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Sets of Numbers

N = {1, 2, 3, ...} = set of all natural numbers
Z = {...,−3,−2,−1, 0, 1, 2, 3, ...} = set of all integers
Z+ = {1, 2, 3, ...} = {n ∈ Z : n > 0} = set of all positive integers
Z∗ = {...,−3,−2,−1, 1, 2, 3, ...} = Z− {0} = set of all nonzero integers
Z+ ∪ {0} = {0, 1, 2, 3, ...} = set of all nonnegative integers
nZ = {kn : k ∈ Z} = set of all multiples of integer n

Natural number system

We model the natural numbers as strings of ones.

Definition 1. one
one is a vertical stroke |.

Definition 2. natural number
A natural number is a string of ones.

Example 3. examples of natural numbers
| is ‘one’
|| is ‘two’
||| is ‘three’
|||| is ‘four’
||||| is ‘five’

Definition 4. equal natural numbers
Let m and n be natural numbers.
Then m = n means all of the ones in m can be paired up with all of the ones

in n.

Example 5. Let m be ||||| and let n be |||||.
Then m is five and n is five.
Since all of the ones of m can be paired with all of the ones in n, then m = n.
Therefore, five equals five, so 5 = 5.



Definition 6. successor of a natural number
Let n be a natural number.
The successor of n, denoted n′, is the natural number n concatenated by

one.

Let n ∈ N.
Then n′ ∈ N is the successor of n and n′ is n concatenated by 1.

Example 7. successor operation
s(|) = ||,
s(||) = |||,
s(|||) = ||||,
...

The successor operation takes a natural number and returns the natural
number concatenated by |.

The successor operation is a function that takes a natural number and re-
turns the next natural number in the sequence of natural numbers.

Peano Axioms for natural number system

Axiom 8. 1 is a natural number.

Axiom 9. Each natural number has a successor.
For every n ∈ N there exists n′ ∈ N called the successor of n.

Axiom 10. 1 is not the successor of any natural number.

Axiom 11. Let m,n ∈ N.
Let m′ ∈ N be the successor of m.
Let n′ ∈ N be the successor of n.
If m′ = n′, then m = n.

Axiom 12. Induction Property of N
Let S ⊂ N be a set such that
1. 1 ∈ S.
2. For all n ∈ S, if n ∈ S, then n′ ∈ S.
Then S = N.

Proposition 13. The successor of a natural number is unique.

Since every natural number has a successor and the successor of a natural
number is unique, then every natural number n has a unique successor.

Addition is the successor operation applied repeatedly.
Addition is an operation that takes two numbers and returns a number called

the sum.
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Definition 14. addition is defined in terms of successor
Let n ∈ N.
Let n′ ∈ N be the successor of n.
Define n+ 1 = n′.
Define n+ 2 = (n′)′.
Define n+ 3 = ((n′)′)′.
In general, define n + k = (((n′)′)...)′ to be the kth successor of n for each

k ∈ N.

Let n ∈ N.
Let n′ ∈ N be the unique successor of n.
Then n′ = n+ 1.
Observe that n+ 2 = n′′ = (n+ 1)′ = (n+ 1) + 1.
Observe that n+ 3 = n′′′ = (n+ 1)′′ = ((n+ 1) + 1)′ = ((n+ 1) + 1) + 1.

Definition 15. addition
Let m and n be natural numbers.
The sum of m and n, denoted m + n, is the concatenation of the ones of

n to the ones of m.

Example 16. |||||+ ||| = ||||||||.
Therefore, 5 + 3 = 8.

Theorem 17. Laws of addition
Let k,m, n be natural numbers.
1. m+ n = n+m. (addition is commutative)
2. (k +m) + n = k + (m+ n). (addition is associative)
3. Let s be the successor operation on a natural number n.
Then s(n) = n+ 1.

Multiplication is repeated addition.
Multiplication is an operation that takes two numbers and returns a number

called the product.

Definition 18. multiplication
Let m and n be natural numbers.
The product of m and n, denoted mn, is the string formed by a copy of

n for every | in m.

Example 19. ||| × |||| = |||||||||||| (three copies of four)
|||| × ||| = |||||||||||| (four copies of three)
||| × | = ||| (three copies of 1)
| × ||| = ||| (1 copy of three)

Theorem 20. Laws of multiplication
Let k,m, n be natural numbers.
1. mn = nm. (multiplication is commutative)
2. (km)n = k(mn). (multiplication is associative)
3. n× 1 = n (multiplicative identity)
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Take two natural numbers and pair the corresponding ones.
The natural number which has any left over ones is larger.

Example 21. larger natural number
||||| is five
|||||||| is eight
We pair each one in the first number with the corresponding one in the

second natural number.
In this case, there are some ones left over: ||| (three ones left over).
Therefore, eight is larger than five.
Equivalently, five is smaller than eight.

Definition 22. less than
Let m and n be natural numbers.
Then m < n means there are some left over ones in n when the ones in m

are paired with the ones in n.

Let m,n ∈ N.
Then m < n means n is larger than m.

Example 23. Let m = |||||.
Let n = ||||||||.
Then m is five and n is eight.
Since ||| is left over in n when all of the ones in m are paired with the ones

of n, then m < n.
Therefore, five is less than eight, so 5 < 8.

Definition 24. relation < over N
Let a, b ∈ N.
Define a relation “is less than”, denoted <, on N by a < b iff (∃c ∈ N)(a+c =

b).

Observe that 1 < 2 < 3 < 4 < ....
The natural numbers are ordered by <.
|, ||, |||, ||||,...
Let m,n ∈ N.
Then m < n indicates that m comes before n in the sequence of natural

numbers.

Definition 25. relation > over N
Let m,n ∈ N.
Then m is larger than n, denoted m > n, iff n < m.

Definition 26. relation ≤ over N
Let m,n ∈ N.
Then m is less than or equal to n, denoted m ≤ n, iff either m < n or m = n.

Definition 27. relation ≥ over N
Let m,n ∈ N.
Then m is greater than or equal to n, denoted m ≥ n, iff either m > n or

m = n.
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Proposition 28. relation < over N is transitive
Let a, b, c ∈ N.
If a < b and b < c, then a < c.

