Number Theory Notes

Jason Sass

July 17, 2023

Sets of Numbers

$$\begin{split} \mathbb{N} &= \{1, 2, 3, ...\} = \text{ set of all natural numbers} \\ \mathbb{Z} &= \{..., -3, -2, -1, 0, 1, 2, 3, ...\} = \text{ set of all integers} \\ \mathbb{Z}^+ &= \{1, 2, 3, ...\} = \{n \in \mathbb{Z} : n > 0\} = \text{ set of all positive integers} \\ \mathbb{Z}^* &= \{..., -3, -2, -1, 1, 2, 3, ...\} = \mathbb{Z} - \{0\} = \text{ set of all nonzero integers} \\ \mathbb{Z}^+ \cup \{0\} = \{0, 1, 2, 3, ...\} = \text{ set of all nonnegative integers} \\ n\mathbb{Z} = \{kn : k \in \mathbb{Z}\} = \text{ set of all multiples of integer } n \end{split}$$

Natural number system

We model the natural numbers as strings of ones.

Definition 1. one

one is a vertical stroke |.

Definition 2. natural number

A natural number is a string of ones.

Example 3. examples of natural numbers

| is 'one' || is 'two' ||| is 'three' |||| is 'four' ||||| is 'five'

Definition 4. equal natural numbers

Let m and n be natural numbers.

Then m = n means all of the ones in m can be paired up with all of the ones in n.

Example 5. Let m be ||||| and let n be |||||.

Then m is five and n is five.

Since all of the ones of m can be paired with all of the ones in n, then m = n. Therefore, five equals five, so 5 = 5.

Definition 6. successor of a natural number

Let n be a natural number.

The successor of n, denoted n', is the natural number n concatenated by one.

Let $n \in \mathbb{N}$. Then $n' \in \mathbb{N}$ is the successor of n and n' is n concatenated by 1.

Example 7. successor operation

s(|) = ||, s(||) = |||, s(|||) = ||||,...

The successor operation takes a natural number and returns the natural number concatenated by |.

The successor operation is a function that takes a natural number and returns the next natural number in the sequence of natural numbers.

Peano Axioms for natural number system

Axiom 8. 1 is a natural number.

Axiom 9. Each natural number has a successor. For every $n \in \mathbb{N}$ there exists $n' \in \mathbb{N}$ called the successor of n.

TOT COCTY IT CIN LIGHT CAUSIS IT CIN CAULOU LINE SUCCESSOR OF

Axiom 10. 1 is not the successor of any natural number.

Axiom 11. Let $m, n \in \mathbb{N}$. Let $m' \in \mathbb{N}$ be the successor of m. Let $n' \in \mathbb{N}$ be the successor of n. If m' = n', then m = n.

Axiom 12. Induction Property of \mathbb{N}

Let $S \subset \mathbb{N}$ be a set such that 1. $1 \in S$. 2. For all $n \in S$, if $n \in S$, then $n' \in S$. Then $S = \mathbb{N}$.

Proposition 13. The successor of a natural number is unique.

Since every natural number has a successor and the successor of a natural number is unique, then every natural number n has a unique successor.

Addition is the successor operation applied repeatedly.

Addition is an operation that takes two numbers and returns a number called the **sum**.

Definition 14. addition is defined in terms of successor

Let $n \in \mathbb{N}$. Let $n' \in \mathbb{N}$ be the successor of n. Define n + 1 = n'. Define n + 2 = (n')'. Define n + 3 = ((n')')'. In general, define n + k = (((n')')...)' to be the k^{th} successor of n for each $k \in \mathbb{N}$.

Let $n \in \mathbb{N}$. Let $n' \in \mathbb{N}$ be the unique successor of n. Then n' = n + 1. Observe that n + 2 = n'' = (n + 1)' = (n + 1) + 1. Observe that n + 3 = n''' = (n + 1)'' = ((n + 1) + 1)' = ((n + 1) + 1) + 1.

Definition 15. addition

Let m and n be natural numbers.

The sum of m and n, denoted m + n, is the concatenation of the ones of n to the ones of m.

Example 16. ||||| + ||| = ||||||||. Therefore, 5 + 3 = 8.

Theorem 17. Laws of addition

Let k, m, n be natural numbers. 1. m + n = n + m. (addition is commutative) 2. (k + m) + n = k + (m + n). (addition is associative) 3. Let s be the successor operation on a natural number n. Then s(n) = n + 1.

Multiplication is repeated addition.

Multiplication is an operation that takes two numbers and returns a number called the **product**.

Definition 18. multiplication

Let m and n be natural numbers.

The **product of** m and n, denoted mn, is the string formed by a copy of n for every | in m.

 $||| \times || = |||$ (three copies of 1)

 $|\times|| = |||$ (1 copy of three)

Theorem 20. Laws of multiplication

Let k, m, n be natural numbers.

1. mn = nm. (multiplication is commutative)

2. (km)n = k(mn). (multiplication is associative)

3. $n \times 1 = n$ (multiplicative identity)

Take two natural numbers and pair the corresponding ones. The natural number which has any left over ones is larger.

Example 21. larger natural number

||||| is five

|||||||| is eight

We pair each one in the first number with the corresponding one in the second natural number.

In this case, there are some ones left over: ||| (three ones left over).

Therefore, eight is larger than five.

Equivalently, five is smaller than eight.

Definition 22. less than

Let m and n be natural numbers.

Then m < n means there are some left over ones in n when the ones in m are paired with the ones in n.

Let $m, n \in \mathbb{N}$.

Then m < n means n is larger than m.

Example 23. Let m = |||||.

Let n = |||||||||.

Then m is five and n is eight.

Since ||| is left over in n when all of the ones in m are paired with the ones of n, then m < n.

Therefore, five is less than eight, so 5 < 8.

Definition 24. relation < over \mathbb{N}

Let $a, b \in \mathbb{N}$.

Define a relation "is less than", denoted <, on \mathbb{N} by a < b iff $(\exists c \in \mathbb{N})(a+c=b)$.

Observe that 1 < 2 < 3 < 4 < ...

The natural numbers are ordered by <.

|, ||, |||, ||||,...

Let $m, n \in \mathbb{N}$.

Then m < n indicates that m comes before n in the sequence of natural numbers.

Definition 25. relation > over \mathbb{N}

Let $m, n \in \mathbb{N}$. Then m is larger than n, denoted m > n, iff n < m.

Definition 26. relation \leq over \mathbb{N}

Let $m, n \in \mathbb{N}$.

Then m is less than or equal to n, denoted $m \leq n$, iff either m < n or m = n.

Definition 27. relation \geq over \mathbb{N}

Let $m, n \in \mathbb{N}$.

Then m is greater than or equal to n, denoted $m \ge n$, iff either m > n or m = n.

Proposition 28. relation < over \mathbb{N} is transitive

Let $a, b, c \in \mathbb{N}$. If a < b and b < c, then a < c.

Construction of \mathbb{Z}

Arithmetic Operations(binary operations): addition, subtraction, multiplication, division

Axiom 29. Closure of \mathbb{Z} under addition and multiplication

 \mathbb{Z} is closed under addition and multiplication.

Let $a, b \in \mathbb{Z}$. Then $a + b \in \mathbb{Z}$ and $ab \in \mathbb{Z}$. The sum a + b is unique. The product $a \cdot b$ is unique.

