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Metric Spaces

A metric space is a set of points upon which a notion of distance is defined with
the following properties:

1. The distance between points is nonnegative.
2. The distance between points x and y is the same as the distance between

y and x.
3. The distance satisfies the triangle inequality.
The metric space concept generalizes the notion of distance between real

numbers.

Definition 1. metric
Let M be a nonempty set.
A function d : M ×M → R is a metric on M iff the following axioms hold:
MS1. d(x, y) = 0 iff x = y for all x, y ∈M .
MS2. d(x, y) = d(y, x) for all x, y ∈M . (Symmetry)
MS3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈M . (Triangle inequality)

Definition 2. metric space
If d is a metric on a set M , then we say the pair (M,d) is a metric space.

Proposition 3. distance in a metric space is nonnegative
If d is a metric on a set M , then d(x, y) ≥ 0 for all x, y ∈M .

Let (M,d) be a metric space.
Then d is a metric on the set M .
Therefore, d : M ×M → R is a function such that axioms MS1-3 hold.
The function d is called the distance function, or metric, and specifies the

distance between any two points x and y of the space M .
Therefore, if x, y ∈M , then d(x, y) is the distance between x and y.

Let x, y ∈M .
Since d(x, y) = 0 iff x = y, then d(x, y) 6= 0 iff x 6= y.
Since d is a metric onM , then d(x, y) ≥ 0, so either d(x, y) > 0 or d(x, y) = 0.
Hence, d(x, y) > 0 iff x 6= y.
Therefore, d(x, y) > 0 iff x 6= y for all x, y ∈M .



If x = y, then d(x, y) = 0, so the distance between a point and itself is zero.
If x 6= y, then d(x, y) > 0, so the distance between two distinct points is

positive.
Therefore, the distance between any two distinct points of a metric space is

positive and the distance between a point and itself is zero.

Example 4. (R, d) with Euclidean metric d
The set of real numbers R with the distance function d : R×R→ R defined

by d(x, y) = |x− y| for all (x, y) ∈ R× R is a metric space.

Topology of a metric space

Definition 5. open ball
Let (M,d) be a metric space.
Let r be a positive real number.
Let p ∈M .
The open ball with radius r and center p is the set Br(p) = {x ∈ M :

d(x, p) < r}.
excludes boundary

Definition 6. closed ball
Let (M,d) be a metric space.
Let r be a positive real number.
Let p ∈M .
The closed ball with radius r and center p is the set Br(p) = {x ∈M :

d(x, p) ≤ r}.
includes boundary

Convergent sequences in a metric space

Definition 7. sequence of points in a metric space
A sequence of points in a metric space E is a function f : N→ E.

Let (pn) be a sequence of points in a metric space E.
Then (pn) is a function from N to E that maps n 7→ pn for all n ∈ N.
The points p1, p2, p3, ..., pn, ... are the terms of the sequence.
pn is the nth term of the sequence and pn ∈ E for all n ∈ N.

Definition 8. constant sequence in a metric space
Let p be a point of a metric space E.
Let (pn) be a sequence of points in E such that pn = p for all n ∈ N.
Then (pn) is called a constant sequence.

Definition 9. limit of a sequence of points in a metric space
Let (pn) be a sequence of points in a metric space E.
A point L ∈ E is a limit of (pn) iff for every positive real ε, there exists a

natural number N such that d(pn, L) < ε whenever n > N .
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In symbols, L ∈ E is a limit of (pn) iff
(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → d(pn, L) < ε).

Theorem 10. uniqueness of a sequence limit
A sequence of points in a metric space has at most one limit.

Let (pn) be a sequence of points in a metric space E.
Either a limit of (pn) exists or does not exist in E, so either (pn) is convergent

or (pn) is divergent.
If (pn) has a limit, then the limit is unique.
Thus, if (pn) is convergent, then its limit is unique.
Therefore, a convergent sequence has a unique limit.
The statement ‘a sequence (pn) converges to a point L ∈ E’ is denoted by

either pn → L or limn→∞ pn = L.
If (pn) does not have a limit, limn→∞ pn does not exist.
Therefore, if (pn) is a divergent sequence, then limn→∞ pn does not exist.

