Number Theory Exercises 4

Jason Sass

July 17, 2023

Congruences

Exercise 1. Write up justifications for the basic examples of congruence modulo definition.
a. $3 \equiv 24(\bmod 7)$.
b. $-31 \equiv 11(\bmod 7)$.
c. $-15 \equiv-64(\bmod 7)$.
d. $25 \not \equiv 12(\bmod 7)$.

Proof. Since $7(-3)=-21=3-24$, then 7 divides $3-24$, so 3 is congruent to 24 modulo 7.

Therefore, $3 \equiv 24(\bmod 7)$.
Proof. Since $7(-6)=-42=-31-11$, then 7 divides $-31-11$, so -31 is congruent to 11 modulo 7.

Therefore, $-31 \equiv 11(\bmod 7)$.
Proof. Since $7(7)=49=-15-(-64)$, then 7 divides $-15-(-64)$, so -15 is congruent to -64 modulo 7 .

Therefore, $-15 \equiv-64(\bmod 7)$.
Proof. Since 7 does not divide $13=25-12$, then 25 is not congruent to 12 modulo 7.

Therefore, $25 \not \equiv 12(\bmod 7)$.

Exercise 2. Any two integers are congruent modulo 1

Let $a, b \in \mathbb{Z}$.
Then $a \equiv b(\bmod 1)$.
Proof. Since 1 divides any integer, then 1 divides the difference $a-b$, so $a \equiv b$ $(\bmod 1)$.

Exercise 3. Two integers are congruent modulo 2 when they are both even or both odd

Let $a, b \in \mathbb{Z}$.
Then $a \equiv b(\bmod 2)$ iff a and b are either both even or both odd.
Proof. We first prove if a and b are both even or both odd, then $a \equiv b(\bmod 2)$.

Suppose a and b are both even or both odd.
Then either a and b are both even or a and b are both odd.
We consider these cases separately.
Case 1: Suppose a and b are both even.
Then $a=2 m$ and $b=2 n$ for some integers m and n.
Thus, $a-b=2 m-2 n=2(m-n)$, so $2 \mid(a-b)$.
Therefore, $a \equiv b(\bmod 2)$.
Case 2: Suppose a and b are both odd.
Then $a=2 m+1$ and $b=2 n+1$ for some integers m and n.
Thus, $a-b=(2 m+1)-(2 n+1)=2 m+1-2 n-1=2 m-2 n=2(m-n)$, so $2 \mid(a-b)$.

Therefore, $a \equiv b(\bmod 2)$.
Proof. Conversely, we prove if $a \equiv b(\bmod 2)$, then a and b are either both even or both odd.

We prove by contradiction.

Suppose $a \equiv b(\bmod 2)$ and neither a and b are both even nor both odd.
Then either a and b are not both even or a and b are not both odd, so either a is even and b is odd, or a is odd and b is even.

We consider these cases separately.
Case 1: Suppose a is even and b is odd.
Then $a=2 m$ and $b=2 n+1$ for some integers m and n.
Thus, $a-b=2 m-(2 n+1)=2 m-2 n-1=2 m-2 n-2+1=2(m-n-1)+1$, so $2 X(a-b)$.

Therefore, $a \not \equiv b(\bmod 2)$.
But, this contradicts the assumption $a \equiv b(\bmod 2)$.
Case 2: Suppose a is odd and b is even.
Then $a=2 m+1$ and $b=2 n$ for some integers m and n.
Thus, $a-b=(2 m+1)-2 n=2 m-2 n+1=2(m-n)+1$, so $2 \nmid(a-b)$.
Therefore, $a \not \equiv b(\bmod 2)$.
But, this contradicts the assumption $a \equiv b(\bmod 2)$.
In all cases, we reach a contradiction.
Therefore, if $a \equiv b(\bmod 2)$, then a and b are either both even or both odd.

Exercise 4. Since $-56=(-7) 9+7$ and $-11=(-2) 9+7$, then -56 and -11 leave the same remainder 7 when divided by 9 .

Therefore, $-56 \equiv-11(\bmod 9)$.
Exercise 5. Show that 41 divides $2^{20}-1$.
Solution. Since $41 \mid 32-(-9)$, then $2^{5}=32 \equiv-9(\bmod 41)$.
Since $41 \cdot 2=82=81-(-1)$, then 41 divides $81-(-1)$, so $81 \equiv-1$ $(\bmod 41)$.

Observe that

$$
\begin{aligned}
2^{20} & =\left(2^{5}\right)^{4} \\
& \equiv(-9)^{4} \quad(\bmod 41) \\
& \equiv 9^{4} \quad(\bmod 41) \\
& \equiv 81^{2} \quad(\bmod 41) \\
& \equiv(-1)^{2} \quad(\bmod 41) \\
& \equiv 1 \quad(\bmod 41) .
\end{aligned}
$$

Therefore, $2^{20} \equiv 1(\bmod 41)$, so $41 \mid\left(2^{20}-1\right)$.

We observe the prime factorization is $2^{20}-1=3 * 5^{2} * 11 * 31 * 41$.
Exercise 6. Find the remainder when the sum $1!+2!+3!+4!+\ldots+99!+100$! is divided by 12 .

Solution. Observe that $4!=24 \equiv 0(\bmod 12)$.
Observe that $5!=4!* 5$ and $6!=4!* 5 * 6$ and $7!=4!* 5 * 6 * 7$ and \ldots $k!=4!* 5 * \ldots *(k-1) * k$, for any integer $k \geq 4$.

For any $k \geq 4$, we have

$$
\begin{aligned}
k! & =4!* 5 * \ldots *(k-1) * k \\
& \equiv 0 * 5 * \ldots *(k-1) * k \quad(\bmod 12) \\
& \equiv 0 \quad(\bmod 12) . .
\end{aligned}
$$

Thus, $k!\equiv 0(\bmod 12)$ for any $k \geq 4$, so $4!\equiv 0(\bmod 12)$ and $5!\equiv 0$ $(\bmod 12)$ and \ldots and $100!\equiv 0(\bmod 12)$.

Observe that

$$
\begin{aligned}
1!+2!+3!+4!+\ldots+99!+100! & =(1!+2!+3!)+(4!+5!+\ldots+100!) \\
& =9+(4!+5!+\ldots+100!) \\
& \equiv 9+(0+0+\ldots+0) \quad(\bmod 12) \\
& \equiv 9(\bmod 12) .
\end{aligned}
$$

Hence, 12 divides $(1!+2!+\ldots+100!)-9$, so $1!+2!+\ldots+100!-9=12 m$ for some integer m.

Thus, $1!+2!+\ldots+100!=12 m+9$.
Therefore, by the division algorithm, when $1!+2!+\ldots+100$! is divided by 12 , the remainder is 9 .

Exercise 7. What does $33 \equiv 15(\bmod 9)$ imply?
Solution. Since $9 \cdot 2=18=33-15$, then 9 divides $33-15$, so $33 \equiv 15(\bmod 9)$.
Thus, $3 \cdot 11 \equiv 3 \cdot 5(\bmod 9)$.
Since $\operatorname{gcd}(9,3)=3$, then we conclude $11 \equiv 5\left(\bmod \frac{9}{3}\right)$.
Therefore, $11 \equiv 5(\bmod 3)$.
Indeed, $3 * 2=6=11-5$, so 3 divides $11-5$.
Hence, $11 \equiv 5(\bmod 3)$.

Exercise 8. What does $-35 \equiv 45(\bmod 8)$ imply?
Solution. Since $8(-10)=-80=-35-45$, then 8 divides $-35-45$, so $-35 \equiv 45(\bmod 8)$.

Thus, $(-7) 5 \equiv 9(5)(\bmod 8)$.
Since $\operatorname{gcd}(8,5)=1$, then we may cancel to obtain $-7 \equiv 9(\bmod 8)$.
Indeed, 8 divides the difference $-7-9=-16=8(-2)$.
Exercise 9. Show that $a b \equiv 0(\bmod n)$ does not imply $a \equiv 0(\bmod n)$ or $b \equiv 0$ $(\bmod n)$.

Solution. Let $n=12$ and $a=4$ and $b=3$.
Then $4 \cdot 3 \equiv 0(\bmod 12)$, but $4 \not \equiv 0(\bmod 12)$ and $3 \not \equiv 0(\bmod 12)$.
Proposition 10. Let $n \in \mathbb{Z}^{+}$.
Let $a, b \in \mathbb{Z}$.
If $a b \equiv 0(\bmod n)$ and $\operatorname{gcd}(a, n)=1$, then $b \equiv 0(\bmod n)$.
Proof. Suppose $a b \equiv 0(\bmod n)$ and $\operatorname{gcd}(a, n)=1$.
Since $a b \equiv 0(\bmod n)$, then $n \mid a b-0$, so $n \mid a b$.
Since $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$, so $n \mid b-0$.
Therefore, $b \equiv 0(\bmod n)$.
Proposition 11. Let $p \in \mathbb{Z}^{+}$.
Let $a, b \in \mathbb{Z}$.
If $a b \equiv 0(\bmod p)$ and p is prime, then either $a \equiv 0(\bmod p)$ or $b \equiv 0$ $(\bmod p)$.

Proof. Suppose $a b \equiv 0(\bmod p)$ and p is prime.
Since $a b \equiv 0(\bmod p)$, then $p \mid a b$.
Since p is prime and $p \mid a b$, then either $p \mid a$ or $p \mid b$, by Euclid's lemma.
Therefore, either $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)$.
Exercise 12. Let $n \in \mathbb{Z}^{+}$and $a, b \in \mathbb{Z}$.
Show that $a c \equiv b c(\bmod n)$ does not necessarily imply $a \equiv b(\bmod n)$.
Solution. Let $n=6$ and $a=10$ and $b=7$ and $c=2$.
Since $6 \cdot 1=6=20-14$, then 6 divides $20-14=10 \cdot 2-7 \cdot 2$, so 6 divides $10 \cdot 2-7 \cdot 2$.

Thus, $10 \cdot 2 \equiv 7 \cdot 2(\bmod 6)$.
Since $6 \not \backslash 3$ and $3=10-7$, then 6 does not divide $10-7$, so $10 \not \equiv 7(\bmod 6)$.
Therefore, $10 \cdot 2 \equiv 7 \cdot 2(\bmod 6)$, but $10 \not \equiv 7(\bmod 6)$.
Exercise 13. Let $m, n \in \mathbb{Z}^{+}$and $a, b \in \mathbb{Z}$.
If $a \equiv b(\bmod n)$ and $m \mid n$, then $a \equiv b(\bmod m)$.
Proof. Suppose $a \equiv b(\bmod n)$ and $m \mid n$.
Since $a \equiv b(\bmod n)$, then $n \mid a-b$.
Since $m \mid n$ and $n \mid a-b$, then $m \mid a-b$
Therefore, $a \equiv b(\bmod m)$.

Proposition 14. Let $n, c \in \mathbb{Z}^{+}$and $a, b, c \in \mathbb{Z}$.
If $a \equiv b(\bmod n)$, then $a c \equiv b c(\bmod n c)$.
Proof. Suppose $a \equiv b(\bmod n)$.
Then $n \mid a-b$.
Hence, $n c \mid(a-b) c$, so $n c \mid a c-b c$.
Therefore, $a c \equiv b c(\bmod n c)$.
Exercise 15. Let $n, d \in \mathbb{Z}^{+}$and $a, b \in \mathbb{Z}$.
If $a \equiv b(\bmod n)$ and the integers a, b, n are all divisible by d, then $\frac{a}{d} \equiv \frac{b}{d}$ $\left(\bmod \frac{n}{d}\right)$.

Proof. Suppose $a \equiv b(\bmod n)$ and $d \mid a$ and $d \mid b$ and $d \mid n$.
Since $a \equiv b(\bmod n)$, then $n \mid a-b$, so $a-b=n k$ for some integer k.
Since $d \mid a$, then $a=d k_{1}$ for some integer k_{1}, so $k_{1}=\frac{a}{d}$.
Therefore, $\frac{a}{d} \in \mathbb{Z}$.
Since $d \mid b$, then $b=d k_{2}$ for some integer k_{2}, so $k_{2}=\frac{b}{d}$.
Therefore, $\frac{b}{d} \in \mathbb{Z}$.
Since $d \mid n$, then $n=d k_{3}$ for some integer k_{3}, so $k_{3}=\frac{n}{d}$.
Therefore, $\frac{n}{d} \in \mathbb{Z}$.
Since $a-b=n k$, then we divide by $d>0$ to obtain $\frac{a}{d}-\frac{b}{d}=\frac{a-b}{d}=\frac{n k}{d}=\frac{n}{d} \cdot k$.
Therefore, $\frac{n}{d}$ divides the difference $\frac{a}{d}-\frac{b}{d}$, so $\frac{a}{d} \equiv \frac{b}{d}\left(\bmod \frac{n}{d}\right)$.
Exercise 16. Let $n \in \mathbb{Z}^{+}$and $a, b \in \mathbb{Z}$.
Show that $a^{2} \equiv b^{2}(\bmod n)$ does not necessarily imply $a \equiv b(\bmod n)$.
Solution. Let $n=4$ and $a=5$ and $b=3$.
Since $16=4 \cdot 4=25-9$, then 4 divides $25-9$, so $25 \equiv 9(\bmod 4)$.
Since $4 \nmid 2$ and $2=5-3$, then 4 does not divide $5-3$, so $5 \not \equiv 3(\bmod 4)$.
Therefore, $25 \equiv 9(\bmod 4)$ does not imply $5 \equiv 3(\bmod 4)$.
Exercise 17. Let $n \in \mathbb{Z}^{+}$and $a, b \in \mathbb{Z}$.
If $a \equiv b(\bmod n)$, then $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.
Proof. Suppose $a \equiv b(\bmod n)$.
Then $n \mid a-b$, so $a-b=n k$ for some integer k.
Let $d=\operatorname{gcd}(a, n)$.
Then $d \mid a$ and $d \mid n$ and if any integer c divides both a and n, then $c \mid d$.
Since $d \mid a$ and $d \mid n$, then d divides any linear combination of a and n.
Since $b=a-n k$ is a linear combination of a and n, then $d \mid b$.
Since $d \mid b$ and $d \mid n$, then d is a common divisor of b and n.

Let c be any common divisor of b and n.
The $c \mid b$ and $c \mid n$, so c divides any linear combination of b and n.
Since $a=b+n k$ is a linear combination of b and n, then $c \mid a$.
Since $c \mid a$ and $c \mid n$, then we conclude $c \mid d$.
Therefore, any common divisor of b and n divides d.

Since d is a common divisor of b and n and any common divisor of b and n divides d, then $d=\operatorname{gcd}(b, n)$.

Therefore, $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$.
Exercise 18. What is the remainder when 2^{50} is divided by 7 ?
Solution. Since $2^{5}=32 \equiv 4(\bmod 7)$, then $2^{10}=\left(2^{5}\right)^{2} \equiv 4^{2}(\bmod 7) \equiv 16$ $(\bmod 7) \equiv 2(\bmod 7)$, so $2^{10} \equiv 2(\bmod 7)$.

Observe that

$$
\begin{aligned}
2^{50} & =\left(2^{10}\right)^{5} \\
& \equiv 2^{5} \quad(\bmod 7) \\
& \equiv 32 \quad(\bmod 7) \\
& \equiv 4 \quad(\bmod 7) .
\end{aligned}
$$

Hence, $2^{50} \equiv 4(\bmod 7)$, so $7 \mid 2^{50}-4$.
Therefore, $2^{50}-4=7 k$ for some integer k, so $2^{50}=7 k+4$.
By the division algorithm, the remainder is 4 .
Exercise 19. What is the remainder when 41^{65} is divided by 7 ?
Solution. Observe that $41 \equiv-1(\bmod 7)$.
Thus,

$$
\begin{aligned}
41^{65} & \equiv(-1)^{65} \quad(\bmod 7) \\
& \equiv-1 \quad(\bmod 7) \\
& \equiv 6 \quad(\bmod 7) .
\end{aligned}
$$

Consequently, $41^{65} \equiv 6(\bmod 7)$, so 7 divides $41^{65}-6$.
Hence, $41^{65}-6=7 k$ for some integer k, so $41^{65}=7 k+6$.
Therefore, by the division algorithm, when 41^{65} is divided by 7 the remainder is 6 .

