# Complex Analysis Notes 

Jason Sass

July 16, 2023

## Sets of Numbers

$\mathbb{N}=$ set of all natural numbers $=\{1,2,3, \ldots\}$
$\mathbb{Z}=$ set of all integers $=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
$\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z} \wedge n \neq 0\right\}=$ set of all rational numbers
$\mathbb{R}=$ set of all real numbers
$\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)=$ set of all nonzero real numbers
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=(0, \infty)=$ set of all positive real numbers
$\mathbb{C}=\{x+y i: x, y \in \mathbb{R}\}=$ set of all complex numbers
$\mathbb{C}^{*}=\{z \in \mathbb{C}: z \neq 0\}=$ set of all nonzero complex numbers
Number system relationships
$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

## Complex Number System $\mathbb{C}$

Definition 1. imaginary unit
The imaginary unit $i$ is the number whose square is -1 .
Therefore $i=\sqrt{-1}$ and $i^{2}=-1$.

## Definition 2. square root of a negative number

Let $r \in \mathbb{R}^{+}$.
Define $\sqrt{-r}=\sqrt{r} \cdot i$.
Definition 3. complex number
Let $z=x+y i$, where $x, y \in \mathbb{R}$.
We call $z$ a complex number with real part $x$ and imaginary part $y$.
Definition 4. complex number parts
Let $z=x+y i$, where $x, y \in \mathbb{R}$.
Define $\operatorname{Re}(z)=x$ to denote the real part of $z$.
Define $\operatorname{Im}(z)=y$ to denote the imaginary part of $z$.
Definition 5. modulus of a complex number
Let $z=x+y i$, where $x, y \in \mathbb{R}$.
The modulus(absolute value) of $z$ is $|z|=\sqrt{x^{2}+y^{2}}$.

Let $x, y \in \mathbb{R}$.
Then $|x+y i|=\sqrt{x^{2}+y^{2}}$.
The modulus of a complex number $x+y i$ is the distance between the origin and the point $(x, y)$ in the complex plane.

The distance is obtained using the Pythagorean theorem.
The modulus of a complex number is the magnitude of the vector representing $x+y i$.

Since $i=0+i$, then $|i|=\sqrt{0^{2}+1^{2}}=1$, so $|i|=1$.

## Definition 6. Polar representation of a complex number

Let $x, y \in \mathbb{R}$.
Let $z=x+y i$ be a complex number with modulus $|z|=\sqrt{x^{2}+y^{2}}$.
Let $\theta$ be the counter-clockwise angle made with the positive $x$ axis and the line segment from the origin to the point $(x, y)$.

Then $x=|z| \cos \theta$ and $y=|z| \sin \theta$.
The angle $\theta$ is the argument of $z$ and $\theta$ is in the interval $[0,2 \pi)$.
Let $x, y \in \mathbb{R}$.
Let $z=x+y i$ and $|z|=\sqrt{x^{2}+y^{2}}$.
Then $x=|z| \cos \theta$ and $y=|z| \sin \theta$.
Observe that

$$
\begin{aligned}
z & =x+y i \\
& =|z| \cos \theta+(|z| \sin \theta) i \\
& =|z|(\cos \theta+i \sin \theta) .
\end{aligned}
$$

Therefore the polar form of $z$ is $z=|z| \cdot(\cos \theta+i \sin \theta)$.
Observe that $\tan \theta=\frac{y}{x}$ and $|z|^{2}=x^{2}+y^{2}$.
In general, a nonzero complex number can be represented by $r \cdot(\cos \theta+i \sin \theta)$ for some $r, \theta \in \mathbb{R}$ and $r>0$.

## Definition 7. equality of complex numbers

Let $z=a+b i$, where $a, b \in \mathbb{R}$.
Let $w=c+d i$, where $c, d \in \mathbb{R}$.
Then $z=w$ iff $a=c$ and $b=d$.
Two complex numbers are equal whenever the real parts are equal and the imaginary parts are equal.

The complex number $z=0$ iff $z=0+0 i$ iff $z=(0,0)$ iff $z$ is the origin of the complex plane.

Two complex numbers in polar form are equal iff they have the same magnitude and their argument(angle) differs by an integer multiple of $2 \pi$.

## Definition 8. equality of nonzero complex numbers in polar form

Let $z=r_{1} \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ for some $r_{1}, \theta_{1} \in \mathbb{R}$ and $r_{1}>0$.
Let $w=r_{2} \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ for some $r_{2}, \theta_{2} \in \mathbb{R}$ and $r_{2}>0$.
Then $z=w$ iff $r_{1}=r_{2}$ and $\theta_{1}=\theta_{2}+2 \pi k$ for some integer $k$.
Definition 9. addition over $\mathbb{C}$
Let $z=a+b i$, where $a, b \in \mathbb{R}$.
Let $w=c+d i$, where $c, d \in \mathbb{R}$.
The sum is $z+w=(a+c)+(b+d) i$.
To add complex numbers, add the corresponding real and imaginary parts.
Proposition 10. Addition is a binary operation on $\mathbb{C}$.
Since addition is a binary operation on $\mathbb{C}$, then $\mathbb{C}$ is closed under addition. Let $z, w \in \mathbb{C}$.
Then $z+w \in \mathbb{C}$.
Theorem 11. algebraic properties of addition over $\mathbb{C}$

1. $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (associative)
2. $z_{1}+z_{2}=z_{2}+z_{1}$ for all $z_{1}, z_{2} \in \mathbb{C}$. (commutative)
3. $z+0=0+z=z$ for all $z \in \mathbb{C}$. (additive identity)
4. $z+(-z)=(-z)+z=0$ for all $z \in \mathbb{C}$. (additive inverses)

The additive identity is $0=0+0 i \in \mathbb{C}$.
Let $z=x+y i$ for some $x, y \in \mathbb{R}$.
The additive inverse of $z$ is $-z=-x-y i \in \mathbb{C}$.
Adding complex numbers is similar to vector addition in the complex plane.

## Definition 12. subtraction over $\mathbb{C}$

Let $z, w \in \mathbb{C}$.
The difference is defined by $z-w=z+(-w)$.
Let $z=a+b i$, where $a, b \in \mathbb{R}$.
Let $w=c+d i$, where $c, d \in \mathbb{R}$.
Then $z-w=(a-c)+(b-d) i$.
Subtraction is the inverse of addition.
To subtract complex numbers, subtract the corresponding real and imaginary parts.

## Definition 13. multiplication over $\mathbb{C}$

Let $z=a+b i$, where $a, b \in \mathbb{R}$.
Let $w=c+d i$, where $c, d \in \mathbb{R}$.
The product is $z w=(a c-b d)+(a d+b c) i$.
Proposition 14. Multiplication is a binary operation on $\mathbb{C}$.

Since multiplication is a binary operation on $\mathbb{C}$, then $\mathbb{C}$ is closed under multiplication.

