Complex Analysis Examples

Jason Sass

May 24, 2025

Complex Number System \mathbb{C}

Example 1. negative square root

Observe that

$$\begin{array}{rcl} \sqrt{2} \cdot i & = & \sqrt{2} \cdot \sqrt{-1} \\ & = & \sqrt{2} \cdot (-1) \\ & = & \sqrt{-2}. \end{array}$$

Example 2. origin of the complex plane

Observe that 0 = 0 + 0i = 0i is the origin (0, 0) of the complex plane.

Example 3. imaginary number i

Observe that i = 0 + 1i = 1i is the point (0, 1) of the complex plane.

Example 4. unit of the complex plane

Observe that 1 = 1 + 0i is the point (1, 0) of the complex plane.

- Example 5. modulus of the imaginary number iSince i = 0 + 1i, then $|i| = \sqrt{0^2 + 1^2} = 1$, so |i| = 1.
- **Example 6. equality of complex numbers** Observe that z = 0 iff z = 0 + 0i.

Example 7. addition of complex numbers

Let $z_1 = 2 + 3i$ and $z_2 = 4 + 5i$. The sum is $z_1 + z_2 = (2 + 3i) + (4 + 5i) = 2 + 3i + 4 + 5i = 6 + 8i$.

Example 8. subtraction of complex numbers

Let $z_1 = 2 + 3i$ and $z_2 = 4 + 5i$. The difference is $z_1 - z_2 = (2 + 3i) - (4 + 5i) = 2 + 3i - 4 - 5i = -2 - 2i$.

Example 9. multiplication of complex numbers

Let $z_1 = 2 + 3i$ and $z_2 = 4 + 5i$. The product is $z_1 \cdot z_2 = (2+3i)(4+5i) = 8+10i+12i+15(i^2) = 8+22i-15 = -7+22i$.

Example 10. complex conjugate

The complex conjugate of 2 + 3i is 2 - 3i.

The complex conjugate of 2 - 3i is 2 + 3i.

These two complex numbers are mirror images of each other with respect to the x axis of the complex plane.

Example 11. multiplicative inverse of a nonzero complex number

Let z = 2 + 3i. Since $2 \neq 0$ and $3 \neq 0$, then $2 + 3i \neq 0 + 0i$, so $z \neq 0$. Observe that

$$\begin{aligned} \frac{1}{z} &= \frac{1}{2+3i} \\ &= \frac{1}{2+3i} \cdot \frac{2-3i}{2-3i} \\ &= \frac{2-3i}{(2+3i)(2-3i)} \\ &= \frac{2-3i}{4-9i^2} \\ &= \frac{2-3i}{4+9} \\ &= \frac{2-3i}{13} \\ &= \frac{2-3i}{13}. \end{aligned}$$

Therefore, the multiplicative inverse of 2 + 3i is $\frac{2}{13} - \frac{3i}{13}$.

Example 12. division of complex numbers

Let $z_1 = 2 + 3i$ and $z_2 = 4 + 5i$. Observe that

$$\frac{z_1}{z_2} = \frac{2+3i}{4+5i}$$

$$= \frac{2+3i}{4+5i} \cdot \frac{4-5i}{4-5i}$$

$$= \frac{(2+3i)(4-5i)}{(4+5i)(4-5i)}$$

$$= \frac{8-10i+12i+15}{16+25}$$

$$= \frac{23+2i}{41}$$

$$= \frac{23}{41} + \frac{2i}{41}.$$

Therefore, the quotient is $\frac{z_1}{z_2} = \frac{23}{41} + \frac{2i}{41}$.

Example 13. \mathbb{C} is not an ordered field.

 $(\mathbb{C}, +, \cdot)$ is not an ordered field.

Proof. Suppose $(\mathbb{C}, +, \cdot)$ is an ordered field. Then there is a subset P of positive elements of \mathbb{C} and $1 \in P$. Since $i \in \mathbb{C}$ and $i \neq 0$, then $i^2 \in P$. Since $i^2 = -1$, then $-1 \in P$. Hence, we have $1 \in P$ and $-1 \in P$, a violation of trichotomy. Therefore, $(\mathbb{C}, +, \cdot)$ is not an ordered field.

