Number Theory Exercises 2

Jason Sass

July 17, 2023

Divisibility and greatest common divisor

Exercise 1. Let $a, b \in \mathbb{Z}$. Then a > b implies $a \not| b$ is false.

Proof. Observe that 1 > 0 and 1|0.

Exercise 2. Let $a, b, c \in \mathbb{Z}$. If a + b = c and d|a and d|c, then d|b.

Proof. Suppose a + b = c and d|a and d|c. Since a+b = c, then b = c-a = -a+c = (-1)a+(1)c is a linear combination of a and c.

Since d|a and d|c, then d divides any linear combination of a and c. In particular, d divides b, so d|b.

Exercise 3. Let x, y, z, w be integers. If 3x + 81y + 6z + 363 = w, then 3|w.

Proof. Since w = 3x + 81y + 6z + 363 = 3(x + 27y + 2z + 121) and x + 27y + 2z + 121 is an integer, then 3 divides w.

Proof. Since 3|3 and 3|81 and 3|6 and 3|363, then 3 divides any linear combination of 3, 81, 6, 363.

Since w is a linear combination of 3, 81, 6, 363, then this implies 3 divides w, so 3|w.

Exercise 4. Let x, y be integers.

If $3x^2 + 15xy + 5y^2 = 0$, then $3|5y^2$ and $5|3x^2$.

Proof. Suppose $3x^2 + 15xy + 5y^2 = 0$.

Then $3x^2 = -15xy - 5y^2$ and $5y^2 = -3x^2 - 15xy$.

Since 3|-3 and 3|-15, then 3 divides any linear combination of -3 and -15.

Since $5y^2$ is a linear combination of -3 and -15, then this implies $3|5y^2$.

Since 5|-15 and 5|-5, then 5 divides any linear combination of -15 and -5.

Since $3x^2$ is a linear combination of -15 and -5, then this implies $5|3x^2$. \Box

Exercise 5. Let $n_1, n_2, ..., n_k \in \mathbb{Z}$.

If $N = n_1 * n_2 * * * n_k + 1$, then $gcd(n_i, N) = 1$ for i = 1, 2, ..., k.

Proof. Suppose $N = n_1 * n_2 * * * n_k + 1$.

Then $1 = N - n_1 * n_2 * * * n_k = (1) * N - n_1 * n_2 * * * n_k.$

Since 1 is a linear combination of n_1 and N and any linear combination of n_1 and N is a multiple of $gcd(n_1, N)$, then 1 is a multiple of $gcd(n_1, N)$, so $gcd(n_1, N)$ divides 1.

The only positive integer that divides 1 is 1, so this implies $gcd(n_1, N) = 1$. Similar reasoning shows that $gcd(n_2, N) = 1$ and ... $gcd(n_k, N) = 1$.

- **Exercise 6.** Let $d \in \mathbb{Z}^+$ and $n \in \mathbb{Z}$. Then gcd(d, nd) = d.
- Proof. Since every integer divides itself, then d|d. Since d divides any multiple of d, then d|nd. Therefore, d is a common divisor of d and nd.

```
Let c be any common divisor of d and nd.

Then c|d and c|nd, so c|d.

Hence, any common divisor of d and nd divides d.

Since d \in \mathbb{Z}^+ and d is a common divisor of d and nd and any common divisor

of d and nd divides d, then d = \gcd(d, nd).
```

Exercise 7. Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$.

If a|b and b|a, then a = b or a = -b.

Proof. Suppose a|b and b|a.

Then $b = ak_1$ and $a = bk_2$ for some integers k_1 and k_2 . Thus, $b = (bk_2)k_1 = b(k_1k_2)$, so $b(k_1k_2) - b = 0$. Hence, $b(k_1k_2 - 1) = 0$. Either b = 0 or $b \neq 0$. We consider these cases separately. Case 1: Suppose b = 0. Since b|a, then 0|a, so $a = 0k_3 = 0$ for some integer k_3 . Hence, a = 0 = b, so a = b. Case 2: Suppose $b \neq 0$. Then $k_1k_2 - 1 = 0$, so $k_1k_2 = 1$. Since k_1 and k_2 are integers such that $k_1k_2 = 1$, then either $k_1 = k_2 = 1$ or $k_1 = k_2 = -1.$ Hence, either $b = a(k_1) = a(1) = a$ or $b = a(k_1) = a(-1) = -a$, so either b = a or b = -a.Therefore, either a = b or a = -b.

Exercise 8. Let $a \in \mathbb{Z}^+$ and $b \in \mathbb{Z}$. If a|b, then gcd(a, b) = a. *Proof.* Suppose a|b.

Since every integer divides itself, then a|a. Since a|a and a|b, then a is a common divisor of a and b.

Let c be any common divisor of a and b.

Then c|a and c|b, so c|a.

Hence, any common divisor of a and b divides a.

Since $a \in \mathbb{Z}^+$ and a is a common divisor of a and b, and any common divisor of a and b divides a, then a = gcd(a, b).

Exercise 9. Let $x \in \mathbb{R}$ and $a, b \in \mathbb{Z}$.

I. If $x^2 + ax + b = 0$ has an integer root, then the root divides b. II. If $x^2 + ax + b = 0$ has a rational root, then the root is an integer.

Proof. We prove I.

Suppose the equation $x^2 + ax + b = 0$ has an integer root. Let r be an integer root of $x^2 + ax + b = 0$. Then $r \in \mathbb{Z}$ and $r^2 + ar + b = 0$, so $b = -r^2 - ar = r(-r - a)$. Since $-r - a \in \mathbb{Z}$, then r divides b.

Proof. We prove II.

Suppose the equation $x^2 + ax + b = 0$ has a rational root. Let q be a rational root of $x^2 + ax + b = 0$. Then $q \in \mathbb{Q}$ and $q^2 + aq + b = 0$. Since $q \in \mathbb{Q}$, then there exist integers r, s with $s \neq 0$ such that $q = \frac{r}{s}$. Assume q is in lowest terms. That is, assume gcd(r, s) = 1, so 1 = gcd(s, r). Since $(\frac{r}{s})^2 + a * \frac{r}{s} + b = 0$, then $r^2 + ars + bs^2 = 0$, so $r^2 = -ars - bs^2 = s(-ar - bs)$. Since s|s(-ar - bs), then s divides r^2 . Since $s|r^2$ and gcd(s, r) = 1, then s|r. Thus, r = st for some integer t, so $q = \frac{r}{s} = \frac{st}{s} = t$. Therefore, q is an integer.

Exercise 10. Let $a, b \in \mathbb{Z}$.

For every $c \in \mathbb{Z}$, if c|a and c|b, then $c| \operatorname{gcd}(a, b)$.

Proof. Let $c \in \mathbb{Z}$ such that c|a and c|b.

Then c is a common divisor of a and b. By definition of gcd, any common divisor of a and b must divide gcd(a, b). Therefore, c divides gcd(a, b).

Exercise 11. Let a and b be nonzero integers.

If there exist integers r and s such that ar+bs = 1, then a and b are relatively prime.

Proof. Suppose there exist integers r and s such that ar + bs = 1.

Then 1 = ra + sb is a linear combination of a and b.

Since any common divisor of a and b divides any linear combination of a and b, then gcd(a, b) divides 1.

The only positive integer that divides 1 is 1.

Since gcd(a, b) is a positive integer, then this implies gcd(a, b) = 1.

Therefore, a and b are relatively prime.

Exercise 12. Let $a, b, c \in \mathbb{Z}$.

If gcd(a, b) = 1 and c|a, then gcd(c, b) = 1.

Proof. Suppose
$$gcd(a, b) = 1$$
 and $c|a$.

Since gcd(a, b) = 1, then ma + nb = 1 for some integers m, n.

Since c|a, then a = ck for some integer k.

Thus, 1 = ma + nb = m(ck) + nb = m(kc) + nb = (mk)c + nb is a linear combination of c and b.

Since any linear combination of c and b is a multiple of gcd(c, b), then 1 is a multiple of gcd(c, b), so gcd(c, b) divides 1.

The only positive integer that divides 1 is 1, so gcd(c, b) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a.

Since 1 divides every integer, then 1|c and 1|b, so 1 is a common divisor of c and b.

Let d be any common divisor of c and b. Then d|c and d|b. Since d|c and c|a, then d|a. Since gcd(a, b) = 1, then ma + nb = 1 for some integers m and n. Since d|a and d|b, then d divides any linear combination of a and b, so d divides ma + nb = 1, Hence, d|1. Therefore, any common divisor of c and b divides 1. Since 1 is a common divisor of c and b and any common divisor of c and b divides 1, then by definition of gcd, 1 = gcd(c, b).

Exercise 13. Let $a, b, d \in \mathbb{Z}$.

If d|a and d|b, then $d^2|ab$.

Proof. Suppose d|a and d|b. Then $a = dk_1$ and $b = dk_2$ for some integers k_1 and k_2 . Hence, $ab = (dk_1)(dk_2) = d^2(k_1k_2)$. Since $k_1k_2 \in \mathbb{Z}$, then this implies $d^2|ab$.

Exercise 14. Let $a, b, c, d \in \mathbb{Z}$.

If c|ab and gcd(c, a) = d, then c|db.

Proof. Suppose c|ab and gcd(c, a) = d.

Since gcd(c, a) = d, then d = xc + ya for some integers x and y.

Hence, db = (xc + ya)b = xcb + yab = (xb)c + yab is a linear combination of c and ab.

Since c|c and c|ab, then c divides any linear combination of c and ab, so c|db.

Exercise 15. Let $a, b \in \mathbb{Z}$. Disprove: If $a \not b$, then gcd(a, b) = 1. *Proof.* Let a = 4 and b = 10. Then 4 /10, but $gcd(4, 10) = 2 \neq 1$. **Exercise 16.** Let $a, b, d \in \mathbb{Z}$. If d is odd and d|(a+b) and d|(a-b), then $d|\operatorname{gcd}(a,b)$. *Proof.* Suppose d is odd and d|(a+b) and d|(a-b). Since d|(a+b) and d|(a-b), then d divides the sum (a+b) + (a-b) = 2aand d divides the difference (a + b) - (a - b) = 2b, so d|2a and d|2b. Since d is odd, then $2 \not| d$, so gcd(d, 2) = 1. Since d|2a and gcd(d, 2) = 1, then we know d|a. Since d|2b and gcd(d, 2) = 1, then we know d|b. Hence, d divides any linear combination of a and b. Since gcd(a, b) is the least positive linear combination of a and b, then this implies d divides gcd(a, b). Therefore, $d | \gcd(a, b)$. **Exercise 17.** Let $a, b, c, d, p \in \mathbb{Z}$. If p|(10a - b) and p|(10c - d), then p|(ad - bc). *Proof.* Suppose p|(10a - b) and p|(10c - d). Since p|(10a - b), then p divides any multiple of 10a - b, so p|c(10a - b). Hence, p|(10ac - bc). Since p|(10c - d), then p divides any multiple of 10c - d, so p|a(10c - d). Hence, p|(10ac - ad). Thus, p divides the difference (10ac-bc)-(10ac-ad) = 10ac-bc-10ac+ad =ad - bc. Therefore, p|(ad - bc). \square **Exercise 18.** Let $a, b, c \in \mathbb{Z}$. Then gcd(a, c) = gcd(b, c) = 1 iff gcd(ab, c) = 1. *Proof.* Suppose gcd(a, c) = gcd(b, c) = 1. Since gcd(a, c) = 1, then $m_1a + n_1c = 1$ for some integers m_1 and n_1 . Since gcd(b, c) = 1, then $m_2b + n_2c = 1$ for some integers m_2 and n_2 . Thus, $b = 1b = (m_1a + n_1c)b = m_1ab + n_1bc$, so $m_2(m_1ab + n_1bc) + n_2c = 1$. Hence, $1 = m_1 m_2 ab + m_2 n_1 bc + n_2 c = (m_1 m_2)(ab) + (m_2 n_1 b + n_2)c$. Since there exist integers m_1m_2 and $m_2n_1b + n_2$ such that $(m_1m_2)(ab) +$ $(m_2n_1b + n_2)c = 1$, then gcd(ab, c) = 1. *Proof.* Conversely, suppose gcd(ab, c) = 1.

Then xab + yc = 1 for some integers x and y.

Hence, 1 = xab + yc = (xb)a + yc = (ax)b + yc.

Since there exist integers xb and y such that (xb)a + yc = 1, then gcd(a, c) = 1.

Since there exist integers ax and y such that (ax)b + yc = 1, then gcd(b, c) = 1.

Therefore,
$$gcd(a, c) = gcd(b, c) = 1.$$

Exercise 19. If $10|(3^m + 1)$ for some integer m, then $10|(3^{m+4n} + 1)$ for all $n \in \mathbb{Z}^+$.

For which *m* does $10|(3^m + 1)?$

Proof.

Theorem 20. Let S be a nonempty set of integers that is closed under addition and subtraction.

Then either S consists of zero alone or S contains a smallest positive element, in which case S consists of all multiples of its smallest positive element.

Solution. Since S is not empty, then there exists some element in S.

Let a be some element of S.

Since $a \in S$ and $S \subset \mathbb{Z}$, then $a \in \mathbb{Z}$.

By closure of S under addition, we have $a + a = 2a \in S$ and $2a + a = 3a \in S$ and $3a + a = 4a \in S$, and so on.

Thus, it appears $ka \in S$ for all positive integers k.

By closure of S under subtraction, we have $a - a = 0 \in S$ so $0 - a = -a \in S$, so $-a - a = -2a \in S$, so $-2a - a = -3a \in S$, so $-3a - a = -4a \in S$, and so on.

Thus, it appears $ka \in S$ for all negative integers k.

Hence, it appears $ka \in S$ for all integers k, so it appears that $\{ka : k \in \mathbb{Z}\} \subset S$.

We showed that if $a \in S$, then $0 \in S$ and $-a \in S$.

Since S is not empty, then S contains at least one element, so either S contains exactly one element or it contains more than one element. \Box

Proof. Since S is a nonempty subset of integers, then there is some element in S, say a.

Since $a \in S$ and $S \subset \mathbb{Z}$, then $a \in \mathbb{Z}$.

By closure of S under subtraction, $a - a \in S$, so $0 \in S$.

Since S is not empty, then S contains at least one element, so either S contains exactly one element or S contains more than one element.

We consider these cases separately.

Case 1: Suppose S contains exactly one element.

Since S contains exactly one element and $0 \in S$, then S must contain zero only.

Therefore, $S = \{0\}$.

Case 2: Suppose S contains more than one element. Then S contains at least two elements. One of the elements must be zero and the other element is not zero. Let a be some element of S that is not equal to zero. Since $a \in S$ and $S \subset \mathbb{Z}$, then $a \in \mathbb{Z}$. Since $a \neq 0$, then either a > 0 or a < 0. Suppose a > 0. Then $0 - a \in S$, so $-a \in S$. Suppose a < 0. Then $0 - a \in S$, so $-a \in S$. Hence, in either case S will always contain both -a and a. Therefore, without loss of generality, assume a > 0. Then $-a \in S$. We must prove a is the least positive element of S and that $S = \{na : n \in \mathbb{Z}\}.$ Let $T = \{na : n \in \mathbb{Z}\}.$ To prove S = T, we prove $S \subset T$ and $T \subset S$. To prove $T \subset S$, we must prove every element of T is in S. Hence, we must prove every multiple of a is in S, so we must prove $(\forall n \in$ \mathbb{Z}) $(na \in S)$. To prove $(\forall n \in \mathbb{Z})(na \in S)$, we prove $(\forall n \in \mathbb{Z}^+)(na \in S)$ and $0 \in S$ and $(\forall n \in \mathbb{Z}^+)(-na \in S).$ We've already shown that $0 \in S$. We prove $(\forall n \in \mathbb{Z}^+)(na \in S)$ by induction on n. Let $p(n) : na \in S$. For n = 1, we have $1 * a = a \in S$, so p(1) holds. Suppose m is an arbitrary integer such that p(m) holds. To prove p(m+1) holds, we must prove $(m+1)a \in S$. Since p(m) holds, then $ma \in S$. Thus, by closure under addition, $ma + a \in S$. Hence, $ma + a = (m + 1)a \in S$, as desired. Therefore, by induction, $na \in S$ for all positive integers n. We now prove $(\forall n \in \mathbb{Z}^+)(-na \in S)$ by induction on n. Let $q(n) : -na \in S$. For n = 1, we have $-(1 * a) = -a \in S$, so q(1) holds. Suppose m is an arbitrary integer such that q(m) holds. To prove q(m+1) holds, we must prove $-(m+1)a \in S$. Since q(m) holds, then $-ma \in S$. Thus, by closure under subtraction, $-ma - a \in S$. Hence, $-ma - a = -(ma + a) = -(m + 1)a \in S$, as desired. Therefore, by induction, $-na \in S$ for all positive integers n. Hence, $na \in S$ for all integers n, so every multiple of a is in S. Thus, every element of T is in S, so $T \subset S$. We prove a is the least positive element of S. Either a = 1 or $a \neq 1$. We consider these cases separately. Case 1: Suppose a = 1.

The least positive integer is 1. Since a = 1, then 1 is the least positive element of S. Hence, a is the least positive element of S. Case 2: Suppose $a \neq 1$. Since a > 0 and $a \neq 1$, then a > 1. Let W be the set of all positive elements of S. Then $W = \{x \in S : x > 0\}$, so $W \subset S$. Since $W \subset S$ and $S \subset \mathbb{Z}$, then $W \subset \mathbb{Z}$. Since each element of W is positive, then $W \subset \mathbb{Z}^+$. By the well ordering principle of \mathbb{Z}^+ , W must contain a least element, say $b \in W$. We prove b = a. Or, we could prove there is no element of W that is less than a by contradiction? Since $b \in W$ and $W \subset S$, then $b \in S$. Suppose $b \neq a$. Since b is the least element of W, then b < a. By closure of S under subtraction, $a - b \in S$. Since b < a, then a - b > 0, so $a - b \in W$. Suppose a/2 < b. Then a < 2b, so a - b < b. Thus, $a-b \in W$ and a-b < b, so a-b is less than the least positive element of W, a contradiction. Hence, a/2 cannot be less than b. Thus, either a/2 = b or a/2 > b, so either b = a/2 or b < a/2. Suppose for the sake of contradiction that a is not the least positive element of S. Then there exists some element other than a that is the least positive element of S. Let c be some positive element of S that is the least positive element of S. Then $c \in S$ and c > 0 and $c \neq a$ and $(\forall x \in S)(x > 0 \rightarrow c \leq x)$. Since $a \in S$ and a > 0, then $c \le a$, so either c < a or c = a. Since $c \neq a$, then c < a. Thus, 0 < c < a. Since $c \in S$ and $S \subset \mathbb{Z}$, then $c \in \mathbb{Z}$, so $1 \leq c \leq a - 1$. Since c > 0, then we divide a by c. By the division algorithm, there are unique integers q and r such that a =cq + r and $0 \le r < c$. Thus, r = a - cq. Every multiple of an element of S is in S. Since $c \in S$, then every multiple of c is in S, so in particular, $qc \in S$. Since $a \in S$ and $qc \in S$ and S is closed under subtraction, then $a - cq \in S$, so $r \in S$. Either a is a multiple of c or not. Suppose a is not a multiple of c. Then r > 0.

Thus, r is a positive element of S and c is the least positive element of S and r < c.

Hence, there exists some positive element of S that is less than the least positive element of S, a contradiction.

Therefore, a must be a multiple of c. Thus, there is some integer k such that a = ck. Since a and c are positive, then k must be positive. Either k is a multiple of c or it is not. Suppose k is a multiple of c. Since $c \in S$ and every multiple of an element in S is in S, then $k \in S$. Now, either k = c or $k \neq c$. Suppose $k \neq c$. Then either k > c or k < c, so |k - c| > 0. $k = c \text{ or } k \neq c.$ If k = c, then $k \in S$, since $c \in S$. If $k \neq c$, then either k < c or k > c. But, is $k \in S$? We're stuck here in trying to figure out how to devise a suitable contradiction. To prove $S \subset T$, we must prove every element of S is a multiple of a. Hence, we must prove $(\forall b \in S)(a|b)$. Suppose b is some element of S such that b is not a multiple of a. We divide b by a. Since a > 0, then by the division algorithm, there are unique integers q, rsuch that b = aq + r and 0 < r < a. Thus, r = b - qa. Every multiple of an element of S is in S. Since $a \in S$, then every multiple of a is in S, so in particular, $qa \in S$. Since $b \in S$ and $qa \in S$ and S is closed under subtraction, then $b - qa \in S$, so $r \in S$. Hence, r is a positive element of S and a is the least positive element of Sand r < a. Thus, there exists some positive element of S that is less than the least positive element of S, a contradiction. Hence, there is no element of S that is not a multiple of a. Therefore, every element of S is a multiple of a. Hence, $S \subset T$. Since $S \subset T$ and $T \subset S$, then we conclude S = T. **Proposition 21.** Let $a, b \in \mathbb{Z}$. Then a - b divides $a^n - b^n$ for all $n \in \mathbb{N}$. *Proof.* We prove by induction on n. Let $S = \{n \in \mathbb{N} : a - b | a^n - b^n\}.$ **Basis**: Since $a, b \in \mathbb{Z}$, then $a - b \in \mathbb{Z}$.

Since a - b divides $a - b = a^1 - b^1$, then a - b divides $a^1 - b^1$.

