Analysis Examples

Jason Sass

May 19, 2023

Metric spaces

Example 1. (\mathbb{R}, d) with Euclidean metric d

The set of real numbers \mathbb{R} with the distance function $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by d(x, y) = |x - y| for all $(x, y) \in \mathbb{R} \times \mathbb{R}$ is a metric space.

Proof. Let $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a function defined by d(x, y) = |x - y| for all $(x, y) \in \mathbb{R} \times \mathbb{R}$.

Since $0 \in \mathbb{R}$, then $\mathbb{R} \neq \emptyset$, so \mathbb{R} is not empty.

Since \mathbb{R} is an ordered field, then |x - y| = 0 iff x = y for all $x, y \in \mathbb{R}$ and |x - y| = |y - x| for all $x, y \in \mathbb{R}$ and $|x - y| \le |x - z| + |z - y|$ for all $x, y, z \in \mathbb{R}$. Therefore, d is a metric on \mathbb{R} , so (\mathbb{R}, d) is a metric space. \Box