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Prime Numbers and Fundamental Theorem of
Arithmetic

Exercise 1. There exists an even prime number.

Proof. Observe that 2 is an even prime number. O
Exercise 2. There is a prime number between 90 and 100.

Proof. Observe that 97 is a prime number. O
Exercise 3. Compute the least common multiple of 3054 and 12378.

Solution. Observe that lem(3054,12378) = (3054)(12378)/ ged(3054,12378) =
3054 % 12378/6 = 6300402. O

Exercise 4. Prove or disprove V(n € N), the integer n? — n + 11 is prime.

Solution. We just use Java to write an algorithm(tiny computer program) to
decide if the formula f(n) = n? — n + 11 really only generates primes. Using
the computer, we find there are several counter examples that demonstrate the
conjecture is false.

For example, when n = 11, then f(11) =121 =11-11.

Another example, when n = 12, then f(12) =143 =11-13

Another example, when n = 15, then f(15) =221 =13 -17.

Another example, when n = 20, then f(20) = 391 = 17 - 23.

We could identify many more examples that demonstrate this conjecture is
false.

But, to disprove the conjecture, it suffices to just show one counterexample.

Thus, we can write up the proof below. O

Proof. The statement is false.
For n = 11, the integer f(11) =121 = 11-11 is not prime. O

Exercise 5. Prove or disprove V(n € N), the integer 2n? — 4n + 31 is prime.



Solution. We just use Java to write an algorithm(tiny computer program) to
decide if the formula f(n) = 2n? — 4n + 31 really only generates primes.

Using the computer, we find there are several counter examples that demon-
strate the conjecture is false.

For example, when n = 30, then f(30) = 1711 =29 - 59.

Another example, when n = 31, then f(31) = 1829 =31-59

Another example, when n = 33, then f(33) = 2077 = 31 - 67.

Another example, when n = 36, then f(36) = 2479 = 37 - 67.

We could identify many more examples that demonstrate this conjecture is
false.

But, to disprove the conjecture, it suffices to just show one counterexample.

Thus, we can write up the proof below. O

Proof. The statement is false.
For n = 30, the integer 2(30)2 —4(30) +31 = 1711 = 29-59 is not prime. [

Exercise 6. Disprove the conjecture: There exist two prime numbers p and ¢
such that p — ¢ = 97.

Proof. Suppose for the sake of contradiction that the conjecture is true.

Let p and g be prime numbers such that p — ¢ = 97.

The difference between two odd integers is even.

Since p — g = 97 is odd, then p and ¢ cannot be both odd.

Hence, at least one of p and ¢ is not odd, so at least one of p and ¢ is even.

Thus, either p is even or ¢ is even.

We consider each case separately.

Case 1: Suppose p is even.

Since p is prime and p is even and the only even prime is 2, then p = 2.

Thus, 97 =2 — ¢, so ¢ = —95.

Since —95 = 5(—19), then ¢ = —95 is not prime.

Case 2: Suppose ¢ is even.

Since ¢ is prime and ¢ is even and the only even prime is 2, then ¢ = 2.

Thus, p —2 =97, so p = 99.

Since 99 = 9 - 11, then p = 99 is not prime.

Both cases show that one of p or ¢ is not prime, so this contradicts the
assumption that both p and ¢ are prime.

Therefore, the conjecture is false. O

Proposition 7. Any prime greater than 2 is odd.
If p is a prime greater than 2, then p is odd.

Proof. Let p > 2 be prime.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p > 2, then p # 2.
Since 2 # 1 and 2 # p, then 2 cannot be a divisor of p, so 2 fp.
Therefore, p is not even, so p must be odd. U



Lemma 8. Sieve of Eratosthenes lemmal
Letn € Z*.
If n is composite, then there exists d € Z* such that dln and 1 < d < /n.

Proof. Suppose n is composite.

Since a composite is composed of smaller positive factors, then there exist
integers a,b with 1 < a <n and 1 < b < n such that n = ab.

Since n = ab, then a|n and b|n.

If both a > y/n and b > \/n, then n = ab > /n-/n = (y/n)?> =n,son > n,
a contradiction.

Thus, either a < v/n or b < y/n, so either 1 <a < /norl<b<n.

Therefore, either 1 < a < +/n and aln, or 1 < b < /n and b|n. O

Lemma 9. Sieve of Eratosthenes lemma?2
LetneZ™.
If n is composite, then n has a prime divisor less than or equal to \/n.

Proof. Suppose n is composite.

Then there exists d € ZT such that d|n and 1 < d < y/n by lemma 8.

Since 1 < d < /n, then 1 < d and d < /n.

Since d > 1, then d has a prime factor p, since every integer greater than
one has a prime factor.

Hence, p|d and 1 < p < d.

Since p|d and d|n, then p|n.

Since p < d and d < \/n, then p < /n.

Therefore, p is prime and p|n and p < /n. O

Exercise 10. Any prime of the form 3n + 1 is also of the form 6m + 1.

Proof. Let p be a prime such that p = 3n + 1 for some n € ZT.
We must prove p = 6m + 1 for some m € Z.
Since p is prime, then p > 2, so either p > 2 or p = 2.
Suppose p = 2.
Then 2 =3n+1, so 3n = 1.
Hence, 3 divides 1, a contradiction.
Thus, p # 2, so p > 2.
Since p is prime and p > 2, then p is odd, so p — 1 = 3n is even.
Since 3n is even, then 2|3n.
Since 2|3n and ged(2,3) = 1, then 2|n, so n = 2m for some integer m.
Hence, p=3n+1=3(2m)+1=6m+ 1.
Therefore, there exists an integer m such that p = 6m + 1. O

Proof. Let p=3n+ 1 be a prime for some n € Z™.
We must prove p = 6m + 1 for some m € Z.
Since p is prime, then p > 2, so either p > 2 or p = 2.
Suppose p = 2.
Then 2=3n+1,s03n=1.
Hence, 3 divides 1, a contradiction.



Thus, p # 2, so p > 2.

Since p is prime and p > 2, then p is odd, so p — 1 is even.

Hence, 3n is even, so 2|3n.

Since 2 is prime and 2|3n, then either 2|3 or 2|n, by Euclid’s lemma.

Since 2 /3, then 2|n, so n = 2m for some integer m.

Thus, p=3n+1=32m)+1=6m+ 1.

Therefore, there exists an integer m such that p = 6m + 1. O

Exercise 11. Every integer of the form 3n 4 2 has a prime factor of this form.

Proof. We prove by contradiction.

Suppose there is a positive integer a = 3n + 2 that has no prime factor
p=3m+ 2.

Since ala and a = 3n + 2, then a cannot be a prime.

Since a € ZT, then a > 1.

If 1 =a=3n+2, then 3n = —1, so 3|(—1), a contradiction.

Hence, a #1,s0a > 1.

Thus, by FTA, a = p{'ps®...p;" for primes pi, po, ..., pi and positive integers
€1,€2,...,€EL.

Let p be an arbitrary prime factor of a.
Since a = 3n + 2, then 3 fa, so p # 3.
By the division algorithm, either p =3bor p=3b+ 1 or p = 3b+ 2.
Since a has no prime factors of the form 3b + 2, then p # 3b + 2.

Suppose p = 3b.
Then 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Thus, p must be 3, so p = 3.
But, this contradicts p # 3.
Therefore, p # 3b.

Hence, p = 3b + 1, so every prime factor p of a must be of the form 3b + 1.
Thus, p;1 =3by + 1 and ps = 3by + 1 and ... pp = 3bx + 1.

If p=3b+1and ¢ = 3¢+ 1, then the product is pg = (3b + 1)(3c + 1) =

9bc +3b+3c+1=338bc+b+c)+1=3m+1 for some integer m.

Hence, the product of any two integers of the form 3b + 1 is always of the
same form.

This applies to a finite number of integers of this form. We should prove
this by induction.

Therefore, the product of all of these prime factors of a will be an integer of
the form 3b+ 1, so p{* - p5?...pF =3b+1=a=3n+2.

Thus, 3b+1=3n+2,503b—3n=1=3(b—n).

Hence, 3|1, a contradiction.



Consequently, there is no positive integer a = 3n+2 that has no prime factor
p=3m+ 2.

Therefore, every positive integer a = 3n + 2 has at least one prime factor
p=3m+ 2. O

Exercise 12. 7 is the only prime of the form n3 — 1.
Let n € Z™.
Then n> — 1 is prime iff n = 2.

Proof. We prove if n = 2, then n® — 1 is prime.
Suppose n = 2.
Then n? — 1 =23 — 1 = 7 is prime. O

Proof. Conversely, suppose p = n3 — 1 is prime.
‘We must prove n = 2.
Observe that p=n% —1 = (n —1)(n?> + n+ 1).
Since n € Z™*, then n > 1.
Ifn=1,then p=13—1=0, so 0 is a prime, a contradiction.
Hence, n # 1, son > 1.
Thus, n — 1> 0.
Since p is prime, then p > 1 > 0.
Sincen—1>0andp>0and p=(n—1)(n?+n+1), thenn? +n+1>0.
Since p is prime, then the only positive divisors of p are 1 and p.
Thus, either 1 =n—1or 1 =n?4+n+ 1.
If 1 =n?+n+1,then 0 =n?+n=n(n+1), soeithern=0o0rn+1=0.

Hence, either n =0 or n = —1.
But, n > 1, so n cannot be either 0 or —1.
Therefore, 1 =n — 1, so n = 2, as desired. O

Exercise 13. Let p€ Z™.
The only prime p such that 3p + 1 is a perfect square is p = 5.

Solution. We must prove
1. If p =15, then 3p + 1 is a perfect square.
2. If p is prime and 3p + 1 is a perfect square, then p = 5. O

Proof. Suppose p = 5.
Then 3p+1=3-5+1=16 = 42 is a perfect square. O

Proof. Conversely, suppose p is prime and 3p + 1 is a perfect square.
We must prove p = 5.

Since 3p + 1 is a perfect square, then 3p + 1 = m? for some integer m.
Thus, 3p=m? — 1= (m —1)(m+1).
Since p is prime, then p > 1, so 3p > 3 > 1.
Hence, (m — 1)(m 4+ 1) = 3p > 1, so (m — 1)(m + 1) has a unique prime
factorization, by FTA.
Therefore, either 3=m —1or 3=m + 1.



Suppose 3 =m + 1.
Then m =2,s04=22=3p+1.
Thus, 3 = 3p, so p = 1.
But, p is prime, so p > 1.
Hence, p # 1.
Therefore, 3 # m + 1.
Thus, we must conclude 3 =m — 1.
Hence, m =4, so 16 =42 = 3p + 1,
Therefore, 15 = 3p, so p = 5. U

Lemma 14. Letp € Z+.
If p is prime and p > 5, then either p = 6k + 1 or p = 6k + 5 for some
integer k.

Proof. Suppose p is prime and p > 5.

Since p > 5 > 2, then p > 2.

Since p is prime and p > 2, then p must be odd, so 2 fp.

Since p > 5 > 3, then p > 3.

We must prove there exists an integer k£ such that p = 6k + 1 or p = 6k + 5.