Since $1 \in \mathbb{N}$ and a - b divides $a^1 - b^1$, then $1 \in S$. Induction: Suppose $k \in S$. Then $k \in \mathbb{N}$ and a - b divides $a^k - b^k$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since a - b divides $a^k - b^k$, then a - b divides any multiple of $a^k - b^k$. Since $a \in \mathbb{Z}$, then a - b divides $a(a^k - b^k)$. Since a - b divides a - b, then a - b divides any multiple of a - b. Since $k \in \mathbb{N}$, then $k \ge 1 > 0$, so k > 0. Since $b \in \mathbb{Z}$ and k > 0 and $k \in \mathbb{Z}$, then $b^k \in \mathbb{Z}$. Hence, a - b divides $b^k(a - b)$. Thus, a-b divides the sum $a(a^k-b^k)+b^k(a-b)=a^{k+1}-ab^k+ab^k-b^{k+1}=a^{k+1}-a^{k+1}$ $a^{k+1} - b^{k+1}$. Since $k + 1 \in \mathbb{N}$ and a - b divides $a^{k+1} - b^{k+1}$, then $k + 1 \in S$. Thus, $k \in S$ implies $k + 1 \in S$. Therefore, by the principle of mathematical induction, a - b divides $a^n - b^n$ for all $n \in \mathbb{N}$, as desired. Exercise 22. 1 and -1 are the only divisors of 1 Let $n \in \mathbb{Z}$. If n|1, then n = 1 or n = -1. *Proof.* Suppose n|1. Then 1 = nm for some integer m. Since nm = 1, then by axiom of \mathbb{Z} , either n = m = 1 or n = m = -1. Therefore, either n = 1 or n = -1. Exercise 23. zero divides only zero Let $n \in \mathbb{Z}$. If 0|n, then n = 0. *Proof.* Suppose 0|n. Then n = 0m for some $m \in \mathbb{Z}$. Therefore, n = 0m = 0, so n = 0. **Exercise 24.** Let $a, b, c, d \in \mathbb{Z}$. If a + b = c and d|a and d|c, then d|b. *Proof.* Suppose a + b = c and d|a and d|c. Since d|c and d|a, then d divides their difference c - a, so d|b. **Exercise 25.** Let $x, y \in \mathbb{Z}$. If $3x^2 + 15xy + 5y^2 = 0$, then $3|5y^2$ and $5|3x^2$. *Proof.* Suppose $3x^2 + 15xy + 5y^2 = 0$. Then $5y^2 = -3x^2 - 15xy$ and $3x^2 = -15xy - 5y^2$. Since $5y^2 = -3x^2 - 15xy = 3(-x^2 - 5xy)$ and $-x^2 - 5xy \in \mathbb{Z}$, then $3 \mid 5y^2$. Since $3x^2 = -15xy - 5y^2 = 5(-3xy - y^2)$ and $-3xy - y^2 \in \mathbb{Z}$, then $5 \mid 3x^2$. \Box

Exercise 26. Let $d, a, b \in \mathbb{Z}$. Disprove: If $d ab$, then $d a$ and $d b$.	
Solution. Let $d = 5$ and $a = 10$ and $b = 6$. Observe that $5 (10 \cdot 6)$ and $5 10$, but $5 \not 6$.	
Exercise 27. Let $d, a, b \in \mathbb{Z}$. Disprove: If $d ab$, then $d a$ or $d b$.	
Solution. Let $d = 6$ and $a = 4$ and $b = 9$. Observe that $6 \mid (4 \cdot 9)$, but $6 \not 8$ and $6 \not 9$.	
Exercise 28. Let $a, b, n \in \mathbb{Z}$. Disprove: If $a n$ and $b n$, then $ab n$.	
Solution. Let $n = 12$ and $a = 4$ and $b = 6$. Observe that $4 12$ and $6 12$, but $(4 * 6) \not 12$.	
Exercise 29. Let $d, n \in \mathbb{Z}^+$. Then $gcd(d, nd) = d$.	
Solution. Observe that	
$gcd(d, nd) = d \cdot gcd(1, n)$ $= d \cdot 1$ $= d.$	

Exercise 30. Let $a, b, c \in \mathbb{Z}$. If gcd(a, b) = 1 and c|a, then gcd(c, b) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a. Since gcd(a, b) = 1, then there exist integers x and y such that xa + yb = 1. Since c|a, then a = ck for some integer k. Thus, 1 = xa + yb = x(ck) + yb = x(kc) + yb = (xk)c + yb, so 1 is a linear combination of c and b.

Therefore, gcd(c, b) = 1.

Exercise 31. There exists an $n \in \mathbb{N}$ for which $11|(2^n - 1)$.

Solution. The statement is $(\exists n \in \mathbb{N})(11|2^n - 1)$. We can use computer or calculator to determine some value for n. \Box *Proof.* Let n = 10.

Then
$$2^{10} - 1 = 1023 = 11 \cdot 93$$
, so $11 \mid 2^{10} - 1$.

Exercise 32. Let $a, b \in \mathbb{Z}$. If $a \mid b$, then $a^2 \mid b^2$. Proof. Suppose $a \mid b$. Then b = ak for some integer k. Thus, $b^2 = (ak)^2 = a^2k^2$. Since $k^2 \in \mathbb{Z}$, then $a^2 \mid b^2$.

Exercise 33. Suppose $x, y \in \mathbb{Z}$. If 5 $/\!\!\!/ xy$, then 5 $/\!\!\!/ x$ and 5 $/\!\!\!/ y$.

Solution. We use proof by contrapositive since we have alot of negative statements and direct proof leads us nowhere. \Box

Proof. Suppose it is not true that $5 \not|x$ and $5 \not|y$. Then 5|x or 5|y. There are two cases to consider. **Case 1:** Suppose $5 \mid x$. Then x = 5a for some $a \in \mathbb{Z}$. Multiply both sides by y to get xy = 5ay. Thus xy = 5(ay), and this means $5 \mid xy$. **Case 2:** Suppose $5 \mid y$. Then y = 5a for some $a \in \mathbb{Z}$. Multiply both sides by x to get xy = 5ax. Thus xy = 5(ax), and this means $5 \mid xy$.

Both of these cases show that $5 \mid xy$, so it is not true that $5 \not|xy$.

Exercise 34. Let $n \in \mathbb{Z}$. If $5 \mid 2n$, then $5 \mid n$.

Proof. Suppose $5 \mid 2n$. Then 2n = 5a for some integer a. Observe that

n	=	5n-4n
	=	5n - 2(2n)
	=	5n - 2(5a)
	=	5(n-2a).

Since n - 2a is an integer, then $5 \mid n$.

Proof. Suppose $5 \mid 2n$.

Then 2n = 5a for some integer a. Thus, 5a is a multiple of 2, so 5a is even. Since 5 is odd and 5a is even, then a must be even. Hence, a = 2b for some integer b. Thus, 2n = 5(2b), so n = 5b. Therefore, $5 \mid n$.

Exercise 35. Let $n \in \mathbb{Z}$. If $7 \mid 4n$, then $7 \mid n$.

Proof. Suppose $7 \mid 4n$. Then $4n = 7a$ for some integer a . Observe that	
n = 8n - 7n = 2(4n) - 7n = 2(7a) - 7n = 7(2a - n).	
Since $2a - n$ is an integer, then $7 \mid n$.	
Proof. Suppose 7 4n. Then $4n = 7a$ for some integer a. Thus, $2(2n) = 7a$, so $7a$ is even. Since 7 is odd and $7a$ is even, then a must be even. Hence, $a = 2b$ for some integer b. Thus, $4n = 7(2b)$, so $2n = 7b$. Hence, 7b is even. Since 7 is odd and 7b is even, then b must be even. Hence, $b = 2c$ for some integer c. Thus, $2n = 7(2c)$, so $n = 7c$. Therefore, $7 n$.	
Exercise 36. Let $a, b \in \mathbb{Z}$. If $a b$, then $(-a) b$ and $a (-b)$ and $(-a) (-b)$.	
Proof. Suppose $a b$. Then $b = an$ for some integer n . Thus, $b = an = (-a)(-n)$ and $-b = -an = a(-n)$. Since $b = (-a)(-n)$ and $-n \in \mathbb{Z}$, then $(-a) b$. Since $-b = a(-n)$ and $-n \in \mathbb{Z}$, then $a (-b)$. Since $-b = -an$ and $n \in \mathbb{Z}$, then $(-a) (-b)$.	
Exercise 37. Let $a, b, c \in \mathbb{Z}$. If $a b$ and $a c$, then $a^2 bc$.	
Proof. Suppose $a b$ and $a c$. Then $b = am$ and $c = an$ for some integers m and n . Thus, $bc = (am)(an) = a(ma)n = a(am)n = (aa)(mn) = a^2(mn)$. Since $m, n \in \mathbb{Z}$, then $mn \in \mathbb{Z}$, so $a^2 bc$.	
Exercise 38. Let $a, b, c \in \mathbb{Z}$. Disprove: If $a (b+c)$, then either $a b$ or $a c$.	
<i>Proof.</i> Let $a = 3$ and $b = 4$ and $c = 5$. Since 3 9, then 3 (4 + 5), but 3 /4 and 3 /5.	
Exercise 39. If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.	

Solution. We can make a table of values by plugging in various values to determine if the expression is really a multiple of 4.

n	$1 + (-1)^n (2n - 1)$
1	0
2	4
3	-4
4	8
5	-8
6	12
7	-12

We see that for even *n*, the expression $1+(-1)^n(2n-1) = 1+(1)(2n-1) = 2n$. For odd *n*, $1+(-1)^n(2n-1) = 1-(1)(2n-1) = 1-2n+1 = 2-2n$. \Box

Proof. Suppose $n \in \mathbb{N}$.

Then n is either even or odd. We consider these two cases separately.

Case 1. Suppose n is even.

Then n = 2k for some $k \in \mathbb{Z}$, and $(-1)^n = 1$.

Thus $1 + (-1)^n (2n - 1) = 1 + (1)(2 \cdot 2k - 1) = 4k$, which is a multiple of 4. **Case 2**. Suppose *n* is odd.

Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $(-1)^n = -1$.

Thus $1 + (-1)^n (2n - 1) = 1 + (-1)(2(2k + 1) - 1) = 1 - (4k + 1) = -4k$, which is a multiple of 4.

These two cases show that $1 + (-1)^n (2n-1)$ is always a multiple of 4. \Box

Exercise 40. Every multiple of 4 has form $1 + (-1)^n (2n-1)$ for some $n \in \mathbb{N}$.

Proof. In conditional form, the proposition is as follows:

If k is a multiple of 4, then there is an $n \in \mathbb{N}$ for which $1 + (-1)^n (2n-1) = k$. What follows is a proof of this conditional statement.

Suppose k is a multiple of 4. Then k = 4a for some integer a.

We must produce an $n \in \mathbb{N}$ for which $1 + (-1)^n (2n - 1) = k$.

We consider three cases, depending on whether a is zero, positive, or negative.

Case 1. Suppose a = 0.

Let n = 1. Then $1 + (-1)^n (2n - 1) = 1 + (-1)(2 \cdot 1 - 1) = 0 = 4 \cdot 0 = 4a = k$. Case 2. Suppose a > 0.

Let n = 2a, which is an element of \mathbb{N} because a is positive, making n positive. Also n is even, so $(-1)^n = 1$. Thus $1 + (-1)^n (2n-1) = 1 + (1)(2 \cdot 2a - 1) = 4a = k$.

Case 3. Suppose a < 0.

Let n = 1 - 2a, which is an element of \mathbb{N} because a is negative, making 1 - 2a positive.

Also n is odd, so $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 + (-1)(2(1 - 2a) - 1) = 1 - (1 - 4a) = 4a = k$.

These three cases show that no matter whether a multiple k = 4a is zero, positive, or negative, it always equals $1 + (-1)^n (2n-1)$ for some natural number n.

Exercise 41. If $n \in \mathbb{N}$, then $n^2 = 2\binom{n}{2} + \binom{n}{1}$.

Solution. By definition of binomial coefficient we know $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

In particular, for n > 1, $\binom{n}{1} = n$ and $\binom{n}{2} = \frac{n(n-1)}{2}$.

Proof. Suppose n is an integer.

We consider two cases. **Case 1**: Suppose n = 1. Then $2\binom{1}{2} + \binom{1}{1} = 2 \cdot 0 + 1 = 1 = 1^2$. **Case 2**: Suppose n > 1. Then $2\binom{n}{2} + \binom{n}{1} = 2\frac{n(n-1)}{2} + n = n(n-1) + n = n^2$. Both cases show $n^2 = 2\binom{n}{2} + \binom{n}{1}$.

Exercise 42. Let $a \in \mathbb{Z}$.

Then either a or a + 2 or a + 4 is divisible by 3.

Proof. By the division algorithm, there exist unique integers q and r such that a = 3q + r with $0 \le r < 3$. Thus, either a = 3q or a = 3q + 1 or a = 3q + 2. We consider these cases separately. **Case 1:** Suppose a = 3q. Since a = 3q and $q \in \mathbb{Z}$, then 3|a, so a is divisible by 3. **Case 2:** Suppose a = 3q + 1. Then a + 2 = (3q + 1) + 2 = 3q + 3 = 3(q + 1). Since a + 2 = 3(q + 1) and $q + 1 \in \mathbb{Z}$, then 3|(a + 2), so a + 2 is divisible by 3. **Case 3:** Suppose a = 3q + 2. Then a + 4 = (3q + 2) + 4 = 3q + 6 = 3(q + 2). Since a + 4 = 3(q + 2) and $q + 2 \in \mathbb{Z}$, then 3|(a + 4), so a + 4 is divisible by 3. □

Exercise 43. A product of 3 consecutive integers is divisible by 3 Let $a \in \mathbb{Z}$. Then 3|a(a+1)(a+2).

Proof. By the division algorithm, either a = 3k or a = 3k + 1 or a = 3k + 2 for some integer k. We consider these cases separately. **Case 1:** Suppose a = 3k. Then 3|a, so 3 divides any multiple of a. Hence, 3|a(a + 1)(a + 2). **Case 2:** Suppose a = 3k + 1. Then a + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1), so 3|(a + 2). Hence, 3 divides any multiple of a + 2, so 3|a(a + 1)(a + 2). **Case 3:** Suppose a = 3k + 2. Then a + 1 = (3k + 2) + 1 = 3k + 3 = 3(k + 1), so 3|(a + 1). Hence, 3 divides any multiple of a + 1, so 3|a(a + 1)(a + 2).

Therefore, in all cases, 3|a(a+1)(a+2).

		•
		L
		L
		L
		L

Exercise 44. Let $a \in \mathbb{Z}$. Then $4 \not| (a^2 + 2)$.

Proof. By the division algorithm, there exist unique integers q and r such that a = 4q + r with $0 \le r < 4$. Thus, either a = 4q or a = 4q + 1 or a = 4q + 2 or a = 4q + 3. We consider these cases separately. Case 1: Suppose a = 4q. Then $a^2 + 2 = (4q)^2 + 2 = 4^2q^2 + 2 = 4(4q^2) + 2$. Let $k = 4q^2$. Then $k \in \mathbb{Z}$ and $a^2 + 2 = 4k + 2$. Case 2: Suppose a = 4q + 1. Then $a^2+2 = (4q+1)^2+2 = (16q^2+8q+1)+2 = 16q^2+8q+3 = 4(4q^2+2q)+3$. Let $k = 4q^2 + 2q$. Then $k \in \mathbb{Z}$ and $a^2 + 2 = 4k + 3$. Case 3: Suppose a = 4q + 2. Then $a^2 + 2 = (4q + 2)^2 + 2 = (16q^2 + 16q + 4) + 2 = 4(4q^2 + 4q + 1) + 2.$ Let $k = 4q^2 + 4q + 1$. Then $k \in \mathbb{Z}$ and $a^2 + 2 = 4k + 2$. Case 4: Suppose a = 4q + 3. Then $a^2 + 2 = (4q + 3)^2 + 2 = (16q^2 + 24q + 9) + 2 = 16q^2 + 24q + 11 =$ $16q^2 + 24q + (4 * 2 + 3) = 4(4q^2 + 6q + 2) + 3.$ Let $k = 4q^2 + 6q + 2$. Then $k \in \mathbb{Z}$ and $a^2 + 2 = 4k + 3$.

Therefore, in all cases, either $a^2 + 2 = 4k + 2$ or $a^2 + 2 = 4k + 3$ for some integer k.

Hence, 4 cannot divide $a^2 + 2$.

Exercise 45. Let $n \in \mathbb{Z}$.

If $2 \mid n$ and $3 \mid n$, then $6 \mid n$.

Proof. Suppose $2 \mid n$ and $3 \mid n$.

Since $2 \mid n$, then n = 2a for some integer a. Since $3 \mid n$, then n = 3b for some integer b. Observe that

$$n = 3n - 2n = 3(2a) - 2(3b) = 6a - 6b = 6(a - b).$$

Since a - b is an integer, then $6 \mid n$.

 $\begin{array}{l} Proof. \ {\rm Suppose}\ 2 \ | \ n \ {\rm and}\ 3 \ | \ n. \\ {\rm Since}\ 2 \ | \ n, \ {\rm then}\ 3 \ast 2 \ | \ 3n, \ {\rm so}\ 6 \ | \ 3n. \\ {\rm Since}\ 3 \ | \ n, \ {\rm then}\ 2 \ast 3 \ | \ 2n, \ {\rm so}\ 6 \ | \ 2n. \\ {\rm Thus},\ 6 \ {\rm is}\ a \ {\rm common \ divisor}\ of\ 2n \ {\rm and}\ 3n, \ {\rm so}\ 6 \ | \ {\rm gcd}(2n, 3n). \\ {\rm Hence},\ 6 \ | \ n \ast {\rm gcd}(2, 3), \ {\rm so}\ 6 \ | \ n \ast 1. \\ {\rm Therefore},\ 6 \ | \ n. \end{array}$

Exercise 46. Let n be an integer. If $3 \mid n$ and $5 \mid n$, then $15 \mid n$.

Proof. Suppose $3 \mid n$ and $5 \mid n$. Since $3 \mid n$, then n = 3a for some integer a. Since $5 \mid n$, then n = 5b for some integer b. Observe that

$$n = 6n - 5n$$

= 6(5b) - 5(3a)
= 30b - 15a
= 15(2b - a).

Since 2b - a is an integer, then $15 \mid n$.

Exercise 47. Let $n \in \mathbb{Z}$.

Then $14 \mid n$ if and only if $7 \mid n$ and $2 \mid n$.

Proof. We first prove: if $14 \mid n$ then $7 \mid n$ and $2 \mid n$. Suppose $14 \mid n$. Then n = 14k for some $k \in \mathbb{Z}$. Since n = 7(2k) and $2k \in \mathbb{Z}$, then $7 \mid n$. Since n = 2(7k) and $7k \in \mathbb{Z}$, then $2 \mid n$. Therefore, $7 \mid n$ and $2 \mid n$.

Conversely, we prove: if $7 \mid n$ and $2 \mid n$, then $14 \mid n$. Suppose $7 \mid n$ and $2 \mid n$. Since $7 \mid n$, then n = 7a for some integer a. Since $2 \mid n$, then n = 2b for some integer b. Observe that

$$n = 7n - 6n$$

= 7(2b) - 6(7a)
= 14b - 42a
= 14(b - 3a).

Since $b - 3a$ is an integer, then $14 \mid n$.	
Exercise 48. Let a, b, d be integers. If $d (da + b)$, then $d b$.	
Proof. Suppose $d (da + b)$. Then $da + b = dn$ for some integer n . Hence, $b = dn - da = d(n - a)$. Since $n - a$ is an integer, then this implies $d b$.	
Exercise 49. Let a, b, d be integers. If $d (a + b)$ and $d a$, then $d b$.	
Proof. Suppose $d (a + b)$ and $d a$. Then $a + b = dk$ and $a = dm$ for some integers k and m. Thus, $b = dk - a = dk - dm = d(k - m)$. Since $k - m$ is an integer, then this implies $d b$.	
Exercise 50. Let $x, y \in \mathbb{Z}$. If $x y$ and y is odd, then x is odd.	
Proof. Suppose $x y$ and y is odd. Since $x y$, then $y = xk$ for some integer k . Since y is odd, then this implies xk is odd. Hence, x must be odd.	
Exercise 51. If a is an integer and $a^2 a$, then $a \in \{-1, 0, 1\}$.	
Proof. Suppose a is an integer and $a^2 a$. Then $a = a^2k$ for some integer k. Thus, $0 = a - a^2k = a(1 - ak)$, so either a is zero or a is not zero. We consider these cases separately.	
Case 1 : Suppose <i>a</i> is zero. Then $a = 0$, so $a \in \{0\}$. Case 2 : Suppose <i>a</i> is not zero. Then $1 - ak = 0$, so $1 = ak$. Since <i>a</i> and <i>k</i> are both integers, then $k = \pm 1$. If $k = 1$, then $1 = a(1) = a$. If $k = -1$, then $-1 = -ak = -a(-1) = a$.	

If k = -1, then $-1 = -a\kappa = -a(-1) - a$. Thus, either a = 1 or a = -1, so $a \in \{1, -1\}$.

Therefore, in all cases, either $a \in \{0\}$ or $a \in \{1, -1\}$, so $a \in \{0, 1, -1\} \{-1, 0, 1\}$.	
Exercise 52. Let $a, b, d \in \mathbb{Z}$. If $d \mid a$ or $d \mid b$, then $d \mid ab$.	
Proof. Suppose $d \mid a$ or $d \mid b$. We consider each case separately. Case 1: Suppose $d \mid a$. Then $a = dk$ for some $k \in \mathbb{Z}$. Thus, $ab = (dk)b = d(kb)$, so $d \mid ab$. Case 2: Suppose $d \mid b$. Then $b = dm$ for some $m \in \mathbb{Z}$. Thus, $ab = a(dm) = (dm)a = d(ma)$, so $d \mid ab$. Both of these cases show that $d \mid ab$.	
Exercise 53. Let $a, b, d \in \mathbb{Z}$. Disprove: If $d \mid ab$, then $d \mid a$ or $d \mid b$.	
<i>Proof.</i> Here is a counter example. Let $d = 6$ and $a = 8$ and $b = 9$. Observe that $6 \mid (8 \cdot 9)$, but $6 \not /8$ and $6 \not /9$.	
Exercise 54. Let $a, b, m \in \mathbb{Z}$. If $ab m$, then $a m$ and $b m$.	
Proof. Suppose $ab m$. Then $m = abk$ for some integer k . Since $m = abk = a(bk)$ and $bk \in \mathbb{Z}$, then $a m$. Since $m = abk = bak = b(ak)$ and $ak \in \mathbb{Z}$, then $b m$. Therefore, $a m$ and $b m$.	
Exercise 55. Let $a, b, m \in \mathbb{Z}$. Disprove: if $a m$ and $b m$, then $ab m$.	
<i>Proof.</i> Here is a counter example. Let $a = 4$ and $b = 10$ and $m = 60$. Then 4 60 and 10 60, but, 40 /60.	
Exercise 56. Let $m, n \in \mathbb{Z}^+$ such that $n > 1$. If $n m$, then $n \not m + 1$.	
Proof. Suppose $n m$. Then there exists an integer a such that $m = na$. Suppose for the sake of contradiction that $n (m + 1)$. Then there exists an integer b such that $m + 1 = nb$. Hence, $na + 1 = nb$, so $1 = nb - na = n(b - a)$. Since $b - a$ is an integer, then this implies $n 1$. Hence, either $n = 1$ or $n = -1$.	

Thus, n is not greater than 1. Therefore, we have n > 1 and $n \not> 1$, a contradiction. Consequently, n cannot divide m + 1, so $n \not| (m + 1)$, as desired. **Exercise 57.** If n is an integer, then $n^2 + 2$ is not divisible by 4. *Proof.* Let n be an arbitrary integer. We prove by contradiction. Suppose $n^2 + 2$ is divisible by 4. Then there is an integer k such that $n^2 + 2 = 4k$. Either n is even or not. We consider these cases separately. Case 1: Suppose n is even. Then n = 2m for some integer m. Thus, $4k = n^2 + 2 = (2m)^2 + 2 = 4m^2 + 2 = 2(2m^2 + 1).$ Hence, $2k = 2m^2 + 1$. But, this equation implies the even integer 2k equals the odd integer $2m^2+1$, a contradiction. Case 2: Suppose n is odd. Then n^2 is odd, so $n^2 + 2$ is odd. Since $2(2k) = 4k = n^2 + 2$ and 2k is an integer, then $n^2 + 2$ is even. But, this contradicts the fact that $n^2 + 2$ is odd. **Exercise 58.** For any integer $n \ge 0$, it follows that $24|(5^{2n} - 1)$. Solution. The statement to prove is: $(\forall n \in \mathbb{Z}, n > 0)(24|5^{2n} - 1).$ Define predicate $p(n): 24|5^{2n} - 1$ over $\mathbb{N} \cup \{0\}$. Observe that $24|5^{2n} - 1$ is equivalent to $(25 - 1)|25^n - 1$. Since we know x - 1 divides $x^n - 1$, for every $x \in \mathbb{Z}$ and every $n \in \mathbb{N}$, then we know, in particular, $24|25^n - 1$ for every $n \in \mathbb{N}$. Thus, we need only prove $24|25^n - 1$ when n = 0. But, $25^0 - 1 = 0$ and 24|0. Hence, p(0) is true. *Proof.* We prove by induction(weak). **Basis**: If n = 0 then the statement is $24|(5^{2 \cdot 0} - 1)|$. This simplifies to 24|0, which is true. If n = 1 then the statement is $24|(5^{2 \cdot 1} - 1)|$. This simplifies to 24|24, which is true. Induction: We must prove $24|(5^{2k}-1)$ implies $24|(5^{2(k+1)}-1)$. Suppose $24|(5^{2k}-1)$ for any integer $k \ge 1$.