Exercise 20. What is the remainder when the sum $1^{5}+2^{5}+3^{5}+\ldots+99^{5}+100^{5}$ is divided by 4 ?

Solution. TODO
We observe that
$1^{5} \equiv 1(\bmod 4)$
$2^{5} \equiv 0(\bmod 4)$
$3^{5} \equiv 3(\bmod 4)$
$4^{5} \equiv 0(\bmod 4)$
$5^{5} \equiv 1(\bmod 4)$
$6^{5} \equiv 0(\bmod 4)$
$7^{5} \equiv 3(\bmod 4)$
$8^{5} \equiv 0(\bmod 4)$
$9^{5} \equiv 1(\bmod 4)$
Do we see a pattern or patterns?

Maybe if $k \equiv 1(\bmod 4)$, then $k^{5} \equiv 1(\bmod 4)$. Can we prove this?
If k is even, then $k^{5} \equiv 0(\bmod 4)$. Can we prove this?
If $k \equiv 3(\bmod 4)$, then $k^{5} \equiv 3(\bmod 4)$. Can we prove this?
So, if k is even, then adding doesn't change the sum.
So, if k is odd, then either $k \equiv 1(\bmod 4)$ or $k \equiv 3(\bmod 4)$.
So, how many k are between 1 and 100 and congruent to 1 ?
So, how many k are between 1 and 100 and congruent to 3 ?
Let c_{1} be the number of k between 1 and 100 that are congruent to 1 .
Then $c_{1}=25$ since $S_{4}^{1}=\{4 k+1: 1 \leq 4 k+1 \leq 100\}$.
Let c_{2} be the number of k between 1 and 100 that are congruent to 3 .
Then $c_{2}=25$ since $S_{4}^{3}=\{4 k+3: 1 \leq 4 k+3 \leq 100\}$.
Then $c_{1} * 1+c_{2} * 3=25 * 1+25 * 3=25 * 4=100$ is the sum.
So, we think the sum will be congruent to 0 modulo 4 .
This means the remainder is zero.
Proposition 21. Let $n_{1}, n_{2} \in \mathbb{Z}^{+}$.
Let $a, b \in \mathbb{Z}$.
If $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv b\left(\bmod n_{2}\right)$, then $a \equiv b\left(\bmod \operatorname{lcm}\left(n_{1}, n_{2}\right)\right)$.
Hence, whenever $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then $a \equiv b\left(\bmod n_{1} n_{2}\right)$.
Proof. Suppose $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv b\left(\bmod n_{2}\right)$.
Then $n_{1} \mid(a-b)$ and $n_{2} \mid(a-b)$, so $a-b$ is a multiple of n_{1} and n_{2}.
Hence, $a-b$ is a multiple of the least common multiple of n_{1} and n_{2}, by definition of least common multiple.

Thus, $\operatorname{lcm}\left(n_{1}, n_{2}\right)$ divides $a-b$, so a is congruent to b modulo $\operatorname{lcm}\left(n_{1}, n_{2}\right)$.
Therefore, $a \equiv b\left(\bmod \operatorname{lcm}\left(n_{1}, n_{2}\right)\right)$.
Proof. We prove: if $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv b\left(\bmod n_{2}\right)$ and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then $a \equiv b\left(\bmod n_{1} n_{2}\right)$.

Suppose $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv b\left(\bmod n_{2}\right)$ and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$.
Since $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv b\left(\bmod n_{2}\right)$, then $a \equiv b\left(\bmod \operatorname{lcm}\left(n_{1}, n_{2}\right)\right)$.
Since $\operatorname{lcm}\left(n_{1}, n_{2}\right) \cdot \operatorname{gcd}\left(n_{1}, n_{2}\right)=n_{1} n_{2}$ and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then $n_{1} n_{2}=$ $\operatorname{lcm}\left(n_{1}, n_{2}\right) \cdot 1=\operatorname{lcm}\left(n_{1}, n_{2}\right)$.

Therefore, $a \equiv b\left(\bmod n_{1} n_{2}\right)$.
Exercise 22. Give an example to show that $a^{k} \equiv b^{k}(\bmod n)$ and $k \equiv j$ $(\bmod n)$ does not imply $a^{j} \equiv b^{j}(\bmod n)$.
Solution. Let $a=7$ and $b=5$ and $n=3$ and $j=5$ and $k=2$.
Since $3 \cdot 8=24=49-25=7^{2}-5^{2}$, then 3 divides $7^{2}-5^{2}$, so $7^{2} \equiv 5^{2}$ $(\bmod 3)$.

Since $3(-1)=-3=2-5$, then 3 divides $2-5$, so $2 \equiv 5(\bmod 3)$.
Since $7^{5}-5^{5}=13682=3 \cdot 4560+2$, then $3 \nless\left(7^{5}-5^{5}\right)$, so $7^{5} \not \equiv 5^{5}(\bmod 3)$.
Therefore, $7^{2} \equiv 5^{2}(\bmod 3)$ and $2 \equiv 5(\bmod 3)$, but $7^{5} \not \equiv 5^{5}(\bmod 3)$.
Lemma 23. Let $a \in \mathbb{Z}$.
If a is odd, then $a^{2} \equiv 1(\bmod 8)$.

Proof. Suppose a is odd.
Then $a=2 k+1$ for some integer k.
Thus, $a^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k+1-1=4 k^{2}+4 k=4 k(k+1)$.
Since k and $k+1$ are consecutive integers, then the product $k(k+1)$ is even.
Hence, $k(k+1)=2 m$ for some integer m.
Consequently, $a^{2}-1=4(2 m)=8 m$, so $8 \mid\left(a^{2}-1\right)$.
Therefore, $a^{2} \equiv 1(\bmod 8)$.
Proof. Suppose a is odd.
By the division algorithm, there exist unique integers q and r such that $a=4 q+r$ and $0 \leq r<4$, so either $a=4 q$ or $a=4 q+1$ or $a=4 q+2$ or $a=4 q+3$.

Since $4 q=2(2 q)$ is even and a is odd, then $a \neq 4 q$.
Since $4 q+2=2(2 q+1)$ is even and a is odd, then $a \neq 4 q+2$.
Thus, either $a=4 q+1$ or $a=4 q+3$.
We consider these cases separately.
Case 1: Suppose $a=4 q+1$.
Then $a^{2}-1=(4 q+1)^{2}-1=16 q^{2}+8 q+1-1=16 q^{2}+8 q=8 q(2 q+1)$.
Hence, 8 divides $a^{2}-1$, so $a^{2} \equiv 1(\bmod 8)$.
Case 2: Suppose $a=4 q+3$.
Then $a^{2}-1=(4 q+3)^{2}-1=16 q^{2}+24 q+9-1=16 q^{2}+24 q+8=$ $8\left(2 q^{2}+3 q+1\right)$.

Hence, 8 divides $a^{2}-1$, so $a^{2} \equiv 1(\bmod 8)$.
Therefore, in all cases, $a^{2} \equiv 1(\bmod 8)$.
Exercise 24. Let $a \in \mathbb{Z}$.
Then either $a^{3} \equiv 0(\bmod 9)$ or $a^{3} \equiv 1(\bmod 9)$ or $a^{3} \equiv 8(\bmod 9)$.
Proof. By the division algorithm, there exist unique integers q and r such that $a=3 q+r$ and $0 \leq r<3$, so either $a=3 q$ or $a=3 q+1$ or $a=3 q+2$.

We consider these cases separately.
Case 1: Suppose $a=3 q$.
Then $a^{3}=(3 q)^{3}=3^{3} q^{3}=\left(3^{2}\right) 3 q^{3}=9\left(3 q^{3}\right)$.
Hence, 9 divides a^{3}, so $a^{3} \equiv 0(\bmod 9)$.
Case 2: Suppose $a=3 q+1$.
Then $a^{3}=(3 q+1)^{3}=27 q^{3}+27 q^{2}+9 q+1$, so $a^{3}-1=27 q^{3}+27 q^{2}+9 q=$ $9 q\left(3 q^{2}+3 q+1\right)$.

Hence, 9 divides $a^{3}-1$, so $a^{3} \equiv 1(\bmod 9)$.
Case 3: Suppose $a=3 q+2$.
Then $a^{3}=(3 q+2)^{3}=27 q^{3}+54 q^{2}+36 q+8$, so $a^{3}-8=27 q^{3}+54 q^{2}+36 q=$ $9 q\left(3 q^{2}+6 q+4\right)$.

Hence, 9 divides $a^{3}-8$, so $a^{3} \equiv 8(\bmod 9)$.

In all cases, either $a^{3} \equiv 0(\bmod 9)$ or $a^{3} \equiv 1(\bmod 9)$ or $a^{3} \equiv 8(\bmod 9)$.
Exercise 25. Let $a \in \mathbb{Z}$.
Then $a^{3} \equiv a(\bmod 6)$.
Proof. The product of three consecutive integers is divisible by 6 .
Thus, the product $(a-1) a(a+1)=a\left(a^{2}-1\right)=a^{3}-a$ is divisible by 6 , so 6 divides $a^{3}-a$.

Therefore, $a^{3} \equiv a(\bmod 6)$.
Proof. By the division algorithm, there exist unique integers q and r such that $a=6 q+r$ and $0 \leq r<6$, so either $a=6 q$ or $a=6 q+1$ or $a=6 q+2$ or $a=6 q+3$ or $a=6 q+4$ or $a=6 q+5$.

We consider these cases separately.
Case 1: Suppose $a=6 q$.
Then

$$
\begin{aligned}
a^{3}-a & =(6 q)^{3}-6 q \\
& =6^{3} q^{3}-6 q \\
& =6 q\left(36 q^{2}-1\right)
\end{aligned}
$$

Hence, 6 divides $a^{3}-a$, so $a^{3} \equiv a(\bmod 6)$.
Case 2: Suppose $a=6 q+1$.
Then

$$
\begin{aligned}
a^{3}-a & =(6 q+1)^{3}-(6 q+1) \\
& =\left(216 q^{3}+108 q^{2}+18 q+1\right)-(6 q+1) \\
& =216 q^{3}+108 q^{2}+12 q \\
& =6 q\left(36 q^{2}+18 q+2\right)
\end{aligned}
$$

Hence, 6 divides $a^{3}-a$, so $a^{3} \equiv a(\bmod 6)$.
Case 3: Suppose $a=6 q+2$.
Then

$$
\begin{aligned}
a^{3}-a & =(6 q+2)^{3}-(6 q+2) \\
& =\left(216 q^{3}+216 q^{2}+72 q+8\right)-(6 q+2) \\
& =216 q^{3}+216 q^{2}+66 q+6 \\
& =6\left(36 q^{3}+36 q^{2}+11 q+1\right)
\end{aligned}
$$

Hence, 6 divides $a^{3}-a$, so $a^{3} \equiv a(\bmod 6)$.
Case 4: Suppose $a=6 q+3$.
Then

$$
\begin{aligned}
a^{3}-a & =(6 q+3)^{3}-(6 q+3) \\
& =\left(216 q^{3}+324 q^{2}+162 q+27\right)-(6 q+3) \\
& =216 q^{3}+324 q^{2}+156 q+24 \\
& =6\left(36 q^{3}+54 q^{2}+26 q+4\right)
\end{aligned}
$$

Hence, 6 divides $a^{3}-a$, so $a^{3} \equiv a(\bmod 6)$.
Case 5: Suppose $a=6 q+4$.
Then

$$
\begin{aligned}
a^{3}-a & =(6 q+4)^{3}-(6 q+4) \\
& =\left(216 q^{3}+432 q^{2}+288 q+64\right)-(6 q+4) \\
& =216 q^{3}+432 q^{2}+282 q+60 \\
& =6\left(36 q^{3}+72 q^{2}+47 q+12\right)
\end{aligned}
$$

Hence, 6 divides $a^{3}-a$, so $a^{3} \equiv a(\bmod 6)$.
Case 6: Suppose $a=6 q+5$.
Then

$$
\begin{aligned}
a^{3}-a & =(6 q+5)^{3}-(6 q+5) \\
& =\left(216 q^{3}+540 q^{2}+450 q+125\right)-(6 q+5) \\
& =216 q^{3}+540 q^{2}+444 q+120 \\
& =6\left(36 q^{3}+90 q^{2}+74 q+20\right)
\end{aligned}
$$

Hence, 6 divides $a^{3}-a$, so $a^{3} \equiv a(\bmod 6)$.
Therefore, in all cases, $a^{3} \equiv a(\bmod 6)$.
Exercise 26. If an integer a is not divisible by 2 or 3 , then $a^{2} \equiv 1(\bmod 24)$.
Proof. Let $a \in \mathbb{Z}$.
We must prove: If $2 \not \backslash a$ and $3 \not \backslash a$, then $a^{2} \equiv 1(\bmod 24)$.
Suppose $2 \nless a$ and $3 \nless a$.
Since $2 \not \backslash a$, then a is not even, so a is odd.
If a is odd, then $a^{2} \equiv 1(\bmod 8)$, by lemma 23 .
Therefore, we conclude $a^{2} \equiv 1(\bmod 8)$.
We next show that $a^{2} \equiv 1(\bmod 3)$.
By the division algorithm, there exist unique integers q and r such that $a=3 q+r$ and $0 \leq r<3$, so either $a=3 q$ or $a=3 q+1$ or $a=3 q+2$.

Since $3 \not \backslash a$ and 3 divides $3 q$, then $a \neq 3 q$.
Thus, either $a=3 q+1$ or $a=3 q+2$.
We consider these cases separately.
Case 1: Suppose $a=3 q+1$.
Then

$$
\begin{aligned}
a^{2}-1 & =(3 q+1)^{2}-1 \\
& =9 q^{2}+6 q+1-1 \\
& =9 q^{2}+6 q \\
& =3 q(3 q+2)
\end{aligned}
$$

Hence, 3 divides $a^{2}-1$, so $a^{2} \equiv 1(\bmod 3)$.
Case 2: Suppose $a=3 q+2$.
Then

$$
\begin{aligned}
a^{2}-1 & =(3 q+2)^{2}-1 \\
& =9 q^{2}+12 q+4-1 \\
& =9 q^{2}+12 q+3 \\
& =3\left(3 q^{2}+4 q+1\right)
\end{aligned}
$$

Hence, 3 divides $a^{2}-1$, so $a^{2} \equiv 1(\bmod 3)$.
Therefore, in all cases, $a^{2} \equiv 1(\bmod 3)$.
Since $a^{2} \equiv 1(\bmod 3)$ and $a^{2} \equiv 1(\bmod 8)$ and $\operatorname{lcm}(3,8)=24$, then $a^{2} \equiv 1$ $(\bmod 24)$, by proposition 21.

Exercise 27. If an integer a is both a square and a cube, then $a \equiv 0,1,9$, or 28 $(\bmod 36)$.

Proof. TODO
Exercise 28. If a is an odd integer, then $a^{2^{n}} \equiv 1\left(\bmod 2^{n+2}\right)$.
Proof. TODO
Exercise 29. Verify that $89 \mid 2^{44}-1$.
Proof. Since $2^{11} \equiv 1(\bmod 89)$, then

$$
\begin{aligned}
2^{44}-1 & =\left(2^{11}\right)^{4}-1 \\
& \equiv 1^{4}-1 \quad(\bmod 89) \\
& \equiv 0 \quad(\bmod 89)
\end{aligned}
$$

Hence, $2^{44}-1 \equiv 0(\bmod 89)$, so 89 divides $2^{44}-1$.
Therefore, $89 \mid 2^{44}-1$.
Exercise 30. Verify that $97 \mid 2^{48}-1$.
Proof. Since $2^{19} \equiv 3(\bmod 97)$, then

$$
\begin{aligned}
2^{48} & =\left(2^{10}\right)\left(2^{19}\right)^{2} \\
& \equiv 2^{10} \cdot 3^{2} \quad(\bmod 97) \\
& \equiv\left(2^{5} \cdot 3\right)^{2} \quad(\bmod 97) \\
& \equiv 96^{2} \quad(\bmod 97) \\
& \equiv 1 \quad(\bmod 97)
\end{aligned}
$$

Therefore, $2^{48} \equiv 1(\bmod 97)$, so $97 \mid 2^{48}-1$.