By the division algorithm, there is a unique integer k such that either p = 6k
orp=6k+1lorp=6k+2o0orp=6k+3orp=6k+4orp=6k+5.

We consider each case separately.

Case 1: Suppose p = 6k.

Then p = 6k = 2 - 3k, so 2|p.

Thus, we have 2|p and 2 fp, a contradiction.

Therefore, p # 6k.

Case 2: Suppose p = 6k + 2.

Then p = 2(3k + 1), so 2|p.

Thus, we have 2|p and 2 Jp, a contradiction.

Therefore, p # 6k + 2.

Case 3: Suppose p = 6k + 3.

Then p = 3(2k + 1), so 3|p.

Since p is prime, then the only positive divisors of p are 1 and p.

Since 3|p, then this implies either 3 =1 or 3 = p.

Since 3 # 1, then this implies 3 = p.

But, p > 3, so p # 3.

Therefore, we must conclude p # 6k + 3.

Case 4: Suppose p = 6k + 4.

Then p = 2(3k + 2), so 2|p.

Thus, we have 2|p and 2 Jp, a contradiction

Therefore, p # 6k + 4.

Since p # 6k and p # 6k + 2 and p # 6k + 3 and p # 6k +4 and either p = 6k
orp=6k+1lorp=6k+2orp==6k+3orp=6k+4orp=06k+ 5, then we
must conclude either p = 6k + 1 or p = 6k + 5, as desired. O



Exercise 15. Let p€ Z™.
If p is prime and p > 3, then p? + 2 is composite.

Proof. Suppose p is prime and p > 3.

By the division algorithm, p = 3¢ + r for some unique integers ¢ and r with
0<r<3,soeitherp=3gorp=3¢+1orp=3qg+2.

Suppose p = 3q.

Then 3|p.

Since p is prime, then the only positive divisors of p are 1 and p.

Since p > 3, then p # 3.

Thus, 3 fp.

But, this contradicts 3|p.

Therefore, we conclude p # 3q.

Hence, either p =3¢+ 1 or p = 3¢ + 2.

We consider each case separately.

Case 1: Suppose p = 3q + 1.

Observe that

PP+2 = (Bg+1)°+2
= 9¢> +6q+1+2
= 9¢°+6¢+3

3(3¢% +2q + 1).

Therefore, 3|(p? + 2).
Case 2: Suppose p = 3¢ + 2.
Observe that

P+2 = (3¢+2)%+2
9¢> +12¢ + 4+ 2
9¢% +12¢ + 6
= 3(3¢° +4q+2).

Therefore, 3|(p? + 2).

Hence, in all cases, 3|(p? + 2).

Since p > 3, then p? > 9, so p? +2 > 11 > 0.

Thus, p? +2 > 0, so p? + 2 is a positive integer.

Since 1 <3 < 11 <p?+2, then 1 <3 < p? +2.

Since p? + 2 is a positive integer and 1 < 3 < p? + 2 and 3|(p? + 2), then
p? + 2 is composite, since a composite number has a positive divisor other than
1 or itself. U

Lemma 16. Let a,b € 7Z.
If a|b, then a™|b™ for alln € ZT.

Proof. We prove by induction on n.
Let S ={n € Z" :if a|b, then a™|b"}.



Basis:

Suppose alb.

Then a'|b!, so 1 € S.

Induction:

Suppose k € S.

Then k € Z* and if ab, then a*|b*.
Since k € Zt, then k+1 € Z™.
Suppose alb.

Then, by the induction hypothesis, a
Since alb and a®|b¥, then aa®|bb*, so a*+1|pF+1,

Since k + 1 € ZT and a|b implies a**1|b**1 then k +1 € S.

Therefore, by PMI, if a|b, then a™[b™ for all n € Z*. O

kbt

Exercise 17. Let a,n,p € Z™.
If p is prime and p|a™, then p™|a™.

Proof. Let r(n) be the predicate : if p is prime and p|a™, then p™|a™ defined
over Z7T.

We prove r(n) is true for all n € Z* by induction on n.

Basis:

Let n = 1.

If p is prime and p|a’, then p|a, so pt|al.

Therefore, (1) is true.

Induction:

Suppose r(k) is true for any positive integer k.

Then if p is prime and p|a*, then p*|a”.

Suppose p is prime and p|ak+1.

Since a € Z*, then @ > 1, so either a > 1 or a = 1.

If @ = 1, then p|(1)¥*1, so p|1.

Since the only positive divisor of 1 is 1, then p = 1.

But, p is prime, so p > 1.

Therefore, a # 1, so a > 1.

Thus, by the Fundamental Theorem of Arithmetic, a has a unique canonical
prime factorization.

Hence, there exist primes p; and positive integers e; such that a = p{* -
ps? ... pitand p1 <p2 <...psand 1 <i<t.

Consequently, a*+1 = (p{* - p§?...pyt)F+l = porhtD) -p?(kﬂ) .. .pf‘(kﬂ).
e1(k+1) . peg(k-{-l) pet(k-ﬁ-l)
5 .. .

Since p|a**!, then this implies p divides p]

Since p is prime, then p divides p,, for some integer m with 1 < m < ¢, by
corollary to Euclid’s lemma.

Since p|p,, and p,,|a, then pla.

Hence, p divides any multiple of a, so p|(a*~1)a.

Therefore, p|a”.

Since p is prime and p|a®, then p¥|a”*, by the induction hypothesis.



Since pla and p¥|a*, then the product pp* divides the product aa®, so
aniPLesy

Therefore, if p is prime and p|a**!, then p*+1|a**1, so r(k + 1) is true.

Thus, r(k) implies r(k + 1) for all k € ZT.

By induction, we conclude r(n) is true for all n € Z*.

Therefore, if p is prime and pla™, then p"|a™ for all n € Z*. O

Exercise 18. Let a,b,p € Z™.
If p is prime and ged(a, b) = p, what are the possible values of ged(a?, b?)?

Solution. Based on some computations run in SageMath, we conjecture that
ged(a?, %) = p*.
So, let’s prove the statement: If p is prime and ged(a, b) = p, then ged(a?, b?) =
2
p-. O

Proof. Suppose p is prime and ged(a, b) = p.

Since p is prime, then p > 1.

Since ged(a,b) = p, then pla and p|b.

Since pla, then p < a, soa>p > 1.

Hence, a > 1.

Since plb, then p < b, so b >p > 1.

Hence, b > 1.

Since a > 1, then a has a unique canonical prime factorization, by FTA.

Thus, a = p{'ps?...p¢ for primes p; and e; € ZT and p; < p2 < ... < p,
and 1 <7 <r.

Since b > 1, then b has a unique canonical prime factorization, by FTA.

Thus, b = q{lqu...qfs for primes ¢; and f; € Z% and ¢1 < g2 < ... < g5
and 1 <j <s.

Since p is prime and p|a and p|b, then p is a common prime factor of both a
and b, so p must be one of the primes in the prime factorization of both a and
b.

Thus, p = pr, = ¢, for some integers k and m with 1 <k <rand1<m<s
and a = p{'ps?...pe* ... .p¢r and b= q{1q£2 N A O

Hence, a = p{'p5?...p% ...ptr and b = q{lqu coopfm gl
If we square a, then a® = (p{'pS? ... p° ... p<r)2 = P2 pa ... p2ek ... p2er.
If we square b, then b? = (q{qu copfm ) = qff1q§f2 CpPTm g3

Since ged(a,b) = p = p', then either e =1 or f,, = 1.

We consider these cases separately.

Case 1: Suppose ¢, = 1.

Since f,,, € ZT, then f,, > 1, so 2f,, > 2.

Thus, min(2eg, 2f,,) = min(2 - 1,2f,,) = min(2,2f,,) = 2.

Case 2: Suppose f,, = 1.

Since e, € ZT1, then e > 1, so 2¢;, > 2.

Thus, min(2e, 2f,,) = min(2eg, 2 - 1) = min(2eg, 2) = 2.

Hence, in all cases, min(2ex, 2f,,) = 2.

Therefore, the highest power of p that is common to both a? and b2 is p?.



Suppose p is not the only common prime factor of both a? and b2.

Then there exists another prime factor ¢ of both a? and b2.

Since p and ¢ are distinct primes, then g # p.

Since q is a factor of both a? and b?, then gla? and q|b?.

Since ¢ is prime and g|a?, then g|a, by Euclid’s lemma.

Since ¢ is prime and ¢|b?, then ¢|b, by Euclid’s lemma.

Since ¢la and ¢|b, then ¢ is a common divisor of both a and b, so ¢ must
divide ged(a,b) = p.

Hence, q|p.

Since p is prime, then the only positive divisors of p are 1 and p, so either
q=1orqg=np.

Since ¢ is prime, then ¢ > 1, so ¢ # 1.

Hence, ¢ = p.

But, this contradicts q # p.

Therefore, there is no other prime factor g of both a? and b2, so p is the only
common prime factor of both a? and b2.

Thus, the greatest common factor of both a? and b? must be p?.
Therefore, ged(a?,b?) = p?. O

Exercise 19. Let a,b,p € Z™.
If p is prime and ged(a, b) = p, what are the possible values of ged(a?,b)?

Solution. Based on some computations run in SageMath, we conjecture that
ged(a?,b) is either p or p2.

So, let’s prove the statement: If p is prime and ged(a,b) = p, then either
ged(a?,b) = p or ged(a?,b) = p. O

Proof. Suppose p is prime and ged(a, b) = p.

Since p is prime, then p > 1.

Since ged(a,b) = p, then pla and p|b.

Since pla, then p < a, soa>p > 1.

Hence, a > 1.

Since plb, then p < b, s0 b >p > 1.

Hence, b > 1.

Since a > 1, then a has a unique canonical prime factorization, by FTA.

Thus, a = p{'ps?...pe for primes p; and e¢; € ZT and p; < p2 < ... < p,
and 1 <7 <r.

Since b > 1, then b has a unique canonical prime factorization, by FTA.

Thus, b = qlfqu... fs for primes gjand f; € ZT and ¢1 < g2 < ... < g5
and 1 <j <s.

Since p is prime and p|a and p|b, then p is a common prime factor of both a
and b, so p must be one of the primes in the prime factorization of both a and
b.

Thus, p = pr = ¢, for some integers k and m with 1 <k <rand1<m<s

€1, €2 f2

and a = p{'ps? ... pgF ... plr andb:q{1q2 cogqim gl

10



Hence, a = p{'ps?...p% ...ptr and b = q{lqu coopfm gl

If we square a, then a® = (p{'pS> ... p% ... pSr)% = p®p3e ... p2er
Since ged(a,b) = p = p', then either e =1 or f,,, = 1.

We consider these cases separately.

Case 1: Suppose e = 1.

Since f,,, € ZT, then f,, > 1, so either f,, > 1or f,, = 1.

If f,, =1, then min(2e, f,,,) = min(2-1,1) = min(2,1) = 1.

If fr, > 1, then f,, > 2.

Thus, min(2eg, fr,) = min(2 - 1, f,) = min(2, f,) = 2.