Then $5^{2k} - 1 = 24a$ for some integer *a*, by definition of divisibility. Thus $5^{2k} = 24a + 1$. Observe the following equalities:

$$5^{2(k+1)} - 1 = 5^{2k+2} - 1$$

= $5^{2}5^{2k} - 1$
= $25(24a + 1) - 1$
= $25 \cdot 24a + 25 - 1$
= $24(25a + 1)$

This shows that $5^{2(k+1)} - 1 = 24(25a+1)$, which means $24|5^{2(k+1)} - 1$. It follows by induction that $24|(5^{2n}-1)$ for any integer $n \ge 0$.

Exercise 59. Let $n \in \mathbb{Z}$.

Then $5|n^5 - n$.

Solution. Note that the statement $5|n^5 - n$ is equivalent to the statement $n^5 \equiv n \pmod{5}$.

We just showed that any integer of the form $n^5 - n$ is even. We now must show that such an integer is divisible by 5.

We factor $n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n-1)(n+1)(n^2 + 1) = (n-1)n(n+1)(n^2 + 1)$. Thus $n^5 - n$ is a product of 3 consecutive integers and another factor. If n = 0, then $5|0^5 - 0$ since $0 = 5 \cdot 0$.

Suppose n is a natural number.

We consider n divided by 5.

By the Division Algorithm, we know that n = 5q + r, where $0 \le r < 5$. Thus we have the set of congruence classes modulo 5.

For example, if r = 0, then n = 5q.

If r = 1, then n = 5q + 1.

If r = 2, then n = 5q + 2.

If r = 3, then n = 5q + 3.

If
$$r = 4$$
, then $n = 5q + 4$.

We observe the following partition of natural numbers under congruence modulo 5 for any integer $q \ge 0$:

If $n \in \{2, 7, 12, 17, 22, 27, ...\} = \{5q + 2\}$, then $5|n^2 + 1$.

This set is really the set of all natural numbers which are congruent to 2 (mod 5).

Thus if $n \in [2]_5$, then $5|n^2+1$. This is because if n is an arbitrary element of this set, then n = 5q+2, so $n^2+1 = (5q+2)^2+1 = 25q^2+20q+5 = 5(5q^2+4q+1)$. If $n \in \{3, 8, 13, 18, 23, 28, ...\} = \{5q+3\}$, then $5|n^2+1$.

This set is really the set of all natural numbers which are congruent to 3 (mod 5).

Thus if $n \in [3]_5$, then $5|n^2 + 1$. This is because if n is an arbitrary element of this set, then n = 5q + 3, so $n^2 + 1 = (5q + 3)^2 + 1 = 25q^2 + 30q + 10 = 5(5q^2 + 6q + 2)$.

If $n \in \{4, 9, 14, 19, 24, 29, 34, ...\} = \{5q + 4\}$, then 5|n + 1.

This set is really the set of all natural numbers which are congruent to $4 \pmod{5}$.

Thus if $n \in [4]_5$, then 5|n+1. This is because if n is an arbitrary element of this set, then n = 5q+4, so n+1 = (5q+4)+1 = 5q+5 = 5(q+1).

If $n \in \{5, 10, 15, 20, 25, 30, ...\} = \{5q\}$, then 5|n.

This set is really the set of all natural numbers which are multiples of 5.

Thus if $n \in [0]_5$, then 5|n. This is because if n is an arbitrary element of this set, then n = 5q.

If $n \in \{1, 6, 11, 16, 21, 26, 31, 36, ...\} = \{5q + 1\}$, then 5|n - 1.

This set is really the set of all natural numbers which are congruent to 1 (mod 5).

Thus if $n \in [1]_5$, then 5|n-1. This is because if n is an arbitrary element of this set, then n = 5q + 1, so n - 1 = (5q + 1) - 1 = 5q.

Thus, regardless of what value n is, one of the factors n, n-1, n+1, or n^2+1 is always divisible by 5.

Hence, $n^5 - n$ is divisible by 5.

Now, we can also prove this by induction(weak form). The statement to prove is: for all non-negative integers $n, 5|n^5 - n$.

Thus the statement is $S_n: 5|n^5 - n$.

The statement S_k is $5|k^5 - k$.

The statement S_{k+1} is $5|(k+1)^5 - (k+1)$.

Proof. Let $p = n^5 - n$

Then $p = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1).$ We must prove 5|p.

By the division algorithm either n = 5k or n = 5k + 1 or n = 5k + 2 or n = 5k + 3 or n = 5k + 4 for some integer k.

We consider each case separately.

Case 1: Suppose n = 5k.

Then 5|n, so 5 divides any multiple of n.

Hence, 5|p.

Case 2: Suppose n = 5k + 1.

Since n - 1 = 5k, then 5|(n - 1).

Hence, 5 divides any multiple of n - 1, so 5|p.

Case 3: Suppose n = 5k + 2.

Since $n^2 + 1 = (5k + 2)^2 + 1 = 25k^2 + 20k + 4 + 1 = 25k^2 + 20k + 5 = 5(5k^2 + 4k + 1)$, then $5|(n^2 + 1)$. Hence, 5 divides any multiple of $n^2 + 1$, so 5|p.

Case 4: Suppose n = 5k + 3.

Since $n^2 + 1 = (5k + 3)^2 + 1 = 25k^2 + 30k + 9 + 1 = 25k^2 + 30k + 10 = 5(5k^2 + 6k + 2)$, then $5|(n^2 + 1)$.

Hence, 5 divides any multiple of $n^2 + 1$, so 5|p.

Case 5: Suppose n = 5k + 4.

Since n + 1 = (5k + 4) + 1 = 5k + 5 = 5(k + 1), then 5|(n + 1). Hence, 5 divides any multiple of n + 1, so 5|p.

Proof. The statement is $S_n : 5|n^5 - n$. We prove by induction.

Basis:

If n = 0, then the statement is $5|0^5 - 0$, or 5|0, which is obviously true. If n = 1, then the statement is $5|1^5 - 1$, or 5|0, which is obviously true. **Induction:**

We must prove $S_k \to S_{k+1}$ for $k \ge 1$.

This means we must prove if $5|(k^5 - k)$, then $5|(k + 1)^5 - (k + 1)$ for $k \ge 1$. Suppose $5|(k^5 - k)$ for $k \ge 1$.

Then $k^5 - k = 5a$ for some $a \in \mathbb{Z}$, by definition of divisibility. Observe the following equalities:

$$(k+1)^{5} - (k+1) = (k^{5} + 5k^{4} + 10k^{3} + 10k^{2} + 5k + 1) - k - 1$$

= $(k^{5} - k) + (5k^{4} + 10k^{3} + 10k^{2} + 5k)$
= $5a + 5(k^{4} + 2k^{3} + 2k^{2} + k)$
= $5(a + k^{4} + 2k^{3} + 2k^{2} + k)$

Thus, $5|(k+1)^5 - (k+1)$.

It follows by induction that $5|(n^5 - n)$ for all non-negative integers.

Exercise 60. The sum of the cubes of three consecutive natural numbers is divisible by 9.

Proof. We must prove $9|(n^3 + (n+1)^3 + (n+2)^3)$ for all $n \in \mathbb{N}$. Let p(n) be the predicate $9|(n^3 + (n+1)^3 + (n+2)^3)$ defined over \mathbb{N} .

We prove p(n) is true for all $n \in \mathbb{N}$ by induction on n. Basis:

Since $1^3 + 2^3 + 3^3 = 36$ and 9|36, then p(1) is true.

Induction:

Let $k \in \mathbb{N}$ such that p(k) is true.

Then 9 divides $k^3 + (k+1)^3 + (k+2)^3$.

Since $(k+3)^3 - k^3 = (k^3 + 9k^2 + 27k + 27) - k^3 = 9k^2 + 27k + 27 = 9(k^2 + 3k + 3)$ and $k^2 + 3k + 3$ is an integer, then 9 divides $(k+3)^3 - k^3$.

Since 9 divides $k^3 + (k+1)^3 + (k+2)^3$ and 9 divides $(k+3)^3 - k^3$, then 9 divides the sum $k^3 + (k+1)^3 + (k+2)^3 + (k+3)^3 - k^3 = (k+1)^3 + (k+2)^3 + (k+3)^3$. Hence, p(k+1) is true, so p(k) implies p(k+1) for any $k \ge 1$.

It follows by induction that $9|(n^3 + (n+1)^3 + (n+2)^3)$ for all $n \in \mathbb{N}$.

Exercise 61. For every $n \in \mathbb{Z}^+$, 6|n(n+1)(2n+1).

Proof. Let $n \in \mathbb{Z}^+$.

By the division algorithm, there exist unique integers q, r such that n = 6q + r with $0 \le r < 6$.

Thus, either n = 6q or n = 6q + 1 or n = 6q + 2 or n = 6q + 3 or n = 6q + 4 or n = 6q + 5.

We consider each case separately.

Case 1: Suppose n = 6q.

Then 6|n, so 6 divides any multiple of n.

Thus, 6|n(n+1)(2n+1).

Case 2: Suppose n = 6q + 1. Since n + 1 = (6q + 1) + 1 = 6q + 2 = 2(3q + 1), then 2|(n + 1). Since 2n + 1 = 2(6q + 1) + 1 = 12q + 2 + 1 = 12q + 3 = 3(4q + 1), then 3|(2n+1).Since 2|(n+1) and 3|(2n+1), then (2*3)|(n+1)(2n+1), so 6|(n+1)(2n+1). Hence, 6 divides any multiple of (n + 1)(2n + 1), so 6|n(n + 1)(2n + 1). Case 3: Suppose n = 6q + 2. Since n = 2(3q + 1), then 2|n. Since n + 1 = (6q + 2) + 1 = 6q + 3 = 3(2q + 1), then 3|(n + 1). Since 2|n and 3|(n+1), then (2*3)|n(n+1), so 6|n(n+1). Hence, 6 divides any multiple of n(n+1), so 6|n(n+1)(2n+1). Case 4: Suppose n = 6q + 3. Since n = 3(2q + 1), then 3|n. Since n + 1 = (6q + 3) + 1 = 6q + 4 = 2(3q + 2), then 2|(n + 1). Since 3|n and 2|(n+1), then (3*2)|n(n+1), so 6|n(n+1). Hence, 6 divides any multiple of n(n+1), so 6|n(n+1)(2n+1). Case 5: Suppose n = 6q + 4. Since n = 2(3q + 2), then 2|n. Since 2n + 1 = 2(6q + 4) + 1 = 12q + 9 = 3(4q + 3), then 3|(2n + 1). Since 2|n and 3|(2n+1), then 6|n(2n+1). Hence, 6 divides any multiple of n(2n+1), so 6|n(n+1)(2n+1). Case 6: Suppose n = 6q + 5. Since n + 1 = (6q + 5) + 1 = 6q + 6 = 6(q + 1), then 6|(n + 1). Hence, 6 divides any multiple of n + 1, so 6|n(n + 1)(2n + 1).

Therefore, in all cases, 6|n(n+1)(2n+1).

Proof. Let S be the truth set of p(n) : 6|n(n+1)(2n+1). To prove $S = \mathbb{Z}^+$, we use induction. **Basis:** Since 1(1+1)(2*1+1) = 6 and 6|6, then p(1) is true. Hence, $1 \in S$. Induction: Suppose $k \in S$. To prove $k + 1 \in S$, we must prove 6|(k + 1)(k + 2)(2k + 3). Since $k \in S$, then 6|k(k+1)(2k+1). Observe that $(k+1)(k+2)(2k+3) = k(k+1)(2k+1) + 6(k+1)^2$. Since 6|6, then 6 divides any multiple of 6. Hence, $6|6(k+1)^2$. Since 6 divides k(k+1)(2k+1) and 6 divides $6(k+1)^2$, then 6 divides the sum $k(k+1)(2k+1) + 6(k+1)^2$. Thus, 6 divides (k+1)(k+2)(2k+3), as desired.

Exercise 62. The product of 3 consecutive integers is a multiple of 6. $\forall n \in \mathbb{Z}, 6 | n(n+1)(n+2).$

Proof. Let $n \in \mathbb{Z}$. Let p = n(n+1)(n+2). We must prove 6|p. By the division algorithm, either n = 6k or n = 6k + 1 or n = 6k + 2 or n = 6k + 3 or n = 6k + 4 or n = 6k + 5 for some integer k. We consider these cases separately. Case 1: Suppose n = 6k. Then 6|n, so 6 divides any multiple of n. Therefore, 6|p. Case 2: Suppose n = 6k + 1. Since n + 1 = (6k + 1) + 1 = 6k + 2 = 2(3k + 1), then 2|(n + 1). Since n + 2 = (6k + 1) + 2 = 6k + 3 = 3(2k + 1), then 3|(n + 2). Since 2|(n+1) and 3|(n+2), then 6|(n+1)(n+2). Hence, 6 divides any multiple of (n+1)(n+2), so 6|p. Case 3: Suppose n = 6k + 2. Since n = 2(3k + 1), then 2|n. Since n + 1 = (6k + 2) + 1 = 6k + 3 = 3(2k + 1), then 3|(n + 1). Since 2|n and 3|(n+1), then 6|n(n+1). Hence, 6 divides any multiple of n(n+1), so 6|p. Case 4: Suppose n = 6k + 3. Since n = 3(2k + 1), then 3|n. Since n + 1 = (6k + 3) + 1 = 6k + 4 = 2(3k + 2), then 2|(n + 1). Since 3|n and 2|(n+1), then 6|n(n+1). Hence, 6 divides any multiple of n(n+1), so 6|p. Case 5: Suppose n = 6k + 4. Since n + 2 = (6k + 4) + 2 = 6k + 6 = 6(k + 1), then 6|(n + 2). Hence, 6 divides any multiple of n + 2, so 6|p. Case 6: Suppose n = 6k + 5. Since n + 1 = (6k + 5) + 1 = 6k + 6 = 6(k + 1), then 6|(n + 1). Hence, 6 divides any multiple of n + 1, so 6|p.

In all cases, 6|p.

Proof. We prove by induction(strong).

Basis:

If n = 1 then the statement S_1 is 6|1 * 2 * 3. This simplifies to 6|6, which is true because 6 = 6 * 1.

If n = 2 then the statement S_2 is 6|2 * 3 * 4. This simplifies to 6|24, which is true because 24 = 6 * 4.

Induction:

We must prove $S_1 \wedge S_2 \wedge ... \wedge S_k \Rightarrow S_{k+1}$ for $k \ge 2$. This implies we must prove $S_{k-1} \wedge S_k \Rightarrow S_{k+1}$ for $k \ge 2$. For simplicity, let m = k - 1. Then $S_{k-1} \wedge S_k \Rightarrow S_{k+1}$ for $k \ge 2$ becomes $S_m \wedge S_{m+1} \Rightarrow S_{m+2}$ for $m \ge 1$. We prove the latter statement using direct proof. Suppose $S_m \wedge S_{m+1}$ for $m \ge 1$.

We must prove that these assumptions together imply S_{m+2} .

Since $S_m \wedge S_{m+1}$ is true by assumption, then S_m is certainly true.

This implies 6|m(m+1)(m+2) which implies $m(m+1)(m+2) = 6a, a \in \mathbb{Z}$, by definition of divisibility.

Thus $m(m+1)(m+2) = m(m^2 + 3m + 2) = m^3 + 3m^2 + 2m = 6a$. Observe the following equalities:

$$\begin{array}{rcl} (m+2)(m+3)(m+4) &=& (m+2)(m^2+7m+12)\\ &=& m^3+9m^2+26m+24\\ &=& (m^3+3m^2+2m)+(6m^2+24m+24)\\ &=& 6a+6(m^2+4m+4)\\ &=& 6(a+m^2+4m+4) \end{array}$$

Since $a + m^2 + 4m + 4 \in \mathbb{Z}$, then by definition of divisibility, 6|(m+2)(m+3)(m+4).

Hence $S_m \wedge S_{m+1} \Rightarrow S_{m+2}$ for $m \ge 1$. Thus, $S_{k-1} \wedge S_k \Rightarrow S_{k+1}$ for $k \ge 2$. It follows by strong induction that 6|n(n+1)(n+2) for all $n \in \mathbb{N}$.

Exercise 63. The number 6 is the largest natural number that divides $n^3 - n$ for all $n \in \mathbb{N}$.

Proof. We must prove

1. For all natural numbers $n, 6|(n^3 - n)$.

2. If $m \in \mathbb{N}$ and m > 6, then there exists $n \in \mathbb{N}$ such that m does not divide $n^3 - n$.

We first prove $6|(n^3 - n)$ for all $n \in \mathbb{N}$ by induction on n. Let p(n) be the predicate $6|(n^3 - n)$ defined over \mathbb{N} . We prove p(n) is true for all $n \in \mathbb{N}$ by induction on n. **Basis:** Since $1^3 - 1 = 0$ and 6|0, then p(1) is true. **Induction:** Let $k \in \mathbb{N}$ such that p(k) is true. Then 6 divides $k^3 - k$. Observe that $(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - k - 1 = k^3 + 3k^2 + 3k - k = (k^3 - k) + (3k^2 + 3k) = (k^3 - k) + 3k(k + 1)$.

Since the product of two consecutive integers is even and k(k + 1) is the product of two consecutive integers, then k(k + 1) is even, so 2|k(k + 1).

Hence, $3 \cdot 2|3k(k+1)$, so 6|3k(k+1).

Since 6 divides $k^3 - k$ and 6 divides 3k(k+1), then 6 divides the sum $(k^3 - k) + 3k(k+1) = (k+1)^3 - (k+1)$.

Thus, p(k+1) is true, so p(k) implies p(k+1) for any $k \ge 1$. It follows by induction that $6|(n^3 - n)$ for all $n \in \mathbb{N}$.

Proof. We next prove:

If $m \in \mathbb{N}$ and m > 6, then there exists $n \in \mathbb{N}$ such that m does not divide $n^3 - n$.

Let $m \in \mathbb{N}$ with m > 6.

Let n be the natural number 2.

Then $n^3 - n = 2^3 - 2 = 6$.

If $m \in \mathbb{N}$ and m|6, then $m \leq 6$, so if $m \in \mathbb{N}$ and m > 6, then m does not divide 6.

Since $m \in \mathbb{N}$ and m > 6, then we conclude m does not divide 6, so m does not divide $n^3 - n$.

Therefore, there does exist $n \in \mathbb{N}$ such that m does not divide $n^3 - n$, as desired.

Exercise 64. Let $x, y \in \mathbb{Z}$. If 17|(2x + 3y), then 17|(9x + 5y).

Proof. Suppose 17|(2x+3y).

Then 2x + 3y = 17m for some integer m.

To prove 17|(9x+5y), we must prove there exists $n \in \mathbb{Z}$ such that 9x+5y = 17n.

Let n = -4m + x + y. Since $m, x, y \in \mathbb{Z}$, then $n \in \mathbb{Z}$. Observe that

$$17n = 17(-4m + x + y)$$

= $17(-4m) + 17(x + y)$
= $(-4)(17m) + 17(x + y)$
= $(-4)(2x + 3y) + 17(x + y)$
= $-8x - 12y + 17x + 17y$
= $9x + 5y.$

Since 17n = 9x + 5y, then 17|(9x + 5y).

Exercise 65. Let $a, b \in \mathbb{Z}$ with b > 0.

Then there exist unique integers q and r such that a = bq + r with $2b \le r < 3b$.

Proof. Since $a, b \in \mathbb{Z}$ and b > 0, then by the division algorithm, there exist unique integers q and r such that a = bq + r with $0 \le r < b$.

Since $b, q, r \in \mathbb{Z}$, then $b(q+2) + (r-2b) \in \mathbb{Z}$.

Since $b(q+2) + (r-2b) \in \mathbb{Z}$ and $b \in \mathbb{Z}$ and b > 0, then by the division algorithm, when b(q+2) + (r-2b) is divided by b, the remainder is r-2b with $0 \le r-2b < b$.

Observe that b(q+2) + (r-2b) = bq + 2b + r - 2b = bq + r = a.

Since $0 \le r - 2b < b$, then $2b \le r < 3b$.

Therefore, there exist unique integers q and r such that a = bq + r and $2b \le r < 3b$.

Exercise 66. Any integer of the form 6k + 5 is also of the form 3k + 2, but not conversely.

Proof. Let $k \in \mathbb{Z}$.

Then 6k + 5 = 6k + 3 + 2 = 3(2k + 1) + 2. Let m = 2k + 1.

Since $k \in \mathbb{Z}$, then $m \in \mathbb{Z}$, so 6k + 5 = 3m + 2.

Therefore, any integer of the form 6k + 5 is also of the form 3m + 2 for some integer m.

Conversely, consider the integer 14. Since $14 = 3 \cdot 4 + 2$, then 14 is of the form 3m + 2 with m = 4. If 14 = 6k + 5, then 9 = 6k, so $k = \frac{3}{2} \notin \mathbb{Z}$. Thus, there is no integer k such that 14 = 6k + 5. Therefore, 14 is of the form 3m + 2, but not of the form 6k + 5.

Exercise 67. Every odd integer is either of the form 4k + 1 or 4k + 3.

Proof. Let n be any odd integer.

By the division algorithm, there exist unique integers q and r such that n = 4q + r with $0 \le r < 4$.

Thus, either n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3. Since n is odd, then this implies either n = 4q + 1 or n = 4q + 3.

Exercise 68. The square of any integer is either of the form 3k or 3k + 1.

Proof. Let $n \in \mathbb{Z}$. By the division algorithm, there exist unique integers q and r such that n = 3q + r with $0 \le r < 3$. Thus, either n = 3q or n = 3q + 1 or n = 3q + 2. We consider these cases separately. Case 1: Suppose n = 3q. Then $n^2 = (3q)^2 = 3^2q^2 = 3(3q^2).$ Let $k = 3q^2$. Then $k \in \mathbb{Z}$ and $n^2 = 3k$. Case 2: Suppose n = 3q + 1. Then $n^2 = (3q+1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1.$ Let $k = 3q^2 + 2q$. Then $k \in \mathbb{Z}$ and $n^2 = 3k + 1$. Case 3: Suppose n = 3q + 2. Then $n^2 = (3q+2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1.$ Let $k = 3q^2 + 4q + 1$. Then $n^2 = 3k + 1$.

Therefore, in all cases, either $n^2 = 3k$ or $n^2 = 3k + 1$ for some integer k. \Box

Exercise 69. The cube of any integer is either of the form 9k, 9k+1, or 9k+8.

Proof. Let $n \in \mathbb{Z}$.