Let $z, w \in \mathbb{C}$.
Then $z \cdot w \in \mathbb{C}$.
Theorem 15. algebraic properties of multiplication over $\mathbb{C}$

1. $z_{1} \cdot\left(z_{2} \cdot z_{3}\right)=\left(z_{1} \cdot z_{2}\right) \cdot z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (associative)
2. $z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$ for all $z_{1}, z_{2} \in \mathbb{C}$. (commutative)
3. $z \cdot 1=1 \cdot z=z$ for all $z \in \mathbb{C}$. (multiplicative identity)
4. $z \cdot 0=0 \cdot z=0$ for all $z \in \mathbb{C}$.
5. $z_{1} \cdot\left(z_{2}+z_{3}\right)=z_{1} \cdot z_{2}+z_{1} \cdot z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (left distributive)
6. $\left(z_{1}+z_{2}\right) \cdot z_{3}=z_{1} \cdot z_{3}+z_{2} \cdot z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (right distributive)

The multiplicative identity is $1=1+0 i \in \mathbb{C}$.

## Proposition 16. Multiplication of complex numbers in polar form

Let $z_{1}=\left|z_{1}\right| \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=\left|z_{2}\right| \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers in polar form.

The product is $z_{1} \cdot z_{2}=\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$.
Multiplication of any two complex numbers corresponds to multiplying their moduli and adding their angles.

## Definition 17. complex conjugate

A complex conjugate of a complex number is another complex number with the an equal real part and an imaginary part equal in magnitude but opposite in sign.

The complex conjugate of a complex number $z$ is denoted $\bar{z}$.
Let $x, y \in \mathbb{R}$.
The complex conjugate of $z=x+y i$ is $\bar{z}=x-y i$.
The complex conjugate of $z=x-y i$ is $\bar{z}=x+y i$.
The complex conjugate of a complex number is its mirror image with respect to the $x$ axis.

Division by zero is not defined.
Hence, if $z=0$, then $\frac{1}{z} \notin \mathbb{C}$.
Therefore, if $\frac{1}{z} \in \mathbb{C}$, then $z \neq 0$.
Proposition 18. Multiplicative inverse of a complex number
Let $z \in \mathbb{C}$ and $z \neq 0$.
The multiplicative inverse of $z$ is $\frac{1}{z} \in \mathbb{C}^{*}$ and $\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$ and $z \cdot \frac{1}{z}=\frac{1}{z} \cdot z=1$.
Let $z \in \mathbb{C}$.
If $z \neq 0$, then the reciprocal $\frac{1}{z}$ exists and $\frac{1}{z} \in \mathbb{C}$.
Hence, if $z \neq 0$, then $\frac{1}{z} \in \mathbb{C}$.
If $\frac{1}{z} \in \mathbb{C}$, then $z \neq 0$.
Therefore, $\frac{1}{z} \in \mathbb{C}$ iff $z \neq 0$.

Definition 19. division over $\mathbb{C}$
Let $z, w \in \mathbb{C}$ and $w \neq 0$.
The quotient is defined by $\frac{z}{w}=z \cdot \frac{1}{w}$.
Let $z=a+b i$, where $a, b \in \mathbb{R}$.
Let $w=c+d i$, where $c, d \in \mathbb{R}$ and $w \neq 0$.
Then

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{z}{w} \\
& =\frac{z}{w} \cdot \frac{\bar{w}}{\bar{w}} \\
& =\frac{z \cdot \bar{w}}{w \cdot \bar{w}} \\
& =\frac{z \cdot \bar{w}}{|w|^{2}}
\end{aligned}
$$

Division is the inverse of multiplication.
To divide complex numbers, multiply the quotient by the conjugate of the denominator, as shown above.

## Proposition 20. Division of complex numbers in polar form

Let $z_{1}=\left|z_{1}\right| \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=\left|z_{2}\right| \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers in polar form with $z_{2} \neq 0$.

The quotient is $\frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$.
Division of two complex numbers corresponds to dividing their moduli and subtracting their angles.

Proposition 21. Properties of complex modulus
Let $z \in \mathbb{C}$. Then

1. $|z| \in \mathbb{R}$ and $|z| \geq 0$.
2. $|z|=0$ iff $z=0$.
3. $|-z|=|z|$.
4. $|\bar{z}|=|z|$.
5. $|z w|=|z| \cdot|w|$ for all $z, w \in \mathbb{C}$.
6. $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$ for all $z, w \in \mathbb{C}$ and $w \neq 0$.
7. $\left|z^{n}\right|=|z|^{n}$ for all $n \in \mathbb{Z}^{+}$.
8. $|z+w| \leq|z|+|w|$ for all $z, w \in \mathbb{C}$ (triangle inequality)
9. $|z-w| \geq||z|-|w||$ for all $z, w \in \mathbb{C}$ (reverse triangle inequality)

Proposition 22. Properties of complex conjugate

1. $\operatorname{Re}(\bar{z})=\operatorname{Re}(z)$ and $\operatorname{Im}(\bar{z})=-\operatorname{Im}(z)$ for all $z \in \mathbb{C}$.
2. $\overline{\bar{z}}=z$ for all $z \in \mathbb{C}$. (conjugate of a conjugate)
3. $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ for all $z \in \mathbb{C}$.
4. $\operatorname{Im}(z)=\frac{z^{2}-\bar{z}}{2 i}$ for all $z \in \mathbb{C}$.
5. $z \cdot \bar{z}=|z|^{2}$ for all $z \in \mathbb{C}$. (Product of complex conjugates is an absolute square.)
6. $\operatorname{Re}(\alpha \cdot z)=\alpha \cdot \operatorname{Re}(z)$ and $\operatorname{Im}(\alpha \cdot z)=\alpha \cdot \operatorname{Im}(z)$ for all $\alpha \in \mathbb{R}, z \in \mathbb{C}$. (scalar multiple)
7. $\overline{z+w}=\bar{z}+\bar{w}$ for all $z, w \in \mathbb{C}$. (conjugate of sum is sum of conjugates)
8. $\overline{z-w}=\bar{z}-\bar{w}$ for all $z, w \in \mathbb{C}$. (conjugate of difference is difference of conjugates)
9. $\overline{z \cdot w}=\bar{z} \cdot \bar{w}$ for all $z, w \in \mathbb{C}$. (conjugate of product is product of conjugates)
10. $\frac{\bar{z}}{w}=\frac{\bar{z}}{\bar{w}}$ for all $z, w \in \mathbb{C}, w \neq 0$. (conjugate of quotient is quotient of conjugates)

Theorem 23. DeMoivre formula
For all $\theta \in \mathbb{R}$ and all $n \in \mathbb{Z}^{+}$, the following identity is true.
$(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$.
Let $z$ be a nonzero complex number in polar form and $n \in \mathbb{Z}^{+}$.
Then $z=r(\cos \theta+i \sin \theta)$ for some $r \in \mathbb{R}^{+}$and $\theta \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
z^{n} & =[r(\cos \theta+i \sin \theta)]^{n} \\
& =r^{n}(\cos \theta+i \sin \theta)^{n} \\
& =r^{n}(\cos (n \theta)+i \sin (n \theta)) .
\end{aligned}
$$

## Proposition 24. Arithmetic operations on complex numbers in polar form

Multiplication

1. $\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}$. (multiply absolute values, add angles)

Reciprocal
2. $\frac{1}{r e^{i \theta}}=\left(\frac{1}{r}\right) e^{-i \theta}$.