Theorem 30. Algebraic properties of addition and multiplication in \mathbb{Z}

1. For all $a, b, c \in \mathbb{Z}$, (a + b) + c = a + (b + c). Addition is associative.

2. For all $a, b \in \mathbb{Z}$, a + b = b + a. Addition is commutative.

3. For all $a, b, c \in \mathbb{Z}$, (ab)c = a(bc). Multiplication is associative.

4. For all $a, b \in \mathbb{Z}$, ab = ba. Multiplication is commutative.

5. For all $a, b, c \in \mathbb{Z}$, a(b+c) = ab + ac. Multiplication is distributive over addition.

Proposition 31. *Zero is additive identity in* \mathbb{Z} *For all* $a \in \mathbb{Z}$ *,* a + 0 = a*.*

Proposition 32. One is multiplicative identity in \mathbb{Z} For all $a \in \mathbb{Z}$, $1 \cdot a = a$.

Proposition 33. Additive inverse of a is -a in \mathbb{Z} Let $a \in \mathbb{Z}$. Then there exists $-a \in \mathbb{Z}$ such that a + (-a) = 0.

Definition 34. Subtraction in \mathbb{Z}

Let $a, b \in \mathbb{Z}$. Define a - b = a + (-b). Then a - b is the **difference** between a and b. Let $a, b \in \mathbb{Z}$. Since $b \in \mathbb{Z}$, then $-b \in \mathbb{Z}$, so $a - b = a + (-b) \in \mathbb{Z}$.

Therefore, \mathbb{Z} is closed under subtraction. Since the sum of two integers is unique, then a + (-b) = a - b is unique. Therefore, the difference a - b is unique.

Proposition 35. The only integers whose product is one are one and negative one.

Let $a, b \in \mathbb{Z}$. If ab = 1, then either a = b = 1 or a = b = -1. Proposition 36. Cancellation law for \mathbb{Z}

Let $a, b, c \in \mathbb{Z}$. If $c \neq 0$ and ac = bc, then a = b.

Axiom 37. Axioms for \mathbb{Z}^+

Z⁺ is closed under addition defined on Z.
(∀a, b ∈ Z⁺)(a + b ∈ Z⁺). Sum of positive integers is positive.
Z⁺ is closed under multiplication defined on Z.
(∀a, b ∈ Z⁺)(ab ∈ Z⁺). Product of positive integers is positive.
Trichotomy.
For every a ∈ Z exactly one of the following statements is true:
a ∈ Z⁺
a = 0.
-a ∈ Z⁺.

Trichotomy law implies $0 \notin \mathbb{Z}^+$.

Definition 38. relation < over \mathbb{Z}

Let $a, b \in \mathbb{Z}$.

Define a relation "is less than", denoted <, on \mathbb{Z} by a < b iff b - a is a positive integer.

Definition 39. relation \leq over \mathbb{Z}

Let $a, b \in \mathbb{Z}$.

Then a is less than or equal to b, denoted $a \leq b$, iff either a < b or a = b.

Definition 40. relation > over \mathbb{Z}

Let $a, b \in \mathbb{Z}$.

Then a is larger than b, denoted a > b, iff b < a.

Definition 41. relation \geq over \mathbb{Z}

Let $a, b \in \mathbb{Z}$.

Then a is greater than or equal to b, denoted $a \ge b$, iff either a > b or a = b.

Proposition 42. For all $a, b \in \mathbb{Z}$

1. a > 0 iff $a \in \mathbb{Z}^+$ 2. a < 0 iff $-a \in \mathbb{Z}^+$. 3. a < b iff b - a > 0.

Theorem 43. \mathbb{Z} satisfies transitivity and trichotomy laws

1. a < a is false for all $a \in \mathbb{Z}$. (Therefore, < is not reflexive.) 2. For all $a, b, c \in \mathbb{Z}$, if a < b and b < c, then a < c. (< is transitive) 3. For every $a \in \mathbb{Z}$, exactly one of the following is true (trichotomy): i. a > 0ii. a = 0iii. a < 04. For every $a, b \in \mathbb{Z}$, exactly one of the following is true (trichotomy): i. a > bii. a = biii. a < b

Theorem 44. order is preserved by the ring operations in $\ensuremath{\mathbb{Z}}$

Let $a, b, c \in \mathbb{Z}$.

1. If a < b, then a + c < b + c. (preserves order for addition)

2. If a < b, then a - c < b - c. (preserves order for subtraction)

3. If a < b and c > 0, then ac < bc. (preserves order for multiplication by a positive integer)

4. If a < b and c < 0, then ac > bc. (reverses order for multiplication by a negative integer)

Axiom 45. Well-Ordering Principle of \mathbb{Z}^+

Every nonempty subset of \mathbb{Z}^+ has a least element.

Let S be a nonempty subset of \mathbb{Z}^+ . Then $S \subset \mathbb{Z}^+$ and $S \neq \emptyset$. Hence, by WOP, S has a least element. Therefore, $(\exists m \in S)(\forall s \in S)(m \leq s)$.

Theorem 46. Principle of Mathematical Induction

Let S be a subset of \mathbb{Z}^+ such that

1. $1 \in S$ (basis) 2. for all $k \in \mathbb{Z}^+$, if $k \in S$, then $k + 1 \in S$. (induction hypothesis) Then $S = \mathbb{Z}^+$.

In some sense, the well ordering property of \mathbb{Z}^+ is logically equivalent to the principle of mathematical induction.

Theorem 47. Principle of Mathematical Induction(strong)

Let S be a subset of \mathbb{Z}^+ such that 1. $1 \in S$ (basis) 2. for all $k \in \mathbb{Z}^+$, if $1, 2, ..., k \in S$, then $k + 1 \in S$. (strong induction hypothesis) Then $S = \mathbb{Z}^+$.

Theorem 48. Archimedean Property of \mathbb{Z}^+

Let $a, b \in \mathbb{Z}^+$. Then there exists $n \in \mathbb{Z}^+$ such that $nb \ge a$.

Proposition 49. For all $n \in \mathbb{N}$, $n \geq 1$.

Since $n \ge 1$ for all $n \in \mathbb{N}$, then $1 \le n$ for all $n \in \mathbb{N}$, so 1 is the least positive natural number.

Hence, 1 is the least element of \mathbb{Z}^+ . Therefore, $1 \leq n$ for all $n \in \mathbb{Z}^+$.

Proposition 50. There is no greatest natural number.

Proposition 51. Let $a, b, c, d \in \mathbb{Z}^+$. If a < b and c < d, then ac < bd. **Lemma 52.** Let $a, b \in \mathbb{N}$. If a < b then $b \not\leq a$.

Theorem 53. \leq is a partial order on $\mathbb Z$

- 1. For all $a \in \mathbb{Z}$, $a \leq a$. (Reflexive)
- 2. For all $a, b \in \mathbb{Z}$, if $a \leq b$ and $b \leq a$, then a = b. (Anti-symmetric)
- 3. For all $a, b, c \in \mathbb{Z}$, if $a \leq b$ and $b \leq c$, then $a \leq c$. (Transitive)

Let $a, b \in \mathbb{N}$.

Since \mathbb{N} is a total order, then by defined total order, either $a \leq b$ or $b \leq a$. Thus, either a < b or a = b or b < a or b = a. Hence, either a < b or a = b or a > b. Therefore, \mathbb{N} satisfies the trichotomy law: either a < b or a = b or a > b.

