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Prime Numbers and Fundamental Theorem of
Arithmetic

Exercise 1. There exists an even prime number.

Proof. Observe that 2 is an even prime number.

Exercise 2. There is a prime number between 90 and 100.

Proof. Observe that 97 is a prime number.

Exercise 3. Compute the least common multiple of 3054 and 12378.

Solution. Observe that lcm(3054, 12378) = (3054)(12378)/ gcd(3054, 12378) =
3054 ∗ 12378/6 = 6300402.

Exercise 4. Prove or disprove ∀(n ∈ N), the integer n2 − n + 11 is prime.

Solution. We just use Java to write an algorithm(tiny computer program) to
decide if the formula f(n) = n2 − n + 11 really only generates primes. Using
the computer, we find there are several counter examples that demonstrate the
conjecture is false.

For example, when n = 11, then f(11) = 121 = 11 · 11.
Another example, when n = 12, then f(12) = 143 = 11 · 13
Another example, when n = 15, then f(15) = 221 = 13 · 17.
Another example, when n = 20, then f(20) = 391 = 17 · 23.
We could identify many more examples that demonstrate this conjecture is

false.
But, to disprove the conjecture, it suffices to just show one counterexample.
Thus, we can write up the proof below.

Proof. The statement is false.
For n = 11, the integer f(11) = 121 = 11 · 11 is not prime.

Exercise 5. Prove or disprove ∀(n ∈ N), the integer 2n2 − 4n + 31 is prime.



Solution. We just use Java to write an algorithm(tiny computer program) to
decide if the formula f(n) = 2n2 − 4n + 31 really only generates primes.

Using the computer, we find there are several counter examples that demon-
strate the conjecture is false.

For example, when n = 30, then f(30) = 1711 = 29 · 59.
Another example, when n = 31, then f(31) = 1829 = 31 · 59
Another example, when n = 33, then f(33) = 2077 = 31 · 67.
Another example, when n = 36, then f(36) = 2479 = 37 · 67.
We could identify many more examples that demonstrate this conjecture is

false.
But, to disprove the conjecture, it suffices to just show one counterexample.
Thus, we can write up the proof below.

Proof. The statement is false.
For n = 30, the integer 2(30)2−4(30)+31 = 1711 = 29 ·59 is not prime.

Exercise 6. Disprove the conjecture: There exist two prime numbers p and q
such that p− q = 97.

Proof. Suppose for the sake of contradiction that the conjecture is true.
Let p and q be prime numbers such that p− q = 97.
The difference between two odd integers is even.
Since p− q = 97 is odd, then p and q cannot be both odd.
Hence, at least one of p and q is not odd, so at least one of p and q is even.
Thus, either p is even or q is even.
We consider each case separately.
Case 1: Suppose p is even.
Since p is prime and p is even and the only even prime is 2, then p = 2.
Thus, 97 = 2− q, so q = −95.
Since −95 = 5(−19), then q = −95 is not prime.
Case 2: Suppose q is even.
Since q is prime and q is even and the only even prime is 2, then q = 2.
Thus, p− 2 = 97, so p = 99.
Since 99 = 9 · 11, then p = 99 is not prime.
Both cases show that one of p or q is not prime, so this contradicts the

assumption that both p and q are prime.
Therefore, the conjecture is false.

Proposition 7. Any prime greater than 2 is odd.
If p is a prime greater than 2, then p is odd.

Proof. Let p > 2 be prime.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p > 2, then p 6= 2.
Since 2 6= 1 and 2 6= p, then 2 cannot be a divisor of p, so 2 6 |p.
Therefore, p is not even, so p must be odd.
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Lemma 8. Sieve of Eratosthenes lemma1
Let n ∈ Z+.
If n is composite, then there exists d ∈ Z+ such that d|n and 1 < d ≤

√
n.

Proof. Suppose n is composite.
Since a composite is composed of smaller positive factors, then there exist

integers a, b with 1 < a < n and 1 < b < n such that n = ab.
Since n = ab, then a|n and b|n.
If both a >

√
n and b >

√
n, then n = ab >

√
n ·
√
n = (

√
n)2 = n, so n > n,

a contradiction.
Thus, either a ≤

√
n or b ≤

√
n, so either 1 < a ≤

√
n or 1 < b ≤

√
n.

Therefore, either 1 < a ≤
√
n and a|n, or 1 < b ≤

√
n and b|n.

Lemma 9. Sieve of Eratosthenes lemma2
Let n ∈ Z+.
If n is composite, then n has a prime divisor less than or equal to

√
n.

Proof. Suppose n is composite.
Then there exists d ∈ Z+ such that d|n and 1 < d ≤

√
n by lemma 8.

Since 1 < d ≤
√
n, then 1 < d and d ≤

√
n.

Since d > 1, then d has a prime factor p, since every integer greater than
one has a prime factor.

Hence, p|d and 1 < p ≤ d.
Since p|d and d|n, then p|n.
Since p ≤ d and d ≤

√
n, then p ≤

√
n.

Therefore, p is prime and p|n and p ≤
√
n.

Exercise 10. Any prime of the form 3n + 1 is also of the form 6m + 1.

Proof. Let p be a prime such that p = 3n + 1 for some n ∈ Z+.
We must prove p = 6m + 1 for some m ∈ Z.
Since p is prime, then p ≥ 2, so either p > 2 or p = 2.
Suppose p = 2.
Then 2 = 3n + 1, so 3n = 1.
Hence, 3 divides 1, a contradiction.
Thus, p 6= 2, so p > 2.
Since p is prime and p > 2, then p is odd, so p− 1 = 3n is even.
Since 3n is even, then 2|3n.
Since 2|3n and gcd(2, 3) = 1, then 2|n, so n = 2m for some integer m.
Hence, p = 3n + 1 = 3(2m) + 1 = 6m + 1.
Therefore, there exists an integer m such that p = 6m + 1.

Proof. Let p = 3n + 1 be a prime for some n ∈ Z+.
We must prove p = 6m + 1 for some m ∈ Z.
Since p is prime, then p ≥ 2, so either p > 2 or p = 2.
Suppose p = 2.
Then 2 = 3n + 1, so 3n = 1.
Hence, 3 divides 1, a contradiction.
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Thus, p 6= 2, so p > 2.
Since p is prime and p > 2, then p is odd, so p− 1 is even.
Hence, 3n is even, so 2|3n.
Since 2 is prime and 2|3n, then either 2|3 or 2|n, by Euclid’s lemma.
Since 2 6 |3, then 2|n, so n = 2m for some integer m.
Thus, p = 3n + 1 = 3(2m) + 1 = 6m + 1.
Therefore, there exists an integer m such that p = 6m + 1.

Exercise 11. Every integer of the form 3n+ 2 has a prime factor of this form.

Proof. We prove by contradiction.
Suppose there is a positive integer a = 3n + 2 that has no prime factor

p = 3m + 2.
Since a|a and a = 3n + 2, then a cannot be a prime.
Since a ∈ Z+, then a ≥ 1.
If 1 = a = 3n + 2, then 3n = −1, so 3|(−1), a contradiction.
Hence, a 6= 1, so a > 1.
Thus, by FTA, a = pe11 pe22 ...pesk for primes p1, p2, ..., pk and positive integers

e1, e2, ..., ek.

Let p be an arbitrary prime factor of a.
Since a = 3n + 2, then 3 6 |a, so p 6= 3.
By the division algorithm, either p = 3b or p = 3b + 1 or p = 3b + 2.
Since a has no prime factors of the form 3b + 2, then p 6= 3b + 2.

Suppose p = 3b.
Then 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Thus, p must be 3, so p = 3.
But, this contradicts p 6= 3.
Therefore, p 6= 3b.

Hence, p = 3b + 1, so every prime factor p of a must be of the form 3b + 1.
Thus, p1 = 3b1 + 1 and p2 = 3b2 + 1 and ... pk = 3bk + 1.

If p = 3b + 1 and q = 3c + 1, then the product is pq = (3b + 1)(3c + 1) =
9bc + 3b + 3c + 1 = 3(3bc + b + c) + 1 = 3m + 1 for some integer m.

Hence, the product of any two integers of the form 3b + 1 is always of the
same form.

This applies to a finite number of integers of this form. We should prove
this by induction.

Therefore, the product of all of these prime factors of a will be an integer of
the form 3b + 1, so pe11 · p

e2
2 . . . pekk = 3b + 1 = a = 3n + 2.

Thus, 3b + 1 = 3n + 2, so 3b− 3n = 1 = 3(b− n).
Hence, 3|1, a contradiction.
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Consequently, there is no positive integer a = 3n+2 that has no prime factor
p = 3m + 2.

Therefore, every positive integer a = 3n + 2 has at least one prime factor
p = 3m + 2.

Exercise 12. 7 is the only prime of the form n3 − 1.
Let n ∈ Z+.
Then n3 − 1 is prime iff n = 2.

Proof. We prove if n = 2, then n3 − 1 is prime.
Suppose n = 2.
Then n3 − 1 = 23 − 1 = 7 is prime.

Proof. Conversely, suppose p = n3 − 1 is prime.
We must prove n = 2.
Observe that p = n3 − 1 = (n− 1)(n2 + n + 1).
Since n ∈ Z+, then n ≥ 1.
If n = 1, then p = 13 − 1 = 0, so 0 is a prime, a contradiction.
Hence, n 6= 1, so n > 1.
Thus, n− 1 > 0.
Since p is prime, then p > 1 > 0.
Since n− 1 > 0 and p > 0 and p = (n− 1)(n2 + n+ 1), then n2 + n+ 1 > 0.
Since p is prime, then the only positive divisors of p are 1 and p.
Thus, either 1 = n− 1 or 1 = n2 + n + 1.
If 1 = n2 + n + 1, then 0 = n2 + n = n(n + 1), so either n = 0 or n + 1 = 0.
Hence, either n = 0 or n = −1.
But, n > 1, so n cannot be either 0 or −1.
Therefore, 1 = n− 1, so n = 2, as desired.

Exercise 13. Let p ∈ Z+.
The only prime p such that 3p + 1 is a perfect square is p = 5.

Solution. We must prove
1. If p = 5, then 3p + 1 is a perfect square.
2. If p is prime and 3p + 1 is a perfect square, then p = 5.

Proof. Suppose p = 5.
Then 3p + 1 = 3 · 5 + 1 = 16 = 42 is a perfect square.

Proof. Conversely, suppose p is prime and 3p + 1 is a perfect square.
We must prove p = 5.

Since 3p + 1 is a perfect square, then 3p + 1 = m2 for some integer m.
Thus, 3p = m2 − 1 = (m− 1)(m + 1).
Since p is prime, then p > 1, so 3p > 3 > 1.
Hence, (m − 1)(m + 1) = 3p > 1, so (m − 1)(m + 1) has a unique prime

factorization, by FTA.
Therefore, either 3 = m− 1 or 3 = m + 1.
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Suppose 3 = m + 1.
Then m = 2, so 4 = 22 = 3p + 1.
Thus, 3 = 3p, so p = 1.
But, p is prime, so p > 1.
Hence, p 6= 1.
Therefore, 3 6= m + 1.
Thus, we must conclude 3 = m− 1.
Hence, m = 4, so 16 = 42 = 3p + 1,
Therefore, 15 = 3p, so p = 5.

Lemma 14. Let p ∈ Z+.
If p is prime and p ≥ 5, then either p = 6k + 1 or p = 6k + 5 for some

integer k.

