Number Theory Notes

Jason Sass

July 17, 2023

Sets of Numbers

$\mathbb{N}=\{1,2,3, \ldots\}=$ set of all natural numbers
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}=$ set of all integers
$\mathbb{Z}^{+}=\{1,2,3, \ldots\}=\{n \in \mathbb{Z}: n>0\}=$ set of all positive integers
$\mathbb{Z}^{*}=\{\ldots,-3,-2,-1,1,2,3, \ldots\}=\mathbb{Z}-\{0\}=$ set of all nonzero integers
$\mathbb{Z}^{+} \cup\{0\}=\{0,1,2,3, \ldots\}=$ set of all nonnegative integers
$n \mathbb{Z}=\{k n: k \in \mathbb{Z}\}=$ set of all multiples of integer n

Natural number system

We model the natural numbers as strings of ones.
Definition 1. one one is a vertical stroke \mid.

Definition 2. natural number
A natural number is a string of ones.
Example 3. examples of natural numbers
\mid is 'one'
|| is 'two'
||| is 'three'
|||| is 'four'
||||| is 'five'

Definition 4. equal natural numbers

Let m and n be natural numbers.
Then $m=n$ means all of the ones in m can be paired up with all of the ones in n.

Example 5. Let m be $\|\|\|$ and let n be $\|\| \|$.
Then m is five and n is five.
Since all of the ones of m can be paired with all of the ones in n, then $m=n$.
Therefore, five equals five, so $5=5$.

Definition 6. successor of a natural number

Let n be a natural number.
The successor of n, denoted n^{\prime}, is the natural number n concatenated by one.

Let $n \in \mathbb{N}$.
Then $n^{\prime} \in \mathbb{N}$ is the successor of n and n^{\prime} is n concatenated by 1 .
Example 7. successor operation
$s(\mid)=\|$,
$s(\|)=\| \|$,
$s(\|\|)=\| \|$,
...
The successor operation takes a natural number and returns the natural number concatenated by \mid.

The successor operation is a function that takes a natural number and returns the next natural number in the sequence of natural numbers.

Peano Axioms for natural number system

Axiom 8. 1 is a natural number.
Axiom 9. Each natural number has a successor.
For every $n \in \mathbb{N}$ there exists $n^{\prime} \in \mathbb{N}$ called the successor of n.
Axiom 10. 1 is not the successor of any natural number.
Axiom 11. Let $m, n \in \mathbb{N}$.
Let $m^{\prime} \in \mathbb{N}$ be the successor of m.
Let $n^{\prime} \in \mathbb{N}$ be the successor of n.
If $m^{\prime}=n^{\prime}$, then $m=n$.
Axiom 12. Induction Property of \mathbb{N}
Let $S \subset \mathbb{N}$ be a set such that

1. $1 \in S$.
2. For all $n \in S$, if $n \in S$, then $n^{\prime} \in S$.

Then $S=\mathbb{N}$.
Proposition 13. The successor of a natural number is unique.
Since every natural number has a successor and the successor of a natural number is unique, then every natural number n has a unique successor.

Addition is the successor operation applied repeatedly.
Addition is an operation that takes two numbers and returns a number called the sum.

Definition 14. addition is defined in terms of successor
Let $n \in \mathbb{N}$.
Let $n^{\prime} \in \mathbb{N}$ be the successor of n.
Define $n+1=n^{\prime}$.
Define $n+2=\left(n^{\prime}\right)^{\prime}$.
Define $n+3=\left(\left(n^{\prime}\right)^{\prime}\right)^{\prime}$.
In general, define $n+k=\left(\left(\left(n^{\prime}\right)^{\prime}\right) \ldots\right)^{\prime}$ to be the $k^{t h}$ successor of n for each $k \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Let $n^{\prime} \in \mathbb{N}$ be the unique successor of n.
Then $n^{\prime}=n+1$.
Observe that $n+2=n^{\prime \prime}=(n+1)^{\prime}=(n+1)+1$.
Observe that $n+3=n^{\prime \prime \prime}=(n+1)^{\prime \prime}=((n+1)+1)^{\prime}=((n+1)+1)+1$.

Definition 15. addition

Let m and n be natural numbers.
The sum of m and n, denoted $m+n$, is the concatenation of the ones of n to the ones of m.

Example 16. $|||||+|||=||||||| |$.
Therefore, $5+3=8$.

Theorem 17. Laws of addition

Let k, m, n be natural numbers.

1. $m+n=n+m$. (addition is commutative)
2. $(k+m)+n=k+(m+n)$. (addition is associative)
3. Let s be the successor operation on a natural number n.

Then $s(n)=n+1$.
Multiplication is repeated addition.
Multiplication is an operation that takes two numbers and returns a number called the product.

Definition 18. multiplication

Let m and n be natural numbers.
The product of m and n, denoted $m n$, is the string formed by a copy of n for every \mid in m.

Example 19. ||| \times |||| $=||||||||||| |$ (three copies of four)

$\||x|=\| \mid$ (three copies of 1$)$

Theorem 20. Laws of multiplication
Let k, m, n be natural numbers.

1. $m n=n m$. (multiplication is commutative)
2. $(k m) n=k(m n)$. (multiplication is associative)
3. $n \times 1=n$ (multiplicative identity)

Take two natural numbers and pair the corresponding ones.
The natural number which has any left over ones is larger.
Example 21. larger natural number
||||| is five
$|||||||\mid$ is eight
We pair each one in the first number with the corresponding one in the second natural number.

In this case, there are some ones left over: ||| (three ones left over).
Therefore, eight is larger than five.
Equivalently, five is smaller than eight.

Definition 22. less than

Let m and n be natural numbers.
Then $m<n$ means there are some left over ones in n when the ones in m are paired with the ones in n.

Let $m, n \in \mathbb{N}$.
Then $m<n$ means n is larger than m.
Example 23. Let $m=\| \| \|$.
Let $n=\| \|\| \|\| \|$.
Then m is five and n is eight.
Since \|\| is left over in n when all of the ones in m are paired with the ones of n, then $m<n$.

Therefore, five is less than eight, so $5<8$.

Definition 24. relation $<$ over \mathbb{N}

Let $a, b \in \mathbb{N}$.
Define a relation "is less than", denoted $<$, on \mathbb{N} by $a<b$ iff $(\exists c \in \mathbb{N})(a+c=$ b).

Observe that $1<2<3<4<\ldots$.
The natural numbers are ordered by $<$.

Let $m, n \in \mathbb{N}$.
Then $m<n$ indicates that m comes before n in the sequence of natural numbers.
Definition 25. relation $>$ over \mathbb{N}
Let $m, n \in \mathbb{N}$.
Then m is larger than n, denoted $m>n$, iff $n<m$.
Definition 26. relation \leq over \mathbb{N}
Let $m, n \in \mathbb{N}$.
Then m is less than or equal to n, denoted $m \leq n$, iff either $m<n$ or $m=n$.
Definition 27. relation \geq over \mathbb{N}
Let $m, n \in \mathbb{N}$.
Then m is greater than or equal to n, denoted $m \geq n$, iff either $m>n$ or $m=n$.

Proposition 28. relation $<$ over \mathbb{N} is transitive
Let $a, b, c \in \mathbb{N}$.
If $a<b$ and $b<c$, then $a<c$.

Construction of \mathbb{Z}

Arithmetic Operations(binary operations): addition, subtraction, multiplication, division

Axiom 29. Closure of \mathbb{Z} under addition and multiplication
\mathbb{Z} is closed under addition and multiplication.
Let $a, b \in \mathbb{Z}$.
Then $a+b \in \mathbb{Z}$ and $a b \in \mathbb{Z}$.
The sum $a+b$ is unique.
The product $a \cdot b$ is unique.
Theorem 30. Algebraic properties of addition and multiplication in \mathbb{Z}

1. For all $a, b, c \in \mathbb{Z},(a+b)+c=a+(b+c)$. Addition is associative.
2. For all $a, b \in \mathbb{Z}, a+b=b+a$. Addition is commutative.
3. For all $a, b, c \in \mathbb{Z},(a b) c=a(b c)$. Multiplication is associative.
4. For all $a, b \in \mathbb{Z}, a b=b a$. Multiplication is commutative.
5. For all $a, b, c \in \mathbb{Z}, a(b+c)=a b+a c$. Multiplication is distributive over addition.