 (\mathbb{Z}^+, \leq) is a total ordering that is well ordered.

Axiom 54. Laws of Exponents

For all $m, n \in \mathbb{N}$ and $a, b \in \mathbb{R}$ 1. $(a^m)^n = a^{mn}$. 2. $(ab)^n = a^n b^n$. 3. $a^m a^n = a^{m+n}$. These laws hold for all $m, n \in \mathbb{Z}$ if a and b are not zero.

Definition 55. consecutive natural numbers

The natural numbers n and n+1 are said to be **consecutive**.

Proposition 56. No natural number exists between two consecutive natural numbers.

Let n be a natural number. There is no $m \in \mathbb{N}$ such that n < m < n + 1.

Elementary Aspects of Integers

Definition 57. even number

 $(\forall n \in \mathbb{Z})$ n is even iff $(\exists k \in \mathbb{Z})(n = 2k)$.

The set of even integers is $2\mathbb{Z} = \{n : n \text{ is even}\} = \{2k : k \in \mathbb{Z}\} = \{\dots, -4, -2, 0, 2, 4, 6, \dots\}.$

The sequence of even natural numbers is $(2n)_{n=1}^{\infty} = (2, 4, 6, 8, ...).$

Let n be an even integer.

Then $n \equiv 0 \pmod{2}$, so *n* leaves remainder 0 when divided by 2. Therefore, 2|n. In base 10 *n* ends in 0,2,4,6, or 8.

Definition 58. odd number

 $(\forall n \in \mathbb{Z})$ n is odd iff $(\exists k \in \mathbb{Z})(n = 2k + 1)$.

The set of odd integers is $2\mathbb{Z} + 1 = \{n : n \text{ is odd}\} = \{2k + 1 : k \in \mathbb{Z}\} = \{\dots, -3, -1, 1, 3, 5, 7, \dots\}.$

The sequence of odd natural numbers is $(2n-1)_{n=1}^{\infty} = (1,3,5,7,...)$.

Let n be an odd integer. Then $n \equiv 1 \pmod{2}$, so n leaves remainder 1 when divided by 2. Therefore, 2 $\not|n$. In base 10 n ends in 1,3,5,7, or 9.

Lemma 59. Every positive integer is either even or odd.

Lemma 60. An integer is not both even and odd.

Proposition 61. A positive integer is either even or odd, but not both.

Let $n \in \mathbb{Z}^+$. Then either n is even or n is odd, but n is not both even and odd.

Definition 62. Parity

An even number has parity 0.

An odd number has parity 1.

Two integers have the **same parity** iff they are both even or they are both odd; otherwise they have **opposite parity**.

Sum: even + even = even even + odd = odd odd + even = odd odd + odd = even Product: even * even = even even * odd = even odd * even = evenodd * odd = odd

Definition 63. consecutive integers

The integers n and n+1 are said to be **consecutive**.

Proposition 64. A product of two consecutive integers is even. If $n \in \mathbb{Z}$, then n(n+1) is even.

Natural Number Formulae

Proposition 65. The sum of the first n natural numbers is $\frac{n(n+1)}{2}$.

Let $k \in \mathbb{N}$. Then $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$. **Proposition 66.** The sum of the first n odd natural numbers is n^2 .

Let $k \in \mathbb{N}$. Then $\sum_{k=1}^{n} (2k-1) = n^2$ for all $n \in \mathbb{N}$.

Proposition 67. The sum of the squares of the first n natural numbers is $\frac{n(n+1)(2n+1)}{6}$.

Let $k \in \mathbb{N}$. Then $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \in \mathbb{N}$.

Proposition 68. The sum of the cubes of the first n natural numbers is $(\frac{n(n+1)}{2})^2$.

Let $k \in \mathbb{N}$. Then $\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2$ for all $n \in \mathbb{N}$.

Definition 69. Square Numbers

arrangement of points in a square (area is n^2) $(\forall n \in \mathbb{Z}) n$ is a **perfect square** iff $(\exists k \in \mathbb{N})(n = k^2)$. Let k = number of dots in the side of a square, $k \ge 1$. Let S_k = number of dots in a square with k side dots $(k^{th}$ square number). $S_k : \mathbb{N} \to \mathbb{N}$ (maps k side dots to the total number of dots in the square) The k^{th} square is formed from the (k - 1) square by adding sides that is 2 * side of (k-1) square + 1 corner dot.

Thus.

$$\begin{split} S_k &= S_{k-1} + 2(k-1) + 1 = S_{k-1} + 2k - 1 \text{ and } S_1 = 1. \\ S_k &= \text{number of side dots }^* \text{ number of side dots } = k^2 \\ \text{Thus,} \\ S_n &= n^{th} \text{ square number} \\ S_n &= S_{n-1} + 2n - 1, n > 1 \text{ and } S_1 = 1. \\ S_n &= n^2 \\ \text{set of square numbers } = \{n^2 : n \in \mathbb{N}\} = \{1, 4, 9, 16, 25, 36, \ldots\} \\ \text{sequence of square numbers } = \{S_n\} = \{n^2\}_{n=1}^{\infty} = \{1, 4, 9, 16, 25, 36, \ldots\} \end{split}$$

Definition 70. Cubic Numbers

arrange *n* unit cubes into a larger solid cube (volume is n^3) $(\forall n \in \mathbb{Z}) n$ is a **perfect cube** iff $(\exists k \in \mathbb{N})(n = k^3)$. set of cubic numbers = $\{n^3 : n \in N\} = \{1, 8, 27, 64, 125, ...\}$ sequence of cubic numbers = $\{n^3\}_{n=1}^{\infty} = \{1, 8, 27, 64, 125, ...\}$

Definition 71. Triangular Numbers

triangular grid of points such that the first row has 1 element and each subsequent row contains one more element than the previous row

Let $k = \text{row in the triangular arrangement of dots}, k \ge 1$

Let T_k = the number of all dots from row 1 to row k (k^{th} triangular number)

 $T_k:\mathbb{N}\to\mathbb{N}$ (maps k^{th} row to its corresponding T_k)

The k^{th} row has k dots.

 k^{th} triangular number = (k-1) triangular number + the number of dots in row k, so

 $\begin{array}{l} T_k = T_{k-1} + k, k > 1 \text{ and } T_1 = 1. \\ T_k = \text{the sum of dots in all preceding rows up to row } k, \text{ so} \\ T_k = 1 + 2 + 3 + \ldots + k = \sum_{i=1}^k i = \frac{k(k+1)}{2} \\ \text{Thus,} \\ T_n = n^{th} \text{ triangular number} \\ T_n = T_{n-1} + n, n > 1 \text{ and } T_1 = 1 \\ T_n = \sum_{k=1}^n k = \frac{n(n+1)}{2} = \binom{n+1}{2} \\ \text{set of triangular numbers} = \left\{ \frac{n(n+1)}{2} : n \in N \right\} = \{1, 3, 6, 10, 15, 21, \ldots \} \\ \text{sequence of triangular numbers} = \left\{ T_n \right\} = \left\{ \frac{n(n+1)}{2} \right\}_{n=1}^{\infty} = \{1, 3, 6, 10, 15, 21, \ldots \} \end{array}$

Definition 72. Perfect Numbers

 $\forall p \in \mathbb{N}, p$ is **perfect** iff p equals the sum of its positive divisors less than itself.

alternate defn: $\forall p \in \mathbb{N}, p$ is perfect iff its positive divisors add up to 2p. set of perfect numbers = $\{p \in \mathbb{N} : p \text{ is perfect}\} = \{6, 28, 496, 8128, ...\}$ It is not known whether there are infinitely many perfect numbers. Every even perfect number ends with a 6 or 8.