Let (pn) be a sequence of points in a metric space E.
We say that (pn) converges to a point L ∈ E, denoted limn→∞ pn = L, iff

for every positive real ε, there exists a natural number N such that d(pn, L) < ε
whenever n > N .

Therefore limn→∞ pn = L iff
(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → d(pn, L) < ε).

Limits

The limit concept expresses the idea that for a given function f , f(x) is arbi-
trarily close to some point L if x is sufficiently close to some point a.

Definition 11. ε− δ definition of a limit of a function at a point
Let (M1, d1) and (M2, d2) be metric spaces.
Let E ⊂M1.
Let f : E →M2 be a function.
Let a be an accumulation point of E.
A point L ∈M2 is a limit of f at a iff for every ε > 0, there exists δ > 0

such that d2(f(x), L) < ε whenever x 6= a and d1(x, a) < δ.

Therefore, L ∈M2 is a limit of f at a iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ d1(x, a) < δ → d2(f(x), L) < ε).
Therefore, L ∈M2 is not a limit of f at a iff
(∃ε > 0)(∀δ > 0)(∃x ∈ E)(x 6= a ∧ d1(x, a) < δ ∧ d2(f(x), L) ≥ ε).

The logical structure of this definition implies that δ is a function of ε, so δ
depends on ε.
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Let (M1, d1) and (M2, d2) be metric spaces.
Let E ⊂M1.
Let f : E →M2 be a function.
Let a be an accumulation point of E.
Suppose L ∈M2 is a limit of f at a.
Then for every ε > 0, there exists δ > 0 such that for all x ∈ E, if x 6= a and

d1(x, a) < δ, then d2(f(x), L) < ε.
Observe that

(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ d1(x, a) < δ → d2(f(x), L) < ε) ⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ x ∈ N(a; δ)→ f(x) ∈ N(L; ε)) ⇔

(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x ∈ N ′(a; δ)→ f(x) ∈ N(L; ε)) ⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ E ∩N ′(a; δ))(f(x) ∈ N(L; ε)).

Therefore, L ∈M2 is a limit of f at a iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ d1(x, a) < δ → d2(f(x), L) < ε)
iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E ∩N ′(a; δ))(f(x) ∈ N(L; ε)).

Theorem 12. uniqueness of a limit of a function
Let (M1, d1) and (M2, d2) be metric spaces.
Let E ⊂M1.
Let f : E →M2 be a function.
Let a be an accumulation point of E.
Then the limit of f at a, if it exists, is unique.

Let (M1, d1) and (M2, d2) be metric spaces.
Let E ⊂M1.
Let f : E →M2 be a function.
Let a be an accumulation point of E.
Suppose a limit of f at a exists.
Since the limit of a function is unique, we denote the limit of f at a by

limx→a f(x).
If L ∈M2 is the limit of f at a, then we say limx→a f(x) = L.
Therefore, L ∈M2 is a limit of f at a iff limx→a f(x) = L iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ d1(x, a) < δ → d2(f(x), L) < ε)
iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E ∩N ′(a; δ))(f(x) ∈ N(L; ε))

Let (M1, d1) and (M2, d2) be metric spaces.
Let E ⊂M1.
Let f : E →M2 be a function.
Let a be an accumulation point of E.
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Suppose the limit of f at a exists.
Then there exists L ∈M2 such that limx→a f(x) = L.
Thus, (∃L ∈M2)(limx→a f(x) = L).
Observe that limx→a f(x) = L iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ d1(x, a) < δ → d2(f(x), L) < ε)
iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E ∩N ′(a; δ))(f(x) ∈ N(L; ε)).

Suppose the limit of f at a does not exist.
Then there is no L ∈M2 such that limx→a f(x) = L.
Thus, ¬(∃L ∈M2)(limx→a f(x) = L).
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