Proposition 31. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.
If $a \equiv b(\bmod n)$, then $a^{2} \equiv b^{2}(\bmod n)$.
Proof. Suppose $a \equiv b(\bmod n)$.
Then $n \mid(a-b)$, by definition of congruence modulo, so $a-b=n k$ for $k \in \mathbb{Z}$. Multiplying both sides by $a+b$ we get $(a-b)(a+b)=n k(a+b)$ so it follows that $a^{2}-b^{2}=n k(a+b)$.

Since $k(a+b) \in \mathbb{Z}$, then $n \mid a^{2}-b^{2}$.
Therefore $a^{2} \equiv b^{2}(\bmod n)$, by definition of congruence modulo.
Exercise 32. Repeated squares computational technique for $b^{e}(\bmod m)$ Compute $271^{321}(\bmod 481)$.

Solution. We use a repeated squares computational technique to quickly compute $b^{e}(\bmod m)$ for base b raised to exponent e modulo m.

We express the exponent 321 as a sum of powers of 2 .
Thus, $321=2^{8}+2^{6}+2^{0}$.
Observe that

$$
\begin{aligned}
271^{321}(\bmod 481) & =271^{2^{0}+2^{6}+2^{8}}(\bmod 481) \\
& =\left(271^{2^{0}} \cdot 271^{2^{6}} \cdot 271^{2^{8}}\right) \quad(\bmod 481)
\end{aligned}
$$

We compute powers 2^{i} for $i=0,6,8$.
$271^{2^{1}}=271^{2} \equiv 329(\bmod 481)$.
$271^{2^{2}}=\left(271^{2^{1}}\right)^{2} \equiv 329^{2}(\bmod 481) \equiv 16(\bmod 481)$.
$271^{2^{3}}=\left(271^{2^{2}}\right)^{2} \equiv 16^{2}(\bmod 481) \equiv 256(\bmod 481)$.
$271^{2^{4}}=\left(271^{2^{3}}\right)^{2} \equiv 256^{2}(\bmod 481) \equiv 120(\bmod 481)$.
$271^{2^{5}}=\left(271^{2^{4}}\right)^{2} \equiv 120^{2}(\bmod 481) \equiv 451(\bmod 481)$.
$271^{2^{6}}=\left(271^{2^{5}}\right)^{2} \equiv 451^{2}(\bmod 481) \equiv 419(\bmod 481)$.
$271^{2^{7}}=\left(271^{2^{6}}\right)^{2} \equiv 419^{2}(\bmod 481) \equiv 477(\bmod 481)$.
$271^{2^{8}}=\left(271^{2^{7}}\right)^{2} \equiv 477^{2}(\bmod 481) \equiv 16(\bmod 481)$.

Thus, we have
$271^{2^{0}} \equiv 271(\bmod 481)$
$271^{2^{6}} \equiv 419(\bmod 481)$
$271^{2^{8}} \equiv 16(\bmod 481)$

Multiplying we obtain

$$
\left(271^{0^{0}} \cdot 271^{2^{6}} \cdot 271^{2^{8}}\right) \equiv 271 \cdot 419 \cdot 16(\bmod 481)
$$

Observe that

$$
\begin{aligned}
271^{321}(\bmod 481) & =271^{2^{0}+2^{6}+2^{8}} \quad(\bmod 481) \\
& =\left(271^{2^{0}} \cdot 271^{2^{6}} \cdot 271^{2^{8}}\right) \quad(\bmod 481) \\
& \equiv 271 \cdot 419 \cdot 16 \quad(\bmod 481) \\
& \equiv 47 \quad(\bmod 481) .
\end{aligned}
$$

Therefore, $271^{321}(\bmod 481) \equiv 47(\bmod 481)$.
Exercise 33. Compute $292^{3171}(\bmod 582)$.
Solution. We use a repeated squares computational technique to quickly compute $b^{e}(\bmod m)$ for base b raised to exponent e modulo m.

We express the exponent 3171 as a sum of powers of 2 .
Thus, $3171=2^{0}+2^{1}+2^{5}+2^{6}+2^{10}+2^{11}$.
Observe that

$$
\begin{aligned}
292^{3171}(\bmod 582) & =292^{2^{0}+2^{1}+2^{5}+2^{6}+2^{10}+2^{11}}(\bmod 582) \\
& =\left(292^{2^{0}} \cdot 292^{2^{1}} \cdot 292^{2^{5}} \cdot 292^{2^{6}} \cdot 292^{2^{10}} \cdot 292^{2^{11}}\right) \quad(\bmod 582)
\end{aligned}
$$

We compute powers 2^{i} for $i=0,1,5,6,10,11$.
$292^{2^{1}}=292^{2} \equiv 292(\bmod 582)$.
$292^{2^{2}}=\left(292^{2^{1}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$.
$292^{2^{3}}=\left(292^{2^{2}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$.
$292^{2^{4}}=\left(292^{2^{3}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$.
$292^{2^{5}}=\left(292^{2^{4}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$.
$292^{2^{6}}=\left(292^{2^{5}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$.
$292^{2^{7}}=\left(292^{2^{6}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$.
$292^{2^{8}}=\left(292^{2^{7}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$
$292^{2^{9}}=\left(292^{2^{7}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$
$292^{2^{10}}=\left(292^{2^{7}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$
$292^{2^{11}}=\left(292^{2^{7}}\right)^{2} \equiv 292^{2}(\bmod 582) \equiv 292(\bmod 582)$.

Thus, we have
$292^{2^{0}} \equiv 292(\bmod 582)$
$292^{2^{1}} \equiv 292(\bmod 582)$
$292^{2^{5}} \equiv 292(\bmod 582)$
$292^{2^{6}} \equiv 292(\bmod 582)$
$292^{2^{10}} \equiv 292(\bmod 582)$
$292^{2^{11}} \equiv 292(\bmod 582)$

Multiplying we obtain
$\left(292^{2^{0}} \cdot 292^{2^{1}} \cdot 292^{2^{5}} \cdot 292^{2^{6}} \cdot 292^{2^{10}} \cdot 292^{2^{11}}\right) \equiv 292^{6}(\bmod 582)$.

Observe that

$$
\begin{aligned}
292^{3171}(\bmod 582) & =292^{2^{0}+2^{1}+2^{5}+2^{6}+2^{10}+2^{11}}(\bmod 582) \\
& =\left(292^{2^{0}} \cdot 292^{2^{1}} \cdot 292^{2^{5}} \cdot 292^{2^{6}} \cdot 292^{2^{10}} \cdot 292^{2^{11}}\right) \quad(\bmod 582) \\
& \equiv 292^{6} \quad(\bmod 582) \\
& \equiv 292 \quad(\bmod 582) .
\end{aligned}
$$

Therefore, $292^{3171}(\bmod 582) \equiv 292(\bmod 582)$.
Exercise 34. Compute $2557^{341}(\bmod 5681)$.
Solution. We use a repeated squares computational technique to quickly compute $b^{e}(\bmod m)$ for base b raised to exponent e modulo m.

We express the exponent 341 as a sum of powers of 2 .
Thus, $341=2^{8}+2^{6}+2^{4}+2^{2}+2^{0}$.
Observe that

$$
\begin{aligned}
2557^{341}(\bmod 5681) & =2557^{2^{0}+2^{2}+2^{4}+2^{6}+2^{8} \quad(\bmod 5681)} \\
& =\left(2557^{2^{0}} \cdot 2557^{2^{2}} \cdot 2557^{2^{4}} \cdot 2557^{2^{6}} \cdot 2557^{2^{8}}\right) \quad(\bmod 5681)
\end{aligned}
$$

We compute powers 2^{i} for $i=0,2,4,6,8$.
$2557^{2^{1}}=2557^{2} \equiv 5099(\bmod 5681)$.
$2557^{2^{2}}=\left(2557^{2^{1}}\right)^{2} \equiv 5099^{2}(\bmod 5681) \equiv 3545(\bmod 5681)$.
$2557^{2^{3}}=\left(2557^{2^{2}}\right)^{2} \equiv 3545^{2}(\bmod 5681) \equiv 653(\bmod 5681)$.
$2557^{2^{4}}=\left(2557^{2^{3}}\right)^{2} \equiv 653^{2}(\bmod 5681) \equiv 334(\bmod 5681)$.
$2557^{2^{5}}=\left(2557^{2^{4}}\right)^{2} \equiv 334^{2}(\bmod 5681) \equiv 3617(\bmod 5681)$.
$2557^{2^{6}}=\left(2557^{2^{5}}\right)^{2} \equiv 3617^{2}(\bmod 5681) \equiv 5027(\bmod 5681)$.
$2557^{2^{7}}=\left(2557^{2^{6}}\right)^{2} \equiv 5027^{2}(\bmod 5681) \equiv 1641(\bmod 5681)$.
$2557^{2^{8}}=\left(2557^{2^{7}}\right)^{2} \equiv 1641^{2}(\bmod 5681) \equiv 87(\bmod 5681)$.

Thus, we have
$2557^{2^{0}} \equiv 2557(\bmod 5681)$
$2557^{2^{2}} \equiv 3545(\bmod 5681)$
$2557^{2^{4}} \equiv 334(\bmod 5681)$
$2557^{2^{6}} \equiv 5027(\bmod 5681)$
$2557^{2^{8}} \equiv 87(\bmod 5681)$
Multiplying we obtain
$\left(2557^{2^{0}} \cdot 2557^{2^{2}} \cdot 2557^{2^{4}} \cdot 2557^{2^{6}} \cdot 2557^{2^{8}}\right) \equiv 2557 \cdot 3545 \cdot 334 \cdot 5027 \cdot 87(\bmod 5681)$.

Observe that

$$
\begin{aligned}
2557^{341}(\bmod 5681) & =2557^{2^{0}+2^{2}+2^{4}+2^{6}+2^{8}}(\bmod 5681) \\
& =\left(2557^{2^{0}} \cdot 2557^{2^{2}} \cdot 2557^{2^{4}} \cdot 2557^{2^{6}} \cdot 2557^{2^{8}}\right) \quad(\bmod 5681) \\
& \equiv 2557 \cdot 3545 \cdot 334 \cdot 5027 \cdot 87 \quad(\bmod 5681) \\
& \equiv 2876 \quad(\bmod 5681) .
\end{aligned}
$$

Therefore, $2557^{341}(\bmod 5681) \equiv 2876(\bmod 5681)$.
Exercise 35. Compute $2071^{9521}(\bmod 4724)$.
Solution. We use a repeated squares computational technique to quickly compute $b^{e}(\bmod m)$ for base b raised to exponent e modulo m.

We express the exponent 9521 as a sum of powers of 2 .
Thus, $9521=2^{13}+2^{10}+2^{8}+2^{5}+2^{4}+2^{0}$.
Observe that

$$
\begin{aligned}
2071^{9521}(\bmod 4724) & =2071^{2^{0}+2^{4}+2^{5}+2^{8}+2^{10}+2^{13}}(\bmod 4724) \\
& =\left(2071^{2^{0}} \cdot 2071^{2^{4}} \cdot 2071^{2^{5}} \cdot 2071^{2^{8}} \cdot 2071^{2^{10}} \cdot 2071^{2^{13}}\right) \quad(\bmod 4724)
\end{aligned}
$$

We compute powers 2^{i} for $i=0,4,5,8,10,13$.

$$
\begin{aligned}
& 2071^{2^{1}}=2071^{2} \equiv 4373(\bmod 4724) \text {. } \\
& 2071^{2^{2}}=\left(2071^{2^{1}}\right)^{2} \equiv 4373^{2}(\bmod 4724) \equiv 377(\bmod 4724) \text {. } \\
& 2071^{2^{3}}=\left(2071^{2^{2}}\right)^{2} \equiv 377^{2}(\bmod 4724) \equiv 409(\bmod 4724) \text {. } \\
& 2071^{2^{4}}=\left(2071^{2^{3}}\right)^{2} \equiv 409^{2}(\bmod 4724) \equiv 1941(\bmod 4724) \text {. } \\
& 2071^{2^{5}}=\left(2071^{2^{4}}\right)^{2} \equiv 1941^{2}(\bmod 4724) \equiv 2453(\bmod 4724) . \\
& 2071^{2^{6}}=\left(2071^{2^{5}}\right)^{2} \equiv 2453^{2}(\bmod 4724) \equiv 3557(\bmod 4724) . \\
& 2071^{2^{7}}=\left(2071^{2^{6}}\right)^{2} \equiv 3557^{2}(\bmod 4724) \equiv 1377(\bmod 4724) \text {. } \\
& 2071^{2^{8}}=\left(2071^{2^{7}}\right)^{2} \equiv 1377^{2}(\bmod 4724) \equiv 1805(\bmod 4724) . \\
& 2071^{2^{9}}=\left(2071^{2^{7}}\right)^{2} \equiv 1805^{2}(\bmod 4724) \equiv 3189(\bmod 4724) \text {. } \\
& 2071^{2^{10}}=\left(2071^{2^{7}}\right)^{2} \equiv 3189^{2}(\bmod 4724) \equiv 3673(\bmod 4724) \text {. } \\
& 2071^{2^{11}}=\left(2071^{2^{7}}\right)^{2} \equiv 3673^{2}(\bmod 4724) \equiv 3909(\bmod 4724) \text {. } \\
& 2071^{2^{12}}=\left(2071^{2^{7}}\right)^{2} \equiv 3909^{2}(\bmod 4724) \equiv 2865(\bmod 4724) \text {. } \\
& 2071^{2^{13}}=\left(2071^{2^{7}}\right)^{2} \equiv 2865^{2}(\bmod 4724) \equiv 2637(\bmod 4724) \text {. }
\end{aligned}
$$

Thus, we have
$2071^{2^{0}} \equiv 2071(\bmod 4724)$
$2071^{2^{4}} \equiv 1941(\bmod 4724)$
$2071^{2^{5}} \equiv 2453(\bmod 4724)$
$2071^{2^{8}} \equiv 1805(\bmod 4724)$
$2071^{2^{10}} \equiv 3673(\bmod 4724)$
$2071^{2^{13}} \equiv 2637(\bmod 4724)$

Multiplying we obtain
$\left(2071^{2^{0}} \cdot 2071^{2^{4}} \cdot 2071^{2^{5}} \cdot 2071^{2^{8}} \cdot 2071^{2^{10}} \cdot 2071^{2^{13}}\right) \equiv 2071 \cdot 1941 \cdot 2453 \cdot 1805 \cdot$
$3673 \cdot 2637(\bmod 4724)$.

Observe that

$$
\begin{aligned}
2071^{9521}(\bmod 4724) & =2071^{2^{0}+2^{4}+2^{5}+2^{8}+2^{10}+2^{13}}(\bmod 4724) \\
& =\left(2071^{2^{0}} \cdot 2071^{2^{4}} \cdot 2071^{2^{5}} \cdot 2071^{2^{8}} \cdot 2071^{2^{10}} \cdot 2071^{2^{13}}\right) \quad(\bmod 4724) \\
& \equiv 2071 \cdot 1941 \cdot 2453 \cdot 1805 \cdot 3673 \cdot 2637 \quad(\bmod 4724) \\
& \equiv 1523 \quad(\bmod 4724) .
\end{aligned}
$$

Therefore, $2071^{9521}(\bmod 4724) \equiv 1523(\bmod 4724)$.
Exercise 36. Compute $971^{321}(\bmod 765)$.
Solution. We use a repeated squares computational technique to quickly compute $b^{e}(\bmod m)$ for base b raised to exponent e modulo m.