By the division algorithm, there exist unique integers q and r such that n = 3q + r with $0 \le r < 3$.

Thus, either n = 3q or n = 3q + 1 or n = 3q + 2.

We consider these cases separately.

Case 1: Suppose n = 3q.

Then $n^3 = (3q)^3 = 27q^3 = 9(3q^3) = 9k$ for integer $k = 3q^3$.

Case 2: Suppose n = 3q + 1.

Then $n^3 = (3q+1)^3 = 27q^3 + 27q^2 + 9q + 1 = 9q(3q^2 + 3q + 1) + 1 = 9k + 1$ for integer $k = q(3q^2 + 3q + 1)$.

Case 3: Suppose n = 3q + 2.

Then $n^3 = (3q+2)^3 = 27q^3 + 54q^2 + 36q + 8 = 9q(3q^2 + 6q + 4) + 8 = 9k + 8$ for integer $k = q(3q^2 + 6q + 4)$.

Exercise 70. If an integer is both a square and a cube, then it must be either of the form 7k or 7k + 1.

Solution. We prove:

1. Every square is of the form 7k, 7k + 1, 7k + 2, 7k + 4.

2. Every cube is of the form 7k, 7k + 1, 7k + 6.

So, this would imply any integer that is both a square and a cube must be of a form that it common to both squares and cubes.

We observe that if n is a square and a cube, then $n = a^6$ for $a \in \mathbb{Z}^+$. \Box

Proof. We first prove every square is of the form 7k, 7k + 1, 7k + 2 or 7k + 4 for some integer k.

Let $n \in \mathbb{Z}$. Suppose n is a square. Then $n = a^2$ for some integer a. By the division algorithm, there exist unique integers q and r such that a = 7q + r with 0 < r < 7. Thus, either r = 0 or r = 1 or r = 2 or r = 3 or r = 4 or r = 5 or r = 6. We consider these cases separately. Case 1: Suppose r = 0. Then a = 7q. Therefore, $n = (7q)^2 = 7^2q^2 = 7(7q^2) = 7k$ for integer $k = 7q^2$. Case 2: Suppose r = 1. Then a = 7q + 1. Therefore, $n = (7q + 1)^2 = 49q^2 + 14q + 1 = 7q(7q + 2) + 1 = 7k + 1$ for integer k = q(7q + 2). Case 3: Suppose r = 2. Then a = 7q + 2.

Therefore, $n = (7q + 2)^2 = 49q^2 + 28q + 4 = 7q(7q + 4) + 4 = 7k + 4$ for integer k = q(7q + 4). Case 4: Suppose r = 3. Then a = 7q + 3. Therefore, $n = (7q+3)^2 = 49q^2 + 42q + 9 = 7(7q^2) + 7(6q) + (7*1+2) =$ $7(7q^2 + 6q + 1) + 2 = 7k + 2$ for integer $k = 7q^2 + 6q + 1$. Case 5: Suppose r = 4. Then a = 7q + 4. Therefore, $n = (7q+4)^2 = 49q^2 + 56q + 16 = 7(7q^2) + 7 * 8q + (7 * 2 + 2) =$ $7(7q^2 + 8q + 2) + 2 = 7k + 2$ for integer $k = 7q^2 + 8q + 2$. Case 6: Suppose r = 5. Then a = 7q + 5. Therefore, $n = (7q+5)^2 = 49q^2 + 70q + 25 = 7(7q^2) + 7 * 10q + (7 * 3 + 4) =$ $7(7q^2 + 10q + 3) + 4 = 7k + 4$ for integer $k = 7q^2 + 10q + 3$. Case 7: Suppose r = 6. Then a = 7q + 6. Therefore, $n = (7q+6)^2 = 49q^2 + 84q + 36 = 7(7q^2) + 7 * 12q + (7 * 5 + 1) =$ $7(7q^2 + 12q + 5) + 1 = 7k + 1$ for integer $k = 7q^2 + 12q + 5$.

Therefore, in all cases, either n = 7k or n = 7k+1 or n = 7k+2 or n = 7k+4 for some integer k.

Proof. We next prove every cube is of the form 7k, 7k + 1, or 7k + 6 for some integer k.

Let $n \in \mathbb{Z}$. Suppose n is a cube. Then $n = a^3$ for some integer a. We must prove either n = 7k or n = 7k + 1 or n = 7k + 6. By the division algorithm, there exist unique integers q and r such that a = 7q + r with $0 \le r < 7$. Thus, either r = 0 or r = 1 or r = 2 or r = 3 or r = 4 or r = 5 or r = 6. We consider these cases separately. **Case 1:** Suppose r = 0. Then a = 7q. Therefore, $n = (7q)^3 = 7^3q^3 = 7(7^2q^3) = 7(49q^3) = 7k$ for integer $k = 49q^3$. **Case 2:** Suppose r = 1. Then a = 7q + 1. Observe that

$$n = (7q+1)^{3}$$

$$= \sum_{k=0}^{3} {3 \choose k} (7q)^{3-k}$$

$$= {3 \choose 0} (7q)^{3} + {3 \choose 1} (7q)^{2} + {3 \choose 2} (7q) + {3 \choose 3}$$

$$= (7q)^{3} + 3(7q)^{2} + 3(7q) + 1$$

$$= (7^{3}q^{3}) + 3(7^{2}q^{2}) + 3(7q) + 1$$

$$= 7(7^{2}q^{3} + 3 * 7q^{2} + 3q) + 1$$

$$= 7(49q^{3} + 21q^{2} + 3q) + 1.$$

Therefore, $n = 7(49q^3+21q^2+3q)+1 = 7k+1$ for integer $k = 49q^3+21q^2+3q$. Case 3: Suppose r = 2. Then a = 7q + 2. Observe that

$$n = (7q+2)^{3}$$

$$= \sum_{k=0}^{3} {3 \choose k} (7q)^{3-k} (2^{k})$$

$$= {3 \choose 0} (7q)^{3} + {3 \choose 1} (7q)^{2} (2^{1}) + {3 \choose 2} (7q) (2^{2}) + {3 \choose 3} (2^{3})$$

$$= (7q)^{3} + 3(7q)^{2} (2) + 3(7q) (2^{2}) + 8$$

$$= (7^{3}q^{3}) + (3)(2)(7^{2}q^{2}) + (3)(2^{2})(7q) + (7*1+1)$$

$$= 7(7^{2}q^{3} + (3)(2)*7q^{2} + (3)(2^{2})q + 1) + 1$$

$$= 7(49q^{3} + 42q^{2} + 12q + 1) + 1.$$

Therefore, n = 7k + 1 for integer $k = 49q^3 + 42q^2 + 12q$. Case 4: Suppose r = 3. Then a = 7q + 3. Observe that

$$n = (7q+3)^{3}$$

$$= \sum_{k=0}^{3} {3 \choose k} (7q)^{3-k} (3^{k})$$

$$= {3 \choose 0} (7q)^{3} + {3 \choose 1} (7q)^{2} (3^{1}) + {3 \choose 2} (7q) (3^{2}) + {3 \choose 3} (3^{3})$$

$$= (7q)^{3} + 3(7q)^{2} (3) + 3(7q) (3^{2}) + 27$$

$$= (7^{3}q^{3}) + (3)(3)(7^{2}q^{2}) + (3)(3^{2})(7q) + (7*3+6)$$

$$= 7(7^{2}q^{3} + (3)(3)*7q^{2} + (3)(3^{2})q + 3) + 6$$

$$= 7(49q^{3} + 63q^{2} + 27q + 3) + 6.$$

Therefore, n = 7k + 6 for integer $k = 49q^3 + 63q^2 + 27q + 3$. Case 5: Suppose r = 4. Then a = 7q + 4. Observe that

$$n = (7q+4)^{3}$$

$$= \sum_{k=0}^{3} {3 \choose k} (7q)^{3-k} (4^{k})$$

$$= {3 \choose 0} (7q)^{3} + {3 \choose 1} (7q)^{2} (4^{1}) + {3 \choose 2} (7q) (4^{2}) + {3 \choose 3} (4^{3})$$

$$= (7q)^{3} + 3(7q)^{2} (4) + 3(7q) (4^{2}) + 64$$

$$= (7^{3}q^{3}) + (3) (4) (7^{2}q^{2}) + (3) (4^{2}) (7q) + (7*9+1)$$

$$= 7(7^{2}q^{3} + (3) (4) * 7q^{2} + (3) (4^{2})q + 9) + 1$$

$$= 7(49q^{3} + 108q^{2} + 48q + 9) + 1.$$

Therefore, n = 7k + 1 for integer $k = 49q^3 + 108q^2 + 48q + 9$. Case 6: Suppose r = 5. Then a = 7q + 5. Observe that

$$n = (7q+5)^{3}$$

$$= \sum_{k=0}^{3} {\binom{3}{k}} (7q)^{3-k} (5^{k})$$

$$= {\binom{3}{0}} (7q)^{3} + {\binom{3}{1}} (7q)^{2} (5^{1}) + {\binom{3}{2}} (7q) (5^{2}) + {\binom{3}{3}} (5^{3})$$

$$= (7q)^{3} + 3(7q)^{2} (5) + 3(7q) (5^{2}) + 125$$

$$= (7^{3}q^{3}) + (3) (5) (7^{2}q^{2}) + (3) (5^{2}) (7q) + (7*17+6)$$

$$= 7(7^{2}q^{3} + (3) (5) * 7q^{2} + (3) (5^{2})q + 17) + 6$$

$$= 7(49q^{3} + 105q^{2} + 75q + 17) + 6.$$

Therefore, n = 7q + 6 for integer $k = 49q^3 + 105q^2 + 75q + 17$. Case 7: Suppose r = 6. Then a = 7q + 6. Observe that

$$n = (7q+6)^{3}$$

$$= \sum_{k=0}^{3} {\binom{3}{k}} (7q)^{3-k} (6^{k})$$

$$= {\binom{3}{0}} (7q)^{3} + {\binom{3}{1}} (7q)^{2} (6^{1}) + {\binom{3}{2}} (7q) (6^{2}) + {\binom{3}{3}} (6^{3})$$

$$= (7q)^{3} + 3(7q)^{2} (6) + 3(7q) (6^{2}) + 216$$

$$= (7^{3}q^{3}) + (3) (6) (7^{2}q^{2}) + (3) (6^{2}) (7q) + (7*30+6)$$

$$= 7(7^{2}q^{3} + (3) (6) * 7q^{2} + (3) (6^{2})q + 30) + 6$$

$$= 7(49q^{3} + 126q^{2} + 108q + 30) + 6.$$

Therefore, n = 7k + 6 for integer $k = 49q^3 + 126q^2 + 108q + 30$.

Therefore, in all cases, either n = 7k or n = 7k + 1 or n = 7k + 6 for some integer k.

Proof. Let $n \in \mathbb{Z}$.

Suppose n is a square and a cube.

Then n is a square and n is a cube.

Since every square is of the form 7k, 7k + 1, 7k + 2, 7k + 4 for some integer k and n is a square, then n is of the form 7k, 7k + 1, 7k + 2, 7k + 4 for some integer k.

Since every cube is of the form 7m, 7m + 1, 7m + 6 for some integer m and n is a cube, then n is of the form 7k, 7k + 1, 7k + 6.

Since *n* is both a square and a cube, then this implies *n* is of the form that is common to both a square and a cube, so *n* is of the form 7k or 7k + 1. \Box

Exercise 71. There is no integer in the sequence 11, 111, 1111, 1111, ... that is a perfect square.

Proof. Let (a_n) be the sequence 11, 111, 1111, 1111, Then $a_n = 10 * a_{n-1} + 1$ for positive integers n > 1 and $a_1 = 11$. We first prove each term of the sequence has the form 4k+3 for some integer k. Thus, we must prove for all $n \in \mathbb{Z}^+$, there exists $k \in \mathbb{Z}$ such that $a_n = 4k+3$. We prove by induction on n. Let $S = \{n \in \mathbb{Z}^+ : (\exists k \in \mathbb{Z})(a_n = 4k+3)\}$. **Basis:** Since $1 \in \mathbb{Z}^+$ and $2 \in \mathbb{Z}$ and $a_1 = 11 = 4 * 2 + 3$, then $1 \in S$. Since $2 \in \mathbb{Z}^+$ and $27 \in \mathbb{Z}$ and $a_2 = 10 * a_1 + 1 = 10 * 11 + 1 = 111 = 4 * 27 + 3$, then $2 \in S$. **Induction:** Suppose $m \in S$ and $m \ge 2$.

Then $m \in \mathbb{Z}^+$ and there exists $k \in \mathbb{Z}$ such that $a_m = 4k + 3$. Since $m \in \mathbb{Z}^+$, then $m + 1 \in \mathbb{Z}^+$. Since $m + 1 > m \ge 2 > 1$, then m + 1 > 1. Observe that

$$a_{m+1} = 10a_m + 1$$

= 10(4k + 3) + 1
= 40k + 31
= 4 * 10k + (4 * 7 + 3)
= 4(10k + 7) + 3.

Let p = 10k + 7.

Since $k \in \mathbb{Z}$, then $p \in \mathbb{Z}$ and $a_{m+1} = 4p + 3$.

Since $m + 1 \in \mathbb{Z}^+$ and there exists $p \in \mathbb{Z}$ such that $a_{m+1} = 4p + 3$, then $m + 1 \in S$.

Hence, $m \in S$ for $m \ge 2$ implies $m + 1 \in S$.

Therefore, by PMI, for all $n \in \mathbb{Z}^+$, there exists $k \in \mathbb{Z}$ such that $a_n = 4k+3$.

Proof. We next prove every perfect square is either of the form 4k or 4k + 1. Let n be a perfect square.

Then $n \in \mathbb{Z}$ and $n = a^2$ for some integer a.

From a previous exercise we know that the square of an integer leaves remainder 0 or 1 upon division by 4.

Hence, a^2 leaves remainder 0 or 1 upon division by 4, so either $a^2 = 4k$ or $a^2 = 4k + 1$ for some integer k.

Therefore, either n = 4k or n = 4k + 1 for some integer k.

Proof. We prove the term a_n cannot be a perfect square.

Let a_n be a term of the sequence 11, 111, 1111, ...

Then a_n has the form 4k + 3 for some integer k, so a_n is of the form 4k + 3. Every perfect square is either of the form 4k or 4k + 1, so if n is a perfect square, then either n = 4k or n = 4k + 1.

Hence, if $n \neq 4k$ and $n \neq 4k + 1$, then n is not a perfect square.

Since $4k + 3 \neq 4k$ and $4k + 3 \neq 4k + 1$, then 4k + 3 is not a perfect square, so a_n is not a perfect square.

Therefore, every term of the sequence $11, 111, 1111, \dots$ is not a perfect square, so there is no term of the sequence that is a perfect square.

Exercise 72. For all $n \in \mathbb{Z}^+$, 7 divides $2^{3n} - 1$.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{Z}^+ : 7 | (2^{3n} - 1)\}$. **Basis:** Since $2^{3*1} - 1 = 7 = 7 * 1$, then 7 divides $2^{3*1} - 1$, so $1 \in S$. **Induction:** Suppose $k \in S$. Then $k \in \mathbb{Z}^+$ and $7 | (2^{3k} - 1)$. Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Since $7 | (2^{3k} - 1)$, then $2^{3k} - 1 = 7x$ for some integer x. Observe that

$$2^{3(k+1)} - 1 = 2^{3k+3} - 1$$

= $2^{3k} * 2^3 - 1$
= $8 * 2^{3k} - 1$
= $8(2^{3k} - 1) + 8 - 1$
= $8(7x) + 7$
= $7(8x + 1).$

Since $x \in \mathbb{Z}$, then $8x + 1 \in \mathbb{Z}$, so 7 divides $2^{3(k+1)} - 1$. Since $k + 1 \in \mathbb{Z}^+$ and 7 divides $2^{3(k+1)} - 1$, then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$. Therefore, by PMI, $7|(2^{3n} - 1))$ for all $n \in \mathbb{Z}^+$.

Exercise 73. For all $n \in \mathbb{Z}^+$, 8 divides $3^{2n} + 7$.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{Z}^+ : 8 | 3^{2n} + 7\}$. Basis: Since $3^{2*1} + 7 = 16 = 8 * 2$, then 8 divides $3^{2*1} + 7$, so $1 \in S$. Induction: Suppose $k \in S$. Then $k \in \mathbb{Z}^+$ and $8 | (3^{2k} + 7)$. Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Since $8|(3^{2k}+7)$, then $3^{2k}+7=8x$ for some integer x. Observe that

$$3^{2(k+1)} + 7 = 3^{2k+2} + 7$$

= $3^{2k} * 3^2 + 7$
= $9 * 3^{2k} + 7$
= $(8+1)3^{2k} + 7$
= $8(3^{2k}) + 3^{2k} + 7$
= $8(3^{2k}) + 8x$
= $8(3^{2k} + x)$
= $8(9^k + x)$.

Since $k, x \in \mathbb{Z}$, then $9^k + x \in \mathbb{Z}$, so 8 divides $3^{2(k+1)} + 7$. Since $k + 1 \in \mathbb{Z}^+$ and 8 divides $3^{2(k+1)} + 7$, then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$. Therefore, by PMI, $8|(3^{2n}+7)$ for all $n \in \mathbb{Z}^+$.

Exercise 74. For all $n \in \mathbb{Z}^+$, $2^n + (-1)^{n+1}$ is divisible by 3.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{Z}^+ : 3 | 2^n + (-1)^{n+1} \}.$ **Basis:** Since $2^1 + (-1)^{1+1} = 2 + 1 = 3 = 3 \cdot 1$, then 3 divides $2^1 + (-1)^{1+1}$, so $1 \in S$. Induction: Suppose $k \in S$. Then $k \in \mathbb{Z}^+$ and $3|2^k + (-1)^{k+1}$. Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Since $3|2^{k} + (-1)^{k+1}$, then $2^{k} + (-1)^{k+1} = 3x$ for some integer x. Observe that

$$2^{k+1} + (-1)^{(k+1)+1} = 2^k \cdot 2 + (-1)^{k+1} (-1)$$

= $2^k + 2^k - (-1)^{k+1}$
= $2^k + (2-1)2^k - (-1)^{k+1}$
= $2^k + 2(2^k) - 2^k - (-1)^{k+1}$
= $3(2^k) - [2^k + (-1)^{k+1}]$
= $3(2^k) - 3x$
= $3(2^k - x).$

Since $k, x \in \mathbb{Z}$, then $2^k - x \in \mathbb{Z}$, so 3 divides $2^{k+1} + (-1)^{(k+1)+1}$. Since $k + 1 \in \mathbb{Z}^+$ and 3 divides $2^{k+1} + (-1)^{(k+1)+1}$, then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$. Therefore, by PMI, $3|(2^n + (-1)^{n+1})$ for all $n \in \mathbb{Z}^+$.
Lemma 75. Every perfect square is of the form 4k or 4k + 1 for some integer k.

Proof. Let $n \in \mathbb{Z}$. By the division algorithm, there exist unique integers q and r such that n = 2q + r with $0 \le r < 2$. Thus, either n = 2q or n = 2q + 1. We consider these cases separately. Case 1: Suppose n = 2q. Then, $n^2 = (2q)^2 = 4q^2 = 4k^2$ for integer k = q. Case 2: Suppose n = 2q + 1. Then $n^2 = (2q+1)^2 = 4q^2 + 4q + 1 = 4(q^2+q) + 1 = 4k + 1$ for integer $k = q^2 + q.$ Therefore either $n^2 = 4k$ or $n^2 = 4k + 1$ for some integer k. Lemma 76. Let $n \in \mathbb{Z}$. If n is odd, then $8|(n^2-1)$. *Proof.* Suppose n is odd. By the division algorithm, there are unique integers q and r such that n =4q + r with 0 < r < 4. Thus, either n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3. Hence, either n = 2(2q) or n = 2(2q) + 1 or n = 2(2q+1) or n = 2(2q+1) + 1. Since n is odd, then this implies either n = 4q + 1 or n = 4q + 3. We consider each case separately. Case 1: Suppose n = 4q + 1. Then $n^2 - 1 = (4q + 1)^2 - 1 = 16q^2 + 8q + 1 - 1 = 16q^2 + 8q = 8(2q^2 + q).$ Since $2q^2 + q \in \mathbb{Z}$, then this implies $8|(n^2 - 1)|$. Case 2: Suppose n = 4q + 3. Then $n^2 - 1 = (4q + 3)^2 - 1 = 16q^2 + 24q + 9 - 1 = 16q^2 + 24q + 8 =$ $8(2q^2+3q+1).$ Since $2q^2 + 3q + 1 \in \mathbb{Z}$, then this implies $8|(n^2 - 1)|$. Therefore, in all cases, $8|(n^2-1)$. *Proof.* Suppose n is odd. Then n = 2a + 1 for some integer a. Thus $n^2 - 1 = (2a + 1)^2 - 1 = 4a^2 + 4a = 4a(a + 1).$ Since a and a + 1 have opposite parity we know that their product must be even by proposition ??. Thus a(a+1) = 2b for some integer b. Consequently $n^2 - 1 = 4(2b) = 8b$, and so $8|(n^2 - 1)$. **Exercise 77.** Let $a \in \mathbb{Z}$. If 2 a and 3 a, then $24|(a^2-1)$. *Proof.* Suppose 2 a and 3 a. Since 2 a, then a is odd.

Hence, we know that $8|(a^2-1)$.

Since 3 a, then by the division algorithm, either a = 3m + 1 or a = 3m + 2for some integer m.

If a = 3m + 1, then $a^2 - 1 = (3m + 1)^2 - 1 = 9m^2 + 6m + 1 - 1 = 9m^2 + 6m = 1$ 3m(3m+2), so $3|(a^2-1)$. If a = 3m + 2, then $a^2 - 1 = (3m + 2)^2 - 1 = 9m^2 + 12m + 4 - 1 =$ $9m^2 + 12m + 3 = 3(3m^2 + 4m + 1)$, so $3|(a^2 - 1)$.

In either case, $3|(a^2-1)$.

Since $8|(a^2-1)$ and $3|(a^2-1)$ and gcd(8,3) = 1, then (8 * 3) divides $a^2 - 1$, so 24 divides $a^2 - 1$.

Exercise 78. Let *a* and *b* be odd integers. Then $8|(a^2 - b^2)|$.

Proof. Since a is odd, then we know $8|(a^2-1)$, so $a^2-1=8k$ for some integer k.

Since b is odd, then we know $8|(b^2-1)$, so $b^2-1=8m$ for some integer m. Thus, $a^2 - b^2 = (8k+1) - (8m+1) = 8k+1 - 8m - 1 = 8k - 8m = 8(k-m)$. Since $k, m \in \mathbb{Z}$, then $k - m \in \mathbb{Z}$, so $8|(a^2 - b^2)$.

Exercise 79. If m and n are odd integers, then $m^2 - n^2$ is divisible by 8.

Proof. Suppose m and n are odd integers.