Proof. Suppose p is prime and p ≥ 5.
Since p ≥ 5 > 2, then p > 2.
Since p is prime and p > 2, then p must be odd, so 2 6 |p.
Since p ≥ 5 > 3, then p > 3.
We must prove there exists an integer k such that p = 6k + 1 or p = 6k + 5.
By the division algorithm, there is a unique integer k such that either p = 6k

or p = 6k + 1 or p = 6k + 2 or p = 6k + 3 or p = 6k + 4 or p = 6k + 5.
We consider each case separately.
Case 1: Suppose p = 6k.
Then p = 6k = 2 · 3k, so 2|p.
Thus, we have 2|p and 2 6 |p, a contradiction.
Therefore, p 6= 6k.
Case 2: Suppose p = 6k + 2.
Then p = 2(3k + 1), so 2|p.
Thus, we have 2|p and 2 6 |p, a contradiction.
Therefore, p 6= 6k + 2.
Case 3: Suppose p = 6k + 3.
Then p = 3(2k + 1), so 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since 3|p, then this implies either 3 = 1 or 3 = p.
Since 3 6= 1, then this implies 3 = p.
But, p > 3, so p 6= 3.
Therefore, we must conclude p 6= 6k + 3.
Case 4: Suppose p = 6k + 4.
Then p = 2(3k + 2), so 2|p.
Thus, we have 2|p and 2 6 |p, a contradiction
Therefore, p 6= 6k + 4.

Since p 6= 6k and p 6= 6k+ 2 and p 6= 6k+ 3 and p 6= 6k+ 4 and either p = 6k
or p = 6k + 1 or p = 6k + 2 or p = 6k + 3 or p = 6k + 4 or p = 6k + 5, then we
must conclude either p = 6k + 1 or p = 6k + 5, as desired.
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Exercise 15. Let p ∈ Z+.
If p is prime and p > 3, then p2 + 2 is composite.

Proof. Suppose p is prime and p > 3.
By the division algorithm, p = 3q + r for some unique integers q and r with

0 ≤ r < 3, so either p = 3q or p = 3q + 1 or p = 3q + 2.
Suppose p = 3q.
Then 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p > 3, then p 6= 3.
Thus, 3 6 |p.
But, this contradicts 3|p.
Therefore, we conclude p 6= 3q.
Hence, either p = 3q + 1 or p = 3q + 2.
We consider each case separately.
Case 1: Suppose p = 3q + 1.
Observe that

p2 + 2 = (3q + 1)2 + 2

= 9q2 + 6q + 1 + 2

= 9q2 + 6q + 3

= 3(3q2 + 2q + 1).

Therefore, 3|(p2 + 2).
Case 2: Suppose p = 3q + 2.
Observe that

p2 + 2 = (3q + 2)2 + 2

= 9q2 + 12q + 4 + 2

= 9q2 + 12q + 6

= 3(3q2 + 4q + 2).

Therefore, 3|(p2 + 2).
Hence, in all cases, 3|(p2 + 2).
Since p > 3, then p2 > 9, so p2 + 2 > 11 > 0.
Thus, p2 + 2 > 0, so p2 + 2 is a positive integer.
Since 1 < 3 < 11 < p2 + 2, then 1 < 3 < p2 + 2.
Since p2 + 2 is a positive integer and 1 < 3 < p2 + 2 and 3|(p2 + 2), then

p2 + 2 is composite, since a composite number has a positive divisor other than
1 or itself.

Lemma 16. Let a, b ∈ Z.
If a|b, then an|bn for all n ∈ Z+.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ : if a|b, then an|bn}.
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Basis:
Suppose a|b.
Then a1|b1, so 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and if a|b, then ak|bk.
Since k ∈ Z+, then k + 1 ∈ Z+.
Suppose a|b.
Then, by the induction hypothesis, ak|bk.
Since a|b and ak|bk, then aak|bbk, so ak+1|bk+1.
Since k + 1 ∈ Z+ and a|b implies ak+1|bk+1, then k + 1 ∈ S.
Therefore, by PMI, if a|b, then an|bn for all n ∈ Z+.

Exercise 17. Let a, n, p ∈ Z+.
If p is prime and p|an, then pn|an.

Proof. Let r(n) be the predicate : if p is prime and p|an, then pn|an defined
over Z+.

We prove r(n) is true for all n ∈ Z+ by induction on n.
Basis:
Let n = 1.
If p is prime and p|a1, then p|a, so p1|a1.
Therefore, r(1) is true.
Induction:
Suppose r(k) is true for any positive integer k.
Then if p is prime and p|ak, then pk|ak.

Suppose p is prime and p|ak+1.
Since a ∈ Z+, then a ≥ 1, so either a > 1 or a = 1.
If a = 1, then p|(1)k+1, so p|1.
Since the only positive divisor of 1 is 1, then p = 1.
But, p is prime, so p > 1.
Therefore, a 6= 1, so a > 1.
Thus, by the Fundamental Theorem of Arithmetic, a has a unique canonical

prime factorization.
Hence, there exist primes pi and positive integers ei such that a = pe11 ·

pe22 . . . pett and p1 < p2 < . . . ps and 1 ≤ i ≤ t.

Consequently, ak+1 = (pe11 · p
e2
2 . . . pett )k+1 = p

e1(k+1)
1 · pe2(k+1)

2 . . . p
et(k+1)
t .

Since p|ak+1, then this implies p divides p
e1(k+1)
1 · pe2(k+1)

2 . . . p
et(k+1)
t .

Since p is prime, then p divides pm for some integer m with 1 ≤ m ≤ t, by
corollary to Euclid’s lemma.

Since p|pm and pm|a, then p|a.
Hence, p divides any multiple of a, so p|(ak−1)a.
Therefore, p|ak.
Since p is prime and p|ak, then pk|ak, by the induction hypothesis.
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Since p|a and pk|ak, then the product ppk divides the product aak, so
pk+1|ak+1.

Therefore, if p is prime and p|ak+1, then pk+1|ak+1, so r(k + 1) is true.
Thus, r(k) implies r(k + 1) for all k ∈ Z+.
By induction, we conclude r(n) is true for all n ∈ Z+.
Therefore, if p is prime and p|an, then pn|an for all n ∈ Z+.

Exercise 18. Let a, b, p ∈ Z+.
If p is prime and gcd(a, b) = p, what are the possible values of gcd(a2, b2)?

Solution. Based on some computations run in SageMath, we conjecture that
gcd(a2, b2) = p2.

So, let’s prove the statement: If p is prime and gcd(a, b) = p, then gcd(a2, b2) =
p2.

Proof. Suppose p is prime and gcd(a, b) = p.
Since p is prime, then p > 1.
Since gcd(a, b) = p, then p|a and p|b.
Since p|a, then p ≤ a, so a ≥ p > 1.
Hence, a > 1.
Since p|b, then p ≤ b, so b ≥ p > 1.
Hence, b > 1.
Since a > 1, then a has a unique canonical prime factorization, by FTA.
Thus, a = pe11 pe22 . . . perr for primes pi and ei ∈ Z+ and p1 < p2 < ... < pr

and 1 ≤ i ≤ r.
Since b > 1, then b has a unique canonical prime factorization, by FTA.
Thus, b = qf11 qf22 . . . qfss for primes qj and fj ∈ Z+ and q1 < q2 < ... < qs

and 1 ≤ j ≤ s.
Since p is prime and p|a and p|b, then p is a common prime factor of both a

and b, so p must be one of the primes in the prime factorization of both a and
b.

Thus, p = pk = qm for some integers k and m with 1 ≤ k ≤ r and 1 ≤ m ≤ s
and a = pe11 pe22 . . . pekk . . . perr and b = qf11 qf22 . . . qfmm . . . qfss .

Hence, a = pe11 pe22 . . . pek . . . perr and b = qf11 qf22 . . . pfm . . . qfss .
If we square a, then a2 = (pe11 pe22 . . . pek . . . perr )2 = p2e11 p2e22 . . . p2ek . . . p2err .

If we square b, then b2 = (qf11 qf22 . . . pfm . . . qfss )2 = q2f11 q2f22 . . . p2fm . . . q2fss .
Since gcd(a, b) = p = p1, then either ek = 1 or fm = 1.
We consider these cases separately.
Case 1: Suppose ek = 1.
Since fm ∈ Z+, then fm ≥ 1, so 2fm ≥ 2.
Thus, min(2ek, 2fm) = min(2 · 1, 2fm) = min(2, 2fm) = 2.
Case 2: Suppose fm = 1.
Since ek ∈ Z+, then ek ≥ 1, so 2ek ≥ 2.
Thus, min(2ek, 2fm) = min(2ek, 2 · 1) = min(2ek, 2) = 2.
Hence, in all cases, min(2ek, 2fm) = 2.
Therefore, the highest power of p that is common to both a2 and b2 is p2.
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Suppose p is not the only common prime factor of both a2 and b2.
Then there exists another prime factor q of both a2 and b2.
Since p and q are distinct primes, then q 6= p.
Since q is a factor of both a2 and b2, then q|a2 and q|b2.
Since q is prime and q|a2, then q|a, by Euclid’s lemma.
Since q is prime and q|b2, then q|b, by Euclid’s lemma.
Since q|a and q|b, then q is a common divisor of both a and b, so q must

divide gcd(a, b) = p.
Hence, q|p.
Since p is prime, then the only positive divisors of p are 1 and p, so either

q = 1 or q = p.
Since q is prime, then q > 1, so q 6= 1.
Hence, q = p.
But, this contradicts q 6= p.
Therefore, there is no other prime factor q of both a2 and b2, so p is the only

common prime factor of both a2 and b2.

Thus, the greatest common factor of both a2 and b2 must be p2.
Therefore, gcd(a2, b2) = p2.

Exercise 19. Let a, b, p ∈ Z+.
If p is prime and gcd(a, b) = p, what are the possible values of gcd(a2, b)?

Solution. Based on some computations run in SageMath, we conjecture that
gcd(a2, b) is either p or p2.

So, let’s prove the statement: If p is prime and gcd(a, b) = p, then either
gcd(a2, b) = p or gcd(a2, b) = p2.

Proof. Suppose p is prime and gcd(a, b) = p.
Since p is prime, then p > 1.
Since gcd(a, b) = p, then p|a and p|b.
Since p|a, then p ≤ a, so a ≥ p > 1.
Hence, a > 1.
Since p|b, then p ≤ b, so b ≥ p > 1.
Hence, b > 1.
Since a > 1, then a has a unique canonical prime factorization, by FTA.
Thus, a = pe11 pe22 . . . perr for primes pi and ei ∈ Z+ and p1 < p2 < ... < pr

and 1 ≤ i ≤ r.
Since b > 1, then b has a unique canonical prime factorization, by FTA.
Thus, b = qf11 qf22 . . . qfss for primes qj and fj ∈ Z+ and q1 < q2 < ... < qs

and 1 ≤ j ≤ s.
Since p is prime and p|a and p|b, then p is a common prime factor of both a

and b, so p must be one of the primes in the prime factorization of both a and
b.

Thus, p = pk = qm for some integers k and m with 1 ≤ k ≤ r and 1 ≤ m ≤ s
and a = pe11 pe22 . . . pekk . . . perr and b = qf11 qf22 . . . qfmm . . . qfss .
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Hence, a = pe11 pe22 . . . pek . . . perr and b = qf11 qf22 . . . pfm . . . qfss .
If we square a, then a2 = (pe11 pe22 . . . pek . . . perr )2 = p2e11 p2e22 . . . p2ek . . . p2err .
Since gcd(a, b) = p = p1, then either ek = 1 or fm = 1.
We consider these cases separately.
Case 1: Suppose ek = 1.
Since fm ∈ Z+, then fm ≥ 1, so either fm > 1 or fm = 1.
If fm = 1, then min(2ek, fm) = min(2 · 1, 1) = min(2, 1) = 1.
If fm > 1, then fm ≥ 2.
Thus, min(2ek, fm) = min(2 · 1, fm) = min(2, fm) = 2.
Therefore, min(2ek, fm) is either 1 or 2.
Case 2: Suppose fm = 1.
Since ek ∈ Z+, then ek ≥ 1, so 2ek ≥ 2.
Thus, min(2ek, fm) = min(2ek, 1) = 1.
Hence, in all cases, either min(2ek, fm) = 1 or min(2ek, fm) = 2.
Therefore, the highest power of p that is common to both a2 and b is either

p1 = p or p2.

