$ for some integer t.
Thus, $1=x r^{n}+y\left(r^{n} t\right)=r^{n}(x+y t)$, so $r^{n} \mid 1$.
Since $d>0$ and $a>0$ and $a=d r$, then $r>0$.
Since $n>0$, then $r^{n}>0$.
Since $r \in \mathbb{Z}$, then $r^{n} \in \mathbb{Z}$, so $r^{n} \in \mathbb{Z}^{+}$.
Since $r^{n} \in \mathbb{Z}^{+}$and $r^{n} \mid 1$ and the only positive integer that divides 1 is 1 , then $r^{n}=1$, so $r=1$.

Thus, $a=d r=d(1)=d$.
Hence, $\operatorname{gcd}(a, b)=d=a$.
Since $a \mid b$ iff $\operatorname{gcd}(a, b)=a$, then we conclude $a \mid b$, as desired.

The Euclidean Algorithm

Exercise 138. Express $\operatorname{gcd}(12378,3054)$ as a linear combination of 12378 and 3054.

Solution. We use the Euclidean algorithm to obtain the equations below.

$$
\begin{aligned}
12378 & =3054 * 4+162 \\
3054 & =162 * 18+138 \\
162 & =138 * 1+24 \\
138 & =24 * 5+18 \\
24 & =18 * 1+6 \\
18 & =6 * 3+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(12378,3054)=\operatorname{gcd}(3054,162)=\operatorname{gcd}(162,138)=\operatorname{gcd}(138,24)=$ $\operatorname{gcd}(24,18)=\operatorname{gcd}(18,6)=6$.

We backtrack through the equations to find the linear combination.

$$
\begin{aligned}
6 & =24-18 * 1 \\
& =24-(138-24 * 5) * 1 \\
& =6 * 24-138 \\
& =6(162-138 * 1)-138 \\
& =6 * 162-7 * 138 \\
& =6 * 162-7(3054-162 * 18) \\
& =132 * 162-7(3054) \\
& =132(12378-3054 * 4)-7(3054) \\
& =132 * 12378-535 * 3054
\end{aligned}
$$

Therefore, $\operatorname{gcd}(12378,3054)=6=132(12378)-535(3054)$.
Exercise 139. Compute $\operatorname{gcd}(314,159)$ as a linear combination of 314 and 159.
Solution. We use the Euclidean algorithm to obtain the equations below.

$$
\begin{aligned}
314 & =159 * 1+155 \\
159 & =155 * 1+4 \\
155 & =4 * 38+3 \\
4 & =3 * 1+1 \\
3 & =1 * 3+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(314,159)=\operatorname{gcd}(159,155)=\operatorname{gcd}(155,4)=\operatorname{gcd}(4,3)=\operatorname{gcd}(3,1)=$ 1.

We backtrack through the equations to find the linear combination.

$$
\begin{aligned}
1 & =4-3 * 1 \\
& =4-(155-4 * 38) * 1 \\
& =-155+39(4) \\
& =-155+39(159-155 * 1) \\
& =39 * 159-40(155) \\
& =39 * 159-40(314-159 * 1) \\
& =(-40)(314)+79(159) .
\end{aligned}
$$

Therefore, $\operatorname{gcd}(314,159)=1=-40(314)+79(159)$.
Hence, a solution to the equation $314 x+159 y=1$ is $x=-40$ and $y=79$ since $314(-40)+159(79)=1$.

Exercise 140. Compute $\operatorname{gcd}(3141,1592)$ as a linear combination of 3141 and 1592.

Solution. We use the Euclidean algorithm to obtain the equations below.

$$
\begin{aligned}
3141 & =1592 * 1+1549 \\
1592 & =1549 * 1+43 \\
1549 & =43 * 36+1 \\
43 & =1 * 43+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(3141,1592)=\operatorname{gcd}(1592,1549)=\operatorname{gcd}(1549,43)=\operatorname{gcd}(43,1)=1$. We backtrack through the equations to find the linear combination.

$$
\begin{aligned}
1 & =1549-43 * 36 \\
& =1549-(1592-1549 * 1) 36 \\
& =37 * 1549-1592 * 36 \\
& =37(3141-1592 * 1)-1592 * 36 \\
& =37(3141)-73(1592)
\end{aligned}
$$

Therefore, $\operatorname{gcd}(3141,1592)=1=37(314)-73(1592)$.
Hence, a solution to the equation $3141 x+1592 y=1$ is $x=37$ and $y=-73$, since $3141(37)+1592(-73)=1$.
Exercise 141. Compute $\operatorname{gcd}(4144,7696)$ as a linear combination of 4144 and 7696.

