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Metric Spaces

Proposition 1. distance in a metric space is nonnegative
If d is a metric on a set M, then d(x,y) > 0 for all z,y € M.

Proof. Suppose d is a metric on a set M.

Let =,y € M be given.

Since 0 = d(z,z) < d(z,y) + d(y,x) = d(z,y) + d(z,y) = 2d(z,y), then
0 < 2d(zx,y), so 0 < d(z,y).

Therefore, d(x,y) > 0, as desired. O

Limits

Theorem 2. uniqueness of a limit of a function
Let (My,dy) and (Ms,ds) be metric spaces.
Let E C Ml.
Let f: E — My be a function.
Let a be an accumulation point of E.
Then the limit of f at a, if it exists, is unique.

Proof. Suppose a limit of f at a exists.

Then a limit of f at a is an element of Ms, so there is at least one limit of
f at a.

To prove the limit is unique, let L1, Ly € M5 such that L is a limit of f at
a and Ly is a limit of f at a.

We must prove L1 = Ls.

Suppose L1 # Lo.

Then dQ(LhLQ) > 0.

Let e = dg(Ll7 LQ)

Then € > 0, so 5 > 0.

Since L; is a limit of f at a and § > 0, then there exists d; > 0 such that if
x # a and di(z,a) < 61, then da(f(x), L1) < §.

Since Ly is a limit of f at @ and § > 0, then there exists d2 > 0 such that if
r # a and di(z,a) < 2, then do(f(z), L2) < 5.

Let 6 = min{51, 52}



Then § < §; and 6 < 0s.

Since d; > 0 and d5 > 0, then § > 0.

Since a is an accumulation point of E and § > 0, then there exists z € F
such that x € N'(a; ).

Since z € N'(a;9), then © # a and = € N(a;0), so di(z,a) < 4.

Since dy(z,a) < § < 41, then di(x,a) < d;.

Since x # a and d;(x,a) < 1, then do(f(z),L1) <

Since dy(x,a) < § < g, then di(x,a) < da.

Since = # a and dq(x,a) < 02, then do(f(z), L2) <

Observe that
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do(L1, L)
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Hence, do(L1, L2) < €.

Thus, we have dg(L1, La) = € and d2(L1, La) < €, a violation of trichotomy
of R.

Therefore, L1 = Lo, as desired. O

Convergent sequences in a metric space

Theorem 3. uniqueness of a limit of a convergent sequence
The limit of a convergent sequence of real numbers is unique.

Proof. Let (a,) be a convergent sequence of real numbers.

Then a limit of (a,,) exists as a real number.

Thus, there is at least one limit of (ay,).

To prove the limit is unique, let L, Ly € R such that Ly is a limit of (ay)
and Lg is a limit of (ay,).

We must prove L1 = Ls.

Suppose L; # Lo.

Then Ly — Ly # 0, so |L1 — Ly| > 0.

Let e = %

Then € > 0.

Since L is a limit of (a,) and € > 0, then there exists N7 € N such that if
n > Njp then |a, — [1] < e.

Since Lo is a limit of (a,) and € > 0, then there exists Ny € N such that if
n > Ny then |a, — La| < €.

Let N = max{Ny, Na}.

Let n € N such that n > N.

Since n > N > Ny, then n > Nj.

Hence, |a, — L1| < e.

Since n > N > No, then n > Ns.



Hence, |a, — Lo| < €.
Observe that

|L1 — La| |(L1 — an) + (an — La)|

< L1 —an|+ |an — Lo
= l|an — L1| + |an — Lo|
< €+e€

= 2e.

Thus, |L1 — Lo| < 2¢, so |L12;L2| <e.

Hence, € < €, a contradiction.
Therefore, L1 = Lo, as desired.