It is not known whether there are any odd perfect numbers.

Definition 73. Fibonacci Numbers

 $F_n = n^{th}$ term of the **Fibonacci sequence** $F_n = F_{n-1} + F_{n-2}, n > 2$, and $F_1 = F_2 = 1$ Fibonacci sequence = $\{F_n\}_{n=1}^{\infty} = \{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987...\}$

Pythagorean Triples

Pythagorean triples = $\{(a, b, c) : c^2 = a^2 + b^2, a, b, c \in \mathbb{N}\}$

A Pythagorean triple (a, b, c) is **primitive** iff a, b, c have no common factors greater than 1.

Let s, t be any odd integers where $s > t \ge 1$ and gcd(s, t) = 1. Then (a, b, c) is a primitive Pythagorean triple where odd a = st, even $b = \frac{s^2 - t^2}{2}$, and $c = \frac{s^2 + t^2}{2}$.

Divisibility and greatest common divisor

Definition 74. divides relation over \mathbb{Z}

Define the relation 'divides' over \mathbb{Z} for all $a, b \in \mathbb{Z}$ by $a \mid b$ iff $(\exists n \in \mathbb{Z})(b = an)$.

The statement 'a divides b', denoted a|b, means there exists an integer n such that b = an.

Therefore a|b iff $(\exists n \in \mathbb{Z})(b = an)$.

The statement 'a does not divide b', denoted a / b, means there is no integer n such that b = an.

Therefore $a \not| b$ iff $\neg (\exists n \in \mathbb{Z})(b = an)$. Equivalent meanings for $a \mid b$ are: 1. b is **divisible by** a2. a is a **divisor of** b3. b is a **multiple of** a4. a is a **factor of** b

Proposition 75. Every integer divides zero. $(\forall n \in \mathbb{Z})(n|0)$.

Therefore 0|0 and 1|0.

Proposition 76. The number 1 divides every integer. $(\forall n \in \mathbb{Z})(1|n)$.

-1 also divides every integer.

Proposition 77. Every integer divides itself. $(\forall n \in \mathbb{Z})(n|n)$.

Therefore 1|1.

Proposition 78. Let $a, b, c, d \in \mathbb{Z}$. If a|b and c|d, then ac|bd.

Proposition 79. $(\forall a, b \in \mathbb{Z}^*)(a|b \wedge b|a \rightarrow a = \pm b).$

Theorem 80. divides relation is transitive

For any integers a, b and c, if a|b and b|c, then a|c.

Theorem 81. The divides relation defined on \mathbb{Z}^+ is a partial order.

Therefore, the set of all positive integers is partially ordered under the divides relation, so $(\mathbb{Z}^+, |)$ is a poset.

This means

- 1. reflexive $(\forall a \in \mathbb{Z}^+)(a|a)$.
- 2. antisymmetric $(\forall a, b \in \mathbb{Z}^+)(a|b \wedge b|a \rightarrow a = b)$.
- 3. transitive $(\forall a, b, c \in \mathbb{Z}^+)(a|b \wedge b|c \rightarrow a|c)$.

Proposition 82. Let $a, b \in \mathbb{Z}^+$.

If a|b, then $a \leq b$.

Proposition 83. Let $a, d \in \mathbb{Z}$.

If $d \mid a$, then $d \mid ma$ for all $m \in \mathbb{Z}$.

If d divides a, then d divides any multiple of a.

Proposition 84. Let $a, b, n \in \mathbb{Z}$. 1. If a|b, then na|nb.

2. If $n \neq 0$, then na|nb implies a|b.

Theorem 85. Division Algorithm

Let $a, b \in \mathbb{Z}$ with b > 0. Then there exist unique integers q and r such that a = bq + r, with $0 \le r < b$. This is just long division from arithmetic (division by zero is not defined). We divide a by b.

If r = 0, then b divides a, so a is divisible by b.

a = dividend

b = divisor

q = quotient

 $\mathbf{r} = \mathrm{remainder}$

Definition 86. common divisor

Let $a, b \in \mathbb{Z}$. Then $d \in \mathbb{Z}$ is a **common divisor** of a and b iff d|a and d|b.

positive divisors of $a = \{d \in \mathbb{Z}^+ : d | a\}$ positive divisors of $b = \{d \in \mathbb{Z}^+ : d | b\}$ common positive divisors of a and $b = \{d \in \mathbb{Z}^+ : d | a \land d | b\}$

1 is a common positive divisor for any $a, b \in \mathbb{Z}$.

A positive common divisor d is bounded: $1 \le d \le min(a, b)$.

Definition 87. linear combination

Let $a, b \in \mathbb{Z}$. Then $c \in \mathbb{Z}$ is a linear combination of a and b iff $(\exists m, n \in \mathbb{Z})(c = ma + nb)$.

Theorem 88. Any common divisor of a and b divides any linear combination of a and b.

Let $a, b, d \in \mathbb{Z}$. If d|a and d|b, then d|(ma + nb) for all integers m and n.

Corollary 89. Let $a, b, d \in \mathbb{Z}$.

If d|a and d|b, then d|(a+b) and d|(a-b).

Corollary 90. Any common divisor of a finite number of integers divides any linear combination of those integers.

Let $a_1, a_2, \dots, a_n, d \in \mathbb{Z}$.

If $d|a_1, d|a_2, ..., d|a_n$, then $d|(c_1a_1 + c_2a_2 + ... + c_na_n)$ for any integers $c_1, c_2, ..., c_n$.

Definition 91. greatest common divisor

The greatest common divisor is the largest positive common divisor of two integers not both zero.

Let $a, b \in \mathbb{Z}^*$.

Let $d \in \mathbb{Z}^+$.

Then d is a **gcd of** a **and** b iff

1. d|a and d|b. (d is a common divisor)

2. For every $c \in \mathbb{Z}$, if c|a and c|b, then c|d. (Any common divisor of a and b divides gcd(a, b).)

The greatest common divisor of a and b is denoted gcd(a, b) or (a, b). The gcd(0, 0) is undefined. The greatest common divisor is a positive integer.

Theorem 92. existence and uniqueness of greatest common divisor

Let $a, b \in \mathbb{Z}^*$. Then gcd(a, b) exists and is unique. Moreover, gcd(a, b) is the least positive linear combination of a and b.

Let $a, b \in \mathbb{Z}^*$. Then gcd(a, b) is the least positive linear combination of a and b. Let $S = \{ma + nb : ma + nb > 0, m, n \in \mathbb{Z}\}$. Then gcd(a, b) is the least element of S and there exist integers m and nsuch that gcd(a, b) = ma + nb.

Proposition 93. Properties of gcd

Let $a, b \in \mathbb{Z}^+$. Then 1. gcd(a, 0) = a. 2. gcd(a, 1) = 1. 3. gcd(a, a) = a. 4. gcd(a, b) = gcd(b, a). 5. gcd(a, b) = gcd(-a, b) = gcd(a, -b) = gcd(-a, -b). 6. gcd(ka, kb) = k gcd(a, b) for all $k \in \mathbb{Z}^+$.