Suppose p is not the only common prime factor of both a2 and b.
Then there exists another prime factor q of both a2 and b.
Since p and q are distinct primes, then q 6= p.
Since q is a factor of both a2 and b, then q|a2 and q|b.
Since q is prime and q|a2, then q|a, by Euclid’s lemma.
Since q|a and q|b, then q is a common divisor of both a and b, so q must

divide gcd(a, b) = p.
Hence, q|p.
Since p is prime, then the only positive divisors of p are 1 and p, so either

q = 1 or q = p.
Since q is prime, then q > 1, so q 6= 1.
Hence, q = p.
But, this contradicts q 6= p.
Therefore, there is no other prime factor q of both a2 and b, so p is the only

common prime factor of both a2 and b.

Thus, the greatest common factor of both a2 and b must be either p or p2.
Therefore, gcd(a2, b) = p or gcd(a2, b) = p2.

Exercise 20. Let a, b, p ∈ Z+.
If p is prime and gcd(a, b) = p, what are the possible values of gcd(a3, b2)?

Solution. Based on some computations run in SageMath, we conjecture that
gcd(a3, b2) is either p2 or p3.

So, let’s prove the statement: If p is prime and gcd(a, b) = p, then either
gcd(a3, b2) = p2 or gcd(a3, b2) = p3.

Proof. Suppose p is prime and gcd(a, b) = p.
Since p is prime, then p > 1.
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Since gcd(a, b) = p, then p|a and p|b.
Since p|a, then p ≤ a, so a ≥ p > 1.
Hence, a > 1.
Since p|b, then p ≤ b, so b ≥ p > 1.
Hence, b > 1.
Since a > 1, then a has a unique canonical prime factorization, by FTA.
Thus, a = pe11 pe22 . . . perr for primes pi and ei ∈ Z+ and p1 < p2 < ... < pr

and 1 ≤ i ≤ r.
Since b > 1, then b has a unique canonical prime factorization, by FTA.
Thus, b = qf11 qf22 . . . qfss for primes qj and fj ∈ Z+ and q1 < q2 < ... < qs

and 1 ≤ j ≤ s.
Since p is prime and p|a and p|b, then p is a common prime factor of both a

and b, so p must be one of the primes in the prime factorization of both a and
b.

Thus, p = pk = qm for some integers k and m with 1 ≤ k ≤ r and 1 ≤ m ≤ s
and a = pe11 pe22 . . . pekk . . . perr and b = qf11 qf22 . . . qfmm . . . qfss .

Hence, a = pe11 pe22 . . . pek . . . perr and b = qf11 qf22 . . . pfm . . . qfss .
If we cube a, then a3 = (pe11 pe22 . . . pek . . . perr )3 = p3e11 p3e22 . . . p3ek . . . p3err .

If we square b, then b2 = (qf11 qf22 . . . pfm . . . qfss )2 = q2f11 q2f22 . . . p2fm . . . q2fss .
Since gcd(a, b) = p = p1, then either ek = 1 or fm = 1.
We consider these cases separately.
Case 1: Suppose ek = 1.
Since fm ∈ Z+, then fm ≥ 1, so either fm > 1 or fm = 1.
If fm = 1, then min(3ek, 2fm) = min(3 · 1, 2 · 1) = min(3, 2) = 2.
If fm > 1, then 2fm > 2, so 2fm ≥ 3.
Thus, min(3ek, 2fm) = min(3 · 1, 2fm) = min(3, 2fm) = 3.
Therefore, min(3ek, 2fm) is either 2 or 3.
Case 2: Suppose fm = 1.
Since ek ∈ Z+, then ek ≥ 1, so 3ek ≥ 3.
Thus, min(3ek, 2fm) = min(3ek, 2 · 1) = min(3ek, 2) = 2.
Hence, in all cases, either min(3ek, 2fm) = 2 or min(3ek, 2fm) = 3.
Therefore, the highest power of p that is common to both a3 and b2 is either

p2 or p3.

Suppose p is not the only common prime factor of both a3 and b2.
Then there exists another prime factor q of both a3 and b2.
Since p and q are distinct primes, then q 6= p.
Since q is a factor of both a3 and b2, then q|a3 and q|b2.
Since q is prime and q|a3, then q|a, by Euclid’s lemma.
Since q is prime and q|b2, then q|b, by Euclid’s lemma.
Thus, q is a common divisor of both a and b, so q must divide gcd(a, b) = p.
Hence, q|p.
Since p is prime, then the only positive divisors of p are 1 and p, so either

q = 1 or q = p.
Since q is prime, then q > 1, so q 6= 1.
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Hence, q = p.
But, this contradicts q 6= p.
Therefore, there is no other prime factor q of both a3 and b2, so p is the only

common prime factor of both a3 and b2.
Thus, the greatest common factor of both a3 and b2 must be either p2 or p3.
Therefore, gcd(a3, b2) = p2 or gcd(a3, b2) = p3.

Exercise 21. Let n ∈ Z+.
If n > 1, then every integer of the form n4 + 4 is composite.

Solution. The statement to prove is: (∀n ∈ Z+, n ≥ 2)(n4 + 4 is composite).
We observe that 4 is a factor of n4 + 4 if n is even.
If n is odd, we conjecture that n4 + 4 has a least prime factor p such that

p = 4k + 1 for some integer k.

Proof. Suppose n > 1.
Since n ∈ Z, then n4 + 4 ∈ Z.
Observe that n4 + 4 = (n2 + 2n + 2)(n2 − 2n + 2).

Since n > 1, then n2 > 1 and n + 1 > 2, so n2(n + 1) > 2.
Thus, n2(n + 1)− 2 > 0.
Since n > 1, then n− 1 > 0.
Since n− 1 > 0 and n2(n + 1)− 2 > 0, then (n− 1)[n2(n + 1)− 2] > 0.
Thus, (n− 1)(n3 +n2− 2) > 0, so n4−n2− 2n+ 2 > 0, so n4 > n2 + 2n− 2.
Therefore, n4 + 4 > n2 + 2n + 2.

Since n > 1, then n + 1 > 2, so n + 1 > 0.
Hence, (n + 1)2 > 0, so n2 + 2n + 1 > 0.
Therefore, n2 + 2n + 2 > 1.
Since n4+4 > n2+2n+2 and n2+2n+2 > 1, then n4+4 > n2+2n+2 > 1,

so 1 < n2 + 2n + 2 < n4 + 4.

Since n2 > 1, then n2 > 0.
Since n− 1 > 0 and n2 > 0, then n2(n− 1) > 0 > −2, so n2(n− 1) > −2.
Thus, n2(n− 1) + 2 > 0.
Since n > 1, then n + 1 > 2 > 0, so n + 1 > 0.
Since n + 1 > 0 and n2(n − 1) + 2 > 0, then (n + 1)[n2(n − 1) + 2] > 0, so

(n + 1)(n3 − n2 + 2) > 0.
Thus, n4 − n2 + 2n + 2 > 0, so n4 > n2 − 2n− 2.
Therefore, n4 + 4 > n2 − 2n + 2.

Since n > 1, then n− 1 > 0, so (n− 1)2 > 0.
Therefore, n2 − 2n + 1 > 0, so n2 − 2n + 2 > 1.
Since n4+4 > n2−2n+2 and n2−2n+2 > 1, then n4+4 > n2−2n+2 > 1,

so 1 < n2 − 2n + 2 < n4 + 4.
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Since n4 + 4 = (n2 + 2n + 2)(n2 − 2n + 2) and 1 < n2 + 2n + 2 < n4 + 4
and 1 < n2 − 2n + 2 < n4 + 4 and a composite number is composed of smaller
positive factors, then the integer n4 + 4 is composite.

Exercise 22. Let n ∈ Z+.
If n > 4 and n is composite, then n divides (n− 1)!.

Proof. Suppose n > 4 and n is composite.
Then
TODO: FINISH THIS PROOF.

Exercise 23. Let n ∈ Z+.
Every integer of the form 8n + 1 is composite.

Proof. Since n ∈ Z+, then 8n + 1 ∈ Z and n ≥ 1.
Observe that 8n + 1 = (22n − 2n + 1)(2n + 1).

Since n ≥ 1, then n > 0.
Therefore, 2n > 0, so 2n + 1 > 1.

Since 3 > 1 and n > 0, then 3n > n, so 23n > 2n.
Since 8n = 23n, then 8n > 2n, so 8n + 1 > 2n + 1.
Since 8n + 1 > 2n + 1 and 2n + 1 > 1, then 8n + 1 > 2n + 1 > 1, so

1 < 2n + 1 < 8n + 1.

Since n > 0, then 4n > 2n, so 4n − 2n > 0.
Since 4n − 2n > 0 > −1, then 4n − 2n > −1, so 4n > 2n − 1.
Since 2n > 0, then 2n(4n) > 2n(2n − 1), so 8n > 22n − 2n.
Therefore, 8n + 1 > 22n − 2n + 1.

Since n > 0, then 2n > n, so 22n > 2n.
Therefore, 22n − 2n > 0, so 22n − 2n + 1 > 1.
Since 8n+1 > 22n−2n+1 and 22n−2n+1 > 1, then 8n+1 > 22n−2n+1 > 1,

so 1 < 22n − 2n + 1 < 8n + 1.
Since 8n+1 is an integer and 1 < 2n+1 < 8n+1 and 1 < 22n−2n+1 < 8n+1

and 8n + 1 = (22n − 2n + 1)(2n + 1) and a composite number is composed of
smaller positive factors, then we conclude 8n + 1 is composite.

Exercise 24. Every integer n > 11 can be written as the sum of two composite
numbers.

Solution. We observe that each even composite c = 2k for k ≥ 3 can be added
so that 2c = 2k + 2k = 4k.

Since k ≥ 3, then 2k ≥ 6, so 4k ≥ 12 > 11.
Thus, one case occurs when 2k is added to itself and the sum is greater than

11 and 2k is even, so 2k is composite.
Let U = {n ∈ Z+ : n ≥ 12} = {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, ...}.
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Let A = {4k : k ≥ 3} ⊂ 4Z = {12, 16, 20, 24, 28, 32, 36, 40, 44, ...}.
Let B = {4+b : b ≥ 8 and b is composite} = {12, 13, 14, 16, 18, 19, 20, 22, 24, 25, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 43, 44, 46, ...}.
Let C = U −A−B = {15, 17, 21, 23, 27, 33, 35, 41, 45, ...}.
Then U = A ∪B ∪ C.
How can we characterize set C?
Maybe C = {2x + 3y : x ≥ 3, y ≥ 3}, so C is perhaps a set of linear

combinations of 2 and 3?
We know gcd(2, 3) = 1, so any linear combination of 2 and 3 is a multiple of

1 and 2x and 3y are both composite numbers.
Since x ≥ 3, then 2x ≥ 6.
Since y ≥ 3, then 3y ≥ 15.
Hence, 2x+ 3y ≥ 6 + 9 = 15, so 15 would be possibly the least element of C.
Each element of C is odd or prime.
We see that 15 = 6+9, 17 = 8+9, 21 = 6+15, 23 = 9+14, 27 = 12+15, etc.
Can we prove U = A ∪B ∪ C?
We know each of A,B,C are subsets of U , so their union is also a subset of

U .
Hence, A ∪B ∪ C ⊂ U .
But, is U ⊂ A ∪B ∪ C?
Let n ∈ U .
Then n ≥ 12.
Can we consider n divided by 4 and use the division algorithm?

Proof. TODO FINISH PROOF.

Exercise 25. Compute all prime numbers that divide 50!.

Solution. The prime factorization is 50! = 247 · 322 · 512 · 78 · 114 · 133 · 172 · 192 ·
232 · 29 · 31 · 37 · 41 · 43 · 47.