Hence, there is no way to order the complex numbers. Therefore, no order relation can be defined on \mathbb{C} .

Example 14. solve equation $z^n = a + bi$ in \mathbb{C} Compute the solution set of the equation $z^2 = i$.

Solution. Let S be the solution set to the equation $z^2 = i$. Then $S = \{z \in \mathbb{C} : z^2 = i\}$. Let $z \in S$. Then $z \in \mathbb{C}$ and $z^2 = i$. Since $z \in \mathbb{C}$, then there exist $|z| \in \mathbb{R}$ and $\theta \in \mathbb{R}$ such that $z = |z|cis(\theta)$. The polar representation of i is $i = 1 \cdot cis(\frac{\pi}{2})$. Observe that

$$1 \cdot cis(\frac{\pi}{2}) = i$$

= z^2
= $(|z|cis(\theta))^2$
= $|z|^2 \cdot (cis(\theta))^2$
= $|z|^2 \cdot cis(2\theta).$

Hence, $1 \cdot cis(\frac{\pi}{2}) = |z|^2 \cdot cis(2\theta)$, so $|z|^2 = 1$, and the angles $\frac{\pi}{2}$ and 2θ differ by an integer multiple of 2π .

Since $|z|^2 = 1$, then |z| = 1.

Since the angles $\frac{\pi}{2}$ and 2θ differ by an integer multiple of 2π , then $2\theta - \frac{\pi}{2} = 2n\pi$ for any integer n.

Thus, $2\theta = 2n\pi + \frac{\pi}{2}$, so $\theta = n\pi + \frac{\pi}{4}$ for any integer *n*. On the interval $[0, 2\pi)$, $\theta = \frac{\pi}{4}, \frac{5\pi}{4}$.

Since $z = |z|cis(\theta)$, and |z| = 1, and either $\theta = \frac{\pi}{4}$ or $\theta = \frac{5\pi}{4}$, then either $z = cis(\frac{\pi}{4})$ or $z = cis(\frac{5\pi}{4})$. Observe that $cis(\frac{\pi}{4}) = cos(\frac{\pi}{4}) + i sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$. Observe that $cis(\frac{5\pi}{4}) = cos(\frac{5\pi}{4}) + i sin(\frac{5\pi}{4}) = \frac{-1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$.

Observe that $cis(\frac{5\pi}{4}) = cos(\frac{5\pi}{4}) + i sin(\frac{5\pi}{4}) = \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i.$

Hence, either
$$z = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$
 or $z = \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$, so $z \in \{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\}$.
Therefore, $z \in S$ implies $z \in \{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\}$, so $S \subset \{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\}$.

We prove $\{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\} \subset S.$ Let $\alpha = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and $\beta = \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i.$ Then $\alpha \in \mathbb{C}$ and $\beta \in \mathbb{C}$. We must prove $\alpha \in S$ and $\beta \in S.$

We prove $\alpha \in S$. Observe that

$$\alpha^{2} = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{2}$$
$$= \frac{1}{2} + \frac{2i}{2} + \frac{i^{2}}{2}$$
$$= \frac{1}{2} + i - \frac{1}{2}$$
$$= i.$$

Hence, $\alpha^2 = i$. Since $\alpha \in \mathbb{C}$ and $\alpha^2 = i$, then $\alpha \in S$.

We prove $\beta \in S$. Observe that

$$\beta^{2} = \left(\frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)^{2}$$
$$= \frac{1}{2} + \frac{2i}{2} + \frac{i^{2}}{2}$$
$$= \frac{1}{2} + i - \frac{1}{2}$$
$$= i.$$

Hence, $\beta^2 = i$. Since $\beta \in \mathbb{C}$ and $\beta^2 = i$, then $\beta \in S$.

Since $\alpha \in S$ and $\beta \in S$, then $\{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\} \subset S$.

Since
$$S \subset \{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\}$$
 and $\{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\} \subset S$, then
 $S = \{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\}.$
Therefore, the solution set to the equation $z^2 = i$ is $\{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, \frac{-1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\}.$