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Congruences

Exercise 1. Write up justifications for the basic examples of congruence modulo
definition.

a. 3 ≡ 24 (mod 7).
b. −31 ≡ 11 (mod 7).
c. −15 ≡ −64 (mod 7).
d. 25 6≡ 12 (mod 7).

Proof. Since 7(−3) = −21 = 3− 24, then 7 divides 3− 24, so 3 is congruent to
24 modulo 7.

Therefore, 3 ≡ 24 (mod 7).

Proof. Since 7(−6) = −42 = −31 − 11, then 7 divides −31 − 11, so −31 is
congruent to 11 modulo 7.

Therefore, −31 ≡ 11 (mod 7).

Proof. Since 7(7) = 49 = −15 − (−64), then 7 divides −15 − (−64), so −15 is
congruent to −64 modulo 7.

Therefore, −15 ≡ −64 (mod 7).

Proof. Since 7 does not divide 13 = 25 − 12, then 25 is not congruent to 12
modulo 7.

Therefore, 25 6≡ 12 (mod 7).

Exercise 2. Any two integers are congruent modulo 1
Let a, b ∈ Z.
Then a ≡ b (mod 1).

Proof. Since 1 divides any integer, then 1 divides the difference a− b, so a ≡ b
(mod 1).

Exercise 3. Two integers are congruent modulo 2 when they are both
even or both odd

Let a, b ∈ Z.
Then a ≡ b (mod 2) iff a and b are either both even or both odd.

Proof. We first prove if a and b are both even or both odd, then a ≡ b (mod 2).



Suppose a and b are both even or both odd.
Then either a and b are both even or a and b are both odd.
We consider these cases separately.
Case 1: Suppose a and b are both even.
Then a = 2m and b = 2n for some integers m and n.
Thus, a− b = 2m− 2n = 2(m− n), so 2|(a− b).
Therefore, a ≡ b (mod 2).
Case 2: Suppose a and b are both odd.
Then a = 2m+ 1 and b = 2n+ 1 for some integers m and n.
Thus, a− b = (2m+ 1)− (2n+ 1) = 2m+ 1− 2n− 1 = 2m− 2n = 2(m−n),

so 2|(a− b).
Therefore, a ≡ b (mod 2).

Proof. Conversely, we prove if a ≡ b (mod 2), then a and b are either both even
or both odd.

We prove by contradiction.

Suppose a ≡ b (mod 2) and neither a and b are both even nor both odd.
Then either a and b are not both even or a and b are not both odd, so either

a is even and b is odd, or a is odd and b is even.
We consider these cases separately.
Case 1: Suppose a is even and b is odd.
Then a = 2m and b = 2n+ 1 for some integers m and n.
Thus, a−b = 2m−(2n+1) = 2m−2n−1 = 2m−2n−2+1 = 2(m−n−1)+1,

so 2 6 |(a− b).
Therefore, a 6≡ b (mod 2).
But, this contradicts the assumption a ≡ b (mod 2).
Case 2: Suppose a is odd and b is even.
Then a = 2m+ 1 and b = 2n for some integers m and n.
Thus, a− b = (2m+ 1)− 2n = 2m− 2n+ 1 = 2(m− n) + 1, so 2 6 |(a− b).
Therefore, a 6≡ b (mod 2).
But, this contradicts the assumption a ≡ b (mod 2).

In all cases, we reach a contradiction.
Therefore, if a ≡ b (mod 2), then a and b are either both even or both

odd.

Exercise 4. Since −56 = (−7)9 + 7 and −11 = (−2)9 + 7, then −56 and −11
leave the same remainder 7 when divided by 9.

Therefore, −56 ≡ −11 (mod 9).

Exercise 5. Show that 41 divides 220 − 1.

Solution. Since 41|32− (−9), then 25 = 32 ≡ −9 (mod 41).
Since 41 · 2 = 82 = 81 − (−1), then 41 divides 81 − (−1), so 81 ≡ −1

(mod 41).
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Observe that

220 = (25)4

≡ (−9)4 (mod 41)

≡ 94 (mod 41)

≡ 812 (mod 41)

≡ (−1)2 (mod 41)

≡ 1 (mod 41).

Therefore, 220 ≡ 1 (mod 41), so 41|(220 − 1).

We observe the prime factorization is 220 − 1 = 3 ∗ 52 ∗ 11 ∗ 31 ∗ 41.

Exercise 6. Find the remainder when the sum 1! + 2! + 3! + 4! + ...+ 99! + 100!
is divided by 12.

Solution. Observe that 4! = 24 ≡ 0 (mod 12).
Observe that 5! = 4! ∗ 5 and 6! = 4! ∗ 5 ∗ 6 and 7! = 4! ∗ 5 ∗ 6 ∗ 7 and ...

k! = 4! ∗ 5 ∗ ... ∗ (k − 1) ∗ k, for any integer k ≥ 4.
For any k ≥ 4, we have

k! = 4! ∗ 5 ∗ . . . ∗ (k − 1) ∗ k
≡ 0 ∗ 5 ∗ . . . ∗ (k − 1) ∗ k (mod 12)

≡ 0 (mod 12)..

Thus, k! ≡ 0 (mod 12) for any k ≥ 4, so 4! ≡ 0 (mod 12) and 5! ≡ 0
(mod 12) and ... and 100! ≡ 0 (mod 12).

Observe that

1! + 2! + 3! + 4! + ...+ 99! + 100! = (1! + 2! + 3!) + (4! + 5! + . . .+ 100!)

= 9 + (4! + 5! + . . .+ 100!)

≡ 9 + (0 + 0 + . . .+ 0) (mod 12)

≡ 9 (mod 12).

Hence, 12 divides (1! + 2! + ...+ 100!)− 9, so 1! + 2! + ...+ 100!− 9 = 12m
for some integer m.

Thus, 1! + 2! + ...+ 100! = 12m+ 9.
Therefore, by the division algorithm, when 1! + 2! + ...+ 100! is divided by

12, the remainder is 9.

Exercise 7. What does 33 ≡ 15 (mod 9) imply?

Solution. Since 9·2 = 18 = 33−15, then 9 divides 33−15, so 33 ≡ 15 (mod 9).
Thus, 3 · 11 ≡ 3 · 5 (mod 9).
Since gcd(9, 3) = 3, then we conclude 11 ≡ 5 (mod 9

3 ).
Therefore, 11 ≡ 5 (mod 3).
Indeed, 3 ∗ 2 = 6 = 11− 5, so 3 divides 11− 5.
Hence, 11 ≡ 5 (mod 3).
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Exercise 8. What does −35 ≡ 45 (mod 8) imply?

Solution. Since 8(−10) = −80 = −35 − 45, then 8 divides −35 − 45, so
−35 ≡ 45 (mod 8).

Thus, (−7)5 ≡ 9(5) (mod 8).
Since gcd(8, 5) = 1, then we may cancel to obtain −7 ≡ 9 (mod 8).
Indeed, 8 divides the difference −7− 9 = −16 = 8(−2).

Exercise 9. Show that ab ≡ 0 (mod n) does not imply a ≡ 0 (mod n) or b ≡ 0
(mod n).

Solution. Let n = 12 and a = 4 and b = 3.
Then 4 · 3 ≡ 0 (mod 12), but 4 6≡ 0 (mod 12) and 3 6≡ 0 (mod 12).

Proposition 10. Let n ∈ Z+.
Let a, b ∈ Z.
If ab ≡ 0 (mod n) and gcd(a, n) = 1, then b ≡ 0 (mod n).

Proof. Suppose ab ≡ 0 (mod n) and gcd(a, n) = 1.
Since ab ≡ 0 (mod n), then n|ab− 0, so n|ab.
Since n|ab and gcd(n, a) = 1, then n|b, so n|b− 0.
Therefore, b ≡ 0 (mod n).

Proposition 11. Let p ∈ Z+.
Let a, b ∈ Z.
If ab ≡ 0 (mod p) and p is prime, then either a ≡ 0 (mod p) or b ≡ 0

(mod p).

Proof. Suppose ab ≡ 0 (mod p) and p is prime.
Since ab ≡ 0 (mod p), then p|ab.
Since p is prime and p|ab, then either p|a or p|b, by Euclid’s lemma.
Therefore, either a ≡ 0 (mod p) or b ≡ 0 (mod p).

Exercise 12. Let n ∈ Z+ and a, b ∈ Z.
Show that ac ≡ bc (mod n) does not necessarily imply a ≡ b (mod n).

Solution. Let n = 6 and a = 10 and b = 7 and c = 2.
Since 6 · 1 = 6 = 20− 14, then 6 divides 20− 14 = 10 · 2− 7 · 2, so 6 divides

10 · 2− 7 · 2.
Thus, 10 · 2 ≡ 7 · 2 (mod 6).
Since 6 6 |3 and 3 = 10− 7, then 6 does not divide 10− 7, so 10 6≡ 7 (mod 6).
Therefore, 10 · 2 ≡ 7 · 2 (mod 6), but 10 6≡ 7 (mod 6).

Exercise 13. Let m,n ∈ Z+ and a, b ∈ Z.
If a ≡ b (mod n) and m|n, then a ≡ b (mod m).

Proof. Suppose a ≡ b (mod n) and m|n.
Since a ≡ b (mod n), then n|a− b.
Since m|n and n|a− b, then m|a− b
Therefore, a ≡ b (mod m).
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Proposition 14. Let n, c ∈ Z+ and a, b, c ∈ Z.
If a ≡ b (mod n), then ac ≡ bc (mod nc).

Proof. Suppose a ≡ b (mod n).
Then n|a− b.
Hence, nc|(a− b)c, so nc|ac− bc.
Therefore, ac ≡ bc (mod nc).

Exercise 15. Let n, d ∈ Z+ and a, b ∈ Z.
If a ≡ b (mod n) and the integers a, b, n are all divisible by d, then a

d ≡
b
d

(mod n
d ).

Proof. Suppose a ≡ b (mod n) and d|a and d|b and d|n.
Since a ≡ b (mod n), then n|a− b, so a− b = nk for some integer k.
Since d|a, then a = dk1 for some integer k1, so k1 = a

d .
Therefore, a

d ∈ Z.

Since d|b, then b = dk2 for some integer k2, so k2 = b
d .

Therefore, b
d ∈ Z.

Since d|n, then n = dk3 for some integer k3, so k3 = n
d .

Therefore, n
d ∈ Z.

Since a−b = nk, then we divide by d > 0 to obtain a
d−

b
d = a−b

d = nk
d = n

d ·k.

Therefore, n
d divides the difference a

d −
b
d , so a

d ≡
b
d (mod n

d ).

Exercise 16. Let n ∈ Z+ and a, b ∈ Z.
Show that a2 ≡ b2 (mod n) does not necessarily imply a ≡ b (mod n).

Solution. Let n = 4 and a = 5 and b = 3.
Since 16 = 4 · 4 = 25− 9, then 4 divides 25− 9, so 25 ≡ 9 (mod 4).
Since 4 6 |2 and 2 = 5− 3, then 4 does not divide 5− 3, so 5 6≡ 3 (mod 4).
Therefore, 25 ≡ 9 (mod 4) does not imply 5 ≡ 3 (mod 4).

Exercise 17. Let n ∈ Z+ and a, b ∈ Z.
If a ≡ b (mod n), then gcd(a, n) = gcd(b, n).

Proof. Suppose a ≡ b (mod n).
Then n|a− b, so a− b = nk for some integer k.
Let d = gcd(a, n).
Then d|a and d|n and if any integer c divides both a and n, then c|d.
Since d|a and d|n, then d divides any linear combination of a and n.
Since b = a− nk is a linear combination of a and n, then d|b.
Since d|b and d|n, then d is a common divisor of b and n.

Let c be any common divisor of b and n.
The c|b and c|n, so c divides any linear combination of b and n.
Since a = b+ nk is a linear combination of b and n, then c|a.
Since c|a and c|n, then we conclude c|d.
Therefore, any common divisor of b and n divides d.
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Since d is a common divisor of b and n and any common divisor of b and n
divides d, then d = gcd(b, n).

Therefore, gcd(a, n) = gcd(b, n).

Exercise 18. What is the remainder when 250 is divided by 7?

Solution. Since 25 = 32 ≡ 4 (mod 7), then 210 = (25)2 ≡ 42 (mod 7) ≡ 16
(mod 7) ≡ 2 (mod 7), so 210 ≡ 2 (mod 7).