Therefore, the set of primes that divide 50! is {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

Lemma 26. Any prime other than 3 is of the form 3k + 1 or 3k + 2
Let p ∈ Z+.
If p is prime and p 6= 3, then either p = 3k + 1 or p = 3k + 2 for some

integer k.

Proof. Suppose p is prime and p 6= 3.
By the division algorithm, there exist unique integers q and r such that

p = 3q + r with 0 ≤ r < 3.
Hence, either p = 3q or p = 3q + 1 or p = 3q + 2.

Suppose p = 3q.
Then 3|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p 6= 3, then 3 cannot be a divisor of p, so 3 6 |p.
But, this contradicts 3|p.
Therefore, p 6= 3q.
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Hence, either p = 3q + 1 or p = 3q + 2.
Therefore, there exists an integer q such that either p = 3q + 1 or p =

3q + 2.

Lemma 27. Any prime other than 2 is of the form 8k + 1 or 8k + 3 or
8k + 5 or 8k + 7

Let p ∈ Z+.
If p is prime and p 6= 2, then either p = 8k + 1 or p = 8k + 3 or p = 8k + 5

or p = 8k + 7 for some integer k.

Proof. Suppose p is prime and p 6= 2.
By the division algorithm, there exist unique integers q and r such that

p = 8q + r with 0 ≤ r < 8.
Hence, either p = 8q or p = 8q + 1 or p = 8q + 2 or p = 8q + 3 or p = 8q + 4

or p = 8q + 5 or p = 8q + 6 or p = 8q + 7.

Suppose p = 8q.
Then 8|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p is prime, then p 6= 8, so 8 cannot be a divisor of p.
Hence, 8 6 |p.
But, this contradicts 8|p.
Therefore, p 6= 8q.

Suppose p = 8q + 2.
Then p = 8q + 2 = 2(4q + 1), so 2|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p 6= 2, then 2 cannot be a divisor of p, so 2 6 |p.
But, this contradicts 2|p.
Therefore, p 6= 8q + 2.

Suppose p = 8q + 4.
Then p = 8q + 4 = 4(2q + 1), so 4|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p is prime, then p 6= 4, so 4 cannot be a divisor of p.
Hence, 4 6 |p.
But, this contradicts 4|p.
Therefore, p 6= 8q + 4.

Suppose p = 8q + 6.
Then p = 8q + 6 = 2(4q + 3), so 2|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p 6= 2, then 2 cannot be a divisor of p.
Hence, 2 6 |p.
But, this contradicts 2|p.
Therefore, p 6= 8q + 6.
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Hence, either p = 8q + 1 or p = 8q + 3 or p = 8q + 5 or p = 8q + 7.
Therefore, there exists an integer q such that either p = 8q + 1 or p = 8q + 3

or p = 8q + 5 or p = 8q + 7.

Exercise 28. Let p, q ∈ Z+.
If p ≥ q ≥ 5 and p and q are both primes, then 24|(p2 − q2).

Solution. By a previous lemma, we know that any prime p 6= 3 is of the form
3k + 1 or 3k + 2 for some integer k.

Also, by a previous lemma, we know that any prime p 6= 2 is of the form
8m + 1 or 8m + 3 or 8m + 5 or 8m + 7 for some integer m.

We shall prove 3|(p2 − q2) and 8|(p2 − q2).
Then, this means p2 − q2 is a common multiple of 3 and 8.
Since p2−q2 is a common multiple of 3 and 8 and gcd(3, 8) = 1, then another

proposition guarantees that p2 − q2 is a multiple of the product 3 · 8 = 24.
Therefore, this implies 24|(p2 − q2).

Proof. Suppose p ≥ q ≥ 5 and p is prime and q is prime.
Since p ≥ q ≥ 5, then p ≥ 5, so p 6= 3.
Since p is prime and p 6= 3, then either p = 3k + 1 or p = 3k + 2 for some

integer k, by a previous lemma.
Since p ≥ q ≥ 5, then q ≥ 5, so q 6= 3.
Since q is prime and q 6= 3, then either q = 3m + 1 or q = 3m + 2 for some

integer m, by a previous lemma.
Thus,
either p = 3k + 1 and q = 3m + 1 or
either p = 3k + 1 and q = 3m + 2 or
either p = 3k + 2 and q = 3m + 1 or
either p = 3k + 2 and q = 3m + 2.
Without loss of generality, we consider only
either p = 3k + 1 and q = 3m + 1 or
either p = 3k + 1 and q = 3m + 2 or
either p = 3k + 2 and q = 3m + 2, since p2 − q2 = −(q2 − p2).
We consider these cases separately.
Case 1: Suppose p = 3k + 1 and q = 3m + 1.
Observe that

p2 − q2 = (3k + 1)2 − (3m + 1)2

= 3(3k + 3m + 2)(k −m).

Therefore, 3|(p2 − q2).
Case 2: Suppose p = 3k + 1 and q = 3m + 2.
Observe that

p2 − q2 = (3k + 1)2 − (3m + 2)2

= 3(3k − 3m− 1)(k + m + 1).
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Therefore, 3|(p2 − q2).
Case 3: Suppose p = 3k + 2 and q = 3m + 2.
Observe that

p2 − q2 = (3k + 2)2 − (3m + 2)2

= 3(3k + 3m + 4)(k −m).

Therefore, 3|(p2 − q2).

In all cases, we conclude 3|(p2 − q2).

Proof. Suppose p ≥ q ≥ 5 and p is prime and q is prime.
Since p ≥ q ≥ 5, then p ≥ 5, so p 6= 2.
Since p is prime and p 6= 2, then either p = 8k+1 or p = 8k+3 or p = 8k+5

or p = 8k + 7 for some integer k, by a previous lemma.
Since p ≥ q ≥ 5, then q ≥ 5, so q 6= 2.
Since q is prime and q 6= 2, then either q = 8m + 1 or q = 8m + 3 or

q = 8m + 5 or q = 8m + 7 for some integer m, by a previous lemma.
Thus,
either p = 8k + 1 and q = 8m + 1 or
either p = 8k + 1 and q = 8m + 3 or
either p = 8k + 1 and q = 3m + 5 or
either p = 8k + 1 and q = 3m + 7 or
either p = 8k + 3 and q = 8m + 1 or
either p = 8k + 3 and q = 8m + 3 or
either p = 8k + 3 and q = 3m + 5 or
either p = 8k + 3 and q = 3m + 7 or
either p = 8k + 5 and q = 8m + 1 or
either p = 8k + 5 and q = 8m + 3 or
either p = 8k + 5 and q = 3m + 5 or
either p = 8k + 5 and q = 3m + 7 or
either p = 8k + 7 and q = 8m + 1 or
either p = 8k + 7 and q = 8m + 3 or
either p = 8k + 7 and q = 3m + 5 or
either p = 8k + 7 and q = 3m + 7.

Without loss of generality, we consider only
either p = 8k + 1 and q = 8m + 1 or
either p = 8k + 1 and q = 8m + 3 or
either p = 8k + 1 and q = 8m + 5 or
either p = 8k + 1 and q = 8m + 7 or
either p = 8k + 3 and q = 8m + 3 or
either p = 8k + 3 and q = 8m + 5 or
either p = 8k + 3 and q = 8m + 7 or
either p = 8k + 5 and q = 8m + 5 or
either p = 8k + 5 and q = 8m + 7 or
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either p = 8k + 7 and q = 8m + 7,
since p2 − q2 = −(q2 − p2).
We consider these cases separately.
Case 1: Suppose p = 8k + 1 and q = 8m + 1.
Observe that

p2 − q2 = (8k + 1)2 − (8m + 1)2

= 16(4k + 4m + 1)(k −m)

= 8 ∗ 2(4k + 4m + 1)(k −m).

Therefore, 8|(p2 − q2).
Case 2: Suppose p = 8k + 1 and q = 8m + 3.
Observe that

p2 − q2 = (8k + 1)2 − (8m + 3)2

= 8(8k + 1)(8m + 3).

Therefore, 8|(p2 − q2).
Case 3: Suppose p = 8k + 1 and q = 8m + 5.
Observe that

p2 − q2 = (8k + 1)2 − (8m + 5)2

= 8(4k + 4m + 3)(2k − 2m− 1).

Therefore, 8|(p2 − q2).
Case 4: Suppose p = 8k + 1 and q = 8m + 7.
Observe that

p2 − q2 = (8k + 1)2 − (8m + 7)2

= 16(4k − 4m− 3)(k + m + 1)

= 8 ∗ 2(4k − 4m− 3)(k + m + 1).

Therefore, 8|(p2 − q2).
Case 5: Suppose p = 8k + 3 and q = 8m + 3.
Observe that

p2 − q2 = (8k + 3)2 − (8m + 3)2

= 16(4k + 4m + 3)(k −m)

= 8 ∗ 2(4k + 4m + 3)(k −m).

Therefore, 8|(p2 − q2).
Case 6: Suppose p = 8k + 3 and q = 8m + 5.
Observe that

p2 − q2 = (8k + 3)2 − (8m + 5)2

= 16(4k − 4m− 1)(k + m + 1)

= 8 ∗ 2(4k − 4m− 1)(k + m + 1).
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Therefore, 8|(p2 − q2).
Case 7: Suppose p = 8k + 3 and q = 8m + 7.
Observe that

p2 − q2 = (8k + 3)2 − (8m + 7)2

= 8(4k + 4m + 5)(2k − 2m− 1).

Therefore, 8|(p2 − q2).
Case 8: Suppose p = 8k + 5 and q = 8m + 5.
Observe that

p2 − q2 = (8k + 5)2 − (8m + 5)2

= 16(4k + 4m + 5)(k −m)

= 8 ∗ 2(4k + 4m + 5)(k −m).

Therefore, 8|(p2 − q2).
Case 9: Suppose p = 8k + 5 and q = 8m + 7.
Observe that

p2 − q2 = (8k + 5)2 − (8m + 7)2

= 8(4k − 4m− 1)(2k + 2m + 3).

Therefore, 8|(p2 − q2).
Case 10: Suppose p = 8k + 7 and q = 8m + 7.
Observe that

p2 − q2 = (8k + 7)2 − (8m + 7)2

= 16(4k + 4m + 7)(k −m)

= 8 ∗ 2(4k + 4m + 7)(k −m).

Therefore, 8|(p2 − q2).

In all cases, we conclude 8|(p2 − q2).

Since 3|(p2 − q2) and 8|(p2 − q2), then p2 − q2 is a common multiple of 3 and
8.

Since p2−q2 is a common multiple of 3 and 8 and gcd(3, 8) = 1, then another
proposition guarantees that p2 − q2 is a multiple of the product 3 · 8 = 24.

Therefore, 24|(p2 − q2).

Exercise 29. Let p ∈ Z+.
If p is prime and p 6= 5 and p is odd, then either 10|(p2 − 1) or 10|(p2 + 1).

Proof. Suppose p is prime and p 6= 5 and p is odd.
Since p is odd, then p2 is odd, so p2 − 1 and p2 + 1 are both even.
Hence, 2|(p2 − 1) and 2|(p2 + 1).
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Since p is prime and odd, then p > 2 > 0, so p > 2 and p > 0.
Since p > 0, then p2 > 0, so p2 + 1 > 1.
Since p > 2, then p2 > 4, so p2 − 1 > 3 > 1.
Hence, p2 − 1 > 1.
Since p2 + 1 > 1 and p2 − 1 > 1, then both p2 + 1 and p2 − 1 have unique

canonical prime factorizations, by FTA.

By the division algorithm, there are unique integers q and r such that p =
5q + r with 0 ≤ r < 5, so either p = 5q or p = 5q + 1 or p = 5q + 2 or p = 5q + 3
or p = 5q + 4.