Proposition 31. Zero is additive identity in \mathbb{Z}
For all $a \in \mathbb{Z}, a+0=a$.
Proposition 32. One is multiplicative identity in \mathbb{Z}
For all $a \in \mathbb{Z}, 1 \cdot a=a$.
Proposition 33. Additive inverse of a is $-a$ in \mathbb{Z}
Let $a \in \mathbb{Z}$.
Then there exists $-a \in \mathbb{Z}$ such that $a+(-a)=0$.

Definition 34. Subtraction in \mathbb{Z}

Let $a, b \in \mathbb{Z}$.
Define $a-b=a+(-b)$.
Then $a-b$ is the difference between a and b.
Let $a, b \in \mathbb{Z}$.
Since $b \in \mathbb{Z}$, then $-b \in \mathbb{Z}$, so $a-b=a+(-b) \in \mathbb{Z}$.
Therefore, \mathbb{Z} is closed under subtraction.
Since the sum of two integers is unique, then $a+(-b)=a-b$ is unique.
Therefore, the difference $a-b$ is unique.
Proposition 35. The only integers whose product is one are one and negative one.

Let $a, b \in \mathbb{Z}$.
If $a b=1$, then either $a=b=1$ or $a=b=-1$.

Proposition 36. Cancellation law for \mathbb{Z}
Let $a, b, c \in \mathbb{Z}$.
If $c \neq 0$ and $a c=b c$, then $a=b$.
Axiom 37. Axioms for \mathbb{Z}^{+}

1. \mathbb{Z}^{+}is closed under addition defined on \mathbb{Z}.
$\left(\forall a, b \in \mathbb{Z}^{+}\right)\left(a+b \in \mathbb{Z}^{+}\right)$. Sum of positive integers is positive.
2. \mathbb{Z}^{+}is closed under multiplication defined on \mathbb{Z}.
$\left(\forall a, b \in \mathbb{Z}^{+}\right)\left(a b \in \mathbb{Z}^{+}\right)$. Product of positive integers is positive.
3. Trichotomy.

For every $a \in \mathbb{Z}$ exactly one of the following statements is true:
i. $a \in \mathbb{Z}^{+}$
ii. $a=0$.
iii. $-a \in \mathbb{Z}^{+}$.

Trichotomy law implies $0 \notin \mathbb{Z}^{+}$.
Definition 38. relation $<$ over \mathbb{Z}
Let $a, b \in \mathbb{Z}$.
Define a relation "is less than", denoted $<$, on \mathbb{Z} by $a<b$ iff $b-a$ is a positive integer.

Definition 39. relation \leq over \mathbb{Z}
Let $a, b \in \mathbb{Z}$.
Then a is less than or equal to b, denoted $a \leq b$, iff either $a<b$ or $a=b$.
Definition 40. relation $>$ over \mathbb{Z}
Let $a, b \in \mathbb{Z}$.
Then a is larger than b, denoted $a>b$, iff $b<a$.
Definition 41. relation \geq over \mathbb{Z}
Let $a, b \in \mathbb{Z}$.
Then a is greater than or equal to b, denoted $a \geq b$, iff either $a>b$ or $a=b$.
Proposition 42. For all $a, b \in \mathbb{Z}$

1. $a>0$ iff $a \in \mathbb{Z}^{+}$
2. $a<0$ iff $-a \in \mathbb{Z}^{+}$.
3. $a<b$ iff $b-a>0$.

Theorem 43. \mathbb{Z} satisfies transitivity and trichotomy laws

1. $a<a$ is false for all $a \in \mathbb{Z}$. (Therefore, $<$ is not reflexive.)
2. For all $a, b, c \in \mathbb{Z}$, if $a<b$ and $b<c$, then $a<c$. ($<$ is transitive)
3. For every $a \in \mathbb{Z}$, exactly one of the following is true (trichotomy):
i. $a>0$
ii. $a=0$
iii. $a<0$
4. For every $a, b \in \mathbb{Z}$, exactly one of the following is true (trichotomy):
i. $a>b$
ii. $a=b$
iii. $a<b$

Theorem 44. order is preserved by the ring operations in \mathbb{Z}
Let $a, b, c \in \mathbb{Z}$.

1. If $a<b$, then $a+c<b+c$. (preserves order for addition)
2. If $a<b$, then $a-c<b-c$. (preserves order for subtraction)
3. If $a<b$ and $c>0$, then $a c<b c$. (preserves order for multiplication by a positive integer)
4. If $a<b$ and $c<0$, then $a c>b c$. (reverses order for multiplication by a negative integer)

Axiom 45. Well-Ordering Principle of \mathbb{Z}^{+}
Every nonempty subset of \mathbb{Z}^{+}has a least element.
Let S be a nonempty subset of \mathbb{Z}^{+}.
Then $S \subset \mathbb{Z}^{+}$and $S \neq \emptyset$.
Hence, by WOP, S has a least element.
Therefore, $(\exists m \in S)(\forall s \in S)(m \leq s)$.
Theorem 46. Principle of Mathematical Induction
Let S be a subset of \mathbb{Z}^{+}such that

1. $1 \in S$ (basis)
2. for all $k \in \mathbb{Z}^{+}$, if $k \in S$, then $k+1 \in S$. (induction hypothesis)

Then $S=\mathbb{Z}^{+}$.
In some sense, the well ordering property of \mathbb{Z}^{+}is logically equivalent to the principle of mathematical induction.

Theorem 47. Principle of Mathematical Induction(strong)
Let S be a subset of \mathbb{Z}^{+}such that

1. $1 \in S$ (basis)
2. for all $k \in \mathbb{Z}^{+}$, if $1,2, \ldots, k \in S$, then $k+1 \in S$. (strong induction hypothesis)

Then $S=\mathbb{Z}^{+}$.

Theorem 48. Archimedean Property of \mathbb{Z}^{+}

Let $a, b \in \mathbb{Z}^{+}$.
Then there exists $n \in \mathbb{Z}^{+}$such that $n b \geq a$.
Proposition 49. For all $n \in \mathbb{N}, n \geq 1$.
Since $n \geq 1$ for all $n \in \mathbb{N}$, then $1 \leq n$ for all $n \in \mathbb{N}$, so 1 is the least positive natural number.

Hence, 1 is the least element of \mathbb{Z}^{+}.
Therefore, $1 \leq n$ for all $n \in \mathbb{Z}^{+}$.
Proposition 50. There is no greatest natural number.
Proposition 51. Let $a, b, c, d \in \mathbb{Z}^{+}$.
If $a<b$ and $c<d$, then $a c<b d$.

Lemma 52. Let $a, b \in \mathbb{N}$.
If $a<b$ then $b \not \leq a$.
Theorem 53. \leq is a partial order on \mathbb{Z}

1. For all $a \in \mathbb{Z}, a \leq a$. (Reflexive)
2. For all $a, b \in \mathbb{Z}$, if $a \leq b$ and $b \leq a$, then $a=b$. (Anti-symmetric)
3. For all $a, b, c \in \mathbb{Z}$, if $a \leq b$ and $b \leq c$, then $a \leq c$. (Transitive)

Let $a, b \in \mathbb{N}$.
Since \mathbb{N} is a total order, then by defn of total order, either $a \leq b$ or $b \leq a$.
Thus, either $a<b$ or $a=b$ or $b<a$ or $b=a$.
Hence, either $a<b$ or $a=b$ or $a>b$.
Therefore, \mathbb{N} satisfies the trichotomy law: either $a<b$ or $a=b$ or $a>b$.
$\left(\mathbb{Z}^{+}, \leq\right)$is a total ordering that is well ordered.
Axiom 54. Laws of Exponents
For all $m, n \in \mathbb{N}$ and $a, b \in \mathbb{R}$

1. $\left(a^{m}\right)^{n}=a^{m n}$.
2. $(a b)^{n}=a^{n} b^{n}$.
3. $a^{m} a^{n}=a^{m+n}$.