Construction of Z
Arithmetic Operations(binary operations): addition, subtraction, multiplica-
tion, division

Axiom 29. Closure of Z under addition and multiplication
Z is closed under addition and multiplication.

Let a, b ∈ Z.
Then a+ b ∈ Z and ab ∈ Z.
The sum a+ b is unique.
The product a · b is unique.

Theorem 30. Algebraic properties of addition and multiplication in Z
1. For all a, b, c ∈ Z, (a+ b) + c = a+ (b+ c). Addition is associative.
2. For all a, b ∈ Z, a+ b = b+ a. Addition is commutative.
3. For all a, b, c ∈ Z, (ab)c = a(bc). Multiplication is associative.
4. For all a, b ∈ Z, ab = ba. Multiplication is commutative.
5. For all a, b, c ∈ Z, a(b + c) = ab + ac. Multiplication is distributive over

addition.

Proposition 31. Zero is additive identity in Z
For all a ∈ Z, a+ 0 = a.

Proposition 32. One is multiplicative identity in Z
For all a ∈ Z, 1 · a = a.

Proposition 33. Additive inverse of a is −a in Z
Let a ∈ Z.
Then there exists −a ∈ Z such that a+ (−a) = 0.

Definition 34. Subtraction in Z
Let a, b ∈ Z.
Define a− b = a+ (−b).
Then a− b is the difference between a and b.

Let a, b ∈ Z.
Since b ∈ Z, then −b ∈ Z, so a− b = a+ (−b) ∈ Z.
Therefore, Z is closed under subtraction.
Since the sum of two integers is unique, then a+ (−b) = a− b is unique.
Therefore, the difference a− b is unique.

Proposition 35. The only integers whose product is one are one and
negative one.

Let a, b ∈ Z.
If ab = 1, then either a = b = 1 or a = b = −1.
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Proposition 36. Cancellation law for Z
Let a, b, c ∈ Z.
If c 6= 0 and ac = bc, then a = b.

Axiom 37. Axioms for Z+

1. Z+ is closed under addition defined on Z.
(∀a, b ∈ Z+)(a+ b ∈ Z+). Sum of positive integers is positive.
2. Z+ is closed under multiplication defined on Z.
(∀a, b ∈ Z+)(ab ∈ Z+). Product of positive integers is positive.
3. Trichotomy.
For every a ∈ Z exactly one of the following statements is true:
i. a ∈ Z+

ii. a = 0.
iii. −a ∈ Z+.

Trichotomy law implies 0 6∈ Z+.

Definition 38. relation < over Z
Let a, b ∈ Z.
Define a relation “is less than”, denoted <, on Z by a < b iff b − a is a

positive integer.

Definition 39. relation ≤ over Z
Let a, b ∈ Z.
Then a is less than or equal to b, denoted a ≤ b, iff either a < b or a = b.

Definition 40. relation > over Z
Let a, b ∈ Z.
Then a is larger than b, denoted a > b, iff b < a.

Definition 41. relation ≥ over Z
Let a, b ∈ Z.
Then a is greater than or equal to b, denoted a ≥ b, iff either a > b or a = b.

Proposition 42. For all a, b ∈ Z
1. a > 0 iff a ∈ Z+

2. a < 0 iff −a ∈ Z+.
3. a < b iff b− a > 0.

Theorem 43. Z satisfies transitivity and trichotomy laws
1. a < a is false for all a ∈ Z. (Therefore, < is not reflexive.)
2. For all a, b, c ∈ Z, if a < b and b < c, then a < c. (< is transitive)
3. For every a ∈ Z, exactly one of the following is true (trichotomy):
i. a > 0
ii. a = 0
iii. a < 0
4. For every a, b ∈ Z, exactly one of the following is true (trichotomy):
i. a > b
ii. a = b
iii. a < b
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Theorem 44. order is preserved by the ring operations in Z
Let a, b, c ∈ Z.
1. If a < b, then a+ c < b+ c. (preserves order for addition)
2. If a < b, then a− c < b− c. (preserves order for subtraction)
3. If a < b and c > 0, then ac < bc. (preserves order for multiplication by a

positive integer)
4. If a < b and c < 0, then ac > bc. (reverses order for multiplication by a

negative integer)

Axiom 45. Well-Ordering Principle of Z+

Every nonempty subset of Z+ has a least element.

Let S be a nonempty subset of Z+.
Then S ⊂ Z+ and S 6= ∅.
Hence, by WOP, S has a least element.
Therefore, (∃m ∈ S)(∀s ∈ S)(m ≤ s).

Theorem 46. Principle of Mathematical Induction
Let S be a subset of Z+ such that
1. 1 ∈ S (basis)
2. for all k ∈ Z+, if k ∈ S, then k + 1 ∈ S. (induction hypothesis)
Then S = Z+.

In some sense, the well ordering property of Z+ is logically equivalent to the
principle of mathematical induction.

Theorem 47. Principle of Mathematical Induction(strong)
Let S be a subset of Z+ such that
1. 1 ∈ S (basis)
2. for all k ∈ Z+, if 1, 2, ..., k ∈ S, then k + 1 ∈ S. (strong induction

hypothesis)
Then S = Z+.

Theorem 48. Archimedean Property of Z+

Let a, b ∈ Z+.
Then there exists n ∈ Z+ such that nb ≥ a.

Proposition 49. For all n ∈ N, n ≥ 1.

Since n ≥ 1 for all n ∈ N, then 1 ≤ n for all n ∈ N, so 1 is the least positive
natural number.

Hence, 1 is the least element of Z+.
Therefore, 1 ≤ n for all n ∈ Z+.

Proposition 50. There is no greatest natural number.

Proposition 51. Let a, b, c, d ∈ Z+.
If a < b and c < d, then ac < bd.
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Lemma 52. Let a, b ∈ N.
If a < b then b 6≤ a.

Theorem 53. ≤ is a partial order on Z
1. For all a ∈ Z, a ≤ a. (Reflexive)
2. For all a, b ∈ Z, if a ≤ b and b ≤ a, then a = b. (Anti-symmetric)
3. For all a, b, c ∈ Z, if a ≤ b and b ≤ c, then a ≤ c. (Transitive)

Let a, b ∈ N.
Since N is a total order, then by defn of total order, either a ≤ b or b ≤ a.
Thus, either a < b or a = b or b < a or b = a.
Hence, either a < b or a = b or a > b.
Therefore, N satisfies the trichotomy law: either a < b or a = b or a > b.