Observe that

250 = (210)5

≡ 25 (mod 7)

≡ 32 (mod 7)

≡ 4 (mod 7).

Hence, 250 ≡ 4 (mod 7), so 7|250 − 4.
Therefore, 250 − 4 = 7k for some integer k, so 250 = 7k + 4.
By the division algorithm, the remainder is 4.

Exercise 19. What is the remainder when 4165 is divided by 7?

Solution. Observe that 41 ≡ −1 (mod 7).
Thus,

4165 ≡ (−1)65 (mod 7)

≡ −1 (mod 7)

≡ 6 (mod 7).

Consequently, 4165 ≡ 6 (mod 7), so 7 divides 4165 − 6.
Hence, 4165 − 6 = 7k for some integer k, so 4165 = 7k + 6.
Therefore, by the division algorithm, when 4165 is divided by 7 the remainder

is 6.

Exercise 20. What is the remainder when the sum 15+25+35+ ...+995+1005

is divided by 4?

Solution. TODO
We observe that
15 ≡ 1 (mod 4)
25 ≡ 0 (mod 4)
35 ≡ 3 (mod 4)
45 ≡ 0 (mod 4)
55 ≡ 1 (mod 4)
65 ≡ 0 (mod 4)
75 ≡ 3 (mod 4)
85 ≡ 0 (mod 4)
95 ≡ 1 (mod 4)
Do we see a pattern or patterns?

6



Maybe if k ≡ 1 (mod 4), then k5 ≡ 1 (mod 4). Can we prove this?
If k is even, then k5 ≡ 0 (mod 4). Can we prove this?
If k ≡ 3 (mod 4), then k5 ≡ 3 (mod 4). Can we prove this?
So, if k is even, then adding doesn’t change the sum.
So, if k is odd, then either k ≡ 1 (mod 4) or k ≡ 3 (mod 4).
So, how many k are between 1 and 100 and congruent to 1?
So, how many k are between 1 and 100 and congruent to 3?
Let c1 be the number of k between 1 and 100 that are congruent to 1.
Then c1 = 25 since S1

4 = {4k + 1 : 1 ≤ 4k + 1 ≤ 100}.
Let c2 be the number of k between 1 and 100 that are congruent to 3.
Then c2 = 25 since S3

4 = {4k + 3 : 1 ≤ 4k + 3 ≤ 100}.
Then c1 ∗ 1 + c2 ∗ 3 = 25 ∗ 1 + 25 ∗ 3 = 25 ∗ 4 = 100 is the sum.
So, we think the sum will be congruent to 0 modulo 4.
This means the remainder is zero.

Proposition 21. Let n1, n2 ∈ Z+.
Let a, b ∈ Z.
If a ≡ b (mod n1) and a ≡ b (mod n2), then a ≡ b (mod lcm(n1, n2)).
Hence, whenever gcd(n1, n2) = 1, then a ≡ b (mod n1n2).

Proof. Suppose a ≡ b (mod n1) and a ≡ b (mod n2).
Then n1|(a− b) and n2|(a− b), so a− b is a multiple of n1 and n2.
Hence, a − b is a multiple of the least common multiple of n1 and n2, by

definition of least common multiple.
Thus, lcm(n1, n2) divides a− b, so a is congruent to b modulo lcm(n1, n2).
Therefore, a ≡ b (mod lcm(n1, n2)).

Proof. We prove: if a ≡ b (mod n1) and a ≡ b (mod n2) and gcd(n1, n2) = 1,
then a ≡ b (mod n1n2).

Suppose a ≡ b (mod n1) and a ≡ b (mod n2) and gcd(n1, n2) = 1.
Since a ≡ b (mod n1) and a ≡ b (mod n2), then a ≡ b (mod lcm(n1, n2)).
Since lcm(n1, n2) · gcd(n1, n2) = n1n2 and gcd(n1, n2) = 1, then n1n2 =

lcm(n1, n2) · 1 = lcm(n1, n2).
Therefore, a ≡ b (mod n1n2).

Exercise 22. Give an example to show that ak ≡ bk (mod n) and k ≡ j
(mod n) does not imply aj ≡ bj (mod n).

Solution. Let a = 7 and b = 5 and n = 3 and j = 5 and k = 2.
Since 3 · 8 = 24 = 49 − 25 = 72 − 52, then 3 divides 72 − 52, so 72 ≡ 52

(mod 3).
Since 3(−1) = −3 = 2− 5, then 3 divides 2− 5, so 2 ≡ 5 (mod 3).
Since 75 − 55 = 13682 = 3 · 4560 + 2, then 3 6 |(75 − 55), so 75 6≡ 55 (mod 3).
Therefore, 72 ≡ 52 (mod 3) and 2 ≡ 5 (mod 3), but 75 6≡ 55 (mod 3).

Lemma 23. Let a ∈ Z.
If a is odd, then a2 ≡ 1 (mod 8).
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Proof. Suppose a is odd.
Then a = 2k + 1 for some integer k.
Thus, a2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k + 1− 1 = 4k2 + 4k = 4k(k + 1).
Since k and k+1 are consecutive integers, then the product k(k+1) is even.
Hence, k(k + 1) = 2m for some integer m.
Consequently, a2 − 1 = 4(2m) = 8m, so 8|(a2 − 1).
Therefore, a2 ≡ 1 (mod 8).

Proof. Suppose a is odd.
By the division algorithm, there exist unique integers q and r such that

a = 4q + r and 0 ≤ r < 4, so either a = 4q or a = 4q + 1 or a = 4q + 2 or
a = 4q + 3.

Since 4q = 2(2q) is even and a is odd, then a 6= 4q.
Since 4q + 2 = 2(2q + 1) is even and a is odd, then a 6= 4q + 2.
Thus, either a = 4q + 1 or a = 4q + 3.
We consider these cases separately.
Case 1: Suppose a = 4q + 1.
Then a2 − 1 = (4q + 1)2 − 1 = 16q2 + 8q + 1− 1 = 16q2 + 8q = 8q(2q + 1).
Hence, 8 divides a2 − 1, so a2 ≡ 1 (mod 8).
Case 2: Suppose a = 4q + 3.
Then a2 − 1 = (4q + 3)2 − 1 = 16q2 + 24q + 9 − 1 = 16q2 + 24q + 8 =

8(2q2 + 3q + 1).
Hence, 8 divides a2 − 1, so a2 ≡ 1 (mod 8).
Therefore, in all cases, a2 ≡ 1 (mod 8).

Exercise 24. Let a ∈ Z.
Then either a3 ≡ 0 (mod 9) or a3 ≡ 1 (mod 9) or a3 ≡ 8 (mod 9).

Proof. By the division algorithm, there exist unique integers q and r such that
a = 3q + r and 0 ≤ r < 3, so either a = 3q or a = 3q + 1 or a = 3q + 2.

We consider these cases separately.
Case 1: Suppose a = 3q.
Then a3 = (3q)3 = 33q3 = (32)3q3 = 9(3q3).
Hence, 9 divides a3, so a3 ≡ 0 (mod 9).
Case 2: Suppose a = 3q + 1.
Then a3 = (3q+ 1)3 = 27q3 + 27q2 + 9q+ 1, so a3 − 1 = 27q3 + 27q2 + 9q =

9q(3q2 + 3q + 1).
Hence, 9 divides a3 − 1, so a3 ≡ 1 (mod 9).
Case 3: Suppose a = 3q + 2.
Then a3 = (3q+2)3 = 27q3 +54q2 +36q+8, so a3−8 = 27q3 +54q2 +36q =

9q(3q2 + 6q + 4).
Hence, 9 divides a3 − 8, so a3 ≡ 8 (mod 9).
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In all cases, either a3 ≡ 0 (mod 9) or a3 ≡ 1 (mod 9) or a3 ≡ 8 (mod 9).

Exercise 25. Let a ∈ Z.
Then a3 ≡ a (mod 6).

Proof. The product of three consecutive integers is divisible by 6.
Thus, the product (a− 1)a(a+ 1) = a(a2 − 1) = a3 − a is divisible by 6, so

6 divides a3 − a.
Therefore, a3 ≡ a (mod 6).

Proof. By the division algorithm, there exist unique integers q and r such that
a = 6q + r and 0 ≤ r < 6, so either a = 6q or a = 6q + 1 or a = 6q + 2 or
a = 6q + 3 or a = 6q + 4 or a = 6q + 5.

We consider these cases separately.
Case 1: Suppose a = 6q.
Then

a3 − a = (6q)3 − 6q

= 63q3 − 6q

= 6q(36q2 − 1).

Hence, 6 divides a3 − a, so a3 ≡ a (mod 6).
Case 2: Suppose a = 6q + 1.
Then

a3 − a = (6q + 1)3 − (6q + 1)

= (216q3 + 108q2 + 18q + 1)− (6q + 1)

= 216q3 + 108q2 + 12q

= 6q(36q2 + 18q + 2).

Hence, 6 divides a3 − a, so a3 ≡ a (mod 6).
Case 3: Suppose a = 6q + 2.
Then

a3 − a = (6q + 2)3 − (6q + 2)

= (216q3 + 216q2 + 72q + 8)− (6q + 2)

= 216q3 + 216q2 + 66q + 6

= 6(36q3 + 36q2 + 11q + 1).

Hence, 6 divides a3 − a, so a3 ≡ a (mod 6).
Case 4: Suppose a = 6q + 3.
Then

a3 − a = (6q + 3)3 − (6q + 3)

= (216q3 + 324q2 + 162q + 27)− (6q + 3)

= 216q3 + 324q2 + 156q + 24

= 6(36q3 + 54q2 + 26q + 4).
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Hence, 6 divides a3 − a, so a3 ≡ a (mod 6).
Case 5: Suppose a = 6q + 4.
Then

a3 − a = (6q + 4)3 − (6q + 4)

= (216q3 + 432q2 + 288q + 64)− (6q + 4)

= 216q3 + 432q2 + 282q + 60

= 6(36q3 + 72q2 + 47q + 12).

Hence, 6 divides a3 − a, so a3 ≡ a (mod 6).
Case 6: Suppose a = 6q + 5.
Then

a3 − a = (6q + 5)3 − (6q + 5)

= (216q3 + 540q2 + 450q + 125)− (6q + 5)

= 216q3 + 540q2 + 444q + 120

= 6(36q3 + 90q2 + 74q + 20).

Hence, 6 divides a3 − a, so a3 ≡ a (mod 6).

Therefore, in all cases, a3 ≡ a (mod 6).

Exercise 26. If an integer a is not divisible by 2 or 3, then a2 ≡ 1 (mod 24).

Proof. Let a ∈ Z.
We must prove: If 2 6 |a and 3 6 |a, then a2 ≡ 1 (mod 24).
Suppose 2 6 |a and 3 6 |a.
Since 2 6 |a, then a is not even, so a is odd.
If a is odd, then a2 ≡ 1 (mod 8), by lemma 23.
Therefore, we conclude a2 ≡ 1 (mod 8).

We next show that a2 ≡ 1 (mod 3).
By the division algorithm, there exist unique integers q and r such that

a = 3q + r and 0 ≤ r < 3, so either a = 3q or a = 3q + 1 or a = 3q + 2.
Since 3 6 |a and 3 divides 3q, then a 6= 3q.
Thus, either a = 3q + 1 or a = 3q + 2.
We consider these cases separately.
Case 1: Suppose a = 3q + 1.
Then

a2 − 1 = (3q + 1)2 − 1

= 9q2 + 6q + 1− 1

= 9q2 + 6q

= 3q(3q + 2).
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Hence, 3 divides a2 − 1, so a2 ≡ 1 (mod 3).
Case 2: Suppose a = 3q + 2.
Then

a2 − 1 = (3q + 2)2 − 1

= 9q2 + 12q + 4− 1

= 9q2 + 12q + 3

= 3(3q2 + 4q + 1).

Hence, 3 divides a2 − 1, so a2 ≡ 1 (mod 3).
Therefore, in all cases, a2 ≡ 1 (mod 3).

Since a2 ≡ 1 (mod 3) and a2 ≡ 1 (mod 8) and lcm(3, 8) = 24, then a2 ≡ 1
(mod 24), by proposition 21.

