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Metric Spaces

Proposition 1. distance in a metric space is nonnegative
If d is a metric on a set M , then d(x, y) ≥ 0 for all x, y ∈M .

Proof. Suppose d is a metric on a set M .
Let x, y ∈M be given.
Since 0 = d(x, x) ≤ d(x, y) + d(y, x) = d(x, y) + d(x, y) = 2d(x, y), then

0 ≤ 2d(x, y), so 0 ≤ d(x, y).
Therefore, d(x, y) ≥ 0, as desired.

Limits

Theorem 2. uniqueness of a limit of a function
Let (M1, d1) and (M2, d2) be metric spaces.
Let E ⊂M1.
Let f : E →M2 be a function.
Let a be an accumulation point of E.
Then the limit of f at a, if it exists, is unique.

Proof. Suppose a limit of f at a exists.
Then a limit of f at a is an element of M2, so there is at least one limit of

f at a.
To prove the limit is unique, let L1, L2 ∈M2 such that L1 is a limit of f at

a and L2 is a limit of f at a.
We must prove L1 = L2.
Suppose L1 6= L2.
Then d2(L1, L2) > 0.
Let ε = d2(L1, L2).
Then ε > 0, so ε

2 > 0.
Since L1 is a limit of f at a and ε

2 > 0, then there exists δ1 > 0 such that if
x 6= a and d1(x, a) < δ1, then d2(f(x), L1) <

ε
2 .

Since L2 is a limit of f at a and ε
2 > 0, then there exists δ2 > 0 such that if

x 6= a and d1(x, a) < δ2, then d2(f(x), L2) <
ε
2 .

Let δ = min{δ1, δ2}.



Then δ ≤ δ1 and δ ≤ δ2.
Since δ1 > 0 and δ2 > 0, then δ > 0.
Since a is an accumulation point of E and δ > 0, then there exists x ∈ E

such that x ∈ N ′(a; δ).
Since x ∈ N ′(a; δ), then x 6= a and x ∈ N(a; δ), so d1(x, a) < δ.
Since d1(x, a) < δ ≤ δ1, then d1(x, a) < δ1.
Since x 6= a and d1(x, a) < δ1, then d2(f(x), L1) <

ε
2 .

Since d1(x, a) < δ ≤ δ2, then d1(x, a) < δ2.
Since x 6= a and d1(x, a) < δ2, then d2(f(x), L2) <

ε
2 .

Observe that

d2(L1, L2) ≤ d2(L1, f(x)) + d2(f(x), L2)

= d2(f(x), L1) + d2(f(x), L2)

<
ε

2
+
ε

2
= ε.

Hence, d2(L1, L2) < ε.
Thus, we have d2(L1, L2) = ε and d2(L1, L2) < ε, a violation of trichotomy

of R.
Therefore, L1 = L2, as desired.

Convergent sequences in a metric space

Theorem 3. uniqueness of a limit of a convergent sequence
The limit of a convergent sequence of real numbers is unique.

Proof. Let (an) be a convergent sequence of real numbers.
Then a limit of (an) exists as a real number.
Thus, there is at least one limit of (an).
To prove the limit is unique, let L1, L2 ∈ R such that L1 is a limit of (an)

and L2 is a limit of (an).
We must prove L1 = L2.
Suppose L1 6= L2.
Then L1 − L2 6= 0, so |L1 − L2| > 0.

Let ε = |L1−L2|
2 .

Then ε > 0.
Since L1 is a limit of (an) and ε > 0, then there exists N1 ∈ N such that if

n > N1 then |an − L1| < ε.
Since L2 is a limit of (an) and ε > 0, then there exists N2 ∈ N such that if

n > N2 then |an − L2| < ε.
Let N = max{N1, N2}.
Let n ∈ N such that n > N .
Since n > N ≥ N1, then n > N1.
Hence, |an − L1| < ε.
Since n > N ≥ N2, then n > N2.
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Hence, |an − L2| < ε.
Observe that

|L1 − L2| = |(L1 − an) + (an − L2)|
≤ |L1 − an|+ |an − L2|
= |an − L1|+ |an − L2|
< ε+ ε

= 2ε.

Thus, |L1 − L2| < 2ε, so |L1−L2|
2 < ε.

Hence, ε < ε, a contradiction.
Therefore, L1 = L2, as desired.

3