Theorem 94. Let $a, b \in \mathbb{Z}^*$.

Let $c \in \mathbb{Z}$.

Then c is a linear combination of a and b iff c is a multiple of gcd(a, b).

Therefore every linear combination of a and b is a multiple of gcd(a, b) and every multiple of gcd(a, b) is a linear combination of a and b.

Corollary 95. Let $a, b \in \mathbb{Z}^*$.

Then gcd(a, b) = 1 iff there exist $m, n \in \mathbb{Z}$ such that ma + nb = 1.

Corollary 96. Let $a, b \in \mathbb{Z}^*$ and $d \in \mathbb{Z}^+$. If gcd(a, b) = d, then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Definition 97. relatively prime integers

Two integers are relatively prime iff their only common positive divisor is 1. Let $a, b \in \mathbb{Z}$.

Then a and b are relatively prime iff gcd(a, b) = 1.

Let $a, b \in \mathbb{Z}$.

Then a and b are relatively prime iff gcd(a, b) = 1.

Hence, if a and b are relatively prime, then gcd(a, b) = 1, so 1 is their only common positive divisor.

Therefore, there is no integer greater than one that divides them both.

Therefore relatively prime numbers have no common positive divisor other than 1.

Let $a, b \in \mathbb{Z}^*$.

Then a and b are relatively prime iff gcd(a, b) = 1 iff there exist $m, n \in \mathbb{Z}$ such that ma + nb = 1.

Theorem 98. Let $a, b, d \in \mathbb{Z}$. If d|ab and (d, a) = 1, then d|b.

Proposition 99. Let $a, b, m \in \mathbb{Z}$. If a|m and b|m and gcd(a, b) = 1, then ab|m.

Therefore, if m is a common multiple of a and b and a and b are relatively prime, then m is a multiple of ab.

Euclidean Algorithm

The Euclidean algorithm specifies how to compute gcd(a, b) for integers a and b.

Lemma 100. Let $a, b \in \mathbb{Z}$ and b > 0.

If a is divided by b with remainder r, then gcd(a, b) = gcd(b, r).

Theorem 101. Euclidean Algorithm

Let $a, b \in \mathbb{Z}$ and b > 0. Let n be the number of iterative steps and

 $\begin{array}{rcl} a & = & bq_1 + r_1, \ where \ 0 < r_1 < b \\ b & = & r_1q_2 + r_2, \ where \ 0 < r_2 < r_1 \\ r_1 & = & r_2q_3 + r_3, \ where \ 0 < r_3 < r_2 \\ & \ddots \\ r_{k-2} & = & r_{k-1}q_k + r_k, \ where \ 0 < r_k < r_{k-1} \\ & \ddots \\ r_{n-3} & = & r_{n-2}q_{n-1} + r_{n-1}, \ where \ 0 < r_{n-1} < r_{n-2} \\ r_{n-2} & = & r_{n-1}q_n + 0. \end{array}$

Then $gcd(a, b) = r_{n-1}$.

Let $a, b \in \mathbb{Z}^*$.

To compute gcd(a, b), we apply the division algorithm repeatedly by dividing the previous divisor by the previous remainder.

First, we divide a by b and obtain a = bq + r with $0 \le r < b$.

Each time we divide, the positive remainder gets smaller until it becomes 0. The last nonzero remainder in this division process will equal gcd(a, b).

Observe that $b > r_1 > r_2 > r_3 > \dots > r_k > r_{n-1} > 0$, so the algorithm terminates in n steps.

Least common multiple

Definition 102. Let $a, b \in \mathbb{Z}$.

An integer m is a **common multiple** of a and b iff a|m and b|m.

Definition 103. least common multiple

The least common multiple is the smallest positive common multiple of two nonzero integers.

Let $a, b \in \mathbb{Z}^*$. Let $m \in \mathbb{Z}^+$. Then m is a **least common multiple of** a **and** b iff 1. a|m and b|m. (m is a common multiple) 2. For every $c \in \mathbb{Z}$, if a|c and b|c, then m|c. (Any multiple of a and b is a

2. For every $c \in \mathbb{Z}$, if a|c and b|c, then m|c. (Any multiple of a and b is a multiple of lcm(a,b)).

Theorem 104. existence and uniqueness of least common multiple

Let $a, b \in \mathbb{Z}^+$. The least common multiple of a and b exists and is unique. Moreover, $lcm(a, b) \cdot gcd(a, b) = ab$.

Let $a, b \in \mathbb{Z}^+$.

We denote the least common multiple of a and b by lcm(a, b) or [a, b].

Corollary 105. Let $a, b \in \mathbb{Z}^+$.

Then lcm(a,b) = ab iff gcd(a,b) = 1.

Proposition 106. Properties of lcm

Let $a, b \in \mathbb{Z}^+$. Then 1. lcm(a, 0) = 0. 2. lcm(a, 1) = a. 3. lcm(a, a) = a. 4. lcm(a, b) = lcm(b, a). 5. $lcm(ka, kb) = k \cdot lcm(a, b)$ for all $k \in \mathbb{Z}^+$. 6. $gcd(a, b) \mid lcm(a, b)$. 7. gcd(a, b) = lcm(a, b) iff a = b.

8. $a|b \text{ iff } \gcd(a,b) = a \text{ iff } lcm(a,b) = b.$

Prime Numbers and Fundamental Theorem of Arithmetic

Definition 107. prime number

A positive integer p other than 1 is **prime** iff the only positive divisors of p are 1 and p.

Therefore, a positive integer p other than 1 is not prime iff there is some positive divisor of p other than 1 or p.

Let $p \in \mathbb{Z}^+$. Then 1|p and p|p. Suppose p is prime. Then $p \neq 1$ and the only positive divisors of p are 1 and p. Since $p \in \mathbb{Z}^+$ and $p \neq 1$, then p > 1. Since the only positive divisors of p are 1 and p, then the set of common positive divisors of p is $\{1, p\}$.

The set of prime numbers is $\{n \in \mathbb{Z}^+ : n \text{ is prime}\} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, ...\}$

Definition 108. composite number

A positive integer other than 1 is **composite** iff it is not prime.

The number 1 is neither prime nor composite.

The set of composite numbers is $\{n \in \mathbb{Z}^+ : n \text{ is composite}\} = \{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, ...\}$.

Let $n \in \mathbb{Z}^+$.

Then n is composite iff n is neither 1 nor prime.

A positive integer n is exactly one of the following:

n = 1.
n is prime.
n is composite.

o. will composite.

Lemma 109. A composite number has a positive divisor other than 1 or itself.

Let $n \in \mathbb{Z}^+$.

Then n is composite iff there exists $d \in \mathbb{Z}^+$ with 1 < d < n such that d|n.

Proposition 110. A composite number is composed of smaller positive factors.

Let $n \in \mathbb{Z}^+$.

Then n is composite iff there exist $a, b \in \mathbb{Z}^+$ with 1 < a < n and 1 < b < n such that n = ab.

Proposition 111. Every integer greater than 1 has a prime factor.

Theorem 112. Euclid's Theorem

There are infinitely many prime numbers.

Lemma 113. Let $p, n \in \mathbb{Z}^+$.

If p is prime, then either p|n or gcd(p, n) = 1.