Therefore, min(2ey, f,,) is either 1 or 2.

Case 2: Suppose f,, = 1.

Since e, € ZT1, then e, > 1, so 2¢;, > 2.

Thus, min(2eg, f,) = min(2ex, 1) = 1.

Hence, in all cases, either min(2eg, f,,) = 1 or min(2ey, fr,) = 2.
Therefore, the highest power of p that is common to both a? and b is either

pt =porp*

2e,

Pz

Suppose p is not the only common prime factor of both a? and b.

Then there exists another prime factor g of both a? and b.

Since p and ¢ are distinct primes, then g # p.

Since q is a factor of both a? and b, then g|a? and g|b.

Since ¢ is prime and ¢g|a?, then g|a, by Euclid’s lemma.

Since g|a and g¢|b, then ¢ is a common divisor of both a and b, so ¢ must
divide ged(a,b) = p.

Hence, g|p.

Since p is prime, then the only positive divisors of p are 1 and p, so either
qgq=1orqg=p.

Since q is prime, then ¢ > 1, so ¢ # 1.

Hence, ¢ = p.

But, this contradicts g # p.

Therefore, there is no other prime factor ¢ of both a? and b, so p is the only
common prime factor of both a? and b.

Thus, the greatest common factor of both a? and b must be either p or p?.
Therefore, ged(a?,b) = p or ged(a?,b) = p. O

Exercise 20. Let a,b,p € Z™".
If p is prime and ged(a, b) = p, what are the possible values of ged(a?, b?)?

Solution. Based on some computations run in SageMath, we conjecture that
ged(a®,b?) is either p? or p?.

So, let’s prove the statement: If p is prime and ged(a,b) = p, then either
ged(a3,b?) = p? or ged(a®,b?) = p3. O

Proof. Suppose p is prime and ged(a, b) = p.
Since p is prime, then p > 1.

11



Since ged(a,b) = p, then pla and p|b.

Since pla, then p < a, soa>p > 1.

Hence, a > 1.

Since plb, then p < b, s0 b >p > 1.

Hence, b > 1.

Since a > 1, then a has a unique canonical prime factorization, by FTA.

Thus, a = p{*ps?...p¢ for primes p; and e; € ZT and p; < p2 < ... < p,
and 1 <7 <r.

Since b > 1, then b has a unique canonical prime factorization, by FTA.

Thus, b = q{lqu...qfs for primes ¢; and f; € Z% and ¢1 < g2 < ... < gs
and 1 <j <s.

Since p is prime and p|a and p|b, then p is a common prime factor of both a
and b, so p must be one of the primes in the prime factorization of both a and
b.

Thus, p = pr, = ¢, for some integers k and m with 1 <k <rand1<m<s

and a = p{'ps?...pe* ... .pfr and b= q{1q£2 cogqlm g
Hence, a = p{'ps?...p% ...ptr and b = q{lqu ...p;m ng:
If we cube a, then a® = (p{'p5> ... p% ...pcr)3 = PPy ... p3er ... pler.

If we square b, then b? = (q{qu copfm ) = qff1q§f2 CpPTm g3

Since ged(a,b) = p = p', then either e =1 or f,, = 1.

We consider these cases separately.

Case 1: Suppose ¢, = 1.

Since f,, € Z*, then f,, > 1, so either f,, > 1or f, = 1.

If f, = 1, then min(3eg,2f,,) = min(3-1,2-1) = min(3,2) = 2.

If f, > 1, then 2f,,, > 2, so 2f,, > 3.

Thus, min(3e, 2f,,) = min(3 - 1,2f,,) = min(3,2f,,) = 3.

Therefore, min(3eg, 2f,,) is either 2 or 3.

Case 2: Suppose f,, = 1.

Since e;, € Z1, then e > 1, so 3e, > 3.

Thus, min(3eg, 2fy,) = min(3ex, 2 - 1) = min(3eg, 2) = 2.

Hence, in all cases, either min(3eg, 2f,,) = 2 or min(3eg, 2f,,) = 3.

Therefore, the highest power of p that is common to both a® and b? is either
p? or p3.

Suppose p is not the only common prime factor of both a® and b2.

Then there exists another prime factor g of both a® and b°.

Since p and ¢ are distinct primes, then g # p.

Since ¢ is a factor of both a® and b%, then g|a® and ¢|b?.

Since ¢ is prime and g|a®, then g|a, by Euclid’s lemma.

Since ¢ is prime and ¢|b?, then ¢|b, by Euclid’s lemma.

Thus, ¢ is a common divisor of both a and b, so ¢ must divide ged(a, b) = p.

Hence, q|p.

Since p is prime, then the only positive divisors of p are 1 and p, so either
qg=1orqg=p.

Since ¢ is prime, then ¢ > 1, so ¢ # 1.

12



Hence, ¢ = p.

But, this contradicts g # p.

Therefore, there is no other prime factor ¢ of both a® and b2, so p is the only
common prime factor of both a® and b2.

Thus, the greatest common factor of both a® and b? must be either p? or p3.

Therefore, ged(a®,b?) = p? or ged(a?,b?) = p?. O

Exercise 21. Let n € ZT.
If n > 1, then every integer of the form n* + 4 is composite.

Solution. The statement to prove is: (Vn € Z*,n > 2)(n* + 4 is composite).
We observe that 4 is a factor of n* + 4 if n is even.
If n is odd, we conjecture that n* + 4 has a least prime factor p such that
p = 4k + 1 for some integer k. O

Proof. Suppose n > 1.
Since n € Z, then n* +4 € Z.
Observe that n* +4 = (n? 4+ 2n + 2)(n? — 2n + 2).

Since n > 1, then n? > 1 and n +1 > 2, so n?(n+ 1) > 2.

Thus, n?(n+1) —2 > 0.

Since n > 1, thenn — 1 > 0.

Since n —1 > 0 and n?(n +1) —2 > 0, then (n — 1)[n?(n + 1) — 2] > 0.
Thus, (n—1)(n3+n%?—2) > 0,s0n* —n?—2n+2> 0, so n* > n?+2n—2.
Therefore, n* +4 > n? + 2n + 2.

Sincen > 1,thenn+1>2,son+1>0.
Hence, (n+1)2 > 0,s0 n?> +2n+1 > 0.
Therefore, n? + 2n + 2 > 1.
Since n*+4 > n?4+2n+2and n? +2n+2 > 1, then n*+4 > n?4+2n+2 > 1,
sol<n?4+2n+2<n*+4.

Since n? > 1, then n? > 0.

Since n — 1 > 0 and n? > 0, then n?(n — 1) >0 > -2, s0 n?(n — 1) > —2.

Thus, n?(n —1) +2 > 0.

Sincen > 1,thenn+1>2>0,son+1>0.

Since n+1 > 0 and n?(n — 1) +2 > 0, then (n + 1)[n?(n — 1) + 2] > 0, so
(n+1)(n3 —n?+2) > 0.

Thus, n* —n?+2n+2>0,s0 n* > n? —2n — 2.

Therefore, n* +4 > n? — 2n + 2.

Since n > 1, then n — 1 > 0, so (n — 1) > 0.
Therefore, n? —2n +1 >0, so n? —2n +2 > 1.
Since n*+4 > n?—2n+2and n? —2n+2 > 1, then n*+4 > n? —2n+2 > 1,
sol<n?—2n+2<n*+4.

13



Since n* +4 = (n?+2n+2)(n> —2n+2) and 1 < n?> +2n+2 < n* +4
and 1 < n? —2n+ 2 < n* +4 and a composite number is composed of smaller
positive factors, then the integer n* + 4 is composite. O

Exercise 22. Let n € ZT.
If n > 4 and n is composite, then n divides (n — 1)

Proof. Suppose n > 4 and n is composite.
Then
TODO: FINISH THIS PROOF. O

Exercise 23. Let n € Z™.
Every integer of the form 8™ + 1 is composite.

Proof. Since n € Z*, then 8" +1€ Z and n > 1.
Observe that 8" +1 = (22" — 2" 4 1)(2" +1).

Since n > 1, then n > 0.
Therefore, 2™ > 0, so 2™ +1 > 1.

Since 3 > 1 and n > 0, then 3n > n, so 25" > 27,

Since 8" = 23", then 8" > 2", 50 8" + 1 > 2" + 1.

Since 8" +1 > 2"+ 1 and 2"+ 1 > 1, then 8 4+1 > 2"+ 1 > 1, so
1<2"4+1<8"+1.

Since n > 0, then 4™ > 2™, so 4™ — 2™ > 0.
Since 4™ — 2™ > 0 > —1, then 4™ — 2" > —1, s0 4™ > 2" — 1.
Since 2" > 0, then 27(4™) > 27(2" — 1), so 8" > 22" — 2",
Therefore, 8" + 1 > 22" — 27 4 1.

Since n > 0, then 2n > n, so 22" > 27,
Therefore, 22" — 2" > 0, so 22" — 2" + 1 > 1.
Since 8" +1 > 22" —27 41 and 22" —2"+1 > 1, then 8" +1 > 22" —27 41 > 1,
s01 <2 2"+ 1 <8 +1.
Since 8" +1 is an integer and 1 < 2" +1 < 8" +1and 1 < 22" —2"+1 < 8" +1
and 8" + 1 = (22" — 2" + 1)(2" + 1) and a composite number is composed of
smaller positive factors, then we conclude 8™ + 1 is composite. O

Exercise 24. Every integer n > 11 can be written as the sum of two composite
numbers.

Solution. We observe that each even composite ¢ = 2k for k > 3 can be added
so that 2c = 2k + 2k = 4k.

Since k > 3, then 2k > 6, so 4k > 12 > 11.

Thus, one case occurs when 2k is added to itself and the sum is greater than
11 and 2k is even, so 2k is composite.

Let U = {n € Z" :n > 12} = {12,13,14,15,16,17, 18,19, 20,21, 22,23, ...}.

14



Let A= {4k : k >3} C 4Z = {12,16,20,24,28,32,36,40,44, ...}.

Let B = {4+b: b > 8 and b is composite} = {12, 13,14, 16, 18,19, 20, 22, 24, 25, 26, 28, 29, 30, 31, 32, 34, 36, 3

Let C =U — A— B = {15,17,21,23,27, 33,35,41,45, ...}.

Then U = AUBUC.

How can we characterize set C'?

Maybe C' = {22 + 3y : © > 3,y > 3}, so C is perhaps a set of linear
combinations of 2 and 37

We know ged(2,3) = 1, so any linear combination of 2 and 3 is a multiple of
1 and 2z and 3y are both composite numbers.

Since x > 3, then 2x > 6.

Since y > 3, then 3y > 15.

Hence, 22+ 3y > 649 = 15, so 15 would be possibly the least element of C.

Each element of C' is odd or prime.

We see that 15 =6+9,17 =8+9,21 =6+15,23 = 9+ 14,27 = 12+ 15, etc.

Can we prove U = AUBUC?

We know each of A, B,C are subsets of U, so their union is also a subset of

Hence, AUBUC C U.
But,isU Cc AuUBUC?

Let n e U.

Then n > 12.