(Z+,≤) is a total ordering that is well ordered.

Axiom 54. Laws of Exponents
For all m,n ∈ N and a, b ∈ R
1. (am)n = amn.
2. (ab)n = anbn.
3. aman = am+n.
These laws hold for all m,n ∈ Z if a and b are not zero.

Definition 55. consecutive natural numbers
The natural numbers n and n+ 1 are said to be consecutive.

Proposition 56. No natural number exists between two consecutive
natural numbers.

Let n be a natural number.
There is no m ∈ N such that n < m < n+ 1.

Elementary Aspects of Integers

Definition 57. even number
(∀n ∈ Z) n is even iff (∃k ∈ Z)(n = 2k).

The set of even integers is 2Z = {n : n is even} = {2k : k ∈ Z} =
{...,−4,−2, 0, 2, 4, 6, ...}.

The sequence of even natural numbers is (2n)∞n=1 = (2, 4, 6, 8, ...).

Let n be an even integer.
Then n ≡ 0 (mod 2), so n leaves remainder 0 when divided by 2.
Therefore, 2|n.
In base 10 n ends in 0,2,4,6, or 8.

Definition 58. odd number
(∀n ∈ Z) n is odd iff (∃k ∈ Z)(n = 2k + 1).
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The set of odd integers is 2Z + 1 = {n : n is odd} = {2k + 1 : k ∈ Z} =
{...,−3,−1, 1, 3, 5, 7, ...}.

The sequence of odd natural numbers is (2n− 1)∞n=1 = (1, 3, 5, 7, ...).

Let n be an odd integer.
Then n ≡ 1 (mod 2), so n leaves remainder 1 when divided by 2.
Therefore, 2 6 |n.
In base 10 n ends in 1,3,5,7, or 9.

Lemma 59. Every positive integer is either even or odd.

Lemma 60. An integer is not both even and odd.

Proposition 61. A positive integer is either even or odd, but not both.

Let n ∈ Z+.
Then either n is even or n is odd, but n is not both even and odd.

Definition 62. Parity
An even number has parity 0.

An odd number has parity 1.

Two integers have the same parity iff they are both even or they are both
odd; otherwise they have opposite parity.

Sum:
even + even = even
even + odd = odd
odd + even = odd
odd + odd = even

Product:
even * even = even
even * odd = even
odd * even = even
odd * odd = odd

Definition 63. consecutive integers
The integers n and n+ 1 are said to be consecutive.

Proposition 64. A product of two consecutive integers is even.
If n ∈ Z, then n(n+ 1) is even.

Natural Number Formulae

Proposition 65. The sum of the first n natural numbers is n(n+1)
2 .

Let k ∈ N.
Then

∑n
k=1 k = n(n+1)

2 for all n ∈ N.
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Proposition 66. The sum of the first n odd natural numbers is n2.

Let k ∈ N.
Then

∑n
k=1(2k − 1) = n2 for all n ∈ N.

Proposition 67. The sum of the squares of the first n natural numbers is
n(n+1)(2n+1)

6 .

Let k ∈ N.
Then

∑n
k=1 k

2 = n(n+1)(2n+1)
6 for all n ∈ N.

Proposition 68. The sum of the cubes of the first n natural numbers is (n(n+1)
2 )2.

Let k ∈ N.
Then

∑n
k=1 k

3 = (n(n+1)
2 )2 for all n ∈ N.

Definition 69. Square Numbers
arrangement of points in a square (area is n2)
(∀n ∈ Z) n is a perfect square iff (∃k ∈ N)(n = k2).
Let k = number of dots in the side of a square, k ≥ 1.
Let Sk = number of dots in a square with k side dots (kth square number).
Sk : N→ N (maps k side dots to the total number of dots in the square )
The kth square is formed from the (k − 1) square by adding sides that is 2

* side of (k-1) square + 1 corner dot.
Thus,
Sk = Sk−1 + 2(k − 1) + 1 = Sk−1 + 2k − 1 and S1 = 1.
Sk = number of side dots * number of side dots = k2

Thus,
Sn = nth square number
Sn = Sn−1 + 2n− 1, n > 1 and S1 = 1.
Sn = n2

set of square numbers = {n2 : n ∈ N} = {1, 4, 9, 16, 25, 36, ...}
sequence of square numbers = {Sn} = {n2}∞n=1 = {1, 4, 9, 16, 25, 36, ...}

Definition 70. Cubic Numbers
arrange n unit cubes into a larger solid cube (volume is n3)
(∀n ∈ Z) n is a perfect cube iff (∃k ∈ N)(n = k3).
set of cubic numbers = {n3 : n ∈ N} = {1, 8, 27, 64, 125, ...}
sequence of cubic numbers = {n3}∞n=1 = {1, 8, 27, 64, 125, ...}

Definition 71. Triangular Numbers
triangular grid of points such that the first row has 1 element and each

subsequent row contains one more element than the previous row
Let k = row in the triangular arrangement of dots, k ≥ 1
Let Tk = the number of all dots from row 1 to row k (kth triangular number)
Tk : N→ N (maps kth row to its corresponding Tk )
The kth row has k dots.
kth triangular number = (k− 1) triangular number + the number of dots in

row k, so
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Tk = Tk−1 + k, k > 1 and T1 = 1.
Tk = the sum of dots in all preceding rows up to row k, so

Tk = 1 + 2 + 3 + ...+ k =
∑k
i=1 i = k(k+1)

2
Thus,
Tn = nth triangular number
Tn = Tn−1 + n, n > 1 and T1 = 1

Tn =
∑n
k=1 k = n(n+1)

2 =
(
n+1
2

)
set of triangular numbers = {n(n+1)

2 : n ∈ N} = {1, 3, 6, 10, 15, 21, ...}
sequence of triangular numbers = {Tn} = {n(n+1)

2 }∞n=1 = {1, 3, 6, 10, 15, 21, ...}

Definition 72. Perfect Numbers
∀p ∈ N, p is perfect iff p equals the sum of its positive divisors less than

itself.
alternate defn: ∀p ∈ N, p is perfect iff its positive divisors add up to 2p.
set of perfect numbers = {p ∈ N : p is perfect} = {6, 28, 496, 8128, ...}
It is not known whether there are infinitely many perfect numbers.
Every even perfect number ends with a 6 or 8.
It is not known whether there are any odd perfect numbers.

