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Linear Diophantine Equations

Exercise 1. Find a general solution to the linear Diophantine equation 172x+
20y = 1000.

Solution. We use Euclid’s algorithm to compute gcd(172, 20).
Observe that

172 = 20 ∗ 8 + 12

20 = 12 ∗ 1 + 8

12 = 8 ∗ 1 + 4

8 = 4 ∗ 2 + 0.

Thus, gcd(172, 20) = 4.
We express the gcd as a linear combination of 172 and 20.

4 = 12− (8)1

= 12− (20− 12 ∗ 1)1

= (12) ∗ 2− 20 ∗ 1

= (172− 20 ∗ 8) ∗ 2− 20 ∗ 1

= 172 ∗ 2− 20(17)

= 172 ∗ 2 + 20(−17).

Thus, gcd(172, 20) = 4 = 172 ∗ 2 + 20(−17), so 1000 = 250 ∗ 4 = 250(172 ∗
2 + 20(−17)) = 500 ∗ 172 + 20(−4250).

Hence, a particular solution is x0 = 500 and y0 = −4250.
Therefore, a general solution is x = 500 + ( 20

4 )t = 500 + 5t and y = −4250−
( 172

4 )t = −4250− 43t for some integer t.

Exercise 2. Find a general solution to the linear Diophantine equation 5x +
22y = 18.



Solution. A particular solution is x0 = 8 and y0 = −1 since 18 = 5(8)+22(−1).
Since gcd(5, 22) = 1, then a general solution is x = 8 + 22t and y = −1− 5t

for arbitrary integer t.

Exercise 3. Let a, b ∈ Z+.
If a and b are relatively prime, then the Diophantine equation ax − by = c

has infinitely many solutions in Z+.

Proof. Suppose a and b are relatively prime.
Then gcd(a, b) = 1.
Since gcd(a,−b) = gcd(a, b) = 1 and c = ax− by = ax+ (−b)y and 1|c, then

a solution exists to the Diophantine equation ax− by = c.
Let (x0, y0) ∈ Z× Z be a particular solution to the equation ax− by = c.
Then x0 ∈ Z and y0 ∈ Z and ax0 − by0 = c.
Let m = min(x0

b , y0

a ).
Then m ≤ x0

b and m ≤ y0

a .
Let t ∈ Z such that t < m.
Let x = x0 − bt and y = y0 − at.
To prove the equation ax − by = c has infinitely many solutions in Z+, we

must prove (x, y) is a solution to the equation ax− by = c in Z+ × Z+ for each
t ∈ Z.

Thus, we must prove ax− by = c and x > 0 and y > 0 for each t ∈ Z.

Observe that

ax− by = a(x0 − bt)− b(y0 − at)

= ax0 − abt− by0 + bat

= ax0 − abt− by0 + abt

= ax0 − by0

= c.

Therefore, ax− by = c.

Since t < m and m ≤ x0

b , then t < x0

b .
Since b > 0, then bt < x0, so 0 < x0 − bt = x.
Therefore, x > 0.

Since t < m and m ≤ y0

a , then t < y0

a .
Since a > 0, then at < y0, so 0 < y0 − at = y.
Therefore, y > 0.

Proposition 4. Let a, b, c ∈ Z∗ and d ∈ Z+.
If d = gcd(a, b, c), then d = gcd(gcd(a, b), c) = gcd(a, gcd(b, c)) = gcd(gcd(a, c), b).
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Proof. Suppose d = gcd(a, b, c).
We first prove d = gcd(gcd(a, b), c).
Let x = gcd(a, b).
Then x ∈ Z+ and x|a and x|b, and for any integer n, if n|a and n|b, then

n|x.
Since d = gcd(a, b, c), then d ∈ Z+ and d|a and d|b and d|c, and for any

integer n, if n|a and n|b and n|c, then n|d.
Since d|a and d|b, then d|x.
Since d|x and d|c, then d is a common divisor of x and c.
Let n ∈ Z such that n|x and n|c.
Since n|x and x|a, then n|a.
Since n|x and x|b, then n|b.
Since n|a and n|b and n|c, then n|d.
Thus, any common divisor of x and c divides d.
Since d ∈ Z+ and d is a common divisor of x and c and any common divisor

of x and c divides d, then d = gcd(x, c).
Therefore, d = gcd(x, c) = gcd(gcd(a, b), c).