Can we consider n divided by 4 and use the division algorithm? O
Proof. TODO FINISH PROOF. O

Exercise 25. Compute all prime numbers that divide 50!.

Solution. The prime factorization is 50! = 247.322.512.78.114.13%.172.192.
232.29-31-37-41-43-47.
Therefore, the set of primes that divide 50! is {2, 3,5,7,11,13,17, 19, 23,29, 31, 37,41, 43,47}.
O

Lemma 26. Any prime other than 3 is of the form 3k +1 or 3k + 2
LetpeZ7T.
If p is prime and p # 3, then either p = 3k + 1 or p = 3k + 2 for some
integer k.

Proof. Suppose p is prime and p # 3.

By the division algorithm, there exist unique integers ¢ and r such that
p=3q+r with 0 <r < 3.

Hence, either p=3q or p=3g+ 1 or p=3q+ 2.

Suppose p = 3q.
Then 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p # 3, then 3 cannot be a divisor of p, so 3 /p.
But, this contradicts 3|p.
Therefore, p # 3q.
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Hence, either p =3¢+ 1 or p = 3¢ + 2.
Therefore, there exists an integer ¢ such that either p = 3¢+ 1 or p =
3q + 2. O

Lemma 27. Any prime other than 2 is of the form 8k+1 or 8k+3 or
8k +5 or 8k +7

LetpeZ™.

If p is prime and p # 2, then eitherp =8k +1 orp=8k+3 orp=8k+5
or p =8k + T for some integer k.

Proof. Suppose p is prime and p # 2.

By the division algorithm, there exist unique integers ¢ and r such that
p=8q—+r with0<r<8.

Hence, either p =8qorp=8¢+1lorp=8g+2o0orp=8g+3orp=8q+4
orp=83+borp=8g+6o0orp=8qg+17.

Suppose p = 8q.
Then 8|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p is prime, then p # 8, so 8 cannot be a divisor of p.
Hence, 8 fp.
But, this contradicts 8|p.
Therefore, p = 8¢.

Suppose p = 8q + 2.
Then p =8¢+ 2 = 2(4¢g + 1), so 2|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p # 2, then 2 cannot be a divisor of p, so 2 /p.
But, this contradicts 2|p.
Therefore, p # 8q + 2.

Suppose p = 8q + 4.
Then p =8¢+ 4 =4(2¢ + 1), so 4|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p is prime, then p # 4, so 4 cannot be a divisor of p.
Hence, 4 fp.
But, this contradicts 4|p.
Therefore, p # 8q + 4.

Suppose p = 8q + 6.
Then p =8¢ + 6 = 2(4¢g + 3), so 2|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p # 2, then 2 cannot be a divisor of p.
Hence, 2 Jp.
But, this contradicts 2|p.
Therefore, p # 8q + 6.

16



Hence, either p=8¢+1orp=8¢+3orp=8g+5borp=8qg+7.
Therefore, there exists an integer ¢ such that either p =8+ 1 or p =8¢+ 3
orp=8g+5orp=28q+17. ]

Exercise 28. Let p,q € Z™.
If p> ¢ > 5 and p and q are both primes, then 24|(p? — ¢?).

Solution. By a previous lemma, we know that any prime p # 3 is of the form
3k + 1 or 3k + 2 for some integer k.

Also, by a previous lemma, we know that any prime p # 2 is of the form
8m 41 or 8m + 3 or 8m + 5 or 8m + 7 for some integer m.

We shall prove 3|(p? — ¢?) and 8|(p® — ¢?).

Then, this means p? — ¢? is a common multiple of 3 and 8.

Since p? —¢? is a common multiple of 3 and 8 and ged(3,8) = 1, then another
proposition guarantees that p? — ¢2 is a multiple of the product 3 - 8 = 24.

Therefore, this implies 24|(p? — ¢?). O

Proof. Suppose p > q > 5 and p is prime and ¢ is prime.

Since p > ¢ > 5, then p > 5, so p # 3.

Since p is prime and p # 3, then either p = 3k + 1 or p = 3k + 2 for some
integer k, by a previous lemma.

Since p > ¢ > 5, then ¢ > 5, so q # 3.

Since ¢ is prime and ¢ # 3, then either ¢ = 3m + 1 or ¢ = 3m + 2 for some
integer m, by a previous lemma.

Thus,

either p=3k+1and g=3m+1 or

either p=3k+1and ¢g=3m+ 2 or

either p=3k+2and ¢g=3m+1or

either p = 3k + 2 and ¢ = 3m + 2.

Without loss of generality, we consider only

either p=3k+1and g=3m+1 or

either p=3k+1and ¢g=3m+2 or

either p = 3k + 2 and ¢ = 3m + 2, since p? — ¢®> = —(¢* — p?).

We consider these cases separately.

Case 1: Suppose p =3k + 1 and ¢ = 3m + 1.

Observe that

PP-¢ = Bk+1)?-@Bm+1)?
= 3(3k +3m +2)(k —m).

Therefore, 3|(p? — ¢?).
Case 2: Suppose p =3k + 1 and ¢ = 3m + 2.
Observe that

pPP—q¢* = (Bk+1)*—(Bm+2)?
3(3k — 3m — 1)(k +m + 1).

17



Therefore, 3|(p? — ¢?).
Case 3: Suppose p =3k + 2 and ¢ = 3m + 2.
Observe that

- = (Bk+2)?-(3m+2)?
= 3(3k + 3m +4)(k — m).

Therefore, 3|(p* — ¢?).

In all cases, we conclude 3|(p? — ¢?). O

Proof. Suppose p > ¢ > 5 and p is prime and q is prime.

Since p > ¢ > 5, then p > 5, so p # 2.

Since p is prime and p # 2, then either p = 8k+1orp =8k+3 or p =8k+5
or p = 8k + 7 for some integer k, by a previous lemma.

Since p > ¢ > 5, then ¢ > 5, so q # 2.

Since ¢ is prime and ¢ # 2, then either ¢ = 8n + 1 or ¢ = 8m + 3 or
q=8m+ 5 or ¢ = 8m + 7 for some integer m, by a previous lemma.

Thus,

either p=8k+ 1 and g =8m + 1 or

either p =8k + 1 and ¢ = 8m + 3 or

either p =8k + 1 and g =3m + 5 or

either p=8k+1and ¢g=3m+ 7 or

either p=8k+3 and ¢g=8m+ 1 or

either p =8k +3 and ¢ =8m + 3 or

either p =8k +3 and ¢ =3m + 5 or

either p =8k +3 and g =3m + 7 or

either p=8k+5and ¢g=8m+ 1 or

either p =8k +5 and ¢ =8m + 3 or

either p=8k+5and ¢g=3m+5 or

either p =8k +5 and g =3m + 7 or

either p =8k + 7 and g =8m + 1 or

either p =8k + 7 and ¢ =8m + 3 or

either p=8k +7and ¢ =3m+5 or

either p=8k+T7and ¢g=3m+7.

Without loss of generality, we consider only
either p=8k+ 1 and g =8m + 1 or
either p =8k + 1 and ¢ = 8m + 3 or
either p =8k + 1 and g =8m + 5 or
either p=8k+1and ¢g=8m+ 7 or
either p =8k +3 and ¢ =8m + 3 or
either p =8k + 3 and ¢ =8m + 5 or
either p =8k +3 and ¢ =8m + 7 or
either p =8k + 5 and g = 8m + 5 or
either p=8k+5and ¢g=8m + 7 or

18



either p =8k +7and g =8m + 7,

since p? — ¢% = —(¢® — p?).

We consider these cases separately.

Case 1: Suppose p =8k + 1 and ¢ =8m + 1.
Observe that

PP-¢ = (Bk+1)?—(8m+1)?
= 16(4k +4m + 1)(k — m)
= 8x2(4k+4m+ 1)(k —m).
Therefore, 8|(p? — ¢?).

Case 2: Suppose p =8k + 1 and g = 8m + 3.
Observe that

pPP—q¢ = (8k+1)>—(8m+3)°
8(8k + 1)(8m + 3).

Therefore, 8|(p* — ¢?).
Case 3: Suppose p =8k + 1 and ¢ = 8m + 5.
Observe that

P-q (8k +1)* — (8m + 5)*
= 8(4k+4m+3)(2k —2m —1).
Therefore, 8|(p? — ¢?).

Case 4: Suppose p =8k +1 and ¢ =8m + 7.
Observe that

PP—q¢ = (Bk+1)*—(8m+7)°
16(4k — 4m — 3)(k +m + 1)
8% 2(4k —4m — 3)(k+m+1).

Therefore, 8|(p* — ¢?).
Case 5: Suppose p =8k + 3 and ¢ = 8m + 3.
Observe that

PP-¢ = (Bk+3)°—(Bm+3)°
= 16(4k +4m + 3)(k — m)
= 8x%2(4dk+4m +3)(k —m).
Therefore, 8|(p* — ¢?).

Case 6: Suppose p =8k + 3 and ¢ = 8m + 5.
Observe that

PP—¢ = (8k+3)>—(8m+5)°
= 16(4k —4m — 1)(k+m+1)
= 8x%2(4k—4m —1)(k+m+1).
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8.

proposition guarantees that p? — ¢° is a multiple of the product 3 - 8 = 24.

Therefore, 8|(p? — ¢?).
Case 7: Suppose p =8k + 3 and ¢ = 8m + 7.
Observe that

P’ - (8k +3)% — (8m +7)?

= 8(4k+4m+5)(2k —2m —1).

Therefore, 8|(p? — ¢?).
Case 8: Suppose p =8k +5 and ¢ = 8m + 5.
Observe that

P —q (8k +5)% — (8m + 5)?
= 16(4k + 4m +5)(k —m)
= 8x%2(4dk+4m +5)(k —m).

Therefore, 8|(p? — ¢?).
Case 9: Suppose p =8k +5 and ¢ =8m + 7.
Observe that

PP = (8k+5)?2—(8m+T7)?

= 8(4k —4m — 1)(2k + 2m + 3).

Therefore, 8|(p* — ¢?).
Case 10: Suppose p =8k + 7 and ¢ =8m + 7.
Observe that

pPP—q¢> = Bk+7)*—Bm+7)?
16(4k +4m + 7)(k —m)
= 8x2(4k+4m+7)(k —m).

Therefore, 8|(p? — ¢?).

In all cases, we conclude 8|(p? — ¢?).

Since 3|(p? — ¢?) and 8|(p? — ¢?), then p? — ¢* is a common multiple of 3 and

Since p? —¢? is a common multiple of 3 and 8 and ged(3,8) = 1, then another

Therefore, 24|(p? — ¢?).

Exercise 29. Let p € Z7.
If p is prime and p # 5 and p is odd, then either 10|(p? — 1) or 10|(p? + 1).

Proof. Suppose p is prime and p # 5 and p is odd.

Since p is odd, then p? is odd, so p? — 1 and p? + 1 are both even.