Division
3. $\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\left(\frac{r_{1}}{r_{2}}\right) e^{i\left(\theta_{1}-\theta_{2}\right)}$. (divide absolute values, subtract angles)
$n^{\text {th }}$ power
4. $\left(r e^{i \theta}\right)^{n}=r^{n} \cdot e^{i n \theta}$ for any integer $n$.

Complex conjugation
5. $\overline{r e^{i \theta}}=r e^{-i \theta}$.

Theorem 25. $(\mathbb{C},+, \cdot)$ is a field.
Additive identity is $0=0+0 i$.
Let $x, y \in \mathbb{R}$.
Additive inverse of $z=x+y i$ is $-z=-x-y i$.
Multiplicative identity is $1=1+0 i$.
Multiplicative inverse of $z \in \mathbb{C}^{*}$ is $\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$, where $\bar{z}$ is the complex conjugate of $z$ and $|z|$ is the modulus of $z$.

Example 26. $\mathbb{C}$ is not an ordered field.
$(\mathbb{C},+, \cdot)$ is not an ordered field.

Proof. Suppose $(\mathbb{C},+, \cdot)$ is an ordered field.
Then there is a subset $P$ of positive elements of $\mathbb{C}$ and $1 \in P$.
Since $i \in \mathbb{C}$ and $i \neq 0$, then $i^{2} \in P$.
Since $i^{2}=-1$, then $-1 \in P$.
Hence, we have $1 \in P$ and $-1 \in P$, a violation of trichotomy.
Therefore, $(\mathbb{C},+, \cdot)$ is not an ordered field.
Hence, there is no way to order the complex numbers.
Therefore, no order relation can be defined on $\mathbb{C}$.

## Complex exponential function

Proposition 27. existence and uniqueness of complex exponential function

There is a unique function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f^{\prime}(z)=f(z)$ and $f(0)=1$.

## Proposition 28. Properties of complex exponential function

The function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=e^{z}$ for all $z \in \mathbb{C}$ has the following properties.

1. The derivative of $e^{z}$ is $e^{z}$.
2. $e^{0}=1$.
3. $e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.
4. $\left(e^{z}\right)^{n}=e^{n z}$ for all $z, \in \mathbb{C}$ and for all $n \in \mathbb{Z}$.

Theorem 29. Euler's formula
The function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=e^{z}$ for all $z \in \mathbb{C}$ has the following property:
$e^{i \theta}=\cos \theta+i \sin \theta$ for all $\theta \in \mathbb{R}$.
Since $e^{i \pi}=\cos \pi+i \sin \pi=-1+i(0)=-1$, then $e^{i \pi}=-1$.
Therefore, $e^{i \pi}+1=0$. (Euler's identity)
Corollary 30. $\left|e^{i \theta}\right|=1$ for all $\theta \in \mathbb{R}$.
REMOVE THE UN-NEEDED ITEMS FROM BELOW TO CLEAN UP OUR complex analysis notes.

## Absolute value in an ordered field

The absolute value of an element measures size(magnitude), really it's distance from the origin.

Definition 31. absolute value in an ordered field
Let $F$ be an ordered field.
Let $x \in F$.
The absolute value of $x$, denoted $|x|$, is defined by the rule

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

The absolute value in an ordered field $F$ is a function from $F$ to $F$.
Observe that $|0|=0$.
Since $1>0$, then $|1|=1$.
Lemma 32. Let $F$ be an ordered field. Let $x \in F$.

1. If $x<0$, then $\frac{1}{x}<0$.
2. If $x \neq 0$, then $\left|\frac{1}{x}\right|=\frac{1}{|x|}$.

Theorem 33. arithmetic operations and absolute value
Let $F$ be an ordered field. For all $a, b \in F$

1. $|a b|=|a||b|$.
2. if $b \neq 0$, then $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$.
3. $|a|^{2}=a^{2}$.
4. if $a \neq 0$, then $\left|a^{n}\right|=|a|^{n}$ for all $n \in \mathbb{Z}$.

Theorem 34. properties of the absolute value function
Let $(F,+, \cdot, \leq)$ be an ordered field.
Let $a, k \in F$ and $k>0$. Then

1. $|a| \geq 0$.
2. $|a|=0$ iff $a=0$.
3. $|-a|=|a|$.
4. $-|a| \leq a \leq|a|$.
5. $|a|<k$ iff $-k<a<k$.
6. $|a|>k$ iff $a>k$ or $a<-k$.
7. $|a|=k$ iff $a=k$ or $a=-k$.

## Ordered field properties of $\mathbb{R}$

We assume there exists a complete ordered field and call it $\mathbb{R}$.
Axiom 35. ( $\mathbb{R},+, \cdot, \leq)$ is a complete ordered field.
The set of real numbers $\mathbb{R}$ with the operations of addition and multiplication and the relation $\leq$ defined over $\mathbb{R}$ is defined to be a complete ordered field.

Therefore, $(\mathbb{R},+, \cdot, \leq)$ is defined to be a complete ordered field.

Since $(\mathbb{R},+, \cdot, \leq)$ is a field, then the field axioms hold for $\mathbb{R}$.

Field axioms of $(\mathbb{R},+, \cdot, \leq)$
A1. $x+y \in \mathbb{R}$ for all $x, y \in \mathbb{R}$. (closure under addition)
A2. $(x+y)+z=x+(y+z)$ for all $x, y, z \in \mathbb{R}$. (addition is associative)
A3. $x+y=y+x$ for all $x, y \in \mathbb{R}$. (addition is commutative)
A4. $(\exists 0 \in \mathbb{R})(\forall x \in \mathbb{R})(0+x=x+0=x)$. (existence of additive identity)
A5. $(\forall x \in \mathbb{R})(\exists-x \in \mathbb{R})(x+(-x)=-x+x=0)$. (existence of additive inverses)

M1. $x y \in \mathbb{R}$ for all $x, y \in \mathbb{R}$. (closure under multiplication)