We prove if x is an odd integer, then $x^2 \equiv 1 \pmod{8}$. Suppose x is an odd integer. Then x = 2k + 1 for some integer k. Thus, $x^2 = 4k^2 + 4k + 1$. The product of consecutive integers is even, so in particular, k(k+1) is even. Hence, 2|k(k+1), so 4 * 2|4k(k+1). Thus, $8|(4k^2 + 4k)$, so $4k^2 + 4k \equiv 0 \pmod{8}$. Hence, $4k^2 + 4k + 1 \equiv 1 \pmod{8}$, so $x^2 \equiv 1 \pmod{8}$. Therefore, $m^2 \equiv 1 \pmod{8}$ and $n^2 \equiv 1 \pmod{8}$. Thus, $1 \equiv n^2 \pmod{8}$. Since $m^2 \equiv 1 \pmod{8}$ and $1 \equiv n^2 \pmod{8}$, then $m^2 \equiv n^2 \pmod{8}$. Hence, $8|(m^2 - n^2)$.

Exercise 80. Let *a* be an odd integer. Then $24|a(a^2-1)$.

Proof. Since $a(a^2 - 1) = a(a - 1)(a + 1) = (a - 1)a(a + 1)$, then $a(a^2 - 1)$ is a product of three consecutive integers.

Since the product of three consecutive integers is divisible by 3, then this implies $3|a(a^2 - 1)|$.

Since a is odd, then we know $a^2 = 8k + 1$ for some integer k, so $a^2 - 1 = 8k$. Hence, $8|(a^2-1)$, so 8 divides any multiple of a^2-1 . Thus, $8|a(a^2 - 1)|$. Since $3|a(a^2 - 1)|$ and $8|a(a^2 - 1)|$ and gcd(3, 8) = 1, then (3 * 8) divides

 $a(a^2 - 1)$, so $24|a(a^2 - 1)$. **Exercise 81.** The sum of the squares of two odd integers cannot be a perfect square.

Proof. Let x and y be two odd integers.

Then x = 2a + 1 and y = 2b + 1 for some integers a and b. Thus,

$$\begin{aligned} x^2 + y^2 &= (2a+1)^2 + (2b+1)^2 \\ &= 4a^2 + 4a + 1 + 4b^2 + 4b + 1 \\ &= 4a^2 + 4b^2 + 4a + 4b + 2 \\ &= 4(a^2 + b^2 + a + b) + 2. \end{aligned}$$

Let $k = a^2 + b^2 + a + b$.

Then $x^2 + y^2 = 4k + 2$ and $k \in \mathbb{Z}$.

Every perfect square is of the form 4k or 4k + 1, so if x is a perfect square, then either x = 4k or x = 4k + 1 for some integer k.

Hence, if $x \neq 4k$ and $x \neq 4k + 1$ for some integer k, then x cannot be a perfect square.

Since $x^2 + y^2 = 4k + 2$ and $4k + 2 \neq 4k$ and $4k + 2 \neq 4k + 1$, then $x^2 + y^2$ cannot be a perfect square.

Exercise 82. The square of any odd integer is of the form 8k + 1 for some integer k.

Proof. Let n be any odd integer.

By the division algorithm there exist unique integers q, r such that n = 4q + r with $0 \le r \le 4$.

Thus, either n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3, so either n = 2(2q) or n = 2(2q) + 1 or n = 2(2q + 1) or n = 2(2q + 1) + 1.

Since n is odd, then this implies either n = 4q + 1 or n = 4q + 3.

We consider each case separately.

Case 1: Suppose n = 4q + 1.

Then $n^2 = (4q+1)^2 = 16q^2 + 8q + 1 = 8(2q^2 + 2q) + 1 = 8k + 1$ for integer $k = 2q^2 + 2q$.

Case 2: Suppose n = 4q + 3. Then $n^2 = (4q+3)^2 = 16q^2 + 24q + 9 = 16q^2 + 24q + 8 + 1 = 8(2q^2 + 3q + 1) + 1 = 8k + 1$ for integer $k = 2q^2 + 3q + 1$.

Exercise 83. The product of four consecutive integers is one less than a perfect square.

Proof. Let $n \in \mathbb{Z}$. We must prove there exists $m \in \mathbb{Z}$ such that $n(n+1)(n+2)(n+3) = m^2 - 1$. Let m = (n+1)(n+2) - 1. Since $n \in \mathbb{Z}$, then $m \in \mathbb{Z}$. Observe that

$$m^{2} - 1 = [(n+1)(n+2) - 1]^{2} - 1$$

= $(n^{2} + 3n + 1)^{2} - 1$
= $(n^{2} + 3n + 1 - 1)(n^{2} + 3n + 1 + 1)$
= $(n^{2} + 3n)(n^{2} + 3n + 2)$
= $n(n+3)(n+2)(n+1)$
= $n(n+1)(n+2)(n+3).$

Exercise 84. Let $a \in \mathbb{Z}$.

If 2 a and 3 a, then $24|(a^2+23)$.

Proof. Suppose 2 a and 3 a.

Since 2 a, then *a* is odd, so we know $8|(a^2-1)|$.

Since $8|(a^2-1)$ and 8|24, then 8 divides the sum $(a^2-1)+24 = a^2+23$, so $8|(a^2+23)$.

Since 3 a, then by the division algorithm, either a = 3q + 1 or a = 3q + 2 for some integer q.

If a = 3q+1, then $a^2+23 = (3q+1)^2+23 = 9q^2+6q+1+23 = 9q^2+6q+24 = 3(3q^2+2q+8)$, so $3|(a^2+23)$.

If a = 3q + 2, then $a^2 + 23 = (3q + 2)^2 + 23 = 9q^2 + 12q + 4 + 23 = 9q^2 + 12q + 27 = 3(3q^2 + 4q + 9)$, so $3|(a^2 + 23)$.

Thus, in either case, $3|(a^2+23)$.

Since $8|(a^2+23)$ and $3|(a^2+23)$ and gcd(8,3) = 1, then $(8*3)|(a^2+23)$, so $24|(a^2+23)$.

Lemma 85. The product of 5 consecutive integers is divisible by 5.

Proof. Let $n \in \mathbb{Z}$. Let p = n(n+1)(n+2)(n+3)(n+4). We must prove 5|p. By the division algorithm, either p = 5q or p = 5q + 1 or p = 5q + 2 or p = 5q + 3 or p = 5q + 4 for some integer q. We consider each case separately. **Case 1:** Suppose n = 5q. Then 5|n, so 5 divides any multiple of n. Hence, 5|p. **Case 2:** Suppose n = 5q + 1. Then n + 4 = (5q + 1) + 4 = 5q + 5 = 5(q + 1), so 5|(n + 4). Thus, 5 divides any multiple of n + 4, so 5|p. **Case 3:** Suppose n = 5q + 2. Then n + 3 = (5q + 2) + 3 = 5q + 5 = 5(q + 1), so 5|(n + 3). Thus, 5 divides any multiple of n + 3, so 5|p.

Then n + 2 = (5q + 3) + 2 = 5q + 5 = 5(q + 1), so 5|(n + 2). Thus, 5 divides any multiple of n + 2, so 5|p. Case 5: Suppose n = 5q + 4. Then n + 1 = (5q + 4) + 1 = 5q + 5 = 5(q + 1), so 5|(n + 1). Thus, 5 divides any multiple of n + 1, so 5|p. Therefore, in all cases, 5|p. **Exercise 86.** Let $n \in \mathbb{Z}$. Then $360|n^2(n^2-1)(n^2-4)$. *Proof.* Let $p = n^2(n^2 - 1)(n^2 - 4)$. Then $p = n^2(n-1)(n+1)(n-2)(n+2)$. We prove 5|p and 8|p and 9|p. *Proof.* We prove 5|p. Observe that p = (n-2)(n-1)n(n+1)(n+2)n. Let a = (n-2)(n-1)n(n+1)(n+2). Then p = an. Since a is a product of 5 consecutive integers and the product of 5 consecutive integers is divisible by 5, then 5|a. Thus, 5 divides any multiple of a, so 5|p. *Proof.* We prove 8|p. Either n is even or n is odd. We consider each case separately. **Case 1:** Suppose n is even. Then n = 2k for some integer k. Since $n^2 = (2k)^2 = 4k^2$, then $4|n^2$. Since n + 2 = 2k + 2 = 2(k + 1), then 2|(n + 2). Since $4|n^2$ and 2|(n+2), then $(4*2)|n^2(n+2)$, so $8|n^2(n+2)$. Thus, 8 divides any multiple of $n^2(n+2)$, so 8|p. Case 2: Suppose *n* is odd. Then we know 8 divides $n^2 - 1$. Thus, 8 divides any multiple of $n^2 - 1$, so 8 divides p. Therefore, in all cases, 8|p. *Proof.* We prove 9|p. By the division algorithm, either n = 3q or n = 3q + 1 or n = 3q + 2 for some integer q. We consider each case separately. Case 1: Suppose n = 3q. Then $n^2 = (3q)^2 = 9q^2$, so $9|n^2$. Hence, 9 divides any multiple of n^2 , so 9|p. Case 2: Suppose n = 3q + 1.

Case 4: Suppose n = 5q + 3.

Since n-1 = 3q, then 3|(n-1). Since n+2 = (3q+1)+2 = 3q+3 = 3(q+1), then 3|(n+2). Since 3|(n-1) and 3|(n+2), then (3*3)|(n-1)(n+2), so 9|(n-1)(n+2). Hence, 9 divides any multiple of (n-1)(n+2), so 9|p. **Case 3:** Suppose n = 3q+2. Since n+1 = (3q+2)+1 = 3q+3 = 3(q+1), then 3|(n+1). Since n-2 = 3q, then 3|(n-2). Since 3|(n+1) and 3|(n-2), then (3*3)|(n+1)(n-2), so 9|(n+1)(n-2). Hence, 9 divides any multiple of (n+1)(n-2), so 9|p.

Therefore, in all cases, 9|p.

Proof. Since 5|p and 8|p and gcd(5,8) = 1, then (5 * 8)|p, so 40|p. Since 40|p and 9|p and gcd(40,9) = 1, then (40 * 9)|p, so 360|p.

Exercise 87. For all $n \in \mathbb{N}$, $n^3 + 5n$ is divisible by 6.

Proof. To prove the statement $n^3 + 5n$ is divisible by 6 for all $n \in \mathbb{N}$, we prove $6|(n^3 + 5n)$ for all $n \in \mathbb{N}$ by induction on n.

Let $p(n) : 6|(n^3 + 5n)$ be a predicate defined over N. Basis: Since $1^3 + 5 * 1 = 6$ and 6|6, then the statement p(1) is true. Induction:

Let $k \in \mathbb{N}$ such that p(k) is true.

Then $6|(k^3 + 5k)$, so there exists an integer m such that $k^3 + 5k = 6m$. Since the product of two consecutive integers is even and $k \in \mathbb{Z}$, then k(k+1) is even, so there exists $n \in \mathbb{Z}$ such that k(k+1) = 2n.

Observe that

$$(k+1)^{3} + 5(k+1) = k^{3} + 3k^{2} + 8k + 6$$

$$= k^{3} + 8k + 3k^{2} + 6$$

$$= k^{3} + (5k + 3k) + 3k^{2} + 6$$

$$= (k^{3} + 5k) + (3k + 3k^{2}) + 6$$

$$= (k^{3} + 5k) + (3k^{2} + 3k) + 6$$

$$= 6m + 3k(k+1) + 6$$

$$= 6m + 6n + 6$$

$$= 6(m + n + 1)$$

Since $m + n + 1 \in \mathbb{Z}$, then $6|((k+1)^3 + 5(k+1))$, so p(k+1) is true. Therefore, by PMI, the statement $6|(n^3 + 5n)$ is true for all $n \in \mathbb{N}$.

Exercise 88. For all $n \in \mathbb{Z}^+$, n(n+1)(2n+1) is divisible by 6.

42

Proof. By the division algorithm there exist unique integers q, r such that n = 16q + r with $0 \le r < 6$, so either n = 6q or n = 6q + 1 or n = 6q + 2 or n = 6q + 3or n = 6q + 4 or n = 6q + 5. We consider each case separately. Case 1: Suppose n = 6q. Then 6|n, so 6 divides any multiple of n. Therefore, 6|n(n+1)(2n+1). Case 2: Suppose n = 6q + 1. Then n+1 = 6q+2 = 2(3q+1) and 2n+1 = 2(6q+1)+1 = 12q+3 = 3(4q+1), so (n+1)(2n+1) = 6(3q+1)(4q+1). Hence, 6|(n+1)(2n+1), so 6 divides any multiple of (n+1)(2n+1). Therefore, 6|n(n+1)(2n+1). Case 3: Suppose n = 6q + 2. Then n = 2(3q + 1) and n + 1 = 6q + 3 = 3(2q + 1), so n(n + 1) = 16(3q+1)(2q+1).Hence, 6|n(n+1)|, so 6 divides any multiple of n(n+1). Therefore, 6|n(n+1)(2n+1). Case 4: Suppose n = 6q + 3. The n = 3(2q+1) and n+1 = 6q+4 = 2(3q+2), so n(n+1) = 6(2q+1)(3q+2). Hence, 6|n(n+1), so 6 divides any multiple of n(n+1). Therefore, 6|n(n+1)(2n+1). Case 5: Suppose n = 6q + 4. Then n = 2(3q + 2) and 2n + 1 = 2(6q + 4) + 1 = 12q + 9 = 3(4q + 3), so n(2n+1) = 6(3q+2)(4q+3).Hence, 6|n(2n+1), so 6 divides any multiple of n(2n+1). Therefore, 6|n(n+1)(2n+1). Case 6: Suppose n = 6q + 5. Then n + 1 = 6q + 6 = 6(q + 1), so 6|(n + 1). Hence, 6 divides any multiple of n + 1. Therefore, 6|n(n+1)(2n+1).

Exercise 89. The number 2 is not a square.

Proof. Suppose 2 is a square. Then $2 = n^2$ for some integer n, so, n|2, We may assume n > 0, since $(-n)^2 = n^2$. Since 2 = 2 * 1, then either n = 1 or n = 2. If n = 1, then $2 = n^2 = 1^2 = 1$, a contradiction. If n = 2, then $2 = n^2 = 2^2 = 4$, a contradiction. Therefore, 2 is not a square.

Exercise 90. Let k be a positive odd integer.

Then any sum of k consecutive integers is divisible by k.

Solution. Let k be a positive odd integer.

To prove any sum of k consecutive integers is divisible by k, we let n+1, n+2, ..., n+k be k consecutive integers for some integer n.

We must prove k divides the sum $(n + 1) + (n + 2) + \dots + (n + k)$.

Thus, we must prove there exists an integer a such that (n+1) + (n+2) + (n+2 $\dots + (n+k) = ka.$

Proof. Let k be a positive odd integer.

Let n + 1, n + 2, ..., n + k be k consecutive integers for some integer n.

To prove k divides the sum $\sum_{i=1}^{k} (n+i)$, we must find an integer m such that $\sum_{i=1}^{k} (n+i) = km$. Observe that

$$\begin{split} \sum_{i=1}^k (n+i) &=& \sum_{i=1}^k n + \sum_{i=1}^k i \\ &=& kn + \frac{k(k+1)}{2} \\ &=& k(n + \frac{k+1}{2}). \end{split}$$

Since k is odd, then there exists an integer a such that k = 2a + 1. Thus, $\frac{k+1}{2} = \frac{2a+2}{2} = a + 1 \in \mathbb{Z}$. Let $m = n + \frac{k+1}{2}$. Since n and $\frac{k+1}{2}$ are integers, then m is an integer. Hence, $\sum_{i=1}^{k} (n+i) = km$, as desired.

Exercise 91. Let $n \in \mathbb{N}$.

If n is odd, then $(a+b)|(a^n+b^n)$ for all $a, b, n \in \mathbb{Z}^+$.

Proof. Suppose n is odd.

Then n = 2k + 1 for some integer k. Let $a, b \in \mathbb{Z}^+$. Observe that

$$\begin{aligned} (a+b)\sum_{i=0}^{2k}(-1)^{i}a^{2k-i}b^{i} &= a\sum_{i=0}^{2k}(-1)^{i}a^{2k-i}b^{i} + b\sum_{i=0}^{2k}(-1)^{i}a^{2k-i}b^{i} \\ &= \sum_{i=0}^{2k}(-1)^{i}a^{2k+1-i}b^{i} + \sum_{i=0}^{2k}(-1)^{i}a^{2k-i}b^{i+1} \\ &= (a^{2k+1} - a^{2k}b + a^{2k-1}b^{2} + \dots + ab^{2k}) + (a^{2k}b - a^{2k-1}b^{2} + \dots - ab^{2k} + b^{2k+1}) \\ &= a^{2k+1} + b^{2k+1} \\ &= a^{n} + b^{n}. \end{aligned}$$

Since $\sum_{i=0}^{2k} (-1)^i a^{2k-i} b^i$ is an integer and $a^n + b^n = (a+b) \sum_{i=0}^{2k} (-1)^i a^{2k-i} b^i$, then a+b divides $a^n + b^n$, so a+b divides $a^n + b^n$ for all $a, b \in \mathbb{Z}^+$.

Since n is odd and a+b divides a^n+b^n for all $a, b \in \mathbb{Z}^+$, then we conclude: if n is odd, then $(a+b)|(a^n+b^n)$ for all $a, b, n \in \mathbb{Z}^+$, by conditional introduction. \Box **Exercise 92.** Let n be a positive integer.

Let

		[0	0	-1]
A	=	0	1	0
		[1	0	0

Then $A^n = I$ iff 4|n.

Solution. We compute values for A^n and observe a pattern.

Whenever n is a multiple of 4 we observe that $A^n = I$, where I is the identity matrix.

We must prove: 1. if $A^n = I$, then 4|n. We'll use the division algorithm to prove $A^n \neq I$. 2. if 4|n, then $A^n = I$. Assume 4|n. We compute A^n . *Proof.* Observe that $A^4 = I$ where I is the identity matrix. We prove if 4|n, then $A^n = I$. Suppose 4|n. Then there exists an integer k such that n = 4k. Thus, $A^{n} = A^{4k} = (A^{4})^{k} = I^{k} = I$, as desired. Conversely, we prove if $A^n = I$, then 4|n. Suppose $A^n = I$. We must prove 4|n. By the division algorithm, there are unique integers q and r such that n =4q + r with $0 \le r < 4$. Hence, either r = 0 or r = 1 or r = 2 or r = 3. Observe that $A^r = A^{n-4q} = A^n A^{-4q} = I A^{-4q} = A^{-4q} = (A^4)^{-q} = I^{-q} = I.$ Computation shows that $A^1 \neq I$ and $A^2 \neq I$ and $A^3 \neq I$. Hence, r cannot be 1, 2 or 3. Thus, r must be zero. Therefore, n = 4q, so 4|n, as desired. **Exercise 93.** Let $\omega = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$. Then $\omega^n = 1$ if and only if 3|n, for any integer n. **Solution.** Observe that $\omega \in \mathbb{C}$. We must prove $(\forall n \in \mathbb{Z})(\omega^n = 1 \leftrightarrow 3|n)$. Thus, we let $n \in \mathbb{Z}$ be arbitrary. To prove $\omega^n = 1 \leftrightarrow 3 | n$, we must prove:

1. $\omega^n = 1 \Rightarrow 3|n$

2. $3|n \Rightarrow \omega^n = 1$. Note that $\omega = cis(\frac{2\pi}{3})$.

We compute ω^n for various values of n.

We observe the pattern of repeating powers of ω , namely, $1, \omega, \omega^2$ repeat. \Box

Proof. Let n be an arbitrary integer.

To prove $\omega^n = 1 \Rightarrow 3|n$, assume $\omega^n = 1$. We must prove 3|n.

Using the division algorithm to divide n by 3, we obtain unique integers q and r such that n = 3q + r and $0 \le r < 3$.

To prove 3|n, we must prove r = 0.

Observe that $\omega^3 = 1$ and

$$\begin{array}{rcl} 1 & = & \omega^n \\ & = & \omega^{3q+r} \\ & = & \omega^{3q}\omega^r \\ & = & (\omega^3)^q\omega^r \\ & = & (1)^q\omega^r \\ & = & 1\omega^r \\ & = & \omega^r. \end{array}$$

Since $0 \le r < 3$, then either r = 0 or r = 1 or r = 2. A computation shows that $\omega^1 \ne 1$ and $\omega^2 \ne 1$. Thus, r cannot be 1 or 2. Hence, r must be zero. Therefore, n = 3q, so 3|n, as desired. To prove $3|n \Rightarrow \omega^n = 1$, assume 3|n. We must prove $\omega^n = 1$. Since 3|n, then there exists an integer k such that n = 3k. Thus, $\omega^n = \omega^{3k} = (\omega^3)^k = 1^k = 1$, as desired.

Exercise 94. For all $n \in \mathbb{N}$, $5^n - 4n - 1$ is divisible by 16.

Proof. To prove the statement $5^n - 4n - 1$ is divisible by 16 for all $n \in \mathbb{N}$, we prove $16|(5^n - 4n - 1)$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : (16|(5^n - 4n - 1))\}$. Basis: Since $5^1 - 4 * 1 - 1 = 0$ and 16|0, then $1 \in S$. Induction: Let $k \in S$. Then $k \in \mathbb{N}$ and $16|(5^k - 4k - 1)$. Since $16|(5^k - 4k - 1)$, then $16|5(5^k - 4k - 1)$. Since 16|(16k), then 16 divides the sum $5(5^k - 4k - 1) + 16k = 5^{k+1} - 4k - 5 = 5^{k+1} - 4(k+1) - 1$. Thus, 16 divides $5^{k+1} - 4(k+1) - 1$, so $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$. Therefore, by PMI, $5^n - 4n - 1$ is divisible by 16 for all $n \in \mathbb{N}$. □

Exercise 95. For all $n \in \mathbb{N}$, $10^{n+1} + 10^n + 1$ is divisible by 3.

Proof. Let $S = \{n \in \mathbb{N} : (3|(10^{n+1} + 10^n + 1))\}$. Basis: Since $10^{1+1} + 10^1 + 1 = 111 = 3 \cdot 37$, then $3|(10^{1+1} + 10^1 + 1)$, so $1 \in S$. Induction: Let $k \in S$. Then $k \in \mathbb{N}$ and $3|(10^{k+1} + 10^k + 1)$, so there exists $m \in \mathbb{Z}$ such that $10^{k+1} + 10^k + 1 = 3m$.

Observe that

$$\begin{aligned} 10^{(k+1)+1} + 10^{k+1} + 1 &= 10 \cdot 10^{k+1} + 10 \cdot 10^k + 1 \\ &= (9+1) \cdot 10^{k+1} + (9+1) \cdot 10^k + 1 \\ &= 9 \cdot 10^{k+1} + 10^{k+1} + 9 \cdot 10^k + 10^k + 1 \\ &= (9 \cdot 10^{k+1} + 9 \cdot 10^k) + (10^{k+1} + 10^k + 1) \\ &= (9 \cdot 10^{k+1} + 9 \cdot 10^k) + 3m \\ &= 3(3 \cdot 10^{k+1} + 3 \cdot 10^k) + 3m \\ &= 3(3 \cdot 10^{k+1} + 3 \cdot 10^k + m). \end{aligned}$$

Since $3 \cdot 10^{k+1} + 3 \cdot 10^k + m$ is an integer, then this implies 3 divides $10^{(k+1)+1} + 10^{k+1} + 1$, so $k+1 \in S$.

Hence, $k \in S$ implies $k + 1 \in S$.