Solution. We use the Euclidean algorithm to obtain the equations below.

$$
\begin{aligned}
7696 & =4144 * 1+3552 \\
4144 & =3552 * 1+592 \\
3552 & =592 * 6+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(4144,7696)=\operatorname{gcd}(4144,3552)=\operatorname{gcd}(3552,592)=592$.
We backtrack through the equations to find the linear combination.

$$
\begin{aligned}
592 & =4144-3552 * 1 \\
& =4144-(7696-4144 * 1) * 1 \\
& =2(4144)-7696
\end{aligned}
$$

Therefore, $\operatorname{gcd}(4144,7696)=592=2(4144)-7696$.
Hence, a solution to the equation $4144 x+7696 y=592$ is $x=2$ and $y=-1$, since $4144(2)+7696(-1)=592$.

Exercise 142. Compute $\operatorname{gcd}(10001,100083)$ as a linear combination of 10001 and 100083.

Solution. We use the Euclidean algorithm to obtain the equations below.

$$
\begin{aligned}
100083 & =10001 * 10+73 \\
10001 & =73 * 137+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(10001,100083)=\operatorname{gcd}(10001,73)=73$.
We backtrack through the equations to find the linear combination.

$$
\begin{aligned}
73 & =100083-10001 * 10 \\
& =-10(10001)+100083
\end{aligned}
$$

Therefore, $\operatorname{gcd}(10001,100083)=73=-10(10001)+100083$.
Hence, a solution to the equation $10001 x+100083 y=73$ is $x=-10$ and $y=1$, since $10001(-10)+100083(1)=73$.

Exercise 143. Find integers x, y such that $299 x+247 y=13$.
Solution. Since $\operatorname{gcd}(299,247)=13$, then we know there exist integers x and y such that $299 x+247 y=13$. Hence, there is at least one solution to the equation $299 x+247 y=13$.

We use the Euclidean algorithm to express gcd as a linear combination of integers.

$$
\begin{aligned}
299 & =247 * 1+52 \\
247 & =52 * 4+39 \\
52 & =39 * 1+13 \\
39 & =13 * 3+0
\end{aligned}
$$

Thus, $\operatorname{gcd}(299,247)=\operatorname{gcd}(247,52)=\operatorname{gcd}(52,39)=\operatorname{gcd}(39,13)=13$.

We backtrack through the equations to express gcd as a linear combination.

$$
\begin{aligned}
13 & =52-39 \\
& =52-(247-52 * 4) \\
& =-247+5 * 52 \\
& =-247+5(299-247) \\
& =(-6)(247)+5 * 299 .
\end{aligned}
$$

Therefore, $x=5$ and $y=-6$.
Since $299(5)+247(-6)=1495-1482=13$, then $x=5$ and $y=-6$ is one solution to the equation $299 x+247 y=13$.

There may be other solutions as well.
Let's find another solution to this equation.
Since $\operatorname{gcd}(299,247)=13$, then $13 \mid 299$ and $13 \mid 247$, so $299=13 * 23$ and $247=13 * 19$.

Thus, $13=299 x+247 y=(13 * 23) x+(13 * 19) y$.
Dividing by 13 we obtain the equation $1=23 x+19 y$.
Since 23 and 19 are relatively prime, then $\operatorname{gcd}(23,19)=1$, so there must exist integers x and y such that $23 x+19 y=1$, so we know that this equation has at least one solution.

This equation has the same solution as the equation $299 x+247 y=13$.
Thus, one solution to the equation $23 x+19 y=1$ is $x=5$ and $y=-6$, since $23(5)+19(-6)=115-114=1$.

We will write a computer program to find other pair of integers x and y that are solutions to the equation $23 x+19 y=1$.