Exercise 27. If an integer a is both a square and a cube, then a ≡ 0, 1, 9, or28
(mod 36).

Proof. TODO

Exercise 28. If a is an odd integer, then a2
n ≡ 1 (mod 2n+2).

Proof. TODO

Exercise 29. Verify that 89|244 − 1.

Proof. Since 211 ≡ 1 (mod 89), then

244 − 1 = (211)4 − 1

≡ 14 − 1 (mod 89)

≡ 0 (mod 89).

Hence, 244 − 1 ≡ 0 (mod 89), so 89 divides 244 − 1.
Therefore, 89|244 − 1.

Exercise 30. Verify that 97|248 − 1.

Proof. Since 219 ≡ 3 (mod 97), then

248 = (210)(219)2

≡ 210 · 32 (mod 97)

≡ (25 · 3)2 (mod 97)

≡ 962 (mod 97)

≡ 1 (mod 97).

Therefore, 248 ≡ 1 (mod 97), so 97|248 − 1.
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Proposition 31. Let a, b ∈ Z and n ∈ N.
If a ≡ b (mod n), then a2 ≡ b2 (mod n).

Proof. Suppose a ≡ b (mod n).
Then n|(a− b), by definition of congruence modulo, so a− b = nk for k ∈ Z.
Multiplying both sides by a+ b we get (a− b)(a+ b) = nk(a+ b) so it follows

that a2 − b2 = nk(a+ b).
Since k(a+ b) ∈ Z, then n|a2 − b2.
Therefore a2 ≡ b2 (mod n), by definition of congruence modulo.

Exercise 32. Repeated squares computational technique for be (mod m)
Compute 271321 (mod 481).

Solution. We use a repeated squares computational technique to quickly com-
pute be (mod m) for base b raised to exponent e modulo m.

We express the exponent 321 as a sum of powers of 2.
Thus, 321 = 28 + 26 + 20.
Observe that

271321 (mod 481) = 2712
0+26+28 (mod 481)

= (2712
0

· 2712
6

· 2712
8

) (mod 481).

We compute powers 2i for i = 0, 6, 8.
2712

1

= 2712 ≡ 329 (mod 481).

2712
2

= (2712
1

)2 ≡ 3292 (mod 481) ≡ 16 (mod 481).

2712
3

= (2712
2

)2 ≡ 162 (mod 481) ≡ 256 (mod 481).

2712
4

= (2712
3

)2 ≡ 2562 (mod 481) ≡ 120 (mod 481).

2712
5

= (2712
4

)2 ≡ 1202 (mod 481) ≡ 451 (mod 481).

2712
6

= (2712
5

)2 ≡ 4512 (mod 481) ≡ 419 (mod 481).

2712
7

= (2712
6

)2 ≡ 4192 (mod 481) ≡ 477 (mod 481).

2712
8

= (2712
7

)2 ≡ 4772 (mod 481) ≡ 16 (mod 481).

Thus, we have
2712

0 ≡ 271 (mod 481)

2712
6 ≡ 419 (mod 481)

2712
8 ≡ 16 (mod 481)

Multiplying we obtain
(2712

0 · 2712
6 · 2712

8

) ≡ 271 · 419 · 16 (mod 481).

12



Observe that

271321 (mod 481) = 2712
0+26+28 (mod 481)

= (2712
0

· 2712
6

· 2712
8

) (mod 481)

≡ 271 · 419 · 16 (mod 481)

≡ 47 (mod 481).

Therefore, 271321 (mod 481) ≡ 47 (mod 481).

Exercise 33. Compute 2923171 (mod 582).

Solution. We use a repeated squares computational technique to quickly com-
pute be (mod m) for base b raised to exponent e modulo m.

We express the exponent 3171 as a sum of powers of 2.
Thus, 3171 = 20 + 21 + 25 + 26 + 210 + 211.
Observe that

2923171 (mod 582) = 2922
0+21+25+26+210+211 (mod 582)

= (2922
0

· 2922
1

· 2922
5

· 2922
6

· 2922
10

· 2922
11

) (mod 582).

We compute powers 2i for i = 0, 1, 5, 6, 10, 11.
2922

1

= 2922 ≡ 292 (mod 582).

2922
2

= (2922
1

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582).

2922
3

= (2922
2

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582).

2922
4

= (2922
3

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582).

2922
5

= (2922
4

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582).

2922
6

= (2922
5

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582).

2922
7

= (2922
6

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582).

2922
8

= (2922
7

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582)

2922
9

= (2922
7

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582)

2922
10

= (2922
7

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582)

2922
11

= (2922
7

)2 ≡ 2922 (mod 582) ≡ 292 (mod 582).

Thus, we have
2922

0 ≡ 292 (mod 582)

2922
1 ≡ 292 (mod 582)

2922
5 ≡ 292 (mod 582)

2922
6 ≡ 292 (mod 582)

2922
10 ≡ 292 (mod 582)

2922
11 ≡ 292 (mod 582)

Multiplying we obtain
(2922

0 · 2922
1 · 2922

5 · 2922
6 · 2922

10 · 2922
11

) ≡ 2926 (mod 582).
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Observe that

2923171 (mod 582) = 2922
0+21+25+26+210+211 (mod 582)

= (2922
0

· 2922
1

· 2922
5

· 2922
6

· 2922
10

· 2922
11

) (mod 582)

≡ 2926 (mod 582)

≡ 292 (mod 582).

Therefore, 2923171 (mod 582) ≡ 292 (mod 582).

Exercise 34. Compute 2557341 (mod 5681).

Solution. We use a repeated squares computational technique to quickly com-
pute be (mod m) for base b raised to exponent e modulo m.

We express the exponent 341 as a sum of powers of 2.
Thus, 341 = 28 + 26 + 24 + 22 + 20.
Observe that

2557341 (mod 5681) = 25572
0+22+24+26+28 (mod 5681)

= (25572
0

· 25572
2

· 25572
4

· 25572
6

· 25572
8

) (mod 5681).

We compute powers 2i for i = 0, 2, 4, 6, 8.
25572

1

= 25572 ≡ 5099 (mod 5681).

25572
2

= (25572
1

)2 ≡ 50992 (mod 5681) ≡ 3545 (mod 5681).

25572
3

= (25572
2

)2 ≡ 35452 (mod 5681) ≡ 653 (mod 5681).

25572
4

= (25572
3

)2 ≡ 6532 (mod 5681) ≡ 334 (mod 5681).

25572
5

= (25572
4

)2 ≡ 3342 (mod 5681) ≡ 3617 (mod 5681).

25572
6

= (25572
5

)2 ≡ 36172 (mod 5681) ≡ 5027 (mod 5681).

25572
7

= (25572
6

)2 ≡ 50272 (mod 5681) ≡ 1641 (mod 5681).

25572
8

= (25572
7

)2 ≡ 16412 (mod 5681) ≡ 87 (mod 5681).

Thus, we have
25572

0 ≡ 2557 (mod 5681)

25572
2 ≡ 3545 (mod 5681)

25572
4 ≡ 334 (mod 5681)

25572
6 ≡ 5027 (mod 5681)

25572
8 ≡ 87 (mod 5681)

Multiplying we obtain
(25572

0 ·25572
2 ·25572

4 ·25572
6 ·25572

8

) ≡ 2557·3545·334·5027·87 (mod 5681).
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Observe that

2557341 (mod 5681) = 25572
0+22+24+26+28 (mod 5681)

= (25572
0

· 25572
2

· 25572
4

· 25572
6

· 25572
8

) (mod 5681)

≡ 2557 · 3545 · 334 · 5027 · 87 (mod 5681)

≡ 2876 (mod 5681).

Therefore, 2557341 (mod 5681) ≡ 2876 (mod 5681).

Exercise 35. Compute 20719521 (mod 4724).

Solution. We use a repeated squares computational technique to quickly com-
pute be (mod m) for base b raised to exponent e modulo m.

We express the exponent 9521 as a sum of powers of 2.
Thus, 9521 = 213 + 210 + 28 + 25 + 24 + 20.
Observe that

20719521 (mod 4724) = 20712
0+24+25+28+210+213 (mod 4724)

= (20712
0

· 20712
4

· 20712
5

· 20712
8

· 20712
10

· 20712
13

) (mod 4724).

We compute powers 2i for i = 0, 4, 5, 8, 10, 13.
20712

1

= 20712 ≡ 4373 (mod 4724).

20712
2

= (20712
1

)2 ≡ 43732 (mod 4724) ≡ 377 (mod 4724).

20712
3

= (20712
2

)2 ≡ 3772 (mod 4724) ≡ 409 (mod 4724).

20712
4

= (20712
3

)2 ≡ 4092 (mod 4724) ≡ 1941 (mod 4724).

20712
5

= (20712
4

)2 ≡ 19412 (mod 4724) ≡ 2453 (mod 4724).

20712
6

= (20712
5

)2 ≡ 24532 (mod 4724) ≡ 3557 (mod 4724).

20712
7

= (20712
6

)2 ≡ 35572 (mod 4724) ≡ 1377 (mod 4724).

20712
8

= (20712
7

)2 ≡ 13772 (mod 4724) ≡ 1805 (mod 4724).

20712
9

= (20712
7

)2 ≡ 18052 (mod 4724) ≡ 3189 (mod 4724).

20712
10

= (20712
7

)2 ≡ 31892 (mod 4724) ≡ 3673 (mod 4724).

20712
11

= (20712
7

)2 ≡ 36732 (mod 4724) ≡ 3909 (mod 4724).

20712
12

= (20712
7

)2 ≡ 39092 (mod 4724) ≡ 2865 (mod 4724).

20712
13

= (20712
7

)2 ≡ 28652 (mod 4724) ≡ 2637 (mod 4724).

Thus, we have
20712

0 ≡ 2071 (mod 4724)

20712
4 ≡ 1941 (mod 4724)

20712
5 ≡ 2453 (mod 4724)

20712
8 ≡ 1805 (mod 4724)

20712
10 ≡ 3673 (mod 4724)

20712
13 ≡ 2637 (mod 4724)
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Multiplying we obtain
(20712

0 · 20712
4 · 20712

5 · 20712
8 · 20712

10 · 20712
13

) ≡ 2071 · 1941 · 2453 · 1805 ·
3673 · 2637 (mod 4724).

Observe that

20719521 (mod 4724) = 20712
0+24+25+28+210+213 (mod 4724)

= (20712
0

· 20712
4

· 20712
5

· 20712
8

· 20712
10

· 20712
13

) (mod 4724)

≡ 2071 · 1941 · 2453 · 1805 · 3673 · 2637 (mod 4724)

≡ 1523 (mod 4724).

Therefore, 20719521 (mod 4724) ≡ 1523 (mod 4724).

Exercise 36. Compute 971321 (mod 765).

Solution. We use a repeated squares computational technique to quickly com-
pute be (mod m) for base b raised to exponent e modulo m.

We express the exponent 321 as a sum of powers of 2.
Thus, 321 = 28 + 26 + 20.
Observe that

971321 (mod 765) = 9712
0+26+28 (mod 765)

= (9712
0

· 9712
6

· 9712
8

) (mod 765).

We compute powers 2i for i = 0, 6, 8.
9712

1

= 9712 ≡ 361 (mod 765).

9712
2

= (9712
1

)2 ≡ 3612 (mod 765) ≡ 271 (mod 765).

9712
3

= (9712
2

)2 ≡ 2712 (mod 765) ≡ 1 (mod 765).

9712
4

= (9712
3

)2 ≡ 12 (mod 765) ≡ 1 (mod 765).

9712
5

= (9712
4

)2 ≡ 12 (mod 765) ≡ 1 (mod 765).

9712
6

= (9712
5

)2 ≡ 12 (mod 765) ≡ 1 (mod 765).

9712
7

= (9712
6

)2 ≡ 12 (mod 765) ≡ 1 (mod 765).

9712
8

= (9712
7

)2 ≡ 12 (mod 765) ≡ 1 (mod 765).

Thus, we have
9712

0 ≡ 971 (mod 765)

9712
6 ≡ 1 (mod 765)

9712
8 ≡ 1 (mod 765)

Multiplying we obtain
(9712

0 · 9712
6 · 9712

8

) ≡ 971 · 1 · 1 (mod 765).
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Observe that

971321 (mod 765) = 9712
0+26+28 (mod 765)

= (9712
0

· 9712
6

· 9712
8

) (mod 765)

≡ 971 · 1 · 1 (mod 765)

≡ 206 (mod 765).