Therefore, if p is prime and $p \not| n$, then gcd(p, n) = 1. In particular, if n is a distinct prime, then gcd(p, n) = 1. Therefore, any distinct primes are relatively prime.

Lemma 114. Euclid's Lemma

Let $p, a, b \in \mathbb{Z}^+$. If p is prime and p|ab, then either p|a or p|b.

Corollary 115. Let $p, a_1, a_2, ..., a_n \in \mathbb{Z}^+$. If p is prime and $p|a_1a_2...a_n$, then $p|a_k$ for some integer k with $1 \le k \le n$.

Corollary 116. Let $p, q_1, q_2, ..., q_n \in \mathbb{Z}^+$.

If $p, q_1, q_2, ..., q_n$ are all prime and $p|q_1q_2...q_n$, then $p = q_k$ for some integer k with $1 \le k \le n$.

Theorem 117. Fundamental Theorem of Arithmetic(Existence)

Every integer greater than one can be represented as a product of one or more primes.

Theorem 118. Fundamental Theorem of Arithmetic (Unique Factorization)

The representation of any integer greater than one as a product of primes is unique up to the order of the factors.

Example 119. Observe that $360 = 2 \cdot 3 \cdot 5 \cdot 2 \cdot 2 \cdot 3 = 3 \cdot 2 \cdot 5 \cdot 2 \cdot 3 \cdot 2 = 5 \cdot 2 \cdot 3 \cdot 3 \cdot 2 \cdot 2$.

While they differ only in the order of the factors, they are the same prime factorization of 360.

Corollary 120. Every integer greater than one has a unique canonical prime factorization

Every integer n > 1 can be written uniquely in a canonical form $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$, where for each $i = 1, 2, \dots, k$, each exponent e_i is a positive integer and each p_i is a prime with $p_1 < p_2 < \dots < p_k$.

Example 121. The canonical prime factorization of 360 is $360 = 2^3 \cdot 3^2 \cdot 5$.

Prime numbers are used to build, by multiplication, the entire set of positive integers \mathbb{Z}^+ .

Therefore, prime numbers are the building blocks from which all other integers are composed.

Linear Diophantine Equations

Definition 122. Diophantine equation

A **Diophantine equation** is an equation in one or more unknowns whose solution is in the set of integers.

Definition 123. Linear Diophantine equation

Let $a, b, c \in \mathbb{Z}$ and a, b not both zero.

A linear Diophantine equation in two unknowns is a Diophantine equation ax + by = c.

The solution set of a linear Diophantine equation is the set $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} : ax + by = c\}$.

Theorem 124. Existence of a solution to linear Diophantine equation Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$.

A solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ to the linear diophantine equation ax + by = cexists if and only if gcd(a, b) | c.

Corollary 125. Characterization of solution to linear Diophantine equation

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$ and $b \neq 0$.

If $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ is a particular solution to the linear Diophantine equation ax + by = c, then a general solution is given by $x = x_0 + (\frac{b}{d})t$ and $y = y_0 - (\frac{a}{d})t$ for $t \in \mathbb{Z}$, where $d = \gcd(a, b)$.

Let $a, b, c \in \mathbb{Z}$ and $a \neq 0$ and $b \neq 0$.

A solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ to the linear diophantine equation ax + by = c exists if and only if d|c, where $d = \gcd(a, b)$.

Moreover, if (x_0, y_0) is a solution, then the solution set is $\{(x_0 + (\frac{b}{d})t, y_0 - (\frac{a}{d})t) \in \mathbb{Z} \times \mathbb{Z} : t \in \mathbb{Z}\}.$

If gcd(a,b) = 1, then $x = x_0 + (\frac{b}{1})t = x_0 + bt$ and $y = y_0 - (\frac{a}{1})t = y_0 - at$.

Congruences

Definition 126. congruence modulo relation over \mathbb{Z}

Let $n \in \mathbb{Z}^+$.

Let $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : n | (a - b) \}.$

Since $R \subset \mathbb{Z} \times \mathbb{Z}$, then R is a relation on Z.

The relation R is called **congruence modulo** n **over** \mathbb{Z} .

Define the relation 'is congruent to modulo n' over \mathbb{Z} for all $a, b \in \mathbb{Z}$ by $a \equiv b \pmod{n}$ iff $n \mid (a - b)$.

The statement 'a is congruent to b modulo n', denoted $a \equiv b \pmod{n}$, means n|(a-b).

Therefore $a \equiv b \pmod{n}$ iff $n \mid (a - b)$.

The positive integer n in the definition $a \equiv b \pmod{n}$ is called the **modulus**. The statement 'a **is not congruent to** b **modulo** n', denoted $a \neq b \pmod{n}$, means $n \not| (a - b)$.

Therefore $a \not\equiv b \pmod{n}$ iff $n \not| (a-b)$.

Theorem 127. Let $n \in \mathbb{Z}^+$.

Let $a, b \in \mathbb{Z}$.

Then $a \equiv b \pmod{n}$ if and only if a and b leave the same remainder when divided by n.

Theorem 128. The congruence modulo relation is an equivalence relation over \mathbb{Z} .

Let $n \in \mathbb{Z}^+$. Let $a, b, c \in \mathbb{Z}$. 1. reflexive $a \equiv a \pmod{n}$.

- 2. symmetric $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$.
- 3. transitive $a \equiv b \pmod{n} \land b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}$.

Theorem 129. Let $n \in \mathbb{Z}^+$.

Let $a, b, c, d \in \mathbb{Z}$. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then 1. $a + c \equiv b + d \pmod{n}$ (addition) 2. $a - c \equiv b - d \pmod{n}$ (subtraction) 3. $ac \equiv bd \pmod{n}$. (multiplication)

Theorem 130. Let $n \in \mathbb{Z}^+$.

Let $a, b \in \mathbb{Z}$.

1. If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$ for all $c \in \mathbb{Z}$. (addition preserves congruence)

2. If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$ for all $c \in \mathbb{Z}$. (multiplication preserves congruence)

3. If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for all $k \in \mathbb{Z}^+$. (exponentiation preserves congruence)

Theorem 131. Let $n \in \mathbb{Z}^+$.

Let $a, b, c \in \mathbb{Z}$.

1. If $a + c \equiv b + c \pmod{n}$, then $a \equiv b \pmod{n}$. (cancellation addition)

2. If $ac \equiv bc \pmod{n}$ and $d = \gcd(n, c)$, then $a \equiv b \pmod{\frac{n}{d}}$. (cancellation multiplication)

Corollary 132. Let $n \in \mathbb{Z}^+$.

Let $a, b, c \in \mathbb{Z}$.

If $ac \equiv bc \pmod{n}$ and gcd(n,c) = 1, then $a \equiv b \pmod{n}$. (cancellation multiplication relatively prime)

Corollary 133. Let $p \in \mathbb{Z}^+$.

Let $a, b, c \in \mathbb{Z}$.

If $ac \equiv bc \pmod{p}$ and p is prime and p $\not c$, then $a \equiv b \pmod{p}$. (cancellation multiplication prime modulus)

Proposition 134. Let $n \in \mathbb{Z}^+$.

Let $a, b, c \in \mathbb{Z}$. If $c \neq 0$, then $ac \equiv bc \pmod{nc}$ iff $a \equiv b \pmod{n}$.

