Analysis Exercises

Jason Sass

May 19, 2023

Metric Spaces

Exercise 1. Let (M, d) be a metric space.
Let $a, b \in M$ with $a \neq b$.
Then there exist positive real numbers ϵ and δ such that $N(a ; \epsilon) \cap N(b ; \delta)=\emptyset$.
Proof. Let $\epsilon=\delta=\frac{d(a, b)}{2}$.
Since $a \neq b$, then $d(a, b)>0$, so $\frac{d(a, b)}{2}>0$.
Hence, $\epsilon=\delta>0$.
Suppose for the sake of contradiction $N(a ; \epsilon) \cap N(b ; \delta) \neq \emptyset$.
Then there exists x such that $x \in N(a ; \epsilon) \cap N(b ; \delta)$.
Hence, $x \in N(a ; \epsilon)$ and $x \in N(b ; \delta)$, so $d(x, a)<\epsilon$ and $d(x, b)<\delta$.
Observe that

$$
\begin{aligned}
d(a, b) & \leq d(a, x)+d(x, b) \\
& =d(x, a)+d(x, b) \\
& <\epsilon+\delta \\
& =\epsilon+\epsilon \\
& =2 \epsilon \\
& =2 \cdot \frac{d(a, b)}{2} \\
& =d(a, b) .
\end{aligned}
$$

Thus, $d(a, b)<d(a, b)$, a contradiction.
Therefore, $N(a ; \epsilon) \cap N(b ; \delta)=\emptyset$.