Therefore, 971321 (mod 765) ≡ 206 (mod 765).

Exercise 37. If ab ≡ cd (mod n) and b ≡ d (mod n) and gcd(b, n) = 1, then
a ≡ c (mod n).

Proof. Suppose ab ≡ cd (mod n) and b ≡ d (mod n) and gcd(b, n) = 1.
Observe that

b ≡ d (mod n) ⇒ bc ≡ dc (mod n)

⇒ bc ≡ cd (mod n)

⇒ cd ≡ bc (mod n)

⇒ ab ≡ bc (mod n)

⇒ ab ≡ cb (mod n).

Since ab ≡ cb (mod n) and gcd(n, b) = 1, then by cancellation, we have
a ≡ c (mod n).

Exercise 38. If a ≡ b (mod n1) and a ≡ c (mod n2) and n = gcd(n1, n2), then
b ≡ c (mod n).

Proof. Suppose a ≡ b (mod n1) and a ≡ c (mod n2) and n = gcd(n1, n2).
Then n1|a− b and n2|a− c and n|n1 and n|n2.
Since n|n1 and n1|a− b, then n|a− b.
Since n|n2 and n2|a− c, then n|a− c.
Since n is a common divisor of a − b and a − c, then n divides any linear

combination of a− b and a− c.
Since (−1)(a− b)+(1)(a− c) = −a+ b+a− c = b− c is a linear combination

of a− b and a− c, then n divides b− c.
Therefore, b ≡ c (mod n).

Linear Congruences

Exercise 39. Solve the linear congruence 3x ≡ 2 (mod 7).

Solution. Let d = gcd(3, 7).
Since d = 1 and 1|2, then a solution exists.
There are d = 1 distinct solutions modulo 7 and the solution is congruent

modulo 7
d = 7

1 = 7.
A particular solution is x0 = 3.
The general solution x is in the set 3 + 7Z = {3 + 7k : k ∈ Z}.
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Let S be the solution set to the linear congruence.
Then S = {x ∈ Z : 3x ≡ 2 (mod 7)}.
Let x ∈ S.
Then x ∈ Z and 3x ≡ 2 (mod 7), so [3x] = [2].
Hence, [3][x] = [2].
Since gcd(3, 7) = 1, then [3] ∈ Z7 has a multiplicative inverse and [3]−1 = [5],

so [3][5] = [5][3] = [1] modulo 7.
For convenience, we have 3x = 2 and 3 ∗ 5 = 5 ∗ 3 = 1.
Observe that

3x = 2

5 ∗ 3x = 5 ∗ 2

1x = 10

x = 3.

Therefore, [x] = [3], so x ∈ [3].
Since [3] = 3 + 7Z = {3 + 7k : k ∈ Z}, then x ∈ 3 + 7Z.
Thus, x ∈ S implies x ∈ 3 + 7Z, so S is a subset of 3 + 7Z.

We prove the set 3 + 7Z is a subset of S.
Let y ∈ 3 + 7Z.
Then y = 3 + 7k for some integer k, so y ∈ Z.
Observe that 3y − 2 = 3(3 + 7k)− 2 = 9 + 21k − 2 = 21k + 7 = 7(3k + 1).
Since 3k + 1 ∈ Z, then 7 divides the difference 3y − 2, so 3y ≡ 2 (mod 7).
Since y ∈ Z and 3y ≡ 2 (mod 7), then y ∈ S, so 3 + 7Z is a subset of S.

Since S is a subset of 3 + 7Z and 3 + 7Z is a subset of S, then S = 3 + 7Z.

Exercise 40. Solve the linear congruence 5x+ 1 ≡ 13 (mod 23).

Solution. Suppose 5x+ 1 ≡ 13 (mod 23).
Then 5x ≡ 12.
Let d = gcd(5, 23).
Since d = 1 and 1|12, then a solution exists.
There are d = 1 distinct solutions modulo 23 and the solution is congruent

modulo 23
d = 23

1 = 23.
A particular solution is x0 = 7.
The general solution x is in the set 7 + 23Z = {7 + 23k : k ∈ Z}.

Let S be the solution set to the linear congruence.
Then S = {x ∈ Z : 5x+ 1 ≡ 13 (mod 23)}.
Let x ∈ S.
Then x ∈ Z and 5x+ 1 ≡ 13 (mod 23), so 5x ≡ 12
Thus, [5x] = [12], so [5[]x] = [12].
Since gcd(5, 23) = 1, then [5] ∈ Z23 has a multiplicative inverse and [5]−1 =

[14], so [5][14] = [14][5] = [1] modulo 23.

18



For convenience, we have 5x = 12 and 5 ∗ 14 = 14 ∗ 5 = 1.
Observe that

5x = 12

14 ∗ 5x = 14 ∗ 12

1x = 168

x = 7.

Therefore, [x] = [7], so x ∈ [7].
Since [7] = 7 + 23Z = {7 + 23k : k ∈ Z}, then x ∈ 7 + 23Z.
Thus, x ∈ S implies x ∈ 7 + 23Z, so S is a subset of 7 + 23Z.

We prove 7 + 23Z is a subset of S.
Let y ∈ 7 + 23Z.
Then y = 7 + 23k for some integer k, so y ∈ Z.
Observe that (5y+ 1)− 13 = (5(7 + 23k) + 1)− 13 = (35 + 115k+ 1)− 13 =

115k + 23 = 23(5k + 1).
Since 5k+ 1 ∈ Z, then 23 divides the difference (5y+ 1)− 13, so 5y+ 1 ≡ 13

(mod 23).
Since y ∈ Z and 5y+ 1 ≡ 13 (mod 23), then y ∈ S, so 7 + 23Z is a subset of

S.

Since S is a subset of 7 + 23Z and 7 + 23Z is a subset of S, then S = 7 + 23Z.

Exercise 41. Solve the linear congruence 5x+ 1 ≡ 13 (mod 26).

Solution. Suppose 5x+ 1 ≡ 13 (mod 26).
Then 5x ≡ 12.
Let d = gcd(5, 26).
Since d = 1 and 1|12, then a solution exists.
There are d = 1 distinct solutions modulo 26 and the solution is congruent

modulo 26
d = 26

1 = 26.
A particular solution is x0 = 18.
The general solution x is in the set 18 + 26Z = {18 + 26k : k ∈ Z}.

Let S be the solution set to the linear congruence.
Then S = {x ∈ Z : 5x+ 1 ≡ 13 (mod 26)}.
Let x ∈ S.
Then x ∈ Z and 5x+ 1 ≡ 13 (mod 26), so 5x ≡ 12.
Hence, [5x] = [12], so [5[]x] = [12].
Since gcd(5, 26) = 1, then [5] ∈ Z26 has a multiplicative inverse and [5]−1 =

[21], so [5][21] = [21][5] = [1] modulo 26.
For convenience, we have 5x = 12 and 5 ∗ 21 = 21 ∗ 5 = 1.
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Observe that

5x = 12

21 ∗ 5x = 21 ∗ 12

1x = 252

x = 18.

Therefore, [x] = [18], so x ∈ [18].
Since [18] = 18 + 26Z = {18 + 26k : k ∈ Z}, then x ∈ 18 + 26Z.
Thus, x ∈ S implies x ∈ 18 + 26Z, so S is a subset of 18 + 26Z.

We prove 18 + 26Z is a subset of S.
Let y ∈ 18 + 26Z.
Then y = 18 + 26k for some integer k, so y ∈ Z.
Observe that (5y+ 1)− 13 = [5(18 + 26k) + 1]− 13 = (90 + 130k+ 1)− 13 =

130k + 78 = 26(5k + 3).
Since 5k+ 3 ∈ Z, then 26 divides the difference (5y+ 1)− 13, so 5y+ 1 ≡ 13

(mod 26).
Since y ∈ Z and 5y + 1 ≡ 13 (mod 26), then y ∈ S, so 18 + 26Z is a subset

of S.

Since S is a subset of 18 + 26Z and 18 + 26Z is a subset of S, then S =
18 + 26Z.

Exercise 42. Solve the linear congruence 9x ≡ 3 (mod 5).

Solution. Let S be the solution set of the linear congruence.
Then S = {x ∈ Z : 9x ≡ 3 (mod 5)}.
Let x ∈ S.
Then x ∈ Z and 9x ≡ 3 (mod 5).
Since 9 ≡ 4 (mod 5), then 9x ≡ 4x (mod 5), so 4x ≡ 9x (mod 5).
Since 4x ≡ 9x (mod 5) and 9x ≡ 3 (mod 5), then 4x ≡ 3 (mod 5), so

[4x] = [3].
Hence, [4][x] = [3].
Since gcd(4, 5) = 1, then [4] ∈ Z5 has a multiplicative inverse and [4]−1 = [4],

so [4][4] = [1].
For convenience, we have 4x = 3 and 4 ∗ 4 = 1.
Observe that

4x = 3

4 ∗ 4x = 4 ∗ 3

1x = 12

x = 2.

Therefore, [x] = [2], so x ∈ [2].
Since [2] = 2 + 5Z = {2 + 5k : k ∈ Z}, then x ∈ 2 + 5Z.
Thus, x ∈ S implies x ∈ 2 + 5Z, so S is a subset of 2 + 5Z.
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We prove 2 + 5Z is a subset of S.
Let y ∈ 2 + 5Z.
Then y = 2 + 5k for some integer k, so y ∈ Z.
Observe that

9y − 3 = 9(2 + 5k)− 3

= 18 + 45k − 3

= 45k + 15

= 5(9k + 3).

Since 9k + 3 ∈ Z, then 5 divides the difference 9y − 3, so 9y ≡ 3 (mod 5).
Since y ∈ Z and 9y ≡ 3 (mod 5), then y ∈ S, so 2 + 5Z is a subset of S.

Since S is a subset of 2 + 5Z and 2 + 5Z is a subset of S, then S = 2 + 5Z.

Exercise 43. Solve the linear congruence 5x ≡ 1 (mod 6).

Solution. Let S be the solution set of the linear congruence.
Then S = {x ∈ Z : 5x ≡ 1 (mod 6)}.
Let x ∈ S.
Then x ∈ Z and 5x ≡ 1 (mod 6), so [5x] = [1].
Hence, [5][x] = [1].
Since gcd(5, 6) = 1, then [5] ∈ Z6 has a multiplicative inverse and [5]−1 = [5],

so [5][5] = [1].
For convenience, we have 5x = 1 and 5 ∗ 5 = 1.
Observe that

5x = 1

5 ∗ 5x = 5 ∗ 1

1x = 5

x = 5.

Therefore, [x] = [5], so x ∈ [5].
Since [5] = 5 + 6Z = {5 + 6k : k ∈ Z}, then x ∈ 5 + 6Z.
Thus, x ∈ S implies x ∈ 5 + 6Z, so S is a subset of 5 + 6Z.

We prove 5 + 6Z is a subset of S.
Let y ∈ 5 + 6Z.
Then y = 5 + 6k for some integer k, so y ∈ Z.
Observe that

5y − 1 = 5(5 + 6k)− 1

= 25 + 30k − 1

= 30k + 24

= 6(5k + 4).

Since 5k + 4 ∈ Z, then 6 divides the difference 5y − 1, so 5y ≡ 1 (mod 6).
Since y ∈ Z and 5y ≡ 1 (mod 6), then y ∈ S, so 5 + 6Z is a subset of S.
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Since S is a subset of 5 + 6Z and 5 + 6Z is a subset of S, then S = 5 + 6Z.

Exercise 44. Solve the linear congruence 3x ≡ 1 (mod 6).

Solution. Let S be the solution set of the linear congruence.
Then S = {x ∈ Z : 3x ≡ 1 (mod 6)}.
Let x ∈ S.
Then x ∈ Z and 3x ≡ 1 (mod 6), so [3x] = [1].
Hence, [3][x] = [1].
Since gcd(3, 6) = 3 6= 1, then [3] ∈ Z6 does not have a multiplicative inverse

in Z6.
Thus, there is no solution to [3][x] = [1], so there is no solution to the linear

congruence.
Therefore, S = ∅.

Exercise 45. Solve the linear congruence 18x ≡ 30 (mod 42).