These laws hold for all $m, n \in \mathbb{Z}$ if a and b are not zero.
Definition 55. consecutive natural numbers
The natural numbers n and $n+1$ are said to be consecutive.
Proposition 56. No natural number exists between two consecutive natural numbers.

Let n be a natural number.
There is no $m \in \mathbb{N}$ such that $n<m<n+1$.

Elementary Aspects of Integers

Definition 57. even number
$(\forall n \in \mathbb{Z}) n$ is even iff $(\exists k \in \mathbb{Z})(n=2 k)$.
The set of even integers is $2 \mathbb{Z}=\{n: n$ is even $\}=\{2 k: k \in \mathbb{Z}\}=$ $\{\ldots,-4,-2,0,2,4,6, \ldots\}$.

The sequence of even natural numbers is $(2 n)_{n=1}^{\infty}=(2,4,6,8, \ldots)$.

Let n be an even integer.
Then $n \equiv 0(\bmod 2)$, so n leaves remainder 0 when divided by 2 .
Therefore, $2 \mid n$.
In base $10 n$ ends in $0,2,4,6$, or 8 .
Definition 58. odd number
$(\forall n \in \mathbb{Z}) n$ is odd iff $(\exists k \in \mathbb{Z})(n=2 k+1)$.

The set of odd integers is $2 \mathbb{Z}+1=\{n: n$ is odd $\}=\{2 k+1: k \in \mathbb{Z}\}=$ $\{\ldots,-3,-1,1,3,5,7, \ldots\}$.

The sequence of odd natural numbers is $(2 n-1)_{n=1}^{\infty}=(1,3,5,7, \ldots)$.

Let n be an odd integer.
Then $n \equiv 1(\bmod 2)$, so n leaves remainder 1 when divided by 2 .
Therefore, $2 \nmid n$.
In base $10 n$ ends in $1,3,5,7$, or 9 .
Lemma 59. Every positive integer is either even or odd.
Lemma 60. An integer is not both even and odd.
Proposition 61. A positive integer is either even or odd, but not both.
Let $n \in \mathbb{Z}^{+}$.
Then either n is even or n is odd, but n is not both even and odd.

Definition 62. Parity

An even number has parity 0 .
An odd number has parity 1.
Two integers have the same parity iff they are both even or they are both odd; otherwise they have opposite parity.

Sum:
even + even $=$ even
even + odd $=$ odd
odd + even $=$ odd
odd + odd $=$ even
Product:
even $*$ even $=$ even
even $*$ odd $=$ even
odd $*$ even $=$ even
odd $*$ odd $=$ odd
Definition 63. consecutive integers
The integers n and $n+1$ are said to be consecutive.
Proposition 64. A product of two consecutive integers is even.
If $n \in \mathbb{Z}$, then $n(n+1)$ is even.

Natural Number Formulae

Proposition 65. The sum of the first n natural numbers is $\frac{n(n+1)}{2}$.
Let $k \in \mathbb{N}$.
Then $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Proposition 66. The sum of the first n odd natural numbers is n^{2}.
Let $k \in \mathbb{N}$.
Then $\sum_{k=1}^{n}(2 k-1)=n^{2}$ for all $n \in \mathbb{N}$.
Proposition 67. The sum of the squares of the first n natural numbers is $\frac{n(n+1)(2 n+1)}{6}$.

Let $k \in \mathbb{N}$.
Then $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $n \in \mathbb{N}$.
Proposition 68. The sum of the cubes of the first n natural numbers is $\left(\frac{n(n+1)}{2}\right)^{2}$.
Let $k \in \mathbb{N}$.
Then $\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for all $n \in \mathbb{N}$.

Definition 69. Square Numbers

arrangement of points in a square (area is n^{2})
$(\forall n \in \mathbb{Z}) n$ is a perfect square iff $(\exists k \in \mathbb{N})\left(n=k^{2}\right)$.
Let $k=$ number of dots in the side of a square, $k \geq 1$.
Let $S_{k}=$ number of dots in a square with k side dots ($k^{t h}$ square number).
$S_{k}: \mathbb{N} \rightarrow \mathbb{N}$ (maps k side dots to the total number of dots in the square)
The $k^{t h}$ square is formed from the $(k-1)$ square by adding sides that is 2

* side of ($\mathrm{k}-1$) square +1 corner dot.

Thus,
$S_{k}=S_{k-1}+2(k-1)+1=S_{k-1}+2 k-1$ and $S_{1}=1$.
$S_{k}=$ number of side dots $*$ number of side dots $=k^{2}$
Thus,
$S_{n}=n^{\text {th }}$ square number
$S_{n}=S_{n-1}+2 n-1, n>1$ and $S_{1}=1$.
$S_{n}=n^{2}$
set of square numbers $=\left\{n^{2}: n \in \mathbb{N}\right\}=\{1,4,9,16,25,36, \ldots\}$
sequence of square numbers $=\left\{S_{n}\right\}=\left\{n^{2}\right\}_{n=1}^{\infty}=\{1,4,9,16,25,36, \ldots\}$

Definition 70. Cubic Numbers

arrange n unit cubes into a larger solid cube (volume is n^{3})
$(\forall n \in \mathbb{Z}) n$ is a perfect cube $\operatorname{iff}(\exists k \in \mathbb{N})\left(n=k^{3}\right)$.
set of cubic numbers $=\left\{n^{3}: n \in N\right\}=\{1,8,27,64,125, \ldots\}$
sequence of cubic numbers $=\left\{n^{3}\right\}_{n=1}^{\infty}=\{1,8,27,64,125, \ldots\}$
Definition 71. Triangular Numbers
triangular grid of points such that the first row has 1 element and each subsequent row contains one more element than the previous row

Let $k=$ row in the triangular arrangement of dots, $k \geq 1$
Let $T_{k}=$ the number of all dots from row 1 to row k ($k^{\overline{t h}}$ triangular number)
$T_{k}: \mathbb{N} \rightarrow \mathbb{N}$ (maps $k^{t h}$ row to its corresponding $\left.T_{k}\right)$
The $k^{\text {th }}$ row has k dots.
$k^{t h}$ triangular number $=(k-1)$ triangular number + the number of dots in row k, so
$T_{k}=T_{k-1}+k, k>1$ and $T_{1}=1$.
$T_{k}=$ the sum of dots in all preceding rows up to row k, so
$T_{k}=1+2+3+\ldots+k=\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$
Thus,
$T_{n}=n^{\text {th }}$ triangular number
$T_{n}=T_{n-1}+n, n>1$ and $T_{1}=1$
$T_{n}=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}=\binom{n+1}{2}$
set of triangular numbers $=\left\{\frac{n(n+1)}{2}: n \in N\right\}=\{1,3,6,10,15,21, \ldots\}$
sequence of triangular numbers $=\left\{T_{n}\right\}=\left\{\frac{n(n+1)}{2}\right\}_{n=1}^{\infty}=\{1,3,6,10,15,21, \ldots\}$
Definition 72. Perfect Numbers
$\forall p \in \mathbb{N}, p$ is perfect iff p equals the sum of its positive divisors less than itself.
alternate defn: $\forall p \in \mathbb{N}, p$ is perfect iff its positive divisors add up to $2 p$.
set of perfect numbers $=\{p \in \mathbb{N}: p$ is perfect $\}=\{6,28,496,8128, \ldots\}$
It is not known whether there are infinitely many perfect numbers.
Every even perfect number ends with a 6 or 8 .
It is not known whether there are any odd perfect numbers.