Definition 73. Fibonacci Numbers
Fn = nth term of the Fibonacci sequence
Fn = Fn−1 + Fn−2, n > 2, and F1 = F2 = 1
Fibonacci sequence = {Fn}∞n=1 = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987...}

Pythagorean Triples

Pythagorean triples = {(a, b, c) : c2 = a2 + b2, a, b, c ∈ N}
A Pythagorean triple (a, b, c) is primitive iff a, b, c have no common factors

greater than 1.

Let s, t be any odd integers where s > t ≥ 1 and gcd(s, t) = 1.
Then (a, b, c) is a primitive Pythagorean triple where odd a = st,even b =

s2−t2
2 , and c = s2+t2

2 .

Divisibility and greatest common divisor

Definition 74. divides relation over Z
Define the relation ‘divides’ over Z for all a, b ∈ Z by a | b iff (∃n ∈ Z)(b =

an).
The statement ‘a divides b’, denoted a|b, means there exists an integer n

such that b = an.
Therefore a|b iff (∃n ∈ Z)(b = an).

The statement ‘a does not divide b’, denoted a 6 |b, means there is no
integer n such that b = an.
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Therefore a 6 |b iff ¬(∃n ∈ Z)(b = an).
Equivalent meanings for a|b are:
1. b is divisible by a
2. a is a divisor of b
3. b is a multiple of a
4. a is a factor of b

Proposition 75. Every integer divides zero. (∀n ∈ Z)(n|0).

Therefore 0|0 and 1|0.

Proposition 76. The number 1 divides every integer. (∀n ∈ Z)(1|n).

-1 also divides every integer.

Proposition 77. Every integer divides itself. (∀n ∈ Z)(n|n).

Therefore 1|1.

Proposition 78. Let a, b, c, d ∈ Z.
If a|b and c|d, then ac|bd.

Proposition 79. (∀a, b ∈ Z∗)(a|b ∧ b|a→ a = ±b).

Theorem 80. divides relation is transitive
For any integers a, b and c, if a|b and b|c, then a|c.

Theorem 81. The divides relation defined on Z+ is a partial order.

Therefore, the set of all positive integers is partially ordered under the divides
relation, so (Z+, |) is a poset.

This means
1. reflexive (∀a ∈ Z+)(a|a).
2. antisymmetric (∀a, b ∈ Z+)(a|b ∧ b|a→ a = b).
3. transitive (∀a, b, c ∈ Z+)(a|b ∧ b|c→ a|c).

Proposition 82. Let a, b ∈ Z+.
If a|b, then a ≤ b.

Proposition 83. Let a, d ∈ Z.
If d | a, then d | ma for all m ∈ Z.

If d divides a, then d divides any multiple of a.

Proposition 84. Let a, b, n ∈ Z.
1. If a|b, then na|nb.
2. If n 6= 0, then na|nb implies a|b.

Theorem 85. Division Algorithm
Let a, b ∈ Z with b > 0.
Then there exist unique integers q and r such that a = bq+r, with 0 ≤ r < b.
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This is just long division from arithmetic (division by zero is not defined).
We divide a by b.
If r = 0, then b divides a, so a is divisible by b.
a = dividend
b = divisor
q = quotient
r = remainder

Definition 86. common divisor
Let a, b ∈ Z.
Then d ∈ Z is a common divisor of a and b iff d|a and d|b.

positive divisors of a = {d ∈ Z+ : d|a}
positive divisors of b = {d ∈ Z+ : d|b}

common positive divisors of a and b = {d ∈ Z+ : d|a ∧ d|b}

1 is a common positive divisor for any a, b ∈ Z.

A positive common divisor d is bounded: 1 ≤ d ≤ min(a, b).

Definition 87. linear combination
Let a, b ∈ Z.
Then c ∈ Z is a linear combination of a and b iff (∃m,n ∈ Z)(c =

ma+ nb).

Theorem 88. Any common divisor of a and b divides any linear com-
bination of a and b.

Let a, b, d ∈ Z.
If d|a and d|b, then d|(ma+ nb) for all integers m and n.

Corollary 89. Let a, b, d ∈ Z.
If d|a and d|b, then d|(a+ b) and d|(a− b).

Corollary 90. Any common divisor of a finite number of integers
divides any linear combination of those integers.

Let a1, a2, ..., an, d ∈ Z.
If d|a1, d|a2, ..., d|an, then d|(c1a1 + c2a2 + ... + cnan) for any integers

c1, c2, ..., cn.

Definition 91. greatest common divisor
The greatest common divisor is the largest positive common divisor of two

integers not both zero.
Let a, b ∈ Z∗.
Let d ∈ Z+.
Then d is a gcd of a and b iff
1. d|a and d|b. (d is a common divisor)
2. For every c ∈ Z, if c|a and c|b, then c|d. ( Any common divisor of a and

b divides gcd(a, b).)
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The greatest common divisor of a and b is denoted gcd(a, b) or (a, b).
The gcd(0, 0) is undefined.
The greatest common divisor is a positive integer.

Theorem 92. existence and uniqueness of greatest common divisor
Let a, b ∈ Z∗.
Then gcd(a, b) exists and is unique.
Moreover, gcd(a, b) is the least positive linear combination of a and b.

Let a, b ∈ Z∗.
Then gcd(a, b) is the least positive linear combination of a and b.
Let S = {ma+ nb : ma+ nb > 0,m, n ∈ Z}.
Then gcd(a, b) is the least element of S and there exist integers m and n

such that gcd(a, b) = ma+ nb.

Proposition 93. Properties of gcd
Let a, b ∈ Z+.
Then
1. gcd(a, 0) = a.
2. gcd(a, 1) = 1.
3. gcd(a, a) = a.
4. gcd(a, b) = gcd(b, a).
5. gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).
6. gcd(ka, kb) = k gcd(a, b) for all k ∈ Z+.

Theorem 94. Let a, b ∈ Z∗.
Let c ∈ Z.
Then c is a linear combination of a and b iff c is a multiple of gcd(a, b).

Therefore every linear combination of a and b is a multiple of gcd(a, b) and
every multiple of gcd(a, b) is a linear combination of a and b.