M2. $(x y) z=x(y z)$ for all $x, y, z \in \mathbb{R}$. (multiplication is associative)
M3. $x y=y x$ for all $x, y \in \mathbb{R}$. (multiplication is commutative)
M4. $(\exists 1 \in \mathbb{R})(\forall x \in \mathbb{R})(1 \cdot x=x \cdot 1=x)$. (existence of multiplicative identity)
M5. $\left(\forall x \in \mathbb{R}^{*}\right)\left(\exists x^{-1} \in \mathbb{R}\right)\left(x x^{-1}=x^{-1} x=1\right)$. (existence of multiplicative inverses)

D1. $x(y+z)=x y+x z$ for all $x, y, z \in \mathbb{R}$. (multiplication is left distributive over addition)

D2. $(y+z) x=y x+z x$ for all $x, y, z \in \mathbb{R}$. (multiplication is right distributive over addition)

F1. $1 \neq 0$. (multiplicative identity is distinct from additive identity)
The additive identity of $\mathbb{R}$ is 0 .
The additive inverse of $x \in \mathbb{R}$ is $-x$.
The multiplicative identity of $\mathbb{R}$ is 1 .
The multiplicative inverse of $x \in \mathbb{R}^{*}$ is $\frac{1}{x} \in \mathbb{R}^{*}$.
Since $(\mathbb{R},+, \cdot, \leq)$ is a field, then $\mathbb{R}$ is an integral domain.
Therefore, $x y=0$ iff $x=0$ or $y=0$ for all $x, y \in \mathbb{R}$.
Equivalently, $x y \neq 0$ iff $x \neq 0$ and $y \neq 0$ for all $x, y \in \mathbb{R}$.
Therefore, the product of any two nonzero elements of $\mathbb{R}$ is nonzero.

Since $(\mathbb{R},+, \cdot, \leq)$ is a field, then $\mathbb{R}$ satisfies the multiplicative cancellation laws.

Therefore, if $x z=y z$ and $z \neq 0$, then $x=y$ for all $x, y, z \in \mathbb{R}$.

Since $(\mathbb{R},+, \cdot), \leq)$ is an ordered field, then there exists a nonempty subset $\mathbb{R}^{+}$ of $\mathbb{R}$ such that

OF1. $\mathbb{R}^{+}$is closed under addition. $\left(\forall a, b \in \mathbb{R}^{+}\right)\left(a+b \in \mathbb{R}^{+}\right)$.
OF2. $\mathbb{R}^{+}$is closed under multiplication. $\left(\forall a, b \in \mathbb{R}^{+}\right)\left(a b \in \mathbb{R}^{+}\right)$.
OF3. For every $r \in \mathbb{R}^{+}$exactly one of the following is true:
i. $r \in \mathbb{R}^{+}$
ii. $r=0$
iii. $-r \in \mathbb{R}^{+}$.

Definition 36. Let $\mathbb{R}^{+}$be the set of all positive real numbers.
Define the relation $<$ on $\mathbb{R}$ by $a<b$ iff $b-a \in \mathbb{R}^{+}$for all $a, b, \in \mathbb{R}$.
Define the relation $>$ on $\mathbb{R}$ by $a>b$ iff $b<a$ for all $a, b \in \mathbb{R}$.
Then $(\mathbb{R},+, \cdot,<)$ denotes the ordered field $(\mathbb{R},+, \cdot)$ with the relation $<$ defined over $\mathbb{R}$.

Definition 37. Let $(\mathbb{R},+, \cdot,<)$ be the ordered field of real numbers.
Define the relation $\leq$ on $\mathbb{R}$ by $a \leq b$ iff either $a<b$ or $a=b$ for all $a, b \in \mathbb{R}$. Define the relation $\geq$ on $\mathbb{R}$ by $a \geq b$ iff $b \leq a$ for all $a, b \in \mathbb{R}$.
Then $(\mathbb{R},+, \cdot, \leq)$ denotes the ordered field $(\mathbb{R},+, \cdot,<)$ with the relation $\leq$ defined over $\mathbb{R}$.

## Definition 38. sign of a real number

Let $x \in \mathbb{R}$.
$x$ is nonzero iff $x \neq 0$.
$x$ is positive iff $x>0$.
$x$ is negative iff $x<0$.
$x$ is non-negative iff $x \geq 0$.
$x$ is non-positive iff $x \leq 0$.
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x$ is positive $\}=\{x \in \mathbb{R}: x>0\}=(0, \infty)$.
$\mathbb{R}^{-}=\{x \in \mathbb{R}: x$ is negative $\}=\{x \in \mathbb{R}: x<0\}=(-\infty, 0)$.
$\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=\mathbb{R}^{+} \cup \mathbb{R}^{-}=(0, \infty) \cup(-\infty, 0)$.
Thus, if $x \in \mathbb{R}^{*}$ then either $x$ is positive or $x$ is negative.
$\left\{\mathbb{R}^{+}, \mathbb{R}^{-},\{0\}\right\}$ is a partition of $\mathbb{R}$.
$\left\{\mathbb{R}^{+}, \mathbb{R}^{-}\right\}$is a partition of $\mathbb{R}^{*}$.
Therefore, $\mathbb{R}=\mathbb{R}^{*} \cup\{0\}=\mathbb{R}^{+} \cup\{0\} \cup \mathbb{R}^{-}$.
Hence, an element $x \in \mathbb{R}$ is either positive or zero or negative.
Therefore, every real number is either positive, zero, or negative.
Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, the following are true:

1. If $x, y \in \mathbb{R}^{+}$, then $x+y \in \mathbb{R}^{+}$. ( $\mathbb{R}^{+}$is closed under + )
2. If $x, y \in \mathbb{R}^{+}$, then $x y \in \mathbb{R}^{+}$. ( $\mathbb{R}^{+}$is closed under $\cdot$ )
3. For every $x, y \in \mathbb{R}$, exactly one of the following is true (trichotomy):
$x>y, x=y, x<y$.
4. If $x<y$ and $y<z$, then $x<z$. ( $<$ is transitive)
5. If $x<y$, then $x+z<y+z$. (preserves order for addition)
6. If $x<y$ and $z>0$, then $x z<y z$. (preserves order for multiplication by a positive element)

## Example 39. density of $\mathbb{R}$

Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, then between any two distinct real numbers is another real number.

Therefore, if $a, b \in \mathbb{R}$ and $a<b$, then there exists $r \in \mathbb{R}$ such that $a<r<b$.
Example 40. $\mathbb{R}$ is infinite
Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, then $\mathbb{R}$ contains an infinite number of elements.

Therefore, there are infinitely many real numbers.

Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, then $\leq$ is a total order on $\mathbb{R}$.
Therefore, $(\mathbb{R}, \leq)$ is a total order, so $(\mathbb{R}, \leq)$ is a poset.
Since $\leq$ is a total order over $\mathbb{R}$, then the following are true:

1. $(\forall x \in \mathbb{R})(x \leq x)$ (reflexive)
2. $(\forall x, y \in \mathbb{R})([x \leq y \wedge y \leq x) \rightarrow(x=y)]$ (anti-symmetric)
3. $(\forall x, y, z \in \mathbb{R})(x \leq y \wedge y \leq z \rightarrow x \leq z)$ (transitive)
4. $(\forall x, y \in \mathbb{R})(x \leq y \vee y \leq x)$. (comparable)

Since $\leq$ is a total order on $\mathbb{R}$, then $(\mathbb{R}, \leq)$ is a linearly ordered set.

