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Metric Spaces

A metric space is a set of points upon which a notion of distance is defined with
the following properties:

1. The distance between points is nonnegative.

2. The distance between points x and y is the same as the distance between
y and x.

3. The distance satisfies the triangle inequality.

The metric space concept generalizes the notion of distance between real
numbers.

Definition 1. metric
Let M be a nonempty set.
A function d : M x M — R is a metric on M iff the following axioms hold:
MS1. d(z,y) =0 iff z =y for all z,y € M.
MS2. d(z,y) = d(y, ) for all x,y € M. (Symmetry)
MS3. d(z,y) < d(z,z) + d(z,y) for all z,y,z € M. (Triangle inequality)

Definition 2. metric space
If d is a metric on a set M, then we say the pair (M, d) is a metric space.

Proposition 3. distance in a metric space is nonnegative
If d is a metric on a set M, then d(x,y) > 0 for all x,y € M.

Let (M, d) be a metric space.

Then d is a metric on the set M.

Therefore, d : M x M — R is a function such that axioms MS1-3 hold.

The function d is called the distance function, or metric, and specifies the
distance between any two points z and y of the space M.

Therefore, if x,y € M, then d(x,y) is the distance between z and y.

Let z,y € M.
Since d(z,y) = 0 iff = y, then d(z,y) # 0 iff z # y.
Since d is a metric on M, then d(x,y) > 0, so either d(z,y) > 0 or d(z,y) = 0.
Hence, d(z,y) > 0 iff x # y.
Therefore, d(x,y) > 0 iff x # y for all z,y € M.



If x =y, then d(z,y) = 0, so the distance between a point and itself is zero.

If  # y, then d(z,y) > 0, so the distance between two distinct points is
positive.

Therefore, the distance between any two distinct points of a metric space is
positive and the distance between a point and itself is zero.

Example 4. (R,d) with Euclidean metric d
The set of real numbers R with the distance function d : R x R — R defined
by d(z,y) = |z — y| for all (z,y) € R x R is a metric space.

Topology of a metric space

Definition 5. open ball

Let (M, d) be a metric space.

Let r be a positive real number.

Let pe M.

The open ball with radius r and center p is the set B.(p) = {z € M :
d(z,p) <r}.

excludes boundary

Definition 6. closed ball

Let (M, d) be a metric space.

Let r be a positive real number.

Let pe M.

The closed ball with radius r and center p is the set B,.(p) = {z € M :
d(z,p) <r}.

includes boundary

Convergent sequences in a metric space

Definition 7. sequence of points in a metric space
A sequence of points in a metric space F is a function f: N — E.

Let (p,) be a sequence of points in a metric space E.

Then (p,) is a function from N to E that maps n +— p,, for all n € N.
The points p1, p2, P3, ..+, Pn, ... are the terms of the sequence.

Pr, is the n** term of the sequence and p,, € F for all n € N.

Definition 8. constant sequence in a metric space
Let p be a point of a metric space E.
Let (pn) be a sequence of points in E such that p, = p for all n € N.
Then (p,) is called a constant sequence.

Definition 9. limit of a sequence of points in a metric space

Let (pn) be a sequence of points in a metric space E.

A point L € FE is a limit of (p,) iff for every positive real €, there exists a
natural number N such that d(p,, L) < € whenever n > N.



In symbols, L € E is a limit of (p,,) iff
(Ve > 0)(AN € N)(Vn € N)(n > N — d(pn, L) < ¢).

Theorem 10. uniqueness of a sequence limit
A sequence of points in a metric space has at most one limit.

Let (pn) be a sequence of points in a metric space E.

Either a limit of (p,,) exists or does not exist in F, so either (p,,) is convergent
or (py) is divergent.

If (py,) has a limit, then the limit is unique.

Thus, if (p,) is convergent, then its limit is unique.

Therefore, a convergent sequence has a unique limit.

The statement ‘a sequence (p,) converges to a point L € E’ is denoted by
either p,, — L or lim,, o pn = L.

If (p,,) does not have a limit, lim,,_,~ p, does not exist.

Therefore, if (p,) is a divergent sequence, then lim,,_, o p,, does not exist.