Suppose p = 5q.
Then 5|p.
Since p is prime, then the only positive divisors of p are 1 and p.
Since p 6= 5, then 5 cannot divide p, so 5 6 |p.
But, this contradicts 5|p, so p 6= 5q.
Thus, either p = 5q + 1 or p = 5q + 2 or p = 5q + 3 or p = 5q + 4.
We consider these cases separately.
Case 1: Suppose p = 5q + 1.
Then p2− 1 = (5q + 1)2− 1 = 25q2 + 10q + 1− 1 = 25q2 + 10q = 5q(5q + 2),

so 5|(p2 − 1).
Case 2: Suppose p = 5q + 2.
Then p2 + 1 = (5q + 2)2 + 1 = 25q2 + 20q + 4 + 1 = 25q2 + 20q + 5 =

5(5q2 + 4q + 1), so 5|(p2 + 1).
Case 3: Suppose p = 5q + 3.
Then p2 + 1 = (5q + 3)2 + 1 = 25q2 + 30q + 9 + 1 = 25q2 + 30q + 10 =

5(5q2 + 6q + 2), so 5|(p2 + 1).
Case 4: Suppose p = 5q + 4.
Then p2 − 1 = (5q + 4)2 − 1 = 25q2 + 40q + 16 − 1 = 25q2 + 40q + 15 =

5(5q2 + 8q + 3), so 5|(p2 − 1).
Therefore, in all cases, either 5|(p2 − 1) or 5|(p2 + 1).

Since 2|(p2 − 1) and 2|(p2 + 1) and either 5|(p2 − 1) or 5|(p2 + 1), then either
both 2|(p2 − 1) and 5|(p2 − 1) or both 2|(p2 + 1) and 5|(p2 + 1).

We consider these cases separately.
Case 1: Suppose 2|(p2 − 1) and 5|(p2 − 1).
Then 2 and 5 are both prime factors of p2 − 1, so both 2 and 5 occur in the

prime factorization of p2 − 1.
Hence, the product 2 · 5 = 10 is a factor of p2 − 1, so 10|(p2 − 1).
Case 2: Suppose 2|(p2 + 1) and 5|(p2 + 1).
Then 2 and 5 are both prime factors of p2 + 1, so both 2 and 5 occur in the

prime factorization of p2 + 1.
Hence, the product 2 · 5 = 10 is a factor of p2 + 1, so 10|(p2 + 1).
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Therefore, either 10|(p2 − 1) or 10|(p2 + 1), as desired.

Exercise 30. Let k ∈ Z+.
Let p = 2k − 1.
If p is prime and k > 2, then k is odd.

Proof. Suppose p is prime and k > 2.

Suppose k is not odd.
Then k is even, so k = 2n for some integer n.
Thus, p = 2k − 1 = 22n − 1 = (2n)2 − 1 = (2n − 1)(2n + 1).
Since 2 < k = 2n, then 2 < 2n, so 1 < n.
Hence, n > 1, so n > 0.

Since n > 0 and 1 < 2, then n < 2n, so 2n < 22n.
Hence, 2n − 1 < 22n − 1.

Since n > 1, then 2n > 2, so 2n − 1 > 1.
Since 1 < 2n − 1 and 2n − 1 < 22n − 1, then 1 < 2n − 1 < 22n − 1.

Since 2n > 2, then 2n + 2n > 2n + 2.
Hence, 2(2n) = 2n+1 > 2n + 2.
Since 2n > 2 and 2n > 0, then 2n · 2n > 2 · 2n = 2n+1 > 2n + 2.
Thus, (2n)2 > 2n + 2, so 22n > 2n + 2.
Therefore, 22n − 1 > 2n + 1.

Since n > 0, then 2n > 0, so 2n + 1 > 1.
Since 1 < 2n + 1 and 2n + 1 < 22n − 1, then 1 < 2n + 1 < 22n − 1.

Since 1 < 2n−1 < 22n−1 and 1 < 2n + 1 < 22n−1 and p = (2n−1)(2n + 1),
then p is composite.

But, this contradicts p is prime.
Therefore, k is odd.

Exercise 31. (∀n ∈ Z+)(3|4n − 1).

Proof. Let p(n) be the predicate : 3|(4n − 1) defined over Z+.
We prove p(n) is true for all n ∈ Z+ by induction on n.
Basis:
Since 41 − 1 = 3 and 3|3, then 3|(41 − 1), so p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then 3|(4k − 1), so 4k − 1 = 3x for some integer x.
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Observe that

4k+1 − 1 = 4 · 4k − 1

= 4 · 4k − 4 + 4− 1

= 4(4k − 1) + 3

= 4(3x) + 3

= 3(4x + 1).

Thus, 3|(4k+1 − 1), so p(k + 1) is true.
Since p(k) implies p(k + 1) for all k ∈ Z+, then, we conclude p(n) is true for

all n ∈ Z+, by induction.
Therefore, 3|(4n − 1) for all n ∈ Z+.

Exercise 32. Let S = {3k + 1 : k ∈ Z+ ∨ k = 0}.
Let a ∈ S.
Define a > 1 to be prime if a cannot be factored into two smaller integers in

S.
Example is 10 and 25 are prime, but 16 = 4∗4 and 28 = 4∗7 are not prime.
a. Prove any member of S is either prime or a product or primes.
b. Give an example to show that it is possible for an integer in S to be

factored into primes in more than one way.

Proof. TODO FINISH PROOF

Exercise 33. It is conjectured that every even integer can be written as the
difference of two consecutive primes in infinitely many ways.

For example, 6 = 29− 23 = 137− 131 = 599− 593 = 1019− 1013 = . . . .
Express the integer 10 as the difference of two consecutive primes in fifteen

ways.

Solution. TODO Try this one. this is computational exercise.

Exercise 34. Let a ∈ Z+.
Then a > 1 is a perfect square iff in the canonical form of a all the exponents

of the primes are even integers.

Proof. TODO We’ve already done this. So find the proof in one of the exercises
and copy it here and clean up the proof to make it coherent, clear.

Lemma 35. Each prime factor of a square number greater than one
has even exponent.

Let n ∈ Z+ and n > 1.
Then each prime factor of n2 has even exponent.

Proof. Since n > 1, then by FTA, n has a unique canonical prime decomposition
n = pe11 ∗ p

e2
2 ∗ ∗ ∗ p

ek
k for primes p1, p2, ..., pk and positive integers e1, e2, ..., ek

such that p1 < p2 < ... < pk.
Observe that n2 = (pe11 ∗ p

e2
2 ∗ ∗ ∗ p

ek
k )2 = p2e11 ∗ p2e22 ∗ ∗ ∗ p2ekk .

Therefore, each of the exponents 2ei is even.
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Exercise 36. Any integer n can be expressed as n = 2km, where k ≥ 0 and m
is an odd integer.

Proof. TODO

Exercise 37. It is conjectured that there are infinitely many primes p such
that p + 50 is also prime.

Find 15 of these primes.

Solution. We use SageMath to write a simple function to compute primes p
and p + 50.

Below is a list of some primes.

prime p|p + 50

3→ 53

9→ 59

11→ 61

17→ 67

21→ 71

23→ 73

29→ 79

33→ 83

39→ 89

47→ 97

51→ 101

53→ 103

57→ 107

59→ 109

63→ 113

Exercise 38. Show that the sums 1 + 2 + 4, 1 + 2 + 4 + 8, 1 + 2 + 4 + 8 + 16, ...
are not alternately prime and composite.

Solution. Observe that S1 = 1 + 2 + 4 = 20 + 21 + 22 =
∑2

k=0 2k and S2 =

1+2+4+8 = 20+21+22+23 =
∑3

k=0 2k and S3 = 1+2+4+8+16 = 20+21+22+

23+24 =
∑4

k=0 2k and in general, Sn = 20+21+22+ ...+2n+2n+1 =
∑n+1

k=0 2k.
We usage SageMath to write a program to compute the sums Sn for various

n ∈ Z+.
We find the following results:
S1 = 7 is prime.
S2 = 15 = 3 ∗ 5 is composite.
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S3 = 31 is prime.
S4 = 63 = 32 ∗ 7 is composite.
S5 = 127 is prime.
S6 = 255 = 3 ∗ 5 ∗ 17 is composite.
S7 = 511 = 7 ∗ 73 is composite.
Hence, the sums do alternate between prime and composite up to S7.
But, S6 and S7 are both composite.

Exercise 39. Disprove the statement:
(∀n ∈ Z+) either 6n + 1 or 6n− 1 is prime.

Solution. We use SageMath to write a program to compute 6n+ 1 and 6n− 1
for each n ∈ Z+ until we can find a counter-example.

Proof. Let n = 20.
Then 6 ∗ 20 + 1 = 121 = 112 is composite and 6 ∗ 20 − 1 = 119 = 7 ∗ 17 is

composite.
Therefore, the statement is false.

Exercise 40. The difference of two consecutive cubes is not divisible by 2.

Proof. Let n ∈ Z.
We must prove the difference (n + 1)3 − n3 is not divisible by 2.
Observe that (n + 1)3 − n3 = 3n2 + 3n + 1 = 3n(n + 1) + 1.
Since the product of two consecutive integers is even, then n(n + 1) is even,

so 2|n(n + 1).
Thus, 2|3n(n + 1), so 3n(n + 1) is even.
Therefore, 3n(n + 1) + 1 = (n + 1)3 − n3 is odd, so (n + 1)3 − n3 is not

divisible by 2.

Proof. Let n ∈ Z.
We must prove (n + 1)3 − n3 is odd.
Observe that (n + 1)3 − n3 = 3n2 + 3n + 1 = 3n(n + 1) + 1.
By the division algorithm, either n = 2q or n = 2q + 1 for some integer q.
We consider each case separately.
Case 1: Suppose n = 2q.
Then

(n + 1)3 − n3 = 3n(n + 1) + 1

= 3(2q)(2q + 1) + 1

= 2(3q)(2q + 1) + 1.

Therefore, (n + 1)3 − n3 = 2k + 1 for some integer k = 3q(2q + 1), so
(n + 1)3 − n3 is odd.

Case 2: Suppose n = 2q + 1.
Then
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(n + 1)3 − n3 = 3n(n + 1) + 1

= 3(2q + 1)((2q + 1) + 1) + 1

= 3(2q + 1)(2q + 2) + 1

= 3(2q + 1)(2)(q + 1) + 1

= 2(3)(2q + 1)(q + 1) + 1.

Therefore, (n + 1)3 − n3 = 2k + 1 for some integer k = 3(2q + 1)(q + 1), so
(n + 1)3 − n3 is odd.

Therefore, in all cases, (n + 1)3 − n3 is odd, so (n + 1)3 − n3 is not divisible
by 2.

Exercise 41. Let n ∈ Z+ and p is a prime number.
Then p cannot divide both n and n + 1.

Proof. Suppose p divides both n and n + 1.
Then p divides any linear combination of n and n + 1.
Since 1 = (n + 1)− n = (−1)n + (1)(n + 1) is a linear combination of n and

n + 1, then p divides 1.
The only positive integer that divides 1 is 1, so p = 1.
But, p is prime, so p > 1.
Therefore, p cannot divide both n and n + 1.

Exercise 42. Let n ∈ Z+.
Then n(n + 1) is not a square.

Proof. TODO FINISH PROOF
If n = 1, then 1(1 + 1) = 2 is not a square.

Suppose n(n + 1) is a square.
Then n 6= 1, so n > 1, and there exists an integer m such that n(n+1) = m2.
We may assume m > 0, since (−m)2 = m2.
If m = 1, then 1 = 12 = m2 = n(n + 1), so n|1.
Hence, n = 1.
But, this contradicts the fact n > 1.
Therefore, m 6= 1.
Since n > 1, then n ≥ 2, so n + 1 ≥ 3.
Thus, m2 = n(n + 1) ≥ 6.
If m = 2, then m2 = 4 < 6 ≤ m2, a contradiction.
Thus, m 6= 2, so m > 2.
Suppose m is prime.
Since m > 2, then m is odd, so m2 is odd.
Hence, n(n + 1) = m2 is odd.
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But, this contradicts the fact that the product of two consecutive integers is
even and n(n + 1) is even.