Definition 135. Inverse modulo

Let $n \in \mathbb{Z}^+$ be the modulus. Let $a \in \mathbb{Z}^+$. Then *a* is invertible modulo *n* iff $(\exists b \in \mathbb{Z})(ab \equiv 1 \pmod{n})$.

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

Then a is invertible modulo n iff there exists $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{n}$ and we say that b is a (multiplicative) inverse of a. **Proposition 136.** Let $n \in \mathbb{Z}^+$. Let $a \in \mathbb{Z}^+$. Then a is invertible modulo n iff gcd(a, n) = 1.

Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$.

The multiplicative inverse of a modulo n exists if and only if gcd(a, n) = 1. The inverse of a is unique modulo n.

Linear Congruences

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Let $S = \{x \in \mathbb{Z} : ax \equiv b \pmod{n}\}$. Then S is the solution set to the linear congruence $ax \equiv b \pmod{n}$.

Proposition 137. Let $a, b, x, x_0 \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

If x_0 is a solution to $ax \equiv b \pmod{n}$, then so is $x_0 + nk$ for any integer k.

Definition 138. A solution x of a congruence is **unique modulo** n iff any solution x' is congruent to x modulo n.

Theorem 139. Existence of solution to linear congruence

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

A solution exists to the linear congruence $ax \equiv b \pmod{n}$ if and only if d|b, where $d = \gcd(a, n)$.

Moreover, if a solution exists, then there are d distinct solutions modulo n and these solutions are congruent modulo $\frac{n}{d}$.

Corollary 140. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

There exists an integer b such that $ab \equiv 1 \pmod{n}$ if and only if gcd(a, n) = 1.

Moreover, b is the inverse of a and the inverse of a is unique modulo n.

Integers Modulo n

Definition 141. Congruence class

Let $n \in \mathbb{Z}^+$. Let $a \in \mathbb{Z}$.

The **congruence class containing** a, denoted [a], is the set of all integers congruent to a modulo n.

Therefore $[a] = \{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$

$$[a] = \{x \in \mathbb{Z} : n | (x - a)\}$$

= $\{x \in \mathbb{Z} : (\exists k \in \mathbb{Z})(x - a = nk)\}$
= $\{a + nk : k \in \mathbb{Z}\}$
= $a + n\mathbb{Z}$
= $n\mathbb{Z} + a$.

Since congruence modulo is an equivalence relation, then [a] = [b] iff $a \equiv b \pmod{n}$.

Therefore, [a] = [b] iff $a \equiv b \pmod{n}$ iff a and b leave the same remainder when divided by n.

Since the remainders upon dividing by n are 0, 1, ..., n-1, then every integer must be congruent to exactly one of the remainders: 0, 1, ..., n-1.

Definition 142. Integers Modulo n

Let $n \in \mathbb{Z}^+$.

The collection of all congruence classes modulo n is the set of integers modulo n, denoted $\frac{\mathbb{Z}}{n\mathbb{Z}}$ or \mathbb{Z}_n .

modulo n, denoted $\frac{\mathbb{Z}}{n\mathbb{Z}}$ or \mathbb{Z}_n . Therefore, $\mathbb{Z}_n = \frac{\mathbb{Z}}{n\mathbb{Z}} = \{[a]_n : a \in \mathbb{Z}\} = \{[0], [1], [2], ..., [n-1]\}.$

The set $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is a partition of \mathbb{Z} under the congruence modulo relation. The number of congruence classes is $|\mathbb{Z}_n| = |\frac{\mathbb{Z}}{n\mathbb{Z}}| = n$.

Let $[a] \in \frac{\mathbb{Z}}{n\mathbb{Z}}$. Then $[a] = n\mathbb{Z} + a = \{nk + a : k \in \mathbb{Z}\}$ and $a \in \{0, 1, ..., n - 1\}$. Let $x \in [a]$. Then x = nk + a for some $k \in \mathbb{Z}$. By the Division algorithm, k and a are unique integers such that $0 \le a < n$. Thus, a is the remainder when x is divided by n. Hence, if $x \in [a]$, then a is the remainder when x is divided by n.

Conversely, suppose a is the remainder when x is divided by n. Then by the Division algorithm $x = nq + a, 0 \le a < n$ for unique $q, a \in \mathbb{Z}$. Since $q \in \mathbb{Z}$ and x = nq + a, then $x \in [a]$. Hence, if a is the remainder when x is divided by n, then $x \in [a]$.

Therefore, $x \in [a]$ iff a is the remainder when x is divided by n.

Each integer is contained in exactly one of the congruence classes.

In $\frac{\mathbb{Z}}{n\mathbb{Z}}$: additive identity is [0]. additive inverse of [a] is -[a] = [n-a]. multiplicative identity is [1]. [n] = [0]. $\begin{pmatrix} \mathbb{Z} \\ n\mathbb{Z}, + \end{pmatrix}$ is an abelian group. $\begin{pmatrix} \mathbb{Z} \\ n\mathbb{Z}, +, \cdot \end{pmatrix}$ is a commutative ring with unity [1].

Lemma 143. addition modulo n is well-defined

Let $[a], [b] \in \mathbb{Z}_n$. Let $x, x' \in [a]_n$ and $y, y' \in [b]_n$. Then [x+y] = [x'+y'].

Proposition 144. Addition modulo n is a binary operation.

Let $+_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ be a binary relation defined by [a] + [b] = [a+b] for all $[a], [b] \in \mathbb{Z}_n$.

Then $+_n$ is a binary operation on \mathbb{Z}_n .

Definition 145. Addition modulo n

Let $+_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ be a binary relation defined by [a] + [b] = [a+b] for all $[a], [b] \in \mathbb{Z}_n$.

Then $+_n$ is a binary operation on \mathbb{Z}_n called **addition modulo** n.

Let $a, b \in \mathbb{Z}$ such that [a] + [b] = [a + b]. Since $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$. Since \equiv is an equivalence relation on \mathbb{Z} , then $a + b \in [a + b]$. Let c = a + b. We know $a + b \in [c]$ iff c is the remainder when a + b is divided by n. Therefore, [a] + [b] = [c] means c is the remainder when a + b is divided by

n.

Theorem 146. algebraic properties of addition modulo n

1. [a] + ([b] + [c]) = ([a] + [b]) + [c] for all $[a], [b], [c] \in \mathbb{Z}_n$. (associative) 2. [a] + [b] = [b] + [a] for all $[a], [b] \in \mathbb{Z}_n$. (commutative) 3. [a] + [0] = [0] + [a] = [a] for all $[a] \in \mathbb{Z}_n$. (additive identity) 4. [a] + [-a] = [-a] + [a] = [0] for all $[a] \in \mathbb{Z}_n$. (additive inverses)

Definition 147. Additive order of [a] modulo n

Let $n \in \mathbb{Z}^+$. Let $[a] \in \mathbb{Z}_n$.

Det $[a] \in \mathbb{Z}_n$.

The smallest positive integer k such that $k[a] = [0] \pmod{n}$ is called the **additive order of** [a].

Let $n \in \mathbb{Z}^+$. Let $[a] \in \mathbb{Z}_n$.

Since $k[a] = [a] + [a] + ... + [a] = [a + a + ... + a] = [ka] = [0] \pmod{n}$ iff $ka \equiv 0 \pmod{n}$, then the smallest positive integer k such that $ka \equiv 0 \pmod{n}$ is the additive order of [a].

Proposition 148. Multiplication modulo n is a binary operation.