There are many solutions to this equation.
Examples are $x=-14$ and $y=17$ and $x=24$ and $y=-29$.
If $x=-14$ and $y=17$, then $23(-14)+19(17)=-322+323=1$ and $299(-14)+247(17)=-4186+4199=13$.

If $x=24$ and $y=-29$, then $23(24)+19(-29)=552-551=1$ and $299(24)+247(-29)=7176-7163=13$.

The equation $299 x+247 y=52$ can be reduced since $\operatorname{gcd}(299,247)=13$ by dividing by 13 .

Thus, we obtain $23 x+19 y=4$. Since $\operatorname{gcd}(23,19)=1$, then this equation is saying that 4 is a linear combination of $\operatorname{gcd}(23,19)$. We know that any linear combination of 23 and 19 is a multiple of $\operatorname{gcd}(23,19)$. In this case, 4 is a multiple of 1 since $4=4 * 1$.

We will write a computer program to find x, y such that $23 x+19 y=4$ and the pair (x, y) will also be a solution to the equation $299 x+247 y=52$.

Example solutions are: $x=1, y=-1$ and $x=20, y=-24$ and $x=-18, y=$ 22. There are many more solutions as well.

If $x=1$ and $y=-1$, then $23(1)+19(-1)=4$ and $299(1)+247(-1)=52$.

If $x=20$ and $y=-24$, then $23(20)+19(-24)=4$ and $299(20)+247(-24)=$ 52.

If $x=-18$ and $y=22$, then $23(-18)+19(22)=4$ and $299(-18)+247(22)=$ 52.

Exercise 144. Which of the integers $0,1, \ldots, 10$ can be expressed in the form $12 m+20 n$ where m and n are integers?

Solution. Let m and n be arbitrary integers.
Let $a=12 m+20 n$.
Let $S=\{0,1,2, \ldots, 10\}$.
The integer a is a linear combination of 12 and 20.
We know that every linear combination of 12 and 20 is a multiple of $\operatorname{gcd}(12,20)$.
Since $\operatorname{gcd}(12,20)=4$, then every linear combination of 12 and 20 must be a multiple of 4.

Hence, the only integers in S which satisfy this criteria are $0,4,8$.
Concretely, we can use Euclidean algorithm:
$4=12(2)+20(-1)$.
Thus, $8=2 * 4=2(12 * 2-20)=12 * 4-2 * 20$.
Also, $0=12 * 0+20 * 0$.
Exercise 145. For all integers $n>1, \operatorname{gcd}\left(2 n^{2}+4 n-3,2 n^{2}+6 n-4\right)=1$.
Proof. Let n be an arbitrary integer such that $n>1$.
By the Euclidean algorithm, we have

$$
\begin{aligned}
2 n^{2}+6 n-4 & =\left(2 n^{2}+4 n-3\right)(1)+(2 n-1) \\
2 n^{2}+4 n-3 & =(2 n-1)(n+2)+(n-1) \\
2 n-1 & =(n-1)(2)+1 \\
n-1 & =1(n-1)+0
\end{aligned}
$$

Therefore, by the Euclidean algorithm, $\operatorname{gcd}\left(2 n^{2}+4 n-3,2 n^{2}+6 n-4\right)=1$.
Exercise 146. Find integers x, y, z such that $\operatorname{gcd}(198,288,512)=198 x+288 y+$ 512z.

Solution. Let $d=\operatorname{gcd}(198,288)$.
To compute $\operatorname{gcd}(198,288)$ we use the Euclidean algorithm.
Observe that

$$
\begin{aligned}
288 & =198 * 1+90 \\
198 & =90 * 2+18 \\
90 & =18 * 5+0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
d & =\operatorname{gcd}(198,288) \\
& =18 \\
& =198-(90) * 2 \\
& =198-(288-198 * 1) * 2 \\
& =198-288 * 2+198 * 2 \\
& =198 * 3+288(-2) .
\end{aligned}
$$

Since $198 x+288 y$ is a linear combination of 198 and 288 , then $198 x+288 y$ is a multiple of $\operatorname{gcd}(198,288)$.