Proof. We next prove d = gcd(a, gcd(b, c)).
Let x = gcd(b, c).
Then x ∈ Z+ and x|b and x|c, and for any integer n, if n|b and n|c, then n|x.
Since d = gcd(a, b, c), then d ∈ Z+ and d|a and d|b and d|c, and for any

integer n, if n|a and n|b and n|c, then n|d.
Since d|b and d|c, then d|x.
Since d|a and d|x, then d is a common divisor of a and x.
Let n ∈ Z such that n|a and n|x.
Since n|x and x|b, then n|b.
Since n|x and x|c, then n|c.
Since n|a and n|b and n|c, then n|d.
Thus, any common divisor of a and x divides d.
Since d ∈ Z+ and d is a common divisor of a and x and any common divisor

of a and x divides d, then d = gcd(a, x).
Therefore, d = gcd(a, x) = gcd(a, gcd(b, c)).

Proof. We next prove d = gcd(gcd(a, c), b).
Let x = gcd(a, c).
Then x ∈ Z+ and x|a and x|c, and for any integer n, if n|a and n|c, then

n|x.
Since d = gcd(a, b, c), then d ∈ Z+ and d|a and d|b and d|c, and for any

integer n, if n|a and n|b and n|c, then n|d.
Since d|a and d|c, then d|x.
Since d|x and d|b, then d is a common divisor of x and b.
Let n ∈ Z such that n|x and n|b.
Since n|x and x|a, then n|a.
Since n|x and x|c, then n|c.
Since n|a and n|b and n|c, then n|d.
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Thus, any common divisor of x and b divides d.
Since d ∈ Z+ and d is a common divisor of x and b and any common divisor

of x and b divides d, then d = gcd(x, b).
Therefore, d = gcd(x, b) = gcd(gcd(a, c), b).

Proposition 5. Let a, b, c ∈ Z with a 6= 0 and b 6= 0 and c 6= 0 and d ∈ Z.
Then the Diophantine equation ax + by + cz = d is solvable in the integers

iff gcd(a, b, c) | d.

Proof. We prove the statement : if gcd(a, b, c) | d, then ax + by + cz = d is
solvable in the integers.

Suppose gcd(a, b, c) | d.
To prove ax + by + cz = d is solvable in the integers, we must prove there

exist integers x0, y0, z0 such that ax0 + by0 + cz0 = d.
Let r = gcd(a, b, c).
Let s = gcd(a, b).
Then r|d, so d = rk for some integer k.
Since r = gcd(a, b, c) = gcd(gcd(a, b), c) = gcd(s, c), then r is a linear com-

bination of s and c, so there exist integers m and n such that ms + nc = r.
Since s = gcd(a, b), then s is a linear combination of a and b, so there exist

integers p and q such that pa + qb = s.
Observe that

d = rk

= (ms + nc)k

= [m(pa + qb) + nc]k

= (mpa + mqb + nc)k

= mpak + mqbk + nck

= a(mpk) + b(mqk) + c(nk).

Let x0 = mpk and y0 = mqk and z0 = nk.
Then x0, y0, z0 ∈ Z and d = ax0 + by0 + cz0.

Proof. We prove the statement: if ax + by + cz = d is solvable in the integers,
then gcd(a, b, c) | d.

Suppose ax + by + cz = d is solvable in the integers.
Then there exist integers x0, y0, z0 such that ax0 + by0 + cz0 = d, so d is a

linear combination of a, b, c.
Since gcd(a, b, c) is a common divisor of a and b and c, then gcd(a, b, c)

divides any linear combination of a and b and c, so gcd(a, b, c) | d.

Exercise 6. Find all solutions in the integers of the equation 15x+12y+30z =
24.
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Solution. The linear diophantine equation 15x+ 12y+ 30z = 24 has a solution
in the integers iff gcd(15, 12, 30)|24.

Since gcd(15, 12, 30) = gcd(gcd(15, 12), 30) = gcd(3, 30) = 3 and 3|24, then
the equation 15x + 12y + 30z = 24 has a solution in the integers.

Since 15x + 12y + 30z = 24, then 12y + 30z = 24− 15x.
The linear diophantine equation 12y + 30z = 24 − 15x has a solution for a

fixed integer x iff gcd(12, 30) | (24− 15x).
Since gcd(12, 30) = 6 and 6 | (24− 15x) iff 3 ∗ 2 | 3(8− 5x) iff 2 | (8− 5x) iff

8− 5x = 2s for some integer s, then 12y + 30z = 24− 15x has a solution for a
fixed integer x iff 8− 5x = 2s for some integer s.

Let s ∈ Z such that 8− 5x = 2s.
Then 5x = 8−2s, so 24−15x = 24−3(5x) = 24−3(8−2s) = 24−24+6s = 6s.
We find a solution to the equation 12y + 30z = 24− 15x.
We first use the Euclidean algorithm to find gcd(12, 30).
Observe that

30 = 12 ∗ 2 + 6

12 = 6 ∗ 2 + 0.