Corollary 95. Let a, b ∈ Z∗.
Then gcd(a, b) = 1 iff there exist m,n ∈ Z such that ma+ nb = 1.

Corollary 96. Let a, b ∈ Z∗ and d ∈ Z+.
If gcd(a, b) = d, then gcd(ad ,

b
d ) = 1.

Definition 97. relatively prime integers
Two integers are relatively prime iff their only common positive divisor is 1.
Let a, b ∈ Z.
Then a and b are relatively prime iff gcd(a, b) = 1.

Let a, b ∈ Z.
Then a and b are relatively prime iff gcd(a, b) = 1.
Hence, if a and b are relatively prime, then gcd(a, b) = 1, so 1 is their only

common positive divisor.
Therefore, there is no integer greater than one that divides them both.
Therefore relatively prime numbers have no common positive divisor other

than 1.
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Let a, b ∈ Z∗.
Then a and b are relatively prime iff gcd(a, b) = 1 iff there exist m,n ∈ Z

such that ma+ nb = 1.

Theorem 98. Let a, b, d ∈ Z.
If d|ab and (d, a) = 1, then d|b.

Proposition 99. Let a, b,m ∈ Z.
If a|m and b|m and gcd(a, b) = 1, then ab|m.

Therefore, if m is a common multiple of a and b and a and b are relatively
prime, then m is a multiple of ab.

Euclidean Algorithm

The Euclidean algorithm specifies how to compute gcd(a, b) for integers a and
b.

Lemma 100. Let a, b ∈ Z and b > 0.
If a is divided by b with remainder r, then gcd(a, b) = gcd(b, r).

Theorem 101. Euclidean Algorithm
Let a, b ∈ Z and b > 0.
Let n be the number of iterative steps and

a = bq1 + r1, where 0 < r1 < b

b = r1q2 + r2, where 0 < r2 < r1

r1 = r2q3 + r3, where 0 < r3 < r2

· · ·
rk−2 = rk−1qk + rk, where 0 < rk < rk−1

· · ·
rn−3 = rn−2qn−1 + rn−1, where 0 < rn−1 < rn−2

rn−2 = rn−1qn + 0.

Then gcd(a, b) = rn−1.

Let a, b ∈ Z∗.
To compute gcd(a, b), we apply the division algorithm repeatedly by dividing

the previous divisor by the previous remainder.
First, we divide a by b and obtain a = bq + r with 0 ≤ r < b.
Each time we divide, the positive remainder gets smaller until it becomes 0.
The last nonzero remainder in this division process will equal gcd(a, b).
Observe that b > r1 > r2 > r3 > ... > rk > rn−1 > 0, so the algorithm

terminates in n steps.
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Least common multiple

Definition 102. Let a, b ∈ Z.
An integer m is a common multiple of a and b iff a|m and b|m.

Definition 103. least common multiple
The least common multiple is the smallest positive common multiple of two

nonzero integers.
Let a, b ∈ Z∗.
Let m ∈ Z+.
Then m is a least common multiple of a and b iff
1. a|m and b|m. ( m is a common multiple)
2. For every c ∈ Z, if a|c and b|c, then m|c. ( Any multiple of a and b is a

multiple of lcm(a, b)).

Theorem 104. existence and uniqueness of least common multiple
Let a, b ∈ Z+.
The least common multiple of a and b exists and is unique.
Moreover, lcm(a, b) · gcd(a, b) = ab.

Let a, b ∈ Z+.
We denote the least common multiple of a and b by lcm(a, b) or [a, b].

Corollary 105. Let a, b ∈ Z+.
Then lcm(a, b) = ab iff gcd(a, b) = 1.

Proposition 106. Properties of lcm
Let a, b ∈ Z+.
Then
1. lcm(a, 0) = 0.
2. lcm(a, 1) = a.
3. lcm(a, a) = a.
4. lcm(a, b) = lcm(b, a).
5. lcm(ka, kb) = k · lcm(a, b) for all k ∈ Z+.
6. gcd(a, b) | lcm(a, b).
7. gcd(a, b) = lcm(a, b) iff a = b.
8. a|b iff gcd(a, b) = a iff lcm(a, b) = b.

Prime Numbers and Fundamental Theorem of
Arithmetic

Definition 107. prime number
A positive integer p other than 1 is prime iff the only positive divisors of p

are 1 and p.

Therefore, a positive integer p other than 1 is not prime iff there is some
positive divisor of p other than 1 or p.
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Let p ∈ Z+.
Then 1|p and p|p.
Suppose p is prime.
Then p 6= 1 and the only positive divisors of p are 1 and p.
Since p ∈ Z+ and p 6= 1, then p > 1.
Since the only positive divisors of p are 1 and p, then the set of common

positive divisors of p is {1, p}.

The set of prime numbers is {n ∈ Z+ : n is prime} = {2, 3, 5, 7, 11, 13, 17, 19, 23, ...}

Definition 108. composite number
A positive integer other than 1 is composite iff it is not prime.

The number 1 is neither prime nor composite.

The set of composite numbers is {n ∈ Z+ : n is composite} = {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, ...}.

Let n ∈ Z+.
Then n is composite iff n is neither 1 nor prime.

A positive integer n is exactly one of the following:
1. n = 1.
2. n is prime.
3. n is composite.

Lemma 109. A composite number has a positive divisor other than 1
or itself.

Let n ∈ Z+.
Then n is composite iff there exists d ∈ Z+ with 1 < d < n such that d|n.

Proposition 110. A composite number is composed of smaller positive
factors.

Let n ∈ Z+.
Then n is composite iff there exist a, b ∈ Z+ with 1 < a < n and 1 < b < n

such that n = ab.

Proposition 111. Every integer greater than 1 has a prime factor.

Theorem 112. Euclid’s Theorem
There are infinitely many prime numbers.

Lemma 113. Let p, n ∈ Z+.
If p is prime, then either p|n or gcd(p, n) = 1.

Therefore, if p is prime and p 6 |n, then gcd(p, n) = 1.
In particular, if n is a distinct prime, then gcd(p, n) = 1.
Therefore, any distinct primes are relatively prime.
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Lemma 114. Euclid’s Lemma
Let p, a, b ∈ Z+.
If p is prime and p|ab, then either p|a or p|b.