Hence, $198 x+288 y=d u$ for some integer u.
Observe that

$$
\begin{aligned}
\operatorname{gcd}(198,288,512) & =\operatorname{gcd}(\operatorname{gcd}(198,288), 512) \\
& =\operatorname{gcd}(d, 512) \\
& =\operatorname{gcd}(18,512)
\end{aligned}
$$

To compute $\operatorname{gcd}(18,512)$ we use the Euclidean algorithm.
Observe that

$$
\begin{aligned}
512 & =18 * 28+8 \\
18 & =8 * 2+2 \\
8 & =2 * 4+0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{gcd}(18,512) & =2 \\
& =18-(8) 2 \\
& =18-(512-18 * 28) 2 \\
& =18-512 * 2+18(28 * 2) \\
& =18(57)+512(-2) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{gcd}(198,288,512) & =2 \\
& =\operatorname{gcd}(18,512) \\
& =18(57)+512(-2) \\
& =[198(3)+288(-2)](57)+512(-2) \\
& =198(3)(57)+288(-2)(57)+512(-2) \\
& =198(171)+288(-114)+512(-2)
\end{aligned}
$$

Therefore, $x=171$ and $y=-114$ and $z=-2$.

Least common multiple

Exercise 147. Compute $\operatorname{lcm}(143,227)$ and $\operatorname{lcm}(306,657)$ and $\operatorname{lcm}(272,1479)$.
Solution. Since $\operatorname{gcd}(143,227)=1$, then $\operatorname{lcm}(143,227)=143 * 227=32461$.
Since $\operatorname{gcd}(306,657)=9$, then $\operatorname{lcm}(306,657)=\frac{306 * 657}{9}=22338$.
Since $\operatorname{gcd}(272,1479)=17$, then $\operatorname{lcm}(272,1479)=\frac{272 * 1479}{17}=23664$.
Exercise 148. If $n \in \mathbb{N}$, then $1+(-1)^{n}(2 n-1)$ is a multiple of 4 .
Proof. Suppose $n \in \mathbb{N}$.
Then n is either even or odd.
We consider these two cases separately.
Case 1. Suppose n is even.
Then $n=2 k$ for some $k \in \mathbb{Z}$ and $(-1)^{n}=1$.
Thus $1+(-1)^{n}(2 n-1)=1+(1)(2 \cdot 2 k-1)=1+4 k-1=4 k$ is a multiple of 4 .

Case 2. Suppose n is odd.
Then $n=2 k+1$ for some $k \in \mathbb{Z}$ and $(-1)^{n}=-1$.
Thus $1+(-1)^{n}(2 n-1)=1+(-1)(2(2 k+1)-1)=1-(2(2 k+1)-1)=$ $1-(4 k+2-1)=1-(4 k+1)=1-4 k-1=-4 k=4(-k)$ is a multiple of 4.

Exercise 149. Every multiple of 4 has form $1+(-1)^{n}(2 n-1)$ for some $n \in \mathbb{N}$.
Proof. In conditional form, the proposition is as follows:
If k is a multiple of 4 , then there is an $n \in \mathbb{N}$ for which $1+(-1)^{n}(2 n-1)=k$. What follows is a proof of this conditional statement.
Suppose k is a multiple of 4 . Then $k=4 a$ for some integer a.
We must produce an $n \in \mathbb{N}$ for which $1+(-1)^{n}(2 n-1)=k$.
We consider three cases, depending on whether a is zero, positive, or negative.

Case 1. Suppose $a=0$.
Let $n=1$.
Then $1+(-1)^{n}(2 n-1)=1+(-1)(2 \cdot 1-1)=0=4 \cdot 0=4 a=k$.
Case 2. Suppose $a>0$.
Let $n=2 a$, which is an element of \mathbb{N} because a is positive, making n positive. Also n is even, so $(-1)^{n}=1$.
Thus $1+(-1)^{n}(2 n-1)=1+(1)(2 \cdot 2 a-1)=4 a=k$.
Case 3. Suppose $a<0$.
Let $n=1-2 a$, which is an element of \mathbb{N} because a is negative, making $1-2 a$ positive.

Also n is odd, so $(-1)^{n}=-1$. Thus $1+(-1)^{n}(2 n-1)=1+(-1)(2(1-$ $2 a)-1)=1-(1-4 a)=4 a=k$.

These three cases show that no matter whether a multiple $k=4 a$ is zero, positive, or negative, it always equals $1+(-1)^{n}(2 n-1)$ for some natural number n.