Definition 73. Fibonacci Numbers

$F_{n}=n^{t h}$ term of the Fibonacci sequence
$F_{n}=F_{n-1}+F_{n-2}, n>2$, and $F_{1}=F_{2}=1$
Fibonacci sequence $=\left\{F_{n}\right\}_{n=1}^{\infty}=\{1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987 \ldots\}$

Pythagorean Triples

Pythagorean triples $=\left\{(a, b, c): c^{2}=a^{2}+b^{2}, a, b, c \in \mathbb{N}\right\}$
A Pythagorean triple (a, b, c) is primitive iff a, b, c have no common factors greater than 1.

Let s, t be any odd integers where $s>t \geq 1$ and $\operatorname{gcd}(s, t)=1$.
Then (a, b, c) is a primitive Pythagorean triple where odd $a=s t$, even $b=$ $\frac{s^{2}-t^{2}}{2}$, and $c=\frac{s^{2}+t^{2}}{2}$.

Divisibility and greatest common divisor

Definition 74. divides relation over \mathbb{Z}
Define the relation 'divides' over \mathbb{Z} for all $a, b \in \mathbb{Z}$ by $a \mid b$ iff $(\exists n \in \mathbb{Z})(b=$ an).

The statement ' a divides b ', denoted $a \mid b$, means there exists an integer n such that $b=a n$.

Therefore $a \mid b$ iff $(\exists n \in \mathbb{Z})(b=a n)$.
The statement ' a does not divide b ', denoted $a \wedge b$, means there is no integer n such that $b=a n$.

Therefore $a \not \backslash b$ iff $\neg(\exists n \in \mathbb{Z})(b=a n)$.
Equivalent meanings for $a \mid b$ are:

1. b is divisible by a
2. a is a divisor of b

3 . b is a multiple of a
4. a is a factor of b

Proposition 75. Every integer divides zero. $(\forall n \in \mathbb{Z})(n \mid 0)$.
Therefore $0 \mid 0$ and $1 \mid 0$.
Proposition 76. The number 1 divides every integer. $(\forall n \in \mathbb{Z})(1 \mid n)$.
-1 also divides every integer.
Proposition 77. Every integer divides itself. $(\forall n \in \mathbb{Z})(n \mid n)$.
Therefore $1 \mid 1$.
Proposition 78. Let $a, b, c, d \in \mathbb{Z}$.
If $a \mid b$ and $c \mid d$, then $a c \mid b d$.
Proposition 79. $\left(\forall a, b \in \mathbb{Z}^{*}\right)(a|b \wedge b| a \rightarrow a= \pm b)$.
Theorem 80. divides relation is transitive
For any integers a, b and c, if $a \mid b$ and $b \mid c$, then $a \mid c$.
Theorem 81. The divides relation defined on \mathbb{Z}^{+}is a partial order.
Therefore, the set of all positive integers is partially ordered under the divides relation, so $\left(\mathbb{Z}^{+}, \mid\right)$is a poset.

This means

1. reflexive $\left(\forall a \in \mathbb{Z}^{+}\right)(a \mid a)$.
2. antisymmetric $\left(\forall a, b \in \mathbb{Z}^{+}\right)(a|b \wedge b| a \rightarrow a=b)$.
3. transitive $\left(\forall a, b, c \in \mathbb{Z}^{+}\right)(a|b \wedge b| c \rightarrow a \mid c)$.

Proposition 82. Let $a, b \in \mathbb{Z}^{+}$.
If $a \mid b$, then $a \leq b$.
Proposition 83. Let $a, d \in \mathbb{Z}$.
If $d \mid a$, then $d \mid m a$ for all $m \in \mathbb{Z}$.
If d divides a, then d divides any multiple of a.
Proposition 84. Let $a, b, n \in \mathbb{Z}$.

1. If $a \mid b$, then $n a \mid n b$.
2. If $n \neq 0$, then na|nb implies $a \mid b$.

Theorem 85. Division Algorithm
Let $a, b \in \mathbb{Z}$ with $b>0$.
Then there exist unique integers q and r such that $a=b q+r$, with $0 \leq r<b$.

This is just long division from arithmetic (division by zero is not defined).
We divide a by b.
If $r=0$, then b divides a, so a is divisible by b.
$\mathrm{a}=$ dividend
$\mathrm{b}=$ divisor
$\mathrm{q}=$ quotient
$\mathrm{r}=$ remainder

Definition 86. common divisor

Let $a, b \in \mathbb{Z}$.
Then $d \in \mathbb{Z}$ is a common divisor of a and b iff $d \mid a$ and $d \mid b$.

$$
\begin{aligned}
\text { positive divisors of } a & =\left\{d \in \mathbb{Z}^{+}: d \mid a\right\} \\
\text { positive divisors of } b & =\left\{d \in \mathbb{Z}^{+}: d \mid b\right\} \\
\text { common positive divisors of a and } \mathrm{b} & =\left\{d \in \mathbb{Z}^{+}: d|a \wedge d| b\right\}
\end{aligned}
$$

1 is a common positive divisor for any $a, b \in \mathbb{Z}$.

A positive common divisor d is bounded: $1 \leq d \leq \min (a, b)$.
Definition 87. linear combination
Let $a, b \in \mathbb{Z}$.
Then $c \in \mathbb{Z}$ is a linear combination of a and b iff $(\exists m, n \in \mathbb{Z})(c=$ $m a+n b)$.
Theorem 88. Any common divisor of a and b divides any linear combination of a and b.

Let $a, b, d \in \mathbb{Z}$.
If $d \mid a$ and $d \mid b$, then $d \mid(m a+n b)$ for all integers m and n.
Corollary 89. Let $a, b, d \in \mathbb{Z}$.
If $d \mid a$ and $d \mid b$, then $d \mid(a+b)$ and $d \mid(a-b)$.
Corollary 90. Any common divisor of a finite number of integers divides any linear combination of those integers.

Let $a_{1}, a_{2}, \ldots, a_{n}, d \in \mathbb{Z}$.
If $d\left|a_{1}, d\right| a_{2}, \ldots, d \mid a_{n}$, then $d \mid\left(c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{n} a_{n}\right)$ for any integers $c_{1}, c_{2}, \ldots, c_{n}$.

Definition 91. greatest common divisor

The greatest common divisor is the largest positive common divisor of two integers not both zero.

Let $a, b \in \mathbb{Z}^{*}$.
Let $d \in \mathbb{Z}^{+}$.
Then d is a gcd of a and b iff

1. $d \mid a$ and $d \mid b$. (d is a common divisor)
2. For every $c \in \mathbb{Z}$, if $c \mid a$ and $c \mid b$, then $c \mid d$. (Any common divisor of a and b divides $\operatorname{gcd}(a, b)$.)

The greatest common divisor of a and b is denoted $\operatorname{gcd}(a, b)$ or (a, b).
The $\operatorname{gcd}(0,0)$ is undefined.
The greatest common divisor is a positive integer.
Theorem 92. existence and uniqueness of greatest common divisor
Let $a, b \in \mathbb{Z}^{*}$.
Then $\operatorname{gcd}(a, b)$ exists and is unique.
Moreover, $\operatorname{gcd}(a, b)$ is the least positive linear combination of a and b.
Let $a, b \in \mathbb{Z}^{*}$.
Then $\operatorname{gcd}(a, b)$ is the least positive linear combination of a and b.
Let $S=\{m a+n b: m a+n b>0, m, n \in \mathbb{Z}\}$.
Then $\operatorname{gcd}(a, b)$ is the least element of S and there exist integers m and n such that $\operatorname{gcd}(a, b)=m a+n b$.
Proposition 93. Properties of gcd
Let $a, b \in \mathbb{Z}^{+}$.
Then

1. $\operatorname{gcd}(a, 0)=a$.
2. $\operatorname{gcd}(a, 1)=1$.
3. $\operatorname{gcd}(a, a)=a$.
4. $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
5. $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b)$.
6. $\operatorname{gcd}(k a, k b)=k \operatorname{gcd}(a, b)$ for all $k \in \mathbb{Z}^{+}$.