Solution. Since gcd(18, 42) = 6 and 6|30, then the linear congruence has a
solution and there are exactly 6 distinct solutions modulo 42 and these solutions
are congruent modulo 42

6 = 7.
A particular solution is x0 = 4.
The 6 distinct solutions are given by x = 4 + −42

6 t = 4− 7t for some integer
t.

Equivalently, the 6 solutions modulo 42 are in the solution set {4, 11, 18, 25, 32, 39}

Exercise 46. Solve the linear congruence 9x ≡ 21 (mod 30).

Solution. Since gcd(9, 30) = 3 and 3|21, then the linear congruence has a
solution and there are exactly 3 distinct solutions modulo 30 and these solutions
are congruent modulo 30

3 = 10.
A particular solution is x0 = 9.
The 3 distinct solutions are given by x = 9 + 10t for some integer t.
Equivalently, the 3 solutions modulo 30 are in the solution set {9, 19, 29}.

Exercise 47. Solve the linear congruence 25x ≡ 15 (mod 29).

Solution. Since gcd(25, 29) = 1 and 1|15, then the linear congruence has a
solution and there is exactly 1 distinct solution modulo 29 and the solution is
congruent modulo 29

1 = 29.
Since 5 · 5x ≡ 5 · 3 (mod 29) and gcd(29, 5) = 1, then we may cancel 5 to

obtain 5x ≡ 3 (mod 29).
Since gcd(5, 29) = 1 and 1|15, then the linear congruence has a solution

and there is exactly 1 distinct solution modulo 29 and the solution is congruent
modulo 29

1 = 29.
Since 5 ∗ 6 ≡ 1 (mod 29), then we multiply by 6 to obtain 6(5x) ≡ 6 ∗ 3

(mod 29), so 1x ≡ 18 (mod 29).
Therefore, x ≡ 18 (mod 29).
A particular solution is x0 = 18.
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The 1 distinct solution is given by x = 18 + 29t for some integer t.
Equivalently, the 1 solution modulo 29 is in the solution set {18}.

Exercise 48. Solve the linear congruence 5x ≡ 2 (mod 26).

Solution. Since gcd(5, 26) = 1 and 1|2, then the linear congruence has a
solution and there is exactly 1 distinct solution modulo 26 and the solution is
congruent modulo 26

1 = 26.
Since 5 ∗ 21 ≡ 1 (mod 26), then we multiply by 21 to obtain 21(5x) ≡ 21 ∗ 2

(mod 26), so x ≡ 21 ∗ 2 (mod 26).
Therefore, x ≡ 42 (mod 26) ≡ 16 (mod 26).
A particular solution is x0 = 16.
The 1 distinct solution is given by x = 16 + 26t for some integer t.
Equivalently, the 1 solution modulo 26 is in the solution set {16}.

Exercise 49. Solve the linear congruence 6x ≡ 15 (mod 21).

Solution. Since gcd(6, 21) = 3 and 3|15, then the linear congruence has a
solution and there are exactly 3 distinct solutions modulo 21 and the solutions
are congruent modulo 21

3 = 7.
Since 6x = 3 ∗ 2 ∗ x ≡ 3 ∗ 5 (mod 21) and gcd(21, 3) = 3, then 2x ≡ 5

(mod 21
3 ), so 2x ≡ 5 (mod 7).

Since gcd(2, 7) = 1 and 1|5, then the linear congruence has a solution and
there is exactly 1 distinct solution modulo 7 and the solution is congruent mod-
ulo 7

1 = 7.
Since 2 ∗ 4 ≡ 1 (mod 7), then we multiply by 4 to obtain 4(2x) ≡ 4 ∗ 5

(mod 7), so x ≡ 20 (mod 7).
Therefore, x ≡ 6 (mod 7).
A particular solution is x0 = 6.
The 3 distinct solutions are given by x = 6 + 7t for some integer t.
Equivalently, the 3 solutions modulo 21 are in the solution set {6, 13, 20}.

Exercise 50. Solve the linear congruence 36x ≡ 8 (mod 102).

Solution. Since gcd(36, 102) = 6 and 6 6 |8, then the linear congruence does not
have a solution.

Exercise 51. Solve the linear congruence 34x ≡ 60 (mod 98).

Solution. Since gcd(34, 98) = 2 and 2|60, then the linear congruence has a
solution and there are exactly 2 distinct solutions modulo 98 and the solutions
are congruent modulo 98

2 = 49.
Since 34x ≡ 60 (mod 98) implies 2∗17x ≡ 2∗30 (mod 98) and gcd(98, 2) =

2, then we cancel to obtain 17x ≡ 30 (mod 49).
Since gcd(17, 49) = 1 and 1|30, then the linear congruence has a solution

and there is exactly 1 distinct solution modulo 49 and the solution is congruent
modulo 49

1 = 49.
The multiplicative inverse of 17 is 26 modulo 49, so 17 ∗ 26 ≡ 1 (mod 49).
Thus, 17 ∗ 26x ≡ x (mod 49) and 26 ∗ 17x ≡ 26 ∗ 30 (mod 49).
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Since 17 ∗ 26x ≡ x (mod 49), then x ≡ 17 ∗ 26x (mod 49).
Since x ≡ 17∗26x (mod 49) and 26∗17x ≡ 26∗30 (mod 49), then x ≡ 26∗30

(mod 49) ≡ 780 (mod 49) ≡ 45 (mod 49).
Therefore, x ≡ 45 (mod 49).
A particular solution is x0 = 45.
The 2 distinct solutions are given by x = 45 + 49t for some integer t.
Equivalently, the 2 solutions modulo 98 are in the solution set {45, 94}.

Exercise 52. Solve the linear congruence 140x ≡ 133 (mod 301).

Solution. Since gcd(140, 301) = 7 and 7|133, then the linear congruence has a
solution and there are exactly 7 distinct solutions modulo 301 and the solutions
are congruent modulo 301

7 = 43.
Since 140x ≡ 133 (mod 301) implies 7∗20x ≡ 7∗19 (mod 301) and gcd(301, 7) =

7, then we cancel to obtain 20x ≡ 19 (mod 43).
Since gcd(20, 43) = 1 and 1|19, then the linear congruence has a solution

and there is exactly 1 distinct solution modulo 43 and the solution is congruent
modulo 43

1 = 43.
The multiplicative inverse of 20 is 28 modulo 43, so 20 ∗ 28 ≡ 1 (mod 43).
Thus, 20 ∗ 28x ≡ x (mod 43) and 28 ∗ 20x ≡ 28 ∗ 19 (mod 43).
Since 20 ∗ 28x ≡ x (mod 43), then x ≡ 20 ∗ 28x (mod 43).
Since x ≡ 20∗28x (mod 43) and 28∗20x ≡ 28∗19 (mod 43), then x ≡ 28∗19

(mod 43) ≡ 532 (mod 43) ≡ 16 (mod 43).
Therefore, x ≡ 16 (mod 43).
A particular solution is x0 = 16.
The 7 distinct solutions are given by x = 16 + 43t for some integer t.
Equivalently, the 7 solutions modulo 301 are in the solution set {16, 59, 102, 145, 188, 231, 274}.

Exercise 53. Solve the linear Diophantine equation using congruences : 4x+
51y = 9.

Solution. Since gcd(4, 51) = 1 and 1|9, then the linear Diophantine equation
has a solution.

Since 4x+ 51y = 9, then 4x = 9− 51y, so 4|(9− 51y).
Hence, 9 ≡ 51y (mod 4), so 51y ≡ 9 (mod 4).
Since gcd(51, 4) = 1 and 1|9, then the linear congruence has exactly one

solution modulo 4.
Since 51 ∗ 3 ≡ 1 (mod 4), then 51 ∗ 3y ≡ y (mod 4) and 3 ∗ 51y ≡ 3 ∗ 9

(mod 4), so y ≡ 3 ∗ 9 (mod 4) ≡ 27 (mod 4) ≡ 3 (mod 4).
Hence, y0 = 3 is a solution and x0 = 9−51∗3

4 = −36 is a solution.
The general solution of the linear Diophantine equation is given by x =

−36 + 51
gcd(4,51) ∗ t = −36 + 51t and y = 3− 4

gcd(4,51) ∗ t = 3− 4t for some integer
t.

Therefore, the solution set to the linear Diophantine equation is {(−36 +
51t, 3− 4t) : t ∈ Z}.
Solution. Since 4x+ 51y = 9, then 4x = 9− 51y, so 4|(9− 51y).
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Hence, 9 ≡ 51y (mod 4), so 51y ≡ 9 (mod 4).
Since gcd(51, 4) = 1 and 1|9, then the linear congruence has exactly one

solution modulo 4 and the solution is congruent modulo 4
1 = 4.

Since 51 ∗ 3 ≡ 1 (mod 4), then 51 ∗ 3y ≡ y (mod 4) and 3 ∗ 51y ≡ 3 ∗ 9
(mod 4), so y ≡ 3 ∗ 9 (mod 4) ≡ 27 (mod 4) ≡ 3 (mod 4).

Hence, y = 3 + 4s is a solution to the linear congruence for some integer s.

Since 4x+ 51y = 9, then 51y = 9− 4x, so 51|9− 4x.
Hence, 9 ≡ 4x (mod 51), so 4x ≡ 9 (mod 51).
Since gcd(4, 51) = 1 and 1|9, then the linear congruence has exactly one

solution modulo 51 and the solution is congruent modulo 51
1 = 51.

Since 4 ∗ 13 ≡ 1 (mod 51), then 4 ∗ 13x ≡ x (mod 51) and 13 ∗ 4x ≡ 13 ∗ 9
(mod 51), so x ≡ 13 ∗ 9 (mod 51) ≡ 117 (mod 51) ≡ 15 (mod 51).

Thus, x = 15 + 51t is a solution to the linear congruence for some integer t.

Since x = 15 + 51t and y = 3 + 4s and 4x + 51y = 9, then we substitute to
get 4(15 + 51t) + 51(3 + 4s) = 9, or equivalently, t+ s = −1.

Since t = −1− s and x = 15 + 51t, then x = 15 + 51(−1− s) = −36− 51s.
Hence, x = −36− 51s and y = 3 + 4s for some integer s.
Therefore, the solution set to the linear Diophantine equation is {(−36 −

51s, 3 + 4s) : s ∈ Z}.

Exercise 54. Solve the linear Diophantine equation using congruences : 12x+
25y = 331.

Solution. Since gcd(12, 25) = 1 and 1|331, then the linear Diophantine equa-
tion has a solution.

Since 12x+ 25y = 331, then 12x = 331− 25y, so 12|(331− 25y).
Hence, 331 ≡ 25y (mod 12), so 25y ≡ 331 (mod 12).
Since gcd(25, 12) = 1 and 1|331, then the linear congruence has exactly one

solution modulo 4 and the solution is congruent modulo 4
1 = 4.

Since 25 ∗ 1 ≡ 1 (mod 12), then 25 ∗ 1y ≡ 1 ∗ y (mod 12), so 25y ≡ y
(mod 12).

Hence, y ≡ 25y (mod 12).
Since 25y ≡ 331 (mod 12), then y ≡ 331 (mod 12) ≡ 7 (mod 12).
Hence, y0 = 7 is a solution and x0 = 331−25∗7

12 = 13 is a solution.
The general solution of the linear Diophantine equation is given by x =

13 + 25
gcd(12,25) ∗ t = 13 + 25t and y = 7− 12

gcd(12,25) ∗ t = 7− 12t for some integer
t.

Therefore, the solution set to the linear Diophantine equation is {(13 +
25t, 7− 12t) : t ∈ Z}.
Solution. Since 12x+ 25y = 331, then 12x = 331− 25y, so 12|(331− 25y).

Hence, 331 ≡ 25y (mod 12), so 25y ≡ 331 (mod 12).
Since gcd(25, 12) = 1 and 1|331, then the linear congruence has exactly one

solution modulo 12 and the solution is congruent modulo 12
1 = 12.
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Since 25 ∗ 1 ≡ 1 (mod 12), then 25 ∗ 1y ≡ 1 ∗ y (mod 12), so 25y ≡ y
(mod 12).

Hence, y ≡ 25y (mod 12).
Since y ≡ 25y (mod 12) and 25y ≡ 331 (mod 12), then y ≡ 331 (mod 12) ≡

7 (mod 12).
Thus, y = 7 + 12s is a solution to the linear congruence for some integer s.