Corollary 115. Let p, a1, a2, ..., an ∈ Z+.
If p is prime and p|a1a2...an, then p|ak for some integer k with 1 ≤ k ≤ n.

Corollary 116. Let p, q1, q2, ..., qn ∈ Z+.
If p, q1, q2, ..., qn are all prime and p|q1q2...qn, then p = qk for some integer

k with 1 ≤ k ≤ n.

Theorem 117. Fundamental Theorem of Arithmetic(Existence)
Every integer greater than one can be represented as a product of one or

more primes.

Theorem 118. Fundamental Theorem of Arithmetic(Unique Factor-
ization)

The representation of any integer greater than one as a product of primes is
unique up to the order of the factors.

Example 119. Observe that 360 = 2 ·3 ·5 ·2 ·2 ·3 = 3 ·2 ·5 ·2 ·3 ·2 = 5 ·2 ·3 ·3 ·2 ·2.
While they differ only in the order of the factors, they are the same prime

factorization of 360.

Corollary 120. Every integer greater than one has a unique canonical
prime factorization

Every integer n > 1 can be written uniquely in a canonical form n =
pe11 p

e2
2 ...p

ek
k , where for each i = 1, 2, ..., k, each exponent ei is a positive integer

and each pi is a prime with p1 < p2 < ... < pk.

Example 121. The canonical prime factorization of 360 is 360 = 23 · 32 · 5.

Prime numbers are used to build, by multiplication, the entire set of positive
integers Z+.

Therefore, prime numbers are the building blocks from which all other inte-
gers are composed.

Linear Diophantine Equations

Definition 122. Diophantine equation
A Diophantine equation is an equation in one or more unknowns whose

solution is in the set of integers.

Definition 123. Linear Diophantine equation
Let a, b, c ∈ Z and a, b not both zero.
A linear Diophantine equation in two unknowns is a Diophantine

equation ax+ by = c.

The solution set of a linear Diophantine equation is the set {(x, y) ∈ Z×Z :
ax+ by = c}.
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Theorem 124. Existence of a solution to linear Diophantine equation
Let a, b, c ∈ Z with a 6= 0 and b 6= 0.
A solution (x, y) ∈ Z × Z to the linear diophantine equation ax + by = c

exists if and only if gcd(a, b) | c.

Corollary 125. Characterization of solution to linear Diophantine
equation

Let a, b, c ∈ Z with a 6= 0 and b 6= 0.
If (x0, y0) ∈ Z×Z is a particular solution to the linear Diophantine equation

ax+ by = c, then a general solution is given by x = x0 + ( bd )t and y = y0− (ad )t
for t ∈ Z, where d = gcd(a, b).

Let a, b, c ∈ Z and a 6= 0 and b 6= 0.
A solution (x, y) ∈ Z × Z to the linear diophantine equation ax + by = c

exists if and only if d|c, where d = gcd(a, b).
Moreover, if (x0, y0) is a solution, then the solution set is {(x0 + ( bd )t, y0 −

(ad )t) ∈ Z× Z : t ∈ Z}.
If gcd(a, b) = 1, then x = x0 + ( b1 )t = x0 + bt and y = y0 − (a1 )t = y0 − at.

Congruences

Definition 126. congruence modulo relation over Z
Let n ∈ Z+.
Let R = {(a, b) ∈ Z× Z : n|(a− b)}.
Since R ⊂ Z× Z, then R is a relation on Z.
The relation R is called congruence modulo n over Z .
Define the relation ‘is congruent to modulo n’ over Z for all a, b ∈ Z by a ≡ b

(mod n) iff n|(a− b).
The statement ‘a is congruent to b modulo n’, denoted a ≡ b (mod n),

means n|(a− b).
Therefore a ≡ b (mod n) iff n|(a− b).

The positive integer n in the definition a ≡ b (mod n) is called the modulus.
The statement ‘a is not congruent to b modulo n’, denoted a 6≡ b

(mod n), means n 6 |(a− b).
Therefore a 6≡ b (mod n) iff n 6 |(a− b).

Theorem 127. Let n ∈ Z+.
Let a, b ∈ Z.
Then a ≡ b (mod n) if and only if a and b leave the same remainder when

divided by n.

Theorem 128. The congruence modulo relation is an equivalence relation over
Z.

Let n ∈ Z+.
Let a, b, c ∈ Z.
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1. reflexive a ≡ a (mod n).
2. symmetric a ≡ b (mod n)⇒ b ≡ a (mod n).
3. transitive a ≡ b (mod n) ∧ b ≡ c (mod n)⇒ a ≡ c (mod n).

Theorem 129. Let n ∈ Z+.
Let a, b, c, d ∈ Z.
If a ≡ b (mod n) and c ≡ d (mod n), then
1. a+ c ≡ b+ d (mod n) (addition)
2. a− c ≡ b− d (mod n) (subtraction)
3. ac ≡ bd (mod n). (multiplication)

Theorem 130. Let n ∈ Z+.
Let a, b ∈ Z.
1. If a ≡ b (mod n), then a + c ≡ b + c (mod n) for all c ∈ Z. (addition

preserves congruence)
2. If a ≡ b (mod n), then ac ≡ bc (mod n) for all c ∈ Z. (multiplication

preserves congruence)
3. If a ≡ b (mod n), then ak ≡ bk (mod n) for all k ∈ Z+. (exponentiation

preserves congruence)

Theorem 131. Let n ∈ Z+.
Let a, b, c ∈ Z.
1. If a+ c ≡ b+ c (mod n), then a ≡ b (mod n). (cancellation addition)
2. If ac ≡ bc (mod n) and d = gcd(n, c), then a ≡ b (mod n

d ). (cancellation
multiplication)

Corollary 132. Let n ∈ Z+.
Let a, b, c ∈ Z.
If ac ≡ bc (mod n) and gcd(n, c) = 1, then a ≡ b (mod n). (cancellation

multiplication relatively prime)

Corollary 133. Let p ∈ Z+.
Let a, b, c ∈ Z.
If ac ≡ bc (mod p) and p is prime and p 6 |c, then a ≡ b (mod p). (cancella-

tion multiplication prime modulus)

Proposition 134. Let n ∈ Z+.
Let a, b, c ∈ Z.
If c 6= 0, then ac ≡ bc (mod nc) iff a ≡ b (mod n).