Theorem 94. Let $a, b \in \mathbb{Z}^{*}$.
Let $c \in \mathbb{Z}$.
Then c is a linear combination of a and b iff c is a multiple of $\operatorname{gcd}(a, b)$.
Therefore every linear combination of a and b is a multiple of $\operatorname{gcd}(a, b)$ and every multiple of $\operatorname{gcd}(a, b)$ is a linear combination of a and b.
Corollary 95. Let $a, b \in \mathbb{Z}^{*}$.
Then $\operatorname{gcd}(a, b)=1$ iff there exist $m, n \in \mathbb{Z}$ such that $m a+n b=1$.
Corollary 96. Let $a, b \in \mathbb{Z}^{*}$ and $d \in \mathbb{Z}^{+}$.
If $\operatorname{gcd}(a, b)=d$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
Definition 97. relatively prime integers
Two integers are relatively prime iff their only common positive divisor is 1 .
Let $a, b \in \mathbb{Z}$.
Then a and b are relatively prime iff $\operatorname{gcd}(a, b)=1$.
Let $a, b \in \mathbb{Z}$.
Then a and b are relatively prime iff $\operatorname{gcd}(a, b)=1$.
Hence, if a and b are relatively prime, then $\operatorname{gcd}(a, b)=1$, so 1 is their only common positive divisor.

Therefore, there is no integer greater than one that divides them both.
Therefore relatively prime numbers have no common positive divisor other than 1.

Let $a, b \in \mathbb{Z}^{*}$.
Then a and b are relatively prime iff $\operatorname{gcd}(a, b)=1$ iff there exist $m, n \in \mathbb{Z}$ such that $m a+n b=1$.

Theorem 98. Let $a, b, d \in \mathbb{Z}$.
If $d \mid a b$ and $(d, a)=1$, then $d \mid b$.
Proposition 99. Let $a, b, m \in \mathbb{Z}$.
If $a \mid m$ and $b \mid m$ and $\operatorname{gcd}(a, b)=1$, then $a b \mid m$.
Therefore, if m is a common multiple of a and b and a and b are relatively prime, then m is a multiple of $a b$.

Euclidean Algorithm

The Euclidean algorithm specifies how to compute $\operatorname{gcd}(a, b)$ for integers a and b.

Lemma 100. Let $a, b \in \mathbb{Z}$ and $b>0$.
If a is divided by b with remainder r, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Theorem 101. Euclidean Algorithm
Let $a, b \in \mathbb{Z}$ and $b>0$.
Let n be the number of iterative steps and

$$
\begin{aligned}
a & =b q_{1}+r_{1}, \text { where } 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, \text { where } 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, \text { where } 0<r_{3}<r_{2} \\
\ldots & \\
r_{k-2} & =r_{k-1} q_{k}+r_{k}, \text { where } 0<r_{k}<r_{k-1} \\
\cdots & \\
r_{n-3} & =r_{n-2} q_{n-1}+r_{n-1}, \text { where } 0<r_{n-1}<r_{n-2} \\
r_{n-2} & =r_{n-1} q_{n}+0 .
\end{aligned}
$$

Then $\operatorname{gcd}(a, b)=r_{n-1}$.
Let $a, b \in \mathbb{Z}^{*}$.
To compute $\operatorname{gcd}(a, b)$, we apply the division algorithm repeatedly by dividing the previous divisor by the previous remainder.

First, we divide a by b and obtain $a=b q+r$ with $0 \leq r<b$.
Each time we divide, the positive remainder gets smaller until it becomes 0 .
The last nonzero remainder in this division process will equal $\operatorname{gcd}(a, b)$.
Observe that $b>r_{1}>r_{2}>r_{3}>\ldots>r_{k}>r_{n-1}>0$, so the algorithm terminates in n steps.

Least common multiple

Definition 102. Let $a, b \in \mathbb{Z}$.
An integer m is a common multiple of a and b iff $a \mid m$ and $b \mid m$.

Definition 103. least common multiple

The least common multiple is the smallest positive common multiple of two nonzero integers.

Let $a, b \in \mathbb{Z}^{*}$.
Let $m \in \mathbb{Z}^{+}$.
Then m is a least common multiple of a and b iff

1. $a \mid m$ and $b \mid m$. (m is a common multiple)
2. For every $c \in \mathbb{Z}$, if $a \mid c$ and $b \mid c$, then $m \mid c$. (Any multiple of a and b is a multiple of $\operatorname{lcm}(a, b))$.

Theorem 104. existence and uniqueness of least common multiple
Let $a, b \in \mathbb{Z}^{+}$.
The least common multiple of a and b exists and is unique.
Moreover, $\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a b$.
Let $a, b \in \mathbb{Z}^{+}$.
We denote the least common multiple of a and b by $\operatorname{lcm}(a, b)$ or $[a, b]$.
Corollary 105. Let $a, b \in \mathbb{Z}^{+}$.
Then $\operatorname{lcm}(a, b)=a b$ iff $\operatorname{gcd}(a, b)=1$.
Proposition 106. Properties of lcm
Let $a, b \in \mathbb{Z}^{+}$.
Then

1. $\operatorname{lcm}(a, 0)=0$.
2. $\operatorname{lcm}(a, 1)=a$.
3. $\operatorname{lcm}(a, a)=a$.
4. $\operatorname{lcm}(a, b)=\operatorname{lcm}(b, a)$.
5. $l c m(k a, k b)=k \cdot \operatorname{lcm}(a, b)$ for all $k \in \mathbb{Z}^{+}$.
6. $\operatorname{gcd}(a, b) \mid \operatorname{lcm}(a, b)$.
7. $\operatorname{gcd}(a, b)=l c m(a, b)$ iff $a=b$.
8. $a \mid b$ iff $\operatorname{gcd}(a, b)=a$ iff $\operatorname{lcm}(a, b)=b$.

Prime Numbers and Fundamental Theorem of Arithmetic

Definition 107. prime number
A positive integer p other than 1 is prime iff the only positive divisors of p are 1 and p.

Therefore, a positive integer p other than 1 is not prime iff there is some positive divisor of p other than 1 or p.

Let $p \in \mathbb{Z}^{+}$.
Then $1 \mid p$ and $p \mid p$.
Suppose p is prime.
Then $p \neq 1$ and the only positive divisors of p are 1 and p.
Since $p \in \mathbb{Z}^{+}$and $p \neq 1$, then $p>1$.
Since the only positive divisors of p are 1 and p, then the set of common positive divisors of p is $\{1, p\}$.

The set of prime numbers is $\left\{n \in \mathbb{Z}^{+}: n\right.$ is prime $\}=\{2,3,5,7,11,13,17,19,23, \ldots\}$
Definition 108. composite number
A positive integer other than 1 is composite iff it is not prime.
The number 1 is neither prime nor composite.
The set of composite numbers is $\left\{n \in \mathbb{Z}^{+}: n\right.$ is composite $\}=\{4,6,8,9,10,12,14,15,16,18,20, \ldots\}$.

Let $n \in \mathbb{Z}^{+}$.
Then n is composite iff n is neither 1 nor prime.

A positive integer n is exactly one of the following:

1. $n=1$.
2. n is prime.
3. n is composite.

Lemma 109. A composite number has a positive divisor other than 1 or itself.

Let $n \in \mathbb{Z}^{+}$.
Then n is composite iff there exists $d \in \mathbb{Z}^{+}$with $1<d<n$ such that $d \mid n$.
Proposition 110. A composite number is composed of smaller positive factors.

Let $n \in \mathbb{Z}^{+}$.
Then n is composite iff there exist $a, b \in \mathbb{Z}^{+}$with $1<a<n$ and $1<b<n$ such that $n=a b$.

Proposition 111. Every integer greater than 1 has a prime factor.
Theorem 112. Euclid's Theorem
There are infinitely many prime numbers.
Lemma 113. Let $p, n \in \mathbb{Z}^{+}$.
If p is prime, then either $p \mid n$ or $\operatorname{gcd}(p, n)=1$.
Therefore, if p is prime and $p \nmid n$, then $\operatorname{gcd}(p, n)=1$.
In particular, if n is a distinct prime, then $\operatorname{gcd}(p, n)=1$.
Therefore, any distinct primes are relatively prime.