Therefore, by PMI, $10^{n+1} + 10^n + 1$ is divisible by 3 for all $n \in \mathbb{N}$.

Exercise 96. For all $n \in \mathbb{Z}^+$, $4 \cdot 10^{2n} + 9 \cdot 10^{2n-1} + 5$ is divisible by 99.

$$\begin{array}{l} Proof. \mbox{ Let } S = \{n \in \mathbb{Z}^+ : (99|(4 \cdot 10^{2n} + 9 \cdot 10^{2n-1} + 5))\}.\\ \mbox{ Basis:}\\ Since \ 4 \cdot 10^{2(1)} + 9 \cdot 10^{2(1)-1} + 5 = 400 + 90 + 5 = 495 = 99 \cdot 5, \ then\\ 99|(4 \cdot 10^{2(1)} + 9 \cdot 10^{2(1)-1} + 5), \ so \ 1 \in S.\\ \mbox{ Induction:}\\ \mbox{ Let } k \in S.\\ \mbox{ Then } k \in \mathbb{Z}^+ \ and \ 99|(4 \cdot 10^{2k} + 9 \cdot 10^{2k-1} + 5), \ so \ there \ exists \ m \in \mathbb{Z} \ such \\ \ that \ 4 \cdot 10^{2k} + 9 \cdot 10^{2k-1} + 5 = 99m.\\ \mbox{ Observe that}\\ 4 \cdot 10^{2(k+1)} + 9 \cdot 10^{2(k+1)-1} + 5 = 4 \cdot 10^{2k+2} + 9 \cdot 10^{2k+2-1} + 5\\ = 4 \cdot 10^{2k} \cdot 10^2 + 9 \cdot 10^{2k-1} \cdot 10^2 + 5\\ = 4 \cdot 10^{2k} \cdot 10^2 + 9 \cdot 10^{2k-1} \cdot 10^2 + 5\\ = 4(100) \cdot 10^{2k} + 9(100) \cdot 10^{2k-1} + 5\\ = 100(4 \cdot 10^{2k}) + 100(9 \cdot 10^{2k-1}) + (500 - 495)\\ = 100(4 \cdot 10^{2k}) + 100(9 \cdot 10^{2k-1}) + 100 \cdot 5 - 99 \cdot \\ = 100(4 \cdot 10^{2k} + 9 \cdot 10^{2k-1} + 5) - 99 \cdot 5\\ = 100(99m) - 99 \cdot 5\\ = 99(100m - 5). \end{array}$$

5

Since 100m - 5 is an integer, then this implies 99 divides $4 \cdot 10^{2(k+1)} + 9 \cdot 10^{2(k+1)-1} + 5$, so $k+1 \in S$.

Hence, $k \in S$ implies $k + 1 \in S$.

Therefore, by PMI, $4 \cdot 10^{2n} + 9 \cdot 10^{2n-1} + 5$ is divisible by 99 for all $n \in \mathbb{Z}^+$. \Box

Exercise 97. Every integer $10^{n+1} + 3 \cdot 10^n + 5$ is divisible by 9 for $n \in \mathbb{N}$.

Solution. We re-state this using the definition of divisibility: $\forall (n \in N), 9 | 10^{n+1} + 3 \cdot 10^n + 5$.

We must prove the proposition $\forall (n \in N), S_n$ where the statement S_n is $9|10^{n+1} + 3 \cdot 10^n + 5$.

We can work backwards to prove $9|10^{k+1} + 3 \cdot 10^k + 5 \rightarrow 9|10^{(k+1)+1} + 3 \cdot 10^{k+1} + 5$.

If $9|10^{k+1} + 3 \cdot 10^k + 5$ is true, then $10^{k+1} + 3 \cdot 10^k + 5 = 9a$ for some integer a.

Thus, $10^{k+1} + 3 \cdot 10^k = 9a - 5.$

If $9|10^{(k+1)+1} + 3 \cdot 10^{k+1} + 5$, then $10^{(k+1)+1} + 3 \cdot 10^{k+1} + 5 = 9b$ for some integer b.

Thus, $10^{(k+1)+1} + 3 \cdot 10^{k+1} = 9b - 5.$

Hence, $10(10^{k+1} + 3 \cdot 10^k) = 10(9b - 5).$

So, we can multiply $10^{k+1} + 3 \cdot 10^k = 9a - 5$ by 10 to complete the proof. \Box

Proof. Let $n \in \mathbb{N}$ and let S_n be the statement 9 divides $10^{n+1} + 3 \cdot 10^n + 5$. We prove using mathematical induction.

Basis:

For n = 1, the statement S_1 is 9 divides $10^{1+1} + 3 \cdot 10 + 5$. Since $10^{1+1} + 3 \cdot 10 + 5 = 135 = 9 * 15$, then 9 divides $10^{1+1} + 3 \cdot 10 + 5$, so

 S_1 is true.

Induction:

Let $k \in \mathbb{N}$. Suppose $9|10^{k+1} + 3 \cdot 10^k + 5$ for any $k \ge 1$. Then $10^{k+1} + 3 \cdot 10^k + 5 = 9a$ for some integer a. Observe that

$$10^{k+1} + 3 \cdot 10^{k} + 5 = 9a$$

$$10^{k+1} + 3 \cdot 10^{k} = 9a - 5$$

$$10^{k+2} + 3 \cdot 10^{k+1} = 90a - 50$$

$$10^{k+2} + 3 \cdot 10^{k+1} + 5 = 90a - 45$$

$$10^{k+2} + 3 \cdot 10^{k+1} + 5 = 9(10a - 5)$$

Since $a \in \mathbb{Z}$, then $10a - 5 \in \mathbb{Z}$.

Therefore, $9|10^{(k+1)+1} + 3 \cdot 10^{k+1} + 5$ for any $k \ge 1$.

Since S_1 is true and 9 divides $10^{k+1} + 3 \cdot 10^k + 5$ implies 9 divides $10^{(k+1)+1} + 3 \cdot 10^{k+1} + 5$ for any integer $k \ge 1$, then 9 divides $10^{n+1} + 3 \cdot 10^n + 5$ for every $n \in \mathbb{N}$.

Exercise 98. Each number in the sequence 12,102,1002,10002,..., is divisible by 6.

Solution. Let a = (12, 102, 1002, 10002, ...). We can find an expression for the n^{th} term of the sequence a by observing the pattern:

$$a_{1} = 12 = 10^{1} + 2$$

$$a_{2} = 102 = 10^{2} + 2$$

$$a_{3} = 1002 = 10^{3} + 2$$
...
$$a_{k} = 10^{k} + 2$$

Hence the n^{th} term of the sequence is $a_n = 10^n + 2$.

We must prove the proposition $\forall (n \in N), S_n$ where the statement S_n is $6|10^n + 2$.

Since S_n is a statement about the natural numbers, we use proof by induction(weak).

Our basis is $n_0 = 1$ and we must prove S_1 . For induction we must prove $S_k \to S_{k+1}$ for any $k \ge 1$. Thus we must prove $6|(10^k + 2) \to 6|(10^{k+1} + 2))$ for $k \ge 1$. We use direct proof to assume $6|(10^k + 2))$ for any $k \ge 1$. This is our induction hypothesis.

Proof. Let $n \in \mathbb{N}$ and let S_n be the statement $6|10^n + 2$. We prove using mathematical induction(weak).

Basis: For n = 1, the statement S_1 is 6|12 which is true because $12 = 6 \cdot 2$.

Induction: Let $k \in \mathbb{N}$. Suppose $6|10^k + 2$ for $k \ge 1$. Then there is a $b \in \mathbb{Z}$ for which $6b = 10^k + 2$. Observe that:

$$10^{k+1} + 2 = 10 \cdot 10^{k} + 20 - 18$$

= 10(10^k + 2) - 18
= 10(6b) - 18
= 6(10b - 3)

Hence $6|10^{k+1} + 2$.

This completes the proof that $S_k \to S_{k+1}$ for $k \ge 1$. It follows by induction that $6|10^n + 2$ for all natural numbers n.

Exercise 99. Let $n \in \mathbb{Z}$.

Then the only positive divisor of n and n+1 is 1.

Proof. Let S be the set of all positive divisors of n and n + 1. Then $S = \{d \in \mathbb{Z}^+ : d|n \wedge d|(n+1)\}$. We must prove $S = \{1\}$. Since $1 \in \mathbb{Z}^+$ and 1|n and 1|(n+1), then $1 \in S$, so $\{1\} \subset S$.

Let $d \in S$.

Then $d \in \mathbb{Z}^+$ and d|n and d|(n + 1). Since d|n and d|(n+1), then d divides any linear combination of n and n+1. In particular, d divides (-1)(n) + (1)(n+1) = -n + n + 1 = 1, so d|1. Since $d \in \mathbb{Z}^+$ and $1 \in \mathbb{Z}^+$ and d|1, then $d \leq 1$. Since $d \in \mathbb{Z}^+$, then $d \geq 1$. Since $d \leq 1$ and $1 \leq d$, then by the anti-symmetric property of \mathbb{Z}^+ , d = 1. Hence, $d \in \{1\}$, so $S \subset \{1\}$. Since $S \subset \{1\}$ and $\{1\} \subset S$, then $S = \{1\}$, as desired.

Exercise 100. Let $n \in \mathbb{Z}^+$.

Then gcd(n, n+1) = 1.

Proof. Since 1 divides any integer, then 1|n and 1|(n + 1), so 1 is a common divisor of n and n + 1.

Let c be any common divisor of n and n + 1.

Then c|n and c|(n+1), so c divides the difference (n+1) - n = 1.

Hence, c|1, so any common divisor of n and n+1 divides 1.

Since $1 \in \mathbb{Z}^+$ and 1 is a common divisor of n and n + 1 and any common divisor of n and n + 1 divides 1, then by definition of gcd, 1 = gcd(n, n + 1).

Proof. Since 1 = (n + 1) - n = -n + (n + 1) is a linear combination of n and n + 1, then 1 is a multiple of gcd(n, n + 1), so gcd(n, n + 1) divides 1.

Since the only positive integer that divides 1 is 1, then gcd(n, n+1) = 1. \Box

Exercise 101. Let $n \in \mathbb{Z}^+$.

Then either gcd(n, n+2) = 1 or gcd(n, n+2) = 2.

Proof. Either n is even or n is odd.

We consider each case separately.

Case 1: Suppose n is even.

Then n = 2k for some integer k.

Thus, n + 2 = 2k + 2 = 2(k + 1), so n + 2 is even.

Since n is even and n + 2 is even, then 2 divides n and n + 2, so 2 is a common divisor of n and n + 2.

Let c be any common divisor of n and n+2.

Then c|n and c|(n+2), so c divides the difference (n+2) - n = 2.

Hence, c|2, so any common divisor of n and n+2 divides 2.

Since $2 \in \mathbb{Z}^+$ and 2 is a common divisor of n and n+2 and any common divisor of n and n+2 divides 2, then $2 = \gcd(n, n+2)$, by definition of gcd.

Case 2: Suppose n is odd.

Since 1 divides any integer, then 1|n and 1|(n+2).

Let c be any common divisor of n and n+2. Then c|n and c|(n+2), so c divides the difference (n+2) - n = 2. Hence, c|2. Without loss of generality, assume c > 0. Then either c = 1 or c = 2. If c = 2, then 2|n, so n is even. But, this contradicts the assumption n is odd. Therefore, $c \neq 2$, so c = 1. Hence, any common divisor of n and n+2 must divide 1. Since $1 \in \mathbb{Z}^+$ and 1 is a common divisor of n and n+2 and any common divisor of n and n + 2 divides 1, then $1 = \gcd(n, n + 2)$. **Exercise 102.** Let $k \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then gcd(n, n+k)|k. This means gcd of n and n + k is a factor of k. *Proof.* Let $d = \gcd(n, n+k)$. Then d|n and d|(n+k), so d divides the difference (n+k) - n = k. Therefore, d|k. **Exercise 103.** Let $k, n \in \mathbb{Z}$. Then gcd(k, n + k) = 1 iff gcd(k, n) = 1. *Proof.* Suppose gcd(k, n) = 1. Then there exist integers x, y such that xk + yn = 1. Thus, 1 = xk + yn = xk - yk + yk + yn = k(x - y) + y(k + n) = (x - y)k + y(x + n) = (xy(n+k). Since x - y and y are integers and (x - y)k + y(n + k) = 1, then gcd(k, n + k) =1. *Proof.* Conversely, suppose gcd(k, n + k) = 1. Then there exist integers s, t such that sk + t(n + k) = 1. Thus, 1 = sk + tn + tk = sk + tk + tn = (s+t)k + tn. Since s + t and t are integers and (s + t)k + tn = 1, then gcd(k, n) = 1. \Box **Exercise 104.** Let $k, n \in \mathbb{Z}$. Then gcd(k, n + k) = d iff gcd(k, n) = d. *Proof.* Suppose gcd(k, n) = d. Then $d \in \mathbb{Z}^+$ and d|k and d|n and if c is any common divisor of k and n, then c|d. Since d|n and d|k, then d divides the sum n + k, so d|(n + k). Since d|k and d|(n+k), then d is a common divisor of k and n+k. Let c be any common divisor k and n + k. Then c|k and c|(n+k), so c divides the difference (n+k) - k = n. Hence, c|n. Since c|k and c|n, then c is a common divisor of k and n, so c|d. Therefore, any common divisor of k and n + k divides d.

Since $d \in \mathbb{Z}^+$ and d is a common divisor of k and n + k and any common divisor of k and n + k divides d, then by definition of gcd, d = gcd(k, n + k). \Box

Proof. Conversely, suppose gcd(k, n + k) = d.

Then $d \in \mathbb{Z}^+$ and d|k and d|(n+k) and if c is any common divisor of k and n+k, then c|d.

Since d|k and d|(n+k), then d divides the difference (n+k) - k = n. Since d|k and d|n, then d is a common divisor of k and n.

Let c be any common divisor of k and n.

Then c|k and c|n, so c divides the sum n + k.

Since c|k and c|(n+k), then c is a common divisor of k and n+k, so c|d. Hence, any common divisor of k and n divides d.

Since $d \in \mathbb{Z}^+$ and d is a common divisor k and n and any common divisor of k and n divides d, then by definition of gcd, d = gcd(k, n).

Exercise 105. Let $k, n \in \mathbb{Z}$.

Then gcd(k, n + rk) = d for all $r \in \mathbb{Z}$ iff gcd(k, n) = d.

Proof. Suppose gcd(k, n) = d.

Then $d \in \mathbb{Z}^+$ and d|k and d|n and if c is any common divisor of k and n, then c|d.

Let $r \in \mathbb{Z}$. Since d|k, then d|rk. Since d|n and d|rk, then d divides the sum n + rk. Since d|k and d|(n + rk), then d is a common divisor of k and n + rk.

Let c be any common divisor of k and n + rk.

Then c|k and c|(n+rk).

Since c|k, then c|rk.

Since c|(n+rk) and c|rk, then c divides the difference (n+rk) - rk = n, so c|n.

Since c|k and c|n, then c is a common divisor of k and n, so c|d. Hence, any common divisor of k and n + rk divides d.

Since $d \in \mathbb{Z}^+$ and d is a common divisor of k and n + rk and any common divisor of k and n + rk divides d, then by definition of gcd, d = gcd(k, n + rk). \Box

Proof. Conversely, suppose gcd(k, n + rk) = d for all $r \in \mathbb{Z}$. Let r = 0. Then d = gcd(k, n + rk) = gcd(k, n + 0k) = gcd(k, n + 0) = gcd(k, n). Therefore, gcd(k, n) = d.

Exercise 106. Find all positive integers d such that d divides $n^2 + 1$ and $(n+1)^2 + 1$ for some integer n.

Solution. Let d be a positive integer such that $d|(n^2 + 1)$ and $d|[(n + 1)^2 + 1]$ for some integer n.

Since $d|(n^2+1)$ and $d|[(n+1)^2+1]$, then d divides any linear combination of n^2+1 and $(n+1)^2+1$.

In particular, *d* divides the difference $[(n+1)^2 + 1] - (n^2 + 1) = (n^2 + 2n + 1) + 1 - n^2 - 1 = 2n + 1.$

Since d|(2n + 1) and $d|(n^2 + 1)$, then d divides any linear combination of 2n + 1 and $n^2 + 1$. In particular, d divides the sum $4(n^2 + 1) - (2n + 1)^2 + 2(2n + 1) = (4n^2 + 1)^2$

(1) particular, a divides the sum 1(n + 1) - (2n + 1) - 2(2n + 1) - (1n + 1)(4) $-(4n^2 + 4n + 1) + (4n + 2) = 5.$ Since $d \in \mathbb{Z}^+$ and d|5, then d must be 1 or 5.

Exercise 107. If *n* is a positive integer, find the possible values of gcd(n, n+10).

Proof. Let $n \in \mathbb{Z}^+$. Let $d = \gcd(n, n + 10)$. Then $d \in \mathbb{Z}^+$ and d|n and d|(n + 10), so d divides any linear combination of n and n + 10. In particular, d divides -n + (n + 10) = 10. Thus, d|10, so d must be one of 1, 2, 5, 10. Therefore, $d \in \{1, 2, 5, 10\}$.

Exercise 108. Let $n \in \mathbb{Z}$.

Then gcd(n, 1) = 1.

Proof. Since 1 and 1 - n are integers and (1)(n) + (1 - n)(1) = n + 1 - n = 1 + n - n = 1 + 0 = 1, then 1 is a linear combination of n and 1.

Hence, 1 is a multiple of gcd(n, 1), so gcd(n, 1) divides 1. The only positive integer that divides 1 is 1, so gcd(n, 1) = 1.

Exercise 109. Let $n \in \mathbb{Z}^+$. Then gcd(3n+2, 5n+3) = 1.

Proof. Since 5 and -3 are integers and 5(3n+2) + (-3)(5n+3) = 15n + 10 - 15n - 9 = 1, then gcd(3n+2, 5n+3) = 1.

Exercise 110. Let $a \in \mathbb{Z}$.

Then gcd(a, a + n) divides n for all $n \in \mathbb{Z}^+$. Therefore, gcd(a, a + 1) = 1.

Proof. Let $n \in \mathbb{Z}^+$. Let $d = \gcd(a, a + n)$. Then d is a common divisor of a and a+n, so d divides any linear combination of a and a + n. In particular, d divides the difference (a + n) - a = n, so d|n. Therefore, $\gcd(a, a + n)|n$ for any positive integer n. For n = 1 this implies $\gcd(a, a + 1)|1$. The only positive integer that divides 1 is 1, so $\gcd(a, a + 1) = 1$. **Exercise 111.** Let $a, b \in \mathbb{Z}$.

Then there exist integers m, n such that c = ma + nb iff gcd(a, b)|c.

Proof. Observe that gcd(a,b)|c iff c is a multiple of gcd(a,b) iff c is a linear combination of a and b iff there exist integers m and n such that c = ma + nb.

Therefore, gcd(a,b)|c iff there exist integers m and n such that c = ma + nb.

Exercise 112. Let $a, b \in \mathbb{Z}$.

If there exist integers m, n such that gcd(a, b) = ma + nb, then gcd(m, n) = 1.

Proof. Suppose there exist integers m and n such that gcd(a, b) = ma + nb.

Let d = ma + nb.

Then d = gcd(a, b), so $d \in \mathbb{Z}^+$ and d|a and d|b.

Hence, a = dx and b = dy for some integers x and y.

Thus, d = m(dx) + n(dy) = m(xd) + n(yd) = (mx)d + (ny)d = xmd + ynd = (xm + yn)d.

Since $d \in \mathbb{Z}^+$, then d > 0, so $d \neq 0$.

Hence, 1 = xm + yn.

Since there exist integers x and y such that xm + yn = 1, then gcd(m, n) = 1.

Proposition 113. Let $a, b \in \mathbb{Z}$.

Then (a,b) = (a,ka+b) for all $k \in \mathbb{Z}$.

Proof. Let d = gcd(a, b).

Then d|a and d|b and if c is any integer such that c|a and c|b, then c|d.

Since d|a and d|b, then d divides any linear combination of a and b, so d divides ka + b.

Since d|a and d|(ka + b), then d is a common divisor of a and ka + b.

Let c be an arbitrary integer such that c|a and c|(ka + b).

Then c divides any linear combination of a and ka + b.

In particular, c divides (-k)a + (1)(ka + b) = -ka + ka + b = 0 + b = b, so c|b.

Since c|a and c|b, then c|d.

Thus, any common divisor of a and ka + b divides d.

Since d is a common divisor of a and ka + b and any common divisor of a and ka + b divides d, then d = gcd(a, ka + b).

Exercise 114. Let $a, b \in \mathbb{Z}^*$.

For all $d \in \mathbb{Z}^*$, if d|a and d|b, then $gcd(\frac{a}{d}, \frac{b}{d}) = \frac{1}{d}gcd(a, b)$.

Proof. Let $d \in \mathbb{Z}^*$ such that d|a and d|b.

Then $d \neq 0$ and there exist integers k_1 and k_2 such that $a = dk_1$ and $b = dk_2$. Since $a, b \in \mathbb{Z}^*$, then the greatest common divisor of a and b exists and is unique.

Let $c = \gcd(a, b)$.

Then

$$c = \gcd(dk_1, dk_2)$$

= $d \cdot \gcd(k_1, k_2)$
= $d \cdot \gcd(\frac{a}{d}, \frac{b}{d}).$

Since $c = d \cdot \gcd(\frac{a}{d}, \frac{b}{d})$ and $d \neq 0$, then $\frac{c}{d} = \gcd(\frac{a}{d}, \frac{b}{d})$. Therefore, $\gcd(\frac{a}{d}, \frac{b}{d}) = \frac{\gcd(a, b)}{d} = \frac{1}{d} \gcd(a, b)$.

Exercise 115. Let $a, b, c \in \mathbb{Z}$.

If gcd(a, b) = 1 and c|a, then gcd(b, c) = 1.

Proof. Suppose gcd(a, b) = 1 and c|a. Since gcd(a, b) = 1, then there exist integers m and n such that ma+nb = 1. Since c|a, then a = ck for some integer k. Thus, 1 = m(ck) + nb = nb + m(ck) = nb + (mk)c. Since n and mk are integers and nb + (mk)c = 1, then gcd(b, c) = 1.

Exercise 116. Let $a, b, c \in \mathbb{Z}$.

If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).

Proof. Suppose gcd(a, b) = 1.

Let $d = \gcd(c, b)$.

Then d|c and d|b and if e is any integer such that e|c and e|b, then e|d. We must prove gcd(ac, b) = d.

Since d|c, then d divides any multiple of c, so d|ac.

Since d|ac and d|b, then d is a common divisor of ac and b.

Let $e \in \mathbb{Z}$ such that e|ac and e|b.

Since e is a common divisor of ac and b, then e divides any linear combination of ac and b.

Since gcd(a, b) = 1, then there exist integers m and n such that ma + nb = 1. Thus, $c = c \cdot 1 = c(ma + nb) = cma + cnb = m(ac) + (cn)b$, so c is a linear combination of ac and b.

Hence, e|c.

Since e|c and e|b, then e|d, so any common divisor of ac and b divides d.

Since d is a common divisor of ac and b and any common divisor of ac and b divides d, then $d = \gcd(ac, b)$.