We express the exponent 321 as a sum of powers of 2 .
Thus, $321=2^{8}+2^{6}+2^{0}$.
Observe that

$$
\begin{aligned}
971^{321}(\bmod 765) & =971^{2^{0}+2^{6}+2^{8}}(\bmod 765) \\
& =\left(971^{2^{0}} \cdot 971^{2^{6}} \cdot 971^{2^{8}}\right) \quad(\bmod 765)
\end{aligned}
$$

We compute powers 2^{i} for $i=0,6,8$.

$$
971^{2^{1}}=971^{2} \equiv 361(\bmod 765)
$$

$$
971^{2^{2}}=\left(971^{2^{1}}\right)^{2} \equiv 361^{2}(\bmod 765) \equiv 271(\bmod 765)
$$

$971^{2^{3}}=\left(971^{2^{2}}\right)^{2} \equiv 271^{2}(\bmod 765) \equiv 1(\bmod 765)$.
$971^{2^{4}}=\left(971^{2^{3}}\right)^{2} \equiv 1^{2}(\bmod 765) \equiv 1(\bmod 765)$.
$971^{2^{5}}=\left(971^{2^{4}}\right)^{2} \equiv 1^{2}(\bmod 765) \equiv 1(\bmod 765)$.
$971^{2^{6}}=\left(971^{2^{5}}\right)^{2} \equiv 1^{2}(\bmod 765) \equiv 1(\bmod 765)$.
$971^{2^{7}}=\left(971^{2^{6}}\right)^{2} \equiv 1^{2}(\bmod 765) \equiv 1(\bmod 765)$.
$971^{2^{8}}=\left(971^{2^{7}}\right)^{2} \equiv 1^{2}(\bmod 765) \equiv 1(\bmod 765)$.

Thus, we have
$971^{2^{0}} \equiv 971(\bmod 765)$
$971^{2^{6}} \equiv 1(\bmod 765)$
$971^{2^{8}} \equiv 1(\bmod 765)$
Multiplying we obtain
$\left(971^{2^{0}} \cdot 971^{2^{6}} \cdot 971^{2^{8}}\right) \equiv 971 \cdot 1 \cdot 1(\bmod 765)$.

Observe that

$$
\begin{aligned}
971^{321}(\bmod 765) & =971^{2^{0}+2^{6}+2^{8}}(\bmod 765) \\
& =\left(971^{2^{0}} \cdot 971^{2^{6}} \cdot 971^{2^{8}}\right) \quad(\bmod 765) \\
& \equiv 971 \cdot 1 \cdot 1 \quad(\bmod 765) \\
& \equiv 206 \quad(\bmod 765) .
\end{aligned}
$$

Therefore, $971^{321}(\bmod 765) \equiv 206(\bmod 765)$.
Exercise 37. If $a b \equiv c d(\bmod n)$ and $b \equiv d(\bmod n)$ and $\operatorname{gcd}(b, n)=1$, then $a \equiv c(\bmod n)$.

Proof. Suppose $a b \equiv c d(\bmod n)$ and $b \equiv d(\bmod n)$ and $\operatorname{gcd}(b, n)=1$.
Observe that

$$
\begin{aligned}
b \equiv d \quad(\bmod n) & \Rightarrow b c \equiv d c \quad(\bmod n) \\
& \Rightarrow b c \equiv c d \quad(\bmod n) \\
& \Rightarrow c d \equiv b c \quad(\bmod n) \\
& \Rightarrow a b \equiv b c \quad(\bmod n) \\
& \Rightarrow a b \equiv c b \quad(\bmod n) .
\end{aligned}
$$

Since $a b \equiv c b(\bmod n)$ and $\operatorname{gcd}(n, b)=1$, then by cancellation, we have $a \equiv c(\bmod n)$.

Exercise 38. If $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv c\left(\bmod n_{2}\right)$ and $n=\operatorname{gcd}\left(n_{1}, n_{2}\right)$, then $b \equiv c(\bmod n)$.

Proof. Suppose $a \equiv b\left(\bmod n_{1}\right)$ and $a \equiv c\left(\bmod n_{2}\right)$ and $n=\operatorname{gcd}\left(n_{1}, n_{2}\right)$.
Then $n_{1} \mid a-b$ and $n_{2} \mid a-c$ and $n \mid n_{1}$ and $n \mid n_{2}$.
Since $n \mid n_{1}$ and $n_{1} \mid a-b$, then $n \mid a-b$.
Since $n \mid n_{2}$ and $n_{2} \mid a-c$, then $n \mid a-c$.
Since n is a common divisor of $a-b$ and $a-c$, then n divides any linear combination of $a-b$ and $a-c$.

Since $(-1)(a-b)+(1)(a-c)=-a+b+a-c=b-c$ is a linear combination of $a-b$ and $a-c$, then n divides $b-c$.

Therefore, $b \equiv c(\bmod n)$.

Linear Congruences

Exercise 39. Solve the linear congruence $3 x \equiv 2(\bmod 7)$.
Solution. Let $d=\operatorname{gcd}(3,7)$.
Since $d=1$ and $1 \mid 2$, then a solution exists.
There are $d=1$ distinct solutions modulo 7 and the solution is congruent modulo $\frac{7}{d}=\frac{7}{1}=7$.

A particular solution is $x_{0}=3$.
The general solution x is in the set $3+7 \mathbb{Z}=\{3+7 k: k \in \mathbb{Z}\}$.

Let S be the solution set to the linear congruence.
Then $S=\{x \in \mathbb{Z}: 3 x \equiv 2(\bmod 7)\}$.
Let $x \in S$.
Then $x \in \mathbb{Z}$ and $3 x \equiv 2(\bmod 7)$, so $[3 x]=[2]$.
Hence, $[3][x]=[2]$.
Since $\operatorname{gcd}(3,7)=1$, then $[3] \in \mathbb{Z}_{7}$ has a multiplicative inverse and $[3]^{-1}=[5]$,
so $[3][5]=[5][3]=[1]$ modulo 7 .
For convenience, we have $3 x=2$ and $3 * 5=5 * 3=1$.
Observe that

$$
\begin{aligned}
3 x & =2 \\
5 * 3 x & =5 * 2 \\
1 x & =10 \\
x & =3 .
\end{aligned}
$$

Therefore, $[x]=[3]$, so $x \in[3]$.
Since $[3]=3+7 \mathbb{Z}=\{3+7 k: k \in \mathbb{Z}\}$, then $x \in 3+7 \mathbb{Z}$.
Thus, $x \in S$ implies $x \in 3+7 \mathbb{Z}$, so S is a subset of $3+7 \mathbb{Z}$.

We prove the set $3+7 \mathbb{Z}$ is a subset of S.
Let $y \in 3+7 \mathbb{Z}$.
Then $y=3+7 k$ for some integer k, so $y \in \mathbb{Z}$.
Observe that $3 y-2=3(3+7 k)-2=9+21 k-2=21 k+7=7(3 k+1)$.
Since $3 k+1 \in \mathbb{Z}$, then 7 divides the difference $3 y-2$, so $3 y \equiv 2(\bmod 7)$.
Since $y \in \mathbb{Z}$ and $3 y \equiv 2(\bmod 7)$, then $y \in S$, so $3+7 \mathbb{Z}$ is a subset of S.
Since S is a subset of $3+7 \mathbb{Z}$ and $3+7 \mathbb{Z}$ is a subset of S, then $S=3+7 \mathbb{Z}$.
Exercise 40. Solve the linear congruence $5 x+1 \equiv 13(\bmod 23)$.
Solution. Suppose $5 x+1 \equiv 13(\bmod 23)$.
Then $5 x \equiv 12$.
Let $d=\operatorname{gcd}(5,23)$.
Since $d=1$ and $1 \mid 12$, then a solution exists.
There are $d=1$ distinct solutions modulo 23 and the solution is congruent modulo $\frac{23}{d}=\frac{23}{1}=23$.

A particular solution is $x_{0}=7$.
The general solution x is in the set $7+23 \mathbb{Z}=\{7+23 k: k \in \mathbb{Z}\}$.
Let S be the solution set to the linear congruence.
Then $S=\{x \in \mathbb{Z}: 5 x+1 \equiv 13(\bmod 23)\}$.
Let $x \in S$.
Then $x \in \mathbb{Z}$ and $5 x+1 \equiv 13(\bmod 23)$, so $5 x \equiv 12$
Thus, $[5 x]=[12]$, so $[5[] x]=[12]$.
Since $\operatorname{gcd}(5,23)=1$, then $[5] \in \mathbb{Z}_{23}$ has a multiplicative inverse and $[5]^{-1}=$ $[14]$, so $[5][14]=[14][5]=[1]$ modulo 23.

For convenience, we have $5 x=12$ and $5 * 14=14 * 5=1$.
Observe that

$$
\begin{aligned}
5 x & =12 \\
14 * 5 x & =14 * 12 \\
1 x & =168 \\
x & =7
\end{aligned}
$$

Therefore, $[x]=[7]$, so $x \in[7]$.
Since $[7]=7+23 \mathbb{Z}=\{7+23 k: k \in \mathbb{Z}\}$, then $x \in 7+23 \mathbb{Z}$.
Thus, $x \in S$ implies $x \in 7+23 \mathbb{Z}$, so S is a subset of $7+23 \mathbb{Z}$.

We prove $7+23 \mathbb{Z}$ is a subset of S.
Let $y \in 7+23 \mathbb{Z}$.
Then $y=7+23 k$ for some integer k, so $y \in \mathbb{Z}$.
Observe that $(5 y+1)-13=(5(7+23 k)+1)-13=(35+115 k+1)-13=$ $115 k+23=23(5 k+1)$.

Since $5 k+1 \in \mathbb{Z}$, then 23 divides the difference $(5 y+1)-13$, so $5 y+1 \equiv 13$ $(\bmod 23)$.

Since $y \in \mathbb{Z}$ and $5 y+1 \equiv 13(\bmod 23)$, then $y \in S$, so $7+23 \mathbb{Z}$ is a subset of S.

Since S is a subset of $7+23 \mathbb{Z}$ and $7+23 \mathbb{Z}$ is a subset of S, then $S=7+23 \mathbb{Z}$.

Exercise 41. Solve the linear congruence $5 x+1 \equiv 13(\bmod 26)$.
Solution. Suppose $5 x+1 \equiv 13(\bmod 26)$.
Then $5 x \equiv 12$.
Let $d=\operatorname{gcd}(5,26)$.
Since $d=1$ and $1 \mid 12$, then a solution exists.
There are $d=1$ distinct solutions modulo 26 and the solution is congruent modulo $\frac{26}{d}=\frac{26}{1}=26$.

A particular solution is $x_{0}=18$.
The general solution x is in the set $18+26 \mathbb{Z}=\{18+26 k: k \in \mathbb{Z}\}$.
Let S be the solution set to the linear congruence.
Then $S=\{x \in \mathbb{Z}: 5 x+1 \equiv 13(\bmod 26)\}$.
Let $x \in S$.
Then $x \in \mathbb{Z}$ and $5 x+1 \equiv 13(\bmod 26)$, so $5 x \equiv 12$.
Hence, $[5 x]=[12]$, so $[5[] x]=[12]$.
Since $\operatorname{gcd}(5,26)=1$, then $[5] \in \mathbb{Z}_{26}$ has a multiplicative inverse and $[5]^{-1}=$ $[21]$, so $[5][21]=[21][5]=[1]$ modulo 26 .

For convenience, we have $5 x=12$ and $5 * 21=21 * 5=1$.

Observe that

$$
\begin{aligned}
5 x & =12 \\
21 * 5 x & =21 * 12 \\
1 x & =252 \\
x & =18 .
\end{aligned}
$$

Therefore, $[x]=[18]$, so $x \in[18]$.
Since $[18]=18+26 \mathbb{Z}=\{18+26 k: k \in \mathbb{Z}\}$, then $x \in 18+26 \mathbb{Z}$.
Thus, $x \in S$ implies $x \in 18+26 \mathbb{Z}$, so S is a subset of $18+26 \mathbb{Z}$.
We prove $18+26 \mathbb{Z}$ is a subset of S.
Let $y \in 18+26 \mathbb{Z}$.
Then $y=18+26 k$ for some integer k, so $y \in \mathbb{Z}$.
Observe that $(5 y+1)-13=[5(18+26 k)+1]-13=(90+130 k+1)-13=$ $130 k+78=26(5 k+3)$.

Since $5 k+3 \in \mathbb{Z}$, then 26 divides the difference $(5 y+1)-13$, so $5 y+1 \equiv 13$ $(\bmod 26)$.

Since $y \in \mathbb{Z}$ and $5 y+1 \equiv 13(\bmod 26)$, then $y \in S$, so $18+26 \mathbb{Z}$ is a subset of S.

Since S is a subset of $18+26 \mathbb{Z}$ and $18+26 \mathbb{Z}$ is a subset of S, then $S=$ $18+26 \mathbb{Z}$.

Exercise 42. Solve the linear congruence $9 x \equiv 3(\bmod 5)$.
Solution. Let S be the solution set of the linear congruence.
Then $S=\{x \in \mathbb{Z}: 9 x \equiv 3(\bmod 5)\}$.
Let $x \in S$.
Then $x \in \mathbb{Z}$ and $9 x \equiv 3(\bmod 5)$.
Since $9 \equiv 4(\bmod 5)$, then $9 x \equiv 4 x(\bmod 5)$, so $4 x \equiv 9 x(\bmod 5)$.
Since $4 x \equiv 9 x(\bmod 5)$ and $9 x \equiv 3(\bmod 5)$, then $4 x \equiv 3(\bmod 5)$, so $[4 x]=[3]$.

Hence, $[4][x]=[3]$.
Since $\operatorname{gcd}(4,5)=1$, then $[4] \in \mathbb{Z}_{5}$ has a multiplicative inverse and $[4]^{-1}=[4]$, so $[4][4]=[1]$.

For convenience, we have $4 x=3$ and $4 * 4=1$.
Observe that

$$
\begin{aligned}
4 x & =3 \\
4 * 4 x & =4 * 3 \\
1 x & =12 \\
x & =2 .
\end{aligned}
$$

Therefore, $[x]=[2]$, so $x \in[2]$.
Since $[2]=2+5 \mathbb{Z}=\{2+5 k: k \in \mathbb{Z}\}$, then $x \in 2+5 \mathbb{Z}$.
Thus, $x \in S$ implies $x \in 2+5 \mathbb{Z}$, so S is a subset of $2+5 \mathbb{Z}$.

We prove $2+5 \mathbb{Z}$ is a subset of S.
Let $y \in 2+5 \mathbb{Z}$.
Then $y=2+5 k$ for some integer k, so $y \in \mathbb{Z}$.
Observe that

$$
\begin{aligned}
9 y-3 & =9(2+5 k)-3 \\
& =18+45 k-3 \\
& =45 k+15 \\
& =5(9 k+3) .
\end{aligned}
$$

Since $9 k+3 \in \mathbb{Z}$, then 5 divides the difference $9 y-3$, so $9 y \equiv 3(\bmod 5)$. Since $y \in \mathbb{Z}$ and $9 y \equiv 3(\bmod 5)$, then $y \in S$, so $2+5 \mathbb{Z}$ is a subset of S.

Since S is a subset of $2+5 \mathbb{Z}$ and $2+5 \mathbb{Z}$ is a subset of S, then $S=2+5 \mathbb{Z}$.
Exercise 43. Solve the linear congruence $5 x \equiv 1(\bmod 6)$.
Solution. Let S be the solution set of the linear congruence.
Then $S=\{x \in \mathbb{Z}: 5 x \equiv 1(\bmod 6)\}$.
Let $x \in S$.
Then $x \in \mathbb{Z}$ and $5 x \equiv 1(\bmod 6)$, so $[5 x]=[1]$.
Hence, $[5][x]=[1]$.
Since $\operatorname{gcd}(5,6)=1$, then $[5] \in \mathbb{Z}_{6}$ has a multiplicative inverse and $[5]^{-1}=[5]$, so $[5][5]=[1]$.