Let (p,) be a sequence of points in a metric space E.

We say that (p,) converges to a point L € F, denoted lim,, o p, = L, iff
for every positive real €, there exists a natural number N such that d(p,, L) < €
whenever n > N.

Therefore lim,_,~ p, = L iff

(Ve > 0)(IN € N)(Vn € N)(n > N — d(pn, L) < ¢).

Limits

The limit concept expresses the idea that for a given function f, f(z) is arbi-
trarily close to some point L if z is sufficiently close to some point a.

Definition 11. ¢ — § definition of a limit of a function at a point

Let (My,dy) and (Ms,ds) be metric spaces.

Let £ C M.

Let f: E — Ms be a function.

Let a be an accumulation point of E.

A point L € M, is a limit of f at a iff for every € > 0, there exists § > 0
such that da(f(x), L) < € whenever z # a and d;(z,a) < 6.

Therefore, L € Ms is a limit of f at a iff

(Ve >0)(36 > 0)(Vz € E)(x #aNdi(x,a) < — da(f(x),L) < e).
Therefore, L € Ms is not a limit of f at a iff

(e >0)(Vé6 > 0)(Fz € E)(x #aNdi(x,a) < I Ndo(f(z),L) > €).

The logical structure of this definition implies that § is a function of €, so ¢
depends on e.



Let (My,d;) and (M3, ds) be metric spaces.

Let E C M;.

Let f: E — M5 be a function.

Let a be an accumulation point of E.

Suppose L € Mj is a limit of f at a.

Then for every € > 0, there exists § > 0 such that for all x € F, if x # a and
di(z,a) < 0, then dao(f(z),L) < e.

Observe that

(Ve > 0)(36 > 0)(Vx € E)(xz # aAdi(z,a) <§ — do(f(z),L) <€)
(Ve >0)(36 > 0)(Vz € E)(x #a Nz € N(a;0) — f(x) € N(L;e))
(Ve > 0)(36 > 0)(Vz € E)(xz € N'(a;6) — f(z) € N(L;e))

(Ve > 0)(36 > 0)(Vz € ENN'(a;0))(f(z) € N(L;e)).

T
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Therefore, L € Ms is a limit of f at a iff

(Ve > 0)(36 > 0)(Vx € E)(z # aAdi(z,a) <§ — do(f(2),L) <e)
iff

(Ve > 0)(36 > 0)(Vx € ENN'(a;0))(f(z) € N(L;e)).

Theorem 12. uniqueness of a limit of a function
Let (My,dy) and (Ms,ds) be metric spaces.
Let E C M.
Let f: E — M, be a function.
Let a be an accumulation point of E.
Then the limit of f at a, if it exists, is unique.

Let (My,dy) and (Ms,ds) be metric spaces.

Let £ C M.

Let f: E — Ms be a function.

Let a be an accumulation point of E.

Suppose a limit of f at a exists.

Since the limit of a function is unique, we denote the limit of f at a by
lim,_,, f(2).

If L € M5 is the limit of f at a, then we say lim,_,, f(z) = L.

Therefore, L € Mj is a limit of f at a iff lim,_,, f(z) = L iff

(Ve > 0)(36 > 0)(Vx € E)(z # aAdi(z,a) <§ — do(f(2z),L) <€)

iff

(Ve > 0)(36 > 0)(Vz € ENN'(a;0))(f(x) € N(L;e))

Let (M1, dy) and (Ma,ds) be metric spaces.
Let £ C Ml.
Let f: E— M; be a function.
Let a be an accumulation point of E.



Suppose the limit of f at a exists.
Then there exists L € My such that lim,_,, f(z) = L.
Thus, (3L € Ms)(lim,—,, f(x) = L).
Observe that lim,_,, f(z) = L iff
(Ve >0)(36 > 0)(Vz € E)(x #a Ndi(x,a) < — da(f(x),L) <e¢)
iff
(Ve > 0)(36 > 0)(Vx € ENN'(a;0))(f(x) € N(L;e)).
Suppose the limit of f at a does not exist.

Then there is no L € My such that lim,_,, f(z) = L.
Thus, -(3L € Ms)(lim,_,, f(z) = L).