Since $\mathbb{R}$ is complete, then the Hasse diagram is a straight line with no holes, i.e., the real number line.

Therefore, $(\mathbb{R},+, \cdot, \leq)$ is a complete linearly ordered field.

## Boundedness of sets in an ordered field

Definition 41. upper bound of a subset of an ordered field Let $F$ be an ordered field.
Let $S \subset F$.
An element $b \in F$ is an upper bound of $S$ in $F$ iff $(\forall x \in S)(x \leq b)$.
The set $S$ is bounded above in $F$ iff $S$ has an upper bound in $F$.
Therefore, $S$ is bounded above in $F$ iff $(\exists b \in F)(\forall x \in S)(x \leq b)$.
The statement ' $S$ has an upper bound in $F$ ' means: $(\exists b \in F)(\forall x \in S)(x \leq$ b).

Observe that

$$
\begin{aligned}
\neg(\exists b \in F)(\forall x \in S)(x \leq b) & \Leftrightarrow(\forall b \in F)(\exists x \in S)(x \not \leq b) \\
& \Leftrightarrow \quad(\forall b \in F)(\exists x \in S)(x>b) .
\end{aligned}
$$

Therefore, the statement ' $S$ has no upper bound in $F$ ' means:
$(\forall b \in F)(\exists x \in S)(x>b)$.
Therefore $S$ has no upper bound in $F$ iff for each $b \in F$ there is some $x \in S$ such that $x>b$.

An element $b \in F$ is not an upper bound for $S$ iff there exists $x \in S$ such that $x>b$.

## Definition 42. lower bound of a subset of an ordered field

Let $F$ be an ordered field.
Let $S \subset F$.
An element $b \in F$ is a lower bound of $S$ in $F$ iff $(\forall x \in S)(b \leq x)$.
The set $S$ is bounded below in $F$ iff $S$ has a lower bound in $F$.
Therefore, $S$ is bounded below in $F$ iff $(\exists b \in F)(\forall x \in S)(b \leq x)$.
The statement ' $S$ has a lower bound in $F$ ' means: $(\exists b \in F)(\forall x \in S)(b \leq x)$.
Observe that

$$
\begin{aligned}
\neg(\exists b \in F)(\forall x \in S)(b \leq x) & \Leftrightarrow(\forall b \in F)(\exists x \in S)(b \not \leq x) \\
& \Leftrightarrow \quad(\forall b \in F)(\exists x \in S)(b>x)
\end{aligned}
$$

Therefore, the statement ' $S$ has no lower bound in $F$ ' means:
$(\forall b \in F)(\exists x \in S)(x<b)$.
Therefore $S$ has no lower bound in $F$ iff for each $b \in F$ there is some $x \in S$ such that $x<b$.

An element $b \in F$ is not a lower bound for $S$ iff there exists $x \in S$ such that $x<b$.

Definition 43. bounded subset of an ordered field
Let $F$ be an ordered field.
Let $S \subset F$.
The set $S$ is bounded in $F$ iff there exists $b \in F$ such that $|x| \leq b$ for all $x \in S$.

The set $S$ is unbounded in $F$ iff $S$ is not bounded in $F$.
In symbols, $S$ is bounded in $F$ iff $(\exists b \in F)(\forall x \in S)(|x| \leq b)$.
Therefore, $S$ is unbounded in $F$ iff $(\forall b \in F)(\exists x \in S)(|x|>b)$.

Let $S$ be a subset of an ordered field $F$.
Suppose $S$ is bounded in $F$.
Then there exists $B \in F$ such that $|x| \leq B$ for all $x \in S$.
Let $x \in S$.
Then $|x| \leq B$.
Since $|x| \geq 0$ and $B+1>B$, then $0 \leq|x| \leq B<B+1$.
Hence, $|x|<B+1$ and $0<B+1$.
Therefore, there exists $B+1>0$ such that $|x|<B+1$ for all $x \in S$.
Let $b=B+1$.
Then there exists $b>0$ such that $|x|<b$ for all $x \in S$.
Hence, if a set $S$ is bounded in an ordered field $F$, then there exists $b>0$ such that $|x|<b$ for all $x \in S$.

Therefore, if a set $S$ is bounded in an ordered field $F$, then there exists $b>0$ such that $-b<x<b$ for all $x \in S$.

Theorem 44. A subset $S$ of an ordered field $F$ is bounded in $F$ iff $S$ is bounded above and below in $F$.

Let $S \subset \mathbb{R}$.
Then $S$ is bounded in $\mathbb{R}$ iff $S$ is bounded above and below in $\mathbb{R}$.
Therefore, $S$ is bounded in $\mathbb{R}$ iff $S$ has an upper and lower bound in $\mathbb{R}$.
Observe that

$$
\begin{aligned}
(\exists m \in \mathbb{R})(\forall x \in S)(m \leq x) \wedge(\exists M \in \mathbb{R})(\forall x \in S)(x \leq M) & \Rightarrow \\
(\exists m \in \mathbb{R})(\exists M \in \mathbb{R})[(\forall x \in S)(m \leq x) \wedge(\forall x \in S)(x \leq M)] & \Rightarrow \\
(\exists m \in \mathbb{R})(\exists M \in \mathbb{R})[(\forall x \in S)(m \leq x \wedge x \leq M)] & \Rightarrow \\
(\exists m \in \mathbb{R})(\exists M \in \mathbb{R})[(\forall x \in S)(m \leq x \leq M)] &
\end{aligned}
$$

Therefore, $S$ is bounded in $\mathbb{R}$ iff there exist $m, M \in \mathbb{R}$ such that $m \leq x \leq M$ for all $x \in S$.

Since $S$ is bounded in $\mathbb{R}$ iff $S$ is bounded above and below in $\mathbb{R}$, then
$S$ is not bounded in $\mathbb{R}$ iff $S$ is not bounded above in $\mathbb{R}$ or $S$ is not bounded below in $\mathbb{R}$.

Therefore, $S$ is unbounded in $\mathbb{R}$ iff either $S$ has no upper bound in $\mathbb{R}$ or $S$ has no lower bound in $\mathbb{R}$.

Proposition 45. Every element of an ordered field is an upper and lower bound of $\emptyset$.

Let $F$ be an ordered field.
Let $x \in F$.
Then $x$ is an upper and lower bound of $\emptyset$.
Therefore, $\emptyset$ is bounded above and below in $F$.
Hence, $\emptyset$ is bounded in $F$.
Example 46. Every rational number is an upper and lower bound for the empty set.