For convenience, we have $5 x=1$ and $5 * 5=1$.
Observe that

$$
\begin{aligned}
5 x & =1 \\
5 * 5 x & =5 * 1 \\
1 x & =5 \\
x & =5 .
\end{aligned}
$$

Therefore, $[x]=[5]$, so $x \in[5]$.
Since $[5]=5+6 \mathbb{Z}=\{5+6 k: k \in \mathbb{Z}\}$, then $x \in 5+6 \mathbb{Z}$.
Thus, $x \in S$ implies $x \in 5+6 \mathbb{Z}$, so S is a subset of $5+6 \mathbb{Z}$.

We prove $5+6 \mathbb{Z}$ is a subset of S.
Let $y \in 5+6 \mathbb{Z}$.
Then $y=5+6 k$ for some integer k, so $y \in \mathbb{Z}$.
Observe that

$$
\begin{aligned}
5 y-1 & =5(5+6 k)-1 \\
& =25+30 k-1 \\
& =30 k+24 \\
& =6(5 k+4) .
\end{aligned}
$$

Since $5 k+4 \in \mathbb{Z}$, then 6 divides the difference $5 y-1$, so $5 y \equiv 1(\bmod 6)$.
Since $y \in \mathbb{Z}$ and $5 y \equiv 1(\bmod 6)$, then $y \in S$, so $5+6 \mathbb{Z}$ is a subset of S.

Since S is a subset of $5+6 \mathbb{Z}$ and $5+6 \mathbb{Z}$ is a subset of S, then $S=5+6 \mathbb{Z}$.
Exercise 44. Solve the linear congruence $3 x \equiv 1(\bmod 6)$.
Solution. Let S be the solution set of the linear congruence.
Then $S=\{x \in \mathbb{Z}: 3 x \equiv 1(\bmod 6)\}$.
Let $x \in S$.
Then $x \in \mathbb{Z}$ and $3 x \equiv 1(\bmod 6)$, so $[3 x]=[1]$.
Hence, $[3][x]=[1]$.
Since $\operatorname{gcd}(3,6)=3 \neq 1$, then $[3] \in \mathbb{Z}_{6}$ does not have a multiplicative inverse in \mathbb{Z}_{6}.

Thus, there is no solution to $[3][x]=[1]$, so there is no solution to the linear congruence.

Therefore, $S=\emptyset$.
Exercise 45. Solve the linear congruence $18 x \equiv 30(\bmod 42)$.
Solution. Since $\operatorname{gcd}(18,42)=6$ and $6 \mid 30$, then the linear congruence has a solution and there are exactly 6 distinct solutions modulo 42 and these solutions are congruent modulo $\frac{42}{6}=7$.

A particular solution is $x_{0}=4$.
The 6 distinct solutions are given by $x=4+\frac{-42}{6} t=4-7 t$ for some integer t.

Equivalently, the 6 solutions modulo 42 are in the solution set $\{4,11,18,25,32,39\}$

Exercise 46. Solve the linear congruence $9 x \equiv 21(\bmod 30)$.
Solution. Since $\operatorname{gcd}(9,30)=3$ and $3 \mid 21$, then the linear congruence has a solution and there are exactly 3 distinct solutions modulo 30 and these solutions are congruent modulo $\frac{30}{3}=10$.

A particular solution is $x_{0}=9$.
The 3 distinct solutions are given by $x=9+10 t$ for some integer t.
Equivalently, the 3 solutions modulo 30 are in the solution set $\{9,19,29\}$.
Exercise 47. Solve the linear congruence $25 x \equiv 15$ (mod 29).
Solution. Since $\operatorname{gcd}(25,29)=1$ and $1 \mid 15$, then the linear congruence has a solution and there is exactly 1 distinct solution modulo 29 and the solution is congruent modulo $\frac{29}{1}=29$.

Since $5 \cdot 5 x \equiv 5 \cdot 3(\bmod 29)$ and $\operatorname{gcd}(29,5)=1$, then we may cancel 5 to obtain $5 x \equiv 3(\bmod 29)$.

Since $\operatorname{gcd}(5,29)=1$ and $1 \mid 15$, then the linear congruence has a solution and there is exactly 1 distinct solution modulo 29 and the solution is congruent modulo $\frac{29}{1}=29$.

Since $5 * 6 \equiv 1(\bmod 29)$, then we multiply by 6 to obtain $6(5 x) \equiv 6 * 3$ $(\bmod 29)$, so $1 x \equiv 18(\bmod 29)$.

Therefore, $x \equiv 18(\bmod 29)$.
A particular solution is $x_{0}=18$.

The 1 distinct solution is given by $x=18+29 t$ for some integer t.
Equivalently, the 1 solution modulo 29 is in the solution set $\{18\}$.
Exercise 48. Solve the linear congruence $5 x \equiv 2(\bmod 26)$.
Solution. Since $\operatorname{gcd}(5,26)=1$ and $1 \mid 2$, then the linear congruence has a solution and there is exactly 1 distinct solution modulo 26 and the solution is congruent modulo $\frac{26}{1}=26$.

Since $5 * 21 \equiv 1(\bmod 26)$, then we multiply by 21 to obtain $21(5 x) \equiv 21 * 2$ $(\bmod 26)$, so $x \equiv 21 * 2(\bmod 26)$.

Therefore, $x \equiv 42(\bmod 26) \equiv 16(\bmod 26)$.
A particular solution is $x_{0}=16$.
The 1 distinct solution is given by $x=16+26 t$ for some integer t.
Equivalently, the 1 solution modulo 26 is in the solution set $\{16\}$.
Exercise 49. Solve the linear congruence $6 x \equiv 15(\bmod 21)$.
Solution. Since $\operatorname{gcd}(6,21)=3$ and $3 \mid 15$, then the linear congruence has a solution and there are exactly 3 distinct solutions modulo 21 and the solutions are congruent modulo $\frac{21}{3}=7$.

Since $6 x=3 * 2 * x \equiv 3 * 5(\bmod 21)$ and $\operatorname{gcd}(21,3)=3$, then $2 x \equiv 5$ $\left(\bmod \frac{21}{3}\right)$, so $2 x \equiv 5(\bmod 7)$.

Since $\operatorname{gcd}(2,7)=1$ and $1 \mid 5$, then the linear congruence has a solution and there is exactly 1 distinct solution modulo 7 and the solution is congruent modulo $\frac{7}{1}=7$.

Since $2 * 4 \equiv 1(\bmod 7)$, then we multiply by 4 to obtain $4(2 x) \equiv 4 * 5$ $(\bmod 7)$, so $x \equiv 20(\bmod 7)$.

Therefore, $x \equiv 6(\bmod 7)$.
A particular solution is $x_{0}=6$.
The 3 distinct solutions are given by $x=6+7 t$ for some integer t.
Equivalently, the 3 solutions modulo 21 are in the solution set $\{6,13,20\}$.
Exercise 50. Solve the linear congruence $36 x \equiv 8(\bmod 102)$.
Solution. Since $\operatorname{gcd}(36,102)=6$ and $6 \not \subset 8$, then the linear congruence does not have a solution.

Exercise 51. Solve the linear congruence $34 x \equiv 60(\bmod 98)$.
Solution. Since $\operatorname{gcd}(34,98)=2$ and $2 \mid 60$, then the linear congruence has a solution and there are exactly 2 distinct solutions modulo 98 and the solutions are congruent modulo $\frac{98}{2}=49$.

Since $34 x \equiv 60(\bmod 98)$ implies $2 * 17 x \equiv 2 * 30(\bmod 98)$ and $\operatorname{gcd}(98,2)=$ 2 , then we cancel to obtain $17 x \equiv 30(\bmod 49)$.

Since $\operatorname{gcd}(17,49)=1$ and $1 \mid 30$, then the linear congruence has a solution and there is exactly 1 distinct solution modulo 49 and the solution is congruent modulo $\frac{49}{1}=49$.

The multiplicative inverse of 17 is 26 modulo 49 , so $17 * 26 \equiv 1(\bmod 49)$.
Thus, $17 * 26 x \equiv x(\bmod 49)$ and $26 * 17 x \equiv 26 * 30(\bmod 49)$.

Since $17 * 26 x \equiv x(\bmod 49)$, then $x \equiv 17 * 26 x(\bmod 49)$.
Since $x \equiv 17 * 26 x(\bmod 49)$ and $26 * 17 x \equiv 26 * 30(\bmod 49)$, then $x \equiv 26 * 30$ $(\bmod 49) \equiv 780(\bmod 49) \equiv 45(\bmod 49)$.

Therefore, $x \equiv 45(\bmod 49)$.
A particular solution is $x_{0}=45$.
The 2 distinct solutions are given by $x=45+49 t$ for some integer t.
Equivalently, the 2 solutions modulo 98 are in the solution set $\{45,94\}$.
Exercise 52. Solve the linear congruence $140 x \equiv 133(\bmod 301)$.
Solution. Since $\operatorname{gcd}(140,301)=7$ and $7 \mid 133$, then the linear congruence has a solution and there are exactly 7 distinct solutions modulo 301 and the solutions are congruent modulo $\frac{301}{7}=43$.

Since $140 x \equiv 133(\bmod 301)$ implies $7 * 20 x \equiv 7 * 19(\bmod 301)$ and $\operatorname{gcd}(301,7)=$ 7 , then we cancel to obtain $20 x \equiv 19(\bmod 43)$.

Since $\operatorname{gcd}(20,43)=1$ and $1 \mid 19$, then the linear congruence has a solution and there is exactly 1 distinct solution modulo 43 and the solution is congruent modulo $\frac{43}{1}=43$.

The multiplicative inverse of 20 is 28 modulo 43 , so $20 * 28 \equiv 1(\bmod 43)$.
Thus, $20 * 28 x \equiv x(\bmod 43)$ and $28 * 20 x \equiv 28 * 19(\bmod 43)$.
Since $20 * 28 x \equiv x(\bmod 43)$, then $x \equiv 20 * 28 x(\bmod 43)$.
Since $x \equiv 20 * 28 x(\bmod 43)$ and $28 * 20 x \equiv 28 * 19(\bmod 43)$, then $x \equiv 28 * 19$ $(\bmod 43) \equiv 532(\bmod 43) \equiv 16(\bmod 43)$.

Therefore, $x \equiv 16(\bmod 43)$.
A particular solution is $x_{0}=16$.
The 7 distinct solutions are given by $x=16+43 t$ for some integer t.
Equivalently, the 7 solutions modulo 301 are in the solution set $\{16,59,102,145,188,231,274\}$.

Exercise 53. Solve the linear Diophantine equation using congruences : $4 x+$ $51 y=9$.

Solution. Since $\operatorname{gcd}(4,51)=1$ and $1 \mid 9$, then the linear Diophantine equation has a solution.

Since $4 x+51 y=9$, then $4 x=9-51 y$, so $4 \mid(9-51 y)$.
Hence, $9 \equiv 51 y(\bmod 4)$, so $51 y \equiv 9(\bmod 4)$.
Since $\operatorname{gcd}(51,4)=1$ and $1 \mid 9$, then the linear congruence has exactly one solution modulo 4.

Since $51 * 3 \equiv 1(\bmod 4)$, then $51 * 3 y \equiv y(\bmod 4)$ and $3 * 51 y \equiv 3 * 9$ $(\bmod 4)$, so $y \equiv 3 * 9(\bmod 4) \equiv 27(\bmod 4) \equiv 3(\bmod 4)$.

Hence, $y_{0}=3$ is a solution and $x_{0}=\frac{9-51 * 3}{4}=-36$ is a solution.
The general solution of the linear Diophantine equation is given by $x=$ $-36+\frac{51}{\operatorname{gcd}(4,51)} * t=-36+51 t$ and $y=3-\frac{4}{\operatorname{gcd}(4,51)} * t=3-4 t$ for some integer t.

Therefore, the solution set to the linear Diophantine equation is $\{(-36+$ $51 t, 3-4 t): t \in \mathbb{Z}\}$.
Solution. Since $4 x+51 y=9$, then $4 x=9-51 y$, so $4 \mid(9-51 y)$.

Hence, $9 \equiv 51 y(\bmod 4)$, so $51 y \equiv 9(\bmod 4)$.
Since $\operatorname{gcd}(51,4)=1$ and $1 \mid 9$, then the linear congruence has exactly one solution modulo 4 and the solution is congruent modulo $\frac{4}{1}=4$.

Since $51 * 3 \equiv 1(\bmod 4)$, then $51 * 3 y \equiv y(\bmod 4)$ and $3 * 51 y \equiv 3 * 9$ $(\bmod 4)$, so $y \equiv 3 * 9(\bmod 4) \equiv 27(\bmod 4) \equiv 3(\bmod 4)$.

Hence, $y=3+4 s$ is a solution to the linear congruence for some integer s.
Since $4 x+51 y=9$, then $51 y=9-4 x$, so $51 \mid 9-4 x$.
Hence, $9 \equiv 4 x(\bmod 51)$, so $4 x \equiv 9(\bmod 51)$.
Since $\operatorname{gcd}(4,51)=1$ and $1 \mid 9$, then the linear congruence has exactly one solution modulo 51 and the solution is congruent modulo $\frac{51}{1}=51$.

Since $4 * 13 \equiv 1(\bmod 51)$, then $4 * 13 x \equiv x(\bmod 51)$ and $13 * 4 x \equiv 13 * 9$ $(\bmod 51)$, so $x \equiv 13 * 9(\bmod 51) \equiv 117(\bmod 51) \equiv 15(\bmod 51)$.

Thus, $x=15+51 t$ is a solution to the linear congruence for some integer t.

Since $x=15+51 t$ and $y=3+4 s$ and $4 x+51 y=9$, then we substitute to get $4(15+51 t)+51(3+4 s)=9$, or equivalently, $t+s=-1$.

Since $t=-1-s$ and $x=15+51 t$, then $x=15+51(-1-s)=-36-51 s$.
Hence, $x=-36-51 s$ and $y=3+4 s$ for some integer s.
Therefore, the solution set to the linear Diophantine equation is $\{(-36-$ $51 s, 3+4 s): s \in \mathbb{Z}\}$.

Exercise 54. Solve the linear Diophantine equation using congruences : $12 x+$ $25 y=331$.

Solution. Since $\operatorname{gcd}(12,25)=1$ and $1 \mid 331$, then the linear Diophantine equation has a solution.

Since $12 x+25 y=331$, then $12 x=331-25 y$, so $12 \mid(331-25 y)$.
Hence, $331 \equiv 25 y(\bmod 12)$, so $25 y \equiv 331(\bmod 12)$.
Since $\operatorname{gcd}(25,12)=1$ and $1 \mid 331$, then the linear congruence has exactly one solution modulo 4 and the solution is congruent modulo $\frac{4}{1}=4$.

Since $25 * 1 \equiv 1(\bmod 12)$, then $25 * 1 y \equiv 1 * y(\bmod 12)$, so $25 y \equiv y$ $(\bmod 12)$.

Hence, $y \equiv 25 y(\bmod 12)$.
Since $25 y \equiv 331(\bmod 12)$, then $y \equiv 331(\bmod 12) \equiv 7(\bmod 12)$.
Hence, $y_{0}=7$ is a solution and $x_{0}=\frac{331-25 * 7}{12}=13$ is a solution.
The general solution of the linear Diophantine equation is given by $x=$ $13+\frac{25}{\operatorname{gcd}(12,25)} * t=13+25 t$ and $y=7-\frac{12}{\operatorname{gcd}(12,25)} * t=7-12 t$ for some integer t.