Lemma 114. Euclid's Lemma
Let $p, a, b \in \mathbb{Z}^{+}$.
If p is prime and $p \mid a b$, then either $p \mid a$ or $p \mid b$.
Corollary 115. Let $p, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}^{+}$.
If p is prime and $p \mid a_{1} a_{2} \ldots a_{n}$, then $p \mid a_{k}$ for some integer k with $1 \leq k \leq n$.
Corollary 116. Let $p, q_{1}, q_{2}, \ldots, q_{n} \in \mathbb{Z}^{+}$.
If $p, q_{1}, q_{2}, \ldots, q_{n}$ are all prime and $p \mid q_{1} q_{2} \ldots q_{n}$, then $p=q_{k}$ for some integer k with $1 \leq k \leq n$.

Theorem 117. Fundamental Theorem of Arithmetic(Existence)
Every integer greater than one can be represented as a product of one or more primes.

Theorem 118. Fundamental Theorem of Arithmetic(Unique Factorization)

The representation of any integer greater than one as a product of primes is unique up to the order of the factors.

Example 119. Observe that $360=2 \cdot 3 \cdot 5 \cdot 2 \cdot 2 \cdot 3=3 \cdot 2 \cdot 5 \cdot 2 \cdot 3 \cdot 2=5 \cdot 2 \cdot 3 \cdot 3 \cdot 2 \cdot 2$.
While they differ only in the order of the factors, they are the same prime factorization of 360 .

Corollary 120. Every integer greater than one has a unique canonical prime factorization

Every integer $n>1$ can be written uniquely in a canonical form $n=$ $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, where for each $i=1,2, \ldots, k$, each exponent e_{i} is a positive integer and each p_{i} is a prime with $p_{1}<p_{2}<\ldots<p_{k}$.
Example 121. The canonical prime factorization of 360 is $360=2^{3} \cdot 3^{2} \cdot 5$.
Prime numbers are used to build, by multiplication, the entire set of positive integers \mathbb{Z}^{+}.

Therefore, prime numbers are the building blocks from which all other integers are composed.

Linear Diophantine Equations

Definition 122. Diophantine equation

A Diophantine equation is an equation in one or more unknowns whose solution is in the set of integers.

Definition 123. Linear Diophantine equation

Let $a, b, c \in \mathbb{Z}$ and a, b not both zero.
A linear Diophantine equation in two unknowns is a Diophantine equation $a x+b y=c$.

The solution set of a linear Diophantine equation is the set $\{(x, y) \in \mathbb{Z} \times \mathbb{Z}$: $a x+b y=c\}$.

Theorem 124. Existence of a solution to linear Diophantine equation
Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$.
A solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ to the linear diophantine equation $a x+b y=c$ exists if and only if $\operatorname{gcd}(a, b) \mid c$.

Corollary 125. Characterization of solution to linear Diophantine equation

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$.
If $\left(x_{0}, y_{0}\right) \in \mathbb{Z} \times \mathbb{Z}$ is a particular solution to the linear Diophantine equation $a x+b y=c$, then a general solution is given by $x=x_{0}+\left(\frac{b}{d}\right) t$ and $y=y_{0}-\left(\frac{a}{d}\right) t$ for $t \in \mathbb{Z}$, where $d=\operatorname{gcd}(a, b)$.

Let $a, b, c \in \mathbb{Z}$ and $a \neq 0$ and $b \neq 0$.
A solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ to the linear diophantine equation $a x+b y=c$ exists if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$.

Moreover, if $\left(x_{0}, y_{0}\right)$ is a solution, then the solution set is $\left\{\left(x_{0}+\left(\frac{b}{d}\right) t, y_{0}-\right.\right.$ $\left.\left.\left(\frac{a}{d}\right) t\right) \in \mathbb{Z} \times \mathbb{Z}: t \in \mathbb{Z}\right\}$.

If $\operatorname{gcd}(a, b)=1$, then $x=x_{0}+\left(\frac{b}{1}\right) t=x_{0}+b t$ and $y=y_{0}-\left(\frac{a}{1}\right) t=y_{0}-a t$.

Congruences

Definition 126. congruence modulo relation over \mathbb{Z}

Let $n \in \mathbb{Z}^{+}$.
Let $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: n \mid(a-b)\}$.
Since $R \subset \mathbb{Z} \times \mathbb{Z}$, then R is a relation on \mathbb{Z}.
The relation R is called congruence modulo n over \mathbb{Z}.
Define the relation 'is congruent to modulo n ' over \mathbb{Z} for all $a, b \in \mathbb{Z}$ by $a \equiv b$ $(\bmod n)$ iff $n \mid(a-b)$.

The statement ' a is congruent to $b \operatorname{modulo} n$ ', denoted $a \equiv b(\bmod n)$, means $n \mid(a-b)$.

Therefore $a \equiv b(\bmod n)$ iff $n \mid(a-b)$.
The positive integer n in the definition $a \equiv b(\bmod n)$ is called the modulus.
The statement ' a is not congruent to b modulo n ', denoted $a \not \equiv b$ $(\bmod n)$, means $n \chi(a-b)$.

Therefore $a \not \equiv b(\bmod n)$ iff $n \nmid(a-b)$.
Theorem 127. Let $n \in \mathbb{Z}^{+}$.
Let $a, b \in \mathbb{Z}$.
Then $a \equiv b(\bmod n)$ if and only if a and b leave the same remainder when divided by n.

Theorem 128. The congruence modulo relation is an equivalence relation over \mathbb{Z}.

Let $n \in \mathbb{Z}^{+}$.
Let $a, b, c \in \mathbb{Z}$.

1. reflexive $a \equiv a(\bmod n)$.
2. symmetric $a \equiv b(\bmod n) \Rightarrow b \equiv a(\bmod n)$.
3. transitive $a \equiv b(\bmod n) \wedge b \equiv c(\bmod n) \Rightarrow a \equiv c(\bmod n)$.

Theorem 129. Let $n \in \mathbb{Z}^{+}$.
Let $a, b, c, d \in \mathbb{Z}$.
If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

1. $a+c \equiv b+d(\bmod n)($ addition $)$
2. $a-c \equiv b-d(\bmod n)($ subtraction $)$
3. $a c \equiv b d(\bmod n)$. (multiplication)

Theorem 130. Let $n \in \mathbb{Z}^{+}$.
Let $a, b \in \mathbb{Z}$.

1. If $a \equiv b(\bmod n)$, then $a+c \equiv b+c(\bmod n)$ for all $c \in \mathbb{Z}$. (addition preserves congruence)
2. If $a \equiv b(\bmod n)$, then $a c \equiv b c(\bmod n)$ for all $c \in \mathbb{Z}$. (multiplication preserves congruence)
3. If $a \equiv b(\bmod n)$, then $a^{k} \equiv b^{k}(\bmod n)$ for all $k \in \mathbb{Z}^{+}$. (exponentiation preserves congruence)

Theorem 131. Let $n \in \mathbb{Z}^{+}$.
Let $a, b, c \in \mathbb{Z}$.

1. If $a+c \equiv b+c(\bmod n)$, then $a \equiv b(\bmod n)$. (cancellation addition)
2. If $a c \equiv b c(\bmod n)$ and $d=\operatorname{gcd}(n, c)$, then $a \equiv b\left(\bmod \frac{n}{d}\right)$. (cancellation multiplication)

Corollary 132. Let $n \in \mathbb{Z}^{+}$.
Let $a, b, c \in \mathbb{Z}$.
If $a c \equiv b c(\bmod n)$ and $\operatorname{gcd}(n, c)=1$, then $a \equiv b(\bmod n) . \quad($ cancellation multiplication relatively prime)

Corollary 133. Let $p \in \mathbb{Z}^{+}$.
Let $a, b, c \in \mathbb{Z}$.
If $a c \equiv b c(\bmod p)$ and p is prime and $p \nless c$, then $a \equiv b(\bmod p) .($ cancellation multiplication prime modulus)

Proposition 134. Let $n \in \mathbb{Z}^{+}$.
Let $a, b, c \in \mathbb{Z}$.
If $c \neq 0$, then $a c \equiv b c(\bmod n c)$ iff $a \equiv b(\bmod n)$.