Definition 135. Inverse modulo
Let n ∈ Z+ be the modulus.
Let a ∈ Z+.
Then a is invertible modulo n iff (∃b ∈ Z)(ab ≡ 1 (mod n)).

Let a ∈ Z and n ∈ Z+.
Then a is invertible modulo n iff there exists b ∈ Z such that ab ≡ 1 (mod n)

and we say that b is a (multiplicative) inverse of a.
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Proposition 136. Let n ∈ Z+.
Let a ∈ Z+.
Then a is invertible modulo n iff gcd(a, n) = 1.

Let a ∈ Z and n ∈ N.
The multiplicative inverse of a modulo n exists if and only if gcd(a, n) = 1.
The inverse of a is unique modulo n.

Linear Congruences

Let a, b ∈ Z and n ∈ Z+.
Let S = {x ∈ Z : ax ≡ b (mod n)}.
Then S is the solution set to the linear congruence ax ≡ b (mod n).

Proposition 137. Let a, b, x, x0 ∈ Z and n ∈ Z+.
If x0 is a solution to ax ≡ b (mod n), then so is x0 + nk for any integer k.

Definition 138. A solution x of a congruence is unique modulo n iff any
solution x′ is congruent to x modulo n.

Theorem 139. Existence of solution to linear congruence
Let a, b ∈ Z and n ∈ Z+.
A solution exists to the linear congruence ax ≡ b (mod n) if and only if d|b,

where d = gcd(a, n).
Moreover, if a solution exists, then there are d distinct solutions modulo n

and these solutions are congruent modulo n
d .

Corollary 140. Let a, b ∈ Z and n ∈ Z+.
There exists an integer b such that ab ≡ 1 (mod n) if and only if gcd(a, n) =

1.
Moreover, b is the inverse of a and the inverse of a is unique modulo n.

Integers Modulo n

Definition 141. Congruence class
Let n ∈ Z+.
Let a ∈ Z.
The congruence class containing a, denoted [a], is the set of all integers

congruent to a modulo n.
Therefore [a] = {x ∈ Z : x ≡ a (mod n)}.

[a] = {x ∈ Z : n|(x− a)}
= {x ∈ Z : (∃k ∈ Z)(x− a = nk)}
= {a+ nk : k ∈ Z}
= a+ nZ
= nZ + a.
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Since congruence modulo is an equivalence relation, then [a] = [b] iff a ≡ b
(mod n).

Therefore, [a] = [b] iff a ≡ b (mod n) iff a and b leave the same remainder
when divided by n.

Since the remainders upon dividing by n are 0, 1, ..., n− 1, then every integer
must be congruent to exactly one of the remainders: 0,1,.., n-1.

Definition 142. Integers Modulo n
Let n ∈ Z+.
The collection of all congruence classes modulo n is the set of integers

modulo n, denoted Z
nZ or Zn.

Therefore, Zn = Z
nZ = {[a]n : a ∈ Z} = {[0], [1], [2], ..., [n− 1]}.

The set Z
nZ is a partition of Z under the congruence modulo relation.

The number of congruence classes is |Zn| = | ZnZ | = n.

Let [a] ∈ Z
nZ .

Then [a] = nZ + a = {nk + a : k ∈ Z} and a ∈ {0, 1, ..., n− 1}.
Let x ∈ [a].
Then x = nk + a for some k ∈ Z.
By the Division algorithm, k and a are unique integers such that 0 ≤ a < n.
Thus, a is the remainder when x is divided by n.
Hence, if x ∈ [a], then a is the remainder when x is divided by n.

Conversely, suppose a is the remainder when x is divided by n.
Then by the Division algorithm x = nq + a, 0 ≤ a < n for unique q, a ∈ Z.
Since q ∈ Z and x = nq + a, then x ∈ [a].
Hence, if a is the remainder when x is divided by n, then x ∈ [a].

Therefore, x ∈ [a] iff a is the remainder when x is divided by n.

Each integer is contained in exactly one of the congruence classes.

In Z
nZ :

additive identity is [0].
additive inverse of [a] is −[a] = [n− a].
multiplicative identity is [1].
[n] = [0].
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( Z
nZ ,+) is an abelian group.

( Z
nZ ,+, ·) is a commutative ring with unity [1].

Lemma 143. addition modulo n is well-defined
Let [a], [b] ∈ Zn.
Let x, x′ ∈ [a]n and y, y′ ∈ [b]n.
Then [x+ y] = [x′ + y′].

Proposition 144. Addition modulo n is a binary operation.
Let +n : Zn × Zn → Zn be a binary relation defined by [a] + [b] = [a+ b] for

all [a], [b] ∈ Zn.
Then +n is a binary operation on Zn.

Definition 145. Addition modulo n
Let +n : Zn×Zn → Zn be a binary relation defined by [a] + [b] = [a+ b] for

all [a], [b] ∈ Zn.
Then +n is a binary operation on Zn called addition modulo n.

Let a, b ∈ Z such that [a] + [b] = [a+ b].
Since a, b ∈ Z, then a+ b ∈ Z.
Since ≡ is an equivalence relation on Z, then a+ b ∈ [a+ b].
Let c = a+ b.
We know a+ b ∈ [c] iff c is the remainder when a+ b is divided by n.
Therefore, [a] + [b] = [c] means c is the remainder when a+ b is divided by

n.

Theorem 146. algebraic properties of addition modulo n
1. [a] + ([b] + [c]) = ([a] + [b]) + [c] for all [a], [b], [c] ∈ Zn.(associative)
2. [a] + [b] = [b] + [a] for all [a], [b] ∈ Zn.(commutative)
3. [a] + [0] = [0] + [a] = [a] for all [a] ∈ Zn. (additive identity)
4. [a] + [−a] = [−a] + [a] = [0] for all [a] ∈ Zn. (additive inverses)

Definition 147. Additive order of [a] modulo n
Let n ∈ Z+.
Let [a] ∈ Zn.
The smallest positive integer k such that k[a] = [0] (mod n) is called the

additive order of [a].

Let n ∈ Z+.
Let [a] ∈ Zn.
Since k[a] = [a] + [a] + ... + [a] = [a + a + ... + a] = [ka] = [0] (mod n) iff

ka ≡ 0 (mod n), then the smallest positive integer k such that ka ≡ 0 (mod n)
is the additive order of [a].