Therefore, $\emptyset$ is bounded above and below in $\mathbb{Q}$.
Hence, $\emptyset$ is bounded in $\mathbb{Q}$.
Example 47. Every real number is an upper and lower bound for the empty set.

Therefore, $\emptyset$ is bounded above and below in $\mathbb{R}$.
Hence, $\emptyset$ is bounded in $\mathbb{R}$.

## Proposition 48. A subset of a bounded set is bounded.

Let $A$ be a bounded subset of an ordered field $F$.
If $B \subset A$, then $B$ is bounded in $F$.
Proposition 49. A union of bounded sets is bounded.
Let $A$ and $B$ be subsets of an ordered field $F$.
If $A$ and $B$ are bounded, then $A \cup B$ is bounded.
Definition 50. least upper bound of a subset of an ordered field
Let $F$ be an ordered field and $S \subset F$.
Then $\beta \in F$ is a least upper bound for $S$ in $F$ iff $\beta$ is the least element of the set of all upper bounds of $S$ in $F$.

Therefore $\beta \in F$ is a least upper bound of $S$ iff

1. $\beta$ is an upper bound for $S$ and
2. $\beta \leq M$ for every upper bound $M$ of $S$.
$\beta \leq M$ for every upper bound $M$ of $S$ iff
no element of $F$ less than $\beta$ is an upper bound of $S$ iff
every element of $F$ less than $\beta$ is not an upper bound of $S$ iff
if $\gamma<\beta$, then $\gamma$ is not an upper bound of $S$ which means
if $\gamma<\beta$, then there exists $x \in S$ such that $x>\gamma$ which means
for every $\gamma<\beta$, there exists $x \in S$ such that $x>\gamma$ which means
for every $\beta-\gamma>0$, there exists $x \in S$ such that $x>\beta-(\beta-\gamma)$ which
means
for every $\epsilon>0$, there exists $x \in S$ such that $x>\beta-\epsilon$.
Therefore, $\beta=\operatorname{lub}(S)$ iff
3. $(\forall x \in S)(x \leq \beta)$. $(\beta$ is an upper bound of $S)$
4. $(\forall \epsilon>0)(\exists x \in S)(x>\beta-\epsilon)$. $(\beta-\epsilon$ is not an upper bound of $S)$.

Theorem 51. uniqueness of least upper bound in an ordered field
A least upper bound of a subset of an ordered field, if it exists, is unique.
Let $S$ be a subset of an ordered field $F$.
The least upper bound (lub) of $S$ is called the supremum and is denoted $\sup S$.

Therefore,

1. $(\forall x \in S)(x \leq \sup S)$. $(\sup S$ is an upper bound of $S)$
2. $(\forall \epsilon>0)(\exists x \in S)(x>\sup S-\epsilon)$. $(\sup S-\epsilon$ is not an upper bound of $S)$.

Example 52. $\sup (0,1)=1$.
Definition 53. greatest lower bound of a subset of an ordered field
Let $F$ be an ordered field and $S \subset F$.
Then $\beta \in F$ is a greatest lower bound for $S$ in $F$ iff $\beta$ is the greatest element of the set of all lower bounds of $S$ in $F$.

Therefore $\beta \in F$ is a greatest lower bound of $S$ iff

1. $\beta$ is a lower bound for $S$ and
2. $M \leq \beta$ for every lower bound $M$ of $S$.
$M \leq \beta$ for every lower bound $M$ of $S$ iff
no element of $F$ greater than $\beta$ is a lower bound of $S$ iff
every element of $F$ greater than $\beta$ is not a lower bound of $S$ iff
if $\gamma>\beta$, then $\gamma$ is not a lower bound of $S$ which means
if $\gamma>\beta$, then there exists $x \in S$ such that $x<\gamma$ which means
for every $\gamma>\beta$, there exists $x \in S$ such that $x<\gamma$ which means
for every $\gamma-\beta>0$, there exists $x \in S$ such that $x<\beta+(\gamma-\beta)$ which means
for every $\epsilon>0$, there exists $x \in S$ such that $x<\beta+\epsilon$.
Therefore, $\beta=g l b(S)$ iff
3. $(\forall x \in S)(\beta \leq x)$. $(\beta$ is a lower bound of $S)$
4. $(\forall \epsilon>0)(\exists x \in S)(x<\beta+\epsilon)$. $(\beta+\epsilon$ is not a lower bound of $S)$.

Theorem 54. uniqueness of greatest lower bound in an ordered field A greatest lower bound of a subset of an ordered field, if it exists, is unique.
Let $S$ be a subset of an ordered field $F$.
The greatest lower bound (glb) of $S$ is called the infimum and is denoted $\inf S$.

Therefore,

1. $(\forall x \in S)(\inf S \leq x)$. $(\inf S$ is a lower bound of $S)$
2. $(\forall \epsilon>0)(\exists x \in S)(x<\inf S+\epsilon)$. (inf $S+\epsilon$ is not a lower bound of $S)$

Example 55. $\inf (0,1)=0$.
Proposition 56. 1. There is no least upper bound of $\emptyset$ in an ordered field.
2. There is no greatest lower bound of $\emptyset$ in an ordered field.

Let $F$ be an ordered field.
Then $\sup \emptyset$ does not exist in $F$ and $\inf \emptyset$ does not exist in $F$.
Therefore, $\sup \emptyset$ does not exist in $\mathbb{Q}$ and $\inf \emptyset$ does not exist in $\mathbb{Q}$ and $\sup \emptyset$
does not exist in $\mathbb{R}$ and $\inf \emptyset$ does not exist in $\mathbb{R}$.

Let $S \subset F$.
If $S=\emptyset$, then $\sup S$ does not exist, so if $\sup S$ exists, then $S \neq \emptyset$.
If $S=\emptyset$, then $\inf S$ does not exist, so if $\inf S$ exists, then $S \neq \emptyset$.
Theorem 57. approximation property of suprema and infima
Let $S$ be a subset of an ordered field $F$.

1. If $\sup S$ exists, then $(\forall \epsilon>0)(\exists x \in S)(\sup S-\epsilon<x \leq \sup S)$.
2. If $\inf S$ exists, then $(\forall \epsilon>0)(\exists x \in S)(\inf S \leq x<\inf S+\epsilon)$.

If $\sup S$ exists, then there is some element of $S$ arbitrarily close to $\sup S$.
If $\inf S$ exists, then there is some element of $S$ arbitrarily close to $\inf S$.
Proposition 58. Let $S$ be a subset of an ordered field $F$.
If $\sup S$ and $\inf S$ exist, then $\inf S \leq \sup S$.
Proposition 59. Let $S$ be a subset of an ordered field $F$.
Let $-S=\{-s: s \in S\}$.