Hence, 2|(p? — 1) and 2|(p? + 1).
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Since p is prime and odd, then p > 2 >0, so p > 2 and p > 0.
Since p > 0, then p? > 0, so p?> +1 > 1.
Since p > 2, then p? > 4,50 p? —1 >3 > 1.
Hence, p? — 1 > 1.
Since p? +1 > 1 and p? — 1 > 1, then both p? + 1 and p? — 1 have unique
canonical prime factorizations, by FTA.

By the division algorithm, there are unique integers ¢ and r such that p =
5q+r with 0 < r < 5, so either p=5qorp=5¢+1lorp=5¢g+2orp=>5qg+3
or p=5q—+4.

Suppose p = 5q.

Then 5|p.

Since p is prime, then the only positive divisors of p are 1 and p.

Since p # 5, then 5 cannot divide p, so 5 Jp.

But, this contradicts 5|p, so p # 5q.

Thus, either p =5¢g+ 1 or p=5¢+2 or p=>5qg+ 3 or p=>5q+ 4.

We consider these cases separately.

Case 1: Suppose p = 5q + 1.

Then p? —1 = (5¢+ 1) — 1 =25¢> +10g+ 1 — 1 = 25¢* + 10q = 5q(5q + 2),
so 5|(p? — 1).

Case 2: Suppose p = bq + 2.

Then p? +1 = (5¢ +2)2 +1 = 25¢> +20¢ + 4 + 1 = 25¢> +20q + 5 =
5(5¢% + 4q + 1), so 5|(p* + 1).

Case 3: Suppose p = 5q + 3.

Then p? +1 = (5¢+3)2+ 1 = 25¢°> +30¢ + 9 + 1 = 25¢* + 30q + 10 =
5(5¢% + 6q + 2), so 5|(p? + 1).

Case 4: Suppose p = 5q + 4.

Then p? — 1 = (5¢ +4)? — 1 = 25¢® + 40q + 16 — 1 = 25¢% + 40q + 15 =
5(5¢% + 8q + 3), so 5|(p* — 1).

Therefore, in all cases, either 5|(p? — 1) or 5|(p® + 1).

Since 2|(p? — 1) and 2|(p? + 1) and either 5|(p? — 1) or 5|(p* + 1), then either

both 2|(p? — 1) and 5|(p? — 1) or both 2|(p? + 1) and 5|(p? + 1).

We consider these cases separately.

Case 1: Suppose 2|(p? — 1) and 5|(p? — 1).

Then 2 and 5 are both prime factors of p? — 1, so both 2 and 5 occur in the
prime factorization of p? — 1.

Hence, the product 2 -5 = 10 is a factor of p? — 1, so 10|(p? — 1).

Case 2: Suppose 2|(p? + 1) and 5|(p* + 1).

Then 2 and 5 are both prime factors of p? + 1, so both 2 and 5 occur in the
prime factorization of p® + 1.

Hence, the product 2 -5 = 10 is a factor of p? + 1, so 10|(p? + 1).
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Therefore, either 10|(p? — 1) or 10|(p? + 1), as desired. O

Exercise 30. Let k ¢ ZT.
Let p=2F — 1.
If p is prime and k > 2, then k is odd.

Proof. Suppose p is prime and k > 2.

Suppose k is not odd.
Then k is even, so k = 2n for some integer n.
Thus, p=2F -1=22"—-1=(2")2 -1=(2" - 1)(2" + 1).
Since 2 < k = 2n, then 2 < 2n, so 1 < n.
Hence, n > 1, son > 0.

Since n > 0 and 1 < 2, then n < 2n, so 2" < 227,
Hence, 2™ — 1 < 227 — 1,

Since n > 1, then 2" > 2, s0o 2" — 1 > 1.
Since 1 < 2" —1land 2" —1 < 2% — 1, then 1 < 2" —1 < 22" — 1.

Since 2™ > 2, then 2™ 4 2™ > 2™ 4 2.
Hence, 2(2") = 27+1 > 2n 4 2.
Since 2" > 2 and 2" > 0, then 27 - 2" > 2.2" =27+l > 97 1 9,
Thus, (27)2 > 2" + 2, so 22" > 27 4 2,
Therefore, 22" —1 > 2" 4 1.

Since n > 0, then 2" > 0, s0 2" +1 > 1.
Sincel1 <2"+1land 2" +1< 22" —1,then 1 < 2" +1 < 22" — 1.

Since 1 <2"—1<22"—land1<2"+1 <2 —1andp=(2"—1)(2"+1),
then p is composite.
But, this contradicts p is prime.
Therefore, k is odd. O

Exercise 31. (Vn € Z*1)(3|4™ —1).

Proof. Let p(n) be the predicate : 3|(4™ — 1) defined over Z*.
We prove p(n) is true for all n € Z* by induction on n.
Basis:

Since 4! — 1 = 3 and 3|3, then 3|(4* — 1), so p(1) is true.
Induction:

Let k € Z* such that p(k) is true.

Then 3|(4% — 1), so 4 — 1 = 3z for some integer z.
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Observe that

gt 1 = 4.4 1

= 44" 4441
= 44" -1 +3
= 4(3z)+3

= 3(4z+1).

Thus, 3|(45+1 — 1), so p(k + 1) is true.

Since p(k) implies p(k + 1) for all k € Z*, then, we conclude p(n) is true for
all n € Z*, by induction.

Therefore, 3|(4" — 1) for all n € Z+. O

Exercise 32. Let S ={3k+1:k e Z" Vk=0}.

Let a € S.

Define a > 1 to be prime if a cannot be factored into two smaller integers in
S.

Example is 10 and 25 are prime, but 16 = 4*4 and 28 = 4% 7 are not prime.

a. Prove any member of S is either prime or a product or primes.

b. Give an example to show that it is possible for an integer in S to be
factored into primes in more than one way.

Proof. TODO FINISH PROOF O

Exercise 33. It is conjectured that every even integer can be written as the
difference of two consecutive primes in infinitely many ways.
For example, 6 = 29 — 23 = 137 — 131 = 599 — 593 = 1019 — 1013 = .. ..
Express the integer 10 as the difference of two consecutive primes in fifteen
ways.

Solution. TODO Try this one. this is computational exercise. O

Exercise 34. Let a € Z™.
Then a > 1 is a perfect square iff in the canonical form of a all the exponents
of the primes are even integers.

Proof. TODO We've already done this. So find the proof in one of the exercises
and copy it here and clean up the proof to make it coherent, clear. O

Lemma 35. Each prime factor of a square number greater than one
has even exponent.

LetneZ" andn > 1.

Then each prime factor of n® has even exponent.

Proof. Since n > 1, then by FTA, n has a unique canonical prime decomposition
n = pi' * p5* * * x p;* for primes pi,pa, ..., pr and positive integers ey, eq, ..., ex
such that p; < p2 < ... < pg.

Observe that n? = (p§* * py? * * x p*)2 = pI° % p3© # * * pie’“.

Therefore, each of the exponents 2¢; is even. O
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Exercise 36. Any integer n can be expressed as n = 2¥m, where k > 0 and m
is an odd integer.

Proof. TODO O

Exercise 37. It is conjectured that there are infinitely many primes p such
that p + 50 is also prime.
Find 15 of these primes.

Solution. We use SageMath to write a simple function to compute primes p
and p + 50.
Below is a list of some primes.

prime p|p + 50
3— 53
9 — 59

11 — 61
17 — 67
21 - 171
23 =73
29 — 79
33 — 83
39 — 89
47 — 97
51 — 101
53 — 103
57 — 107
59 — 109
63 — 113

O

Exercise 38. Show that the sums 1+2+4+4,1+244+8,14+2+4+8+16,...
are not alternately prime and composite.

Solution. Observe that S; =1+2+4 =20+ 2! 422 = Zi:o 2k and Sy =
1424448 = 20421422423 = 377 9% and Sy = 14+2+4+8+16 = 20421 22+
23424 = 37 2% and in general, S, = 20+ 2 422 4. 42" - 20 H1 = S Lok,

We usage SageMath to write a program to compute the sums S, for various
nezr.

We find the following results:

S1 = 7 is prime.

Sy = 15 = 3 % 5 is composite.
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S3 = 31 is prime.

S4 = 63 = 32 % 7 is composite.

S5 = 127 is prime.

S = 255 = 3 * 5 x 17 is composite.

S7 =511 =7 % 73 is composite.

Hence, the sums do alternate between prime and composite up to Sz.

But, Sg and S; are both composite. O

Exercise 39. Disprove the statement:
(Vn € Z*) either 6n + 1 or 6n — 1 is prime.

Solution. We use SageMath to write a program to compute 6n + 1 and 6n — 1
for each n € Z+ until we can find a counter-example. O

Proof. Let n = 20.

Then 6 * 20 + 1 = 121 = 112 is composite and 6 * 20 — 1 = 119 = 7 % 17 is
composite.

Therefore, the statement is false. O

Exercise 40. The difference of two consecutive cubes is not divisible by 2.

Proof. Let n € Z.

We must prove the difference (n + 1)® — n? is not divisible by 2.

Observe that (n+ 1) —n® =3n2 +3n+1=3n(n+1) + 1.

Since the product of two consecutive integers is even, then n(n + 1) is even,
so 2|n(n + 1).

Thus, 2|3n(n + 1), so 3n(n + 1) is even.

Therefore, 3n(n + 1) + 1 = (n + 1)3 — n3 is odd, so (n + 1) — n3 is not
divisible by 2. O

3

Proof. Let n € Z.
We must prove (n + 1)3 — n3 is odd.
Observe that (n+ 1) —n® =3n2 +3n+1=3n(n+1) + 1.
By the division algorithm, either n = 2¢q or n = 2g + 1 for some integer q.
We consider each case separately.
Case 1: Suppose n = 2q.
Then

(n+1)* —n? 3n(n+1)+1
= 3(2¢)(2g+1)+1

= 2(3¢)(2¢+1)+1.

Therefore, (n + 1) — n3 = 2k + 1 for some integer &k = 3¢(2q + 1), so
(n+1)3 —n3 is odd.

Case 2: Suppose n = 2q + 1.

Then
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(n+1)2—n% = 3nn+1)+1

= 32+ 1)((2¢g+1)+1)+1
32¢+1)(2¢+2)+1
32+ 1)(2)(¢g+1)+1
= 2(3)(2¢+1)(g+1)+1.

Therefore, (n + 1) — n3 = 2k + 1 for some integer k = 3(2¢ + 1)(g¢ + 1), so
(n+1)% —n3 is odd.

Therefore, in all cases, (n + 1) —n? is odd, so (n + 1)3 — n3 is not divisible
by 2. O

Exercise 41. Let n € Z™ and p is a prime number.
Then p cannot divide both n and n + 1.

Proof. Suppose p divides both n and n + 1.

Then p divides any linear combination of n and n + 1.

Since 1 = (n+1) —n=(—1)n+ (1)(n+1) is a linear combination of n and
n + 1, then p divides 1.

The only positive integer that divides 1 is 1, so p = 1.

But, p is prime, so p > 1.

Therefore, p cannot divide both n and n + 1. O

Exercise 42. Let n € ZT.
Then n(n + 1) is not a square.