Therefore, m cannot be prime.
Since m 6= 1, then this implies m must be composite.
Since n(n + 1) = m2 is even, then m is even, so 2|m.

Exercise 43. Let p be a prime.
For what primes p is 17p + 1 a perfect square?

Solution. Using SageMath we find p = 19 implies 17(19) + 1 = 324 = 182 is a
perfect square.

We try other larger primes and still we only get p = 19, so we conjecture
that 17p + 1 is a square iff p = 19.

We shall prove 17p + 1 is a square iff p = 19.

Proof. We first prove if p = 19, then 17p + 1 is a square.
Suppose p = 19.
Then 17p + 1 = 17(19) + 1 = 324 = 182 is a perfect square.

Proof. Conversely, suppose 17p + 1 is a square.
Then 17p + 1 = n2 for some integer n.
Hence, 17p = n2 − 1 = (n− 1)(n + 1).
Since p is prime, then p > 1, so 17p > 17 > 1.
Thus, by the Fundamental Theorem of Arithmetic, 17p = (n− 1)(n+ 1) has

a unique prime factorization.
Hence, either 17 = n− 1 or 17 = n + 1.

Suppose 17 = n + 1.
Then n = 16, so 256 = 162 = 17p + 1.
Hence, 255 = 17p, so p = 15 = 3 · 5, a composite number.
But, this contradicts that p is a prime number.
Consequently, 17 6= n + 1, so 17 = n− 1.
Thus, n = 18, so 324 = 182 = 17p + 1.
Therefore, 323 = 17p, so p = 19, as desired.

Exercise 44. Find the smallest positive integer n such that n + 1, n + 2, n + 3
are all composite.

a. If n = 5! + 1, show that n + 1, n + 2, n + 3, n + 4 are composite.
b. Find a sequence of 100 consecutive composite numbers.

Solution. We see that n = 7 is the smallest positive integer for which 7 + 1 =
8 = 23 and 7 + 2 = 9 = 32 and 7 + 3 = 10 = 2 ∗ 5 are all composite.
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a. Let n = 5! + 1 = 120 + 1 = 121.
Then n + 1 = 121 + 1 = 122 = 2 ∗ 61 is composite and n + 2 = 121 + 2 =

123 = 3 ∗ 41 is composite and n + 3 = 121 + 3 = 124 = 4 ∗ 31 is composite
and n + 4 = 121 + 4 = 125 = 5 ∗ 25 is composite. So, we have a sequence of 4
consecutive composite numbers.

b. Using SageMath we write a program to find a sequence of consecutive
composite numbers. The sequence starts with n = 370262 to 370361.

Exercise 45. Let n ∈ Z+ be composite and p be the least prime factor of n.
If p3 > n, then n

p is prime.

Solution. Try n = 11 ∗ 17 and p = 11.
Then 113 = 11 ∗ 11 ∗ 11 > 11 ∗ 17 and 11∗17

11 = 17 is prime.

Proof. Suppose p3 > n.
Since p is a factor of n, then p|n, so p ≤ n.
Since n is composite and p is prime, then p 6= n.
Thus, p < n.
Since p is prime, then p > 0, so 1 < n

p .
Since n

p > 1, then n
p is either prime or composite.

Suppose n
p is composite.

Since n
p > 1, then by FTA, n

p has a unique canonical prime factorization, so
n
p = qe11 ∗ q

e2
2 ∗ . . . qess for primes qi and positive integers ei with 1 ≤ i ≤ s.

Since n = p· np and p is the least prime factor of n, then n = p·qe11 ∗q
e2
2 ∗. . . qess ,

so p ≤ q1 < q2 < ... < qs.
Since p ≤ q1 and p < q2, then p2 < q1q2.
Thus, p2 < q1q2 . . . qs, so p2 < qe11 ∗ q

e2
2 ∗ . . . qess .

Since p3 > n and p > 0, then p2 > n
p = qe11 ∗ q

e2
2 ∗ . . . qess , so p2 > qe11 ∗ q

e2
2 ∗

. . . qess .
Hence, we have p2 > qe11 ∗ q

e2
2 ∗ . . . qess and p2 < qe11 ∗ q

e2
2 ∗ . . . qess , a contra-

diction.
Therefore, n

p is not composite, so n
p is prime.

Exercise 46. Let N ∈ Z+ be odd.
Then there exists a ∈ Z such that N + a2 = b2 for some b ∈ Z.

Solution. For N = 1, let a = 0. Then 1 + 02 = 1 = 12, so b = 1.
For N = 3, let a = 1. Then 3 + 12 = 4 = 22, so b = 4.
For N = 5, let a = 2. Then 5 + 22 = 9 = 32, so b = 9.
For N = 7, let a = 3. Then 7 + 32 = 16 = 42, so b = 16.

Proof. Let a = N−1
2 and let b = N+1

2 .
Since N is odd, then N − 1 and N + 1 are both even.
Thus, N−1

2 and N+1
2 are integers, so a ∈ Z and b ∈ Z.
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Observe that

N + a2 = N + (
N − 1

2
)2

= N +
N2 − 2N + 1

4

=
4N + N2 − 2N + 1

4

=
N2 + 2N + 1

4

=
(N + 1)2

4

= (
N + 1

2
)2

= b2.

Exercise 47. Let p, q ∈ Z+.
If p and q are prime and p|q, then p = q.

Proof. Suppose p and q are prime and p|q.
Since q is prime, then the only positive divisors of q are 1 and q.
Since p ∈ Z+ and p|q, then this implies either p = 1 or p = q.
Since p is prime, then p > 1, so p 6= 1.
Therefore, p = q.

Exercise 48. Let p, a, n ∈ Z+.
If p is prime and p|an, then pn|an.

Proof. Suppose p is prime and p|an.
Then by a corollary to Euclid’s lemma, p|a.
By the previous lemma, we know if p|a, then pn|an.
Since p|a, then we conclude pn|an.

Exercise 49. There do not exist positive integers a and b such that a2 = 2b2.
This implies that

√
2 cannot be a rational number.

Proof. Suppose there exist positive integers a and b such that a2 = 2b2.
Then 2|a2, so a2 is even and 2 is a prime factor of a2 and 2 ≤ a2.
Since a2 ≥ 2, then a2 > 1.
Since a2 is even, then a is even, so a = 2k for some integer k.
Therefore, 2b2 = a2 = (2k)2 = 4k2, so b2 = 2k2.
Thus, 2|b2, so 2 is a prime factor of b2 and 2 ≤ b2.
Since b2 ≥ 2, then b2 > 1.
By lemma 35, each prime factor of a square number greater than one has

even exponent, so b2 has 22e1 prime factor for some positive integer e1.
Since a2 = 2b2, then a2 has prime factor 2 ∗ 22e1 = 22e1+1.
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But, 2e1 + 1 is an odd integer which means the prime factor 2 has odd
exponent for the square number a2.

This contradicts the fact that each prime factor of a square number greater
than one has even exponent.

Therefore, there do not exist integers a and b such that a2 = 2b2.

Proof. Suppose there exist positive integers a and b such that a2 = 2b2 and
gcd(a, b) = 1.

Since a2 = 2b2, then b|a2.
Since b ∈ Z+, then b ≥ 1, so either b > 1 or b = 1.

Suppose b = 1.
Then a2 = 2(1)2 = 2, so 2 is a square integer.
But, there is no integer whose square is 2, so b 6= 1.

Suppose b > 1.
Since every integer greater than 1 has a prime factor, then b has a prime

factor p, so p|b.
Since p|b and b|a2, then p|a2.
Since p is prime and p|a2, then by Euclid’s lemma, p|a.
Since p|a and p|b, the p is a common divisor of a and b, so p| gcd(a, b).
Since gcd(a, b) = 1, then this implies p|1, so p = 1.
But, p is prime, so p > 1.
Thus, we have p = 1 and p > 1, a contradiction.
Hence, b cannot be greater than 1.

Since b 6= 1 and b cannot be greater than 1, then b cannot exist, so a cannot
exist.

Therefore, there are no positive integers a and b such that a2 = 2b2 and
gcd(a, b) = 1.

Exercise 50. Let n ∈ Z+.
If n ≥ 4 and n divides 2n − 2, then 2n−2

n is not prime.

Proof. Suppose n ≥ 4 and n divides 2n − 2.
Since n divides 2n − 2, then 2n − 2 = nk for some integer k and 2n−2

n ∈ Z.

Hence, nk
2 = 2n−1 − 1.

Since n ≥ 4, then n > 1, so n− 1 > 0.
Thus, 2n−1 ∈ Z, so 2n−1 − 1 ∈ Z.
Consequently, nk

2 ∈ Z, so 2|nk.
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Suppose n is even.
Then n = 2m for some integer m, so 2|n.
We prove gcd(2n − 2, n) = 2 because n ≥ 4.
Since 2|2n and 2|2, then 2 divides the difference 2n − 2.
Since 2|n and 2 divides 2n − 2, then 2 is a common divisor of 2n − 2 and n.
Let c be any common divisor of 2n − 2 and n.
Then c|2n− 2 and c|n, so 2n− 2 = cx and n = cy for some integers x and y.
We prove c|2.
TODO FINISH PROOF.
Then we divide by 2 to get 2n−2

2 = 2n−1 − 1 and this we would like to
conclude that the numerator when divided by 2 and the denominator when
divided by 2 would be relatively prime.

We must also show that this must be a fraction and cannot be an integer,
so we must also show that 2n − 1 6= 0 and 2n − 1 6= m and m 6= 1.

This would imply the ratio is actually not an integer which means n cannot
be even, so n must be odd.

Since n is odd, then 2 cannot divide n.
Since 2 is prime and 2|nk, then either 2|n or 2|k, by Euclid’s lemma.
Since 2 does not divide n, then we conclude 2|k.
Thus, k

2 ∈ Z.

Since 2n−1 − 1 = (n)k
2 , then n divides 2n−1 − 1.

Thus, 2n divides 2(2n−1 − 1), so 2n divides 2n − 2.
Hence, 2n − 2 = 2na for some integer a, so 2n−2

n = 2a.

Therefore, 2 divides 2n−2
n , so 2n−2

n is not prime.

But, we must also show that 2n−2
n 6= 2, too!

Thus, we must also prove 2n > 2n + 2 for all n ≥ 4 ( by induction).
This would show that 2n−2

n > 2 for all n ≥ 4, so 2n−2
n 6= 2.

Definition 51. Mersenne prime
A prime number of the form 2p − 1 is a Mersenne prime iff p is prime.

Mersenne primes = {2p − 1 : p is prime } = {3, 7, 31, 127, 8191, ...}
It is not known whether there are infinitely many Mersenne primes.

Exercise 52. Mersenne prime exercise
Let n ∈ N.
If 2n − 1 is prime, then n is prime.

Solution. We can try proof by contrapositive, since direct proof doesn’t seem
to lead us anywhere.

If n is a natural number that is not prime, then n is either 1 or a composite
number.

If n is 1, then 21 − 1 = 1 which is not prime.
If n is composite, then n > 2, and n is either even or odd.
If n is even and n > 2, then n = 2k, k ∈ Z. Since 2n − 1 = 22k − 1 =

(2k)2 − 1 = (2k + 1)(2k − 1), so 2k − 1 and 2k + 1 are integers.
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If n > 2 and even, then n ≥ 4, so k ≥ 2. Thus, 2k − 1 ≥ 3 and 2k + 1 ≥ 5.
Thus each factor is greater than 1 and less than 2n − 1. Hence, 2n − 1 is

composite if n > 2 and n is even.
If n is composite and odd, then n ≥ 9 since 9 is the smallest composite odd

natural number. The set of composite odd natural numbers is {9, 15, 21, 25, 27, 33, 35, 39, 45, ...}.
Thus this set consists of natural numbers that are divisible by 3 or 5 or

both. If 3|n, then n = 3k, k ∈ Z. Thus, 2n − 1 = 23k − 1. Since a3 − 1 =
(a − 1)(a2 + a + 1), then 2n − 1 = (2k)3 − 1 = (2k − 1)(22k + 2k + 1). Since
n ≥ 9, then k ≥ 3, so 2k − 1 > 1.