Proposition 148. Multiplication modulo n is a binary operation.
Let ∗n : Zn × Zn → Zn be a binary relation defined by [a][b] = [ab] for all

[a], [b] ∈ Zn.
Then ∗n is a binary operation on Zn.
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Definition 149. Multiplication modulo n
Let ∗n : Zn × Zn → Zn be a binary relation defined by [a][b] = [ab] for all

[a], [b] ∈ Zn.
Then ∗n is a binary operation on Zn called multiplication modulo n.

Let a, b ∈ Z such that [a][b] = [ab].
Since a, b ∈ Z, then ab ∈ Z.
Since ≡ is an equivalence relation on Z, then ab ∈ [ab].
Let ab = c.
We know ab ∈ [c] iff c is the remainder when ab is divided by n.
Therefore, [a][b] = [c] means c is the remainder when ab is divided by n.

Theorem 150. algebraic properties of multiplication modulo n
1. [a]([b][c]) = ([a][b])[c] for all [a], [b], [c] ∈ Zn. (associative)
2. [a][b] = [b][a] for all [a], [b] ∈ Zn. (commutative)
3. [a][1] = [1][a] = [a] for all [a] ∈ Zn. (multiplicative identity)
4. [a][0] = [0][a] = [0] for all [a] ∈ Zn.
5. [a]([b] + [c]) = [a][b] + [a][c] for all [a], [b], [c] ∈ Zn. (left distributive)
6. ([a] + [b])[c] = [a][c] + [b][c] for all [a], [b], [c] ∈ Zn. (right distributive)

Definition 151. Multiplicative inverse of [a] modulo n
Let n ∈ Z+.
Let [a] ∈ Zn.
Then [a] has a multiplicative inverse modulo n iff there exists [b] ∈ Zn

such that [a][b] = [1].
We say that [b] is a multiplicative inverse of [a], so [a] and [b] are invertible

elements, or units of Zn.
Inverse of [a] is denoted [a]−1.

Theorem 152. Existence of multiplicative inverse of [a] modulo n
Let n ∈ Z+.
Let [a] ∈ Zn.
Then [a] has a multiplicative inverse in Zn iff gcd(a, n) = 1.

Corollary 153. The inverse of [0] in Z1 is [0].
Let n ∈ Z+.
If n > 1, then [0] has no multiplicative inverse.

Definition 154. Divisor of zero modulo n
Let [a] ∈ Zn.
Then [a] is a divisor of zero modulo n iff there exists nonzero [b] ∈ Zn

such that [a][b] = [0].

If n > 1, then [0] is a divisor of [0] because [0][n − 1] = [0(n − 1)] = [0] and
[n− 1] 6= [0] ∈ Zn.

Theorem 155. Let n ∈ Z+.
A nonzero element of Zn either has a multiplicative inverse or is a divisor

of zero.
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Definition 156. Euler totient function
Let n ∈ Z+.
The number of positive integers less than or equal to n which are relatively

prime to n is denoted by φ(n).
This function is called Euler’s phi function, or totient function.

Example values for φ are below.

φ(1) = 1

φ(2) = 1

φ(3) = 2

φ(4) = 2

φ(5) = 4

φ(6) = 2

φ(7) = 6

φ(8) = 4.

If the prime factorization of n is n = pm1
1 pm2

2 ...pmk

k , then φ(n) = n(1− 1
p1

)(1−
1
p2

)...(1− 1
pk

).
Need to prove this!

Proposition 157. If p is prime, then φ(p) = p− 1.

Definition 158. Nilpotent element
Let n ∈ N.
Let [a] ∈ Zn.
Then [a] is nilpotent iff (∃k ∈ Z)([a]k = [0]).

Definition 159. Multiplicative order of [a] modulo n
Let n ∈ Z+.
Let [a] ∈ Z∗n.
The smallest positive integer k such that [a]k = [1] (mod n) is called the

multiplicative order of [a].

Let n ∈ Z+.
Let [a] ∈ Z∗n.
Since [a]k = [a] · [a] · ... · [a] = [a · a · ... · a] = [ak] = [1] (mod n) iff ak ≡ 1

(mod n), then the smallest positive integer k such that ak ≡ 1 (mod n) is the
multiplicative order of [a].

Fermat’s Theorem

Theorem 160. Fermat’s Little Theorem
Let p, a ∈ Z+.
If p is prime and p 6 |a, then p|ap−1 − 1.
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Let p, a ∈ Z+.
If p is prime and p 6 |a, then p|ap−1 − 1.
Hence, if p is prime and p 6 |a, then ap−1 ≡ 1 (mod p).
Therefore, if p is prime and p 6 |a, then ap ≡ a (mod p).

Theorem 161. Euler’s Theorem
Let a ∈ Z and n ∈ Z+.
If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Corollary 162. Fermat’s Little Theorem
Let a ∈ Z.
If p is prime, then ap ≡ a (mod p).

Miscellaneous Stuff

Proposition 163. Every integer is congruent modulo n to exactly one
of the integers 0, 1, 2, ..., n− 1.

Definition 164. least positive residues modulo n
Let n ∈ Z+.
The set of n integers {0, 1, 2, ..., n − 1} is called the set of least positive

residues modulo n.

Therefore, every integer is congruent modulo n to exactly one of the integers
in the set of least positive residues modulo n.

Definition 165. complete set of residues modulo n
Let n ∈ Z+.
A set of integers S = {a1, a2, ..., an} is a complete set(system) of residues

modulo n iff every integer is congruent modulo n to exactly one of the ak ∈ S.

Equivalently, S = {a1, a2, ..., an} is a complete system of residues modulo n
iff each ak ∈ S is congruent modulo n to exactly one integer in {0, 1, 2, ..., n−1}.

Example 166. The set {−12,−4, 11, 13, 22, 82, 91} is a complete set of residues
modulo 7.

Proposition 167. Any set of n integers is a complete set of residues
modulo n iff no two of the integers are congruent modulo n.

Definition 168. divisors function σ0
Let σ0 : Z+ → Z+ be the function defined such that σ0(n) is the number of

positive divisors of n ∈ Z+.
We call σ0 the divisor function.
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