Definition 135. Inverse modulo

Let $n \in \mathbb{Z}^{+}$be the modulus.
Let $a \in \mathbb{Z}^{+}$.
Then a is invertible modulo n iff $(\exists b \in \mathbb{Z})(a b \equiv 1(\bmod n))$.
Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
Then a is invertible modulo n iff there exists $b \in \mathbb{Z}$ such that $a b \equiv 1(\bmod n)$ and we say that b is a (multiplicative) inverse of a.

Proposition 136. Let $n \in \mathbb{Z}^{+}$.
Let $a \in \mathbb{Z}^{+}$.
Then a is invertible modulo n iff $\operatorname{gcd}(a, n)=1$.
Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$.
The multiplicative inverse of a modulo n exists if and only if $\operatorname{gcd}(a, n)=1$.
The inverse of a is unique modulo n.

Linear Congruences

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
Let $S=\{x \in \mathbb{Z}: a x \equiv b(\bmod n)\}$.
Then S is the solution set to the linear congruence $a x \equiv b(\bmod n)$.
Proposition 137. Let $a, b, x, x_{0} \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
If x_{0} is a solution to $a x \equiv b(\bmod n)$, then so is $x_{0}+n k$ for any integer k.
Definition 138. A solution x of a congruence is unique modulo n iff any solution x^{\prime} is congruent to x modulo n.

Theorem 139. Existence of solution to linear congruence
Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
A solution exists to the linear congruence $a x \equiv b(\bmod n)$ if and only if $d \mid b$, where $d=\operatorname{gcd}(a, n)$.

Moreover, if a solution exists, then there are d distinct solutions modulo n and these solutions are congruent modulo $\frac{n}{d}$.

Corollary 140. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
There exists an integer b such that $a b \equiv 1(\bmod n)$ if and only if $\operatorname{gcd}(a, n)=$ 1.

Moreover, b is the inverse of a and the inverse of a is unique modulo n.

Integers Modulo n

Definition 141. Congruence class

Let $n \in \mathbb{Z}^{+}$.
Let $a \in \mathbb{Z}$.
The congruence class containing a, denoted $[a]$, is the set of all integers congruent to a modulo n.

Therefore $[a]=\{x \in \mathbb{Z}: x \equiv a(\bmod n)\}$.

$$
\begin{aligned}
{[a] } & =\{x \in \mathbb{Z}: n \mid(x-a)\} \\
& =\{x \in \mathbb{Z}:(\exists k \in \mathbb{Z})(x-a=n k)\} \\
& =\{a+n k: k \in \mathbb{Z}\} \\
& =a+n \mathbb{Z} \\
& =n \mathbb{Z}+a
\end{aligned}
$$

Since congruence modulo is an equivalence relation, then $[a]=[b]$ iff $a \equiv b$ $(\bmod n)$.

Therefore, $[a]=[b]$ iff $a \equiv b(\bmod n)$ iff a and b leave the same remainder when divided by n.

Since the remainders upon dividing by n are $0,1, \ldots, n-1$, then every integer must be congruent to exactly one of the remainders: $0,1, . ., \mathrm{n}-1$.

Definition 142. Integers Modulo n

Let $n \in \mathbb{Z}^{+}$.
The collection of all congruence classes modulo n is the set of integers modulo n, denoted $\frac{\mathbb{Z}}{n \mathbb{Z}}$ or \mathbb{Z}_{n}.

Therefore, $\mathbb{Z}_{n}=\frac{\mathbb{Z}}{n \mathbb{Z}}=\left\{[a]_{n}: a \in \mathbb{Z}\right\}=\{[0],[1],[2], \ldots,[n-1]\}$.
The set $\frac{\mathbb{Z}}{n \mathbb{Z}}$ is a partition of \mathbb{Z} under the congruence modulo relation.
The number of congruence classes is $\left|\mathbb{Z}_{n}\right|=\left|\frac{\mathbb{Z}}{n \mathbb{Z}}\right|=n$.
Let $[a] \in \frac{\mathbb{Z}}{n \mathbb{Z}}$.
Then $[a]=n \mathbb{Z}+a=\{n k+a: k \in \mathbb{Z}\}$ and $a \in\{0,1, \ldots, n-1\}$.
Let $x \in[a]$.
Then $x=n k+a$ for some $k \in \mathbb{Z}$.
By the Division algorithm, k and a are unique integers such that $0 \leq a<n$.
Thus, a is the remainder when x is divided by n.
Hence, if $x \in[a]$, then a is the remainder when x is divided by n.

Conversely, suppose a is the remainder when x is divided by n.
Then by the Division algorithm $x=n q+a, 0 \leq a<n$ for unique $q, a \in \mathbb{Z}$.
Since $q \in \mathbb{Z}$ and $x=n q+a$, then $x \in[a]$.
Hence, if a is the remainder when x is divided by n, then $x \in[a]$.
Therefore, $x \in[a]$ iff a is the remainder when x is divided by n.
Each integer is contained in exactly one of the congruence classes.
$\operatorname{In} \frac{\mathbb{Z}}{n \mathbb{Z}}$:
additive identity is [0].
additive inverse of $[a]$ is $-[a]=[n-a]$.
multiplicative identity is [1].
$[n]=[0]$.
$\left(\frac{\mathbb{Z}}{n \mathbb{Z}},+\right)$ is an abelian group.
$\left(\frac{\mathbb{Z}}{n \mathbb{Z}},+, \cdot\right)$ is a commutative ring with unity $[1]$.
Lemma 143. addition modulo n is well-defined
Let $[a],[b] \in \mathbb{Z}_{n}$.
Let $x, x^{\prime} \in[a]_{n}$ and $y, y^{\prime} \in[b]_{n}$.
Then $[x+y]=\left[x^{\prime}+y^{\prime}\right]$.
Proposition 144. Addition modulo n is a binary operation.
Let $+_{n}: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be a binary relation defined by $[a]+[b]=[a+b]$ for all $[a],[b] \in \mathbb{Z}_{n}$.

Then $+_{n}$ is a binary operation on \mathbb{Z}_{n}.

Definition 145. Addition modulo n

Let $+_{n}: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be a binary relation defined by $[a]+[b]=[a+b]$ for all $[a],[b] \in \mathbb{Z}_{n}$.

Then $+_{n}$ is a binary operation on \mathbb{Z}_{n} called addition modulo n.
Let $a, b \in \mathbb{Z}$ such that $[a]+[b]=[a+b]$.
Since $a, b \in \mathbb{Z}$, then $a+b \in \mathbb{Z}$.
Since \equiv is an equivalence relation on \mathbb{Z}, then $a+b \in[a+b]$.
Let $c=a+b$.
We know $a+b \in[c]$ iff c is the remainder when $a+b$ is divided by n.
Therefore, $[a]+[b]=[c]$ means c is the remainder when $a+b$ is divided by n.

Theorem 146. algebraic properties of addition modulo n

1. $[a]+([b]+[c])=([a]+[b])+[c]$ for all $[a],[b],[c] \in \mathbb{Z}_{n}$. (associative)
2. $[a]+[b]=[b]+[a]$ for all $[a],[b] \in \mathbb{Z}_{n}$.(commutative)
3. $[a]+[0]=[0]+[a]=[a]$ for all $[a] \in \mathbb{Z}_{n}$. (additive identity)
4. $[a]+[-a]=[-a]+[a]=[0]$ for all $[a] \in \mathbb{Z}_{n}$. (additive inverses)

Definition 147. Additive order of $[a] \operatorname{modulo} n$
Let $n \in \mathbb{Z}^{+}$.
Let $[a] \in \mathbb{Z}_{n}$.
The smallest positive integer k such that $k[a]=[0](\bmod n)$ is called the additive order of $[a]$.