Since 12x+ 25y = 331, then 25y = 331− 12x, so 25|331− 12x.
Hence, 331 ≡ 12x (mod 25), so 12x ≡ 331 (mod 25).
Since gcd(12, 25) = 1 and 1|331, then the linear congruence has exactly one

solution modulo 25 and the solution is congruent modulo 25
1 = 25.

Since 12∗23 ≡ 1 (mod 25), then 12∗23x ≡ x (mod 25) and 23∗12x ≡ 23∗331
(mod 25), so x ≡ 23 ∗ 331 (mod 25) ≡ 7613 (mod 25) ≡ 13 (mod 25).

Thus, x = 13 + 25t is a solution to the linear congruence for some integer t.

Since x = 13 + 25t and y = 7 + 12s and 12x+ 25y = 331, then we substitute
to get 12(13 + 25t) + 25(7 + 12s) = 331, or equivalently, t+ s = 0.

Since t+ s = 0, then s = −t, so y = 7 + 12s = 7 + 12(−t) = 7− 12t.
Hence, x = 13 + 25t and y = 7− 12t for some integer t.
Therefore, the solution set to the linear Diophantine equation is {(13 +

25t, 7− 12t) : t ∈ Z}.

Exercise 55. Solve the linear Diophantine equation using congruences : 5x−
53y = 17.

Solution. Since gcd(5,−53) = 1 and 1|17, then the linear Diophantine equation
has a solution.

Since 5x− 53y = 17, then 5x = 53y + 17, so 5|53y − (−17).
Hence, 53y ≡ −17 (mod 5) ≡ 3 (mod 5).
Since gcd(53, 5) = 1 and 1|3, then the linear congruence has exactly one

solution modulo 5 and the solution is congruent modulo 5
1 = 5.

Since 53 ∗ 2 ≡ 1 (mod 5), then 53 ∗ 2y ≡ 1 ∗ y (mod 5), so 53 ∗ 2y ≡ y
(mod 5).

Hence, y ≡ 53 ∗ 2y (mod 5).
Since 53y ≡ 3 (mod 5), then 2 ∗ 53y ≡ 2 ∗ 3 (mod 5).
Since y ≡ 53 ∗ 2y (mod 5) and 2 ∗ 53y ≡ 2 ∗ 3 (mod 5), then y ≡ 2 ∗ 3

(mod 5) ≡ 6 (mod 5) ≡ 1 (mod 5).

Thus, y0 = 1 is a solution and x0 = 53(1)+17
5 = 14 is a solution.

The general solution of the linear Diophantine equation is given by x =
14 + −53

gcd(5,−53) ∗ t = 14− 53t and y = 1− 5
gcd(5,−53) ∗ t = 1− 5t for some integer

t.
Therefore, the solution set to the linear Diophantine equation is {(14 −

53t, 1− 5t) : t ∈ Z}.
Solution. Since 5x− 53y = 17, then 5x = 53y + 17, so 5|53y − (−17).

Hence, 53y ≡ −17 (mod 5) ≡ 3 (mod 5).
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Since gcd(53, 5) = 1 and 1|3, then the linear congruence has exactly one
solution modulo 5 and the solution is congruent modulo 5

1 = 5.
Since 53 ∗ 2 ≡ 1 (mod 5), then 53 ∗ 2y ≡ 1 ∗ y (mod 5), so 53 ∗ 2y ≡ y

(mod 5).
Hence, y ≡ 53 ∗ 2y (mod 5).
Since 53y ≡ 3 (mod 5), then 2 ∗ 53y ≡ 2 ∗ 3 (mod 5).
Since y ≡ 53 ∗ 2y (mod 5) and 2 ∗ 53y ≡ 2 ∗ 3 (mod 5), then y ≡ 2 ∗ 3

(mod 5) ≡ 6 (mod 5) ≡ 1 (mod 5).
Thus, y = 1 + 5s is a solution to the linear congruence for some integer s.

Since 5x− 53y = 17, then 53y = 5x− 17, so 53|5x− 17.
Hence, 5x ≡ 17 (mod 53).
Since gcd(5, 53) = 1 and 1|17, then the linear congruence has exactly one

solution modulo 53 and the solution is congruent modulo 53
1 = 53.

Since 5 ∗ 32 ≡ 1 (mod 53), then 5 ∗ 32x ≡ x (mod 53) and 32 ∗ 5x ≡ 32 ∗ 17
(mod 53), so x ≡ 32 ∗ 17 (mod 53) ≡ 544 (mod 53) ≡ 14 (mod 53).

Thus, x = 14 + 53t is a solution to the linear congruence for some integer t.

Since x = 14 + 53t and y = 1 + 5s and 5x− 53y = 17, then we substitute to
get 5(14 + 53t)− 53(1 + 5s) = 17, or equivalently, t = s.

Hence, x = 14 + 53t and y = 1 + 5t for some integer t.
Therefore, the solution set to the linear Diophantine equation is {(14 +

53t, 1 + 5t) : t ∈ Z}.

Exercise 56. Solve the linear congruence : 3x− 7y ≡ 11 (mod 13).

Solution. Let’s try breaking up the congruence into two congruences.
One congruence is 3x ≡ 0 (mod 13).
Second congruence is −7y ≡ 11 (mod 13).
Can we solve these independently?

Let’s solve 3x ≡ 0 (mod 13).
Since 3x ≡ 3∗0 (mod 13) and gcd(13, 3) = 1, then we cancel to obtain x ≡ 0

(mod 13).
Thus, x = 13s for some integer s.

Let’s solve −7y ≡ 11 (mod 13).
Since −7y ≡ 11 (mod 13), then 7y ≡ −11 (mod 13) ≡ 2 (mod 13).
Since gcd(7, 13) = 1 and 1|2, then the linear congruence has a unique solution

modulo 13 and the solution is congruent modulo 13
1 = 13.

Since 7 ∗ 2 ≡ 1 (mod 13), then 7 ∗ 2y ≡ y (mod 13) and 2 ∗ 7y ≡ 2 ∗ 2
(mod 13), so y ≡ 2 ∗ 2 (mod 13) ≡ 4 (mod 13).

Thus, y = 4 + 13t for some integer t.
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So, we think the solution set is {(13s, 4 + 13t) : s, t ∈ Z}.

Exercise 57. Solve the system of linear congruences:
x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

Solution. Using the Chinese Remainder Theorem, we let n = 3 ∗ 5 ∗ 7 = 105
and let Nk = n

nk
, where n1 = 3 and n2 = 5 and n3 = 7 and a1 = 2 and a2 = 3

and a3 = 2.
For N1 = 3∗5∗7

3 = 35, we solve the linear congruence 35x ≡ 1 (mod 3) which
has solution x1 = 2.

For N2 = 3∗5∗7
5 = 21, we solve the linear congruence 21x ≡ 1 (mod 5) which

has solution x2 = 1.
For N3 = 3∗5∗7

7 = 15, we solve the linear congruence 15x ≡ 1 (mod 7) which
has solution x3 = 1.

The solution is x =
∑
akNkxk = a1N1x1 + a2N2x2 + a3N3x3 = 2(35)(2) +

3(21)(1) + 2(15)(1) = 233 ≡ 233 (mod 105) ≡ 23 (mod 105).

Exercise 58. Solve the system of linear congruence: 17x ≡ (mod 276).

Solution. TODO Start here

Exercise 59. Let b, d, d′, p be arbitrary integers.
If bd ≡ bd′ (mod p), where p is prime and p 6 |b, then d ≡ d′ (mod p).

Proof. Suppose bd ≡ bd′ (mod p) and p is prime and p 6 |b.
Then p|(bd− bd′), so p|b(d− d′).
Since p is prime, then the only positive divisors of p are 1 and p.
Since p 6 |b, then 1 is the only positive divisor of both p and b.
Therefore, p and b are relatively prime, so gcd(p, b) = 1.
Since gcd(p, b) = 1 and p|b(d− d′), then p|d− d′.
Hence, d ≡ d′ (mod p).

Exercise 60. Let a, b, k be arbitrary integers with k > 0.
If |a| < k

2 and |b| < k
2 and a ≡ b (mod k), then a = b.

Proof. Suppose |a| < k
2 and |b| < k

2 and a ≡ b (mod k).
Since a ≡ b (mod k), then k|a− b, so a− b = km for some integer m.
Observe that 0 ≤ |a− b| < k

2 .

Since a− b = km, then |a− b| = |km| = k|m|, so |a−b|k = |m|.
Dividing by positive k, we obtain 0 ≤ |a−b|k < 1

2 .
Thus, 0 ≤ |m| < 1

2 .
Since m is an integer, then this implies |m| = 0, so m = 0.
Therefore, a− b = k(0) = 0, so a = b.

Exercise 61. Let S2 = {n ∈ Z : n2 ≡ −1 (mod 2)}.
Then S2 = [1]2.
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Proof. Observe that S2 = {n ∈ Z : 2|n2 + 1} and [1]2 = {n ∈ Z : n ≡ 1
(mod 2)} = {n ∈ Z : 2|n− 1}.

Let a ∈ S2.
Then a ∈ Z and 2|a2 + 1.
Thus, a2 + 1 = 2k for some integer k.
Hence, a2 = 2k − 1 = 2(k − 1) + 1, so a2 is odd.
Since the integer a2 is odd if and only if a is odd, then a is odd.
Thus, a− 1 is even, so 2|a− 1.
Therefore, a ∈ [1]2, so S2 ⊂ [1]2.
Let b ∈ [1]2.
Then b ∈ Z and 2|(b− 1).
Thus, b− 1 = 2m for some integer m.
Hence, b2 + 1 = (2m+ 1)2 + 1 = 2(2m2 + 2m+ 1).
Since 2m2 + 2m+ 1 is an integer, then 2|(b2 + 1).
Thus, b ∈ S2, so [1]2 ⊂ S2.
Since S2 ⊂ [1]2 and [1]2 ⊂ S2, then S2 = [1]2, as desired.

Exercise 62. Prove [1] and [n− 1] are units of Zn.

Solution. To prove [1] is a unit of Zn and [n− 1] is a unit of Zn, we can use a
variety of methods.

We know that [1] is a unit of Zn iff gcd(1, n) = 1 and [n− 1] is a unit of Zn

iff gcd(n− 1, n) = 1.
Let n ∈ Z+.
To prove [1] is a unit of Zn, we must show that [1] ∈ Zn and gcd(1, n) = 1.
To prove [n − 1] is a unit of Zn, we must show that [n − 1] ∈ Zn and

gcd(1, n) = 1.
We know that (1−n) ∗ 1 + 1 ∗n = 1, so 1 is a linear combination of 1 and n.
Hence, gcd(1, n) = 1.
We know that (−1)(n− 1) + 1 ∗ n = 1, so 1 is a linear combination of n− 1

and n.
Hence, gcd(n− 1, n) = 1.

Proof. Let n ∈ Z+.
Observe that [1] ∈ Zn and [1][1] = [1 ∗ 1] = [1].
Hence, there exists [1] ∈ Zn such that [1][1] = [1].
Therefore, [1] is a unit of Zn and [1]−1 = [1].
Since n|n, then n|(n− 1 + 1), so n|(n− 1)− (−1).
Hence, n− 1 ≡ −1 (mod n), so [n− 1] = [−1].
Observe that [n− 1] ∈ Zn and [n− 1][n− 1] = [−1][−1] = [−1 ∗ −1] = [1].
Hence, there exists [n− 1] ∈ Zn such that [n− 1][n− 1] = [1].
Therefore, [n− 1] is a unit of Zn and [n− 1]−1 = [n− 1].

Exercise 63. Define f : Z12 → Z8 by f([x]12) = [2x]8 for all [x]12 ∈ Z12.
Define g : Z12 → Z8 by g([x]12) = [3x]8 for all [x]12 ∈ Z12.
Show that f is a function, but g is not a function.
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Solution. Let f : A→ B be a binary relation from A to B.
To prove f : A→ B is a function, we must show that f is well defined.
Thus, we must prove if a1 = a2, then f(a1) = f(a2) for all a1, a2 ∈ A.
To prove f is a function, we must prove if [x]12 = [y]12, then f([x]12) =

f([y]12) for all [x]12, [y]12 ∈ Z12.
Thus, we must prove if [x]12 = [y]12, then [2x]8 = [2y]8 for all [x]12, [y]12 ∈

Z12.
To prove g is not a function, we need only show an example [x]12, [y]12 ∈ Z12

such that g([x]) 6= g([y]).