Proof. TODO FINISH PROOF
If n =1, then 1(1 4+ 1) = 2 is not a square.

Suppose n(n + 1) is a square.
Then n # 1, s0n > 1, and there exists an integer m such that n(n+1) = m?2.
We may assume m > 0, since (—m)? = m?.
If m =1, then 1 =12 =m? = n(n+ 1), so n|1.
Hence, n = 1.
But, this contradicts the fact n > 1.
Therefore, m # 1.
Since n > 1, thenn >2,son+1> 3.
Thus, m? = n(n + 1) > 6.
If m = 2, then m? =4 < 6 < m?, a contradiction.
Thus, m # 2, so m > 2.
Suppose m is prime.
Since m > 2, then m is odd, so m? is odd.
Hence, n(n + 1) = m? is odd.
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But, this contradicts the fact that the product of two consecutive integers is
even and n(n + 1) is even.

Therefore, m cannot be prime.

Since m # 1, then this implies m must be composite.

Since n(n + 1) = m? is even, then m is even, so 2|m. O

Exercise 43. Let p be a prime.
For what primes p is 17p + 1 a perfect square?

Solution. Using SageMath we find p = 19 implies 17(19) +1 =324 = 182 is a
perfect square.

We try other larger primes and still we only get p = 19, so we conjecture
that 17p + 1 is a square iff p = 19.

We shall prove 17p + 1 is a square iff p = 19. O

Proof. We first prove if p = 19, then 17p 4+ 1 is a square.
Suppose p = 19.
Then 17p + 1 = 17(19) + 1 = 324 = 182 is a perfect square. O

Proof. Conversely, suppose 17p + 1 is a square.

Then 17p 4+ 1 = n? for some integer n.

Hence, 17p=n%? —1= (n—1)(n + 1).

Since p is prime, then p > 1, s0 17p > 17 > 1.

Thus, by the Fundamental Theorem of Arithmetic, 17p = (n —1)(n+ 1) has
a unique prime factorization.

Hence, either 17=n—-1or 17=n+ 1.

Suppose 17 =n + 1.
Then n = 16, so 256 = 162 = 17p + 1.
Hence, 255 = 17p, so p = 15 = 3 - 5, a composite number.
But, this contradicts that p is a prime number.
Consequently, 17 #n+1,s0 17=n — 1.
Thus, n = 18, so 324 = 182 = 17p + 1.
Therefore, 323 = 17p, so p = 19, as desired. O

Exercise 44. Find the smallest positive integer n such that n+1,n+2,n+ 3
are all composite.

a. If n = 5!+ 1, show that n 4+ 1,n+ 2,n + 3,n + 4 are composite.

b. Find a sequence of 100 consecutive composite numbers.

Solution. We see that n = 7 is the smallest positive integer for which 7+ 1 =
8=23and 7+2=9=3%and 7+ 3 =10 = 2 % 5 are all composite.
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a. Let n=>5!+1=120+1=121.

Then n+1 = 12141 =122 = 2 %61 is composite and n + 2 = 121 + 2 =
123 = 3 % 41 is composite and n + 3 = 121 + 3 = 124 = 4 * 31 is composite
and n +4 =121 44 = 125 = 5 % 25 is composite. So, we have a sequence of 4
consecutive composite numbers.

b. Using SageMath we write a program to find a sequence of consecutive
composite numbers. The sequence starts with n = 370262 to 370361. O

Exercise 45. Let n € ZT be composite and p be the least prime factor of n.
If p > n, then % is prime.

Solution. Try n =11 %17 and p = 11.
Then 11% = 11 % 11 %11 > 11 % 17 and 517 = 17 is prime. O

Proof. Suppose p® > n.
Since p is a factor of n, then p|n, so p < n.
Since n is composite and p is prime, then p # n.
Thus, p < n.
Since p is prime, then p > 0, so 1 < %.
Since % > 1, then % is either prime or composite.

Suppose - is composite.

Since % > 1, then by FTA, % has a unique canonical prime factorization, so
% = g7' * 52 *...q%* for primes ¢; and positive integers e; with 1 <7 <.

Since n = p-% and p is the least prime factor of n, then n = p-q7* *¢5?*. .. ¢,
sop<q <q <...<gs.

Since p < ¢; and p < ga, then p? < q1qo.

Thus, p* < q1q2 . .. gs, 50 P> < qf* * ¢5% x ... ¢C*.

Since p? > n and p > 0, then p? > % =q{ % q5? % ... q%, 80 p? > gt x g%
S gee.

Hence, we have p? > qi' % ¢5% x ... q¢% and p? < ' x ¢5* x ... ¢%, a contra-
diction.

Therefore, % is not composite, so % is prime. O

Exercise 46. Let N € Z1 be odd.
Then there exists a € Z such that N + a? = b2 for some b € Z.

Solution. For N =1,let a =0. Then 1+ 0?2 =1=12,s0b = 1.

For N=3,leta=1 Then3+12=4=22s0b=4.

For N=5,leta=2. Then5+22=9=232s0b=09.

For N=17,let a=3. Then 7+ 3% =16 =42, so b = 16. O
Proof. Let a = % and let b = %

Since N is odd, then N — 1 and N + 1 are both even.

Thus, % and % are integers, so a € Z and b € Z.
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Observe that

N+a® = N+(¥)2
N2 —2N +1
4
AN + N2 —2N +1
4
N2 +2N +1
4
(N +1)2
4

_ (N;—1)2

= b

Exercise 47. Let p,q € Z™.
If p and ¢ are prime and plg, then p = gq.

Proof. Suppose p and ¢ are prime and plq.
Since q is prime, then the only positive divisors of ¢ are 1 and gq.
Since p € Z* and p|q, then this implies either p =1 or p = q.
Since p is prime, then p > 1, so p # 1.
Therefore, p = gq. O

Exercise 48. Let p,a,n € Z™.
If p is prime and p|a™, then p™|a™.

Proof. Suppose p is prime and p|a™.
Then by a corollary to Euclid’s lemma, p|a.
By the previous lemma, we know if p|a, then p™|a™.
Since p|a, then we conclude p™|a™. O

Exercise 49. There do not exist positive integers a and b such that a? = 2b2.
This implies that v/2 cannot be a rational number.

Proof. Suppose there exist positive integers a and b such that a? = 2b.

Then 2|a?, so a? is even and 2 is a prime factor of a? and 2 < a?.

Since a? > 2, then a? > 1.

Since a? is even, then a is even, so a = 2k for some integer k.

Therefore, 2b% = a? = (2k)? = 4k?, so b? = 2k2.

Thus, 2|b?, so 2 is a prime factor of b and 2 < b2

Since b2 > 2, then b > 1.

By lemma 35, each prime factor of a square number greater than one has
even exponent, so b? has 22¢! prime factor for some positive integer e;.

Since a? = 2b2, then a? has prime factor 2 * 22¢1 = 22e1+1,
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But, 2e; + 1 is an odd integer which means the prime factor 2 has odd
exponent for the square number a2.

This contradicts the fact that each prime factor of a square number greater
than one has even exponent.

Therefore, there do not exist integers a and b such that a? = 2b2. O

Proof. Suppose there exist positive integers a and b such that a?> = 2b% and
ged(a,b) = 1.

Since a? = 2b%, then ba>.

Since b € Z*, then b > 1, so either b > 1 or b = 1.

Suppose b = 1.
Then a? = 2(1)? = 2, so 2 is a square integer.
But, there is no integer whose square is 2, so b # 1.

Suppose b > 1.

Since every integer greater than 1 has a prime factor, then b has a prime
factor p, so plb.

Since p|b and b|a?, then p|a?.

Since p is prime and p|a?, then by Euclid’s lemma, pla.

Since pla and p|b, the p is a common divisor of a and b, so p|ged(a, b).

Since ged(a,b) = 1, then this implies p|1, so p = 1.

But, p is prime, so p > 1.

Thus, we have p = 1 and p > 1, a contradiction.

Hence, b cannot be greater than 1.

Since b # 1 and b cannot be greater than 1, then b cannot exist, so a cannot
exist.

Therefore, there are no positive integers a and b such that a? = 2b? and

ged(a,b) = 1. O

Exercise 50. Let n € Z+.
If n > 4 and n divides 2™ — 2, then L;Q is not prime.

Proof. Suppose n > 4 and n divides 2" — 2.
Since n divides 2™ — 2, then 2™ — 2 = nk for some integer k and TLT*Q € Z.
Hence, % =2n~1 — 1.
Since n > 4, thenn >1,s0n—1> 0.
Thus, 2" ' € Z,s0 2" 1 —1 € Z.

Consequently, ”7’“ € 7Z, so 2|nk.
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Suppose n is even.

Then n = 2m for some integer m, so 2|n.

We prove ged(2™ — 2,n) = 2 because n > 4.

Since 2|2™ and 2|2, then 2 divides the difference 2" — 2.

Since 2|n and 2 divides 2" — 2, then 2 is a common divisor of 2" — 2 and n.

Let ¢ be any common divisor of 2" — 2 and n.

Then ¢|2" — 2 and ¢|n, so 2" — 2 = cx and n = cy for some integers x and y.

We prove c|2.

TODO FINISH PROOF.

Then we divide by 2 to get 2n2_2 = 2771 — 1 and this we would like to
conclude that the numerator when divided by 2 and the denominator when
divided by 2 would be relatively prime.

We must also show that this must be a fraction and cannot be an integer,
so we must also show that 2" —1 # 0 and 2" — 1 # m and m # 1.

This would imply the ratio is actually not an integer which means n cannot
be even, so n must be odd.

Since n is odd, then 2 cannot divide n.
Since 2 is prime and 2|nk, then either 2|n or 2|k, by Euclid’s lemma.
Since 2 does not divide n, then we conclude 2|k.
Thus, % €.
Since 2"~! — 1 = (n)%, then n divides 2"~! — 1.
Thus, 2n divides 2(2"~1 — 1), so 2n divides 2" — 2.

Hence, 2" — 2 = 2na for some integer a, so 2 772 = 2a.

Therefore, 2 divides 2717;2, SO 27:2 is not prime.
But, we must also show that % # 2, too!
Thus, we must also prove 2" > 2n + 2 for all n > 4 ( by induction).

n

This would show that 2%2 > 2 for all n > 4, so % #+ 2. O

Definition 51. Mersenne prime
A prime number of the form 2P — 1 is a Mersenne prime iff p is prime.

Mersenne primes = {2P — 1 : p is prime } = {3,7,31,127,8191, ...}
It is not known whether there are infinitely many Mersenne primes.

Exercise 52. Mersenne prime exercise
Let n € N.
If 2" — 1 is prime, then n is prime.

Solution. We can try proof by contrapositive, since direct proof doesn’t seem
to lead us anywhere.

If n is a natural number that is not prime, then n is either 1 or a composite
number.

If nis 1, then 2' — 1 = 1 which is not prime.

If n is composite, then n > 2, and n is either even or odd.

If n is even and n > 2, then n = 2k, k € Z. Since 2" —1 = 22k — 1 =
(2¥)2 — 1= (28 + 1)(2% — 1), so 2¥ — 1 and 2* + 1 are integers.
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If n > 2 and even, then n > 4, so k > 2. Thus, 2k —1>3and 28 +1 > 5.