Let $*_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ be a binary relation defined by [a][b] = [ab] for all $[a], [b] \in \mathbb{Z}_n$.

Then $*_n$ is a binary operation on \mathbb{Z}_n .

Definition 149. Multiplication modulo n

Let $*_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ be a binary relation defined by [a][b] = [ab] for all $[a], [b] \in \mathbb{Z}_n$.

Then $*_n$ is a binary operation on \mathbb{Z}_n called **multiplication modulo** n.

Let $a, b \in \mathbb{Z}$ such that [a][b] = [ab].

Since $a, b \in \mathbb{Z}$, then $ab \in \mathbb{Z}$.

Since \equiv is an equivalence relation on \mathbb{Z} , then $ab \in [ab]$.

Let ab = c.

We know $ab \in [c]$ iff c is the remainder when ab is divided by n.

Therefore, [a][b] = [c] means c is the remainder when ab is divided by n.

Theorem 150. algebraic properties of multiplication modulo n

1. $[a]([b][c]) = ([a][b])[c] \text{ for all } [a], [b], [c] \in \mathbb{Z}_n. (associative)$ 2. $[a][b] = [b][a] \text{ for all } [a], [b] \in \mathbb{Z}_n. (commutative)$ 3. $[a][1] = [1][a] = [a] \text{ for all } [a] \in \mathbb{Z}_n. (multiplicative identity)$ 4. $[a][0] = [0][a] = [0] \text{ for all } [a] \in \mathbb{Z}_n.$

5. $[a]([b] + [c]) = [a][b] + [a][c] \text{ for all } [a], [b], [c] \in \mathbb{Z}_n.$ (left distributive)

6. ([a] + [b])[c] = [a][c] + [b][c] for all $[a], [b], [c] \in \mathbb{Z}_n$. (right distributive)

Definition 151. Multiplicative inverse of [a] modulo n

Let $n \in \mathbb{Z}^+$.

Let $[a] \in \mathbb{Z}_n$.

Then [a] has a **multiplicative inverse modulo** n iff there exists $[b] \in \mathbb{Z}_n$ such that [a][b] = [1].

We say that [b] is a multiplicative inverse of [a], so [a] and [b] are invertible elements, or **units of** \mathbb{Z}_n .

Inverse of [a] is denoted $[a]^{-1}$.

Theorem 152. Existence of multiplicative inverse of [a] modulo nLet $n \in \mathbb{Z}^+$.

Let $[a] \in \mathbb{Z}_n$.

Then [a] has a multiplicative inverse in \mathbb{Z}_n iff gcd(a, n) = 1.

Corollary 153. The inverse of [0] in \mathbb{Z}_1 is [0].

Let $n \in \mathbb{Z}^+$.

If n > 1, then [0] has no multiplicative inverse.

Definition 154. Divisor of zero modulo n

Let $[a] \in \mathbb{Z}_n$.

Then [a] is a **divisor of zero modulo** n iff there exists nonzero $[b] \in \mathbb{Z}_n$ such that [a][b] = [0].

If n > 1, then [0] is a divisor of [0] because [0][n-1] = [0(n-1)] = [0] and $[n-1] \neq [0] \in \mathbb{Z}_n$.

Theorem 155. Let $n \in \mathbb{Z}^+$.

A nonzero element of \mathbb{Z}_n either has a multiplicative inverse or is a divisor of zero.

Definition 156. Euler totient function

Let $n \in \mathbb{Z}^+$.

The number of positive integers less than or equal to n which are relatively prime to n is denoted by $\phi(n)$.

This function is called **Euler's phi function**, or **totient function**.

Example values for ϕ are below.

 $\begin{array}{rcrrr} \phi(1) & = & 1 \\ \phi(2) & = & 1 \\ \phi(3) & = & 2 \\ \phi(4) & = & 2 \\ \phi(5) & = & 4 \\ \phi(6) & = & 2 \\ \phi(7) & = & 6 \\ \phi(8) & = & 4. \end{array}$

If the prime factorization of n is $n=p_1^{m_1}p_2^{m_2}...p_k^{m_k}$, then $\phi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}).$ Need to prove this!

Proposition 157. If p is prime, then $\phi(p) = p - 1$.

Definition 158. Nilpotent element

Let $n \in \mathbb{N}$. Let $[a] \in \mathbb{Z}_n$. Then [a] is **nilpotent** iff $(\exists k \in \mathbb{Z})([a]^k = [0])$.

Definition 159. Multiplicative order of [a] modulo n

Let $n \in \mathbb{Z}^+$.

Let $[a] \in \mathbb{Z}_n^*$.

The smallest positive integer k such that $[a]^k = [1] \pmod{n}$ is called the **multiplicative order of** [a].

Let $n \in \mathbb{Z}^+$. Let $[a] \in \mathbb{Z}_n^*$.

Since $[a]^k \equiv [a] \cdot [a] \cdot \ldots \cdot [a] = [a \cdot a \cdot \ldots \cdot a] = [a^k] = [1] \pmod{n}$ iff $a^k \equiv 1 \pmod{n}$, then the smallest positive integer k such that $a^k \equiv 1 \pmod{n}$ is the multiplicative order of [a].

Fermat's Theorem

Theorem 160. Fermat's Little Theorem

Let $p, a \in \mathbb{Z}^+$. If p is prime and $p \not| a$, then $p \mid a^{p-1} - 1$. Let $p, a \in \mathbb{Z}^+$. If p is prime and $p \not| a$, then $p \mid a^{p-1} - 1$. Hence, if p is prime and $p \not| a$, then $a^{p-1} \equiv 1 \pmod{p}$. Therefore, if p is prime and $p \not| a$, then $a^p \equiv a \pmod{p}$.

Theorem 161. Euler's Theorem

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. If gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Corollary 162. Fermat's Little Theorem

Let $a \in \mathbb{Z}$. If p is prime, then $a^p \equiv a \pmod{p}$.

Miscellaneous Stuff

Proposition 163. Every integer is congruent modulo n to exactly one of the integers 0, 1, 2, ..., n - 1.

Definition 164. least positive residues modulo n

Let $n \in \mathbb{Z}^+$.

The set of n integers $\{0, 1, 2, ..., n - 1\}$ is called the set of **least positive** residues modulo n.

Therefore, every integer is congruent modulo n to exactly one of the integers in the set of least positive residues modulo n.

Definition 165. complete set of residues modulo n

Let $n \in \mathbb{Z}^+$.

A set of integers $S = \{a_1, a_2, ..., a_n\}$ is a **complete set(system) of residues modulo** *n* iff every integer is congruent modulo *n* to exactly one of the $a_k \in S$.

Equivalently, $S = \{a_1, a_2, ..., a_n\}$ is a complete system of residues modulo n iff each $a_k \in S$ is congruent modulo n to exactly one integer in $\{0, 1, 2, ..., n-1\}$.

Example 166. The set $\{-12, -4, 11, 13, 22, 82, 91\}$ is a complete set of residues modulo 7.

Proposition 167. Any set of n integers is a complete set of residues modulo n iff no two of the integers are congruent modulo n.

Definition 168. divisors function σ_0

Let $\sigma_0 : \mathbb{Z}^+ \to \mathbb{Z}^+$ be the function defined such that $\sigma_0(n)$ is the number of positive divisors of $n \in \mathbb{Z}^+$.

We call σ_0 the **divisor function**.