Therefore, the solution set to the linear Diophantine equation is $\{(13+$ $25 t, 7-12 t): t \in \mathbb{Z}\}$.
Solution. Since $12 x+25 y=331$, then $12 x=331-25 y$, so $12 \mid(331-25 y)$.
Hence, $331 \equiv 25 y(\bmod 12)$, so $25 y \equiv 331(\bmod 12)$.
Since $\operatorname{gcd}(25,12)=1$ and $1 \mid 331$, then the linear congruence has exactly one solution modulo 12 and the solution is congruent modulo $\frac{12}{1}=12$.

Since $25 * 1 \equiv 1(\bmod 12)$, then $25 * 1 y \equiv 1 * y(\bmod 12)$, so $25 y \equiv y$ $(\bmod 12)$.

Hence, $y \equiv 25 y(\bmod 12)$.
Since $y \equiv 25 y(\bmod 12)$ and $25 y \equiv 331(\bmod 12)$, then $y \equiv 331(\bmod 12) \equiv$ $7(\bmod 12)$.

Thus, $y=7+12 s$ is a solution to the linear congruence for some integer s.

Since $12 x+25 y=331$, then $25 y=331-12 x$, so $25 \mid 331-12 x$.
Hence, $331 \equiv 12 x(\bmod 25)$, so $12 x \equiv 331(\bmod 25)$.
Since $\operatorname{gcd}(12,25)=1$ and $1 \mid 331$, then the linear congruence has exactly one solution modulo 25 and the solution is congruent modulo $\frac{25}{1}=25$.

Since $12 * 23 \equiv 1(\bmod 25)$, then $12 * 23 x \equiv x(\bmod 25)$ and $23 * 12 x \equiv 23 * 331$ $(\bmod 25)$, so $x \equiv 23 * 331(\bmod 25) \equiv 7613(\bmod 25) \equiv 13(\bmod 25)$.

Thus, $x=13+25 t$ is a solution to the linear congruence for some integer t.

Since $x=13+25 t$ and $y=7+12 s$ and $12 x+25 y=331$, then we substitute to get $12(13+25 t)+25(7+12 s)=331$, or equivalently, $t+s=0$.

Since $t+s=0$, then $s=-t$, so $y=7+12 s=7+12(-t)=7-12 t$.
Hence, $x=13+25 t$ and $y=7-12 t$ for some integer t.
Therefore, the solution set to the linear Diophantine equation is $\{(13+$ $25 t, 7-12 t): t \in \mathbb{Z}\}$.

Exercise 55. Solve the linear Diophantine equation using congruences : $5 x-$ $53 y=17$.

Solution. Since $\operatorname{gcd}(5,-53)=1$ and $1 \mid 17$, then the linear Diophantine equation has a solution.

Since $5 x-53 y=17$, then $5 x=53 y+17$, so $5 \mid 53 y-(-17)$.
Hence, $53 y \equiv-17(\bmod 5) \equiv 3(\bmod 5)$.
Since $\operatorname{gcd}(53,5)=1$ and $1 \mid 3$, then the linear congruence has exactly one solution modulo 5 and the solution is congruent modulo $\frac{5}{1}=5$.

Since $53 * 2 \equiv 1(\bmod 5)$, then $53 * 2 y \equiv 1 * y(\bmod 5)$, so $53 * 2 y \equiv y$ $(\bmod 5)$.

Hence, $y \equiv 53 * 2 y(\bmod 5)$.
Since $53 y \equiv 3(\bmod 5)$, then $2 * 53 y \equiv 2 * 3(\bmod 5)$.
Since $y \equiv 53 * 2 y(\bmod 5)$ and $2 * 53 y \equiv 2 * 3(\bmod 5)$, then $y \equiv 2 * 3$ $(\bmod 5) \equiv 6(\bmod 5) \equiv 1(\bmod 5)$.

Thus, $y_{0}=1$ is a solution and $x_{0}=\frac{53(1)+17}{5}=14$ is a solution.
The general solution of the linear Diophantine equation is given by $x=$ $14+\frac{-53}{\operatorname{gcd}(5,-53)} * t=14-53 t$ and $y=1-\frac{5}{\operatorname{gcd}(5,-53)} * t=1-5 t$ for some integer t.

Therefore, the solution set to the linear Diophantine equation is $\{(14-$ $53 t, 1-5 t): t \in \mathbb{Z}\}$.
Solution. Since $5 x-53 y=17$, then $5 x=53 y+17$, so $5 \mid 53 y-(-17)$.
Hence, $53 y \equiv-17(\bmod 5) \equiv 3(\bmod 5)$.

Since $\operatorname{gcd}(53,5)=1$ and $1 \mid 3$, then the linear congruence has exactly one solution modulo 5 and the solution is congruent modulo $\frac{5}{1}=5$.

Since $53 * 2 \equiv 1(\bmod 5)$, then $53 * 2 y \equiv 1 * y(\bmod 5)$, so $53 * 2 y \equiv y$ $(\bmod 5)$.

Hence, $y \equiv 53 * 2 y(\bmod 5)$.
Since $53 y \equiv 3(\bmod 5)$, then $2 * 53 y \equiv 2 * 3(\bmod 5)$.
Since $y \equiv 53 * 2 y(\bmod 5)$ and $2 * 53 y \equiv 2 * 3(\bmod 5)$, then $y \equiv 2 * 3$ $(\bmod 5) \equiv 6(\bmod 5) \equiv 1(\bmod 5)$.

Thus, $y=1+5 s$ is a solution to the linear congruence for some integer s.

Since $5 x-53 y=17$, then $53 y=5 x-17$, so $53 \mid 5 x-17$.
Hence, $5 x \equiv 17(\bmod 53)$.
Since $\operatorname{gcd}(5,53)=1$ and $1 \mid 17$, then the linear congruence has exactly one solution modulo 53 and the solution is congruent modulo $\frac{53}{1}=53$.

Since $5 * 32 \equiv 1(\bmod 53)$, then $5 * 32 x \equiv x(\bmod 53)$ and $32 * 5 x \equiv 32 * 17$ $(\bmod 53)$, so $x \equiv 32 * 17(\bmod 53) \equiv 544(\bmod 53) \equiv 14(\bmod 53)$.

Thus, $x=14+53 t$ is a solution to the linear congruence for some integer t.
Since $x=14+53 t$ and $y=1+5 s$ and $5 x-53 y=17$, then we substitute to get $5(14+53 t)-53(1+5 s)=17$, or equivalently, $t=s$.

Hence, $x=14+53 t$ and $y=1+5 t$ for some integer t.
Therefore, the solution set to the linear Diophantine equation is $\{(14+$ $53 t, 1+5 t): t \in \mathbb{Z}\}$.

Exercise 56. Solve the linear congruence : $3 x-7 y \equiv 11(\bmod 13)$.
Solution. Let's try breaking up the congruence into two congruences.
One congruence is $3 x \equiv 0(\bmod 13)$.
Second congruence is $-7 y \equiv 11(\bmod 13)$.
Can we solve these independently?
Let's solve $3 x \equiv 0(\bmod 13)$.
Since $3 x \equiv 3 * 0(\bmod 13)$ and $\operatorname{gcd}(13,3)=1$, then we cancel to obtain $x \equiv 0$ $(\bmod 13)$.

Thus, $x=13 s$ for some integer s.

Let's solve $-7 y \equiv 11(\bmod 13)$.
Since $-7 y \equiv 11(\bmod 13)$, then $7 y \equiv-11(\bmod 13) \equiv 2(\bmod 13)$.
Since $\operatorname{gcd}(7,13)=1$ and $1 \mid 2$, then the linear congruence has a unique solution modulo 13 and the solution is congruent modulo $\frac{13}{1}=13$.

Since $7 * 2 \equiv 1(\bmod 13)$, then $7 * 2 y \equiv y(\bmod 13)$ and $2 * 7 y \equiv 2 * 2$ $(\bmod 13)$, so $y \equiv 2 * 2(\bmod 13) \equiv 4(\bmod 13)$.

Thus, $y=4+13 t$ for some integer t.

So, we think the solution set is $\{(13 s, 4+13 t): s, t \in \mathbb{Z}\}$.
Exercise 57. Solve the system of linear congruences:
$x \equiv 2(\bmod 3)$
$x \equiv 3(\bmod 5)$
$x \equiv 2(\bmod 7)$
Solution. Using the Chinese Remainder Theorem, we let $n=3 * 5 * 7=105$ and let $N_{k}=\frac{n}{n_{k}}$, where $n_{1}=3$ and $n_{2}=5$ and $n_{3}=7$ and $a_{1}=2$ and $a_{2}=3$ and $a_{3}=2$.

For $N_{1}=\frac{3 * 5 * 7}{3}=35$, we solve the linear congruence $35 x \equiv 1(\bmod 3)$ which has solution $x_{1}=2$.

For $N_{2}=\frac{3 * 5 * 7}{5}=21$, we solve the linear congruence $21 x \equiv 1(\bmod 5)$ which has solution $x_{2}=1$.

For $N_{3}=\frac{3 * 5 * 7}{7}=15$, we solve the linear congruence $15 x \equiv 1(\bmod 7)$ which has solution $x_{3}=1$.

The solution is $x=\sum a_{k} N_{k} x_{k}=a_{1} N_{1} x_{1}+a_{2} N_{2} x_{2}+a_{3} N_{3} x_{3}=2(35)(2)+$ $3(21)(1)+2(15)(1)=233 \equiv 233(\bmod 105) \equiv 23(\bmod 105)$.

Exercise 58. Solve the system of linear congruence: $17 x \equiv(\bmod 276)$.
Solution. TODO Start here
Exercise 59. Let b, d, d^{\prime}, p be arbitrary integers.
If $b d \equiv b d^{\prime}(\bmod p)$, where p is prime and $p \not \backslash b$, then $d \equiv d^{\prime}(\bmod p)$.
Proof. Suppose $b d \equiv b d^{\prime}(\bmod p)$ and p is prime and $p \nmid b$.
Then $p \mid\left(b d-b d^{\prime}\right)$, so $p \mid b\left(d-d^{\prime}\right)$.
Since p is prime, then the only positive divisors of p are 1 and p.
Since $p \nless b$, then 1 is the only positive divisor of both p and b.
Therefore, p and b are relatively prime, so $\operatorname{gcd}(p, b)=1$.
Since $\operatorname{gcd}(p, b)=1$ and $p \mid b\left(d-d^{\prime}\right)$, then $p \mid d-d^{\prime}$.
Hence, $d \equiv d^{\prime}(\bmod p)$.
Exercise 60. Let a, b, k be arbitrary integers with $k>0$.
If $|a|<\frac{k}{2}$ and $|b|<\frac{k}{2}$ and $a \equiv b(\bmod k)$, then $a=b$.
Proof. Suppose $|a|<\frac{k}{2}$ and $|b|<\frac{k}{2}$ and $a \equiv b(\bmod k)$.
Since $a \equiv b(\bmod k)$, then $k \mid a-b$, so $a-b=k m$ for some integer m.
Observe that $0 \leq|a-b|<\frac{k}{2}$.
Since $a-b=k m$, then $|a-b|=|k m|=k|m|$, so $\frac{|a-b|}{k}=|m|$.
Dividing by positive k, we obtain $0 \leq \frac{|a-b|}{k}<\frac{1}{2}$.
Thus, $0 \leq|m|<\frac{1}{2}$.
Since m is an integer, then this implies $|m|=0$, so $m=0$.
Therefore, $a-b=k(0)=0$, so $a=b$.
Exercise 61. Let $S_{2}=\left\{n \in \mathbb{Z}: n^{2} \equiv-1(\bmod 2)\right\}$.
Then $S_{2}=[1]_{2}$.

Proof. Observe that $S_{2}=\left\{n \in \mathbb{Z}: 2 \mid n^{2}+1\right\}$ and $[1]_{2}=\{n \in \mathbb{Z}: n \equiv 1$ $(\bmod 2)\}=\{n \in \mathbb{Z}: 2 \mid n-1\}$.

Let $a \in S_{2}$.
Then $a \in \mathbb{Z}$ and $2 \mid a^{2}+1$.
Thus, $a^{2}+1=2 k$ for some integer k.
Hence, $a^{2}=2 k-1=2(k-1)+1$, so a^{2} is odd.
Since the integer a^{2} is odd if and only if a is odd, then a is odd.
Thus, $a-1$ is even, so $2 \mid a-1$.
Therefore, $a \in[1]_{2}$, so $S_{2} \subset[1]_{2}$.
Let $b \in[1]_{2}$.
Then $b \in \mathbb{Z}$ and $2 \mid(b-1)$.
Thus, $b-1=2 m$ for some integer m.
Hence, $b^{2}+1=(2 m+1)^{2}+1=2\left(2 m^{2}+2 m+1\right)$.
Since $2 m^{2}+2 m+1$ is an integer, then $2 \mid\left(b^{2}+1\right)$.
Thus, $b \in S_{2}$, so $[1]_{2} \subset S_{2}$.
Since $S_{2} \subset[1]_{2}$ and $[1]_{2} \subset S_{2}$, then $S_{2}=[1]_{2}$, as desired.
Exercise 62. Prove [1] and $[n-1]$ are units of \mathbb{Z}_{n}.
Solution. To prove [1] is a unit of \mathbb{Z}_{n} and $[n-1]$ is a unit of \mathbb{Z}_{n}, we can use a variety of methods.

We know that [1] is a unit of $\mathbb{Z}_{n} \operatorname{iff} \operatorname{gcd}(1, n)=1$ and $[n-1]$ is a unit of \mathbb{Z}_{n} iff $\operatorname{gcd}(n-1, n)=1$.

Let $n \in \mathbb{Z}^{+}$.
To prove [1] is a unit of \mathbb{Z}_{n}, we must show that $[1] \in \mathbb{Z}_{n}$ and $\operatorname{gcd}(1, n)=1$.
To prove $[n-1]$ is a unit of \mathbb{Z}_{n}, we must show that $[n-1] \in \mathbb{Z}_{n}$ and $\operatorname{gcd}(1, n)=1$.

We know that $(1-n) * 1+1 * n=1$, so 1 is a linear combination of 1 and n.
Hence, $\operatorname{gcd}(1, n)=1$.
We know that $(-1)(n-1)+1 * n=1$, so 1 is a linear combination of $n-1$ and n.

Hence, $\operatorname{gcd}(n-1, n)=1$.
Proof. Let $n \in \mathbb{Z}^{+}$.
Observe that $[1] \in \mathbb{Z}_{n}$ and $[1][1]=[1 * 1]=[1]$.
Hence, there exists $[1] \in \mathbb{Z}_{n}$ such that $[1][1]=[1]$.
Therefore, [1] is a unit of \mathbb{Z}_{n} and [1] ${ }^{-1}=[1]$.
Since $n \mid n$, then $n \mid(n-1+1)$, so $n \mid(n-1)-(-1)$.
Hence, $n-1 \equiv-1(\bmod n)$, so $[n-1]=[-1]$.
Observe that $[n-1] \in \mathbb{Z}_{n}$ and $[n-1][n-1]=[-1][-1]=[-1 *-1]=[1]$.
Hence, there exists $[n-1] \in \mathbb{Z}_{n}$ such that $[n-1][n-1]=[1]$.
Therefore, $[n-1]$ is a unit of \mathbb{Z}_{n} and $[n-1]^{-1}=[n-1]$.
Exercise 63. Define $f: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{8}$ by $f\left([x]_{12}\right)=[2 x]_{8}$ for all $[x]_{12} \in \mathbb{Z}_{12}$.
Define $g: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{8}$ by $g\left([x]_{12}\right)=[3 x]_{8}$ for all $[x]_{12} \in \mathbb{Z}_{12}$.
Show that f is a function, but g is not a function.

Solution. Let $f: A \rightarrow B$ be a binary relation from A to B.
To prove $f: A \rightarrow B$ is a function, we must show that f is well defined.
Thus, we must prove if $a_{1}=a_{2}$, then $f\left(a_{1}\right)=f\left(a_{2}\right)$ for all $a_{1}, a_{2} \in A$.
To prove f is a function, we must prove if $[x]_{12}=[y]_{12}$, then $f\left([x]_{12}\right)=$ $f\left([y]_{12}\right)$ for all $[x]_{12},[y]_{12} \in \mathbb{Z}_{12}$.