Thus each factor is greater than 1 and less than 2" — 1. Hence, 2" — 1 is
composite if n > 2 and n is even.

If n is composite and odd, then n > 9 since 9 is the smallest composite odd
natural number. The set of composite odd natural numbers is {9, 15, 21, 25, 27, 33, 35, 39, 45, ... }.

Thus this set consists of natural numbers that are divisible by 3 or 5 or
both. If 3|n, then n = 3k,k € Z. Thus, 2" — 1 = 2% — 1. Since a® — 1 =
(a—1)(a® +a+1), then 2" — 1 = (2%)3 — 1 = (2¥ — 1)(2%* + 2% 4+ 1). Since
n>9, then k> 3,50 25 —1> 1.

Since 2% — 1,22 42k + 1 € Z, then 2" — 1 is composite for odd composites
divisible by 3.

If 5|n, then n = 5k, k € Z, s0 2" — 1 = 2°% — 1 = (2¥)> — 1. Since a® — 1 =
(a—1)(a*+a3+a®+a+1), then 2" —1 = (2F)5—1 = (2F—1)(2*F 23k -22k 12k 1 1),

Since 5|n, then the smallest n is 15, so k > 5. Thus 2 —1 > 31,50 2F —1 > 1.

Thus each factor is greater than 1. Hence if n is an odd composite and 5|n,
then 2™ — 1 is composite. We write this up in a logical coherent proof. O

Proof. We prove by contrapositive.

Suppose n is not prime.

Then either n = 1 or n is composite.

We consider these cases separately.

Case 1: Suppose n = 1.

Then 2" — 1 = 2! — 1 =1 is not prime.

Case 2: Suppose n is composite.

Then there exist integers a and b with 1 < a < n and 1 < b < n such that
n = ab.

Since a € Z, then 2 € Z, s0 2* — 1 € Z.

Since 1 < a < n, then 1 < a and a < n.

Since a € Z and a > 1, then 2% > 2 s0 2 — 1 > 1.

Since a,n € Z and a < n, then 2% < 2™ 80 2% —1 < 2™ — 1.

Since 1 <2*—1land 2*—1<2"—1,then 1 <2 —-1< 2" —1.

Since 0 < 1 < b < n, then 0 < b.

Since b€ Z and b > 0, then b € Z™T.

Since b € Z* and 2% € Z, then by a previous proposition, 2¢ — 1 divides
(29)0 —1b =290 1 =27 — 1.

Since 2 —1 € Zand 1 <2 —1< 2" — 1 and 2* — 1 divides 2" — 1, then
2™ — 1 is composite, so 2" — 1 is not prime.

Therefore, in all cases, 2" — 1 is not prime, as desired. O

Proof. We use proof by contrapositive.
Suppose n is a natural number that is not prime.
Then n is either 1 or n is composite. We consider these cases separately.
Case 1: Suppose n is 1.
Then 2! —1 =1 and 1 is not prime.
Case 2: Suppose n is composite, then n > 2.
Either n is even or n is odd. We consider each case separately.
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Case 2a: Suppose n is even.

Then n > 4 since 4 is the least even composite natural number and n =
2k, k € Z.

We have 2" — 1 =2%F — 1 =(2F)2 -1 = (28 — 1)(2F +1).

Since k is an integer, then the factors 2¥ — 1 and 2¥ 4 1 are integers.

Sincen >4 then k > 2,502 —1 >3 and 2¥ +1 > 5.

Hence each factor of 2™ — 1 is greater than 1.

Therefore 2™ — 1 is composite if n is even.

Case 2b: Suppose n is odd.

Then n > 9 since 9 is the least odd composite natural number.

The set of odd composite natural numbers is {9, 15, 21, 25, 27, 33, 35, 39,45, ...}.

Thus this set consists of natural numbers larger than 8 that are divisible by
3 or 5 or both.

Let n be an arbitrary element of this set.

If 3|n, then n = 3k, k € Z and n > 9. Thus, 2" —1=2% —1=(2F)3 -1 =
(2F — 1)(22% + 2% +1).

Since k is an integer, then the factors 2¢ — 1 and 2% 4+ 2% 4+ 1 are integers.

Since n > 9 then k > 3, s0 28 —1 > 7 and 2% +2F +1 > 73.

Hence each factor of 2™ — 1 is greater than 1.

If 5|n, then n = 5k, k € Z and n > 15. Thus, 2" —1=2%% -1 = (2F)° -1 =
(2% — 1)(2% + 23k 422k 4 ok 1 7).

Since k is an integer, then the factors 2% — 1 and 24F 4-23% + 22k 1 2k 1 1 are
integers.

Since n > 15 then k > 3, s0 2F — 1 > 7 and 2% 4 23F 4+ 22k 1 2k 1 1 > 4681.

Hence each factor of 2™ — 1 is greater than 1.

Thus 2™ — 1 is composite if n is odd.

Both cases show that whether n is an even composite or n is an odd com-
posite, then 2" — 1 is not prime. O

Exercise 53. Fermat prime exercise
Let n € N.
If 2” + 1 is prime, then n is a power of 2.

Proof. Since n € N, then n > 1, so either n > 1 or n=1.

We consider these cases separately.

Case 1: Suppose n = 1.

Then 2" +1 = 2! + 1 = 3 is prime and n = 1 = 2%, so n is a power of 2.

Case 2: Suppose n > 1.

Suppose 2™ + 1 is prime.

To prove n is a power of 2, we must prove there exists an integer m such
that n = 2™.

Since n > 1, then 2" > 2, s0 2" +1 > 3.

Suppose for the sake of contradiction n is odd.

Since 2" +1 =2" — (—1) = 2" — (—1)", then 2 — (—1) divides 2" — (-1)",
so 3 divides 2™ + 1.

Since 1 < 3 < 2™ + 1 and 3 divides 2" + 1, then 2™ 4 1 is composite.
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But, this contradicts the fact that 2™ + 1 is prime.
Hence, n is not odd, so n must be even.
Thus, 2|n.

Suppose for the sake of contradiction there is a prime p > 2 such that p|n.

Since n > 1 > 0, then n > 0.

Since p > 2 > 0, then p > 0.

Since p|n and p > 0 and n > 0, then n = pq for some ¢ € Z*.

Since p is prime and p > 2, then p is odd.

Since 2" +1=2P1+1 =29 — (—1) = (29)» — (—1)P, then 29 — (—1) divides
(29)? — (—=1)P, so 29 4+ 1 divides 2™ + 1.

Since q € Z*, then 29 > 0,80 29 +1 > 1.

Since n = pgq, then ¢|n, so ¢ < n.

Hence, either ¢ < n or ¢ = n.

Suppose ¢ = n.

Then n = pq = pn, sop = 1.

But, p > 2, so q # n.

Thus, g < n.

Since 0 < ¢ < n, then 279 < 2™ 80 294+ 1 < 2™ + 1.

Since 29+ 1€ Z and 1 <29+ 1 < 2" 4+ 1 and 29 4 1 divides 2™ + 1, then
2™ + 1 is composite.

But, this contradicts the fact that 2™ 41 is prime, so there is no prime p > 2
such that p|n.

Since n > 1, then by the Fundamental theorem of Arithmetic, n has a unique
prime factorization.

Since 2|n, then 2 is a prime factor of n.

Since there is no prime p > 2 that divides n, then 2 is the only prime factor
of n.

Hence, n = 2™ for some m € Z™T. O

Exercise 54. Find all integer solutions of the equation xy + 2y — 3z = 25.

Solution. Let S be the solution set of the equation zy + 2y — 3x = 25.

Then S = {(z,y) €Z X Z : xy + 2y — 3z = 25}.

We can factor and use multiplicative properties of integers.

Thus, y(x + 2) — 3(z + 2) = 25 — 6.

Hence, (z + 2)(y — 3) = 19.

What are the factors of 197

They are: 1,-1,19,-19.

Thus, we have 4 cases to consider.

We consider these cases separately.

Case 1: Suppose ¢ +2 = 1.

Then z = —1.

Hence, 1% (y —3) =19, so y = 22.

Substituting into the equation gives (—1)(22) + 2(22) — 3(—1) = 25, so
(—1,22) is a solution.
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Case 2: Suppose ¢ +2 = —1.

Then x = —3.

Hence, —1 % (y — 3) = 19, so y = —16.

Substituting into the equation gives (—3)(—16) + 2(—16) — 3(—3) = 25, so
(—3,—16) is a solution.

Case 3: Suppose z + 2 = 19.

Then x = 17.

Hence, 19(y — 3) =19, s0o y = 4.

Substituting into the equation gives (17)(4) 4+ 2(4) — 3(17) = 25, so (17,4)
is a solution.

Case 4: Suppose z + 2 = —19.

Then z = —21.

Hence,(—19)(y —3) =19, so y = 2.

Substituting into the equation gives (—21)(2) + 2(2) — 3(—21) = 25, so
(—21,2) is a solution.

Therefore, S = {(—1,22),(-3,—-16), (17,4), (—21,2)}. O

Exercise 55. Let z,y € N such that ged(z,y) = 1.
If xy is a perfect square, then = and y are perfect squares.

Proof. Either z and y are both greater than 1 or z and y are both equal to 1
or one of x and y is greater than 1 and the other of z and y equals 1.

Thus, either z,y >1lorz=y=1lorx>1l,y=1lory>1,z=1.

We consider each case separately.

Case 1: Suppose z =y = 1.

Then zy = 1% 1 =1 is a perfect square.

Since x = 1 = 12 = y, then « and y are perfect squares.

Therefore, xy is a perfect square implies x and y are perfect squares, as
desired.

Case 2: Suppose £ > 1 and y = 1.

Then zy =xx1 = x.

Since y = 1 = 12, then vy is a perfect square.

Suppose zy is a perfect square.

Then =z = xy is a perfect square.

Thus, zy is a perfect square and = and y are perfect squares.

Therefore, xy is a perfect square implies  and y are perfect squares, as
desired.

Case 3: Suppose x =1 and y > 1.

Then zy = 1%y =1y.

Since z = 1 = 12, then z is a perfect square.

Suppose zy is a perfect square.

Then y = zy is a perfect square.

Thus, zy is a perfect square and = and y are perfect squares.

Therefore, xy is a perfect square implies x and y are perfect squares, as
desired.

Case 4: Suppose x > 1 and y > 1.
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Since z > 1, then by the fundamental theorem of arithmetic(FTA) there
exists a unique prime factorization of x, so there exist prime factors aq, as, ..., a,
in the prime factorization of x.

Since y > 1, then by the fundamental theorem of arithmetic(FTA) there
exists a unique prime factorization of y, so there exist prime factors by, bo, ..., bs
in the prime factorization of y.

Since x > 1 and y > 1, then zy > 1, so by the fundamental theorem of
arithmetic(FTA) there exists a unique prime factorization of xy.