1. If $\inf S$ exists, then $\sup (-S)=-\inf S$.
2. If $\sup S$ exists, then $\inf (-S)=-\sup S$.

Lemma 60. Let $S$ be a subset of an ordered field $F$.
Let $k \in F$.
Let $K=\{k\}$.
Let $k+S=\{k+s: s \in S\}$.
Let $K+S=\{k+s: k \in K, s \in S\}$. Then

1. $\sup K=k$.
2. $\inf K=k$.
3. $k+S=K+S$.

Proposition 61. additive property of suprema and infima
Let $A$ and $B$ be subsets of an ordered field $F$.
Let $A+B=\{a+b: a \in A, b \in B\}$.

1. If $\sup A$ and $\sup B$ exist, then $\sup (A+B)=\sup A+\sup B$.
2. If $\inf A$ and $\inf B$ exist, then $\inf (A+B)=\inf A+\inf B$.

Corollary 62. Let $S$ be a subset of an ordered field $F$.
Let $k \in F$.
Let $k+S=\{k+s: s \in S\}$.

1. If $\sup S$ exists, then $\sup (k+S)=k+\sup S$.
2. If $\inf S$ exists, then $\inf (k+S)=k+\inf S$.

Corollary 63. Let $A$ and $B$ be subsets of an ordered field $F$.
Let $A-B=\{a-b: a \in A, b \in B\}$.
If $\sup A$ and $\inf B$ exist, then $\sup (A-B)=\sup A-\inf B$.
Proposition 64. comparison property of suprema and infima
Let $A$ and $B$ be subsets of an ordered field $F$ such that $A \subset B$.

1. If $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$.
2. If $\inf A$ and $\inf B$ exist, then $\inf B \leq \inf A$.

Proposition 65. scalar multiple property of suprema and infima
Let $S$ be a subset of an ordered field $F$.
Let $k \in F$.
Let $k S=\{k s: s \in S\}$.

1. If $k>0$ and $\sup S$ exists, then $\sup (k S)=k \sup S$.
2. If $k>0$ and $\inf S$ exists, then $\inf (k S)=k \inf S$.
3. If $k<0$ and $\inf S$ exists, then $\sup (k S)=k \inf S$.
4. If $k<0$ and $\sup S$ exists, then $\inf (k S)=k \sup S$.

Proposition 66. sufficient conditions for existence of supremum and infimum in an ordered field

Let $S$ be a subset of an ordered field $F$.

1. If $\max S$ exists, then $\sup S=\max S$.
2. If $\min S$ exists, then $\inf S=\min S$.

Proposition 67. Let $S$ be a subset of an ordered field $F$.
Let $-S=\{-s: s \in S\}$.

1. If $\min S$ exists, then $\max (-S)=-\min S$.
2. If $\max S$ exists, then $\min (-S)=-\max S$.

Lemma 68. Let $A$ and $B$ be nonempty subsets of an ordered field $F$.
Then $u \in F$ is an upper bound of $A \cup B$ iff $u$ is an upper bound of $A$ and $B$.
Proposition 69. Let $A$ and $B$ be subsets of an ordered field $F$.
If $\sup A$ and $\sup B$ exist, then $\sup (A \cup B)=\max \{\sup A, \sup B\}$.
Let $A$ and $B$ be subsets of an ordered field $F$.
If $\max A$ and $\max B$ exist in $F$, then $\sup A=\max A$ and $\sup B=\max B$.
Thus, $\sup (A \cup B)=\max \{\max A, \max B\}$.
Lemma 70. Let $A$ and $B$ be subsets of an ordered field $F$.
If $\max A$ and $\max B$ exist in $F$, then $\max (A \cup B)=\max \{\max A, \max B\}$.
Theorem 71. Every nonempty finite subset of an ordered field has a maximum.
Let $S$ be a nonempty finite subset of an ordered field $F$.
Then max $S$ exists.
Since $S \subset F$ and $\max S$ exists, then $\sup S=\max S$.
Example 72. Every nonempty finite subset of $\mathbb{R}$ has a maximum.

## Complete ordered fields

Definition 73. complete ordered field
An ordered field $F$ is complete iff every nonempty subset of $F$ that is bounded above in $F$ has a least upper bound in $F$. Otherwise, $F$ is said to be incomplete.

## Axiom 74. $\mathbb{R}$ is Dedekind complete.

Every nonempty subset of $\mathbb{R}$ that is bounded above in $\mathbb{R}$ has a least upper bound in $\mathbb{R}$.

Let $S$ be a nonempty subset of $\mathbb{R}$ that is bounded above in $\mathbb{R}$.
Then $S$ has a least upper bound in $\mathbb{R}$.
Therefore $\sup S$ is the least upper bound of $S$ in $\mathbb{R}$.
Hence $\sup S \in \mathbb{R}$ and

1. $(\forall x \in S)(x \leq \sup S)$.
2. If $b$ is any upper bound of $S$, then $\sup S \leq b$.

Equivalently,

1. $(\forall x \in S)(x \leq \sup S)$.
2. $(\forall \epsilon>0)(\exists x \in S)(x>\sup S-\epsilon)$.

Theorem 75. greatest lower bound property in a complete ordered field
Every nonempty subset of a complete ordered field $F$ that is bounded below in $F$ has a greatest lower bound in $F$.

Example 76. Every nonempty set of real numbers that is bounded below in $\mathbb{R}$ has a greatest lower bound in $\mathbb{R}$.

Let $S$ be a nonempty subset of $\mathbb{R}$ that is bounded below in $\mathbb{R}$.
Then $S$ has a greatest lower bound in $\mathbb{R}$.
Therefore $\inf S$ is the greatest lower bound of $S$ in $\mathbb{R}$.
Hence $\inf S \in \mathbb{R}$ and

1. $(\forall x \in S)(\inf S \leq x)$.
2. If $b$ is any lower bound of $S$, then $b \leq \inf S$.

Equivalently,

1. $(\forall x \in S)(\inf S \leq x)$.
2. $(\forall \epsilon>0)(\exists x \in S)(x<\inf S+\epsilon)$.

Proposition 77. There is no rational number $x$ such that $x^{2}=2$.
Example 78. $\mathbb{Q}$ is not a complete ordered field.
The set $\left\{q \in \mathbb{Q}: q^{2}<2\right\}$ is bounded above in $\mathbb{Q}$, but does not have a least upper bound in $\mathbb{Q}$.

Therefore, $\mathbb{Q}$ is not a complete ordered field.
Since $\mathbb{Q}$ is not complete, then the Hasse diagram of $\mathbb{Q}$ is linear with 'holes'.
Thus, $\mathbb{Q}$ is incomplete and the number line for $\mathbb{Q}$ has holes, while $\mathbb{R}$ is complete and the number line for $\mathbb{R}$ does not have any holes.

Rework this section.
Proposition 79. Let $A$ and $B$ be subsets of $\mathbb{R}$ such that $\sup A$ and $\sup B$ exist in $\mathbb{R}$.

