Analysis Theory

Jason Sass

June 29, 2021

Metric Spaces

Proposition 1. distance in a metric space is nonnegative

If d is a metric on a set M, then $d(x,y) \ge 0$ for all $x, y \in M$.

Proof. Suppose d is a metric on a set M.

Let $x, y \in M$ be given. Since $0 = d(x, x) \leq d(x, y) + d(y, x) = d(x, y) + d(x, y) = 2d(x, y)$, then $0 \leq 2d(x, y)$, so $0 \leq d(x, y)$. Therefore, $d(x, y) \geq 0$, as desired. \Box

Limits

Theorem 2. uniqueness of a limit of a function

Let (M_1, d_1) and (M_2, d_2) be metric spaces. Let $E \subset M_1$. Let $f : E \to M_2$ be a function. Let a be an accumulation point of E. Then the limit of f at a, if it exists, is unique.

Proof. Suppose a limit of f at a exists.

Then a limit of f at a is an element of M_2 , so there is at least one limit of f at a.

To prove the limit is unique, let $L_1, L_2 \in M_2$ such that L_1 is a limit of f at a and L_2 is a limit of f at a.

We must prove $L_1 = L_2$. Suppose $L_1 \neq L_2$. Then $d_2(L_1, L_2) > 0$. Let $\epsilon = d_2(L_1, L_2)$. Then $\epsilon > 0$, so $\frac{\epsilon}{2} > 0$. Since L_1 is a limit of f at a and $\frac{\epsilon}{2} > 0$, then there exists $\delta_1 > 0$ such that if $x \neq a$ and $d_1(x, a) < \delta_1$, then $d_2(f(x), L_1) < \frac{\epsilon}{2}$.

Since L_2 is a limit of f at a and $\frac{\epsilon}{2} > 0$, then there exists $\delta_2 > 0$ such that if $x \neq a$ and $d_1(x, a) < \delta_2$, then $d_2(f(x), L_2) < \frac{\epsilon}{2}$.

Let $\delta = \min\{\delta_1, \delta_2\}.$

Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$.

Since $\delta_1 > 0$ and $\delta_2 > 0$, then $\delta > 0$.

Since a is an accumulation point of E and $\delta > 0$, then there exists $x \in E$ such that $x \in N'(a; \delta)$.

Since $x \in N'(a; \delta)$, then $x \neq a$ and $x \in N(a; \delta)$, so $d_1(x, a) < \delta$. Since $d_1(x, a) < \delta \le \delta_1$, then $d_1(x, a) < \delta_1$. Since $x \neq a$ and $d_1(x, a) < \delta_1$, then $d_2(f(x), L_1) < \frac{\epsilon}{2}$. Since $d_1(x, a) < \delta \le \delta_2$, then $d_1(x, a) < \delta_2$. Since $x \neq a$ and $d_1(x, a) < \delta_2$, then $d_2(f(x), L_2) < \frac{\epsilon}{2}$. Observe that

$$d_{2}(L_{1}, L_{2}) \leq d_{2}(L_{1}, f(x)) + d_{2}(f(x), L_{2})$$

$$= d_{2}(f(x), L_{1}) + d_{2}(f(x), L_{2})$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Hence, $d_2(L_1, L_2) < \epsilon$.

Thus, we have $d_2(L_1, L_2) = \epsilon$ and $d_2(L_1, L_2) < \epsilon$, a violation of trichotomy of \mathbb{R} .

Therefore, $L_1 = L_2$, as desired.

Convergent sequences in a metric space

Theorem 3. uniqueness of a limit of a convergent sequence

The limit of a convergent sequence of real numbers is unique.

Proof. Let (a_n) be a convergent sequence of real numbers. Then a limit of (a_n) exists as a real number. Thus, there is at least one limit of (a_n) . To prove the limit is unique, let $L_1, L_2 \in \mathbb{R}$ such that L_1 is a limit of (a_n) and L_2 is a limit of (a_n) . We must prove $L_1 = L_2$. Suppose $L_1 \neq L_2$. Then $L_1 - L_2 \neq 0$, so $|L_1 - L_2| > 0$. Let $\epsilon = \frac{|L_1 - L_2|}{2}$. Then $\epsilon > 0$. Since L_1 is a limit of (a_n) and $\epsilon > 0$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $|a_n - L_1| < \epsilon$. Since L_2 is a limit of (a_n) and $\epsilon > 0$, then there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $|a_n - L_2| < \epsilon$. Let $N = \max\{N_1, N_2\}.$ Let $n \in \mathbb{N}$ such that n > N. Since $n > N \ge N_1$, then $n > N_1$. Hence, $|a_n - L_1| < \epsilon$. Since $n > N \ge N_2$, then $n > N_2$.

Hence, $|a_n - L_2| < \epsilon$. Observe that

$$|L_1 - L_2| = |(L_1 - a_n) + (a_n - L_2)|$$

$$\leq |L_1 - a_n| + |a_n - L_2|$$

$$= |a_n - L_1| + |a_n - L_2|$$

$$< \epsilon + \epsilon$$

$$= 2\epsilon.$$

Thus, $|L_1 - L_2| < 2\epsilon$, so $\frac{|L_1 - L_2|}{2} < \epsilon$. Hence, $\epsilon < \epsilon$, a contradiction. Therefore, $L_1 = L_2$, as desired.