Let a € Z such that a > 1.
Then, by FTA, there exists a unique prime factorization of a, so a =
p’fl péQ ...pEn for each distinct prime factor p; and each exponent k; € N.
Hence, a? = (p"flp];z...pﬁ”)2 = p%klp%kz...p%’“"7 so each distinct prime factor
in the prime factorization of a? has even power.
Therefore, each distinct prime factor in the prime factorization of any square

number greater than 1 occurs an even number of times.

Since ged(z,y) = 1, then x and y have no common factors greater than 1.
Since every prime number is greater than 1, then this implies every prime
factor a; of x cannot also be a factor of y.
Since a;|x and z|xy, then a;|xy, so each a; is a prime factor of xy.
Since zy is a square number, then each a; occurs an even number of times in
the prime factorization of zy, so each a; has even exponent 2d; for some d; € Z.
Therefore, z = a?dl -a%dz a2l = (ail1 ~a§2... -a®)?, so z is a perfect square.
Since x and y have no common factors greater than 1 and every prime number
is greater than 1, then this implies every prime factor b; of y cannot also be a
factor of .
Since b;|y and y|zy, then b;|zy, so each b; is a prime factor of xy.
Since zy is a square number, then each b; occurs an even number of times in
the prime factorization of zy, so each b; has even exponent 2¢; for some e; € Z.
Therefore, y = b - b3°2... - b2% = (bS* - b2... - b%*)?, s0 y is a perfect square.

Hence, if xy is a perfect square greater than 1, then x and y are square
numbers.

Therefore, in all cases, if zy is a perfect square, then x and y are square
numbers. O

Exercise 56. There are an infinite number of primes of the form 6n + 1.

Proof. Let n € Z7T.
We prove there are an infinite number of primes of the form 6n + 1 by
contradiction.
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Suppose there are not an infinite number of primes of the form 6n + 1.
Then there are a finite number of primes of the form 6n + 1.
Let p1,p2, ..., pn be the primes of the form 6n + 1 for some integer n.
Let N =6 % py *xpo * ... x p, + 1.
Since N > 1, then by FTA, N has a prime factorization.
Let 71 x r9 % .... ¥ 74 be the prime factorization of .
Then rq *ro*...xr; =N =6%py kpox..kxp, + 1,80 1 =711 *krogx....x7r —
(6% p1 % po * ... x Dy).
Is N prime? If so, then we have our contradiction.
So, let’s prove N must be prime.

Proof. Let P be the set of primes.

Then P = {2,3,5,7,11,13,17,19,...}.

Let py, be the k" prime where p; = 2 and ps = 3 and p3 = 5, etc.

Define predicate S(k) : p1 * p2 * ... * pp + 1 is prime over Z+.

To prove there exist an infinite number of primes of the form 6n + 1, we
prove (Vn € ZT,n > 1)(S(n)).

Basis:

Since 2% 34 1 = 7 is prime, then S(2) is true.

Induction:

Let k € Z* with k > 2 such that S(k) is true.

Then p; * pg * ... * pr + 1 is prime.

Let a=py*pa*...xpp+1and b= p; *pa * ... % pg * pr41 + 1.

Then a is prime and b = (@ — 1)pgy1 + 1.

To prove S(k + 1), we must prove b is prime.

Since each prime is greater than one and k > 0, then p; % po * ... x pp > 1.

Thus, pr+1 > 1 and py * pa * ... ¥ pr, > 1 imply p1 * pa * ... % pg * pra1 > 1, so
DL APk .. kD *Dpr1 + 1> 2.

Hence, p; * po % ... x pi ¥ P41 +1 > 1.

Let a=py*pa*...xpr+1and b= p; *pg* ... % pg *x pry1 + 1.

Then a is prime and b = (a — 1)pgy1 + 1.

By FTA, b has a unique prime factorization.

We can prove that any prime factor of b cannot be p1,po, ..., Pk, Pr+1-

So, to prove b is prime, we need to prove there can be no prime factor p such
that pr+1 <p <b.

Suppose there exists a prime factor of b between py41 and b.

Let p be a prime factor of b such that pry1 < p < 0.

Then pl|b, so there exists a positive integer ¢ such that b = pc.

Since p < b, then p < pc, so 1 < c.

Hence, ¢ > 1, so by FTA, ¢ has a unique prime factorization.

Can any of the prime factors of ¢ be greater than py?

Can we derive a contradiction and use the induction hypothesis? O
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Proof. Let P be the set of primes.
Then P = {2,3,5,7,11,13,...}.
Let S be the set of all primes of the form 6n + 1 for some n € Z™.
Then S={zxe€P:x=6n+1,n€Z } s0oSCP.
Since 6 x 1 + 1 = 7 is prime, then 7 € S, so S # 0.

Suppose for the sake of contradiction S is finite.
Then there exists a greatest element g € S.
Hence, g € P and g = 6m + 1 for some m € Z+.
Since g € P, then g is prime.
Since g is the greatest element of S, then x < g for all x € S.

Since p; < p2 < ... < g, let V be the set of all primes less than or equal to g.

Then V = {p1,p2, ..., g}

Let N = (py *pa*...xg)+ 1.

Let T be the set of all primes less than N.

Then T = {p1,p2, ., §s Dw--- }-

Pick p; € T.

Since 1 = N — (p1 *p2 * ... * g) is a linear combination of N and the primes
inV.

Construct NV so that N > g such that N is the product of all primes less
than g + 1.

What are all of the primes less than N7

Let M = py * po x ... * p,, be the product of all primes less than N where
p1 =2 and p2 = 3 and p3 = 5, etc.

Let N = (py *pa* ... % py) + 1.

We claim N must be prime and yet also N € S and prove N is bigger than
g, which contradicts that fact that g is the greatest element of S. This would
then prove S is not finite, so S must be infinite.

Observe that

N = (p1*p2*pss*..xpy)+1
= (2%3%p3x..xpy)+1
= (6%p3*..xpy)+ 1.

Therefore, N = 6(p3 * ... * p,) + 1.
How do we prove N is prime?

Exercise 57. Suppose p and ¢ are prime numbers with p # q.
Then ¢/pq is irrational.

Proof. Suppose {/pq is rational.
Then there exist integers a and b with b # 0 such that 3/pg = 3.
Hence, pq = ($)?,
Since p is prime, then p > 1.
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Since q is prime, then ¢ > 1.

Thus, pg > 1.

Hence, 1 < pg = (§).

Taking the cube root, we obtain 1 < 3.

Assume without loss of generality b > 0.

Since 1 < ¢ and b > 0, we multiply by b to obtain b < a.
Thus, 0 < b < a.

Suppose b = 1.
Then pq = (§)* = (£)* = @®, so pg = @®.
Since b < a and b =1, then 1 < a, so a > 1.

By FTA, a has a unique prime factorization, so a = x7* - 25 - ... - 2* for
distinct primes x1, o, ...,z and positive integer exponents ey, e, ..., €.
3 _ el e2 ex\3 __ .3e1 3es 3er
Thus, a® = (2" - 252 - ... - 2pF)° = 277 - 257 - - 22" = pg.
Since a® = pq, then p is a prime factor of a, so p must be one of the prime
factors x;.

Since each e; > 1, then each 3e; > 3.

Hence, each prime factor z; occurs at least 3 times in the prime factorization
of a3.

But, p occurs only once in the prime factorization of a3, since p # q.

Thus, we must conclude b # 1.

Since b € Z and b > 0 and b # 1, then b > 1.
Since pg = (¢)* = ‘b‘—s, then pgb® = a3, so p divides a>.
Since a > b > 0, then a > 0.
Since @ > 0 and @ € Z and p is prime and p divides a3, then by Euclid’s
lemma, p divides a, so p < a.
Since 1 < p < a, then 1 < a, so a > 1.

By FTA, a has a unique prime factorization, so a = 7' - 5* - ... - x}* for
distinct primes x1, o, ..., £ and positive integer exponents eq, es, ..., €.

Thus, a® = (2§ - 252 - ... - 20)3 = 239 )™ L 23 = pgb®.

Since b > 1, then by FTA, b has a unique prime factorization, so b = yi' -
y%cz - ... - yfm for distinct primes yi,%2, ..., ym and positive integer exponents
f17 f27 EE) fm-

Thus, b® = (y{l ~y{2 y,{’”)3 = y%fl 'ygh oy so a® :pq(yff1 ~y§f2 .

Hence, a® = 23 - 25 - ... - xie’“ = pQ(yffl -yS’fz ey,

Since p is prime and p divides a2, then p is a prime factor of a®, so p must
be one of the primes z;.

Let t be the number of occurrences of p in the prime factorization of a?.

Then t = 3e; for some ¢; € Z*.

Since e; > 1, then t = 3e; > 3,s0t > 3.

39



Either p is one of the primes ¥, or not.

We consider these cases separately.

Case 1: Suppose p is not one of the primes y,, in the prime factorization of
ad.

Since p # g, then this implies p occurs exactly once in the prime factorization
of a3, 50t =1.

But, this contradicts the fact that ¢ > 3.

Case 2: Suppose p is one of the primes ¥,, in the prime factorization of a3.

Then p = y,, for some w € {1,2,...,m}.

Since p # q, then this implies p occurs 143 f,, times in the prime factorization
of a3, where f,, € Z7.

Hence, t =1+ 3f,.

Thus, 3e; =t =1+ 3f,, so 3e; —3f, = 1.

Therefore, 3(e; — fu) =1, so 3 divides 1, a contradiction.

Consequently, in all cases a contradiction is reached, so we are forced to
conclude the assumption {/pq is rational is false.
Therefore, $/pq is irrational. O

Exercise 58. For every positive integer n, there exists an integer divisible by
n distinct primes.

Solution. The statement to prove is below.
(Vn € Z7)(3k € Z) (k is divisible by n distinct primes). O

Proof. Let n € Z+.

Then either n =1 or n > 1.

We consider each case separately.

Case 1: Suppose n = 1.

Let k = 2.

Since 2 is prime and 2|2, then k is divisible by 1 prime.

Case 2: Suppose n > 1.

Then n > 2.

Let S be the set of distinct primes p; such that p; < ps < ... < p, for
i€{1,2,..,n}.

Then p; € S and py € S and |S| = n.

Let k£ be the product of all the primes in S.

Since k is the product of primes and every prime is an integer and Z is closed
under multiplication, then k € Z.

Since p1 < pa, then p; # po.

Since p; € S, then S # 0.

Let p; € S be arbitrary.

Let ¢t be the product of all primes in the set S — {p;}.

Since py € S and py # p1, then p2 € S — {p;}, s0 S — {p;} # 0.

Since p; € S, then p; is one factor of k.

Since t is the product of all primes in S — {p;}, then t is the product of all
primes of .S except for the prime p;.
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Therefore, k = p;t.
Since t is a product of primes and every prime is an integer and Z is closed
under multiplication, then ¢ € Z.

Since t € Z and k = p;t, then p;|k.

Hence, if p; € S, then p;|k, so p;|k for every p; € S.

Thus, every prime number of S divides k.

Since |S| = n, then there are n distinct primes that divide k.

Therefore, there is an integer k such that k is divisible by n distinct primes.
O
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