Proof. Let [x], [y] ∈ Z12 such that [x] = [y].
Then x ≡ y (mod 12), so 12|(x− y).
Thus, 4 ∗ 3|(x− y), so 4|(x− y).
Hence, 2 ∗ 4|2(x− y), so 8|2x− 2y.
Thus, 2x ≡ 2y (mod 8), so [2x] = [2y].
Therefore, f([x]) = f([y]).
Since [x] = [y] implies f([x]) = f([y]), then f is well defined, so f is a

function.

Exercise 64. Let a be a fixed element of Z∗17.
Let f : Z∗17 → Z∗17 be defined by f([x]) = [a][x] for all x ∈ Z∗17.
Determine if the inverse function exists.

Solution. We know that Z∗17 = {[m] ∈ Z17 : gcd(m, 17) = 1} = {[1], [2], [3], ..., [16]}
and |Z∗17| = φ(17) = 16.

Since (Z∗n, ∗) is an abelian group, then (Z∗17, ∗) is an abelian group.
Let [x] ∈ Z∗17.
Then f([x]) = [a][x].
Since (Z∗17, ∗) is a group, then Z∗17 is closed under multiplication modulo 17.
Thus, [a][x] ∈ Z∗17, so f([x]) ∈ Z∗17.
Hence, f is a binary relation from Z∗17 to Z∗17.
Is f a function(ie, well defined)?
Suppose [x], [y] ∈ Z∗17 such that [x] = [y].
Then f([x]) = [a][x] = [a][y] = f([y]), so f([x]) = f([y]).
Thus, [x] = [y] implies f([x]) = f([y]), so f is well defined.
Therefore, f is a function.

Is f injective?
Let [x], [y] ∈ Z∗17 such that f [x] = f [y].
Then [a][x] = [a][y], so [ax] = [ay].
Thus, ax ≡ ay (mod 17).
Since [a] ∈ Z∗17, then [a] ∈ Z17 and gcd(a, 17) = 1.
Since gcd(a, 17) = 1, we may cancel to obtain x ≡ y (mod 17).
Thus, [x] = [y] (mod 17).
Hence, f [x] = f [y] implies [x] = [y], so f is injective.
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Is f surjective?
Let [z] ∈ Z∗17.
Since (Z∗17, ∗) is a group and [a] ∈ Z∗17, then [a]−1 ∈ Z∗17.
Let [x] = [a]−1[z].
Since (Z∗17, ∗) is closed under multiplication modulo n, then [a]−1[z] ∈ Z∗17,

so [x] ∈ Z∗17.
Observe that f [x] = [a][x] = [a]([a]−1[z]) = ([a][a]−1)[z] = [1][z] = [z].
Hence, there exists [x] ∈ Z∗17 such that f [x] = [z], so f is surjective.
Since f is injective and surjective, then f is bijective, so the inverse function

exists.
Let f−1 : Z∗17 7→ Z∗17 be the inverse function of f .
Then f−1 satisfies f ◦ f−1 = I = f−1 ◦ f , where I is the identity function.
Let [x] ∈ Z∗17.
Then (f ◦ f−1)[x] = [x], so f(f−1[x]) = [x].
Let [y] = f−1[x].
Then f([y]) = [x], so [a][y] = [x].
We multiply by [a]−1 to obtain [y] = [a]−1[x].
Thus, we let the inverse function f−1 be defined by f−1[x] = [a]−1[x].
We verify this is correct by confirming f−1 ◦ f = I.
This means we must show (f−1 ◦ f)([x]) = [x] for all [x] ∈ Z∗17.
Let [x] ∈ Z∗17.
Then (f−1◦f)([x]) = f−1(f [x]) = f−1([a][x]) = [a]−1([a][x]) = ([a]−1[a])[x] =

[1][x] = [x].

Exercise 65. Let m, b ∈ Z and n ∈ N.
Let f : Zn 7→ Zn be defined by f([x]) = [mx+ b].
Show that f is bijective iff gcd(m,n) = 1 and find the inverse if gcd(m,n) =

1.

Solution. Observe that f is a binary relation on Zn.
Let’s first prove f is a function(ie, well defined).
Let [x] ∈ Zn.
Then f([x]) = [mx+ b].
Since mx+ b ∈ Z, then [mx+ b] ∈ Zn, so f([x]) ∈ Zn.
Suppose [x], [y] ∈ Zn such that [x] = [y].
Then x ≡ y (mod n).
We multiply by m to obtain mx ≡ my (mod n).
We add b to obtain mx+ b ≡ my + b (mod n).
Thus, [mx+ b] = [my + b], so f([x]) = f([y]).
Hence, [x] = [y] implies f([x]) = f([y]), so f is well defined.
Therefore, f is a function.

Suppose f is bijective.
Then f is injective and surjective.
Since f is surjective, then for every [z] ∈ Zn there exists [x] ∈ Zn such that

f([x]) = [z] = [mx+ b].
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Thus, for every z ∈ Z there exists x ∈ Z such that mx+ b ≡ z (mod n).
Let z = b+ 1.
Then z ∈ Z and there exists x ∈ Z such that mx+ b ≡ b+ 1 (mod n).
Hence, there exists x ∈ Z such that mx ≡ 1 (mod n).
Thus, m has an inverse modulo n.
Since m has an inverse modulo n iff gcd(m,n) = 1, then gcd(m,n) = 1.
Therefore, if f is bijective, then gcd(m,n) = 1.

Conversely, suppose gcd(m,n) = 1.
Let [x] ∈ Zn.
Since gcd(m,n) = 1, then there exists m′ ∈ Z such that mm′ ≡ 1 (mod n).
Hence, m has an inverse modulo n, so [m]−1 ∈ Zn and [m][m]−1 = [1].
Let [y] = [m]−1[x− b].
Since multiplication modulo n is a binary operation on Zn, then Zn is closed

under multiplication modulo n.
Thus, [m]−1[x− b] ∈ Zn, so [y] ∈ Zn.
Observe that f([y]) = [my+b] = [my]+[b] = [m][y]+[b] = [m]([m]−1[x−b])+

[b] = ([m][m]−1)[x−b]+[b] = [1][x−b]+[b] = [x−b]+[b] = [x−b+b] = [x+0] = [x].
Hence, there exists [y] ∈ Zn such that f([y]) = [x], so f is surjective.

Let [x], [y] ∈ Z such that f([x]) = f([y]).
Then [mx+ b] = [my + b], so mx+ b ≡ my + b (mod n).
Thus, mx ≡ my (mod n).
Since gcd(m,n) = 1, then we may cancel to obtain x ≡ y (mod n).
Hence, [x] = [y].
Since f([x]) = f([y]) implies [x] = [y], then f is injective.
Since f is injective and surjective, then f is bijective.
Hence, gcd(m,n) = 1 implies f is bijective.

Suppose gcd(m,n) = 1.
Then f is bijective.
Since f is bijective iff the inverse function f−1 exists, then f−1 exists.
Let f−1 : Zn 7→ Zn be the inverse of f .
Then f ◦ f−1 = I, where I is the identity function.
Thus, for every [x] ∈ Zn, (f ◦ f−1)[x] = [x].
Let [x] ∈ Zn.
Then (f ◦ f−1)[x] = [x], so f(f−1)[x] = [x].
Let [y] = f−1[x].
Then [x] = f([y]) = [my + b], so [x] = [my] + [b].
Thus, [x]− [b] = [my], so [x− b] = [m][y].
Since gcd(m,n) = 1, then the inverse of m exists modulo n.
Hence, [m]−1 ∈ Zn and [m]−1[m] = [1].
We multiply by the inverse to obtain [m]−1[x− b] = [y].
Thus, f−1[x] = [m]−1[x− b].
We verify that this is the correct inverse function by showing that f−1◦f = I.
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Let [x] ∈ Zn.
Then (f−1 ◦ f)[x] = f−1(f [x]) = f−1([mx + b]) = [m]−1[(mx + b) − b] =

[m]−1[mx] = [m]−1[m][x] = [1][x] = [x].

Exercise 66. Suppose a, b ∈ Z. Then a ≡ b (mod 6) if and only if a ≡ b
(mod 2) and a ≡ b (mod 3).

Proof. First we prove that if a ≡ b (mod 6), then a ≡ b (mod 2) and a ≡ b
(mod 3).

Suppose a ≡ b (mod 6). This means 6|(a − b), so there is an integer n for
which a− b = 6n.

From this equation we get a − b = 2(3n), which implies 2|(a − b), so a ≡ b
(mod 2).

We also get a− b = 3(2n), which implies 3|(a− b), so a ≡ b (mod 3).
Therefore a ≡ b (mod 2) and a ≡ b (mod 3).

Conversely, we show that if a ≡ b (mod 2) and a ≡ b (mod 3), then a ≡ b
(mod 6).

Suppose a ≡ b (mod 2) and a ≡ b (mod 3).
Since a ≡ b (mod 2) then 2|(a− b), so there is an integer k for which a− b =

2k.
Therefore a− b is even.
Since a ≡ b (mod 3) then 3|(a− b), so there is an integer l for which a− b =

3l = 2k.
Since a− b is even, then 3l is even. Since 3l is even and 3 is odd, then l must

be even, for if l were odd then 3l = a− b would be odd.
Hence l = 2m for some integer m.
Thus a− b = 3(2m) = 6m.
This means 6|(a− b), so a ≡ b (mod 6).

Exercise 67. If a ∈ Z, then a3 ≡ a (mod 3).

Proof. Suppose a ∈ Z.
Then a3 − a = a(a2 − 1) = a(a− 1)(a+ 1) = (a− 1)a(a+ 1).
This means a3 − a is the product of three consecutive integers.
Without loss of generality we shall assume a is nonnegative. A similar ar-

gument holds if a is negative.
We consider the integer a when it is divided by 3.
Suppose a ≥ 0.
Then we know the remainder when a is divided by 3 is either 0,1, or 2.
Thus by the division algorithm a = 3q + r for some integers q and r and

r = 0 or r = 1 or r = 2.
We consider these cases separately.
Case 1: Suppose r = 0.
This means 3 evenly divides a, so 3|a.
This implies a = 3q for some q ∈ Z.
Substituting we get
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(a−1)a(a+1) = (3q−1)(3q)(3q+1) = 3q(3q−1)(3q+1), so 3|(a−1)a(a+1).
Therefore 3|a3 − a.
Case 2: Suppose r = 1.
This means 1 is the remainder when a is divided by 3, so a = 3q+1 for some

q ∈ Z.
Substituting we get
(a−1)a(a+1) = (3q)(3q+1)(3q+2) = 3q(3q+1)(3q+2), so 3|(a−1)a(a+1).
Therefore 3|a3 − a.
Case 3: Suppose r = 2.
This means 2 is the remainder when a is divided by 3, so a = 3q+2 for some

q ∈ Z.
Substituting we get
(a − 1)a(a + 1) = (3q + 1)(3q + 2)(3q + 3) = (3q + 1)(3q + 2)(3(q + 1)) =

3(q + 1)(3q + 1)(3q + 2), so 3|(a− 1)a(a+ 1).
Therefore 3|a3 − a.

In each of these cases we always get 3|a3 − a.
Consequently a3 ≡ a (mod 3).

Exercise 68. Suppose a, b ∈ Z and n ∈ N.
If 12a 6≡ 12b (mod n), then n 6 |12.

Solution. Direct proof doesn’t seem to work. So we’ll try proof by contrapos-
itive since we can get rid of the negatives.

Proof. Suppose n|12.
Then there is an integer k for which 12 = nk.
Multiply the equation by a− b to get

12(a− b) = nk(a− b)
12a− 12b = n(ka− kb)

Since ka−kb ∈ Z, the equation 12a−12b = n(ka−kb) implies that n|(12a−
12b).

This in turn means that 12a ≡ 12b (mod n).

Exercise 69. If n ∈ N, then 12|(n4 − n2).