Let $n \in \mathbb{Z}^{+}$.
Let $[a] \in \mathbb{Z}_{n}$.
Since $k[a]=[a]+[a]+\ldots+[a]=[a+a+\ldots+a]=[k a]=[0](\bmod n)$ iff $k a \equiv 0(\bmod n)$, then the smallest positive integer k such that $k a \equiv 0(\bmod n)$ is the additive order of $[a]$.

Proposition 148. Multiplication modulo n is a binary operation.
Let $*_{n}: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be a binary relation defined by $[a][b]=[a b]$ for all $[a],[b] \in \mathbb{Z}_{n}$.

Then $*_{n}$ is a binary operation on \mathbb{Z}_{n}.

Definition 149. Multiplication modulo n
Let $*_{n}: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ be a binary relation defined by $[a][b]=[a b]$ for all $[a],[b] \in \mathbb{Z}_{n}$.

Then $*_{n}$ is a binary operation on \mathbb{Z}_{n} called multiplication modulo n.
Let $a, b \in \mathbb{Z}$ such that $[a][b]=[a b]$.
Since $a, b \in \mathbb{Z}$, then $a b \in \mathbb{Z}$.
Since \equiv is an equivalence relation on \mathbb{Z}, then $a b \in[a b]$.
Let $a b=c$.
We know $a b \in[c]$ iff c is the remainder when $a b$ is divided by n.
Therefore, $[a][b]=[c]$ means c is the remainder when $a b$ is divided by n.
Theorem 150. algebraic properties of multiplication modulo n

1. $[a]([b][c])=([a][b])[c]$ for all $[a],[b],[c] \in \mathbb{Z}_{n}$. (associative)
2. $[a][b]=[b][a]$ for all $[a],[b] \in \mathbb{Z}_{n}$. (commutative)
3. $[a][1]=[1][a]=[a]$ for all $[a] \in \mathbb{Z}_{n}$. (multiplicative identity)
4. $[a][0]=[0][a]=[0]$ for all $[a] \in \mathbb{Z}_{n}$.
5. $[a]([b]+[c])=[a][b]+[a][c]$ for all $[a],[b],[c] \in \mathbb{Z}_{n}$. (left distributive)
6. $([a]+[b])[c]=[a][c]+[b][c]$ for all $[a],[b],[c] \in \mathbb{Z}_{n}$. (right distributive)

Definition 151. Multiplicative inverse of $[a]$ modulo n
Let $n \in \mathbb{Z}^{+}$.
Let $[a] \in \mathbb{Z}_{n}$.
Then $[a]$ has a multiplicative inverse modulo n iff there exists $[b] \in \mathbb{Z}_{n}$ such that $[a][b]=[1]$.

We say that $[b]$ is a multiplicative inverse of $[a]$, so $[a]$ and $[b]$ are invertible elements, or units of \mathbb{Z}_{n}.

Inverse of $[a]$ is denoted $[a]^{-1}$.
Theorem 152. Existence of multiplicative inverse of $[a]$ modulo n
Let $n \in \mathbb{Z}^{+}$.
Let $[a] \in \mathbb{Z}_{n}$.
Then $[a]$ has a multiplicative inverse in \mathbb{Z}_{n} iff $\operatorname{gcd}(a, n)=1$.
Corollary 153. The inverse of $[0]$ in \mathbb{Z}_{1} is [0].
Let $n \in \mathbb{Z}^{+}$.
If $n>1$, then [0] has no multiplicative inverse.

Definition 154. Divisor of zero modulo n

Let $[a] \in \mathbb{Z}_{n}$.
Then $[a]$ is a divisor of zero modulo n iff there exists nonzero $[b] \in \mathbb{Z}_{n}$ such that $[a][b]=[0]$.

If $n>1$, then $[0]$ is a divisor of $[0]$ because $[0][n-1]=[0(n-1)]=[0]$ and $[n-1] \neq[0] \in \mathbb{Z}_{n}$.
Theorem 155. Let $n \in \mathbb{Z}^{+}$.
A nonzero element of \mathbb{Z}_{n} either has a multiplicative inverse or is a divisor of zero.

Definition 156. Euler totient function
Let $n \in \mathbb{Z}^{+}$.
The number of positive integers less than or equal to n which are relatively prime to n is denoted by $\phi(n)$.

This function is called Euler's phi function, or totient function.
Example values for ϕ are below.

$$
\begin{aligned}
\phi(1) & =1 \\
\phi(2) & =1 \\
\phi(3) & =2 \\
\phi(4) & =2 \\
\phi(5) & =4 \\
\phi(6) & =2 \\
\phi(7) & =6 \\
\phi(8) & =4 .
\end{aligned}
$$

If the prime factorization of n is $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$, then $\phi(n)=n\left(1-\frac{1}{p_{1}}\right)(1-$ $\left.\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)$.

Need to prove this!
Proposition 157. If p is prime, then $\phi(p)=p-1$.
Definition 158. Nilpotent element
Let $n \in \mathbb{N}$.
Let $[a] \in \mathbb{Z}_{n}$.
Then $[a]$ is nilpotent iff $(\exists k \in \mathbb{Z})\left([a]^{k}=[0]\right)$.
Definition 159. Multiplicative order of $[a]$ modulo n
Let $n \in \mathbb{Z}^{+}$.
Let $[a] \in \mathbb{Z}_{n}^{*}$.
The smallest positive integer k such that $[a]^{k}=[1](\bmod n)$ is called the multiplicative order of $[a]$.

Let $n \in \mathbb{Z}^{+}$.
Let $[a] \in \mathbb{Z}_{n}^{*}$.
Since $[a]^{k}=[a] \cdot[a] \cdot \ldots \cdot[a]=[a \cdot a \cdot \ldots \cdot a]=\left[a^{k}\right]=[1](\bmod n)$ iff $a^{k} \equiv 1$ $(\bmod n)$, then the smallest positive integer k such that $a^{k} \equiv 1(\bmod n)$ is the multiplicative order of $[a]$.

Fermat's Theorem

Theorem 160. Fermat's Little Theorem
Let $p, a \in \mathbb{Z}^{+}$.
If p is prime and $p \nmid a$, then $p \mid a^{p-1}-1$.

Let $p, a \in \mathbb{Z}^{+}$.
If p is prime and $p \nmid a$, then $p \mid a^{p-1}-1$.
Hence, if p is prime and $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.
Therefore, if p is prime and $p \nmid a$, then $a^{p} \equiv a(\bmod p)$.
Theorem 161. Euler's Theorem
Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$.
If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$.

Corollary 162. Fermat's Little Theorem

Let $a \in \mathbb{Z}$.
If p is prime, then $a^{p} \equiv a(\bmod p)$.

Miscellaneous Stuff

Proposition 163. Every integer is congruent modulo n to exactly one of the integers $0,1,2, \ldots, n-1$.

Definition 164. least positive residues modulo n
Let $n \in \mathbb{Z}^{+}$.
The set of n integers $\{0,1,2, \ldots, n-1\}$ is called the set of least positive residues modulo n.

Therefore, every integer is congruent modulo n to exactly one of the integers in the set of least positive residues modulo n.

Definition 165. complete set of residues modulo n Let $n \in \mathbb{Z}^{+}$.
A set of integers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a complete set(system) of residues modulo n iff every integer is congruent modulo n to exactly one of the $a_{k} \in S$.

Equivalently, $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a complete system of residues modulo n iff each $a_{k} \in S$ is congruent modulo n to exactly one integer in $\{0,1,2, \ldots, n-1\}$.

Example 166. The set $\{-12,-4,11,13,22,82,91\}$ is a complete set of residues modulo 7.

Proposition 167. Any set of n integers is a complete set of residues modulo n iff no two of the integers are congruent modulo n.

Definition 168. divisors function σ_{0}
Let $\sigma_{0}: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be the function defined such that $\sigma_{0}(n)$ is the number of positive divisors of $n \in \mathbb{Z}^{+}$.

We call σ_{0} the divisor function.