Since 2k − 1, 22k + 2k + 1 ∈ Z, then 2n − 1 is composite for odd composites
divisible by 3.

If 5|n, then n = 5k, k ∈ Z, so 2n − 1 = 25k − 1 = (2k)5 − 1. Since a5 − 1 =
(a−1)(a4+a3+a2+a+1), then 2n−1 = (2k)5−1 = (2k−1)(24k+23k+22k+2k+1).

Since 5|n, then the smallest n is 15, so k ≥ 5. Thus 2k−1 ≥ 31, so 2k−1 > 1.
Thus each factor is greater than 1. Hence if n is an odd composite and 5|n,

then 2n − 1 is composite. We write this up in a logical coherent proof.

Proof. We prove by contrapositive.
Suppose n is not prime.
Then either n = 1 or n is composite.
We consider these cases separately.
Case 1: Suppose n = 1.
Then 2n − 1 = 21 − 1 = 1 is not prime.
Case 2: Suppose n is composite.
Then there exist integers a and b with 1 < a < n and 1 < b < n such that

n = ab.
Since a ∈ Z, then 2a ∈ Z, so 2a − 1 ∈ Z.
Since 1 < a < n, then 1 < a and a < n.
Since a ∈ Z and a > 1, then 2a > 2, so 2a − 1 > 1.
Since a, n ∈ Z and a < n, then 2a < 2n, so 2a − 1 < 2n − 1.
Since 1 < 2a − 1 and 2a − 1 < 2n − 1, then 1 < 2a − 1 < 2n − 1.
Since 0 < 1 < b < n, then 0 < b.
Since b ∈ Z and b > 0, then b ∈ Z+.
Since b ∈ Z+ and 2a ∈ Z, then by a previous proposition, 2a − 1 divides

(2a)b − 1b = 2ab − 1 = 2n − 1.
Since 2a − 1 ∈ Z and 1 < 2a − 1 < 2n − 1 and 2a − 1 divides 2n − 1, then

2n − 1 is composite, so 2n − 1 is not prime.
Therefore, in all cases, 2n − 1 is not prime, as desired.

Proof. We use proof by contrapositive.
Suppose n is a natural number that is not prime.
Then n is either 1 or n is composite. We consider these cases separately.
Case 1: Suppose n is 1.
Then 21 − 1 = 1 and 1 is not prime.
Case 2: Suppose n is composite, then n > 2.
Either n is even or n is odd. We consider each case separately.
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Case 2a: Suppose n is even.
Then n ≥ 4 since 4 is the least even composite natural number and n =

2k, k ∈ Z.
We have 2n − 1 = 22k − 1 = (2k)2 − 1 = (2k − 1)(2k + 1).
Since k is an integer, then the factors 2k − 1 and 2k + 1 are integers.
Since n ≥ 4 then k ≥ 2, so 2k − 1 ≥ 3 and 2k + 1 ≥ 5.
Hence each factor of 2n − 1 is greater than 1.
Therefore 2n − 1 is composite if n is even.
Case 2b: Suppose n is odd.
Then n ≥ 9 since 9 is the least odd composite natural number.
The set of odd composite natural numbers is {9, 15, 21, 25, 27, 33, 35, 39, 45, ...}.
Thus this set consists of natural numbers larger than 8 that are divisible by

3 or 5 or both.
Let n be an arbitrary element of this set.
If 3|n, then n = 3k, k ∈ Z and n ≥ 9. Thus, 2n − 1 = 23k − 1 = (2k)3 − 1 =

(2k − 1)(22k + 2k + 1).
Since k is an integer, then the factors 2k − 1 and 22k + 2k + 1 are integers.
Since n ≥ 9 then k ≥ 3, so 2k − 1 ≥ 7 and 22k + 2k + 1 ≥ 73.
Hence each factor of 2n − 1 is greater than 1.
If 5|n, then n = 5k, k ∈ Z and n ≥ 15. Thus, 2n− 1 = 25k − 1 = (2k)5− 1 =

(2k − 1)(24k + 23k + 22k + 2k + 1).
Since k is an integer, then the factors 2k− 1 and 24k + 23k + 22k + 2k + 1 are

integers.
Since n ≥ 15 then k ≥ 3, so 2k − 1 ≥ 7 and 24k + 23k + 22k + 2k + 1 ≥ 4681.
Hence each factor of 2n − 1 is greater than 1.
Thus 2n − 1 is composite if n is odd.
Both cases show that whether n is an even composite or n is an odd com-

posite, then 2n − 1 is not prime.

Exercise 53. Fermat prime exercise
Let n ∈ N.
If 2n + 1 is prime, then n is a power of 2.

Proof. Since n ∈ N, then n ≥ 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then 2n + 1 = 21 + 1 = 3 is prime and n = 1 = 20, so n is a power of 2.
Case 2: Suppose n > 1.
Suppose 2n + 1 is prime.
To prove n is a power of 2, we must prove there exists an integer m such

that n = 2m.
Since n > 1, then 2n > 2, so 2n + 1 > 3.
Suppose for the sake of contradiction n is odd.
Since 2n + 1 = 2n − (−1) = 2n − (−1)n, then 2− (−1) divides 2n − (−1)n,

so 3 divides 2n + 1.
Since 1 < 3 < 2n + 1 and 3 divides 2n + 1, then 2n + 1 is composite.

33



But, this contradicts the fact that 2n + 1 is prime.
Hence, n is not odd, so n must be even.
Thus, 2|n.

Suppose for the sake of contradiction there is a prime p > 2 such that p|n.
Since n > 1 > 0, then n > 0.
Since p > 2 > 0, then p > 0.
Since p|n and p > 0 and n > 0, then n = pq for some q ∈ Z+.
Since p is prime and p > 2, then p is odd.
Since 2n + 1 = 2pq + 1 = 2qp− (−1) = (2q)p− (−1)p, then 2q − (−1) divides

(2q)p − (−1)p, so 2q + 1 divides 2n + 1.
Since q ∈ Z+, then 2q > 0, so 2q + 1 > 1.
Since n = pq, then q|n, so q ≤ n.
Hence, either q < n or q = n.
Suppose q = n.
Then n = pq = pn, so p = 1.
But, p > 2, so q 6= n.
Thus, q < n.
Since 0 < q < n, then 2q < 2n, so 2q + 1 < 2n + 1.
Since 2q + 1 ∈ Z and 1 < 2q + 1 < 2n + 1 and 2q + 1 divides 2n + 1, then

2n + 1 is composite.
But, this contradicts the fact that 2n +1 is prime, so there is no prime p > 2

such that p|n.
Since n > 1, then by the Fundamental theorem of Arithmetic, n has a unique

prime factorization.
Since 2|n, then 2 is a prime factor of n.
Since there is no prime p > 2 that divides n, then 2 is the only prime factor

of n.
Hence, n = 2m for some m ∈ Z+.

Exercise 54. Find all integer solutions of the equation xy + 2y − 3x = 25.

Solution. Let S be the solution set of the equation xy + 2y − 3x = 25.
Then S = {(x, y) ∈ Z× Z : xy + 2y − 3x = 25}.
We can factor and use multiplicative properties of integers.
Thus, y(x + 2)− 3(x + 2) = 25− 6.
Hence, (x + 2)(y − 3) = 19.
What are the factors of 19?
They are: 1,-1,19,-19.
Thus, we have 4 cases to consider.
We consider these cases separately.
Case 1: Suppose x + 2 = 1.
Then x = −1.
Hence, 1 ∗ (y − 3) = 19, so y = 22.
Substituting into the equation gives (−1)(22) + 2(22) − 3(−1) = 25, so

(−1, 22) is a solution.
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Case 2: Suppose x + 2 = −1.
Then x = −3.
Hence, −1 ∗ (y − 3) = 19, so y = −16.
Substituting into the equation gives (−3)(−16) + 2(−16) − 3(−3) = 25, so

(−3,−16) is a solution.
Case 3: Suppose x + 2 = 19.
Then x = 17.
Hence, 19(y − 3) = 19, so y = 4.
Substituting into the equation gives (17)(4) + 2(4) − 3(17) = 25, so (17, 4)

is a solution.
Case 4: Suppose x + 2 = −19.
Then x = −21.
Hence,(−19)(y − 3) = 19, so y = 2.
Substituting into the equation gives (−21)(2) + 2(2) − 3(−21) = 25, so

(−21, 2) is a solution.
Therefore, S = {(−1, 22), (−3,−16), (17, 4), (−21, 2)}.

Exercise 55. Let x, y ∈ N such that gcd(x, y) = 1.
If xy is a perfect square, then x and y are perfect squares.

Proof. Either x and y are both greater than 1 or x and y are both equal to 1
or one of x and y is greater than 1 and the other of x and y equals 1.

Thus, either x, y > 1 or x = y = 1 or x > 1, y = 1 or y > 1, x = 1.
We consider each case separately.
Case 1: Suppose x = y = 1.
Then xy = 1 ∗ 1 = 1 is a perfect square.
Since x = 1 = 12 = y, then x and y are perfect squares.
Therefore, xy is a perfect square implies x and y are perfect squares, as

desired.
Case 2: Suppose x > 1 and y = 1.
Then xy = x ∗ 1 = x.
Since y = 1 = 12, then y is a perfect square.
Suppose xy is a perfect square.
Then x = xy is a perfect square.
Thus, xy is a perfect square and x and y are perfect squares.
Therefore, xy is a perfect square implies x and y are perfect squares, as

desired.
Case 3: Suppose x = 1 and y > 1.
Then xy = 1 ∗ y = y.
Since x = 1 = 12, then x is a perfect square.
Suppose xy is a perfect square.
Then y = xy is a perfect square.
Thus, xy is a perfect square and x and y are perfect squares.
Therefore, xy is a perfect square implies x and y are perfect squares, as

desired.
Case 4: Suppose x > 1 and y > 1.
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Since x > 1, then by the fundamental theorem of arithmetic(FTA) there
exists a unique prime factorization of x, so there exist prime factors a1, a2, ..., ar
in the prime factorization of x.

Since y > 1, then by the fundamental theorem of arithmetic(FTA) there
exists a unique prime factorization of y, so there exist prime factors b1, b2, ..., bs
in the prime factorization of y.

Since x > 1 and y > 1, then xy > 1, so by the fundamental theorem of
arithmetic(FTA) there exists a unique prime factorization of xy.

Let a ∈ Z such that a > 1.
Then, by FTA, there exists a unique prime factorization of a, so a =

pk1
1 pk2

2 ...pkn
n for each distinct prime factor pi and each exponent ki ∈ N.

Hence, a2 = (pk1
1 pk2

2 ...pkn
n )2 = p2k1

1 p2k2
2 ...p2kn

n , so each distinct prime factor
in the prime factorization of a2 has even power.

Therefore, each distinct prime factor in the prime factorization of any square
number greater than 1 occurs an even number of times.

Since gcd(x, y) = 1, then x and y have no common factors greater than 1.
Since every prime number is greater than 1, then this implies every prime

factor ai of x cannot also be a factor of y.
Since ai|x and x|xy, then ai|xy, so each ai is a prime factor of xy.
Since xy is a square number, then each ai occurs an even number of times in

the prime factorization of xy, so each ai has even exponent 2di for some di ∈ Z.
Therefore, x = a2d1

1 ·a2d2
2 ... ·a2dr

r = (ad1
1 ·a

d2
2 ... ·adr

r )2, so x is a perfect square.