Exercise 117. Let $a, b \in \mathbb{Z}$. Then gcd(gcd(a, b), b) = gcd(a, b).

Proof. Let $d = \gcd(a, b)$.

Then $d \in \mathbb{Z}^+$ and d|a and d|b and if c is any common divisor of a and b, then c divides d.

Since d|d and d|b, then d is a common divisor of d and b. Let c be any common divisor of d and b.

Then c|d and c|b.

Since c|d and d|a, then c|a.

Since c|a and c|b, then c is a common divisor of a and b, so c|d.

Hence, any common divisor of d and b divides d.

Since $d \in \mathbb{Z}^+$ and d is a common divisor of d and b and any common divisor of d and b divides d, then by definition of gcd, gcd(d, b) = d.

Therefore, gcd(gcd(a, b), b) = gcd(d, b) = d = gcd(a, b), as desired.

Exercise 118. Let $a, b, c \in \mathbb{Z}$.

If gcd(a, b) = 1 and c|(a + b), then gcd(a, c) = gcd(b, c) = 1.

Proof. Suppose gcd(a, b) = 1 and c|(a + b).

Since gcd(a, b) = 1, then there exist integers m and n such that ma + nb = 1. Let d = gcd(a, c). Then $d \in \mathbb{Z}^+$ and d|a and d|c. Since d|c and c|(a + b), then d|(a + b). Since d|a and d|(a + b), then d divides any linear combination of a and a + b. Since (-1)a + (1)(a + b) = -a + a + b = 0 + b = b is a linear combination of a and a + b, then this implies d|b.

Since d|a and d|b, then d divides any linear combination of a and b. Since ma + nb = 1 is a linear combination of a and b, then this implies d|1. Since $d \in \mathbb{Z}^+$ and d|1, then this implies d = 1. Therefore, gcd(a, c) = 1.

Let $e = \gcd(b, c)$. Then $e \in \mathbb{Z}^+$ and e|b and e|c. Since e|c and c|(a + b), then e|(a + b). Since e|b and e|(a + b), then e divides any linear combination of b and a + b. Since (-1)b + (1)(a + b) = -b + a + b = -b + b + a = 0 + a = a is a linear combination of b and a + b, then this implies e|a. Since e|a and e|b, then e divides any linear combination of a and b. Since ma + nb = 1 is a linear combination of a and b, then this implies e|1. Since $e \in \mathbb{Z}^+$ and e|1, then this implies e = 1.

Therefore, gcd(b, c) = 1. **Exercise 119.** Let $a, b, d \in \mathbb{Z}$ such that d is a common divisor of a and b. If $gcd(\frac{a}{d}, \frac{b}{d}) = 1$, then d = gcd(a, b).

Proof. Since d is a common divisor of a and b, then d|a and d|b, so a = dx and b = dy for some integers x and y.

Thus, $x = \frac{a}{d} \in \mathbb{Z}$ and $y = \frac{b}{d} \in \mathbb{Z}$. Suppose $gcd(\frac{a}{d}, \frac{b}{d}) = 1$. Then there exist integers m and n such that $m(\frac{a}{d}) + n(\frac{b}{d}) = 1$. Thus, ma + nb = d, so d is a linear combination of a and b. Let $c \in \mathbb{Z}$ such that c is any common divisor of a and b. Then c divides any linear combination of a and b, so c|d. Thus, any common divisor of a and b divides d.

Since d is a common divisor of a and b and any common divisor of a and b divides d, then d = gcd(a, b).

Exercise 120. Let $a, b \in \mathbb{Z}$ such that gcd(a, b) = 1. Then gcd(a + b, a - b) is 1 or 2.

Proof. Let $d = \gcd(a + b, a - b)$.

Then $d \in \mathbb{Z}^+$ and d|(a+b) and d|(a-b).

We must prove either d = 1 or d = 2.

Since gcd(a, b) = 1, then there exist integers m and n such that ma + nb = 1. Thus, 2ma + 2nb = 2, so 2 is a linear combination of 2a and 2b.

Since d|(a+b) and d|(a-b), then d divides the sum (a+b) + (a-b) = 2a, so d|2a.

Since d|(a+b) and d|(a-b), then d divides the difference (a+b)-(a-b)=2b, so d|2b.

Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so d|2.

Since $d \in \mathbb{Z}^+$ and $d|_2$, then either d = 1 or d = 2, as desired.

Exercise 121. Let $a, b \in \mathbb{Z}$ such that gcd(a, b) = 1. Then gcd(a + 2b, 2a + b) is 1 or 3.

Proof. Let $d = \gcd(a + 2b, 2a + b)$.

Then $d \in \mathbb{Z}^+$ and d|(a+2b) and d|(2a+b).

We must prove either d = 1 or d = 3.

Since gcd(a, b) = 1, then there exist integers m and n such that ma + nb = 1. Thus, 3ma + 3nb = 3, so 3 is a linear combination of 3a and 3b.

Since d|(a+2b) and d|(2a+b), then d divides any linear combination of a+2b and 2a+b.

Since (-1)(a+2b) + 2(2a+b) = -a - 2b + 4a + 2b = 3a, then 3a is a linear combination of a + 2b and 2a + b, so d|3a.

Since (2)(a+2b) + (-1)(2a+b) = 2a+4b-2a-b = 3b, then 3b is a linear combination of a + 2b and 2a + b, so d|3b.

Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so d|3.

Since $d \in \mathbb{Z}^+$ and d|3, then either d = 1 or d = 3, as desired.

Exercise 122. Let $a, b \in \mathbb{Z}$ such that gcd(a, b) = 1. Then $gcd(a + b, a^2 + b^2)$ is 1 or 2.

Proof. Let $d = \gcd(a + b, a^2 + b^2)$.

Then $d \in \mathbb{Z}^+$ and d|(a+b) and $d|(a^2+b^2)$.

We must prove either d = 1 or d = 2.

Since gcd(a, b) = 1, then there exist integers m and n such that ma + nb = 1. Since d|(a + b) and $d|(a^2 + b^2)$, then d divides any linear combination of a + b and $a^2 + b^2$.

Since $(a^2 + b^2) - (a - b)(a + b) = a^2 + b^2 - (a^2 - b^2) = a^2 + b^2 - a^2 + b^2 = 2b^2$, then $2b^2$ is a linear combination of a + b and $a^2 + b^2$.

Thus, $d|2b^2$.

Since $(a + b)^2 - (a^2 + b^2) = (a^2 + 2ab + b^2) - a^2 - b^2 = 2ab$, then 2ab is a linear combination of a + b and $a^2 + b^2$.

Thus, d|2ab.

Since 1 = ma + nb, then $2b = 2b(ma + nb) = 2bma + 2bnb = 2abm + 2b^2n$, so 2b is a linear combination of 2ab and $2b^2$.

Since d|2ab and $d|2b^2$, then d divides any linear combination of 2ab and $2b^2$, so this implies d|2b.

Since $2(a+b)^2 - 4ab - 2b^2 = 2(a^2 + 2ab + b^2) - 4ab - 2b^2 = 2a^2 + 4ab + 2b^2 - 4ab - 2b^2 = 2a^2$, then $2a^2$ is a linear combination of a + b and 2ab and $2b^2$.

Since d|(a + b) and d|2ab and $d|2b^2$, then d divides any linear combination of a + b and 2ab and $2b^2$, so $d|2a^2$.

Since 1 = ma + nb, then $2a = 2a(ma + nb) = 2ama + 2anb = 2a^2m + 2abn$, so 2a is a linear combination of $2a^2$ and 2ab.

Since $d|2a^2$ and d|2ab, then d divides any linear combination of $2a^2$ and 2ab, so d|2a.

Since 1 = ma + nb, then 2 = 2(ma + nb) = 2ma + 2nb, so 2 is a linear combination of 2a and 2b.

Since d|2a and d|2b, then d divides any linear combination of 2a and 2b, so d|2.

Since $d \in \mathbb{Z}^+$ and $d|_2$, then either d = 1 or d = 2.

Exercise 123. Let $a, b \in \mathbb{Z}$ such that gcd(a, b) = 1. Then $gcd(a + b, a^2 - ab + b^2)$ is 1 or 3.

Proof. Let $d = \gcd(a + b, a^2 - ab + b^2)$.

Then $d \in \mathbb{Z}^+$ and d|(a+b) and $d|(a^2 - ab + b^2)$.

We must prove either d = 1 or d = 3.

By the division algorithm, $a^2 - ab + b^2 = (a + b)(a - 2b) + 3b^2$, so $3b^2 = (a^2 - ab + b^2) - (a + b)(a - 2b)$.

Thus, $3b^2$ is a linear combination of $a^2 - ab + b^2$ and a + b.

Since d|(a + b) and $d|(a^2 - ab + b^2)$, then d divides any linear combination of a + b and $a^2 - ab + b^2$, so $d|3b^2$.

Since $(a + b)^2 - (a^2 - ab + b^2) = (a^2 + 2ab + b^2) - a^2 + ab - b^2 = 3ab$, then 3ab is a linear combination of a + b and $a^2 - ab + b^2$, so d|3ab.

Since 1 = ma + nb, then $3b = 3b(ma + nb) = 3bma + 3bnb = 3abm + 3b^2n$, so 3b is a linear combination of 3ab and $3b^2$.

Since d|3ab and $d|3b^2$, then d divides any linear combination of 3ab and $3b^2$, so d|3b.

Since $2(a^2 - ab + b^2) + (a + b)^2 - 3b^2 = (2a^2 - 2ab + 2b^2) + (a^2 + 2ab + b^2) - 3b^2 = 3a^2$, then $3a^2$ is a linear combination of $a^2 - ab + b^2$ and a + b and $3b^2$.

Since $d|(a^2 - ab + b^2)$ and d|(a + b) and $d|3b^2$, then d divides any linear combination of $a^2 - ab + b^2$ and a + b and $3b^2$, so $d|3a^2$.

Since 1 = ma + nb, then $3a = 3a(ma + nb) = 3ama + 3anb = 3a^2m + 3abn$, so 3a is a linear combination of $3a^2$ and 3ab.

Since $d|3a^2$ and d|3ab, then d divides any linear combination of $3a^2$ and 3ab, so d|3a.

Since 1 = ma + nb, then 3 = 3(ma + nb) = 3ma + 3nb, so 3 is a linear combination of 3a and 3b.

Since d|3a and d|3b, then d divides any linear combination of 3a and 3b, so d|3.

Since $d \in \mathbb{Z}^+$ and d|3, then this implies either d = 1 or d = 3.

Exercise 124. Let n be an integer with n > 1.

Then either $gcd(n-1, n^2 + n + 1) = 1$ or $gcd(n-1, n^2 + n + 1) = 3$.

Proof. Let $d = \gcd(n - 1, n^2 + n + 1)$.

We must prove either d = 1 or d = 3.

By the division algorithm, we have $n^2 + n + 1 = (n - 1)(n + 2) + 3$, so $3 = (n^2 + n + 1) - (n - 1)(n + 2) = -(n + 2)(n - 1) + (n^2 + n + 1)$.

Thus, 3 is a linear combination of n-1 and $n^2 + n + 1$, so 3 is a multiple of d.

Hence, d|3.

Since $d \in \mathbb{Z}^+$ and d|3, then either d = 1 or d = 3.

Exercise 125. Let a, b be positive integers.

Then gcd(a, b) = 1 if and only if gcd(a + b, ab) = 1.

Proof. We prove if gcd(a, b) = 1, then gcd(a + b, ab) = 1. Suppose gcd(a, b) = 1.

Since 1 divides every integer, then 1|(a + b) and 1|ab, so 1 is a common divisor of a + b and ab.

Let $c \in \mathbb{Z}$ such that c|(a+b) and c|ab.

Since gcd(a, b) = 1, then there exist integers m and n such that ma + nb = 1. Since c|(a + b) and c|ab, then c divides any linear combination of a + b and ab.

Since $a(a + b) - ab = a^2 + ab - ab = a^2$, then a^2 is a linear combination of a + b and ab, so $c|a^2$.

Since 1 = ma + nb, then $a = a(ma + nb) = ama + anb = a^2m + abn = m(a^2) + n(ab)$, so a is a linear combination of a^2 and ab.

Since $c|a^2$ and c|ab, then c divides any linear combination of a^2 and ab, so c|a.

Since $b(a + b) - ab = ba + b^2 - ab = ab + b^2 - ab = b^2$, then b^2 is a linear combination of a + b and ab, so $c|b^2$.

Since 1 = ma + nb, then $b = b(ma + nb) = bma + bnb = abm + b^2n = m(ab) + n(b^2)$, so b is a linear combination of ab and b^2 .

Since c|ab and $c|b^2$, then c divides any linear combination of ab and b^2 , so c|b.

Since c|a and c|b, then c divides any linear combination of a and b.

Since ma + nb = 1 is a linear combination of a and b, then this implies c|1. Thus, if c|(a + b) and c|ab, then c|1, so any common divisor of a + b and ab divides 1.

Since 1 is a common divisor of a + b and ab and any common divisor of a + b and ab divides 1, then 1 = gcd(a + b, ab).

Proof. Conversely, suppose gcd(a + b, ab) = 1.

Since 1 divides every integer, then 1|a and 1|b, so 1 is a common divisor of a and b.

Let $c \in \mathbb{Z}$ such that c|a and c|b.

Then c divides any linear combination of a and b, so c|(a + b) and c|ab. Thus, c is a common divisor of a + b and ab, so c divides gcd(a + b, ab). Therefore, c|1, so any divisor of a and b divides 1.

Since 1 is a common divisor of a and b and any divisor of a and b divides 1, then 1 = gcd(a, b).

Exercise 126. Let a, b, n be nonzero integers.

If a|n and b|n and gcd(a, b) = d, then ab|nd.

Proof. Suppose a|n and b|n and gcd(a,b) = d.

Since a|n and b|n, then there are integers k_1 and k_2 such that $n = ak_1$ and $n = bk_2$.

Since d = gcd(a, b), then d is the least positive linear combination of a and b, so there are integers x and y such that d = xa + yb.

Let $e = xk_2 + yk_1$. Clearly, e is an integer. Observe that

$$abe = ab(xk_2 + yk_1)$$

= $abxk_2 + abyk_1$
= $xa(bk_2) + yb(ak_1)$
= $xan + ybn$
= $(xa + yb)n$
= $n(xa + yb)$
= $nd.$

Since $e \in \mathbb{Z}$ and nd = abe, then ab|nd.

Exercise 127. Let a, b, c be positive integers. If gcd(a, b) = 1 and c|b, then gcd(a, c) = 1. *Proof.* Suppose gcd(a, b) = 1 and c|b.

Since gcd(a, b) = 1, then there are integers x and y such that 1 = xa + yb. Since c|b, then b = cd for some integer d. Observe that 1 = xa + yb = xa + y(cd) = xa + y(dc) = xa + (yd)c. Since $x \in \mathbb{Z}$ and $yd \in \mathbb{Z}$ and xa + (yd)c = 1, then gcd(a, c) = 1.

Exercise 128. For all integers n > 1, n - 1 and 2n - 1 are relatively prime.

Solution. We express 1 as a linear combination of n - 1 and 2n - 1.

Using the division algorithm to divide 2n - 1 by n - 1 we obtain 2n - 1 =2(n-1) + 1, so 1 = -2(n-1) + (2n-1).

Proof. Let n be an arbitrary integer greater than one.

Since $-2 \in \mathbb{Z}$ and $1 \in \mathbb{Z}$ and -2(n-1) + (1)(2n-1) = -2n + 2 + 2n - 1 = 1, then gcd(n-1, 2n-1) = 1.

Exercise 129. For all integers n > 1, 2n - 1 and 3n - 1 are relatively prime.

Solution. We express 1 as a linear combination of 2n - 1 and 3n - 1. So, we want to find integers a and b such that a(2n-1) + b(3n-1) = 1. To have 2an and 3bn cancel each other, we can let a = -3 and b = 2.

Proof. Let n be an arbitrary integer greater than one.

Since $-3 \in \mathbb{Z}$ and $2 \in \mathbb{Z}$ and -3(2n-1)+2(3n-1)=-6n+3+6n-2=1, then gcd(2n-1, 3n-1) = 1.

Exercise 130. Let m and n be positive integers. Then $gcd(2^{m} - 1, 2^{n} - 1) = 1$ if and only if gcd(m, n) = 1.

Solution. We must prove:

1. if $gcd(2^m - 1, 2^n - 1) = 1$, then gcd(m, n) = 1. 2. if gcd(m, n) = 1, then $gcd(2^m - 1, 2^n - 1) = 1$.

Proof. We prove if gcd(m, n) = 1, then $gcd(2^m - 1, 2^n - 1) = 1$. Suppose gcd(m, n) = 1.

Then ma + nb = 1 for some integers a and b.

To prove $gcd(2^m - 1, 2^n - 1) = 1$, we must find integers c and d such that $c(2^m - 1) + d(2^n - 1) = 1.$

Observe that $x^k - 1 = (x - 1)(x^{k-1} + x^{k-2} + \dots + x + 1)$ for any real number x and positive integer k.

We have a flaw here.

If k is a negative integer, then $x^{k} - 1 = (x - 1)(\sum_{i=1}^{k} (-x^{-i}))$.

Now, couldn't *a* or *b* be a negative integer? If so, then $\sum_{i=1}^{-k} (-x^{-i})$ is not necessarily an integer, but rather a fraction which implies that $x - 1 \not| x^k - 1$.

We have no guarantee that both a and b are always positive, so this proof is not valid if a or b is negative integer!

Let x = 2m and k = a.

Then x and k are integers, so $x^{k} - 1$, x - 1, and $x^{k-1} + x^{k-2} + \ldots + x + 1$ are integers.

Hence, $x - 1 | x^k - 1$, so $2^m - 1 | 2^{ma} - 1$.

Therefore, $2^{ma} - 1 = (2^m - 1)r$ for some integer r.

Let x = 2n and k = b.

Then x and k are integers, so $x^{k} - 1$, x - 1, and $x^{k-1} + x^{k-2} + \ldots + x + 1$ are integers.

Hence, $x - 1|x^k - 1$, so $2^n - 1|2^{nb} - 1$.

Therefore, $2^{nb} - 1 = (2^n - 1)s$ for some integer s. Observe that

$$\begin{array}{rcl} 1 & = & 2^1 - 1 \\ & = & 2^{ma+nb} - 1 \\ & = & 2^{ma} \ast 2^{nb} - 1 \\ & = & 2^{ma} [(2^n - 1)s + 1] - 1 \\ & = & 2^{ma} s(2^n - 1) + 2^{ma} - 1 \\ & = & 2^{ma} s(2^n - 1) + r(2^m - 1). \end{array}$$

Let c = r and $d = 2^{ma}s$. Clearly, c and d are integers and $1 = c(2^m - 1) + d(2^n - 1)$, as desired. Suppose $gcd(2^m - 1, 2^n - 1) = 1$. We must prove gcd(m, n) = 1. Let $d = \gcd(m, n)$. Then d|m and d|n. Thus, m = da and n = db for some integers a and b. Suppose for the sake of contradiction that $gcd(m, n) \neq 1$. Then $d \neq 1$, so d > 1.

Observe that $x^{k} - 1 = (x - 1)(x^{k-1} + x^{k-2} + ... + x + 1)$ for any real number x and positive integer k.

We have a flaw here.

If k is a negative integer, then $x^{k} - 1 = (x - 1)(\sum_{i=1}^{k} (-x^{-i}))$.

Now, couldn't *a* or *b* be a negative integer? If so, then $\sum_{i=1}^{-k} (-x^{-i})$ is not necessarily an integer, but rather a fraction which implies that $x - 1 \not | x^k - 1$.

We have no guarantee that both a and b are always positive, so this proof is not valid if a or b is a negative integer!

Let $x = 2^d$ and k = a.

Then x and k are integers, so $x^k - 1$, x - 1, and $x^{k-1} + x^{k-2} + \dots + x + 1$ are integers.

Hence, $x - 1|x^k - 1$, so $2^d - 1|2^{da} - 1$. Thus, $2^d - 1|2^m - 1$, so $2^m - 1 = (2^d - 1)r$ for some integer r.

Let $x = 2^d$ and k = b.

Then x and k are integers, so $x^k - 1$, x - 1, and $x^{k-1} + x^{k-2} + \dots + x + 1$ are integers.

Hence, $x - 1|x^k - 1$, so $2^d - 1|2^{db} - 1$.

Thus, $2^{d} - 1|2^{n} - 1$, so $2^{n} - 1 = (2^{d} - 1)s$ for some integer s.

Since $gcd(2^m - 1, 2^n - 1) = 1$, then there are integers x and y such that $x(2^m - 1) + y(2^n - 1) = 1$.

Observe that $x(2^d - 1)r + y(2^d - 1)s = 1$, so $(2^d - 1)(xr + ys) = 1$.

Since $2^d - 1$ and xr + ys are integers whose product is one, then $2^d - 1$ is either 1 or -1.

Since d > 1, then $d \ge 2$, so $2^d - 1 \ge 3$, so $2^d - 1 > 0$.

Hence, $2^d - 1 = 1$, so d = 1.

But, we have $d \neq 1$ and d = 1, a contradiction.

Therefore, gcd(m, n) = 1, as desired.

Exercise 131. Let $a, b \in \mathbb{Z}$ such that gcd(a, b) = 1. Let $r, s \in \mathbb{Z}$ such that ar + bs = 1. Then gcd(a, s) = gcd(r, b) = gcd(r, s) = 1.

Proof. Let $m = \gcd(a, s)$.

Then $m \in \mathbb{Z}^+$ and m|a and m|s, so m divides any linear combination of a and s.

Since 1 = ar + bs = ra + bs is a linear combination of a and s, then m|1. Since $m \in \mathbb{Z}^+$ and m|1, then m = 1, so gcd(a, s) = 1.

Let
$$x = \gcd(r, b)$$
.

Then $x \in \mathbb{Z}^+$ and x|r and x|b, so x divides any linear combination of r and b.

Since 1 = ar + bs = ar + sb is a linear combination of r and b, then x|1. Since $x \in \mathbb{Z}^+$ and x|1, then x = 1, so gcd(r, b) = 1.

Let $y = \gcd(r, s)$.

Then $y \in \mathbb{Z}^+$ and y|r and y|s, so y divides any linear combination of r and s.

Since 1 = ar + bs is a linear combination of r and s, then y|1. Since $y \in \mathbb{Z}^+$ and y|1, then y = 1, so gcd(r, s) = 1.

Exercise 132. If n has a divisor d with 1 < d < n, then it has a divisor d' with $1 < d' \le \sqrt{n}$.

Let $n \in \mathbb{Z}$. Let $d \in \mathbb{Z}$ such that d|n and 1 < d < n. Then there exists $d' \in \mathbb{Z}$ such that $1 < d' \le \sqrt{n}$.

Proof. Suppose there is an integer d such that d|n and 1 < d < n. Either $d \le \sqrt{n}$ or $d > \sqrt{n}$. We consider these cases separately. **Case 1:** Suppose $d \le \sqrt{n}$. Let d' = d. Then $d' \in \mathbb{Z}$ and $d' \le \sqrt{n}$. Since 1 < d < n, then 1 < d, so 1 < d'. Thus, $1 < d' \le \sqrt{n}$. Therefore, there exists $d' \in \mathbb{Z}$ such that $1 < d' \le \sqrt{n}$. **Case 2:** Suppose $d > \sqrt{n}$. Since 1 < d < n, then 1 < d and d < n and 1 < n. Since d|n, then there exists $d' \in \mathbb{Z}$ such that n = dd', so d'|n. Since d > 1 > 0, then d > 0.