If $A \cap B \neq \emptyset$, then $\sup (A \cap B) \leq \min \{\sup A, \sup B\}$.
Moreover, if $A$ and $B$ are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup (A \cap B)=\min \{\sup A, \sup B\}$.

## Archimedean ordered fields

## Definition 80. Archimedean ordered field

An ordered field $F$ is Archimedean ordered iff $(\forall a \in F, b>0)(\exists n \in$ $\mathbb{N})(n b>a)$.

Let $F$ be an Archimedean ordered field.
Then regardless of how small $b$ is and how large $a$ is, a sufficient number of repeated additions of $b$ to itself will exceed $a$.

Equivalently, an ordered field $F$ is Archimedean ordered iff $(\forall a \in F, b>$ $0)(\exists n \in \mathbb{N})\left(n>\frac{a}{b}\right)$.
Theorem 81. Archimedean property of $\mathbb{Q}$
The field $(\mathbb{Q},+, \cdot, \leq)$ is Archimedean ordered.
Therefore, for all $q \in \mathbb{Q}, \epsilon>0$ there exists $n \in \mathbb{N}$ such that $n \epsilon>q$.
Theorem 82. Archimedean property of $\mathbb{R}$
A complete ordered field is necessarily Archimedean ordered.
Since $(\mathbb{R},+, \cdot, \leq)$ is a complete ordered field, then $(\mathbb{R},+, \cdot, \leq)$ is Archimedean ordered.

Therefore, for all $x \in \mathbb{R}, \epsilon>0$ there exists $n \in \mathbb{N}$ such that $n \epsilon>x$.
Theorem 83. $\mathbb{N}$ is unbounded in an Archimedean ordered field.
Let $F$ be an Archimedean ordered field.
Then for every $x \in F$, there exists $n \in \mathbb{N}$ such that $n>x$.
Since $(\mathbb{R},+, \cdot, \leq)$ is Archimedean ordered, then for every real number $x$, there exists a natural number $n$ such that $n>x$.

In symbols, $(\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(n>x)$.
Therefore, $\mathbb{N}$ is unbounded in $\mathbb{R}$.
Proposition 84. Let $F$ be an Archimedean ordered field.
For every positive $\epsilon \in F$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.
Since $\mathbb{R}$ is Archimedean ordered, then for every positive real $\epsilon$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.

In symbols, $(\forall \epsilon>0)(\exists n \in \mathbb{N})\left(\frac{1}{n}<\epsilon\right)$.
Example 85. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
Then $\max S=\sup S=1$ and $\min S$ does not exist and $\inf S=0$.
Lemma 86. Each real number lies between two consecutive integers
For each real number $x$ there is a unique integer $n$ such that $n \leq x<n+1$.
In symbols, $(\forall x \in \mathbb{R})(\exists!n \in \mathbb{Z})(n \leq x<n+1)$.
Let $x \in \mathbb{R}$.
Then there is a unique integer $n$ such that $n \leq x<n+1$.

Theorem 87. $\mathbb{Q}$ is dense in $\mathbb{R}$
For every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $a<q<b$.
Therefore, between any two distinct real numbers is a rational number.
Hence, if $a<b$, then there exists $q \in \mathbb{Q}$ in the open interval $(a, b)$.
Therefore, there is a rational number in every nonempty open interval.
Corollary 88. between any two distinct real numbers is a nonzero rational number

For every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and $a<q<b$.

## Existence of square roots in $\mathbb{R}$

Definition 89. square root of a real number
Let $r \in \mathbb{R}$.
A square root of $r$ is a real number $x$ such that $x^{2}=r$.
Proposition 90. A square root of a negative real number does not exist in $\mathbb{R}$.
Proposition 91. Zero is the unique square root of 0.
Lemma 92. Let $F$ be an ordered field.
Let $a, b \in F$.
If $0<a<b$, then $0<a^{2}<a b<b^{2}$.
Lemma 93. Let $F$ be an ordered field.
Let $a \in F$.
If $|a|<\epsilon$ for all $\epsilon>0$, then $a=0$.
Theorem 94. existence and uniqueness of positive square roots
Let $r \in \mathbb{R}$.
$A$ unique positive square root of $r$ exists in $\mathbb{R}$ iff $r>0$.
Definition 95. nonnegative square root of a real number
Let $x \in \mathbb{R}$ such that $x \geq 0$.
The nonnegative square root of $x$ is denoted $\sqrt{x}$.
Therefore, $\sqrt{x} \geq 0$ and $(\sqrt{x})^{2}=x$.
Let $x \in \mathbb{R}$.
Then $\sqrt{x}>0$ iff $x>0$.
Proposition 96. Let $x \in \mathbb{R}$.
Then $\sqrt{x} \in \mathbb{R}$ iff $x \geq 0$.
Proposition 97. Let $x \in \mathbb{R}$.
Then $\sqrt{x} \geq 0$ iff $x \geq 0$.

Let $x \in \mathbb{R}$.
If $x>0$, then $\sqrt{x}>0$ and $-\sqrt{x}<0$ and $(\sqrt{x})^{2}=x$ and $(-\sqrt{x})^{2}=x$.
Proposition 98. Let $a, b \in \mathbb{R}$ with $a \geq 0$ and $b \geq 0$.
Then $\sqrt{a}=\sqrt{b}$ iff $a=b$.
Proposition 99. Let $a, b \in \mathbb{R}$.
If $a \geq 0$ and $b \geq 0$, then $\sqrt{a b}=\sqrt{a} \sqrt{b}$.
Proposition 100. Let $x \in \mathbb{R}$. Then

1. $\sqrt{x}=0$ iff $x=0$.
2. $\sqrt{x^{2}}=|x|$.

Let $x \in \mathbb{R}$.
Since $\sqrt{x}=0$ iff $x=0$, then $\sqrt{0}=0$.
Since $\sqrt{x^{2}}=|x|$, then either $\sqrt{x^{2}}=x$ or $\sqrt{x^{2}}=-x$.
Lemma 101. Let $x \in \mathbb{R}$.
If $x>0$, then $\sqrt{\frac{1}{x}}=\frac{1}{\sqrt{x}}$.
Proposition 102. Let $a, b \in \mathbb{R}$.
If $a \geq 0$ and $b>0$, then $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.
Lemma 103. Let $a, b \in \mathbb{R}$.
If $0<a \leq b$, then $0<a^{2} \leq b^{2}$.
Proposition 104. Let $a, b \in \mathbb{R}$.
Then $0<a<b$ iff $0<\sqrt{a}<\sqrt{b}$.
Corollary 105. Let $x \in \mathbb{R}$.

1. If $0<x<1$, then $0<x^{2}<x<\sqrt{x}<1$.
2. If $x>1$, then $1<\sqrt{x}<x<x^{2}$.