Since x and y have no common factors greater than 1 and every prime number
is greater than 1, then this implies every prime factor bi of y cannot also be a
factor of x.

Since bi|y and y|xy, then bi|xy, so each bi is a prime factor of xy.
Since xy is a square number, then each bi occurs an even number of times in

the prime factorization of xy, so each bi has even exponent 2ei for some ei ∈ Z.
Therefore, y = b2e11 · b2e22 ... · b2ess = (be11 · b

e2
2 ... · bess )2, so y is a perfect square.

Hence, if xy is a perfect square greater than 1, then x and y are square
numbers.

Therefore, in all cases, if xy is a perfect square, then x and y are square
numbers.

Exercise 56. There are an infinite number of primes of the form 6n + 1.

Proof. Let n ∈ Z+.
We prove there are an infinite number of primes of the form 6n + 1 by

contradiction.
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Suppose there are not an infinite number of primes of the form 6n + 1.
Then there are a finite number of primes of the form 6n + 1.
Let p1, p2, ..., pn be the primes of the form 6n + 1 for some integer n.
Let N = 6 ∗ p1 ∗ p2 ∗ ... ∗ pn + 1.
Since N > 1, then by FTA, N has a prime factorization.
Let r1 ∗ r2 ∗ .... ∗ rt be the prime factorization of N .
Then r1 ∗ r2 ∗ ... ∗ rt = N = 6 ∗ p1 ∗ p2 ∗ ... ∗ pn + 1, so 1 = r1 ∗ r2 ∗ .... ∗ rt −

(6 ∗ p1 ∗ p2 ∗ ... ∗ pn).
Is N prime? If so, then we have our contradiction.
So, let’s prove N must be prime.

Proof. Let P be the set of primes.
Then P = {2, 3, 5, 7, 11, 13, 17, 19, ...}.
Let pk be the kth prime where p1 = 2 and p2 = 3 and p3 = 5, etc.
Define predicate S(k) : p1 ∗ p2 ∗ ... ∗ pk + 1 is prime over Z+.
To prove there exist an infinite number of primes of the form 6n + 1, we

prove (∀n ∈ Z+, n > 1)(S(n)).
Basis:
Since 2 ∗ 3 + 1 = 7 is prime, then S(2) is true.
Induction:
Let k ∈ Z+ with k ≥ 2 such that S(k) is true.
Then p1 ∗ p2 ∗ ... ∗ pk + 1 is prime.
Let a = p1 ∗ p2 ∗ ... ∗ pk + 1 and b = p1 ∗ p2 ∗ ... ∗ pk ∗ pk+1 + 1.
Then a is prime and b = (a− 1)pk+1 + 1.
To prove S(k + 1), we must prove b is prime.

Since each prime is greater than one and k > 0, then p1 ∗ p2 ∗ ... ∗ pk > 1.
Thus, pk+1 > 1 and p1 ∗ p2 ∗ ... ∗ pk > 1 imply p1 ∗ p2 ∗ ... ∗ pk ∗ pk+1 > 1, so

p1 ∗ p2 ∗ ... ∗ pk ∗ pk+1 + 1 > 2.
Hence, p1 ∗ p2 ∗ ... ∗ pk ∗ pk+1 + 1 > 1.
Let a = p1 ∗ p2 ∗ ... ∗ pk + 1 and b = p1 ∗ p2 ∗ ... ∗ pk ∗ pk+1 + 1.
Then a is prime and b = (a− 1)pk+1 + 1.
By FTA, b has a unique prime factorization.
We can prove that any prime factor of b cannot be p1, p2, ..., pk, pk+1.
So, to prove b is prime, we need to prove there can be no prime factor p such

that pk+1 < p < b.
Suppose there exists a prime factor of b between pk+1 and b.
Let p be a prime factor of b such that pk+1 < p < b.
Then p|b, so there exists a positive integer c such that b = pc.
Since p < b, then p < pc, so 1 < c.
Hence, c > 1, so by FTA, c has a unique prime factorization.
Can any of the prime factors of c be greater than pk?
Can we derive a contradiction and use the induction hypothesis?
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Proof. Let P be the set of primes.
Then P = {2, 3, 5, 7, 11, 13, ...}.
Let S be the set of all primes of the form 6n + 1 for some n ∈ Z+.
Then S = {x ∈ P : x = 6n + 1, n ∈ Z+}, so S ⊂ P .
Since 6 ∗ 1 + 1 = 7 is prime, then 7 ∈ S, so S 6= ∅.

Suppose for the sake of contradiction S is finite.
Then there exists a greatest element g ∈ S.
Hence, g ∈ P and g = 6m + 1 for some m ∈ Z+.
Since g ∈ P , then g is prime.
Since g is the greatest element of S, then x ≤ g for all x ∈ S.

Since p1 < p2 < ... < g, let V be the set of all primes less than or equal to g.
Then V = {p1, p2, ..., g}.
Let N = (p1 ∗ p2 ∗ ... ∗ g) + 1.
Let T be the set of all primes less than N .
Then T = {p1, p2, ..., g, pw...}.
Pick p1 ∈ T .
Since 1 = N − (p1 ∗ p2 ∗ ... ∗ g) is a linear combination of N and the primes

in V .
Construct N so that N > g such that N is the product of all primes less

than g + 1.
What are all of the primes less than N?
Let M = p1 ∗ p2 ∗ ... ∗ pm be the product of all primes less than N where

p1 = 2 and p2 = 3 and p3 = 5, etc.
Let N = (p1 ∗ p2 ∗ ... ∗ pm) + 1.
We claim N must be prime and yet also N ∈ S and prove N is bigger than

g, which contradicts that fact that g is the greatest element of S. This would
then prove S is not finite, so S must be infinite.

Observe that

N = (p1 ∗ p2 ∗ p3 ∗ ... ∗ pm) + 1

= (2 ∗ 3 ∗ p3 ∗ ... ∗ pm) + 1

= (6 ∗ p3 ∗ ... ∗ pm) + 1.

Therefore, N = 6(p3 ∗ ... ∗ pm) + 1.
How do we prove N is prime?

Exercise 57. Suppose p and q are prime numbers with p 6= q.
Then 3

√
pq is irrational.

Proof. Suppose 3
√
pq is rational.

Then there exist integers a and b with b 6= 0 such that 3
√
pq = a

b .
Hence, pq = (a

b )3,
Since p is prime, then p > 1.
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Since q is prime, then q > 1.
Thus, pq > 1.
Hence, 1 < pq = (a

b )3.
Taking the cube root, we obtain 1 < a

b .
Assume without loss of generality b > 0.
Since 1 < a

b and b > 0, we multiply by b to obtain b < a.
Thus, 0 < b < a.

Suppose b = 1.
Then pq = (a

b )3 = (a
1 )3 = a3, so pq = a3.

Since b < a and b = 1, then 1 < a, so a > 1.
By FTA, a has a unique prime factorization, so a = xe1

1 · x
e2
2 · ... · x

ek
k for

distinct primes x1, x2, ..., xk and positive integer exponents e1, e2, ..., ek.
Thus, a3 = (xe1

1 · x
e2
2 · ... · x

ek
k )3 = x3e1

1 · x3e2
2 · ... · x3ek

k = pq.
Since a3 = pq, then p is a prime factor of a3, so p must be one of the prime

factors xi.
Since each ei ≥ 1, then each 3ei ≥ 3.
Hence, each prime factor xi occurs at least 3 times in the prime factorization

of a3.
But, p occurs only once in the prime factorization of a3, since p 6= q.
Thus, we must conclude b 6= 1.

Since b ∈ Z and b > 0 and b 6= 1, then b > 1.

Since pq = (a
b )3 = a3

b3 , then pqb3 = a3, so p divides a3.
Since a > b > 0, then a > 0.
Since a > 0 and a ∈ Z and p is prime and p divides a3, then by Euclid’s

lemma, p divides a, so p ≤ a.
Since 1 < p ≤ a, then 1 < a, so a > 1.
By FTA, a has a unique prime factorization, so a = xe1

1 · x
e2
2 · ... · x

ek
k for

distinct primes x1, x2, ..., xk and positive integer exponents e1, e2, ..., ek.
Thus, a3 = (xe1

1 · x
e2
2 · ... · x

ek
k )3 = x3e1

1 · x3e2
2 · ... · x3ek

k = pqb3.

Since b > 1, then by FTA, b has a unique prime factorization, so b = yf11 ·
yf22 · ... · yfmm for distinct primes y1, y2, ..., ym and positive integer exponents
f1, f2, ..., fm.

Thus, b3 = (yf11 · y
f2
2 · ... · y

fm
k )3 = y3f11 · y3f22 · ... · y3fmm , so a3 = pq(y3f11 · y3f22 ·

... · y3fmm ).

Hence, a3 = x3e1
1 · x3e2

2 · ... · x3ek
k = pq(y3f11 · y3f22 · ... · y3fmm ).

Since p is prime and p divides a3, then p is a prime factor of a3, so p must
be one of the primes xi.

Let t be the number of occurrences of p in the prime factorization of a3.
Then t = 3ej for some ej ∈ Z+.
Since ej ≥ 1, then t = 3ej ≥ 3, so t ≥ 3.
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Either p is one of the primes yw or not.
We consider these cases separately.
Case 1: Suppose p is not one of the primes yw in the prime factorization of

a3.
Since p 6= q, then this implies p occurs exactly once in the prime factorization

of a3, so t = 1.
But, this contradicts the fact that t ≥ 3.
Case 2: Suppose p is one of the primes yw in the prime factorization of a3.
Then p = yw for some w ∈ {1, 2, ...,m}.
Since p 6= q, then this implies p occurs 1+3fw times in the prime factorization

of a3, where fw ∈ Z+.
Hence, t = 1 + 3fw.
Thus, 3ej = t = 1 + 3fw, so 3ej − 3fw = 1.
Therefore, 3(ej − fw) = 1, so 3 divides 1, a contradiction.

Consequently, in all cases a contradiction is reached, so we are forced to
conclude the assumption 3

√
pq is rational is false.

Therefore, 3
√
pq is irrational.

Exercise 58. For every positive integer n, there exists an integer divisible by
n distinct primes.

Solution. The statement to prove is below.
(∀n ∈ Z+)(∃k ∈ Z) (k is divisible by n distinct primes).

Proof. Let n ∈ Z+.
Then either n = 1 or n > 1.
We consider each case separately.
Case 1: Suppose n = 1.
Let k = 2.
Since 2 is prime and 2|2, then k is divisible by 1 prime.
Case 2: Suppose n > 1.
Then n ≥ 2.
Let S be the set of distinct primes pi such that p1 < p2 < ... < pn for

i ∈ {1, 2, ..., n}.
Then p1 ∈ S and p2 ∈ S and |S| = n.
Let k be the product of all the primes in S.
Since k is the product of primes and every prime is an integer and Z is closed

under multiplication, then k ∈ Z.
Since p1 < p2, then p1 6= p2.
Since p1 ∈ S, then S 6= ∅.
Let pi ∈ S be arbitrary.
Let t be the product of all primes in the set S − {pi}.
Since p2 ∈ S and p2 6= p1, then p2 ∈ S − {pi}, so S − {pi} 6= ∅.
Since pi ∈ S, then pi is one factor of k.
Since t is the product of all primes in S − {pi}, then t is the product of all

primes of S except for the prime pi.
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Therefore, k = pit.
Since t is a product of primes and every prime is an integer and Z is closed

under multiplication, then t ∈ Z.
Since t ∈ Z and k = pit, then pi|k.
Hence, if pi ∈ S, then pi|k, so pi|k for every pi ∈ S.
Thus, every prime number of S divides k.
Since |S| = n, then there are n distinct primes that divide k.
Therefore, there is an integer k such that k is divisible by n distinct primes.
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