Thus, we must prove if $[x]_{12}=[y]_{12}$, then $[2 x]_{8}=[2 y]_{8}$ for all $[x]_{12},[y]_{12} \in$ \mathbb{Z}_{12}.

To prove g is not a function, we need only show an example $[x]_{12},[y]_{12} \in \mathbb{Z}_{12}$ such that $g([x]) \neq g([y])$.

Proof. Let $[x],[y] \in \mathbb{Z}_{12}$ such that $[x]=[y]$.
Then $x \equiv y(\bmod 12)$, so $12 \mid(x-y)$.
Thus, $4 * 3 \mid(x-y)$, so $4 \mid(x-y)$.
Hence, $2 * 4 \mid 2(x-y)$, so $8 \mid 2 x-2 y$.
Thus, $2 x \equiv 2 y(\bmod 8)$, so $[2 x]=[2 y]$.
Therefore, $f([x])=f([y])$.
Since $[x]=[y]$ implies $f([x])=f([y])$, then f is well defined, so f is a function.

Exercise 64. Let a be a fixed element of \mathbb{Z}_{17}^{*}.
Let $f: \mathbb{Z}_{17}^{*} \rightarrow \mathbb{Z}_{17}^{*}$ be defined by $f([x])=[a][x]$ for all $x \in \mathbb{Z}_{17}^{*}$.
Determine if the inverse function exists.
Solution. We know that $\mathbb{Z}_{17}^{*}=\{[m] \in \mathbb{Z} 17: \operatorname{gcd}(m, 17)=1\}=\{[1],[2],[3], \ldots,[16]\}$ and $\left|\mathbb{Z}_{17}^{*}\right|=\phi(17)=16$.

Since $\left(\mathbb{Z}_{n}^{*}, *\right)$ is an abelian group, then $\left(\mathbb{Z}_{17}^{*}, *\right)$ is an abelian group.
Let $[x] \in \mathbb{Z}_{17}^{*}$.
Then $f([x])=[a][x]$.
Since $\left(\mathbb{Z}_{17}^{*}, *\right)$ is a group, then \mathbb{Z}_{17}^{*} is closed under multiplication modulo 17 .
Thus, $[a][x] \in \mathbb{Z}_{17}^{*}$, so $f([x]) \in \mathbb{Z}_{17}^{*}$.
Hence, f is a binary relation from \mathbb{Z}_{17}^{*} to \mathbb{Z}_{17}^{*}.
Is f a function(ie, well defined)?
Suppose $[x],[y] \in \mathbb{Z}_{17}^{*}$ such that $[x]=[y]$.
Then $f([x])=[a][x]=[a][y]=f([y])$, so $f([x])=f([y])$.
Thus, $[x]=[y]$ implies $f([x])=f([y])$, so f is well defined.
Therefore, f is a function.

Is f injective?
Let $[x],[y] \in \mathbb{Z}_{17}^{*}$ such that $f[x]=f[y]$.
Then $[a][x]=[a][y]$, so $[a x]=[a y]$.
Thus, $a x \equiv a y(\bmod 17)$.
Since $[a] \in \mathbb{Z}_{17}^{*}$, then $[a] \in \mathbb{Z}_{17}$ and $\operatorname{gcd}(a, 17)=1$.
Since $\operatorname{gcd}(a, 17)=1$, we may cancel to obtain $x \equiv y(\bmod 17)$.
Thus, $[x]=[y](\bmod 17)$.
Hence, $f[x]=f[y]$ implies $[x]=[y]$, so f is injective.

Is f surjective?
Let $[z] \in \mathbb{Z}_{17}^{*}$.
Since $\left(\mathbb{Z}_{17}^{*}, *\right)$ is a group and $[a] \in \mathbb{Z}_{17}^{*}$, then $[a]^{-1} \in \mathbb{Z}_{17}^{*}$.
Let $[x]=[a]^{-1}[z]$.
Since $\left(\mathbb{Z}_{17}^{*}, *\right)$ is closed under multiplication modulo n, then $[a]^{-1}[z] \in \mathbb{Z}_{17}^{*}$, so $[x] \in \mathbb{Z}_{17}^{*}$.

Observe that $f[x]=[a][x]=[a]\left([a]^{-1}[z]\right)=\left([a][a]^{-1}\right)[z]=[1][z]=[z]$.
Hence, there exists $[x] \in \mathbb{Z}_{17}^{*}$ such that $f[x]=[z]$, so f is surjective.
Since f is injective and surjective, then f is bijective, so the inverse function exists.

Let $f^{-1}: \mathbb{Z}_{17}^{*} \mapsto \mathbb{Z}_{17}^{*}$ be the inverse function of f.
Then f^{-1} satisfies $f \circ f^{-1}=I=f^{-1} \circ f$, where I is the identity function.
Let $[x] \in \mathbb{Z}_{17}^{*}$.
Then $\left(f \circ f^{-1}\right)[x]=[x]$, so $f\left(f^{-1}[x]\right)=[x]$.
Let $[y]=f^{-1}[x]$.
Then $f([y])=[x]$, so $[a][y]=[x]$.
We multiply by $[a]^{-1}$ to obtain $[y]=[a]^{-1}[x]$.
Thus, we let the inverse function f^{-1} be defined by $f^{-1}[x]=[a]^{-1}[x]$.
We verify this is correct by confirming $f^{-1} \circ f=I$.
This means we must show $\left(f^{-1} \circ f\right)([x])=[x]$ for all $[x] \in \mathbb{Z}_{17}^{*}$.
Let $[x] \in \mathbb{Z}_{17}^{*}$.
Then $\left(f^{-1} \circ f\right)([x])=f^{-1}(f[x])=f^{-1}([a][x])=[a]^{-1}([a][x])=\left([a]^{-1}[a]\right)[x]=$ $[1][x]=[x]$.

Exercise 65. Let $m, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.
Let $f: \mathbb{Z}_{n} \mapsto \mathbb{Z}_{n}$ be defined by $f([x])=[m x+b]$.
Show that f is bijective iff $\operatorname{gcd}(m, n)=1$ and find the inverse if $\operatorname{gcd}(m, n)=$ 1.

Solution. Observe that f is a binary relation on \mathbb{Z}_{n}.
Let's first prove f is a function(ie, well defined).
Let $[x] \in \mathbb{Z}_{n}$.
Then $f([x])=[m x+b]$.
Since $m x+b \in \mathbb{Z}$, then $[m x+b] \in \mathbb{Z}_{n}$, so $f([x]) \in \mathbb{Z}_{n}$.
Suppose $[x],[y] \in \mathbb{Z}_{n}$ such that $[x]=[y]$.
Then $x \equiv y(\bmod n)$.
We multiply by m to obtain $m x \equiv m y(\bmod n)$.
We add b to obtain $m x+b \equiv m y+b(\bmod n)$.
Thus, $[m x+b]=[m y+b]$, so $f([x])=f([y])$.
Hence, $[x]=[y]$ implies $f([x])=f([y])$, so f is well defined.
Therefore, f is a function.
Suppose f is bijective.
Then f is injective and surjective.
Since f is surjective, then for every $[z] \in \mathbb{Z}_{n}$ there exists $[x] \in \mathbb{Z}_{n}$ such that $f([x])=[z]=[m x+b]$.

Thus, for every $z \in \mathbb{Z}$ there exists $x \in \mathbb{Z}$ such that $m x+b \equiv z(\bmod n)$.
Let $z=b+1$.
Then $z \in \mathbb{Z}$ and there exists $x \in \mathbb{Z}$ such that $m x+b \equiv b+1(\bmod n)$.
Hence, there exists $x \in \mathbb{Z}$ such that $m x \equiv 1(\bmod n)$.
Thus, m has an inverse modulo n.
Since m has an inverse modulo n iff $\operatorname{gcd}(m, n)=1$, then $\operatorname{gcd}(m, n)=1$.
Therefore, if f is bijective, then $\operatorname{gcd}(m, n)=1$.
Conversely, suppose $\operatorname{gcd}(m, n)=1$.
Let $[x] \in \mathbb{Z}_{n}$.
Since $\operatorname{gcd}(m, n)=1$, then there exists $m^{\prime} \in \mathbb{Z}$ such that $m m^{\prime} \equiv 1(\bmod n)$.
Hence, m has an inverse modulo n, so $[m]^{-1} \in \mathbb{Z}_{n}$ and $[m][m]^{-1}=[1]$.
Let $[y]=[m]^{-1}[x-b]$.
Since multiplication modulo n is a binary operation on \mathbb{Z}_{n}, then \mathbb{Z}_{n} is closed under multiplication modulo n.

Thus, $[m]^{-1}[x-b] \in \mathbb{Z}_{n}$, so $[y] \in \mathbb{Z}_{n}$.
Observe that $f([y])=[m y+b]=[m y]+[b]=[m][y]+[b]=[m]\left([m]^{-1}[x-b]\right)+$ $[b]=\left([m][m]^{-1}\right)[x-b]+[b]=[1][x-b]+[b]=[x-b]+[b]=[x-b+b]=[x+0]=[x]$.

Hence, there exists $[y] \in \mathbb{Z}_{n}$ such that $f([y])=[x]$, so f is surjective.
Let $[x],[y] \in \mathbb{Z}$ such that $f([x])=f([y])$.
Then $[m x+b]=[m y+b]$, so $m x+b \equiv m y+b(\bmod n)$.
Thus, $m x \equiv m y(\bmod n)$.
Since $\operatorname{gcd}(m, n)=1$, then we may cancel to obtain $x \equiv y(\bmod n)$.
Hence, $[x]=[y]$.
Since $f([x])=f([y])$ implies $[x]=[y]$, then f is injective.
Since f is injective and surjective, then f is bijective.
Hence, $\operatorname{gcd}(m, n)=1$ implies f is bijective.
Suppose $\operatorname{gcd}(m, n)=1$.
Then f is bijective.
Since f is bijective iff the inverse function f^{-1} exists, then f^{-1} exists.
Let $f^{-1}: \mathbb{Z}_{n} \mapsto \mathbb{Z}_{n}$ be the inverse of f.
Then $f \circ f^{-1}=I$, where I is the identity function.
Thus, for every $[x] \in \mathbb{Z}_{n},\left(f \circ f^{-1}\right)[x]=[x]$.
Let $[x] \in \mathbb{Z}_{n}$.
Then $\left(f \circ f^{-1}\right)[x]=[x]$, so $f\left(f^{-1}\right)[x]=[x]$.
Let $[y]=f^{-1}[x]$.
Then $[x]=f([y])=[m y+b]$, so $[x]=[m y]+[b]$.
Thus, $[x]-[b]=[m y]$, so $[x-b]=[m][y]$.
Since $\operatorname{gcd}(m, n)=1$, then the inverse of m exists modulo n.
Hence, $[m]^{-1} \in \mathbb{Z}_{n}$ and $[m]^{-1}[m]=[1]$.
We multiply by the inverse to obtain $[m]^{-1}[x-b]=[y]$.
Thus, $f^{-1}[x]=[m]^{-1}[x-b]$.
We verify that this is the correct inverse function by showing that $f^{-1} \circ f=I$.

Let $[x] \in \mathbb{Z}_{n}$.
Then $\left(f^{-1} \circ f\right)[x]=f^{-1}(f[x])=f^{-1}([m x+b])=[m]^{-1}[(m x+b)-b]=$ $[m]^{-1}[m x]=[m]^{-1}[m][x]=[1][x]=[x]$.

Exercise 66. Suppose $a, b \in \mathbb{Z}$. Then $a \equiv b(\bmod 6)$ if and only if $a \equiv b$ $(\bmod 2)$ and $a \equiv b(\bmod 3)$.

Proof. First we prove that if $a \equiv b(\bmod 6)$, then $a \equiv b(\bmod 2)$ and $a \equiv b$ $(\bmod 3)$.

Suppose $a \equiv b(\bmod 6)$. This means $6 \mid(a-b)$, so there is an integer n for which $a-b=6 n$.

From this equation we get $a-b=2(3 n)$, which implies $2 \mid(a-b)$, so $a \equiv b$ $(\bmod 2)$.

We also get $a-b=3(2 n)$, which implies $3 \mid(a-b)$, so $a \equiv b(\bmod 3)$.
Therefore $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 3)$.

Conversely, we show that if $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 3)$, then $a \equiv b$ $(\bmod 6)$.

Suppose $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 3)$.
Since $a \equiv b(\bmod 2)$ then $2 \mid(a-b)$, so there is an integer k for which $a-b=$ $2 k$.

Therefore $a-b$ is even.
Since $a \equiv b(\bmod 3)$ then $3 \mid(a-b)$, so there is an integer l for which $a-b=$ $3 l=2 k$.

Since $a-b$ is even, then $3 l$ is even. Since $3 l$ is even and 3 is odd, then l must be even, for if l were odd then $3 l=a-b$ would be odd.

Hence $l=2 m$ for some integer m.
Thus $a-b=3(2 m)=6 m$.
This means $6 \mid(a-b)$, so $a \equiv b(\bmod 6)$.
Exercise 67. If $a \in \mathbb{Z}$, then $a^{3} \equiv a(\bmod 3)$.
Proof. Suppose $a \in \mathbb{Z}$.
Then $a^{3}-a=a\left(a^{2}-1\right)=a(a-1)(a+1)=(a-1) a(a+1)$.
This means $a^{3}-a$ is the product of three consecutive integers.
Without loss of generality we shall assume a is nonnegative. A similar argument holds if a is negative.

We consider the integer a when it is divided by 3 .
Suppose $a \geq 0$.
Then we know the remainder when a is divided by 3 is either 0,1 , or 2 .
Thus by the division algorithm $a=3 q+r$ for some integers q and r and $r=0$ or $r=1$ or $r=2$.

We consider these cases separately.
Case 1: Suppose $r=0$.
This means 3 evenly divides a, so $3 \mid a$.
This implies $a=3 q$ for some $q \in \mathbb{Z}$.
Substituting we get
$(a-1) a(a+1)=(3 q-1)(3 q)(3 q+1)=3 q(3 q-1)(3 q+1)$, so $3 \mid(a-1) a(a+1)$.
Therefore $3 \mid a^{3}-a$.
Case 2: Suppose $r=1$.
This means 1 is the remainder when a is divided by 3 , so $a=3 q+1$ for some $q \in \mathbb{Z}$.

Substituting we get
$(a-1) a(a+1)=(3 q)(3 q+1)(3 q+2)=3 q(3 q+1)(3 q+2)$, so $3 \mid(a-1) a(a+1)$.
Therefore $3 \mid a^{3}-a$.
Case 3: Suppose $r=2$.
This means 2 is the remainder when a is divided by 3 , so $a=3 q+2$ for some $q \in \mathbb{Z}$.

Substituting we get
$(a-1) a(a+1)=(3 q+1)(3 q+2)(3 q+3)=(3 q+1)(3 q+2)(3(q+1))=$ $3(q+1)(3 q+1)(3 q+2)$, so $3 \mid(a-1) a(a+1)$.

Therefore $3 \mid a^{3}-a$.
In each of these cases we always get $3 \mid a^{3}-a$.
Consequently $a^{3} \equiv a(\bmod 3)$.
Exercise 68. Suppose $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.
If $12 a \not \equiv 12 b(\bmod n)$, then $n \nmid 12$.
Solution. Direct proof doesn't seem to work. So we'll try proof by contrapositive since we can get rid of the negatives.

Proof. Suppose $n \mid 12$.
Then there is an integer k for which $12=n k$.
Multiply the equation by $a-b$ to get

$$
\begin{aligned}
12(a-b) & =n k(a-b) \\
12 a-12 b & =n(k a-k b)
\end{aligned}
$$

Since $k a-k b \in \mathbb{Z}$, the equation $12 a-12 b=n(k a-k b)$ implies that $n \mid(12 a-$ 12b).