Thus, gcd(12, 30) = 6 = 30− (12)2 = 12(−2) + 30(1).
Hence,

24− 15x = 6s

= gcd(12, 30) ∗ s
= [12(−2) + 30(1)] ∗ s
= 12(−2s) + 30s.

Therefore, a particular solution to the equation 12y + 30z = 24 − 15x is
(−2s, s), so a general solution is y = −2s+ 30t

6 = −2s+5t and z = s− 12t
6 = s−2t

for any integer t.
Since 8− 5x = 2s, then 5x = 8− 2s, so x = 8−2s

5 .
Since x ∈ Z, then 5|(8− 2s), so 5|2(4− s).
Since gcd(5, 2) = 1, then this implies 5|(4−s), so 4−s = 5k for some integer

k.
Thus, s = 4− 5k.
Hence, z = (4−5k)−2t = 4−5k−2t and y = −2(4−5k)+5t = −8+10k+5t

and x = 8−2(4−5k)
5 = 10k

5 = 2k.
Observe that

15x + 12y + 30z = 15(2k) + 12(−8 + 10k + 5t) + 30(4− 5k − 2t)

= 30k − 96 + 120k + 60t + 120− 150k − 60t

= −96 + 120

= 24.

Therefore, a general solution to the equation 15x+ 12y+ 30z = 24 is x = 2k
and y = −8 + 10k + 5t and z = 4− 5k − 2t for integers k and t.
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Exercise 7. A man has $4.55 in change composed entirely of dimes and quar-
ters. What are the maximum and minimum number of coins that he can have?
Is it possible for the number of dimes to equal the number of quarters?

Solution. Let d be the number of dimes and q be the number of quarters.
Then 10d + 25q = 455, so this is a linear Diophantine equation.
This equation has a solution iff gcd(10, 25) | 455.
Since gcd(10, 25) = 5 and 5|455, then the equation 10d + 25q = 455 has a

solution in the integers.
We find a particular solution using the Euclidean algorithm.
Observe that

25 = 10 ∗ 2 + 5

10 = 5 ∗ 2 + 0.

Thus, gcd(10, 25) = 5 = 25− (10)2 = 10(−2) + 25(1).
Hence,

455 = 91 · 5
= 91 · gcd(10, 25)

= 91[10(−2) + 25(1)]

= 10(−182) + 25(91).

Therefore, a particular solution to the equation 10d+25q = 455 is (−182, 91),
so a general solution is d = −182+( 25

5 )t = −182+5t and q = 91−( 10
5 )t = 91−2t

for any integer t.
Since d ≥ 0 and q ≥ 0, then −182 + 5t ≥ 0 and 91− 2t ≥ 0.
This leads to t ≥ 36.4 and t ≤ 45.5, so 37 ≤ t ≤ 45.
We compute the various values of d and q for each t in the integer range

[37, 45].
The maximum number of coins is 44 coins, with 43 dimes and 1 quarter.
The minimum number of coins is 20 coins, with 3 dimes and 17 quarters.
There can be an equal number of dimes and quarters, with 13 dimes and 13

quarters.

Exercise 8. A theatre charges $1.80 for adult admissions and 75 cents for
children. On a particular evening the total receipts were $90. Assuming that
more adults than children were present, how many people attended?

Solution. Let x be the number of adults and y be the number of children that
attended.

Then 180x + 75y = 9000, so this is a linear Diophantine equation.
This equation has a solution iff gcd(180, 75) | 9000.
Since gcd(180, 75) = 15 and 15|9000, then the equation 180x + 75y = 9000

has a solution in the integers.
We find a particular solution using the Euclidean algorithm.
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Observe that

180 = 75 ∗ 2 + 30

75 = 30 ∗ 2 + 15

30 = 15 ∗ 2 + 0.

Thus,

gcd(180, 75) = 15

= 75− (30)2

= 75− (180− 75 ∗ 2)2

= 75− 180 ∗ 2 + 75 ∗ 4

= 75(5)− 180(2)

= 180(−2) + 75(5).

Hence,

9000 = 600 · 15

= 600 · gcd(180, 75)

= 600[180(−2) + 75(5)]

= 180(−1200) + 75(3000).

Therefore, a particular solution to the equation 180x+75y = 9000 is (−1200, 3000),
so a general solution is x = −1200+( 75

15 )t = −1200+5t and y = 3000−( 180
15 )t =

3000− 12t for any integer t.
Since x ≥ 0 and y ≥ 0, then −1200 + 5t ≥ 0 and 3000− 12t ≥ 0.
This leads to t ≥ 240 and t ≤ 250, so 240 ≤ t ≤ 250.
We compute the various values of x and y for each t in the integer range

[240, 250].
There are either 40 adults and 24 children or 45 adults and 12 children or

only 50 adults and no children that attended.
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