Solution. Note that the statement is equivalent to n4 ≡ n2 (mod 12).
The equivalent universal quantified statement is ∀n ∈ N, 12|(n4 − n2).
We prove by induction.
Note that n4 − n2 = n2(n2 − 1) = n2(n− 1)(n+ 1).
The statement Sn is 12|n2(n− 1)(n+ 1).
The statement Sk is 12|k2(k − 1)(k + 1).
The statement Sk+1 is 12|(k + 1)2(k)(k + 2).
We try weak induction.
Basis:
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If n = 1 then the statement S1 is 12|12(1−1)(1 + 1). This simplifies to 12|0,
which is true because 0 = 12 * 0.

Induction:
We must prove Sk → Sk+1 for k ≥ 1.
This means we must prove 12|k2(k− 1)(k+ 1) implies 12|(k+ 1)2(k)(k+ 2)

for any integer k ≥ 1.
We use direct proof.
Suppose 12|k2(k − 1)(k + 1) for any integer k ≥ 1.
Then k2(k − 1)(k + 1) = 12a for a ∈ Z, by definition of divisibility.
Our goal is to prove 12|(k + 1)2(k)(k + 2), so this implies we must prove

(k + 1)2(k)(k + 2) = 12b, b ∈ Z.
If we subtract we get

(k + 1)2(k)(k + 2)− k2(k − 1)(k + 1) = k(k + 1)[(k + 1)(k + 2)− k(k − 1)]

= k(k + 1)(k2 + 3k + 2− k2 + k)

= k(k + 1)(4k + 2)

= 2k(k + 1)(2k + 1)

This implies we must prove 12|2k(k+1)(2k+1) in order to prove our main goal.
This implies 2k(k+1)(2k+1) = 12c, c ∈ Z which implies k(k+1)(2k+1) = 6c.
Of course, we’ve already proved that 6|n(n+ 1)(2n+ 1), so we know this is

true.
However, we will use strong induction instead.
Since k(k+1)(2k+1) must be divisible by 6 for k ≥ 1, then we can show that

it is sufficient to show that k(k+1)(2k+1) is divisible by 6 for the first 6 natural
numbers in order to use strong induction. We can do this because the Division
Algorithm says that for any integer n divided by 6, n = 6q + r, 0 ≤ r < 6.

Thus we have a partition of N under the equivalence relation a ≡ b (mod 6):
If r = 0,then n = 6q which implies n ∈ {6q} = [0]6.

If r = 1,then n = 6q + 1 which implies n ∈ {6q + 1} = [1]6.

If r = 2,then n = 6q + 2 which implies n ∈ {6q + 2} = [2]6.

If r = 3,then n = 6q + 3 which implies n ∈ {6q + 3} = [3]6.

If r = 4,then n = 6q + 4 which implies n ∈ {6q + 4} = [4]6.

If r = 5,then n = 6q + 5 which implies n ∈ {6q + 5} = [5]6.

Each of these congruence classes(equivalence classes) are disjoint sets and
N = ∪5i=0[i]6.

Thus we only have to choose the first 6 natural numbers since any integer
greater than 6 will be congruent modulo 6 to one of the first 6 natural numbers.

Thus for strong induction we simply prove S1∧S2∧...∧S6∧Sk → Sk+1, k ≥ 6.
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Thus for the basis step we must prove S1 ∧ S2 ∧ ... ∧ S6.
For the induction step we must prove S1 ∧ S2 ∧ ... ∧ S6 ∧ Sk → Sk+1, k ≥ 6.
This implies we must prove Sk−5 ∧ Sk−4 ∧ ... ∧ Sk → Sk+1 for k ≥ 6.

Proof. We prove by induction(strong).
Basis:
If n = 1 then the statement is 12|(14 − 12). This simplifies to 12|0, which is

true.
If n = 2 then the statement is 12|(24 − 22). This simplifies to 12|12, which

is true.
If n = 3 then the statement is 12|(34 − 32). This simplifies to 12|72, which

is true.
If n = 4 then the statement is 12|(44 − 42). This simplifies to 12|240, which

is true.
If n = 5 then the statement is 12|(54 − 52). This simplifies to 12|600, which

is true.
If n = 6 then the statement is 12|(64−62). This simplifies to 12|1260, which

is true.
Induction: We must prove S1 ∧ S2 ∧ ... ∧ S6 ∧ Sk → Sk+1, k ≥ 6.
This implies we must prove Sk−5 ∧ Sk−4 ∧ ... ∧ Sk → Sk+1 for k ≥ 6.
For simplicity, let m = k − 5.
Then Sk−5∧Sk−4∧...∧Sk → Sk+1 for k ≥ 6 becomes Sm∧Sm+1∧...∧Sm+5 →

Sm+6 for m ≥ 1.

We prove the latter statement using direct proof.
Suppose Sm ∧ Sm+1 ∧ ... ∧ Sm+5 for m ≥ 1.

We must prove that these assumptions together imply Sm+6.
Since Sm ∧ Sm+1 ∧ ... ∧ Sm+5 is true by assumption, then Sm is true.

This implies 12|m4 −m2.

Thus m4 −m2 = 12a, a ∈ Z by definition of divisibility.
Observe the following equalities:

(m+ 6)4 − (m+ 6)2 = (m4 + 24m3 + 216m2 + 864m+ 1296)− (m2 + 12m+ 36)

= m4 + 24m3 + 215m2 + 852m+ 1260

= (m4 −m2) + (24m3 + 216m2 + 852m+ 1260)

= 12a+ (24m3 + 216m2 + 852m+ 1260)

= 12(a+ 2m3 + 18m2 + 71m+ 105)

Since a+2m3 +18m2 +71m+105 ∈ Z, then by definition of divisibility 12|(m+
6)4 − (m+ 6)2.

Thus Sm+6 is true.
Hence Sm ∧ Sm+1 ∧ ... ∧ Sm+5 → Sm+6 for m ≥ 1.
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Thus, Sk−5 ∧ Sk−4 ∧ ... ∧ Sk → Sk+1 for k ≥ 6.
It follows by strong induction that 12|(n4−n2) for all natural numbers n.

Proposition 70. Each set of seven distinct natural numbers contains a pair of
numbers whose sum or difference is divisible by 10.

Solution. We first translate the English statement into logical symbols in order
to better understand what the statement means.

The statement in logical symbols is something like: ∀S, P where S is a set
of 7 distinct natural numbers and P is ∃ai, aj ∈ S, 10|ai + aj ∨ 10|ai − aj .

We can represent a set S of 7 distinct natural numbers as follows.
Let S = {a1, a2, a3, a4, a5, a6, a7}.
Then |S| = 7.
How many pairs of distinct elements exist?
To answer this question, we realize this is really asking how many combina-

tions are there which is the same as asking how many sets of size 2 from a set
of size 7 are there?

This is simply 7 choose 2 = 21 since this is a selection without repetition(ie,
combination).

Now to better understand this proposition we should try some concrete ex-
amples.

If we have a set of 7 distinct natural numbers, then we would need to compute
the sum and differences of each of the 21 pairs, and then determine whether any
of the results is divisible by 10. We can write a Java program or use some other
math software (like GAP) to investigate whether this proposition appears to be
true.

We do try some examples and the examples do suggest the conjecture is
true.

Let’s analyze statement P .
Statement P is telling us that there exist distinct ai, aj ∈ S, such that some

statement is true concerning the sum or difference: ∃ai, aj ∈ S, P (ai+aj , ai−aj).
Let’s translate this logical statement into math symbols. We should think

about the sums and differences of any distinct ai, aj ∈ S. We consider a set
of sums and differences of distinct ai, aj ∈ S. Let T be a set of distinct sums
and differences of distinct pairs ai, aj ∈ S. We observe that there could be
some pairs whose sum may be the same. For example, if 2, 3, 4, 5 ∈ S, then
2 + 5 = 3 + 4. Since we want to guarantee that any sum(or difference) of
distinct pairs is distinct, then we must devise set T in such a way that this
holds true. Otherwise, T would have duplicate sums(or differences) and would
therefore not be a true set!

What facts do we know that can help us to devise set T?
We know S ⊆ N and S is not empty, so by the Well Ordering Principle, we

know S has a smallest element, say a1.
With some insight we realize that a way to devise set T would be to consider

the set of sums and differences of the smallest element of S.
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Let T = {a1 − a2, a1 − a3, a1 − a4, a1 − a5, a1 − a6, a1 − a7, a1 + a2, a1 +
a3, a1 + a4, a1 + a5, a1 + a6, a1 + a7}.

We observe that each element of set T is distinct from any other element in
T , so T is truly a set.

Consider the statement 10|n.

This means some natural number n ∈ {10, 20, 30, 40, 50, ...} = A.
Observe that set A consists of numbers that end with the digit zero.
Thus, ∃ai, aj ∈ S, P (ai + aj , ai − aj) is the same as ∃ai, aj ∈ S, 10|ai + aj ∨

10|ai − aj and can be interpreted to mean ∃ai, aj ∈ S, ai + aj ends with a zero
or ai − aj ends with a zero.

How do we prove the existence of a number that has this property of ending
with the digit zero?

Since we can’t devise a concrete example, we must try another approach to
devise that such an element must exist.

We consider the property of a number ending with a specific digit.
Since every number ends with one of the digits 0 to 9, then there is a natural

mapping from each number n to the digit that it ends with.
Thus, let us define a function f : T 7→ D where f(n) = the digit that a

number n ends with and D is the set of digits 0 to 9.
For example, f(803) = 3 since the number 803 ends with the digit 3.
What properties or relationships can we deduce about function f?
Well, we know that |T | = 12 and |D| = 10. By the Pigeonhole principle,

this implies f is not injective.
Thus, there exist distinct x, y ∈ T for which f(x) = f(y).
This means there exist distinct x, y ∈ T which end with the same digit.
In other words, there exist distinct a1±ai, a1±aj ∈ T for which f(a1±ai) =

f(a1 ± aj) where ai, aj ∈ S.
So we have deduced that there exist distinct a1±ai, a1±aj ∈ T and a1±ai

has the same last digit as a1 ± aj .
We know that the difference between any two numbers that end in the same

digit is a number that ends with the digit zero.
Thus, we take the difference between a1 ± ai, a1 ± aj ∈ T to get (a1 ± ai)−

(a1 ± aj) = ±ai ∓ aj = ±ai ± aj .
This implies ai + aj or ai − aj ends with the digit zero.
Hence ai + aj or ai − aj is divisible by 10.

Proof. Let S = {a1, a2, a3, a4, a5, a6, a7} be a set of seven distinct natural num-
bers.

We must prove ∃ai, aj ∈ S, 10|ai + aj ∨ 10|ai − aj
Since S ⊆ N and S is not empty, then it follows by the Well Ordering

Principle that S has a smallest element.
Without loss of generality, let a1 be the smallest element of S.
Let T = {a1 − a2, a1 − a3, a1 − a4, a1 − a5, a1 − a6, a1 − a7, a1 + a2, a1 +

a3, a1 + a4, a1 + a5, a1 + a6, a1 + a7} be a set of sums and differences of a1. It
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is obvious that T is a set since each sum or difference in T is different from any
other sum or difference in T .

Let f : T 7→ D be a function where f(n) = the digit that a number n ends
with and D is the set of digits 0 to 9.

Observe that |T | = 12 and |D| = 10.
Since |T | > |D|, then by the pigeonhole principle, f is not injective.
Thus, there exist distinct x, y ∈ T for which f(x) = f(y).
This means there exist distinct x, y ∈ T which end with the same digit.
Thus, there exist distinct a1 ± ai, a1 ± aj ∈ T and a1 ± ai has the same last

digit as a1 ± aj where ai, aj ∈ S.
We know that the difference between any two numbers that end in the same

digit is a number that ends with the digit zero.
Thus, we take the difference between a1 ± ai, a1 ± aj ∈ T to get (a1 ± ai)−

(a1 ± aj) = ±ai ∓ aj = ±ai ± aj .
This implies ai + aj or ai − aj ends with the digit zero.
Since any number is divisible by 10 if and only if it ends with the digit zero,

then this implies ai + aj or ai − aj is divisible by 10.

Exercise 71. Prove that for every n ∈ Z+

1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
≤ 2− 1

n
.

Exercise 72. Euler conjecture is false
The equation a4 + b4 + c4 = d4 has no solution when a, b, c, d are positive

integers.
Show that this statement is false

Proof. Let a = 95800 and b = 217519 and c = 414560 and d = 422481.
Then a4 + b4 + c4 = 1222824711550279489 = d4.
Therefore, the conjecture is false.
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