This in turn means that $12 a \equiv 12 b(\bmod n)$.
Exercise 69. If $n \in \mathbb{N}$, then $12 \mid\left(n^{4}-n^{2}\right)$.
Solution. Note that the statement is equivalent to $n^{4} \equiv n^{2}(\bmod 12)$.
The equivalent universal quantified statement is $\forall n \in \mathbb{N}, 12 \mid\left(n^{4}-n^{2}\right)$.
We prove by induction.
Note that $n^{4}-n^{2}=n^{2}\left(n^{2}-1\right)=n^{2}(n-1)(n+1)$.
The statement S_{n} is $12 \mid n^{2}(n-1)(n+1)$.
The statement S_{k} is $12 \mid k^{2}(k-1)(k+1)$.
The statement S_{k+1} is $12 \mid(k+1)^{2}(k)(k+2)$.
We try weak induction.
Basis:

If $n=1$ then the statement S_{1} is $12 \mid 1^{2}(1-1)(1+1)$. This simplifies to $12 \mid 0$, which is true because $0=12 * 0$.

Induction:

We must prove $S_{k} \rightarrow S_{k+1}$ for $k \geq 1$.
This means we must prove $12 \mid k^{2}(k-1)(k+1)$ implies $12 \mid(k+1)^{2}(k)(k+2)$ for any integer $k \geq 1$.

We use direct proof.
Suppose $12 \mid k^{2}(k-1)(k+1)$ for any integer $k \geq 1$.
Then $k^{2}(k-1)(k+1)=12 a$ for $a \in \mathbb{Z}$, by definition of divisibility.
Our goal is to prove $12 \mid(k+1)^{2}(k)(k+2)$, so this implies we must prove $(k+1)^{2}(k)(k+2)=12 b, b \in \mathbb{Z}$.

If we subtract we get

$$
\begin{aligned}
(k+1)^{2}(k)(k+2)-k^{2}(k-1)(k+1) & =k(k+1)[(k+1)(k+2)-k(k-1)] \\
& =k(k+1)\left(k^{2}+3 k+2-k^{2}+k\right) \\
& =k(k+1)(4 k+2) \\
& =2 k(k+1)(2 k+1)
\end{aligned}
$$

This implies we must prove $12 \mid 2 k(k+1)(2 k+1)$ in order to prove our main goal.
This implies $2 k(k+1)(2 k+1)=12 c, c \in \mathbb{Z}$ which implies $k(k+1)(2 k+1)=6 c$.
Of course, we've already proved that $6 \mid n(n+1)(2 n+1)$, so we know this is true.

However, we will use strong induction instead.
Since $k(k+1)(2 k+1)$ must be divisible by 6 for $k \geq 1$, then we can show that it is sufficient to show that $k(k+1)(2 k+1)$ is divisible by 6 for the first 6 natural numbers in order to use strong induction. We can do this because the Division Algorithm says that for any integer n divided by $6, n=6 q+r, 0 \leq r<6$.

Thus we have a partition of \mathbb{N} under the equivalence relation $a \equiv b(\bmod 6)$:
If $r=0$, then $n=6 q$ which implies $n \in\{6 q\}=[0]_{6}$.
If $r=1$, then $n=6 q+1$ which implies $n \in\{6 q+1\}=[1]_{6}$.
If $r=2$, then $n=6 q+2$ which implies $n \in\{6 q+2\}=[2]_{6}$.
If $r=3$, then $n=6 q+3$ which implies $n \in\{6 q+3\}=[3]_{6}$.
If $r=4$, then $n=6 q+4$ which implies $n \in\{6 q+4\}=[4]_{6}$.
If $r=5$, then $n=6 q+5$ which implies $n \in\{6 q+5\}=[5]_{6}$.
Each of these congruence classes(equivalence classes) are disjoint sets and $\mathbb{N}=\cup_{i=0}^{5}[i]_{6}$.

Thus we only have to choose the first 6 natural numbers since any integer greater than 6 will be congruent modulo 6 to one of the first 6 natural numbers.

Thus for strong induction we simply prove $S_{1} \wedge S_{2} \wedge \ldots \wedge S_{6} \wedge S_{k} \rightarrow S_{k+1}, k \geq 6$.

Thus for the basis step we must prove $S_{1} \wedge S_{2} \wedge \ldots \wedge S_{6}$.
For the induction step we must prove $S_{1} \wedge S_{2} \wedge \ldots \wedge S_{6} \wedge S_{k} \rightarrow S_{k+1}, k \geq 6$.
This implies we must prove $S_{k-5} \wedge S_{k-4} \wedge \ldots \wedge S_{k} \rightarrow S_{k+1}$ for $k \geq 6$.
Proof. We prove by induction(strong).
Basis:
If $n=1$ then the statement is $12 \mid\left(1^{4}-1^{2}\right)$. This simplifies to $12 \mid 0$, which is true.

If $n=2$ then the statement is $12 \mid\left(2^{4}-2^{2}\right)$. This simplifies to $12 \mid 12$, which is true.

If $n=3$ then the statement is $12 \mid\left(3^{4}-3^{2}\right)$. This simplifies to $12 \mid 72$, which is true.

If $n=4$ then the statement is $12 \mid\left(4^{4}-4^{2}\right)$. This simplifies to $12 \mid 240$, which is true.

If $n=5$ then the statement is $12 \mid\left(5^{4}-5^{2}\right)$. This simplifies to $12 \mid 600$, which is true.

If $n=6$ then the statement is $12 \mid\left(6^{4}-6^{2}\right)$. This simplifies to $12 \mid 1260$, which is true.

Induction: We must prove $S_{1} \wedge S_{2} \wedge \ldots \wedge S_{6} \wedge S_{k} \rightarrow S_{k+1}, k \geq 6$.
This implies we must prove $S_{k-5} \wedge S_{k-4} \wedge \ldots \wedge S_{k} \rightarrow S_{k+1}$ for $k \geq 6$.
For simplicity, let $m=k-5$.
Then $S_{k-5} \wedge S_{k-4} \wedge \ldots \wedge S_{k} \rightarrow S_{k+1}$ for $k \geq 6$ becomes $S_{m} \wedge S_{m+1} \wedge \ldots \wedge S_{m+5} \rightarrow$ S_{m+6} for $m \geq 1$.

We prove the latter statement using direct proof.
Suppose $S_{m} \wedge S_{m+1} \wedge \ldots \wedge S_{m+5}$ for $m \geq 1$.
We must prove that these assumptions together imply S_{m+6}.
Since $S_{m} \wedge S_{m+1} \wedge \ldots \wedge S_{m+5}$ is true by assumption, then S_{m} is true.
This implies $12 \mid m^{4}-m^{2}$.
Thus $m^{4}-m^{2}=12 a, a \in \mathbb{Z}$ by definition of divisibility.
Observe the following equalities:

$$
\begin{aligned}
(m+6)^{4}-(m+6)^{2} & =\left(m^{4}+24 m^{3}+216 m^{2}+864 m+1296\right)-\left(m^{2}+12 m+36\right) \\
& =m^{4}+24 m^{3}+215 m^{2}+852 m+1260 \\
& =\left(m^{4}-m^{2}\right)+\left(24 m^{3}+216 m^{2}+852 m+1260\right) \\
& =12 a+\left(24 m^{3}+216 m^{2}+852 m+1260\right) \\
& =12\left(a+2 m^{3}+18 m^{2}+71 m+105\right)
\end{aligned}
$$

Since $a+2 m^{3}+18 m^{2}+71 m+105 \in \mathbb{Z}$, then by definition of divisibility $12 \mid(m+$ $6)^{4}-(m+6)^{2}$.

Thus S_{m+6} is true.
Hence $S_{m} \wedge S_{m+1} \wedge \ldots \wedge S_{m+5} \rightarrow S_{m+6}$ for $m \geq 1$.

Thus, $S_{k-5} \wedge S_{k-4} \wedge \ldots \wedge S_{k} \rightarrow S_{k+1}$ for $k \geq 6$.
It follows by strong induction that $12 \mid\left(n^{4}-n^{2}\right)$ for all natural numbers n.
Proposition 70. Each set of seven distinct natural numbers contains a pair of numbers whose sum or difference is divisible by 10.

Solution. We first translate the English statement into logical symbols in order to better understand what the statement means.

The statement in logical symbols is something like: $\forall S, P$ where S is a set of 7 distinct natural numbers and P is $\exists a_{i}, a_{j} \in S, 10\left|a_{i}+a_{j} \vee 10\right| a_{i}-a_{j}$.

We can represent a set S of 7 distinct natural numbers as follows.
Let $S=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right\}$.
Then $|S|=7$.
How many pairs of distinct elements exist?
To answer this question, we realize this is really asking how many combinations are there which is the same as asking how many sets of size 2 from a set of size 7 are there?

This is simply 7 choose $2=21$ since this is a selection without repetition(ie, combination).

Now to better understand this proposition we should try some concrete examples.

If we have a set of 7 distinct natural numbers, then we would need to compute the sum and differences of each of the 21 pairs, and then determine whether any of the results is divisible by 10 . We can write a Java program or use some other math software (like GAP) to investigate whether this proposition appears to be true.

We do try some examples and the examples do suggest the conjecture is true.

Let's analyze statement P.
Statement P is telling us that there exist distinct $a_{i}, a_{j} \in S$, such that some statement is true concerning the sum or difference: $\exists a_{i}, a_{j} \in S, P\left(a_{i}+a_{j}, a_{i}-a_{j}\right)$.

Let's translate this logical statement into math symbols. We should think about the sums and differences of any distinct $a_{i}, a_{j} \in S$. We consider a set of sums and differences of distinct $a_{i}, a_{j} \in S$. Let T be a set of distinct sums and differences of distinct pairs $a_{i}, a_{j} \in S$. We observe that there could be some pairs whose sum may be the same. For example, if $2,3,4,5 \in S$, then $2+5=3+4$. Since we want to guarantee that any sum(or difference) of distinct pairs is distinct, then we must devise set T in such a way that this holds true. Otherwise, T would have duplicate sums(or differences) and would therefore not be a true set!

What facts do we know that can help us to devise set T ?
We know $S \subseteq N$ and S is not empty, so by the Well Ordering Principle, we know S has a smallest element, say a_{1}.

With some insight we realize that a way to devise set T would be to consider the set of sums and differences of the smallest element of S.

Let $T=\left\{a_{1}-a_{2}, a_{1}-a_{3}, a_{1}-a_{4}, a_{1}-a_{5}, a_{1}-a_{6}, a_{1}-a_{7}, a_{1}+a_{2}, a_{1}+\right.$ $\left.a_{3}, a_{1}+a_{4}, a_{1}+a_{5}, a_{1}+a_{6}, a_{1}+a_{7}\right\}$.

We observe that each element of set T is distinct from any other element in T, so T is truly a set.

Consider the statement $10 \mid n$.
This means some natural number $n \in\{10,20,30,40,50, \ldots\}=A$.
Observe that set A consists of numbers that end with the digit zero.
Thus, $\exists a_{i}, a_{j} \in S, P\left(a_{i}+a_{j}, a_{i}-a_{j}\right)$ is the same as $\exists a_{i}, a_{j} \in S, 10 \mid a_{i}+a_{j} \vee$ $10 \mid a_{i}-a_{j}$ and can be interpreted to mean $\exists a_{i}, a_{j} \in S, a_{i}+a_{j}$ ends with a zero or $a_{i}-a_{j}$ ends with a zero.

How do we prove the existence of a number that has this property of ending with the digit zero?

Since we can't devise a concrete example, we must try another approach to devise that such an element must exist.

We consider the property of a number ending with a specific digit.
Since every number ends with one of the digits 0 to 9 , then there is a natural mapping from each number n to the digit that it ends with.

Thus, let us define a function $f: T \mapsto D$ where $f(n)=$ the digit that a number n ends with and D is the set of digits 0 to 9 .

For example, $f(803)=3$ since the number 803 ends with the digit 3 .
What properties or relationships can we deduce about function f ?
Well, we know that $|T|=12$ and $|D|=10$. By the Pigeonhole principle, this implies f is not injective.

Thus, there exist distinct $x, y \in T$ for which $f(x)=f(y)$.
This means there exist distinct $x, y \in T$ which end with the same digit.
In other words, there exist distinct $a_{1} \pm a_{i}, a_{1} \pm a_{j} \in T$ for which $f\left(a_{1} \pm a_{i}\right)=$ $f\left(a_{1} \pm a_{j}\right)$ where $a_{i}, a_{j} \in S$.

So we have deduced that there exist distinct $a_{1} \pm a_{i}, a_{1} \pm a_{j} \in T$ and $a_{1} \pm a_{i}$ has the same last digit as $a_{1} \pm a_{j}$.

We know that the difference between any two numbers that end in the same digit is a number that ends with the digit zero.

Thus, we take the difference between $a_{1} \pm a_{i}, a_{1} \pm a_{j} \in T$ to get $\left(a_{1} \pm a_{i}\right)-$ $\left(a_{1} \pm a_{j}\right)= \pm a_{i} \mp a_{j}= \pm a_{i} \pm a_{j}$.

This implies $a_{i}+a_{j}$ or $a_{i}-a_{j}$ ends with the digit zero.
Hence $a_{i}+a_{j}$ or $a_{i}-a_{j}$ is divisible by 10 .
Proof. Let $S=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right\}$ be a set of seven distinct natural numbers.

We must prove $\exists a_{i}, a_{j} \in S, 10\left|a_{i}+a_{j} \vee 10\right| a_{i}-a_{j}$
Since $S \subseteq N$ and S is not empty, then it follows by the Well Ordering Principle that S has a smallest element.

Without loss of generality, let a_{1} be the smallest element of S.
Let $T=\left\{a_{1}-a_{2}, a_{1}-a_{3}, a_{1}-a_{4}, a_{1}-a_{5}, a_{1}-a_{6}, a_{1}-a_{7}, a_{1}+a_{2}, a_{1}+\right.$ $\left.a_{3}, a_{1}+a_{4}, a_{1}+a_{5}, a_{1}+a_{6}, a_{1}+a_{7}\right\}$ be a set of sums and differences of a_{1}. It
is obvious that T is a set since each sum or difference in T is different from any other sum or difference in T.

Let $f: T \mapsto D$ be a function where $f(n)=$ the digit that a number n ends with and D is the set of digits 0 to 9 .

Observe that $|T|=12$ and $|D|=10$.
Since $|T|>|D|$, then by the pigeonhole principle, f is not injective.
Thus, there exist distinct $x, y \in T$ for which $f(x)=f(y)$.
This means there exist distinct $x, y \in T$ which end with the same digit.
Thus, there exist distinct $a_{1} \pm a_{i}, a_{1} \pm a_{j} \in T$ and $a_{1} \pm a_{i}$ has the same last digit as $a_{1} \pm a_{j}$ where $a_{i}, a_{j} \in S$.

We know that the difference between any two numbers that end in the same digit is a number that ends with the digit zero.

Thus, we take the difference between $a_{1} \pm a_{i}, a_{1} \pm a_{j} \in T$ to get $\left(a_{1} \pm a_{i}\right)-$ $\left(a_{1} \pm a_{j}\right)= \pm a_{i} \mp a_{j}= \pm a_{i} \pm a_{j}$.

This implies $a_{i}+a_{j}$ or $a_{i}-a_{j}$ ends with the digit zero.
Since any number is divisible by 10 if and only if it ends with the digit zero, then this implies $a_{i}+a_{j}$ or $a_{i}-a_{j}$ is divisible by 10 .

Exercise 71. Prove that for every $n \in \mathbb{Z}^{+}$

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}
$$

Exercise 72. Euler conjecture is false
The equation $a^{4}+b^{4}+c^{4}=d^{4}$ has no solution when a, b, c, d are positive integers.

Show that this statement is false
Proof. Let $a=95800$ and $b=217519$ and $c=414560$ and $d=422481$.
Then $a^{4}+b^{4}+c^{4}=1222824711550279489=d^{4}$.
Therefore, the conjecture is false.