Suppose $d' \leq 1$. Since d > 0, then $n = dd' \leq d \cdot 1 = d$, so $n \leq d$. Thus, we have d < n and $d \geq n$, a contradiction. Hence, d' > 1.

Suppose $d' > \sqrt{n}$. Since n > 1 > 0, then n > 0, so $\sqrt{n} > 0$. Since $\sqrt{n} < d'$ and $\sqrt{n} > 0$, then $\sqrt{n}\sqrt{n} < \sqrt{n} \cdot d'$. Since d' > 1 > 0, then d' > 0. Since $\sqrt{n} < d$ and d' > 0, then $\sqrt{n} \cdot d' < dd'$. Thus, $n = (\sqrt{n})^2 = \sqrt{n}\sqrt{n} < \sqrt{n} \cdot d' < dd' = n$. Hence, $n < \sqrt{n} \cdot d' < n$, so n < n, a contradiction. Therefore, $d' \le \sqrt{n}$.

Since 1 < d' and $d' \leq \sqrt{n}$, then $1 < d' \leq \sqrt{n}$. Therefore, there exists $d' \in \mathbb{Z}$ such that $1 < d' \leq \sqrt{n}$.

Proof. We prove if (a, bc) = 1, then (a, b) = (a, c) = 1. Suppose (a, bc) = 1. Then there are integers m and n such that ma + n(bc) = 1. Since 1 = ma + nbc = ma + ncb = ma + (nc)b and m and nc are integers, then (a, b) = 1. Since 1 = ma + nbc = ma + (nb)c and m and nb are integers, then (a, c) = 1.

Conversely, suppose (a, b) = (a, c) = 1. Then there are integers x, y, u, v such that xa + yb = 1 and ua + vc = 1. Multiplying these equations we obtain $(xa + yb)(ua + vc) = 1 \cdot 1 = 1$. Hence, $xua^2 + xavc + ybua + ybvc = 1$, so (xua + xvc + ybu)a + (yv)(bc) = 1. Since xua + xvc + ybu and yv are integers, then (a, bc) = 1, as desired. \Box

Exercise 134. Let $a, b \in \mathbb{Z}^+$. If gcd(a, b) = 1, then $gcd(a^2, b^2) = 1$.

Proof. Suppose (a, b) = 1.

Lemma 133. Let $a, b, c \in \mathbb{Z}$.

Then (a, bc) = 1 iff (a, b) = (a, c) = 1.

Since (a, bc) = 1 iff (a, b) = (a, c) = 1 for all $a, b, c \in \mathbb{Z}$, then in particular $(a^2, bb) = 1$ iff $(a^2, b) = (a^2, b) = 1$ and $(b, a^2) = 1$ iff (b, a) = (b, a) = 1. Thus, $(a^2, b^2) = 1$ iff $(a^2, b) = 1$ and $(b, a^2) = 1$ iff (b, a) = 1.

Since 1 = (a, b) = (b, a), then (b, a) = 1. Since $(b, a^2) = 1$ iff (b, a) = 1, then we conclude $(b, a^2) = 1$, so $(a^2, b) = 1$. Since $(a^2, b^2) = 1$ iff $(a^2, b) = 1$, then we conclude $(a^2, b^2) = 1$. Lemma 135. Let $a, b \in \mathbb{Z}^+$. If (a,b) = 1, then $(a,b^n) = 1$ for all $n \in \mathbb{Z}^+$. *Proof.* Suppose (a, b) = 1. We prove $(a, b^n) = 1$ for all $n \in \mathbb{Z}^+$ by induction on n. Let $S = \{n \in \mathbb{Z}^+ : (a, b^n) = 1\}.$ **Basis**: Since $1 \in \mathbb{Z}^+$ and $(a, b^1) = (a, b) = 1$, then $1 \in S$. Induction: Suppose $k \in S$. Then $k \in \mathbb{Z}^+$ and $(a, b^k) = 1$. Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. From a previous lemma we know that (a, bc) = 1 iff (a, b) = (a, c) = 1 for all $a, b, c \in \mathbb{Z}$. In particular, $(a, b^k b) = 1$ iff $(a, b^k) = (a, b) = 1$. Since $(a, b^k) = 1$ and (a, b) = 1, then we conclude $(a, b^k b) = 1$. Thus, $(a, b^{k+1}) = 1$. Since $k + 1 \in \mathbb{Z}^+$ and $(a, b^{k+1}) = 1$, then $k + 1 \in S$. Therefore, by PMI, $S = \mathbb{Z}^+$, so $(a, b^n) = 1$ for all $n \in \mathbb{Z}^+$. Lemma 136. Let $a, b \in \mathbb{Z}^+$. If gcd(a,b) = 1, then $gcd(a^n, b^n) = 1$ for all $n \in \mathbb{Z}^+$. *Proof.* Suppose (a, b) = 1. We prove $(a^n, b^n) = 1$ for all $n \in \mathbb{Z}^+$ by induction on n. Let $S = \{n \in \mathbb{Z}^+ : (a^n, b^n) = 1\}.$ Basis: Since $1 \in \mathbb{Z}^+$ and $(a^1, b^1) = (a, b) = 1$, then $1 \in S$. Induction: Suppose $k \in S$. Then $k \in \mathbb{Z}^+$ and $(a^k, b^k) = 1$. Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Since (a, bc) = 1 iff (a, b) = (a, c) = 1 for all $a, b, c \in \mathbb{Z}$, then in particular, $(a^{k+1}, b^k b) = 1$ iff $(a^{k+1}, b^k) = (a^{k+1}, b) = 1$ and $(b, a^k a) = 1$ iff $(b, a^k) = 1$ (b, a) = 1 and $(b^k, a^k a) = 1$ iff $(b^k, a^k) = (b^k, a) = 1$. From a previous lemma we know that if (a, b) = 1, then $(a, b^n) = 1$ for all $n \in \mathbb{Z}^+$. Since (a, b) = 1 and $k \in \mathbb{Z}^+$, then $(a, b^k) = 1$, so $(b^k, a) = 1$. Since $1 = (a^k, b^k) = (b^k, a^k)$, then $(b^k, a^k) = 1$. Since $(b^k, a^k) = 1$ and $(b^k, a) = 1$, and $(b^k, a^k a) = 1$ iff $(b^k, a^k) = (b^k, a) = 1$, then we conclude $(b^k, a^k a) = 1$. Thus, $1 = (b^k, a^{k+1}) = (a^{k+1}, b^k).$

From a previous lemma, we know that if (a, b) = 1, then $(a, b^n) = 1$ for all $n \in \mathbb{Z}^+$.

Hence, if (b, a) = 1, then $(b, a^n) = 1$ for all $n \in \mathbb{Z}^+$.

Since 1 = (a, b) = (b, a) and $k + 1 \in \mathbb{Z}^+$, then we conclude $(b, a^{k+1}) = 1$, so $(a^{k+1}, b) = 1.$ Since $(a^{k+1}, b^k) = 1$ and $(a^{k+1}, b) = 1$, and $(a^{k+1}, b^k b) = 1$ iff $(a^{k+1}, b^k) = 1$ $(a^{k+1}, b) = 1$, then we conclude $(a^{k+1}, b^k b) = 1$. Thus, $(a^{k+1}, b^{k+1}) = 1$. Since $k+1 \in \mathbb{Z}^+$ and $(a^{k+1}, b^{k+1}) = 1$, then $k+1 \in S$. Therefore, by PMI, $S = \mathbb{Z}^+$, so $(a^n, b^n) = 1$ for all $n \in \mathbb{Z}^+$. **Exercise 137.** Let $a, b \in \mathbb{Z}^+$. If $a^n \mid b^n$, then $a \mid b$ for all $n \in \mathbb{Z}^+$. *Proof.* Let $n \in \mathbb{Z}^+$. Suppose $a^n \mid b^n$. Let $d = \gcd(a, b)$. Then $d \in \mathbb{Z}^+$ and $d \mid a$ and $d \mid b$, so a = dr and b = ds for some integers r and s. Thus, $d = \gcd(dr, ds) = d \cdot \gcd(r, s)$. Since d > 0, then we divide to obtain $1 = \gcd(r, s)$. From a previous lemma, we know that if gcd(a, b) = 1, then $gcd(a^n, b^n) = 1$ for all $n \in \mathbb{Z}^+$. Thus, if gcd(r, s) = 1, then $gcd(r^n, s^n) = 1$ for all $n \in \mathbb{Z}^+$. Since gcd(r, s) = 1, then we conclude $gcd(r^n, s^n) = 1$ for all $n \in \mathbb{Z}^+$. In particular, $gcd(r^n, s^n) = 1$. Hence, there exist integers x and y such that $xr^n + ys^n = 1$. Since $a^n \mid b^n$, then $(dr)^n \mid (ds)^n$, so $d^n r^n \mid d^n s^n$. Since $d \neq 0$, then we have $r^n | s^n$, so $s^n = r^n t$ for some integer t. Thus, $1 = xr^n + y(r^n t) = r^n(x + yt)$, so $r^n | 1$. Since d > 0 and a > 0 and a = dr, then r > 0. Since n > 0, then $r^n > 0$. Since $r \in \mathbb{Z}$, then $r^n \in \mathbb{Z}$, so $r^n \in \mathbb{Z}^+$. Since $r^n \in \mathbb{Z}^+$ and $r^n | 1$ and the only positive integer that divides 1 is 1, then $r^n = 1$, so r = 1. Thus, a = dr = d(1) = d. Hence, gcd(a, b) = d = a. Since a|b iff gcd(a, b) = a, then we conclude a|b, as desired.

The Euclidean Algorithm

Exercise 138. Express gcd(12378, 3054) as a linear combination of 12378 and 3054.

Solution. We use the Euclidean algorithm to obtain the equations below.

$$12378 = 3054 * 4 + 162$$

$$3054 = 162 * 18 + 138$$

$$162 = 138 * 1 + 24$$

$$138 = 24 * 5 + 18$$

$$24 = 18 * 1 + 6$$

$$18 = 6 * 3 + 0.$$

Thus, gcd(12378, 3054) = gcd(3054, 162) = gcd(162, 138) = gcd(138, 24) = gcd(24, 18) = gcd(18, 6) = 6.

We backtrack through the equations to find the linear combination.

$$\begin{array}{rcl}
6 &=& 24 - 18 * 1 \\
&=& 24 - (138 - 24 * 5) * 1 \\
&=& 6 * 24 - 138 \\
&=& 6(162 - 138 * 1) - 138 \\
&=& 6 * 162 - 7 * 138 \\
&=& 6 * 162 - 7(3054 - 162 * 18) \\
&=& 132 * 162 - 7(3054) \\
&=& 132(12378 - 3054 * 4) - 7(3054) \\
&=& 132 * 12378 - 535 * 3054.
\end{array}$$

Therefore, gcd(12378, 3054) = 6 = 132(12378) - 535(3054).

Exercise 139. Compute gcd(314, 159) as a linear combination of 314 and 159. **Solution.** We use the Euclidean algorithm to obtain the equations below.

Thus, gcd(314, 159) = gcd(159, 155) = gcd(155, 4) = gcd(4, 3) = gcd(3, 1) = 1.

We backtrack through the equations to find the linear combination.

$$1 = 4 - 3 * 1$$

= 4 - (155 - 4 * 38) * 1
= -155 + 39(4)
= -155 + 39(159 - 155 * 1)
= 39 * 159 - 40(155)
= 39 * 159 - 40(314 - 159 * 1)
= (-40)(314) + 79(159).

Therefore, gcd(314, 159) = 1 = -40(314) + 79(159).

Hence, a solution to the equation 314x + 159y = 1 is x = -40 and y = 79 since 314(-40) + 159(79) = 1.

Exercise 140. Compute gcd(3141, 1592) as a linear combination of 3141 and 1592.

Solution. We use the Euclidean algorithm to obtain the equations below.

Thus, gcd(3141, 1592) = gcd(1592, 1549) = gcd(1549, 43) = gcd(43, 1) = 1. We backtrack through the equations to find the linear combination.

$$\begin{array}{rcl} 1 &=& 1549-43*36 \\ &=& 1549-(1592-1549*1)36 \\ &=& 37*1549-1592*36 \\ &=& 37(3141-1592*1)-1592*36 \\ &=& 37(3141)-73(1592). \end{array}$$

Therefore, gcd(3141, 1592) = 1 = 37(314) - 73(1592).

Hence, a solution to the equation 3141x + 1592y = 1 is x = 37 and y = -73, since 3141(37) + 1592(-73) = 1.

Exercise 141. Compute gcd(4144, 7696) as a linear combination of 4144 and 7696.

Solution. We use the Euclidean algorithm to obtain the equations below.

$$7696 = 4144 * 1 + 3552$$

$$4144 = 3552 * 1 + 592$$

$$3552 = 592 * 6 + 0.$$

Thus, gcd(4144, 7696) = gcd(4144, 3552) = gcd(3552, 592) = 592. We backtrack through the equations to find the linear combination.

$$592 = 4144 - 3552 * 1$$

= 4144 - (7696 - 4144 * 1) * 1
= 2(4144) - 7696.

Therefore, gcd(4144, 7696) = 592 = 2(4144) - 7696.

Hence, a solution to the equation 4144x + 7696y = 592 is x = 2 and y = -1, since 4144(2) + 7696(-1) = 592.

Exercise 142. Compute gcd(10001, 100083) as a linear combination of 10001 and 100083.

Solution. We use the Euclidean algorithm to obtain the equations below.

100083 = 10001 * 10 + 7310001 = 73 * 137 + 0.

Thus, gcd(10001, 100083) = gcd(10001, 73) = 73. We backtrack through the equations to find the linear combination.

$$73 = 100083 - 10001 * 10 = -10(10001) + 100083$$

Therefore, gcd(10001, 100083) = 73 = -10(10001) + 100083.

Hence, a solution to the equation 10001x + 100083y = 73 is x = -10 and y = 1, since 10001(-10) + 100083(1) = 73.

Exercise 143. Find integers x, y such that 299x + 247y = 13.

Solution. Since gcd(299, 247) = 13, then we know there exist integers x and y such that 299x + 247y = 13. Hence, there is at least one solution to the equation 299x + 247y = 13.

We use the Euclidean algorithm to express gcd as a linear combination of integers.

Thus, gcd(299, 247) = gcd(247, 52) = gcd(52, 39) = gcd(39, 13) = 13.

We backtrack through the equations to express gcd as a linear combination.

$$13 = 52 - 39$$

= 52 - (247 - 52 * 4)
= -247 + 5 * 52
= -247 + 5(299 - 247)
= (-6)(247) + 5 * 299.

Therefore, x = 5 and y = -6.

Since 299(5) + 247(-6) = 1495 - 1482 = 13, then x = 5 and y = -6 is one solution to the equation 299x + 247y = 13.

There may be other solutions as well.

Let's find another solution to this equation.

Since gcd(299, 247) = 13, then 13|299 and 13|247, so 299 = 13 * 23 and 247 = 13 * 19.

Thus, 13 = 299x + 247y = (13 * 23)x + (13 * 19)y.

Dividing by 13 we obtain the equation 1 = 23x + 19y.

Since 23 and 19 are relatively prime, then gcd(23, 19) = 1, so there must exist integers x and y such that 23x + 19y = 1, so we know that this equation has at least one solution.

This equation has the same solution as the equation 299x + 247y = 13.

Thus, one solution to the equation 23x + 19y = 1 is x = 5 and y = -6, since 23(5) + 19(-6) = 115 - 114 = 1.

We will write a computer program to find other pair of integers x and y that are solutions to the equation 23x + 19y = 1.

There are many solutions to this equation.

Examples are x = -14 and y = 17 and x = 24 and y = -29.

If x = -14 and y = 17, then 23(-14) + 19(17) = -322 + 323 = 1 and 299(-14) + 247(17) = -4186 + 4199 = 13.

If x = 24 and y = -29, then 23(24) + 19(-29) = 552 - 551 = 1 and 299(24) + 247(-29) = 7176 - 7163 = 13.

The equation 299x + 247y = 52 can be reduced since gcd(299, 247) = 13 by dividing by 13.

Thus, we obtain 23x + 19y = 4. Since gcd(23, 19) = 1, then this equation is saying that 4 is a linear combination of gcd(23, 19). We know that any linear combination of 23 and 19 is a multiple of gcd(23, 19). In this case, 4 is a multiple of 1 since 4 = 4 * 1.

We will write a computer program to find x, y such that 23x + 19y = 4 and the pair (x, y) will also be a solution to the equation 299x + 247y = 52.

Example solutions are: x = 1, y = -1 and x = 20, y = -24 and x = -18, y = 22. There are many more solutions as well.

If x = 1 and y = -1, then 23(1) + 19(-1) = 4 and 299(1) + 247(-1) = 52.

If x = 20 and y = -24, then 23(20) + 19(-24) = 4 and 299(20) + 247(-24) = 52. If x = -18 and y = 22, then 23(-18) + 19(22) = 4 and 299(-18) + 247(22) = 52.

52. \Box

Exercise 144. Which of the integers 0, 1, ..., 10 can be expressed in the form 12m + 20n where m and n are integers?

Solution. Let m and n be arbitrary integers.

Let a = 12m + 20n. Let $S = \{0, 1, 2, ..., 10\}$. The integer a is a linear combination of 12 and 20. We know that every linear combination of 12 and 20 is a multiple of gcd(12, 20). Since gcd(12, 20) = 4, then every linear combination of 12 and 20 must be a multiple of 4. Hence, the only integers in S which satisfy this criteria are 0, 4, 8. Concretely, we can use Euclidean algorithm:

 $\begin{array}{l} 4 = 12(2) + 20(-1). \\ \text{Thus, } 8 = 2 * 4 = 2(12 * 2 - 20) = 12 * 4 - 2 * 20. \\ \text{Also, } 0 = 12 * 0 + 20 * 0. \end{array}$

Exercise 145. For all integers n > 1, $gcd(2n^2 + 4n - 3, 2n^2 + 6n - 4) = 1$.

Proof. Let n be an arbitrary integer such that n > 1. By the Euclidean algorithm, we have

$$2n^{2} + 6n - 4 = (2n^{2} + 4n - 3)(1) + (2n - 1)$$

$$2n^{2} + 4n - 3 = (2n - 1)(n + 2) + (n - 1)$$

$$2n - 1 = (n - 1)(2) + 1$$

$$n - 1 = 1(n - 1) + 0.$$

Therefore, by the Euclidean algorithm, $gcd(2n^2+4n-3, 2n^2+6n-4) = 1$. \Box

Exercise 146. Find integers x, y, z such that gcd(198, 288, 512) = 198x + 288y + 512z.

Solution. Let $d = \gcd(198, 288)$.

To compute gcd(198, 288) we use the Euclidean algorithm. Observe that

$$288 = 198 * 1 + 90$$

$$198 = 90 * 2 + 18$$

$$90 = 18 * 5 + 0.$$

Thus,

$$d = \gcd(198, 288)$$

= 18
= 198 - (90) * 2
= 198 - (288 - 198 * 1) * 2
= 198 - 288 * 2 + 198 * 2
= 198 * 3 + 288(-2).

Since 198x + 288y is a linear combination of 198 and 288, then 198x + 288y is a multiple of gcd(198, 288).

Hence, 198x + 288y = du for some integer u. Observe that

$$gcd(198, 288, 512) = gcd(gcd(198, 288), 512)$$

= $gcd(d, 512)$
= $gcd(18, 512)$.

To compute gcd(18, 512) we use the Euclidean algorithm. Observe that

$$512 = 18 * 28 + 8$$

$$18 = 8 * 2 + 2$$

$$8 = 2 * 4 + 0.$$

Thus,

$$gcd(18, 512) = 2$$

= 18 - (8)2
= 18 - (512 - 18 * 28)2
= 18 - 512 * 2 + 18(28 * 2)
= 18(57) + 512(-2).

Therefore,

$$gcd(198, 288, 512) = 2$$

= $gcd(18, 512)$
= $18(57) + 512(-2)$
= $[198(3) + 288(-2)](57) + 512(-2)$
= $198(3)(57) + 288(-2)(57) + 512(-2)$
= $198(171) + 288(-114) + 512(-2).$

Therefore, x = 171 and y = -114 and z = -2.
Least common multiple

Exercise 147. Compute lcm(143, 227) and lcm(306, 657) and lcm(272, 1479).

Solution. Since gcd(143, 227) = 1, then lcm(143, 227) = 143 * 227 = 32461. Since gcd(306, 657) = 9, then $lcm(306, 657) = \frac{306*657}{9} = 22338$. Since gcd(272, 1479) = 17, then $lcm(272, 1479) = \frac{272*1479}{17} = 23664$.

Exercise 148. If $n \in \mathbb{N}$, then $1 + (-1)^n(2n-1)$ is a multiple of 4.

Proof. Suppose $n \in \mathbb{N}$.

Then n is either even or odd. We consider these two cases separately. **Case 1**. Suppose n is even. Then n = 2k for some $k \in \mathbb{Z}$ and $(-1)^n = 1$. Thus $1 + (-1)^n (2n - 1) = 1 + (1)(2 \cdot 2k - 1) = 1 + 4k - 1 = 4k$ is a multiple of 4. **Case 2**. Suppose n is odd.

Then n = 2k + 1 for some $k \in \mathbb{Z}$ and $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 + (-1)(2(2k + 1) - 1) = 1 - (2(2k + 1) - 1) = 1 - (4k + 2 - 1) = 1 - (4k + 1) = 1 - 4k - 1 = -4k = 4(-k)$ is a multiple of

Exercise 149. Every multiple of 4 has form $1 + (-1)^n (2n-1)$ for some $n \in \mathbb{N}$.

Proof. In conditional form, the proposition is as follows:

If k is a multiple of 4, then there is an $n \in \mathbb{N}$ for which $1 + (-1)^n (2n-1) = k$. What follows is a proof of this conditional statement.

Suppose k is a multiple of 4. Then k = 4a for some integer a.

We must produce an $n \in \mathbb{N}$ for which $1 + (-1)^n (2n - 1) = k$.

We consider three cases, depending on whether a is zero, positive, or negative.

Case 1. Suppose a = 0.

Let n = 1.

Then $1 + (-1)^n (2n - 1) = 1 + (-1)(2 \cdot 1 - 1) = 0 = 4 \cdot 0 = 4a = k$. Case 2. Suppose a > 0.

Let n = 2a, which is an element of \mathbb{N} because a is positive, making n positive. Also n is even, so $(-1)^n = 1$.

Thus $1 + (-1)^n (2n - 1) = 1 + (1)(2 \cdot 2a - 1) = 4a = k$.

Case 3. Suppose a < 0.

Let n = 1 - 2a, which is an element of \mathbb{N} because a is negative, making 1 - 2a positive.

Also n is odd, so $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 + (-1)(2(1 - 2a) - 1) = 1 - (1 - 4a) = 4a = k$.

These three cases show that no matter whether a multiple k = 4a is zero, positive, or negative, it always equals $1 + (-1)^n (2n-1)$ for some natural number n.